* python/py-utils.c (gdb_pymodule_addobject): Cast away const.
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "frame.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "language.h"
27 #include "expression.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "breakpoint.h"
32 #include "demangle.h"
33 #include "gdb-demangle.h"
34 #include "valprint.h"
35 #include "annotate.h"
36 #include "symfile.h" /* for overlay functions */
37 #include "objfiles.h" /* ditto */
38 #include "completer.h" /* for completion functions */
39 #include "ui-out.h"
40 #include "gdb_assert.h"
41 #include "block.h"
42 #include "disasm.h"
43 #include "dfp.h"
44 #include "valprint.h"
45 #include "exceptions.h"
46 #include "observer.h"
47 #include "solist.h"
48 #include "parser-defs.h"
49 #include "charset.h"
50 #include "arch-utils.h"
51 #include "cli/cli-utils.h"
52 #include "format.h"
53 #include "source.h"
54
55 #ifdef TUI
56 #include "tui/tui.h" /* For tui_active et al. */
57 #endif
58
59 struct format_data
60 {
61 int count;
62 char format;
63 char size;
64
65 /* True if the value should be printed raw -- that is, bypassing
66 python-based formatters. */
67 unsigned char raw;
68 };
69
70 /* Last specified output format. */
71
72 static char last_format = 0;
73
74 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
75
76 static char last_size = 'w';
77
78 /* Default address to examine next, and associated architecture. */
79
80 static struct gdbarch *next_gdbarch;
81 static CORE_ADDR next_address;
82
83 /* Number of delay instructions following current disassembled insn. */
84
85 static int branch_delay_insns;
86
87 /* Last address examined. */
88
89 static CORE_ADDR last_examine_address;
90
91 /* Contents of last address examined.
92 This is not valid past the end of the `x' command! */
93
94 static struct value *last_examine_value;
95
96 /* Largest offset between a symbolic value and an address, that will be
97 printed as `0x1234 <symbol+offset>'. */
98
99 static unsigned int max_symbolic_offset = UINT_MAX;
100 static void
101 show_max_symbolic_offset (struct ui_file *file, int from_tty,
102 struct cmd_list_element *c, const char *value)
103 {
104 fprintf_filtered (file,
105 _("The largest offset that will be "
106 "printed in <symbol+1234> form is %s.\n"),
107 value);
108 }
109
110 /* Append the source filename and linenumber of the symbol when
111 printing a symbolic value as `<symbol at filename:linenum>' if set. */
112 static int print_symbol_filename = 0;
113 static void
114 show_print_symbol_filename (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c, const char *value)
116 {
117 fprintf_filtered (file, _("Printing of source filename and "
118 "line number with <symbol> is %s.\n"),
119 value);
120 }
121
122 /* Number of auto-display expression currently being displayed.
123 So that we can disable it if we get a signal within it.
124 -1 when not doing one. */
125
126 static int current_display_number;
127
128 struct display
129 {
130 /* Chain link to next auto-display item. */
131 struct display *next;
132
133 /* The expression as the user typed it. */
134 char *exp_string;
135
136 /* Expression to be evaluated and displayed. */
137 struct expression *exp;
138
139 /* Item number of this auto-display item. */
140 int number;
141
142 /* Display format specified. */
143 struct format_data format;
144
145 /* Program space associated with `block'. */
146 struct program_space *pspace;
147
148 /* Innermost block required by this expression when evaluated. */
149 const struct block *block;
150
151 /* Status of this display (enabled or disabled). */
152 int enabled_p;
153 };
154
155 /* Chain of expressions whose values should be displayed
156 automatically each time the program stops. */
157
158 static struct display *display_chain;
159
160 static int display_number;
161
162 /* Walk the following statement or block through all displays.
163 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
164 display. */
165
166 #define ALL_DISPLAYS(B) \
167 for (B = display_chain; B; B = B->next)
168
169 #define ALL_DISPLAYS_SAFE(B,TMP) \
170 for (B = display_chain; \
171 B ? (TMP = B->next, 1): 0; \
172 B = TMP)
173
174 /* Prototypes for exported functions. */
175
176 void _initialize_printcmd (void);
177
178 /* Prototypes for local functions. */
179
180 static void do_one_display (struct display *);
181 \f
182
183 /* Decode a format specification. *STRING_PTR should point to it.
184 OFORMAT and OSIZE are used as defaults for the format and size
185 if none are given in the format specification.
186 If OSIZE is zero, then the size field of the returned value
187 should be set only if a size is explicitly specified by the
188 user.
189 The structure returned describes all the data
190 found in the specification. In addition, *STRING_PTR is advanced
191 past the specification and past all whitespace following it. */
192
193 static struct format_data
194 decode_format (const char **string_ptr, int oformat, int osize)
195 {
196 struct format_data val;
197 const char *p = *string_ptr;
198
199 val.format = '?';
200 val.size = '?';
201 val.count = 1;
202 val.raw = 0;
203
204 if (*p >= '0' && *p <= '9')
205 val.count = atoi (p);
206 while (*p >= '0' && *p <= '9')
207 p++;
208
209 /* Now process size or format letters that follow. */
210
211 while (1)
212 {
213 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
214 val.size = *p++;
215 else if (*p == 'r')
216 {
217 val.raw = 1;
218 p++;
219 }
220 else if (*p >= 'a' && *p <= 'z')
221 val.format = *p++;
222 else
223 break;
224 }
225
226 while (*p == ' ' || *p == '\t')
227 p++;
228 *string_ptr = p;
229
230 /* Set defaults for format and size if not specified. */
231 if (val.format == '?')
232 {
233 if (val.size == '?')
234 {
235 /* Neither has been specified. */
236 val.format = oformat;
237 val.size = osize;
238 }
239 else
240 /* If a size is specified, any format makes a reasonable
241 default except 'i'. */
242 val.format = oformat == 'i' ? 'x' : oformat;
243 }
244 else if (val.size == '?')
245 switch (val.format)
246 {
247 case 'a':
248 /* Pick the appropriate size for an address. This is deferred
249 until do_examine when we know the actual architecture to use.
250 A special size value of 'a' is used to indicate this case. */
251 val.size = osize ? 'a' : osize;
252 break;
253 case 'f':
254 /* Floating point has to be word or giantword. */
255 if (osize == 'w' || osize == 'g')
256 val.size = osize;
257 else
258 /* Default it to giantword if the last used size is not
259 appropriate. */
260 val.size = osize ? 'g' : osize;
261 break;
262 case 'c':
263 /* Characters default to one byte. */
264 val.size = osize ? 'b' : osize;
265 break;
266 case 's':
267 /* Display strings with byte size chars unless explicitly
268 specified. */
269 val.size = '\0';
270 break;
271
272 default:
273 /* The default is the size most recently specified. */
274 val.size = osize;
275 }
276
277 return val;
278 }
279 \f
280 /* Print value VAL on stream according to OPTIONS.
281 Do not end with a newline.
282 SIZE is the letter for the size of datum being printed.
283 This is used to pad hex numbers so they line up. SIZE is 0
284 for print / output and set for examine. */
285
286 static void
287 print_formatted (struct value *val, int size,
288 const struct value_print_options *options,
289 struct ui_file *stream)
290 {
291 struct type *type = check_typedef (value_type (val));
292 int len = TYPE_LENGTH (type);
293
294 if (VALUE_LVAL (val) == lval_memory)
295 next_address = value_address (val) + len;
296
297 if (size)
298 {
299 switch (options->format)
300 {
301 case 's':
302 {
303 struct type *elttype = value_type (val);
304
305 next_address = (value_address (val)
306 + val_print_string (elttype, NULL,
307 value_address (val), -1,
308 stream, options) * len);
309 }
310 return;
311
312 case 'i':
313 /* We often wrap here if there are long symbolic names. */
314 wrap_here (" ");
315 next_address = (value_address (val)
316 + gdb_print_insn (get_type_arch (type),
317 value_address (val), stream,
318 &branch_delay_insns));
319 return;
320 }
321 }
322
323 if (options->format == 0 || options->format == 's'
324 || TYPE_CODE (type) == TYPE_CODE_REF
325 || TYPE_CODE (type) == TYPE_CODE_ARRAY
326 || TYPE_CODE (type) == TYPE_CODE_STRING
327 || TYPE_CODE (type) == TYPE_CODE_STRUCT
328 || TYPE_CODE (type) == TYPE_CODE_UNION
329 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
330 value_print (val, stream, options);
331 else
332 /* User specified format, so don't look to the type to tell us
333 what to do. */
334 val_print_scalar_formatted (type,
335 value_contents_for_printing (val),
336 value_embedded_offset (val),
337 val,
338 options, size, stream);
339 }
340
341 /* Return builtin floating point type of same length as TYPE.
