6da10aa19629432b7fc2d09117604fd1fcc1cbc9
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "frame.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "value.h"
30 #include "language.h"
31 #include "expression.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "target.h"
35 #include "breakpoint.h"
36 #include "demangle.h"
37 #include "valprint.h"
38 #include "annotate.h"
39 #include "symfile.h" /* for overlay functions */
40 #include "objfiles.h" /* ditto */
41 #include "completer.h" /* for completion functions */
42 #include "ui-out.h"
43 #include "gdb_assert.h"
44 #include "block.h"
45 #include "disasm.h"
46
47 #ifdef TUI
48 #include "tui/tui.h" /* For tui_active et.al. */
49 #endif
50
51 extern int asm_demangle; /* Whether to demangle syms in asm printouts */
52 extern int addressprint; /* Whether to print hex addresses in HLL " */
53
54 struct format_data
55 {
56 int count;
57 char format;
58 char size;
59 };
60
61 /* Last specified output format. */
62
63 static char last_format = 'x';
64
65 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
66
67 static char last_size = 'w';
68
69 /* Default address to examine next. */
70
71 static CORE_ADDR next_address;
72
73 /* Last address examined. */
74
75 static CORE_ADDR last_examine_address;
76
77 /* Contents of last address examined.
78 This is not valid past the end of the `x' command! */
79
80 static struct value *last_examine_value;
81
82 /* Largest offset between a symbolic value and an address, that will be
83 printed as `0x1234 <symbol+offset>'. */
84
85 static unsigned int max_symbolic_offset = UINT_MAX;
86 static void
87 show_max_symbolic_offset (struct ui_file *file, int from_tty,
88 struct cmd_list_element *c, const char *value)
89 {
90 fprintf_filtered (file, _("\
91 The largest offset that will be printed in <symbol+1234> form is %s.\n"),
92 value);
93 }
94
95 /* Append the source filename and linenumber of the symbol when
96 printing a symbolic value as `<symbol at filename:linenum>' if set. */
97 static int print_symbol_filename = 0;
98 static void
99 show_print_symbol_filename (struct ui_file *file, int from_tty,
100 struct cmd_list_element *c, const char *value)
101 {
102 fprintf_filtered (file, _("\
103 Printing of source filename and line number with <symbol> is %s.\n"),
104 value);
105 }
106
107 /* Number of auto-display expression currently being displayed.
108 So that we can disable it if we get an error or a signal within it.
109 -1 when not doing one. */
110
111 int current_display_number;
112
113 /* Flag to low-level print routines that this value is being printed
114 in an epoch window. We'd like to pass this as a parameter, but
115 every routine would need to take it. Perhaps we can encapsulate
116 this in the I/O stream once we have GNU stdio. */
117
118 int inspect_it = 0;
119
120 struct display
121 {
122 /* Chain link to next auto-display item. */
123 struct display *next;
124 /* Expression to be evaluated and displayed. */
125 struct expression *exp;
126 /* Item number of this auto-display item. */
127 int number;
128 /* Display format specified. */
129 struct format_data format;
130 /* Innermost block required by this expression when evaluated */
131 struct block *block;
132 /* Status of this display (enabled or disabled) */
133 int enabled_p;
134 };
135
136 /* Chain of expressions whose values should be displayed
137 automatically each time the program stops. */
138
139 static struct display *display_chain;
140
141 static int display_number;
142
143 /* Prototypes for exported functions. */
144
145 void output_command (char *, int);
146
147 void _initialize_printcmd (void);
148
149 /* Prototypes for local functions. */
150
151 static void do_one_display (struct display *);
152 \f
153
154 /* Decode a format specification. *STRING_PTR should point to it.
155 OFORMAT and OSIZE are used as defaults for the format and size
156 if none are given in the format specification.
157 If OSIZE is zero, then the size field of the returned value
158 should be set only if a size is explicitly specified by the
159 user.
160 The structure returned describes all the data
161 found in the specification. In addition, *STRING_PTR is advanced
162 past the specification and past all whitespace following it. */
163
164 static struct format_data
165 decode_format (char **string_ptr, int oformat, int osize)
166 {
167 struct format_data val;
168 char *p = *string_ptr;
169
170 val.format = '?';
171 val.size = '?';
172 val.count = 1;
173
174 if (*p >= '0' && *p <= '9')
175 val.count = atoi (p);
176 while (*p >= '0' && *p <= '9')
177 p++;
178
179 /* Now process size or format letters that follow. */
180
181 while (1)
182 {
183 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
184 val.size = *p++;
185 else if (*p >= 'a' && *p <= 'z')
186 val.format = *p++;
187 else
188 break;
189 }
190
191 while (*p == ' ' || *p == '\t')
192 p++;
193 *string_ptr = p;
194
195 /* Set defaults for format and size if not specified. */
196 if (val.format == '?')
197 {
198 if (val.size == '?')
199 {
200 /* Neither has been specified. */
201 val.format = oformat;
202 val.size = osize;
203 }
204 else
205 /* If a size is specified, any format makes a reasonable
206 default except 'i'. */
207 val.format = oformat == 'i' ? 'x' : oformat;
208 }
209 else if (val.size == '?')
210 switch (val.format)
211 {
212 case 'a':
213 case 's':
214 /* Pick the appropriate size for an address. */
215 if (gdbarch_ptr_bit (current_gdbarch) == 64)
216 val.size = osize ? 'g' : osize;
217 else if (gdbarch_ptr_bit (current_gdbarch) == 32)
218 val.size = osize ? 'w' : osize;
219 else if (gdbarch_ptr_bit (current_gdbarch) == 16)
220 val.size = osize ? 'h' : osize;
221 else
222 /* Bad value for gdbarch_ptr_bit. */
223 internal_error (__FILE__, __LINE__,
224 _("failed internal consistency check"));
225 break;
226 case 'f':
227 /* Floating point has to be word or giantword. */
228 if (osize == 'w' || osize == 'g')
229 val.size = osize;
230 else
231 /* Default it to giantword if the last used size is not
232 appropriate. */
233 val.size = osize ? 'g' : osize;
234 break;
235 case 'c':
236 /* Characters default to one byte. */
237 val.size = osize ? 'b' : osize;
238 break;
239 default:
240 /* The default is the size most recently specified. */
241 val.size = osize;
242 }
243
244 return val;
245 }
246 \f
247 /* Print value VAL on stream according to FORMAT, a letter or 0.
248 Do not end with a newline.
249 0 means print VAL according to its own type.
250 SIZE is the letter for the size of datum being printed.
251 This is used to pad hex numbers so they line up. */
252
253 static void
254 print_formatted (struct value *val, int format, int size,
255 struct ui_file *stream)
256 {
257 struct type *type = check_typedef (value_type (val));
258 int len = TYPE_LENGTH (type);
259
260 if (VALUE_LVAL (val) == lval_memory)
261 next_address = VALUE_ADDRESS (val) + len;
262
263 switch (format)
264 {
265 case 's':
266 /* FIXME: Need to handle wchar_t's here... */
267 next_address = VALUE_ADDRESS (val)
268 + val_print_string (VALUE_ADDRESS (val), -1, 1, stream);
269 break;
270
271 case 'i':
272 /* The old comment says
273 "Force output out, print_insn not using _filtered".
274 I'm not completely sure what that means, I suspect most print_insn
275 now do use _filtered, so I guess it's obsolete.
276 --Yes, it does filter now, and so this is obsolete. -JB */
277
278 /* We often wrap here if there are long symbolic names. */
279 wrap_here (" ");
280 next_address = VALUE_ADDRESS (val)
281 + gdb_print_insn (VALUE_ADDRESS (val), stream);
282 break;
283
284 default:
285 if (format == 0
286 || TYPE_CODE (type) == TYPE_CODE_ARRAY
287 || TYPE_CODE (type) == TYPE_CODE_STRING
288 || TYPE_CODE (type) == TYPE_CODE_STRUCT
289 || TYPE_CODE (type) == TYPE_CODE_UNION
290 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
291 /* If format is 0, use the 'natural' format for that type of
292 value. If the type is non-scalar, we have to use language
293 rules to print it as a series of scalars. */
294 value_print (val, stream, format, Val_pretty_default);
295 else
296 /* User specified format, so don't look to the the type to
297 tell us what to do. */
298 print_scalar_formatted (value_contents (val), type,
299 format, size, stream);
300 }
301 }
302
303 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
304 according to letters FORMAT and SIZE on STREAM.
