[ARC] [COMMITTED] Fix FASTMATH field.
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "c-lang.h"
27 #include "expression.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "breakpoint.h"
32 #include "demangle.h"
33 #include "gdb-demangle.h"
34 #include "valprint.h"
35 #include "annotate.h"
36 #include "symfile.h" /* for overlay functions */
37 #include "objfiles.h" /* ditto */
38 #include "completer.h" /* for completion functions */
39 #include "ui-out.h"
40 #include "block.h"
41 #include "disasm.h"
42 #include "target-float.h"
43 #include "observable.h"
44 #include "solist.h"
45 #include "parser-defs.h"
46 #include "charset.h"
47 #include "arch-utils.h"
48 #include "cli/cli-utils.h"
49 #include "cli/cli-option.h"
50 #include "cli/cli-script.h"
51 #include "cli/cli-style.h"
52 #include "gdbsupport/format.h"
53 #include "source.h"
54 #include "gdbsupport/byte-vector.h"
55 #include "gdbsupport/gdb_optional.h"
56
57 /* Last specified output format. */
58
59 static char last_format = 0;
60
61 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
62
63 static char last_size = 'w';
64
65 /* Last specified count for the 'x' command. */
66
67 static int last_count;
68
69 /* Default address to examine next, and associated architecture. */
70
71 static struct gdbarch *next_gdbarch;
72 static CORE_ADDR next_address;
73
74 /* Number of delay instructions following current disassembled insn. */
75
76 static int branch_delay_insns;
77
78 /* Last address examined. */
79
80 static CORE_ADDR last_examine_address;
81
82 /* Contents of last address examined.
83 This is not valid past the end of the `x' command! */
84
85 static value_ref_ptr last_examine_value;
86
87 /* Largest offset between a symbolic value and an address, that will be
88 printed as `0x1234 <symbol+offset>'. */
89
90 static unsigned int max_symbolic_offset = UINT_MAX;
91 static void
92 show_max_symbolic_offset (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94 {
95 fprintf_filtered (file,
96 _("The largest offset that will be "
97 "printed in <symbol+1234> form is %s.\n"),
98 value);
99 }
100
101 /* Append the source filename and linenumber of the symbol when
102 printing a symbolic value as `<symbol at filename:linenum>' if set. */
103 static int print_symbol_filename = 0;
104 static void
105 show_print_symbol_filename (struct ui_file *file, int from_tty,
106 struct cmd_list_element *c, const char *value)
107 {
108 fprintf_filtered (file, _("Printing of source filename and "
109 "line number with <symbol> is %s.\n"),
110 value);
111 }
112
113 /* Number of auto-display expression currently being displayed.
114 So that we can disable it if we get a signal within it.
115 -1 when not doing one. */
116
117 static int current_display_number;
118
119 struct display
120 {
121 /* Chain link to next auto-display item. */
122 struct display *next;
123
124 /* The expression as the user typed it. */
125 char *exp_string;
126
127 /* Expression to be evaluated and displayed. */
128 expression_up exp;
129
130 /* Item number of this auto-display item. */
131 int number;
132
133 /* Display format specified. */
134 struct format_data format;
135
136 /* Program space associated with `block'. */
137 struct program_space *pspace;
138
139 /* Innermost block required by this expression when evaluated. */
140 const struct block *block;
141
142 /* Status of this display (enabled or disabled). */
143 int enabled_p;
144 };
145
146 /* Chain of expressions whose values should be displayed
147 automatically each time the program stops. */
148
149 static struct display *display_chain;
150
151 static int display_number;
152
153 /* Walk the following statement or block through all displays.
154 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
155 display. */
156
157 #define ALL_DISPLAYS(B) \
158 for (B = display_chain; B; B = B->next)
159
160 #define ALL_DISPLAYS_SAFE(B,TMP) \
161 for (B = display_chain; \
162 B ? (TMP = B->next, 1): 0; \
163 B = TMP)
164
165 /* Prototypes for local functions. */
166
167 static void do_one_display (struct display *);
168 \f
169
170 /* Decode a format specification. *STRING_PTR should point to it.
171 OFORMAT and OSIZE are used as defaults for the format and size
172 if none are given in the format specification.
173 If OSIZE is zero, then the size field of the returned value
174 should be set only if a size is explicitly specified by the
175 user.