342 If no such type is found, return TYPE itself. */
343 static struct type *
344 float_type_from_length (struct type *type)
345 {
346 struct gdbarch *gdbarch = get_type_arch (type);
347 const struct builtin_type *builtin = builtin_type (gdbarch);
348
349 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
350 type = builtin->builtin_float;
351 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
352 type = builtin->builtin_double;
353 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
354 type = builtin->builtin_long_double;
355
356 return type;
357 }
358
359 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
360 according to OPTIONS and SIZE on STREAM. Formats s and i are not
361 supported at this level. */
362
363 void
364 print_scalar_formatted (const void *valaddr, struct type *type,
365 const struct value_print_options *options,
366 int size, struct ui_file *stream)
367 {
368 struct gdbarch *gdbarch = get_type_arch (type);
369 LONGEST val_long = 0;
370 unsigned int len = TYPE_LENGTH (type);
371 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
372
373 /* String printing should go through val_print_scalar_formatted. */
374 gdb_assert (options->format != 's');
375
376 if (len > sizeof(LONGEST) &&
377 (TYPE_CODE (type) == TYPE_CODE_INT
378 || TYPE_CODE (type) == TYPE_CODE_ENUM))
379 {
380 switch (options->format)
381 {
382 case 'o':
383 print_octal_chars (stream, valaddr, len, byte_order);
384 return;
385 case 'u':
386 case 'd':
387 print_decimal_chars (stream, valaddr, len, byte_order);
388 return;
389 case 't':
390 print_binary_chars (stream, valaddr, len, byte_order);
391 return;
392 case 'x':
393 print_hex_chars (stream, valaddr, len, byte_order);
394 return;
395 case 'c':
396 print_char_chars (stream, type, valaddr, len, byte_order);
397 return;
398 default:
399 break;
400 };
401 }
402
403 if (options->format != 'f')
404 val_long = unpack_long (type, valaddr);
405
406 /* If the value is a pointer, and pointers and addresses are not the
407 same, then at this point, the value's length (in target bytes) is
408 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
409 if (TYPE_CODE (type) == TYPE_CODE_PTR)
410 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
411
412 /* If we are printing it as unsigned, truncate it in case it is actually
413 a negative signed value (e.g. "print/u (short)-1" should print 65535
414 (if shorts are 16 bits) instead of 4294967295). */
415 if (options->format != 'd' || TYPE_UNSIGNED (type))
416 {
417 if (len < sizeof (LONGEST))
418 val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
419 }
420
421 switch (options->format)
422 {
423 case 'x':
424 if (!size)
425 {
426 /* No size specified, like in print. Print varying # of digits. */
427 print_longest (stream, 'x', 1, val_long);
428 }
429 else
430 switch (size)
431 {
432 case 'b':
433 case 'h':
434 case 'w':
435 case 'g':
436 print_longest (stream, size, 1, val_long);
437 break;
438 default:
439 error (_("Undefined output size \"%c\"."), size);
440 }
441 break;
442
443 case 'd':
444 print_longest (stream, 'd', 1, val_long);
445 break;
446
447 case 'u':
448 print_longest (stream, 'u', 0, val_long);
449 break;
450
451 case 'o':
452 if (val_long)
453 print_longest (stream, 'o', 1, val_long);
454 else
455 fprintf_filtered (stream, "0");
456 break;
457
458 case 'a':
459 {
460 CORE_ADDR addr = unpack_pointer (type, valaddr);
461
462 print_address (gdbarch, addr, stream);
463 }
464 break;
465
466 case 'c':
467 {
468 struct value_print_options opts = *options;
469
470 opts.format = 0;
471 if (TYPE_UNSIGNED (type))
472 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
473 else
474 type = builtin_type (gdbarch)->builtin_true_char;
475
476 value_print (value_from_longest (type, val_long), stream, &opts);
477 }
478 break;
479
480 case 'f':
481 type = float_type_from_length (type);
482 print_floating (valaddr, type, stream);
483 break;
484
485 case 0:
486 internal_error (__FILE__, __LINE__,
487 _("failed internal consistency check"));
488
489 case 't':
490 /* Binary; 't' stands for "two". */
491 {
492 char bits[8 * (sizeof val_long) + 1];
493 char buf[8 * (sizeof val_long) + 32];
494 char *cp = bits;
495 int width;
496
497 if (!size)
498 width = 8 * (sizeof val_long);
499 else
500 switch (size)
501 {
502 case 'b':
503 width = 8;
504 break;
505 case 'h':
506 width = 16;
507 break;
508 case 'w':
509 width = 32;
510 break;
511 case 'g':
512 width = 64;
513 break;
514 default:
515 error (_("Undefined output size \"%c\"."), size);
516 }
517
518 bits[width] = '\0';
519 while (width-- > 0)
520 {
521 bits[width] = (val_long & 1) ? '1' : '0';
522 val_long >>= 1;
523 }
524 if (!size)
525 {
526 while (*cp && *cp == '0')
527 cp++;
528 if (*cp == '\0')
529 cp--;
530 }
531 strncpy (buf, cp, sizeof (bits));
532 fputs_filtered (buf, stream);
533 }
534 break;
535
536 default:
537 error (_("Undefined output format \"%c\"."), options->format);
538 }
539 }
540
541 /* Specify default address for `x' command.
542 The `info lines' command uses this. */
543
544 void
545 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
546 {
547 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
548
549 next_gdbarch = gdbarch;
550 next_address = addr;
551
552 /* Make address available to the user as $_. */
553 set_internalvar (lookup_internalvar ("_"),
554 value_from_pointer (ptr_type, addr));
555 }
556
557 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
558 after LEADIN. Print nothing if no symbolic name is found nearby.
559 Optionally also print source file and line number, if available.
560 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
561 or to interpret it as a possible C++ name and convert it back to source
562 form. However note that DO_DEMANGLE can be overridden by the specific
563 settings of the demangle and asm_demangle variables. Returns
564 non-zero if anything was printed; zero otherwise. */
565
566 int
567 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
568 struct ui_file *stream,
569 int do_demangle, char *leadin)
570 {
571 char *name = NULL;
572 char *filename = NULL;
573 int unmapped = 0;
574 int offset = 0;
575 int line = 0;
576
577 /* Throw away both name and filename. */
578 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
579 make_cleanup (free_current_contents, &filename);
580
581 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
582 &filename, &line, &unmapped))
583 {
584 do_cleanups (cleanup_chain);
585 return 0;
586 }
587
588 fputs_filtered (leadin, stream);
589 if (unmapped)
590 fputs_filtered ("<*", stream);
591 else
592 fputs_filtered ("<", stream);
593 fputs_filtered (name, stream);
594 if (offset != 0)
595 fprintf_filtered (stream, "+%u", (unsigned int) offset);
596
597 /* Append source filename and line number if desired. Give specific
598 line # of this addr, if we have it; else line # of the nearest symbol. */
599 if (print_symbol_filename && filename != NULL)
600 {
601 if (line != -1)
602 fprintf_filtered (stream, " at %s:%d", filename, line);
603 else
604 fprintf_filtered (stream, " in %s", filename);
605 }
606 if (unmapped)
607 fputs_filtered ("*>", stream);
608 else
609 fputs_filtered (">", stream);
610
611 do_cleanups (cleanup_chain);
612 return 1;
613 }
614
615 /* Given an address ADDR return all the elements needed to print the
616 address in a symbolic form. NAME can be mangled or not depending
617 on DO_DEMANGLE (and also on the asm_demangle global variable,
618 manipulated via ''set print asm-demangle''). Return 0 in case of
619 success, when all the info in the OUT paramters is valid. Return 1
620 otherwise. */
621 int
622 build_address_symbolic (struct gdbarch *gdbarch,
623 CORE_ADDR addr, /* IN */
624 int do_demangle, /* IN */
625 char **name, /* OUT */
626 int *offset, /* OUT */
627 char **filename, /* OUT */
628 int *line, /* OUT */
629 int *unmapped) /* OUT */
630 {
631 struct minimal_symbol *msymbol;
632 struct symbol *symbol;
633 CORE_ADDR name_location = 0;
634 struct obj_section *section = NULL;
635 const char *name_temp = "";
636
637 /* Let's say it is mapped (not unmapped). */
638 *unmapped = 0;
639
640 /* Determine if the address is in an overlay, and whether it is
641 mapped. */
642 if (overlay_debugging)
643 {
644 section = find_pc_overlay (addr);
645 if (pc_in_unmapped_range (addr, section))
646 {
647 *unmapped = 1;
648 addr = overlay_mapped_address (addr, section);
649 }
650 }
651
652 /* First try to find the address in the symbol table, then
653 in the minsyms. Take the closest one. */
654
655 /* This is defective in the sense that it only finds text symbols. So
656 really this is kind of pointless--we should make sure that the
657 minimal symbols have everything we need (by changing that we could
658 save some memory, but for many debug format--ELF/DWARF or
659 anything/stabs--it would be inconvenient to eliminate those minimal
660 symbols anyway). */
661 msymbol = lookup_minimal_symbol_by_pc_section (addr, section).minsym;
662 symbol = find_pc_sect_function (addr, section);
663
664 if (symbol)
665 {
666 /* If this is a function (i.e. a code address), strip out any
667 non-address bits. For instance, display a pointer to the
668 first instruction of a Thumb function as <function>; the
669 second instruction will be <function+2>, even though the
670 pointer is <function+3>. This matches the ISA behavior. */
671 addr = gdbarch_addr_bits_remove (gdbarch, addr);
672
673 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
674 if (do_demangle || asm_demangle)
675 name_temp = SYMBOL_PRINT_NAME (symbol);
676 else
677 name_temp = SYMBOL_LINKAGE_NAME (symbol);
678 }
679
680 if (msymbol != NULL
681 && MSYMBOL_HAS_SIZE (msymbol)
682 && MSYMBOL_SIZE (msymbol) == 0
683 && MSYMBOL_TYPE (msymbol) != mst_text
684 && MSYMBOL_TYPE (msymbol) != mst_text_gnu_ifunc
685 && MSYMBOL_TYPE (msymbol) != mst_file_text)
686 msymbol = NULL;
687
688 if (msymbol != NULL)
689 {
690 if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
691 {
692 /* The msymbol is closer to the address than the symbol;
693 use the msymbol instead. */
694 symbol = 0;
695 name_location = SYMBOL_VALUE_ADDRESS (msymbol);
696 if (do_demangle || asm_demangle)
697 name_temp = SYMBOL_PRINT_NAME (msymbol);
698 else
699 name_temp = SYMBOL_LINKAGE_NAME (msymbol);
700 }
701 }
702 if (symbol == NULL && msymbol == NULL)
703 return 1;
704
705 /* If the nearest symbol is too far away, don't print anything symbolic. */
706
707 /* For when CORE_ADDR is larger than unsigned int, we do math in
708 CORE_ADDR. But when we detect unsigned wraparound in the
709 CORE_ADDR math, we ignore this test and print the offset,
710 because addr+max_symbolic_offset has wrapped through the end
711 of the address space back to the beginning, giving bogus comparison. */
712 if (addr > name_location + max_symbolic_offset
713 && name_location + max_symbolic_offset > name_location)
714 return 1;
715
716 *offset = addr - name_location;
717
718 *name = xstrdup (name_temp);
719
720 if (print_symbol_filename)
721 {
722 struct symtab_and_line sal;
723
724 sal = find_pc_sect_line (addr, section, 0);
725
726 if (sal.symtab)
727 {
728 *filename = xstrdup (symtab_to_filename_for_display (sal.symtab));
729 *line = sal.line;
730 }
731 }
732 return 0;
733 }
734
735
736 /* Print address ADDR symbolically on STREAM.