305 FORMAT may not be zero. Formats s and i are not supported at this level.
306
307 This is how the elements of an array or structure are printed
308 with a format. */
309
310 void
311 print_scalar_formatted (const void *valaddr, struct type *type,
312 int format, int size, struct ui_file *stream)
313 {
314 LONGEST val_long = 0;
315 unsigned int len = TYPE_LENGTH (type);
316
317 if (len > sizeof(LONGEST) &&
318 (TYPE_CODE (type) == TYPE_CODE_INT
319 || TYPE_CODE (type) == TYPE_CODE_ENUM))
320 {
321 switch (format)
322 {
323 case 'o':
324 print_octal_chars (stream, valaddr, len);
325 return;
326 case 'u':
327 case 'd':
328 print_decimal_chars (stream, valaddr, len);
329 return;
330 case 't':
331 print_binary_chars (stream, valaddr, len);
332 return;
333 case 'x':
334 print_hex_chars (stream, valaddr, len);
335 return;
336 case 'c':
337 print_char_chars (stream, valaddr, len);
338 return;
339 default:
340 break;
341 };
342 }
343
344 if (format != 'f')
345 val_long = unpack_long (type, valaddr);
346
347 /* If the value is a pointer, and pointers and addresses are not the
348 same, then at this point, the value's length (in target bytes) is
349 TARGET_ADDR_BIT/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
350 if (TYPE_CODE (type) == TYPE_CODE_PTR)
351 len = TARGET_ADDR_BIT / TARGET_CHAR_BIT;
352
353 /* If we are printing it as unsigned, truncate it in case it is actually
354 a negative signed value (e.g. "print/u (short)-1" should print 65535
355 (if shorts are 16 bits) instead of 4294967295). */
356 if (format != 'd')
357 {
358 if (len < sizeof (LONGEST))
359 val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
360 }
361
362 switch (format)
363 {
364 case 'x':
365 if (!size)
366 {
367 /* No size specified, like in print. Print varying # of digits. */
368 print_longest (stream, 'x', 1, val_long);
369 }
370 else
371 switch (size)
372 {
373 case 'b':
374 case 'h':
375 case 'w':
376 case 'g':
377 print_longest (stream, size, 1, val_long);
378 break;
379 default:
380 error (_("Undefined output size \"%c\"."), size);
381 }
382 break;
383
384 case 'd':
385 print_longest (stream, 'd', 1, val_long);
386 break;
387
388 case 'u':
389 print_longest (stream, 'u', 0, val_long);
390 break;
391
392 case 'o':
393 if (val_long)
394 print_longest (stream, 'o', 1, val_long);
395 else
396 fprintf_filtered (stream, "0");
397 break;
398
399 case 'a':
400 {
401 CORE_ADDR addr = unpack_pointer (type, valaddr);
402 print_address (addr, stream);
403 }
404 break;
405
406 case 'c':
407 value_print (value_from_longest (builtin_type_true_char, val_long),
408 stream, 0, Val_pretty_default);
409 break;
410
411 case 'f':
412 if (len == TYPE_LENGTH (builtin_type_float))
413 type = builtin_type_float;
414 else if (len == TYPE_LENGTH (builtin_type_double))
415 type = builtin_type_double;
416 else if (len == TYPE_LENGTH (builtin_type_long_double))
417 type = builtin_type_long_double;
418 print_floating (valaddr, type, stream);
419 break;
420
421 case 0:
422 internal_error (__FILE__, __LINE__,
423 _("failed internal consistency check"));
424
425 case 't':
426 /* Binary; 't' stands for "two". */
427 {
428 char bits[8 * (sizeof val_long) + 1];
429 char buf[8 * (sizeof val_long) + 32];
430 char *cp = bits;
431 int width;
432
433 if (!size)
434 width = 8 * (sizeof val_long);
435 else
436 switch (size)
437 {
438 case 'b':
439 width = 8;
440 break;
441 case 'h':
442 width = 16;
443 break;
444 case 'w':
445 width = 32;
446 break;
447 case 'g':
448 width = 64;
449 break;
450 default:
451 error (_("Undefined output size \"%c\"."), size);
452 }
453
454 bits[width] = '\0';
455 while (width-- > 0)
456 {
457 bits[width] = (val_long & 1) ? '1' : '0';
458 val_long >>= 1;
459 }
460 if (!size)
461 {
462 while (*cp && *cp == '0')
463 cp++;
464 if (*cp == '\0')
465 cp--;
466 }
467 strcpy (buf, cp);
468 fputs_filtered (buf, stream);
469 }
470 break;
471
472 default:
473 error (_("Undefined output format \"%c\"."), format);
474 }
475 }
476
477 /* Specify default address for `x' command.
478 The `info lines' command uses this. */
479
480 void
481 set_next_address (CORE_ADDR addr)
482 {
483 next_address = addr;
484
485 /* Make address available to the user as $_. */
486 set_internalvar (lookup_internalvar ("_"),
487 value_from_pointer (lookup_pointer_type (builtin_type_void),
488 addr));
489 }
490
491 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
492 after LEADIN. Print nothing if no symbolic name is found nearby.
493 Optionally also print source file and line number, if available.
494 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
495 or to interpret it as a possible C++ name and convert it back to source
496 form. However note that DO_DEMANGLE can be overridden by the specific
497 settings of the demangle and asm_demangle variables. */
498
499 void
500 print_address_symbolic (CORE_ADDR addr, struct ui_file *stream,
501 int do_demangle, char *leadin)
502 {
503 char *name = NULL;
504 char *filename = NULL;
505 int unmapped = 0;
506 int offset = 0;
507 int line = 0;
508
509 /* Throw away both name and filename. */
510 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
511 make_cleanup (free_current_contents, &filename);
512
513 if (build_address_symbolic (addr, do_demangle, &name, &offset,
514 &filename, &line, &unmapped))
515 {
516 do_cleanups (cleanup_chain);
517 return;
518 }
519
520 fputs_filtered (leadin, stream);
521 if (unmapped)
522 fputs_filtered ("<*", stream);
523 else
524 fputs_filtered ("<", stream);
525 fputs_filtered (name, stream);
526 if (offset != 0)
527 fprintf_filtered (stream, "+%u", (unsigned int) offset);
528
529 /* Append source filename and line number if desired. Give specific
530 line # of this addr, if we have it; else line # of the nearest symbol. */
531 if (print_symbol_filename && filename != NULL)
532 {
533 if (line != -1)
534 fprintf_filtered (stream, " at %s:%d", filename, line);
535 else
536 fprintf_filtered (stream, " in %s", filename);
537 }
538 if (unmapped)
539 fputs_filtered ("*>", stream);
540 else
541 fputs_filtered (">", stream);
542
543 do_cleanups (cleanup_chain);
544 }
545
546 /* Given an address ADDR return all the elements needed to print the
547 address in a symbolic form. NAME can be mangled or not depending
548 on DO_DEMANGLE (and also on the asm_demangle global variable,
549 manipulated via ''set print asm-demangle''). Return 0 in case of
550 success, when all the info in the OUT paramters is valid. Return 1
551 otherwise. */
552 int
553 build_address_symbolic (CORE_ADDR addr, /* IN */
554 int do_demangle, /* IN */
555 char **name, /* OUT */
556 int *offset, /* OUT */
557 char **filename, /* OUT */
558 int *line, /* OUT */
559 int *unmapped) /* OUT */
560 {
561 struct minimal_symbol *msymbol;
562 struct symbol *symbol;
563 struct symtab *symtab = 0;
564 CORE_ADDR name_location = 0;
565 asection *section = 0;
566 char *name_temp = "";
567
568 /* Let's say it is unmapped. */
569 *unmapped = 0;
570
571 /* Determine if the address is in an overlay, and whether it is
572 mapped. */
573 if (overlay_debugging)
574 {
575 section = find_pc_overlay (addr);
576 if (pc_in_unmapped_range (addr, section))
577 {
578 *unmapped = 1;
579 addr = overlay_mapped_address (addr, section);
580 }
581 }
582
583 /* First try to find the address in the symbol table, then
584 in the minsyms. Take the closest one. */
585
586 /* This is defective in the sense that it only finds text symbols. So
587 really this is kind of pointless--we should make sure that the
588 minimal symbols have everything we need (by changing that we could
589 save some memory, but for many debug format--ELF/DWARF or
590 anything/stabs--it would be inconvenient to eliminate those minimal
591 symbols anyway). */
592 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
593 symbol = find_pc_sect_function (addr, section);
594
595 if (symbol)
596 {
597 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
598 if (do_demangle || asm_demangle)
599 name_temp = SYMBOL_PRINT_NAME (symbol);
600 else
601 name_temp = DEPRECATED_SYMBOL_NAME (symbol);
602 }
603
604 if (msymbol != NULL)
605 {
606 if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
607 {
608 /* The msymbol is closer to the address than the symbol;
609 use the msymbol instead. */
610 symbol = 0;
611 symtab = 0;
612 name_location = SYMBOL_VALUE_ADDRESS (msymbol);
613 if (do_demangle || asm_demangle)
614 name_temp = SYMBOL_PRINT_NAME (msymbol);
615 else
616 name_temp = DEPRECATED_SYMBOL_NAME (msymbol);
617 }
618 }
619 if (symbol == NULL && msymbol == NULL)
620 return 1;
621
622 /* If the nearest symbol is too far away, don't print anything symbolic. */
623
624 /* For when CORE_ADDR is larger than unsigned int, we do math in
625 CORE_ADDR. But when we detect unsigned wraparound in the
626 CORE_ADDR math, we ignore this test and print the offset,
627 because addr+max_symbolic_offset has wrapped through the end
628 of the address space back to the beginning, giving bogus comparison. */
629 if (addr > name_location + max_symbolic_offset
630 && name_location + max_symbolic_offset > name_location)
631 return 1;
632
633 *offset = addr - name_location;
634
635 *name = xstrdup (name_temp);
636
637 if (print_symbol_filename)
638 {
639 struct symtab_and_line sal;
640
641 sal = find_pc_sect_line (addr, section, 0);
642
643 if (sal.symtab)
644 {
645 *filename = xstrdup (sal.symtab->filename);
646 *line = sal.line;
647 }
648 else if (symtab && symbol && symbol->line)
649 {
650 *filename = xstrdup (symtab->filename);
651 *line = symbol->line;
652 }
653 else if (symtab)
654 {
655 *filename = xstrdup (symtab->filename);
656 *line = -1;
657 }
658 }
659 return 0;
660 }
661
662 /* Print address ADDR on STREAM. USE_LOCAL means the same thing as for
663 print_longest. */
664 void
665 deprecated_print_address_numeric (CORE_ADDR addr, int use_local,
666 struct ui_file *stream)
667 {
668 if (use_local)
669 fputs_filtered (paddress (addr), stream);
670 else
671 {
672 int addr_bit = TARGET_ADDR_BIT;
673
674 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
675 addr &= ((CORE_ADDR) 1 << addr_bit) - 1;
676 print_longest (stream, 'x', 0, (ULONGEST) addr);
677 }
678 }
679
680 /* Print address ADDR symbolically on STREAM.