176 The structure returned describes all the data
177 found in the specification. In addition, *STRING_PTR is advanced
178 past the specification and past all whitespace following it. */
179
180 static struct format_data
181 decode_format (const char **string_ptr, int oformat, int osize)
182 {
183 struct format_data val;
184 const char *p = *string_ptr;
185
186 val.format = '?';
187 val.size = '?';
188 val.count = 1;
189 val.raw = 0;
190
191 if (*p == '-')
192 {
193 val.count = -1;
194 p++;
195 }
196 if (*p >= '0' && *p <= '9')
197 val.count *= atoi (p);
198 while (*p >= '0' && *p <= '9')
199 p++;
200
201 /* Now process size or format letters that follow. */
202
203 while (1)
204 {
205 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
206 val.size = *p++;
207 else if (*p == 'r')
208 {
209 val.raw = 1;
210 p++;
211 }
212 else if (*p >= 'a' && *p <= 'z')
213 val.format = *p++;
214 else
215 break;
216 }
217
218 *string_ptr = skip_spaces (p);
219
220 /* Set defaults for format and size if not specified. */
221 if (val.format == '?')
222 {
223 if (val.size == '?')
224 {
225 /* Neither has been specified. */
226 val.format = oformat;
227 val.size = osize;
228 }
229 else
230 /* If a size is specified, any format makes a reasonable
231 default except 'i'. */
232 val.format = oformat == 'i' ? 'x' : oformat;
233 }
234 else if (val.size == '?')
235 switch (val.format)
236 {
237 case 'a':
238 /* Pick the appropriate size for an address. This is deferred
239 until do_examine when we know the actual architecture to use.
240 A special size value of 'a' is used to indicate this case. */
241 val.size = osize ? 'a' : osize;
242 break;
243 case 'f':
244 /* Floating point has to be word or giantword. */
245 if (osize == 'w' || osize == 'g')
246 val.size = osize;
247 else
248 /* Default it to giantword if the last used size is not
249 appropriate. */
250 val.size = osize ? 'g' : osize;
251 break;
252 case 'c':
253 /* Characters default to one byte. */
254 val.size = osize ? 'b' : osize;
255 break;
256 case 's':
257 /* Display strings with byte size chars unless explicitly
258 specified. */
259 val.size = '\0';
260 break;
261
262 default:
263 /* The default is the size most recently specified. */
264 val.size = osize;
265 }
266
267 return val;
268 }
269 \f
270 /* Print value VAL on stream according to OPTIONS.
271 Do not end with a newline.
272 SIZE is the letter for the size of datum being printed.
273 This is used to pad hex numbers so they line up. SIZE is 0
274 for print / output and set for examine. */
275
276 static void
277 print_formatted (struct value *val, int size,
278 const struct value_print_options *options,
279 struct ui_file *stream)
280 {
281 struct type *type = check_typedef (value_type (val));
282 int len = TYPE_LENGTH (type);
283
284 if (VALUE_LVAL (val) == lval_memory)
285 next_address = value_address (val) + len;
286
287 if (size)
288 {
289 switch (options->format)
290 {
291 case 's':
292 {
293 struct type *elttype = value_type (val);
294
295 next_address = (value_address (val)
296 + val_print_string (elttype, NULL,
297 value_address (val), -1,
298 stream, options) * len);
299 }
300 return;
301
302 case 'i':
303 /* We often wrap here if there are long symbolic names. */
304 wrap_here (" ");
305 next_address = (value_address (val)
306 + gdb_print_insn (get_type_arch (type),
307 value_address (val), stream,
308 &branch_delay_insns));
309 return;
310 }
311 }
312
313 if (options->format == 0 || options->format == 's'
314 || TYPE_CODE (type) == TYPE_CODE_REF
315 || TYPE_CODE (type) == TYPE_CODE_ARRAY
316 || TYPE_CODE (type) == TYPE_CODE_STRING
317 || TYPE_CODE (type) == TYPE_CODE_STRUCT
318 || TYPE_CODE (type) == TYPE_CODE_UNION
319 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
320 value_print (val, stream, options);
321 else
322 /* User specified format, so don't look to the type to tell us
323 what to do. */
324 val_print_scalar_formatted (type,
325 value_embedded_offset (val),
326 val,
327 options, size, stream);
328 }
329
330 /* Return builtin floating point type of same length as TYPE.