737 First print it as a number. Then perhaps print
738 <SYMBOL + OFFSET> after the number. */
739
740 void
741 print_address (struct gdbarch *gdbarch,
742 CORE_ADDR addr, struct ui_file *stream)
743 {
744 fputs_filtered (paddress (gdbarch, addr), stream);
745 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
746 }
747
748 /* Return a prefix for instruction address:
749 "=> " for current instruction, else " ". */
750
751 const char *
752 pc_prefix (CORE_ADDR addr)
753 {
754 if (has_stack_frames ())
755 {
756 struct frame_info *frame;
757 CORE_ADDR pc;
758
759 frame = get_selected_frame (NULL);
760 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
761 return "=> ";
762 }
763 return " ";
764 }
765
766 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
767 controls whether to print the symbolic name "raw" or demangled.
768 Return non-zero if anything was printed; zero otherwise. */
769
770 int
771 print_address_demangle (const struct value_print_options *opts,
772 struct gdbarch *gdbarch, CORE_ADDR addr,
773 struct ui_file *stream, int do_demangle)
774 {
775 if (opts->addressprint)
776 {
777 fputs_filtered (paddress (gdbarch, addr), stream);
778 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
779 }
780 else
781 {
782 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
783 }
784 return 1;
785 }
786 \f
787
788 /* Examine data at address ADDR in format FMT.
789 Fetch it from memory and print on gdb_stdout. */
790
791 static void
792 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
793 {
794 char format = 0;
795 char size;
796 int count = 1;
797 struct type *val_type = NULL;
798 int i;
799 int maxelts;
800 struct value_print_options opts;
801
802 format = fmt.format;
803 size = fmt.size;
804 count = fmt.count;
805 next_gdbarch = gdbarch;
806 next_address = addr;
807
808 /* Instruction format implies fetch single bytes
809 regardless of the specified size.
810 The case of strings is handled in decode_format, only explicit
811 size operator are not changed to 'b'. */
812 if (format == 'i')
813 size = 'b';
814
815 if (size == 'a')
816 {
817 /* Pick the appropriate size for an address. */
818 if (gdbarch_ptr_bit (next_gdbarch) == 64)
819 size = 'g';
820 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
821 size = 'w';
822 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
823 size = 'h';
824 else
825 /* Bad value for gdbarch_ptr_bit. */
826 internal_error (__FILE__, __LINE__,
827 _("failed internal consistency check"));
828 }
829
830 if (size == 'b')
831 val_type = builtin_type (next_gdbarch)->builtin_int8;
832 else if (size == 'h')
833 val_type = builtin_type (next_gdbarch)->builtin_int16;
834 else if (size == 'w')
835 val_type = builtin_type (next_gdbarch)->builtin_int32;
836 else if (size == 'g')
837 val_type = builtin_type (next_gdbarch)->builtin_int64;
838
839 if (format == 's')
840 {
841 struct type *char_type = NULL;
842
843 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
844 if type is not found. */
845 if (size == 'h')
846 char_type = builtin_type (next_gdbarch)->builtin_char16;
847 else if (size == 'w')
848 char_type = builtin_type (next_gdbarch)->builtin_char32;
849 if (char_type)
850 val_type = char_type;
851 else
852 {
853 if (size != '\0' && size != 'b')
854 warning (_("Unable to display strings with "
855 "size '%c', using 'b' instead."), size);
856 size = 'b';
857 val_type = builtin_type (next_gdbarch)->builtin_int8;
858 }
859 }
860
861 maxelts = 8;
862 if (size == 'w')
863 maxelts = 4;
864 if (size == 'g')
865 maxelts = 2;
866 if (format == 's' || format == 'i')
867 maxelts = 1;
868
869 get_formatted_print_options (&opts, format);
870
871 /* Print as many objects as specified in COUNT, at most maxelts per line,
872 with the address of the next one at the start of each line. */
873
874 while (count > 0)
875 {
876 QUIT;
877 if (format == 'i')
878 fputs_filtered (pc_prefix (next_address), gdb_stdout);
879 print_address (next_gdbarch, next_address, gdb_stdout);
880 printf_filtered (":");
881 for (i = maxelts;
882 i > 0 && count > 0;
883 i--, count--)
884 {
885 printf_filtered ("\t");
886 /* Note that print_formatted sets next_address for the next
887 object. */
888 last_examine_address = next_address;
889
890 if (last_examine_value)
891 value_free (last_examine_value);
892
893 /* The value to be displayed is not fetched greedily.
894 Instead, to avoid the possibility of a fetched value not
895 being used, its retrieval is delayed until the print code
896 uses it. When examining an instruction stream, the
897 disassembler will perform its own memory fetch using just
898 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
899 the disassembler be modified so that LAST_EXAMINE_VALUE
900 is left with the byte sequence from the last complete
901 instruction fetched from memory? */
902 last_examine_value = value_at_lazy (val_type, next_address);
903
904 if (last_examine_value)
905 release_value (last_examine_value);
906
907 print_formatted (last_examine_value, size, &opts, gdb_stdout);
908
909 /* Display any branch delay slots following the final insn. */
910 if (format == 'i' && count == 1)
911 count += branch_delay_insns;
912 }
913 printf_filtered ("\n");
914 gdb_flush (gdb_stdout);
915 }
916 }
917 \f
918 static void
919 validate_format (struct format_data fmt, char *cmdname)
920 {
921 if (fmt.size != 0)
922 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
923 if (fmt.count != 1)
924 error (_("Item count other than 1 is meaningless in \"%s\" command."),
925 cmdname);
926 if (fmt.format == 'i')
927 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
928 fmt.format, cmdname);
929 }
930
931 /* Evaluate string EXP as an expression in the current language and
932 print the resulting value. EXP may contain a format specifier as the
933 first argument ("/x myvar" for example, to print myvar in hex). */
934
935 static void
936 print_command_1 (const char *exp, int voidprint)
937 {
938 struct expression *expr;
939 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
940 char format = 0;
941 struct value *val;
942 struct format_data fmt;
943
944 if (exp && *exp == '/')
945 {
946 exp++;
947 fmt = decode_format (&exp, last_format, 0);
948 validate_format (fmt, "print");
949 last_format = format = fmt.format;
950 }
951 else
952 {
953 fmt.count = 1;
954 fmt.format = 0;
955 fmt.size = 0;
956 fmt.raw = 0;
957 }
958
959 if (exp && *exp)
960 {
961 expr = parse_expression (exp);
962 make_cleanup (free_current_contents, &expr);
963 val = evaluate_expression (expr);
964 }
965 else
966 val = access_value_history (0);
967
968 if (voidprint || (val && value_type (val) &&
969 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
970 {
971 struct value_print_options opts;
972 int histindex = record_latest_value (val);
973
974 if (histindex >= 0)
975 annotate_value_history_begin (histindex, value_type (val));
976 else
977 annotate_value_begin (value_type (val));
978
979 if (histindex >= 0)
980 printf_filtered ("$%d = ", histindex);
981
982 if (histindex >= 0)
983 annotate_value_history_value ();
984
985 get_formatted_print_options (&opts, format);
986 opts.raw = fmt.raw;
987
988 print_formatted (val, fmt.size, &opts, gdb_stdout);
989 printf_filtered ("\n");
990
991 if (histindex >= 0)
992 annotate_value_history_end ();
993 else
994 annotate_value_end ();
995 }
996
997 do_cleanups (old_chain);
998 }
999
1000 static void
1001 print_command (char *exp, int from_tty)
1002 {
1003 print_command_1 (exp, 1);
1004 }
1005
1006 /* Same as print, except it doesn't print void results. */
1007 static void
1008 call_command (char *exp, int from_tty)
1009 {
1010 print_command_1 (exp, 0);
1011 }
1012
1013 /* Implementation of the "output" command. */
1014
1015 static void
1016 output_command (char *exp, int from_tty)
1017 {
1018 output_command_const (exp, from_tty);
1019 }
1020
1021 /* Like output_command, but takes a const string as argument. */
1022
1023 void
1024 output_command_const (const char *exp, int from_tty)
1025 {
1026 struct expression *expr;
1027 struct cleanup *old_chain;
1028 char format = 0;
1029 struct value *val;
1030 struct format_data fmt;
1031 struct value_print_options opts;
1032
1033 fmt.size = 0;
1034 fmt.raw = 0;
1035
1036 if (exp && *exp == '/')
1037 {
1038 exp++;
1039 fmt = decode_format (&exp, 0, 0);
1040 validate_format (fmt, "output");
1041 format = fmt.format;
1042 }
1043
1044 expr = parse_expression (exp);
1045 old_chain = make_cleanup (free_current_contents, &expr);
1046
1047 val = evaluate_expression (expr);
1048
1049 annotate_value_begin (value_type (val));
1050
1051 get_formatted_print_options (&opts, format);
1052 opts.raw = fmt.raw;
1053 print_formatted (val, fmt.size, &opts, gdb_stdout);
1054
1055 annotate_value_end ();
1056
1057 wrap_here ("");
1058 gdb_flush (gdb_stdout);
1059
1060 do_cleanups (old_chain);
1061 }
1062
1063 static void
1064 set_command (char *exp, int from_tty)
1065 {
1066 struct expression *expr = parse_expression (exp);
1067 struct cleanup *old_chain =
1068 make_cleanup (free_current_contents, &expr);
1069
1070 if (expr->nelts >= 1)
1071 switch (expr->elts[0].opcode)
1072 {
1073 case UNOP_PREINCREMENT:
1074 case UNOP_POSTINCREMENT:
1075 case UNOP_PREDECREMENT:
1076 case UNOP_POSTDECREMENT:
1077 case BINOP_ASSIGN:
1078 case BINOP_ASSIGN_MODIFY:
1079 case BINOP_COMMA:
1080 break;
1081 default:
1082 warning
1083 (_("Expression is not an assignment (and might have no effect)"));
1084 }
1085
1086 evaluate_expression (expr);
1087 do_cleanups (old_chain);
1088 }
1089
1090 static void
1091 sym_info (char *arg, int from_tty)
1092 {
1093 struct minimal_symbol *msymbol;
1094 struct objfile *objfile;
1095 struct obj_section *osect;
1096 CORE_ADDR addr, sect_addr;
1097 int matches = 0;
1098 unsigned int offset;
1099
1100 if (!arg)
1101 error_no_arg (_("address"));
1102
1103 addr = parse_and_eval_address (arg);
1104 ALL_OBJSECTIONS (objfile, osect)
1105 {
1106 /* Only process each object file once, even if there's a separate
1107 debug file. */
1108 if (objfile->separate_debug_objfile_backlink)
1109 continue;
1110
1111 sect_addr = overlay_mapped_address (addr, osect);
1112
1113 if (obj_section_addr (osect) <= sect_addr
1114 && sect_addr < obj_section_endaddr (osect)
1115 && (msymbol
1116 = lookup_minimal_symbol_by_pc_section (sect_addr, osect).minsym))
1117 {
1118 const char *obj_name, *mapped, *sec_name, *msym_name;
1119 char *loc_string;
1120 struct cleanup *old_chain;
1121
1122 matches = 1;
1123 offset = sect_addr - SYMBOL_VALUE_ADDRESS (msymbol);
1124 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1125 sec_name = osect->the_bfd_section->name;
1126 msym_name = SYMBOL_PRINT_NAME (msymbol);
1127
1128 /* Don't print the offset if it is zero.