681 First print it as a number. Then perhaps print
682 <SYMBOL + OFFSET> after the number. */
683
684 void
685 print_address (CORE_ADDR addr, struct ui_file *stream)
686 {
687 deprecated_print_address_numeric (addr, 1, stream);
688 print_address_symbolic (addr, stream, asm_demangle, " ");
689 }
690
691 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
692 controls whether to print the symbolic name "raw" or demangled.
693 Global setting "addressprint" controls whether to print hex address
694 or not. */
695
696 void
697 print_address_demangle (CORE_ADDR addr, struct ui_file *stream,
698 int do_demangle)
699 {
700 if (addr == 0)
701 {
702 fprintf_filtered (stream, "0");
703 }
704 else if (addressprint)
705 {
706 deprecated_print_address_numeric (addr, 1, stream);
707 print_address_symbolic (addr, stream, do_demangle, " ");
708 }
709 else
710 {
711 print_address_symbolic (addr, stream, do_demangle, "");
712 }
713 }
714 \f
715
716 /* These are the types that $__ will get after an examine command of one
717 of these sizes. */
718
719 static struct type *examine_i_type;
720
721 static struct type *examine_b_type;
722 static struct type *examine_h_type;
723 static struct type *examine_w_type;
724 static struct type *examine_g_type;
725
726 /* Examine data at address ADDR in format FMT.
727 Fetch it from memory and print on gdb_stdout. */
728
729 static void
730 do_examine (struct format_data fmt, CORE_ADDR addr)
731 {
732 char format = 0;
733 char size;
734 int count = 1;
735 struct type *val_type = NULL;
736 int i;
737 int maxelts;
738
739 format = fmt.format;
740 size = fmt.size;
741 count = fmt.count;
742 next_address = addr;
743
744 /* String or instruction format implies fetch single bytes
745 regardless of the specified size. */
746 if (format == 's' || format == 'i')
747 size = 'b';
748
749 if (format == 'i')
750 val_type = examine_i_type;
751 else if (size == 'b')
752 val_type = examine_b_type;
753 else if (size == 'h')
754 val_type = examine_h_type;
755 else if (size == 'w')
756 val_type = examine_w_type;
757 else if (size == 'g')
758 val_type = examine_g_type;
759
760 maxelts = 8;
761 if (size == 'w')
762 maxelts = 4;
763 if (size == 'g')
764 maxelts = 2;
765 if (format == 's' || format == 'i')
766 maxelts = 1;
767
768 /* Print as many objects as specified in COUNT, at most maxelts per line,
769 with the address of the next one at the start of each line. */
770
771 while (count > 0)
772 {
773 QUIT;
774 print_address (next_address, gdb_stdout);
775 printf_filtered (":");
776 for (i = maxelts;
777 i > 0 && count > 0;
778 i--, count--)
779 {
780 printf_filtered ("\t");
781 /* Note that print_formatted sets next_address for the next
782 object. */
783 last_examine_address = next_address;
784
785 if (last_examine_value)
786 value_free (last_examine_value);
787
788 /* The value to be displayed is not fetched greedily.
789 Instead, to avoid the possibility of a fetched value not
790 being used, its retrieval is delayed until the print code
791 uses it. When examining an instruction stream, the
792 disassembler will perform its own memory fetch using just
793 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
794 the disassembler be modified so that LAST_EXAMINE_VALUE
795 is left with the byte sequence from the last complete
796 instruction fetched from memory? */
797 last_examine_value = value_at_lazy (val_type, next_address);
798
799 if (last_examine_value)
800 release_value (last_examine_value);
801
802 print_formatted (last_examine_value, format, size, gdb_stdout);
803 }
804 printf_filtered ("\n");
805 gdb_flush (gdb_stdout);
806 }
807 }
808 \f
809 static void
810 validate_format (struct format_data fmt, char *cmdname)
811 {
812 if (fmt.size != 0)
813 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
814 if (fmt.count != 1)
815 error (_("Item count other than 1 is meaningless in \"%s\" command."),
816 cmdname);
817 if (fmt.format == 'i' || fmt.format == 's')
818 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
819 fmt.format, cmdname);
820 }
821
822 /* Evaluate string EXP as an expression in the current language and
823 print the resulting value. EXP may contain a format specifier as the
824 first argument ("/x myvar" for example, to print myvar in hex). */
825
826 static void
827 print_command_1 (char *exp, int inspect, int voidprint)
828 {
829 struct expression *expr;
830 struct cleanup *old_chain = 0;
831 char format = 0;
832 struct value *val;
833 struct format_data fmt;
834 int cleanup = 0;
835
836 /* Pass inspect flag to the rest of the print routines in a global
837 (sigh). */
838 inspect_it = inspect;
839
840 if (exp && *exp == '/')
841 {
842 exp++;
843 fmt = decode_format (&exp, last_format, 0);
844 validate_format (fmt, "print");
845 last_format = format = fmt.format;
846 }
847 else
848 {
849 fmt.count = 1;
850 fmt.format = 0;
851 fmt.size = 0;
852 }
853
854 if (exp && *exp)
855 {
856 struct type *type;
857 expr = parse_expression (exp);
858 old_chain = make_cleanup (free_current_contents, &expr);
859 cleanup = 1;
860 val = evaluate_expression (expr);
861 }
862 else
863 val = access_value_history (0);
864
865 if (voidprint || (val && value_type (val) &&
866 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
867 {
868 int histindex = record_latest_value (val);
869
870 if (histindex >= 0)
871 annotate_value_history_begin (histindex, value_type (val));
872 else
873 annotate_value_begin (value_type (val));
874
875 if (inspect)
876 printf_unfiltered ("\031(gdb-makebuffer \"%s\" %d '(\"",
877 exp, histindex);
878 else if (histindex >= 0)
879 printf_filtered ("$%d = ", histindex);
880
881 if (histindex >= 0)
882 annotate_value_history_value ();
883
884 print_formatted (val, format, fmt.size, gdb_stdout);
885 printf_filtered ("\n");
886
887 if (histindex >= 0)
888 annotate_value_history_end ();
889 else
890 annotate_value_end ();
891
892 if (inspect)
893 printf_unfiltered ("\") )\030");
894 }
895
896 if (cleanup)
897 do_cleanups (old_chain);