331 If no such type is found, return TYPE itself. */
332 static struct type *
333 float_type_from_length (struct type *type)
334 {
335 struct gdbarch *gdbarch = get_type_arch (type);
336 const struct builtin_type *builtin = builtin_type (gdbarch);
337
338 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
339 type = builtin->builtin_float;
340 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
341 type = builtin->builtin_double;
342 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
343 type = builtin->builtin_long_double;
344
345 return type;
346 }
347
348 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
349 according to OPTIONS and SIZE on STREAM. Formats s and i are not
350 supported at this level. */
351
352 void
353 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
354 const struct value_print_options *options,
355 int size, struct ui_file *stream)
356 {
357 struct gdbarch *gdbarch = get_type_arch (type);
358 unsigned int len = TYPE_LENGTH (type);
359 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
360
361 /* String printing should go through val_print_scalar_formatted. */
362 gdb_assert (options->format != 's');
363
364 /* If the value is a pointer, and pointers and addresses are not the
365 same, then at this point, the value's length (in target bytes) is
366 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
367 if (TYPE_CODE (type) == TYPE_CODE_PTR)
368 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
369
370 /* If we are printing it as unsigned, truncate it in case it is actually
371 a negative signed value (e.g. "print/u (short)-1" should print 65535
372 (if shorts are 16 bits) instead of 4294967295). */
373 if (options->format != 'c'
374 && (options->format != 'd' || TYPE_UNSIGNED (type)))
375 {
376 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
377 valaddr += TYPE_LENGTH (type) - len;
378 }
379
380 if (size != 0 && (options->format == 'x' || options->format == 't'))
381 {
382 /* Truncate to fit. */
383 unsigned newlen;
384 switch (size)
385 {
386 case 'b':
387 newlen = 1;
388 break;
389 case 'h':
390 newlen = 2;
391 break;
392 case 'w':
393 newlen = 4;
394 break;
395 case 'g':
396 newlen = 8;
397 break;
398 default:
399 error (_("Undefined output size \"%c\"."), size);
400 }
401 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
402 valaddr += len - newlen;
403 len = newlen;
404 }
405
406 /* Historically gdb has printed floats by first casting them to a
407 long, and then printing the long. PR cli/16242 suggests changing
408 this to using C-style hex float format. */
409 gdb::byte_vector converted_float_bytes;
410 if (TYPE_CODE (type) == TYPE_CODE_FLT
411 && (options->format == 'o'
412 || options->format == 'x'
413 || options->format == 't'
414 || options->format == 'z'
415 || options->format == 'd'
416 || options->format == 'u'))
417 {
418 LONGEST val_long = unpack_long (type, valaddr);
419 converted_float_bytes.resize (TYPE_LENGTH (type));
420 store_signed_integer (converted_float_bytes.data (), TYPE_LENGTH (type),
421 byte_order, val_long);
422 valaddr = converted_float_bytes.data ();
423 }
424
425 /* Printing a non-float type as 'f' will interpret the data as if it were
426 of a floating-point type of the same length, if that exists. Otherwise,
427 the data is printed as integer. */
428 char format = options->format;
429 if (format == 'f' && TYPE_CODE (type) != TYPE_CODE_FLT)
430 {
431 type = float_type_from_length (type);
432 if (TYPE_CODE (type) != TYPE_CODE_FLT)
433 format = 0;
434 }
435
436 switch (format)
437 {
438 case 'o':
439 print_octal_chars (stream, valaddr, len, byte_order);
440 break;
441 case 'd':
442 print_decimal_chars (stream, valaddr, len, true, byte_order);
443 break;
444 case 'u':
445 print_decimal_chars (stream, valaddr, len, false, byte_order);
446 break;
447 case 0:
448 if (TYPE_CODE (type) != TYPE_CODE_FLT)
449 {
450 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
451 byte_order);
452 break;
453 }
454 /* FALLTHROUGH */
455 case 'f':
456 print_floating (valaddr, type, stream);
457 break;
458
459 case 't':
460 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
461 break;
462 case 'x':
463 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
464 break;
465 case 'z':
466 print_hex_chars (stream, valaddr, len, byte_order, true);
467 break;
468 case 'c':
469 {
470 struct value_print_options opts = *options;
471
472 LONGEST val_long = unpack_long (type, valaddr);
473
474 opts.format = 0;
475 if (TYPE_UNSIGNED (type))
476 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
477 else
478 type = builtin_type (gdbarch)->builtin_true_char;
479
480 value_print (value_from_longest (type, val_long), stream, &opts);
481 }
482 break;
483
484 case 'a':
485 {
486 CORE_ADDR addr = unpack_pointer (type, valaddr);
487
488 print_address (gdbarch, addr, stream);
489 }
490 break;
491
492 default:
493 error (_("Undefined output format \"%c\"."), format);
494 }
495 }
496
497 /* Specify default address for `x' command.