1129 We assume there's no need to handle i18n of "sym + offset". */
1130 if (offset)
1131 loc_string = xstrprintf ("%s + %u", msym_name, offset);
1132 else
1133 loc_string = xstrprintf ("%s", msym_name);
1134
1135 /* Use a cleanup to free loc_string in case the user quits
1136 a pagination request inside printf_filtered. */
1137 old_chain = make_cleanup (xfree, loc_string);
1138
1139 gdb_assert (osect->objfile && osect->objfile->name);
1140 obj_name = osect->objfile->name;
1141
1142 if (MULTI_OBJFILE_P ())
1143 if (pc_in_unmapped_range (addr, osect))
1144 if (section_is_overlay (osect))
1145 printf_filtered (_("%s in load address range of "
1146 "%s overlay section %s of %s\n"),
1147 loc_string, mapped, sec_name, obj_name);
1148 else
1149 printf_filtered (_("%s in load address range of "
1150 "section %s of %s\n"),
1151 loc_string, sec_name, obj_name);
1152 else
1153 if (section_is_overlay (osect))
1154 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1155 loc_string, mapped, sec_name, obj_name);
1156 else
1157 printf_filtered (_("%s in section %s of %s\n"),
1158 loc_string, sec_name, obj_name);
1159 else
1160 if (pc_in_unmapped_range (addr, osect))
1161 if (section_is_overlay (osect))
1162 printf_filtered (_("%s in load address range of %s overlay "
1163 "section %s\n"),
1164 loc_string, mapped, sec_name);
1165 else
1166 printf_filtered (_("%s in load address range of section %s\n"),
1167 loc_string, sec_name);
1168 else
1169 if (section_is_overlay (osect))
1170 printf_filtered (_("%s in %s overlay section %s\n"),
1171 loc_string, mapped, sec_name);
1172 else
1173 printf_filtered (_("%s in section %s\n"),
1174 loc_string, sec_name);
1175
1176 do_cleanups (old_chain);
1177 }
1178 }
1179 if (matches == 0)
1180 printf_filtered (_("No symbol matches %s.\n"), arg);
1181 }
1182
1183 static void
1184 address_info (char *exp, int from_tty)
1185 {
1186 struct gdbarch *gdbarch;
1187 int regno;
1188 struct symbol *sym;
1189 struct minimal_symbol *msymbol;
1190 long val;
1191 struct obj_section *section;
1192 CORE_ADDR load_addr, context_pc = 0;
1193 struct field_of_this_result is_a_field_of_this;
1194
1195 if (exp == 0)
1196 error (_("Argument required."));
1197
1198 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1199 &is_a_field_of_this);
1200 if (sym == NULL)
1201 {
1202 if (is_a_field_of_this.type != NULL)
1203 {
1204 printf_filtered ("Symbol \"");
1205 fprintf_symbol_filtered (gdb_stdout, exp,
1206 current_language->la_language, DMGL_ANSI);
1207 printf_filtered ("\" is a field of the local class variable ");
1208 if (current_language->la_language == language_objc)
1209 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1210 else
1211 printf_filtered ("`this'\n");
1212 return;
1213 }
1214
1215 msymbol = lookup_minimal_symbol (exp, NULL, NULL);
1216
1217 if (msymbol != NULL)
1218 {
1219 struct objfile *objfile = msymbol_objfile (msymbol);
1220
1221 gdbarch = get_objfile_arch (objfile);
1222 load_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1223
1224 printf_filtered ("Symbol \"");
1225 fprintf_symbol_filtered (gdb_stdout, exp,
1226 current_language->la_language, DMGL_ANSI);
1227 printf_filtered ("\" is at ");
1228 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1229 printf_filtered (" in a file compiled without debugging");
1230 section = SYMBOL_OBJ_SECTION (objfile, msymbol);
1231 if (section_is_overlay (section))
1232 {
1233 load_addr = overlay_unmapped_address (load_addr, section);
1234 printf_filtered (",\n -- loaded at ");
1235 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1236 printf_filtered (" in overlay section %s",
1237 section->the_bfd_section->name);
1238 }
1239 printf_filtered (".\n");
1240 }
1241 else
1242 error (_("No symbol \"%s\" in current context."), exp);
1243 return;
1244 }
1245
1246 printf_filtered ("Symbol \"");
1247 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1248 current_language->la_language, DMGL_ANSI);
1249 printf_filtered ("\" is ");
1250 val = SYMBOL_VALUE (sym);
1251 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
1252 gdbarch = get_objfile_arch (SYMBOL_SYMTAB (sym)->objfile);
1253
1254 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1255 {
1256 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1257 gdb_stdout);
1258 printf_filtered (".\n");
1259 return;
1260 }
1261
1262 switch (SYMBOL_CLASS (sym))
1263 {
1264 case LOC_CONST:
1265 case LOC_CONST_BYTES:
1266 printf_filtered ("constant");
1267 break;
1268
1269 case LOC_LABEL:
1270 printf_filtered ("a label at address ");
1271 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1272 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1273 if (section_is_overlay (section))
1274 {
1275 load_addr = overlay_unmapped_address (load_addr, section);
1276 printf_filtered (",\n -- loaded at ");
1277 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1278 printf_filtered (" in overlay section %s",
1279 section->the_bfd_section->name);
1280 }
1281 break;
1282
1283 case LOC_COMPUTED:
1284 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1285
1286 case LOC_REGISTER:
1287 /* GDBARCH is the architecture associated with the objfile the symbol
1288 is defined in; the target architecture may be different, and may
1289 provide additional registers. However, we do not know the target
1290 architecture at this point. We assume the objfile architecture
1291 will contain all the standard registers that occur in debug info
1292 in that objfile. */
1293 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1294
1295 if (SYMBOL_IS_ARGUMENT (sym))
1296 printf_filtered (_("an argument in register %s"),
1297 gdbarch_register_name (gdbarch, regno));
1298 else
1299 printf_filtered (_("a variable in register %s"),
1300 gdbarch_register_name (gdbarch, regno));
1301 break;
1302
1303 case LOC_STATIC:
1304 printf_filtered (_("static storage at address "));
1305 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1306 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1307 if (section_is_overlay (section))
1308 {
1309 load_addr = overlay_unmapped_address (load_addr, section);
1310 printf_filtered (_(",\n -- loaded at "));
1311 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1312 printf_filtered (_(" in overlay section %s"),
1313 section->the_bfd_section->name);
1314 }
1315 break;
1316
1317 case LOC_REGPARM_ADDR:
1318 /* Note comment at LOC_REGISTER. */
1319 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1320 printf_filtered (_("address of an argument in register %s"),
1321 gdbarch_register_name (gdbarch, regno));
1322 break;
1323
1324 case LOC_ARG:
1325 printf_filtered (_("an argument at offset %ld"), val);
1326 break;
1327
1328 case LOC_LOCAL:
1329 printf_filtered (_("a local variable at frame offset %ld"), val);
1330 break;
1331
1332 case LOC_REF_ARG:
1333 printf_filtered (_("a reference argument at offset %ld"), val);
1334 break;
1335
1336 case LOC_TYPEDEF:
1337 printf_filtered (_("a typedef"));
1338 break;
1339
1340 case LOC_BLOCK:
1341 printf_filtered (_("a function at address "));
1342 load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1343 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1344 if (section_is_overlay (section))
1345 {
1346 load_addr = overlay_unmapped_address (load_addr, section);
1347 printf_filtered (_(",\n -- loaded at "));
1348 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1349 printf_filtered (_(" in overlay section %s"),
1350 section->the_bfd_section->name);
1351 }
1352 break;
1353
1354 case LOC_UNRESOLVED:
1355 {
1356 struct bound_minimal_symbol msym;
1357
1358 msym = lookup_minimal_symbol_and_objfile (SYMBOL_LINKAGE_NAME (sym));
1359 if (msym.minsym == NULL)
1360 printf_filtered ("unresolved");
1361 else
1362 {
1363 section = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1364 load_addr = SYMBOL_VALUE_ADDRESS (msym.minsym);
1365
1366 if (section
1367 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1368 printf_filtered (_("a thread-local variable at offset %s "