898 inspect_it = 0; /* Reset print routines to normal. */
899 }
900
901 static void
902 print_command (char *exp, int from_tty)
903 {
904 print_command_1 (exp, 0, 1);
905 }
906
907 /* Same as print, except in epoch, it gets its own window. */
908 static void
909 inspect_command (char *exp, int from_tty)
910 {
911 extern int epoch_interface;
912
913 print_command_1 (exp, epoch_interface, 1);
914 }
915
916 /* Same as print, except it doesn't print void results. */
917 static void
918 call_command (char *exp, int from_tty)
919 {
920 print_command_1 (exp, 0, 0);
921 }
922
923 void
924 output_command (char *exp, int from_tty)
925 {
926 struct expression *expr;
927 struct cleanup *old_chain;
928 char format = 0;
929 struct value *val;
930 struct format_data fmt;
931
932 fmt.size = 0;
933
934 if (exp && *exp == '/')
935 {
936 exp++;
937 fmt = decode_format (&exp, 0, 0);
938 validate_format (fmt, "output");
939 format = fmt.format;
940 }
941
942 expr = parse_expression (exp);
943 old_chain = make_cleanup (free_current_contents, &expr);
944
945 val = evaluate_expression (expr);
946
947 annotate_value_begin (value_type (val));
948
949 print_formatted (val, format, fmt.size, gdb_stdout);
950
951 annotate_value_end ();
952
953 wrap_here ("");
954 gdb_flush (gdb_stdout);
955
956 do_cleanups (old_chain);
957 }
958
959 static void
960 set_command (char *exp, int from_tty)
961 {
962 struct expression *expr = parse_expression (exp);
963 struct cleanup *old_chain =
964 make_cleanup (free_current_contents, &expr);
965 evaluate_expression (expr);
966 do_cleanups (old_chain);
967 }
968
969 static void
970 sym_info (char *arg, int from_tty)
971 {
972 struct minimal_symbol *msymbol;
973 struct objfile *objfile;
974 struct obj_section *osect;
975 asection *sect;
976 CORE_ADDR addr, sect_addr;
977 int matches = 0;
978 unsigned int offset;
979
980 if (!arg)
981 error_no_arg (_("address"));
982
983 addr = parse_and_eval_address (arg);
984 ALL_OBJSECTIONS (objfile, osect)
985 {
986 /* Only process each object file once, even if there's a separate
987 debug file. */
988 if (objfile->separate_debug_objfile_backlink)
989 continue;
990
991 sect = osect->the_bfd_section;
992 sect_addr = overlay_mapped_address (addr, sect);
993
994 if (osect->addr <= sect_addr && sect_addr < osect->endaddr &&
995 (msymbol = lookup_minimal_symbol_by_pc_section (sect_addr, sect)))
996 {
997 matches = 1;
998 offset = sect_addr - SYMBOL_VALUE_ADDRESS (msymbol);
999 if (offset)
1000 printf_filtered ("%s + %u in ",
1001 SYMBOL_PRINT_NAME (msymbol), offset);
1002 else
1003 printf_filtered ("%s in ",
1004 SYMBOL_PRINT_NAME (msymbol));
1005 if (pc_in_unmapped_range (addr, sect))
1006 printf_filtered (_("load address range of "));
1007 if (section_is_overlay (sect))
1008 printf_filtered (_("%s overlay "),
1009 section_is_mapped (sect) ? "mapped" : "unmapped");
1010 printf_filtered (_("section %s"), sect->name);
1011 printf_filtered ("\n");
1012 }
1013 }
1014 if (matches == 0)
1015 printf_filtered (_("No symbol matches %s.\n"), arg);
1016 }
1017
1018 static void
1019 address_info (char *exp, int from_tty)
1020 {
1021 struct symbol *sym;
1022 struct minimal_symbol *msymbol;
1023 long val;
1024 long basereg;
1025 asection *section;
1026 CORE_ADDR load_addr;
1027 int is_a_field_of_this; /* C++: lookup_symbol sets this to nonzero
1028 if exp is a field of `this'. */
1029
1030 if (exp == 0)
1031 error (_("Argument required."));
1032
1033 sym = lookup_symbol (exp, get_selected_block (0), VAR_DOMAIN,
1034 &is_a_field_of_this, (struct symtab **) NULL);
1035 if (sym == NULL)
1036 {
1037 if (is_a_field_of_this)
1038 {
1039 printf_filtered ("Symbol \"");
1040 fprintf_symbol_filtered (gdb_stdout, exp,
1041 current_language->la_language, DMGL_ANSI);
1042 printf_filtered ("\" is a field of the local class variable ");
1043 if (current_language->la_language == language_objc)
1044 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1045 else
1046 printf_filtered ("`this'\n");
1047 return;
1048 }
1049
1050 msymbol = lookup_minimal_symbol (exp, NULL, NULL);
1051
1052 if (msymbol != NULL)
1053 {
1054 load_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1055
1056 printf_filtered ("Symbol \"");
1057 fprintf_symbol_filtered (gdb_stdout, exp,
1058 current_language->la_language, DMGL_ANSI);
1059 printf_filtered ("\" is at ");
1060 deprecated_print_address_numeric (load_addr, 1, gdb_stdout);
1061 printf_filtered (" in a file compiled without debugging");
1062 section = SYMBOL_BFD_SECTION (msymbol);
1063 if (section_is_overlay (section))
1064 {
1065 load_addr = overlay_unmapped_address (load_addr, section);
1066 printf_filtered (",\n -- loaded at ");
1067 deprecated_print_address_numeric (load_addr, 1, gdb_stdout);
1068 printf_filtered (" in overlay section %s", section->name);
1069 }
1070 printf_filtered (".\n");
1071 }
1072 else
1073 error (_("No symbol \"%s\" in current context."), exp);
1074 return;
1075 }
1076
1077 printf_filtered ("Symbol \"");
1078 fprintf_symbol_filtered (gdb_stdout, DEPRECATED_SYMBOL_NAME (sym),
1079 current_language->la_language, DMGL_ANSI);
1080 printf_filtered ("\" is ");
1081 val = SYMBOL_VALUE (sym);
1082 basereg = SYMBOL_BASEREG (sym);
1083 section = SYMBOL_BFD_SECTION (sym);
1084
1085 switch (SYMBOL_CLASS (sym))
1086 {
1087 case LOC_CONST:
1088 case LOC_CONST_BYTES:
1089 printf_filtered ("constant");
1090 break;
1091
1092 case LOC_LABEL:
1093 printf_filtered ("a label at address ");
1094 deprecated_print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1095 1, gdb_stdout);
1096 if (section_is_overlay (section))
1097 {
1098 load_addr = overlay_unmapped_address (load_addr, section);
1099 printf_filtered (",\n -- loaded at ");
1100 deprecated_print_address_numeric (load_addr, 1, gdb_stdout);
1101 printf_filtered (" in overlay section %s", section->name);
1102 }
1103 break;
1104
1105 case LOC_COMPUTED:
1106 case LOC_COMPUTED_ARG:
1107 /* FIXME: cagney/2004-01-26: It should be possible to
1108 unconditionally call the SYMBOL_OPS method when available.