498 The `info lines' command uses this. */
499
500 void
501 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
502 {
503 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
504
505 next_gdbarch = gdbarch;
506 next_address = addr;
507
508 /* Make address available to the user as $_. */
509 set_internalvar (lookup_internalvar ("_"),
510 value_from_pointer (ptr_type, addr));
511 }
512
513 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
514 after LEADIN. Print nothing if no symbolic name is found nearby.
515 Optionally also print source file and line number, if available.
516 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
517 or to interpret it as a possible C++ name and convert it back to source
518 form. However note that DO_DEMANGLE can be overridden by the specific
519 settings of the demangle and asm_demangle variables. Returns
520 non-zero if anything was printed; zero otherwise. */
521
522 int
523 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
524 struct ui_file *stream,
525 int do_demangle, const char *leadin)
526 {
527 std::string name, filename;
528 int unmapped = 0;
529 int offset = 0;
530 int line = 0;
531
532 if (build_address_symbolic (gdbarch, addr, do_demangle, false, &name,
533 &offset, &filename, &line, &unmapped))
534 return 0;
535
536 fputs_filtered (leadin, stream);
537 if (unmapped)
538 fputs_filtered ("<*", stream);
539 else
540 fputs_filtered ("<", stream);
541 fputs_styled (name.c_str (), function_name_style.style (), stream);
542 if (offset != 0)
543 fprintf_filtered (stream, "%+d", offset);
544
545 /* Append source filename and line number if desired. Give specific
546 line # of this addr, if we have it; else line # of the nearest symbol. */
547 if (print_symbol_filename && !filename.empty ())
548 {
549 fputs_filtered (line == -1 ? " in " : " at ", stream);
550 fputs_styled (filename.c_str (), file_name_style.style (), stream);
551 if (line != -1)
552 fprintf_filtered (stream, ":%d", line);
553 }
554 if (unmapped)
555 fputs_filtered ("*>", stream);
556 else
557 fputs_filtered (">", stream);
558
559 return 1;
560 }
561
562 /* See valprint.h. */
563
564 int
565 build_address_symbolic (struct gdbarch *gdbarch,
566 CORE_ADDR addr, /* IN */
567 bool do_demangle, /* IN */
568 bool prefer_sym_over_minsym, /* IN */
569 std::string *name, /* OUT */
570 int *offset, /* OUT */
571 std::string *filename, /* OUT */
572 int *line, /* OUT */
573 int *unmapped) /* OUT */
574 {
575 struct bound_minimal_symbol msymbol;
576 struct symbol *symbol;
577 CORE_ADDR name_location = 0;
578 struct obj_section *section = NULL;
579 const char *name_temp = "";
580
581 /* Let's say it is mapped (not unmapped). */
582 *unmapped = 0;
583
584 /* Determine if the address is in an overlay, and whether it is
585 mapped. */
586 if (overlay_debugging)
587 {
588 section = find_pc_overlay (addr);
589 if (pc_in_unmapped_range (addr, section))
590 {
591 *unmapped = 1;
592 addr = overlay_mapped_address (addr, section);
593 }
594 }
595
596 /* Try to find the address in both the symbol table and the minsyms.
597 In most cases, we'll prefer to use the symbol instead of the
598 minsym. However, there are cases (see below) where we'll choose
599 to use the minsym instead. */
600
601 /* This is defective in the sense that it only finds text symbols. So
602 really this is kind of pointless--we should make sure that the
603 minimal symbols have everything we need (by changing that we could
604 save some memory, but for many debug format--ELF/DWARF or
605 anything/stabs--it would be inconvenient to eliminate those minimal
606 symbols anyway). */
607 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
608 symbol = find_pc_sect_function (addr, section);
609
610 if (symbol)
611 {
612 /* If this is a function (i.e. a code address), strip out any
613 non-address bits. For instance, display a pointer to the
614 first instruction of a Thumb function as <function>; the
615 second instruction will be <function+2>, even though the
616 pointer is <function+3>. This matches the ISA behavior. */
617 addr = gdbarch_addr_bits_remove (gdbarch, addr);
618
619 name_location = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (symbol));
620 if (do_demangle || asm_demangle)
621 name_temp = SYMBOL_PRINT_NAME (symbol);
622 else
623 name_temp = SYMBOL_LINKAGE_NAME (symbol);
624 }
625
626 if (msymbol.minsym != NULL
627 && MSYMBOL_HAS_SIZE (msymbol.minsym)
628 && MSYMBOL_SIZE (msymbol.minsym) == 0
629 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
630 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
631 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
632 msymbol.minsym = NULL;
633
634 if (msymbol.minsym != NULL)
635 {
636 /* Use the minsym if no symbol is found.