1369 "in the thread-local storage for `%s'"),
1370 paddress (gdbarch, load_addr),
1371 section->objfile->name);
1372 else
1373 {
1374 printf_filtered (_("static storage at address "));
1375 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1376 if (section_is_overlay (section))
1377 {
1378 load_addr = overlay_unmapped_address (load_addr, section);
1379 printf_filtered (_(",\n -- loaded at "));
1380 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1381 printf_filtered (_(" in overlay section %s"),
1382 section->the_bfd_section->name);
1383 }
1384 }
1385 }
1386 }
1387 break;
1388
1389 case LOC_OPTIMIZED_OUT:
1390 printf_filtered (_("optimized out"));
1391 break;
1392
1393 default:
1394 printf_filtered (_("of unknown (botched) type"));
1395 break;
1396 }
1397 printf_filtered (".\n");
1398 }
1399 \f
1400
1401 static void
1402 x_command (char *exp, int from_tty)
1403 {
1404 struct expression *expr;
1405 struct format_data fmt;
1406 struct cleanup *old_chain;
1407 struct value *val;
1408
1409 fmt.format = last_format ? last_format : 'x';
1410 fmt.size = last_size;
1411 fmt.count = 1;
1412 fmt.raw = 0;
1413
1414 if (exp && *exp == '/')
1415 {
1416 const char *tmp = exp + 1;
1417
1418 fmt = decode_format (&tmp, last_format, last_size);
1419 exp = (char *) tmp;
1420 }
1421
1422 /* If we have an expression, evaluate it and use it as the address. */
1423
1424 if (exp != 0 && *exp != 0)
1425 {
1426 expr = parse_expression (exp);
1427 /* Cause expression not to be there any more if this command is
1428 repeated with Newline. But don't clobber a user-defined
1429 command's definition. */
1430 if (from_tty)
1431 *exp = 0;
1432 old_chain = make_cleanup (free_current_contents, &expr);
1433 val = evaluate_expression (expr);
1434 if (TYPE_CODE (value_type (val)) == TYPE_CODE_REF)
1435 val = coerce_ref (val);
1436 /* In rvalue contexts, such as this, functions are coerced into
1437 pointers to functions. This makes "x/i main" work. */
1438 if (/* last_format == 'i' && */
1439 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1440 && VALUE_LVAL (val) == lval_memory)
1441 next_address = value_address (val);
1442 else
1443 next_address = value_as_address (val);
1444
1445 next_gdbarch = expr->gdbarch;
1446 do_cleanups (old_chain);
1447 }
1448
1449 if (!next_gdbarch)
1450 error_no_arg (_("starting display address"));
1451
1452 do_examine (fmt, next_gdbarch, next_address);
1453
1454 /* If the examine succeeds, we remember its size and format for next
1455 time. Set last_size to 'b' for strings. */
1456 if (fmt.format == 's')
1457 last_size = 'b';
1458 else
1459 last_size = fmt.size;
1460 last_format = fmt.format;
1461
1462 /* Set a couple of internal variables if appropriate. */
1463 if (last_examine_value)
1464 {
1465 /* Make last address examined available to the user as $_. Use
1466 the correct pointer type. */
1467 struct type *pointer_type
1468 = lookup_pointer_type (value_type (last_examine_value));
1469 set_internalvar (lookup_internalvar ("_"),
1470 value_from_pointer (pointer_type,
1471 last_examine_address));
1472
1473 /* Make contents of last address examined available to the user
1474 as $__. If the last value has not been fetched from memory
1475 then don't fetch it now; instead mark it by voiding the $__
1476 variable. */
1477 if (value_lazy (last_examine_value))
1478 clear_internalvar (lookup_internalvar ("__"));
1479 else
1480 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1481 }
1482 }
1483 \f
1484
1485 /* Add an expression to the auto-display chain.
1486 Specify the expression. */
1487
1488 static void
1489 display_command (char *arg, int from_tty)
1490 {
1491 struct format_data fmt;
1492 struct expression *expr;
1493 struct display *new;
1494 int display_it = 1;
1495 const char *exp = arg;
1496
1497 #if defined(TUI)
1498 /* NOTE: cagney/2003-02-13 The `tui_active' was previously
1499 `tui_version'. */
1500 if (tui_active && exp != NULL && *exp == '$')
1501 display_it = (tui_set_layout_for_display_command (exp) == TUI_FAILURE);
1502 #endif
1503
1504 if (display_it)
1505 {
1506 if (exp == 0)
1507 {
1508 do_displays ();
1509 return;
1510 }
1511
1512 if (*exp == '/')
1513 {
1514 exp++;
1515 fmt = decode_format (&exp, 0, 0);
1516 if (fmt.size && fmt.format == 0)
1517 fmt.format = 'x';
1518 if (fmt.format == 'i' || fmt.format == 's')
1519 fmt.size = 'b';
1520 }
1521 else
1522 {
1523 fmt.format = 0;
1524 fmt.size = 0;
1525 fmt.count = 0;
1526 fmt.raw = 0;
1527 }
1528
1529 innermost_block = NULL;
1530 expr = parse_expression (exp);
1531
1532 new = (struct display *) xmalloc (sizeof (struct display));
1533
1534 new->exp_string = xstrdup (exp);
1535 new->exp = expr;
1536 new->block = innermost_block;
1537 new->pspace = current_program_space;
1538 new->next = display_chain;
1539 new->number = ++display_number;
1540 new->format = fmt;
1541 new->enabled_p = 1;
1542 display_chain = new;
1543
1544 if (from_tty && target_has_execution)
1545 do_one_display (new);
1546
1547 dont_repeat ();
1548 }
1549 }
1550
1551 static void
1552 free_display (struct display *d)
1553 {
1554 xfree (d->exp_string);
1555 xfree (d->exp);
1556 xfree (d);
1557 }
1558
1559 /* Clear out the display_chain. Done when new symtabs are loaded,
1560 since this invalidates the types stored in many expressions. */
1561
1562 void
1563 clear_displays (void)
1564 {
1565 struct display *d;
1566
1567 while ((d = display_chain) != NULL)
1568 {
1569 display_chain = d->next;
1570 free_display (d);
1571 }
1572 }
1573
1574 /* Delete the auto-display DISPLAY. */
1575
1576 static void
1577 delete_display (struct display *display)
1578 {
1579 struct display *d;
1580
1581 gdb_assert (display != NULL);
1582
1583 if (display_chain == display)
1584 display_chain = display->next;
1585
1586 ALL_DISPLAYS (d)
1587 if (d->next == display)
1588 {
1589 d->next = display->next;
1590 break;
1591 }
1592
1593 free_display (display);
1594 }
1595
1596 /* Call FUNCTION on each of the displays whose numbers are given in
1597 ARGS. DATA is passed unmodified to FUNCTION. */
1598
1599 static void
1600 map_display_numbers (char *args,
1601 void (*function) (struct display *,
1602 void *),
1603 void *data)
1604 {
1605 struct get_number_or_range_state state;
1606 int num;
1607
1608 if (args == NULL)
1609 error_no_arg (_("one or more display numbers"));
1610
1611 init_number_or_range (&state, args);
1612
1613 while (!state.finished)
1614 {
1615 char *p = state.string;
1616
1617 num = get_number_or_range (&state);
1618 if (num == 0)
1619 warning (_("bad display number at or near '%s'"), p);
1620 else
1621 {
1622 struct display *d, *tmp;
1623
1624 ALL_DISPLAYS_SAFE (d, tmp)
1625 if (d->number == num)
1626 break;
1627 if (d == NULL)
1628 printf_unfiltered (_("No display number %d.\n"), num);
1629 else
1630 function (d, data);
1631 }
1632 }
1633 }
1634
1635 /* Callback for map_display_numbers, that deletes a display. */
1636
1637 static void
1638 do_delete_display (struct display *d, void *data)
1639 {
1640 delete_display (d);
1641 }
1642
1643 /* "undisplay" command. */
1644
1645 static void
1646 undisplay_command (char *args, int from_tty)
1647 {
1648 if (args == NULL)
1649 {
1650 if (query (_("Delete all auto-display expressions? ")))
1651 clear_displays ();
1652 dont_repeat ();
1653 return;
1654 }
1655
1656 map_display_numbers (args, do_delete_display, NULL);
1657 dont_repeat ();
1658 }
1659
1660 /* Display a single auto-display.
1661 Do nothing if the display cannot be printed in the current context,
1662 or if the display is disabled. */
1663
1664 static void
1665 do_one_display (struct display *d)
1666 {
1667 struct cleanup *old_chain;
1668 int within_current_scope;
1669
1670 if (d->enabled_p == 0)
1671 return;
1672
1673 /* The expression carries the architecture that was used at parse time.
1674 This is a problem if the expression depends on architecture features
1675 (e.g. register numbers), and the current architecture is now different.