1109 Unfortunately DWARF 2 stores the frame-base (instead of the
1110 function) location in a function's symbol. Oops! For the
1111 moment enable this when/where applicable. */
1112 SYMBOL_OPS (sym)->describe_location (sym, gdb_stdout);
1113 break;
1114
1115 case LOC_REGISTER:
1116 printf_filtered (_("a variable in register %s"),
1117 gdbarch_register_name (current_gdbarch, val));
1118 break;
1119
1120 case LOC_STATIC:
1121 printf_filtered (_("static storage at address "));
1122 deprecated_print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1123 1, gdb_stdout);
1124 if (section_is_overlay (section))
1125 {
1126 load_addr = overlay_unmapped_address (load_addr, section);
1127 printf_filtered (_(",\n -- loaded at "));
1128 deprecated_print_address_numeric (load_addr, 1, gdb_stdout);
1129 printf_filtered (_(" in overlay section %s"), section->name);
1130 }
1131 break;
1132
1133 case LOC_INDIRECT:
1134 printf_filtered (_("external global (indirect addressing), at address *("));
1135 deprecated_print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1136 1, gdb_stdout);
1137 printf_filtered (")");
1138 if (section_is_overlay (section))
1139 {
1140 load_addr = overlay_unmapped_address (load_addr, section);
1141 printf_filtered (_(",\n -- loaded at "));
1142 deprecated_print_address_numeric (load_addr, 1, gdb_stdout);
1143 printf_filtered (_(" in overlay section %s"), section->name);
1144 }
1145 break;
1146
1147 case LOC_REGPARM:
1148 printf_filtered (_("an argument in register %s"),
1149 gdbarch_register_name (current_gdbarch, val));
1150 break;
1151
1152 case LOC_REGPARM_ADDR:
1153 printf_filtered (_("address of an argument in register %s"),
1154 gdbarch_register_name (current_gdbarch, val));
1155 break;
1156
1157 case LOC_ARG:
1158 printf_filtered (_("an argument at offset %ld"), val);
1159 break;
1160
1161 case LOC_LOCAL_ARG:
1162 printf_filtered (_("an argument at frame offset %ld"), val);
1163 break;
1164
1165 case LOC_LOCAL:
1166 printf_filtered (_("a local variable at frame offset %ld"), val);
1167 break;
1168
1169 case LOC_REF_ARG:
1170 printf_filtered (_("a reference argument at offset %ld"), val);
1171 break;
1172
1173 case LOC_BASEREG:
1174 printf_filtered (_("a variable at offset %ld from register %s"),
1175 val, gdbarch_register_name (current_gdbarch, basereg));
1176 break;
1177
1178 case LOC_BASEREG_ARG:
1179 printf_filtered (_("an argument at offset %ld from register %s"),
1180 val, gdbarch_register_name (current_gdbarch, basereg));
1181 break;
1182
1183 case LOC_TYPEDEF:
1184 printf_filtered (_("a typedef"));
1185 break;
1186
1187 case LOC_BLOCK:
1188 printf_filtered (_("a function at address "));
1189 load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1190 deprecated_print_address_numeric (load_addr, 1, gdb_stdout);
1191 if (section_is_overlay (section))
1192 {
1193 load_addr = overlay_unmapped_address (load_addr, section);
1194 printf_filtered (_(",\n -- loaded at "));
1195 deprecated_print_address_numeric (load_addr, 1, gdb_stdout);
1196 printf_filtered (_(" in overlay section %s"), section->name);
1197 }
1198 break;
1199
1200 case LOC_UNRESOLVED:
1201 {
1202 struct minimal_symbol *msym;
1203
1204 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, NULL);
1205 if (msym == NULL)
1206 printf_filtered ("unresolved");
1207 else
1208 {
1209 section = SYMBOL_BFD_SECTION (msym);
1210 printf_filtered (_("static storage at address "));
1211 load_addr = SYMBOL_VALUE_ADDRESS (msym);
1212 deprecated_print_address_numeric (load_addr, 1, gdb_stdout);
1213 if (section_is_overlay (section))
1214 {
1215 load_addr = overlay_unmapped_address (load_addr, section);
1216 printf_filtered (_(",\n -- loaded at "));
1217 deprecated_print_address_numeric (load_addr, 1, gdb_stdout);
1218 printf_filtered (_(" in overlay section %s"), section->name);
1219 }
1220 }
1221 }
1222 break;
1223
1224 case LOC_HP_THREAD_LOCAL_STATIC:
1225 printf_filtered (_("\
1226 a thread-local variable at offset %ld from the thread base register %s"),
1227 val, gdbarch_register_name (current_gdbarch, basereg));
1228 break;
1229
1230 case LOC_OPTIMIZED_OUT:
1231 printf_filtered (_("optimized out"));
1232 break;
1233
1234 default:
1235 printf_filtered (_("of unknown (botched) type"));
1236 break;
1237 }
1238 printf_filtered (".\n");
1239 }
1240 \f
1241
1242 static void
1243 x_command (char *exp, int from_tty)
1244 {
1245 struct expression *expr;
1246 struct format_data fmt;
1247 struct cleanup *old_chain;
1248 struct value *val;
1249
1250 fmt.format = last_format;
1251 fmt.size = last_size;
1252 fmt.count = 1;
1253
1254 if (exp && *exp == '/')
1255 {
1256 exp++;
1257 fmt = decode_format (&exp, last_format, last_size);
1258 }
1259
1260 /* If we have an expression, evaluate it and use it as the address. */
1261
1262 if (exp != 0 && *exp != 0)
1263 {
1264 expr = parse_expression (exp);
1265 /* Cause expression not to be there any more if this command is
1266 repeated with Newline. But don't clobber a user-defined
1267 command's definition. */
1268 if (from_tty)
1269 *exp = 0;
1270 old_chain = make_cleanup (free_current_contents, &expr);
1271 val = evaluate_expression (expr);
1272 if (TYPE_CODE (value_type (val)) == TYPE_CODE_REF)
1273 val = value_ind (val);
1274 /* In rvalue contexts, such as this, functions are coerced into
1275 pointers to functions. This makes "x/i main" work. */
1276 if (/* last_format == 'i' && */
1277 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1278 && VALUE_LVAL (val) == lval_memory)
1279 next_address = VALUE_ADDRESS (val);
1280 else
1281 next_address = value_as_address (val);
1282 do_cleanups (old_chain);
1283 }
1284
1285 do_examine (fmt, next_address);
1286
1287 /* If the examine succeeds, we remember its size and format for next
1288 time. */
1289 last_size = fmt.size;
1290 last_format = fmt.format;
1291
1292 /* Set a couple of internal variables if appropriate. */
1293 if (last_examine_value)
1294 {
1295 /* Make last address examined available to the user as $_. Use
1296 the correct pointer type. */
1297 struct type *pointer_type
1298 = lookup_pointer_type (value_type (last_examine_value));
1299 set_internalvar (lookup_internalvar ("_"),
1300 value_from_pointer (pointer_type,
1301 last_examine_address));
1302
1303 /* Make contents of last address examined available to the user
1304 as $__. If the last value has not been fetched from memory
1305 then don't fetch it now; instead mark it by voiding the $__
1306 variable. */
1307 if (value_lazy (last_examine_value))
1308 set_internalvar (lookup_internalvar ("__"),
1309 allocate_value (builtin_type_void));
1310 else
1311 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1312 }
1313 }
1314 \f
1315
1316 /* Add an expression to the auto-display chain.
1317 Specify the expression. */
1318
1319 static void
1320 display_command (char *exp, int from_tty)
1321 {
1322 struct format_data fmt;
1323 struct expression *expr;
1324 struct display *new;
1325 int display_it = 1;
1326
1327 #if defined(TUI)
1328 /* NOTE: cagney/2003-02-13 The `tui_active' was previously
1329 `tui_version'. */
1330 if (tui_active && exp != NULL && *exp == '$')
1331 display_it = (tui_set_layout_for_display_command (exp) == TUI_FAILURE);
1332 #endif
1333
1334 if (display_it)
1335 {
1336 if (exp == 0)
1337 {
1338 do_displays ();
1339 return;
1340 }
1341
1342 if (*exp == '/')
1343 {
1344 exp++;
1345 fmt = decode_format (&exp, 0, 0);
1346 if (fmt.size && fmt.format == 0)
1347 fmt.format = 'x';
1348 if (fmt.format == 'i' || fmt.format == 's')
1349 fmt.size = 'b';
1350 }
1351 else
1352 {
1353 fmt.format = 0;
1354 fmt.size = 0;
1355 fmt.count = 0;
1356 }
1357
1358 innermost_block = 0;
1359 expr = parse_expression (exp);
1360
1361 new = (struct display *) xmalloc (sizeof (struct display));
1362
1363 new->exp = expr;
1364 new->block = innermost_block;
1365 new->next = display_chain;
1366 new->number = ++display_number;
1367 new->format = fmt;
1368 new->enabled_p = 1;
1369 display_chain = new;
1370
1371 if (from_tty && target_has_execution)
1372 do_one_display (new);
1373
1374 dont_repeat ();
1375 }
1376 }
1377
1378 static void
1379 free_display (struct display *d)
1380 {
1381 xfree (d->exp);
1382 xfree (d);
1383 }
1384
1385 /* Clear out the display_chain. Done when new symtabs are loaded,
1386 since this invalidates the types stored in many expressions. */
1387
1388 void
1389 clear_displays (void)
1390 {
1391 struct display *d;
1392
1393 while ((d = display_chain) != NULL)
1394 {
1395 xfree (d->exp);
1396 display_chain = d->next;
1397 xfree (d);
1398 }
1399 }
1400
1401 /* Delete the auto-display number NUM. */
1402
1403 static void
1404 delete_display (int num)
1405 {
1406 struct display *d1, *d;
1407
1408 if (!display_chain)
1409 error (_("No display number %d."), num);
1410
1411 if (display_chain->number == num)
1412 {
1413 d1 = display_chain;
1414 display_chain = d1->next;
1415 free_display (d1);
1416 }
1417 else
1418 for (d = display_chain;; d = d->next)
1419 {
1420 if (d->next == 0)
1421 error (_("No display number %d."), num);
1422 if (d->next->number == num)
1423 {
1424 d1 = d->next;
1425 d->next = d1->next;
1426 free_display (d1);
1427 break;
1428 }
1429 }
1430 }
1431
1432 /* Delete some values from the auto-display chain.