637
638 Additionally, use the minsym instead of a (found) symbol if
639 the following conditions all hold:
640 1) The prefer_sym_over_minsym flag is false.
641 2) The minsym address is identical to that of the address under
642 consideration.
643 3) The symbol address is not identical to that of the address
644 under consideration. */
645 if (symbol == NULL ||
646 (!prefer_sym_over_minsym
647 && BMSYMBOL_VALUE_ADDRESS (msymbol) == addr
648 && name_location != addr))
649 {
650 /* If this is a function (i.e. a code address), strip out any
651 non-address bits. For instance, display a pointer to the
652 first instruction of a Thumb function as <function>; the
653 second instruction will be <function+2>, even though the
654 pointer is <function+3>. This matches the ISA behavior. */
655 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
656 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
657 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
658 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
659 addr = gdbarch_addr_bits_remove (gdbarch, addr);
660
661 symbol = 0;
662 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
663 if (do_demangle || asm_demangle)
664 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
665 else
666 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
667 }
668 }
669 if (symbol == NULL && msymbol.minsym == NULL)
670 return 1;
671
672 /* If the nearest symbol is too far away, don't print anything symbolic. */
673
674 /* For when CORE_ADDR is larger than unsigned int, we do math in
675 CORE_ADDR. But when we detect unsigned wraparound in the
676 CORE_ADDR math, we ignore this test and print the offset,
677 because addr+max_symbolic_offset has wrapped through the end
678 of the address space back to the beginning, giving bogus comparison. */
679 if (addr > name_location + max_symbolic_offset
680 && name_location + max_symbolic_offset > name_location)
681 return 1;
682
683 *offset = (LONGEST) addr - name_location;
684
685 *name = name_temp;
686
687 if (print_symbol_filename)
688 {
689 struct symtab_and_line sal;
690
691 sal = find_pc_sect_line (addr, section, 0);
692
693 if (sal.symtab)
694 {
695 *filename = symtab_to_filename_for_display (sal.symtab);
696 *line = sal.line;
697 }
698 }
699 return 0;
700 }
701
702
703 /* Print address ADDR symbolically on STREAM.
704 First print it as a number. Then perhaps print
705 <SYMBOL + OFFSET> after the number. */
706
707 void
708 print_address (struct gdbarch *gdbarch,
709 CORE_ADDR addr, struct ui_file *stream)
710 {
711 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
712 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
713 }
714
715 /* Return a prefix for instruction address:
716 "=> " for current instruction, else " ". */
717
718 const char *
719 pc_prefix (CORE_ADDR addr)
720 {
721 if (has_stack_frames ())
722 {
723 struct frame_info *frame;
724 CORE_ADDR pc;
725
726 frame = get_selected_frame (NULL);
727 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
728 return "=> ";
729 }
730 return " ";
731 }
732
733 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
734 controls whether to print the symbolic name "raw" or demangled.
735 Return non-zero if anything was printed; zero otherwise. */
736
737 int
738 print_address_demangle (const struct value_print_options *opts,
739 struct gdbarch *gdbarch, CORE_ADDR addr,
740 struct ui_file *stream, int do_demangle)
741 {
742 if (opts->addressprint)
743 {
744 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
745 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
746 }
747 else
748 {
749 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
750 }
751 return 1;
752 }
753 \f
754
755 /* Find the address of the instruction that is INST_COUNT instructions before
756 the instruction at ADDR.