1676 For example, a display statement like "display/i $pc" is expected to
1677 display the PC register of the current architecture, not the arch at
1678 the time the display command was given. Therefore, we re-parse the
1679 expression if the current architecture has changed. */
1680 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1681 {
1682 xfree (d->exp);
1683 d->exp = NULL;
1684 d->block = NULL;
1685 }
1686
1687 if (d->exp == NULL)
1688 {
1689 volatile struct gdb_exception ex;
1690
1691 TRY_CATCH (ex, RETURN_MASK_ALL)
1692 {
1693 innermost_block = NULL;
1694 d->exp = parse_expression (d->exp_string);
1695 d->block = innermost_block;
1696 }
1697 if (ex.reason < 0)
1698 {
1699 /* Can't re-parse the expression. Disable this display item. */
1700 d->enabled_p = 0;
1701 warning (_("Unable to display \"%s\": %s"),
1702 d->exp_string, ex.message);
1703 return;
1704 }
1705 }
1706
1707 if (d->block)
1708 {
1709 if (d->pspace == current_program_space)
1710 within_current_scope = contained_in (get_selected_block (0), d->block);
1711 else
1712 within_current_scope = 0;
1713 }
1714 else
1715 within_current_scope = 1;
1716 if (!within_current_scope)
1717 return;
1718
1719 old_chain = make_cleanup_restore_integer (&current_display_number);
1720 current_display_number = d->number;
1721
1722 annotate_display_begin ();
1723 printf_filtered ("%d", d->number);
1724 annotate_display_number_end ();
1725 printf_filtered (": ");
1726 if (d->format.size)
1727 {
1728 volatile struct gdb_exception ex;
1729
1730 annotate_display_format ();
1731
1732 printf_filtered ("x/");
1733 if (d->format.count != 1)
1734 printf_filtered ("%d", d->format.count);
1735 printf_filtered ("%c", d->format.format);
1736 if (d->format.format != 'i' && d->format.format != 's')
1737 printf_filtered ("%c", d->format.size);
1738 printf_filtered (" ");
1739
1740 annotate_display_expression ();
1741
1742 puts_filtered (d->exp_string);
1743 annotate_display_expression_end ();
1744
1745 if (d->format.count != 1 || d->format.format == 'i')
1746 printf_filtered ("\n");
1747 else
1748 printf_filtered (" ");
1749
1750 annotate_display_value ();
1751
1752 TRY_CATCH (ex, RETURN_MASK_ERROR)
1753 {
1754 struct value *val;
1755 CORE_ADDR addr;
1756
1757 val = evaluate_expression (d->exp);
1758 addr = value_as_address (val);
1759 if (d->format.format == 'i')
1760 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1761 do_examine (d->format, d->exp->gdbarch, addr);
1762 }
1763 if (ex.reason < 0)
1764 fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
1765 }
1766 else
1767 {
1768 struct value_print_options opts;
1769 volatile struct gdb_exception ex;
1770
1771 annotate_display_format ();
1772
1773 if (d->format.format)
1774 printf_filtered ("/%c ", d->format.format);
1775
1776 annotate_display_expression ();
1777
1778 puts_filtered (d->exp_string);
1779 annotate_display_expression_end ();
1780
1781 printf_filtered (" = ");
1782
1783 annotate_display_expression ();
1784
1785 get_formatted_print_options (&opts, d->format.format);
1786 opts.raw = d->format.raw;
1787
1788 TRY_CATCH (ex, RETURN_MASK_ERROR)
1789 {
1790 struct value *val;
1791
1792 val = evaluate_expression (d->exp);
1793 print_formatted (val, d->format.size, &opts, gdb_stdout);
1794 }
1795 if (ex.reason < 0)
1796 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
1797 printf_filtered ("\n");
1798 }
1799
1800 annotate_display_end ();
1801
1802 gdb_flush (gdb_stdout);
1803 do_cleanups (old_chain);
1804 }
1805
1806 /* Display all of the values on the auto-display chain which can be
1807 evaluated in the current scope. */
1808
1809 void
1810 do_displays (void)
1811 {
1812 struct display *d;
1813
1814 for (d = display_chain; d; d = d->next)
1815 do_one_display (d);
1816 }
1817
1818 /* Delete the auto-display which we were in the process of displaying.
1819 This is done when there is an error or a signal. */
1820
1821 void
1822 disable_display (int num)
1823 {
1824 struct display *d;
1825
1826 for (d = display_chain; d; d = d->next)
1827 if (d->number == num)
1828 {
1829 d->enabled_p = 0;
1830 return;
1831 }
1832 printf_unfiltered (_("No display number %d.\n"), num);
1833 }
1834
1835 void
1836 disable_current_display (void)
1837 {
1838 if (current_display_number >= 0)
1839 {
1840 disable_display (current_display_number);
1841 fprintf_unfiltered (gdb_stderr,
1842 _("Disabling display %d to "
1843 "avoid infinite recursion.\n"),
1844 current_display_number);
1845 }
1846 current_display_number = -1;
1847 }
1848
1849 static void
1850 display_info (char *ignore, int from_tty)
1851 {
1852 struct display *d;
1853
1854 if (!display_chain)
1855 printf_unfiltered (_("There are no auto-display expressions now.\n"));
1856 else
1857 printf_filtered (_("Auto-display expressions now in effect:\n\
1858 Num Enb Expression\n"));
1859
1860 for (d = display_chain; d; d = d->next)
1861 {
1862 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
1863 if (d->format.size)
1864 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
1865 d->format.format);
1866 else if (d->format.format)
1867 printf_filtered ("/%c ", d->format.format);
1868 puts_filtered (d->exp_string);
1869 if (d->block && !contained_in (get_selected_block (0), d->block))
1870 printf_filtered (_(" (cannot be evaluated in the current context)"));
1871 printf_filtered ("\n");
1872 gdb_flush (gdb_stdout);
1873 }
1874 }
1875
1876 /* Callback fo map_display_numbers, that enables or disables the
1877 passed in display D. */
1878
1879 static void
1880 do_enable_disable_display (struct display *d, void *data)
1881 {
1882 d->enabled_p = *(int *) data;
1883 }
1884
1885 /* Implamentation of both the "disable display" and "enable display"
1886 commands. ENABLE decides what to do. */
1887
1888 static void
1889 enable_disable_display_command (char *args, int from_tty, int enable)
1890 {
1891 if (args == NULL)
1892 {
1893 struct display *d;
1894
1895 ALL_DISPLAYS (d)
1896 d->enabled_p = enable;
1897 return;
1898 }
1899
1900 map_display_numbers (args, do_enable_disable_display, &enable);
1901 }
1902
1903 /* The "enable display" command. */
1904
1905 static void
1906 enable_display_command (char *args, int from_tty)
1907 {
1908 enable_disable_display_command (args, from_tty, 1);
1909 }
1910
1911 /* The "disable display" command. */
1912
1913 static void
1914 disable_display_command (char *args, int from_tty)
1915 {
1916 enable_disable_display_command (args, from_tty, 0);
1917 }
1918
1919 /* display_chain items point to blocks and expressions. Some expressions in
1920 turn may point to symbols.
1921 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
1922 obstack_free'd when a shared library is unloaded.
1923 Clear pointers that are about to become dangling.
1924 Both .exp and .block fields will be restored next time we need to display
1925 an item by re-parsing .exp_string field in the new execution context. */
1926
1927 static void
1928 clear_dangling_display_expressions (struct so_list *solib)
1929 {
1930 struct objfile *objfile = solib->objfile;
1931 struct display *d;
1932
1933 /* With no symbol file we cannot have a block or expression from it. */
1934 if (objfile == NULL)
1935 return;
1936 if (objfile->separate_debug_objfile_backlink)
1937 objfile = objfile->separate_debug_objfile_backlink;
1938 gdb_assert (objfile->pspace == solib->pspace);
1939
1940 for (d = display_chain; d != NULL; d = d->next)
1941 {
1942 if (d->pspace != solib->pspace)
1943 continue;
1944
1945 if (lookup_objfile_from_block (d->block) == objfile
1946 || (d->exp && exp_uses_objfile (d->exp, objfile)))
1947 {
1948 xfree (d->exp);
1949 d->exp = NULL;
1950 d->block = NULL;
1951 }
1952 }
1953 }
1954 \f
1955
1956 /* Print the value in stack frame FRAME of a variable specified by a
1957 struct symbol. NAME is the name to print; if NULL then VAR's print
1958 name will be used. STREAM is the ui_file on which to print the
1959 value. INDENT specifies the number of indent levels to print
1960 before printing the variable name.
1961
1962 This function invalidates FRAME. */
1963
1964 void
1965 print_variable_and_value (const char *name, struct symbol *var,
1966 struct frame_info *frame,
1967 struct ui_file *stream, int indent)
1968 {
1969 volatile struct gdb_exception except;
1970
1971 if (!name)
1972 name = SYMBOL_PRINT_NAME (var);
1973
1974 fprintf_filtered (stream, "%s%s = ", n_spaces (2 * indent), name);
1975 TRY_CATCH (except, RETURN_MASK_ERROR)
1976 {
1977 struct value *val;
1978 struct value_print_options opts;
1979
1980 val = read_var_value (var, frame);
1981 get_user_print_options (&opts);
1982 opts.deref_ref = 1;
1983 common_val_print (val, stream, indent, &opts, current_language);
1984
1985 /* common_val_print invalidates FRAME when a pretty printer calls inferior
1986 function. */
1987 frame = NULL;
1988 }
1989 if (except.reason < 0)
1990 fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
1991 except.message);
1992 fprintf_filtered (stream, "\n");
1993 }
1994
1995 /* Subroutine of ui_printf to simplify it.
1996 Print VALUE to STREAM using FORMAT.
1997 VALUE is a C-style string on the target. */
1998
1999 static void
2000 printf_c_string (struct ui_file *stream, const char *format,
2001 struct value *value)
2002 {
2003 gdb_byte *str;
2004 CORE_ADDR tem;
2005 int j;
2006
2007 tem = value_as_address (value);
2008
2009 /* This is a %s argument. Find the length of the string. */
2010 for (j = 0;; j++)
2011 {
2012 gdb_byte c;
2013
2014 QUIT;
2015 read_memory (tem + j, &c, 1);
2016 if (c == 0)
2017 break;
2018 }
2019
2020 /* Copy the string contents into a string inside GDB. */
2021 str = (gdb_byte *) alloca (j + 1);
2022 if (j != 0)
2023 read_memory (tem, str, j);
2024 str[j] = 0;
2025
2026 fprintf_filtered (stream, format, (char *) str);
2027 }
2028
2029 /* Subroutine of ui_printf to simplify it.
2030 Print VALUE to STREAM using FORMAT.
2031 VALUE is a wide C-style string on the target. */
2032
2033 static void
2034 printf_wide_c_string (struct ui_file *stream, const char *format,
2035 struct value *value)
2036 {
2037 gdb_byte *str;
2038 CORE_ADDR tem;
2039 int j;
2040 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2041 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2042 struct type *wctype = lookup_typename (current_language, gdbarch,
2043 "wchar_t", NULL, 0);
2044 int wcwidth = TYPE_LENGTH (wctype);
2045 gdb_byte *buf = alloca (wcwidth);
2046 struct obstack output;
2047 struct cleanup *inner_cleanup;
2048
2049 tem = value_as_address (value);
2050
2051 /* This is a %s argument. Find the length of the string. */
2052 for (j = 0;; j += wcwidth)
2053 {
2054 QUIT;
2055 read_memory (tem + j, buf, wcwidth);
2056 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2057 break;
2058 }
2059
2060 /* Copy the string contents into a string inside GDB. */
2061 str = (gdb_byte *) alloca (j + wcwidth);
2062 if (j != 0)
2063 read_memory (tem, str, j);
2064 memset (&str[j], 0, wcwidth);
2065
2066 obstack_init (&output);
2067 inner_cleanup = make_cleanup_obstack_free (&output);
2068
2069 convert_between_encodings (target_wide_charset (gdbarch),
2070 host_charset (),
2071 str, j, wcwidth,
2072 &output, translit_char);
2073 obstack_grow_str0 (&output, "");
2074
2075 fprintf_filtered (stream, format, obstack_base (&output));
2076 do_cleanups (inner_cleanup);
2077 }
2078
2079 /* Subroutine of ui_printf to simplify it.