1433 Specify the element numbers. */
1434
1435 static void
1436 undisplay_command (char *args, int from_tty)
1437 {
1438 char *p = args;
1439 char *p1;
1440 int num;
1441
1442 if (args == 0)
1443 {
1444 if (query ("Delete all auto-display expressions? "))
1445 clear_displays ();
1446 dont_repeat ();
1447 return;
1448 }
1449
1450 while (*p)
1451 {
1452 p1 = p;
1453 while (*p1 >= '0' && *p1 <= '9')
1454 p1++;
1455 if (*p1 && *p1 != ' ' && *p1 != '\t')
1456 error (_("Arguments must be display numbers."));
1457
1458 num = atoi (p);
1459
1460 delete_display (num);
1461
1462 p = p1;
1463 while (*p == ' ' || *p == '\t')
1464 p++;
1465 }
1466 dont_repeat ();
1467 }
1468
1469 /* Display a single auto-display.
1470 Do nothing if the display cannot be printed in the current context,
1471 or if the display is disabled. */
1472
1473 static void
1474 do_one_display (struct display *d)
1475 {
1476 int within_current_scope;
1477
1478 if (d->enabled_p == 0)
1479 return;
1480
1481 if (d->block)
1482 within_current_scope = contained_in (get_selected_block (0), d->block);
1483 else
1484 within_current_scope = 1;
1485 if (!within_current_scope)
1486 return;
1487
1488 current_display_number = d->number;
1489
1490 annotate_display_begin ();
1491 printf_filtered ("%d", d->number);
1492 annotate_display_number_end ();
1493 printf_filtered (": ");
1494 if (d->format.size)
1495 {
1496 CORE_ADDR addr;
1497 struct value *val;
1498
1499 annotate_display_format ();
1500
1501 printf_filtered ("x/");
1502 if (d->format.count != 1)
1503 printf_filtered ("%d", d->format.count);
1504 printf_filtered ("%c", d->format.format);
1505 if (d->format.format != 'i' && d->format.format != 's')
1506 printf_filtered ("%c", d->format.size);
1507 printf_filtered (" ");
1508
1509 annotate_display_expression ();
1510
1511 print_expression (d->exp, gdb_stdout);
1512 annotate_display_expression_end ();
1513
1514 if (d->format.count != 1)
1515 printf_filtered ("\n");
1516 else
1517 printf_filtered (" ");
1518
1519 val = evaluate_expression (d->exp);
1520 addr = value_as_address (val);
1521 if (d->format.format == 'i')
1522 addr = gdbarch_addr_bits_remove (current_gdbarch, addr);
1523
1524 annotate_display_value ();
1525
1526 do_examine (d->format, addr);
1527 }
1528 else
1529 {
1530 annotate_display_format ();
1531
1532 if (d->format.format)
1533 printf_filtered ("/%c ", d->format.format);
1534
1535 annotate_display_expression ();
1536
1537 print_expression (d->exp, gdb_stdout);
1538 annotate_display_expression_end ();
1539
1540 printf_filtered (" = ");
1541
1542 annotate_display_expression ();
1543
1544 print_formatted (evaluate_expression (d->exp),
1545 d->format.format, d->format.size, gdb_stdout);
1546 printf_filtered ("\n");
1547 }
1548
1549 annotate_display_end ();
1550
1551 gdb_flush (gdb_stdout);
1552 current_display_number = -1;
1553 }
1554
1555 /* Display all of the values on the auto-display chain which can be
1556 evaluated in the current scope. */
1557
1558 void
1559 do_displays (void)
1560 {
1561 struct display *d;
1562
1563 for (d = display_chain; d; d = d->next)
1564 do_one_display (d);
1565 }
1566
1567 /* Delete the auto-display which we were in the process of displaying.
1568 This is done when there is an error or a signal. */
1569
1570 void
1571 disable_display (int num)
1572 {
1573 struct display *d;
1574
1575 for (d = display_chain; d; d = d->next)
1576 if (d->number == num)
1577 {
1578 d->enabled_p = 0;
1579 return;
1580 }
1581 printf_unfiltered (_("No display number %d.\n"), num);
1582 }
1583
1584 void
1585 disable_current_display (void)
1586 {
1587 if (current_display_number >= 0)
1588 {
1589 disable_display (current_display_number);
1590 fprintf_unfiltered (gdb_stderr, _("\
1591 Disabling display %d to avoid infinite recursion.\n"),
1592 current_display_number);
1593 }
1594 current_display_number = -1;
1595 }
1596
1597 static void
1598 display_info (char *ignore, int from_tty)
1599 {
1600 struct display *d;
1601
1602 if (!display_chain)
1603 printf_unfiltered (_("There are no auto-display expressions now.\n"));
1604 else
1605 printf_filtered (_("Auto-display expressions now in effect:\n\
1606 Num Enb Expression\n"));
1607
1608 for (d = display_chain; d; d = d->next)
1609 {
1610 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
1611 if (d->format.size)
1612 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
1613 d->format.format);
1614 else if (d->format.format)
1615 printf_filtered ("/%c ", d->format.format);
1616 print_expression (d->exp, gdb_stdout);
1617 if (d->block && !contained_in (get_selected_block (0), d->block))
1618 printf_filtered (_(" (cannot be evaluated in the current context)"));
1619 printf_filtered ("\n");
1620 gdb_flush (gdb_stdout);
1621 }
1622 }
1623
1624 static void
1625 enable_display (char *args, int from_tty)
1626 {
1627 char *p = args;
1628 char *p1;
1629 int num;
1630 struct display *d;
1631
1632 if (p == 0)
1633 {
1634 for (d = display_chain; d; d = d->next)
1635 d->enabled_p = 1;
1636 }
1637 else
1638 while (*p)
1639 {
1640 p1 = p;
1641 while (*p1 >= '0' && *p1 <= '9')
1642 p1++;
1643 if (*p1 && *p1 != ' ' && *p1 != '\t')
1644 error (_("Arguments must be display numbers."));
1645
1646 num = atoi (p);
1647
1648 for (d = display_chain; d; d = d->next)
1649 if (d->number == num)
1650 {
1651 d->enabled_p = 1;
1652 goto win;
1653 }
1654 printf_unfiltered (_("No display number %d.\n"), num);
1655 win:
1656 p = p1;
1657 while (*p == ' ' || *p == '\t')
1658 p++;
1659 }
1660 }
1661
1662 static void
1663 disable_display_command (char *args, int from_tty)
1664 {
1665 char *p = args;
1666 char *p1;
1667 struct display *d;
1668
1669 if (p == 0)
1670 {
1671 for (d = display_chain; d; d = d->next)
1672 d->enabled_p = 0;
1673 }
1674 else
1675 while (*p)
1676 {
1677 p1 = p;
1678 while (*p1 >= '0' && *p1 <= '9')
1679 p1++;
1680 if (*p1 && *p1 != ' ' && *p1 != '\t')
1681 error (_("Arguments must be display numbers."));
1682
1683 disable_display (atoi (p));
1684
1685 p = p1;
1686 while (*p == ' ' || *p == '\t')
1687 p++;
1688 }
1689 }
1690 \f
1691
1692 /* Print the value in stack frame FRAME of a variable specified by a
1693 struct symbol. */
1694
1695 void
1696 print_variable_value (struct symbol *var, struct frame_info *frame,
1697 struct ui_file *stream)
1698 {
1699 struct value *val = read_var_value (var, frame);
1700
1701 value_print (val, stream, 0, Val_pretty_default);
1702 }
1703
1704 static void
1705 printf_command (char *arg, int from_tty)
1706 {
1707 char *f = NULL;
1708 char *s = arg;
1709 char *string = NULL;
1710 struct value **val_args;
1711 char *substrings;
1712 char *current_substring;
1713 int nargs = 0;
1714 int allocated_args = 20;
1715 struct cleanup *old_cleanups;
1716
1717 val_args = xmalloc (allocated_args * sizeof (struct value *));
1718 old_cleanups = make_cleanup (free_current_contents, &val_args);
1719
1720 if (s == 0)
1721 error_no_arg (_("format-control string and values to print"));
1722
1723 /* Skip white space before format string */
1724 while (*s == ' ' || *s == '\t')
1725 s++;
1726
1727 /* A format string should follow, enveloped in double quotes. */
1728 if (*s++ != '"')
1729 error (_("Bad format string, missing '\"'."));
1730
1731 /* Parse the format-control string and copy it into the string STRING,
1732 processing some kinds of escape sequence. */
1733
1734 f = string = (char *) alloca (strlen (s) + 1);
1735
1736 while (*s != '"')
1737 {
1738 int c = *s++;
1739 switch (c)
1740 {
1741 case '\0':
1742 error (_("Bad format string, non-terminated '\"'."));
1743
1744 case '\\':
1745 switch (c = *s++)
1746 {
1747 case '\\':
1748 *f++ = '\\';
1749 break;
1750 case 'a':
1751 *f++ = '\a';
1752 break;
1753 case 'b':
1754 *f++ = '\b';
1755 break;
1756 case 'f':
1757 *f++ = '\f';
1758 break;
1759 case 'n':
1760 *f++ = '\n';
1761 break;
1762 case 'r':
1763 *f++ = '\r';
1764 break;
1765 case 't':
1766 *f++ = '\t';
1767 break;
1768 case 'v':
1769 *f++ = '\v';
1770 break;
1771 case '"':
1772 *f++ = '"';
1773 break;
1774 default:
1775 /* ??? TODO: handle other escape sequences */
1776 error (_("Unrecognized escape character \\%c in format string."),
1777 c);
1778 }
1779 break;
1780
1781 default:
1782 *f++ = c;
1783 }
1784 }
1785
1786 /* Skip over " and following space and comma. */
1787 s++;
1788 *f++ = '\0';
1789 while (*s == ' ' || *s == '\t')
1790 s++;
1791
1792 if (*s != ',' && *s != 0)
1793 error (_("Invalid argument syntax"));
1794
1795 if (*s == ',')
1796 s++;
1797 while (*s == ' ' || *s == '\t')
1798 s++;
1799
1800 /* Need extra space for the '\0's. Doubling the size is sufficient. */
1801 substrings = alloca (strlen (string) * 2);
1802 current_substring = substrings;
1803
1804 {
1805 /* Now scan the string for %-specs and see what kinds of args they want.
1806 argclass[I] classifies the %-specs so we can give printf_filtered
1807 something of the right size. */
1808
1809 enum argclass
1810 {
1811 int_arg, long_arg, long_long_arg, ptr_arg, string_arg,
1812 double_arg, long_double_arg
1813 };
1814 enum argclass *argclass;
1815 enum argclass this_argclass;
1816 char *last_arg;
1817 int nargs_wanted;
1818 int i;
1819
1820 argclass = (enum argclass *) alloca (strlen (s) * sizeof *argclass);
1821 nargs_wanted = 0;
1822 f = string;
1823 last_arg = string;
1824 while (*f)
1825 if (*f++ == '%')
1826 {
1827 int seen_hash = 0, seen_zero = 0, lcount = 0, seen_prec = 0;
1828 int seen_space = 0, seen_plus = 0;
1829 int seen_big_l = 0, seen_h = 0;
1830 int bad = 0;
1831
1832 /* Check the validity of the format specifier, and work
1833 out what argument it expects. We only accept C89
1834 format strings, with the exception of long long (which
1835 we autoconf for). */
1836
1837 /* Skip over "%%". */
1838 if (*f == '%')
1839 {
1840 f++;
1841 continue;
1842 }
1843
1844 /* The first part of a format specifier is a set of flag
1845 characters. */
1846 while (strchr ("0-+ #", *f))
1847 {
1848 if (*f == '#')
1849 seen_hash = 1;
1850 else if (*f == '0')
1851 seen_zero = 1;
1852 else if (*f == ' ')
1853 seen_space = 1;
1854 else if (*f == '+')
1855 seen_plus = 1;
1856 f++;
1857 }
1858
1859 /* The next part of a format specifier is a width. */
1860 while (strchr ("0123456789", *f))
1861 f++;
1862
1863 /* The next part of a format specifier is a precision. */
1864 if (*f == '.')
1865 {
1866 seen_prec = 1;
1867 f++;
1868 while (strchr ("0123456789", *f))
1869 f++;
1870 }
1871
1872 /* The next part of a format specifier is a length modifier. */
1873 if (*f == 'h')
1874 {
1875 seen_h = 1;
1876 f++;
1877 }
1878 else if (*f == 'l')
1879 {
1880 f++;
1881 lcount++;
1882 if (*f == 'l')
1883 {
1884 f++;
1885 lcount++;
1886 }
1887 }
1888 else if (*f == 'L')
1889 {
1890 seen_big_l = 1;
1891 f++;
1892 }
1893
1894 switch (*f)
1895 {
1896 case 'u':
1897 if (seen_hash)
1898 bad = 1;
1899 /* FALLTHROUGH */
1900
1901 case 'o':
1902 case 'x':
1903 case 'X':
1904 if (seen_space || seen_plus)
1905 bad = 1;
1906 /* FALLTHROUGH */
1907
1908 case 'd':
1909 case 'i':
1910 if (lcount == 0)
1911 this_argclass = int_arg;
1912 else if (lcount == 1)
1913 this_argclass = long_arg;
1914 else
1915 this_argclass = long_long_arg;
1916
1917 if (seen_big_l)
1918 bad = 1;
1919 break;
1920
1921 case 'c':
1922 this_argclass = int_arg;
1923 if (lcount || seen_h || seen_big_l)
1924 bad = 1;
1925 if (seen_prec || seen_zero || seen_space || seen_plus)
1926 bad = 1;
1927 break;
1928
1929 case 'p':
1930 this_argclass = ptr_arg;
1931 if (lcount || seen_h || seen_big_l)
1932 bad = 1;
1933 if (seen_prec || seen_zero || seen_space || seen_plus)
1934 bad = 1;
1935 break;
1936
1937 case 's':
1938 this_argclass = string_arg;
1939 if (lcount || seen_h || seen_big_l)
1940 bad = 1;
1941 if (seen_zero || seen_space || seen_plus)
1942 bad = 1;
1943 break;
1944
1945 case 'e':
1946 case 'f':
1947 case 'g':
1948 case 'E':
1949 case 'G':
1950 if (seen_big_l)
1951 this_argclass = long_double_arg;
1952 else
1953 this_argclass = double_arg;
1954
1955 if (lcount || seen_h)
1956 bad = 1;
1957 break;
1958
1959 case '*':
1960 error (_("`*' not supported for precision or width in printf"));
1961
1962 case 'n':
1963 error (_("Format specifier `n' not supported in printf"));
1964
1965 case '\0':
1966 error (_("Incomplete format specifier at end of format string"));
1967
1968 default:
1969 error (_("Unrecognized format specifier '%c' in printf"), *f);
1970 }
1971
1972 if (bad)
1973 error (_("Inappropriate modifiers to format specifier '%c' in printf"),
1974 *f);
1975
1976 f++;
1977 strncpy (current_substring, last_arg, f - last_arg);
1978 current_substring += f - last_arg;
1979 *current_substring++ = '\0';
1980 last_arg = f;
1981 argclass[nargs_wanted++] = this_argclass;
1982 }
1983
1984 /* Now, parse all arguments and evaluate them.