2080 Print VALUE, a decimal floating point value, to STREAM using FORMAT. */
2081
2082 static void
2083 printf_decfloat (struct ui_file *stream, const char *format,
2084 struct value *value)
2085 {
2086 const gdb_byte *param_ptr = value_contents (value);
2087
2088 #if defined (PRINTF_HAS_DECFLOAT)
2089 /* If we have native support for Decimal floating
2090 printing, handle it here. */
2091 fprintf_filtered (stream, format, param_ptr);
2092 #else
2093 /* As a workaround until vasprintf has native support for DFP
2094 we convert the DFP values to string and print them using
2095 the %s format specifier. */
2096 const char *p;
2097
2098 /* Parameter data. */
2099 struct type *param_type = value_type (value);
2100 struct gdbarch *gdbarch = get_type_arch (param_type);
2101 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2102
2103 /* DFP output data. */
2104 struct value *dfp_value = NULL;
2105 gdb_byte *dfp_ptr;
2106 int dfp_len = 16;
2107 gdb_byte dec[16];
2108 struct type *dfp_type = NULL;
2109 char decstr[MAX_DECIMAL_STRING];
2110
2111 /* Points to the end of the string so that we can go back
2112 and check for DFP length modifiers. */
2113 p = format + strlen (format);
2114
2115 /* Look for the float/double format specifier. */
2116 while (*p != 'f' && *p != 'e' && *p != 'E'
2117 && *p != 'g' && *p != 'G')
2118 p--;
2119
2120 /* Search for the '%' char and extract the size and type of
2121 the output decimal value based on its modifiers
2122 (%Hf, %Df, %DDf). */
2123 while (*--p != '%')
2124 {
2125 if (*p == 'H')
2126 {
2127 dfp_len = 4;
2128 dfp_type = builtin_type (gdbarch)->builtin_decfloat;
2129 }
2130 else if (*p == 'D' && *(p - 1) == 'D')
2131 {
2132 dfp_len = 16;
2133 dfp_type = builtin_type (gdbarch)->builtin_declong;
2134 p--;
2135 }
2136 else
2137 {
2138 dfp_len = 8;
2139 dfp_type = builtin_type (gdbarch)->builtin_decdouble;
2140 }
2141 }
2142
2143 /* Conversion between different DFP types. */
2144 if (TYPE_CODE (param_type) == TYPE_CODE_DECFLOAT)
2145 decimal_convert (param_ptr, TYPE_LENGTH (param_type),
2146 byte_order, dec, dfp_len, byte_order);
2147 else
2148 /* If this is a non-trivial conversion, just output 0.
2149 A correct converted value can be displayed by explicitly
2150 casting to a DFP type. */
2151 decimal_from_string (dec, dfp_len, byte_order, "0");
2152
2153 dfp_value = value_from_decfloat (dfp_type, dec);
2154
2155 dfp_ptr = (gdb_byte *) value_contents (dfp_value);
2156
2157 decimal_to_string (dfp_ptr, dfp_len, byte_order, decstr);
2158
2159 /* Print the DFP value. */
2160 fprintf_filtered (stream, "%s", decstr);
2161 #endif
2162 }
2163
2164 /* Subroutine of ui_printf to simplify it.
2165 Print VALUE, a target pointer, to STREAM using FORMAT. */
2166
2167 static void
2168 printf_pointer (struct ui_file *stream, const char *format,
2169 struct value *value)
2170 {
2171 /* We avoid the host's %p because pointers are too
2172 likely to be the wrong size. The only interesting
2173 modifier for %p is a width; extract that, and then
2174 handle %p as glibc would: %#x or a literal "(nil)". */
2175
2176 const char *p;
2177 char *fmt, *fmt_p;
2178 #ifdef PRINTF_HAS_LONG_LONG
2179 long long val = value_as_long (value);
2180 #else
2181 long val = value_as_long (value);
2182 #endif
2183
2184 fmt = alloca (strlen (format) + 5);
2185
2186 /* Copy up to the leading %. */
2187 p = format;
2188 fmt_p = fmt;
2189 while (*p)
2190 {
2191 int is_percent = (*p == '%');
2192
2193 *fmt_p++ = *p++;
2194 if (is_percent)
2195 {
2196 if (*p == '%')
2197 *fmt_p++ = *p++;
2198 else
2199 break;
2200 }
2201 }
2202
2203 if (val != 0)
2204 *fmt_p++ = '#';
2205
2206 /* Copy any width. */
2207 while (*p >= '0' && *p < '9')
2208 *fmt_p++ = *p++;
2209
2210 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2211 if (val != 0)
2212 {
2213 #ifdef PRINTF_HAS_LONG_LONG
2214 *fmt_p++ = 'l';
2215 #endif
2216 *fmt_p++ = 'l';
2217 *fmt_p++ = 'x';
2218 *fmt_p++ = '\0';
2219 fprintf_filtered (stream, fmt, val);
2220 }
2221 else
2222 {
2223 *fmt_p++ = 's';
2224 *fmt_p++ = '\0';
2225 fprintf_filtered (stream, fmt, "(nil)");
2226 }
2227 }
2228
2229 /* printf "printf format string" ARG to STREAM. */
2230
2231 static void
2232 ui_printf (const char *arg, struct ui_file *stream)
2233 {
2234 struct format_piece *fpieces;
2235 const char *s = arg;
2236 struct value **val_args;
2237 int allocated_args = 20;
2238 struct cleanup *old_cleanups;
2239
2240 val_args = xmalloc (allocated_args * sizeof (struct value *));
2241 old_cleanups = make_cleanup (free_current_contents, &val_args);
2242
2243 if (s == 0)
2244 error_no_arg (_("format-control string and values to print"));
2245
2246 s = skip_spaces_const (s);
2247
2248 /* A format string should follow, enveloped in double quotes. */
2249 if (*s++ != '"')
2250 error (_("Bad format string, missing '\"'."));
2251
2252 fpieces = parse_format_string (&s);
2253
2254 make_cleanup (free_format_pieces_cleanup, &fpieces);
2255
2256 if (*s++ != '"')
2257 error (_("Bad format string, non-terminated '\"'."));
2258
2259 s = skip_spaces_const (s);
2260
2261 if (*s != ',' && *s != 0)
2262 error (_("Invalid argument syntax"));
2263
2264 if (*s == ',')
2265 s++;
2266 s = skip_spaces_const (s);
2267
2268 {
2269 int nargs = 0;
2270 int nargs_wanted;
2271 int i, fr;
2272 char *current_substring;
2273
2274 nargs_wanted = 0;
2275 for (fr = 0; fpieces[fr].string != NULL; fr++)
2276 if (fpieces[fr].argclass != literal_piece)
2277 ++nargs_wanted;
2278
2279 /* Now, parse all arguments and evaluate them.
2280 Store the VALUEs in VAL_ARGS. */
2281
2282 while (*s != '\0')
2283 {
2284 const char *s1;
2285
2286 if (nargs == allocated_args)
2287 val_args = (struct value **) xrealloc ((char *) val_args,
2288 (allocated_args *= 2)
2289 * sizeof (struct value *));
2290 s1 = s;
2291 val_args[nargs] = parse_to_comma_and_eval (&s1);
2292
2293 nargs++;
2294 s = s1;
2295 if (*s == ',')
2296 s++;
2297 }
2298
2299 if (nargs != nargs_wanted)
2300 error (_("Wrong number of arguments for specified format-string"));
2301
2302 /* Now actually print them. */
2303 i = 0;
2304 for (fr = 0; fpieces[fr].string != NULL; fr++)
2305 {
2306 current_substring = fpieces[fr].string;
2307 switch (fpieces[fr].argclass)
2308 {
2309 case string_arg:
2310 printf_c_string (stream, current_substring, val_args[i]);
2311 break;
2312 case wide_string_arg:
2313 printf_wide_c_string (stream, current_substring, val_args[i]);
2314 break;
2315 case wide_char_arg:
2316 {
2317 struct gdbarch *gdbarch
2318 = get_type_arch (value_type (val_args[i]));
2319 struct type *wctype = lookup_typename (current_language, gdbarch,
2320 "wchar_t", NULL, 0);
2321 struct type *valtype;
2322 struct obstack output;
2323 struct cleanup *inner_cleanup;
2324 const gdb_byte *bytes;
2325
2326 valtype = value_type (val_args[i]);
2327 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2328 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2329 error (_("expected wchar_t argument for %%lc"));
2330
2331 bytes = value_contents (val_args[i]);
2332
2333 obstack_init (&output);
2334 inner_cleanup = make_cleanup_obstack_free (&output);
2335
2336 convert_between_encodings (target_wide_charset (gdbarch),
2337 host_charset (),
2338 bytes, TYPE_LENGTH (valtype),
2339 TYPE_LENGTH (valtype),
2340 &output, translit_char);
2341 obstack_grow_str0 (&output, "");
2342
2343 fprintf_filtered (stream, current_substring,
2344 obstack_base (&output));
2345 do_cleanups (inner_cleanup);
2346 }
2347 break;
2348 case double_arg:
2349 {
2350 struct type *type = value_type (val_args[i]);
2351 DOUBLEST val;
2352 int inv;
2353
2354 /* If format string wants a float, unchecked-convert the value
2355 to floating point of the same size. */
2356 type = float_type_from_length (type);
2357 val = unpack_double (type, value_contents (val_args[i]), &inv);
2358 if (inv)
2359 error (_("Invalid floating value found in program."));
2360
2361 fprintf_filtered (stream, current_substring, (double) val);
2362 break;
2363 }
2364 case long_double_arg:
2365 #ifdef HAVE_LONG_DOUBLE
2366 {
2367 struct type *type = value_type (val_args[i]);
2368 DOUBLEST val;
2369 int inv;
2370
2371 /* If format string wants a float, unchecked-convert the value
2372 to floating point of the same size. */
2373 type = float_type_from_length (type);
2374 val = unpack_double (type, value_contents (val_args[i]), &inv);
2375 if (inv)
2376 error (_("Invalid floating value found in program."));
2377
2378 fprintf_filtered (stream, current_substring,
2379 (long double) val);
2380 break;
2381 }
2382 #else
2383 error (_("long double not supported in printf"));
2384 #endif
2385 case long_long_arg:
2386 #ifdef PRINTF_HAS_LONG_LONG
2387 {
2388 long long val = value_as_long (val_args[i]);
2389
2390 fprintf_filtered (stream, current_substring, val);
2391 break;
2392 }
2393 #else
2394 error (_("long long not supported in printf"));
2395 #endif
2396 case int_arg:
2397 {
2398 int val = value_as_long (val_args[i]);
2399
2400 fprintf_filtered (stream, current_substring, val);
2401 break;
2402 }
2403 case long_arg:
2404 {
2405 long val = value_as_long (val_args[i]);
2406
2407 fprintf_filtered (stream, current_substring, val);
2408 break;
2409 }
2410 /* Handles decimal floating values. */
2411 case decfloat_arg:
2412 printf_decfloat (stream, current_substring, val_args[i]);
2413 break;
2414 case ptr_arg:
2415 printf_pointer (stream, current_substring, val_args[i]);
2416 break;
2417 case literal_piece:
2418 /* Print a portion of the format string that has no
2419 directives. Note that this will not include any
2420 ordinary %-specs, but it might include "%%". That is
2421 why we use printf_filtered and not puts_filtered here.