1985 Store the VALUEs in VAL_ARGS. */
1986
1987 while (*s != '\0')
1988 {
1989 char *s1;
1990 if (nargs == allocated_args)
1991 val_args = (struct value **) xrealloc ((char *) val_args,
1992 (allocated_args *= 2)
1993 * sizeof (struct value *));
1994 s1 = s;
1995 val_args[nargs] = parse_to_comma_and_eval (&s1);
1996
1997 /* If format string wants a float, unchecked-convert the value to
1998 floating point of the same size */
1999
2000 if (argclass[nargs] == double_arg)
2001 {
2002 struct type *type = value_type (val_args[nargs]);
2003 if (TYPE_LENGTH (type) == sizeof (float))
2004 deprecated_set_value_type (val_args[nargs], builtin_type_float);
2005 if (TYPE_LENGTH (type) == sizeof (double))
2006 deprecated_set_value_type (val_args[nargs], builtin_type_double);
2007 }
2008 nargs++;
2009 s = s1;
2010 if (*s == ',')
2011 s++;
2012 }
2013
2014 if (nargs != nargs_wanted)
2015 error (_("Wrong number of arguments for specified format-string"));
2016
2017 /* Now actually print them. */
2018 current_substring = substrings;
2019 for (i = 0; i < nargs; i++)
2020 {
2021 switch (argclass[i])
2022 {
2023 case string_arg:
2024 {
2025 gdb_byte *str;
2026 CORE_ADDR tem;
2027 int j;
2028 tem = value_as_address (val_args[i]);
2029
2030 /* This is a %s argument. Find the length of the string. */
2031 for (j = 0;; j++)
2032 {
2033 gdb_byte c;
2034 QUIT;
2035 read_memory (tem + j, &c, 1);
2036 if (c == 0)
2037 break;
2038 }
2039
2040 /* Copy the string contents into a string inside GDB. */
2041 str = (gdb_byte *) alloca (j + 1);
2042 if (j != 0)
2043 read_memory (tem, str, j);
2044 str[j] = 0;
2045
2046 printf_filtered (current_substring, (char *) str);
2047 }
2048 break;
2049 case double_arg:
2050 {
2051 double val = value_as_double (val_args[i]);
2052 printf_filtered (current_substring, val);
2053 break;
2054 }
2055 case long_double_arg:
2056 #ifdef HAVE_LONG_DOUBLE
2057 {
2058 long double val = value_as_double (val_args[i]);
2059 printf_filtered (current_substring, val);
2060 break;
2061 }
2062 #else
2063 error (_("long double not supported in printf"));
2064 #endif
2065 case long_long_arg:
2066 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
2067 {
2068 long long val = value_as_long (val_args[i]);
2069 printf_filtered (current_substring, val);
2070 break;
2071 }
2072 #else
2073 error (_("long long not supported in printf"));
2074 #endif
2075 case int_arg:
2076 {
2077 int val = value_as_long (val_args[i]);
2078 printf_filtered (current_substring, val);
2079 break;
2080 }
2081 case long_arg:
2082 {
2083 long val = value_as_long (val_args[i]);
2084 printf_filtered (current_substring, val);
2085 break;
2086 }
2087 default:
2088 internal_error (__FILE__, __LINE__,
2089 _("failed internal consitency check"));
2090 }
2091 /* Skip to the next substring. */
2092 current_substring += strlen (current_substring) + 1;
2093 }
2094 /* Print the portion of the format string after the last argument. */
2095 puts_filtered (last_arg);
2096 }
2097 do_cleanups (old_cleanups);
2098 }
2099
2100 void
2101 _initialize_printcmd (void)
2102 {
2103 struct cmd_list_element *c;
2104
2105 current_display_number = -1;
2106
2107 add_info ("address", address_info,
2108 _("Describe where symbol SYM is stored."));
2109
2110 add_info ("symbol", sym_info, _("\
2111 Describe what symbol is at location ADDR.\n\
2112 Only for symbols with fixed locations (global or static scope)."));
2113
2114 add_com ("x", class_vars, x_command, _("\
2115 Examine memory: x/FMT ADDRESS.\n\
2116 ADDRESS is an expression for the memory address to examine.\n\
2117 FMT is a repeat count followed by a format letter and a size letter.\n\
2118 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2119 t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n\
2120 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2121 The specified number of objects of the specified size are printed\n\
2122 according to the format.\n\n\
2123 Defaults for format and size letters are those previously used.\n\
2124 Default count is 1. Default address is following last thing printed\n\
2125 with this command or \"print\"."));
2126
2127 #if 0
2128 add_com ("whereis", class_vars, whereis_command,
2129 _("Print line number and file of definition of variable."));
2130 #endif
2131
2132 add_info ("display", display_info, _("\
2133 Expressions to display when program stops, with code numbers."));
2134
2135 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2136 Cancel some expressions to be displayed when program stops.\n\
2137 Arguments are the code numbers of the expressions to stop displaying.\n\
2138 No argument means cancel all automatic-display expressions.\n\
2139 \"delete display\" has the same effect as this command.\n\
2140 Do \"info display\" to see current list of code numbers."),
2141 &cmdlist);
2142
2143 add_com ("display", class_vars, display_command, _("\
2144 Print value of expression EXP each time the program stops.\n\
2145 /FMT may be used before EXP as in the \"print\" command.\n\
2146 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2147 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2148 and examining is done as in the \"x\" command.\n\n\
2149 With no argument, display all currently requested auto-display expressions.\n\
2150 Use \"undisplay\" to cancel display requests previously made."));
2151
2152 add_cmd ("display", class_vars, enable_display, _("\
2153 Enable some expressions to be displayed when program stops.\n\
2154 Arguments are the code numbers of the expressions to resume displaying.\n\
2155 No argument means enable all automatic-display expressions.\n\
2156 Do \"info display\" to see current list of code numbers."), &enablelist);
2157
2158 add_cmd ("display", class_vars, disable_display_command, _("\
2159 Disable some expressions to be displayed when program stops.\n\
2160 Arguments are the code numbers of the expressions to stop displaying.\n\
2161 No argument means disable all automatic-display expressions.\n\
2162 Do \"info display\" to see current list of code numbers."), &disablelist);
2163
2164 add_cmd ("display", class_vars, undisplay_command, _("\
2165 Cancel some expressions to be displayed when program stops.\n\
2166 Arguments are the code numbers of the expressions to stop displaying.\n\
2167 No argument means cancel all automatic-display expressions.\n\
2168 Do \"info display\" to see current list of code numbers."), &deletelist);
2169
2170 add_com ("printf", class_vars, printf_command, _("\
2171 printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2172 This is useful for formatted output in user-defined commands."));
2173
2174 add_com ("output", class_vars, output_command, _("\
2175 Like \"print\" but don't put in value history and don't print newline.\n\
2176 This is useful in user-defined commands."));
2177
2178 add_prefix_cmd ("set", class_vars, set_command, _("\
2179 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2180 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2181 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2182 with $), a register (a few standard names starting with $), or an actual\n\
2183 variable in the program being debugged. EXP is any valid expression.\n\
2184 Use \"set variable\" for variables with names identical to set subcommands.\n\
2185 \n\
2186 With a subcommand, this command modifies parts of the gdb environment.\n\
2187 You can see these environment settings with the \"show\" command."),
2188 &setlist, "set ", 1, &cmdlist);
2189 if (dbx_commands)
2190 add_com ("assign", class_vars, set_command, _("\
2191 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2192 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2193 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2194 with $), a register (a few standard names starting with $), or an actual\n\
2195 variable in the program being debugged. EXP is any valid expression.\n\
2196 Use \"set variable\" for variables with names identical to set subcommands.\n\
2197 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2198 You can see these environment settings with the \"show\" command."));
2199
2200 /* "call" is the same as "set", but handy for dbx users to call fns. */
2201 c = add_com ("call", class_vars, call_command, _("\
2202 Call a function in the program.\n\
2203 The argument is the function name and arguments, in the notation of the\n\
2204 current working language. The result is printed and saved in the value\n\
2205 history, if it is not void."));
2206 set_cmd_completer (c, location_completer);
2207
2208 add_cmd ("variable", class_vars, set_command, _("\
2209 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2210 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2211 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2212 with $), a register (a few standard names starting with $), or an actual\n\
2213 variable in the program being debugged. EXP is any valid expression.\n\
2214 This may usually be abbreviated to simply \"set\"."),
2215 &setlist);
2216
2217 c = add_com ("print", class_vars, print_command, _("\
2218 Print value of expression EXP.\n\
2219 Variables accessible are those of the lexical environment of the selected\n\
2220 stack frame, plus all those whose scope is global or an entire file.\n\
2221 \n\
2222 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2223 $$NUM refers to NUM'th value back from the last one.\n\
2224 Names starting with $ refer to registers (with the values they would have\n\
2225 if the program were to return to the stack frame now selected, restoring\n\
2226 all registers saved by frames farther in) or else to debugger\n\
2227 \"convenience\" variables (any such name not a known register).\n\
2228 Use assignment expressions to give values to convenience variables.\n\
2229 \n\
2230 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2231 @ is a binary operator for treating consecutive data objects\n\
2232 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2233 element is FOO, whose second element is stored in the space following\n\
2234 where FOO is stored, etc. FOO must be an expression whose value\n\
2235 resides in memory.\n\
2236 \n\
2237 EXP may be preceded with /FMT, where FMT is a format letter\n\
2238 but no count or size letter (see \"x\" command)."));
2239 set_cmd_completer (c, location_completer);
2240 add_com_alias ("p", "print", class_vars, 1);
2241
2242 c = add_com ("inspect", class_vars, inspect_command, _("\
2243 Same as \"print\" command, except that if you are running in the epoch\n\
2244 environment, the value is printed in its own window."));
2245 set_cmd_completer (c, location_completer);
2246
2247 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2248 &max_symbolic_offset, _("\
2249 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2250 Show the largest offset that will be printed in <symbol+1234> form."), NULL,
2251 NULL,
2252 show_max_symbolic_offset,
2253 &setprintlist, &showprintlist);
2254 add_setshow_boolean_cmd ("symbol-filename", no_class,
2255 &print_symbol_filename, _("\
2256 Set printing of source filename and line number with <symbol>."), _("\
2257 Show printing of source filename and line number with <symbol>."), NULL,
2258 NULL,
2259 show_print_symbol_filename,
2260 &setprintlist, &showprintlist);
2261
2262 /* For examine/instruction a single byte quantity is specified as
2263 the data. This avoids problems with value_at_lazy() requiring a
2264 valid data type (and rejecting VOID). */
2265 examine_i_type = init_type (TYPE_CODE_INT, 1, 0, "examine_i_type", NULL);
2266
2267 examine_b_type = init_type (TYPE_CODE_INT, 1, 0, "examine_b_type", NULL);
2268 examine_h_type = init_type (TYPE_CODE_INT, 2, 0, "examine_h_type", NULL);
2269 examine_w_type = init_type (TYPE_CODE_INT, 4, 0, "examine_w_type", NULL);
2270 examine_g_type = init_type (TYPE_CODE_INT, 8, 0, "examine_g_type", NULL);
2271
2272 }
This page took 0.08903 seconds and 3 git commands to generate.