2422 Also, we pass a dummy argument because some platforms
2423 have modified GCC to include -Wformat-security by
2424 default, which will warn here if there is no
2425 argument. */
2426 fprintf_filtered (stream, current_substring, 0);
2427 break;
2428 default:
2429 internal_error (__FILE__, __LINE__,
2430 _("failed internal consistency check"));
2431 }
2432 /* Maybe advance to the next argument. */
2433 if (fpieces[fr].argclass != literal_piece)
2434 ++i;
2435 }
2436 }
2437 do_cleanups (old_cleanups);
2438 }
2439
2440 /* Implement the "printf" command. */
2441
2442 static void
2443 printf_command (char *arg, int from_tty)
2444 {
2445 ui_printf (arg, gdb_stdout);
2446 }
2447
2448 /* Implement the "eval" command. */
2449
2450 static void
2451 eval_command (char *arg, int from_tty)
2452 {
2453 struct ui_file *ui_out = mem_fileopen ();
2454 struct cleanup *cleanups = make_cleanup_ui_file_delete (ui_out);
2455 char *expanded;
2456
2457 ui_printf (arg, ui_out);
2458
2459 expanded = ui_file_xstrdup (ui_out, NULL);
2460 make_cleanup (xfree, expanded);
2461
2462 execute_command (expanded, from_tty);
2463
2464 do_cleanups (cleanups);
2465 }
2466
2467 void
2468 _initialize_printcmd (void)
2469 {
2470 struct cmd_list_element *c;
2471
2472 current_display_number = -1;
2473
2474 observer_attach_solib_unloaded (clear_dangling_display_expressions);
2475
2476 add_info ("address", address_info,
2477 _("Describe where symbol SYM is stored."));
2478
2479 add_info ("symbol", sym_info, _("\
2480 Describe what symbol is at location ADDR.\n\
2481 Only for symbols with fixed locations (global or static scope)."));
2482
2483 add_com ("x", class_vars, x_command, _("\
2484 Examine memory: x/FMT ADDRESS.\n\
2485 ADDRESS is an expression for the memory address to examine.\n\
2486 FMT is a repeat count followed by a format letter and a size letter.\n\
2487 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2488 t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n\
2489 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2490 The specified number of objects of the specified size are printed\n\
2491 according to the format.\n\n\
2492 Defaults for format and size letters are those previously used.\n\
2493 Default count is 1. Default address is following last thing printed\n\
2494 with this command or \"print\"."));
2495
2496 #if 0
2497 add_com ("whereis", class_vars, whereis_command,
2498 _("Print line number and file of definition of variable."));
2499 #endif
2500
2501 add_info ("display", display_info, _("\
2502 Expressions to display when program stops, with code numbers."));
2503
2504 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2505 Cancel some expressions to be displayed when program stops.\n\
2506 Arguments are the code numbers of the expressions to stop displaying.\n\
2507 No argument means cancel all automatic-display expressions.\n\
2508 \"delete display\" has the same effect as this command.\n\
2509 Do \"info display\" to see current list of code numbers."),
2510 &cmdlist);
2511
2512 add_com ("display", class_vars, display_command, _("\
2513 Print value of expression EXP each time the program stops.\n\
2514 /FMT may be used before EXP as in the \"print\" command.\n\
2515 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2516 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2517 and examining is done as in the \"x\" command.\n\n\
2518 With no argument, display all currently requested auto-display expressions.\n\
2519 Use \"undisplay\" to cancel display requests previously made."));
2520
2521 add_cmd ("display", class_vars, enable_display_command, _("\
2522 Enable some expressions to be displayed when program stops.\n\
2523 Arguments are the code numbers of the expressions to resume displaying.\n\
2524 No argument means enable all automatic-display expressions.\n\
2525 Do \"info display\" to see current list of code numbers."), &enablelist);
2526
2527 add_cmd ("display", class_vars, disable_display_command, _("\
2528 Disable some expressions to be displayed when program stops.\n\
2529 Arguments are the code numbers of the expressions to stop displaying.\n\
2530 No argument means disable all automatic-display expressions.\n\
2531 Do \"info display\" to see current list of code numbers."), &disablelist);
2532
2533 add_cmd ("display", class_vars, undisplay_command, _("\
2534 Cancel some expressions to be displayed when program stops.\n\
2535 Arguments are the code numbers of the expressions to stop displaying.\n\
2536 No argument means cancel all automatic-display expressions.\n\
2537 Do \"info display\" to see current list of code numbers."), &deletelist);
2538
2539 add_com ("printf", class_vars, printf_command, _("\
2540 printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2541 This is useful for formatted output in user-defined commands."));
2542
2543 add_com ("output", class_vars, output_command, _("\
2544 Like \"print\" but don't put in value history and don't print newline.\n\
2545 This is useful in user-defined commands."));
2546
2547 add_prefix_cmd ("set", class_vars, set_command, _("\
2548 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2549 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2550 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2551 with $), a register (a few standard names starting with $), or an actual\n\
2552 variable in the program being debugged. EXP is any valid expression.\n\
2553 Use \"set variable\" for variables with names identical to set subcommands.\n\
2554 \n\
2555 With a subcommand, this command modifies parts of the gdb environment.\n\
2556 You can see these environment settings with the \"show\" command."),
2557 &setlist, "set ", 1, &cmdlist);
2558 if (dbx_commands)
2559 add_com ("assign", class_vars, set_command, _("\
2560 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2561 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2562 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2563 with $), a register (a few standard names starting with $), or an actual\n\
2564 variable in the program being debugged. EXP is any valid expression.\n\
2565 Use \"set variable\" for variables with names identical to set subcommands.\n\
2566 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2567 You can see these environment settings with the \"show\" command."));
2568
2569 /* "call" is the same as "set", but handy for dbx users to call fns. */
2570 c = add_com ("call", class_vars, call_command, _("\
2571 Call a function in the program.\n\
2572 The argument is the function name and arguments, in the notation of the\n\
2573 current working language. The result is printed and saved in the value\n\
2574 history, if it is not void."));
2575 set_cmd_completer (c, expression_completer);
2576
2577 add_cmd ("variable", class_vars, set_command, _("\
2578 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2579 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2580 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2581 with $), a register (a few standard names starting with $), or an actual\n\
2582 variable in the program being debugged. EXP is any valid expression.\n\
2583 This may usually be abbreviated to simply \"set\"."),
2584 &setlist);
2585
2586 c = add_com ("print", class_vars, print_command, _("\
2587 Print value of expression EXP.\n\
2588 Variables accessible are those of the lexical environment of the selected\n\
2589 stack frame, plus all those whose scope is global or an entire file.\n\
2590 \n\
2591 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2592 $$NUM refers to NUM'th value back from the last one.\n\
2593 Names starting with $ refer to registers (with the values they would have\n\
2594 if the program were to return to the stack frame now selected, restoring\n\
2595 all registers saved by frames farther in) or else to debugger\n\
2596 \"convenience\" variables (any such name not a known register).\n\
2597 Use assignment expressions to give values to convenience variables.\n\
2598 \n\
2599 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2600 @ is a binary operator for treating consecutive data objects\n\
2601 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2602 element is FOO, whose second element is stored in the space following\n\
2603 where FOO is stored, etc. FOO must be an expression whose value\n\
2604 resides in memory.\n\
2605 \n\
2606 EXP may be preceded with /FMT, where FMT is a format letter\n\
2607 but no count or size letter (see \"x\" command)."));
2608 set_cmd_completer (c, expression_completer);
2609 add_com_alias ("p", "print", class_vars, 1);
2610 add_com_alias ("inspect", "print", class_vars, 1);
2611
2612 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2613 &max_symbolic_offset, _("\
2614 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2615 Show the largest offset that will be printed in <symbol+1234> form."), _("\
2616 Tell GDB to only display the symbolic form of an address if the\n\
2617 offset between the closest earlier symbol and the address is less than\n\
2618 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2619 to always print the symbolic form of an address if any symbol precedes\n\
2620 it. Zero is equivalent to \"unlimited\"."),
2621 NULL,
2622 show_max_symbolic_offset,
2623 &setprintlist, &showprintlist);
2624 add_setshow_boolean_cmd ("symbol-filename", no_class,
2625 &print_symbol_filename, _("\
2626 Set printing of source filename and line number with <symbol>."), _("\
2627 Show printing of source filename and line number with <symbol>."), NULL,
2628 NULL,
2629 show_print_symbol_filename,
2630 &setprintlist, &showprintlist);
2631
2632 add_com ("eval", no_class, eval_command, _("\
2633 Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\
2634 a command line, and call it."));
2635 }
This page took 0.084417 seconds and 4 git commands to generate.