757 Since some architectures have variable-length instructions, we can't just
758 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
759 number information to locate the nearest known instruction boundary,
760 and disassemble forward from there. If we go out of the symbol range
761 during disassembling, we return the lowest address we've got so far and
762 set the number of instructions read to INST_READ. */
763
764 static CORE_ADDR
765 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
766 int inst_count, int *inst_read)
767 {
768 /* The vector PCS is used to store instruction addresses within
769 a pc range. */
770 CORE_ADDR loop_start, loop_end, p;
771 std::vector<CORE_ADDR> pcs;
772 struct symtab_and_line sal;
773
774 *inst_read = 0;
775 loop_start = loop_end = addr;
776
777 /* In each iteration of the outer loop, we get a pc range that ends before
778 LOOP_START, then we count and store every instruction address of the range
779 iterated in the loop.
780 If the number of instructions counted reaches INST_COUNT, return the
781 stored address that is located INST_COUNT instructions back from ADDR.
782 If INST_COUNT is not reached, we subtract the number of counted
783 instructions from INST_COUNT, and go to the next iteration. */
784 do
785 {
786 pcs.clear ();
787 sal = find_pc_sect_line (loop_start, NULL, 1);
788 if (sal.line <= 0)
789 {
790 /* We reach here when line info is not available. In this case,
791 we print a message and just exit the loop. The return value
792 is calculated after the loop. */
793 printf_filtered (_("No line number information available "
794 "for address "));
795 wrap_here (" ");
796 print_address (gdbarch, loop_start - 1, gdb_stdout);
797 printf_filtered ("\n");
798 break;
799 }
800
801 loop_end = loop_start;
802 loop_start = sal.pc;
803
804 /* This loop pushes instruction addresses in the range from
805 LOOP_START to LOOP_END. */
806 for (p = loop_start; p < loop_end;)
807 {
808 pcs.push_back (p);
809 p += gdb_insn_length (gdbarch, p);
810 }
811
812 inst_count -= pcs.size ();
813 *inst_read += pcs.size ();
814 }
815 while (inst_count > 0);
816
817 /* After the loop, the vector PCS has instruction addresses of the last
818 source line we processed, and INST_COUNT has a negative value.
819 We return the address at the index of -INST_COUNT in the vector for
820 the reason below.
821 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
822 Line X of File
823 0x4000
824 0x4001
825 0x4005
826 Line Y of File
827 0x4009
828 0x400c
829 => 0x400e
830 0x4011
831 find_instruction_backward is called with INST_COUNT = 4 and expected to
832 return 0x4001. When we reach here, INST_COUNT is set to -1 because
833 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
834 4001 is located at the index 1 of the last iterated line (= Line X),
835 which is simply calculated by -INST_COUNT.
836 The case when the length of PCS is 0 means that we reached an area for
837 which line info is not available. In such case, we return LOOP_START,
838 which was the lowest instruction address that had line info. */
839 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
840
841 /* INST_READ includes all instruction addresses in a pc range. Need to
842 exclude the beginning part up to the address we're returning. That
843 is, exclude {0x4000} in the example above. */
844 if (inst_count < 0)
845 *inst_read += inst_count;
846
847 return p;
848 }
849
850 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
851 placing the results in GDB's memory from MYADDR + LEN. Returns
852 a count of the bytes actually read. */
853
854 static int
855 read_memory_backward (struct gdbarch *gdbarch,
856 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
857 {
858 int errcode;
859 int nread; /* Number of bytes actually read. */
860
861 /* First try a complete read. */
862 errcode = target_read_memory (memaddr, myaddr, len);
863 if (errcode == 0)
864 {
865 /* Got it all. */
866 nread = len;
867 }
868 else
869 {
870 /* Loop, reading one byte at a time until we get as much as we can. */
871 memaddr += len;
872 myaddr += len;
873 for (nread = 0; nread < len; ++nread)
874 {
875 errcode = target_read_memory (--memaddr, --myaddr, 1);
876 if (errcode != 0)
877 {
878 /* The read was unsuccessful, so exit the loop. */
879 printf_filtered (_("Cannot access memory at address %s\n"),
880 paddress (gdbarch, memaddr));
881 break;
882 }
883 }
884 }
885 return nread;
886 }
887
888 /* Returns true if X (which is LEN bytes wide) is the number zero. */
889
890 static int
891 integer_is_zero (const gdb_byte *x, int len)
892 {
893 int i = 0;
894
895 while (i < len && x[i] == 0)
896 ++i;
897 return (i == len);
898 }
899
900 /* Find the start address of a string in which ADDR is included.
901 Basically we search for '\0' and return the next address,
902 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
903 we stop searching and return the address to print characters as many as
904 PRINT_MAX from the string. */
905
906 static CORE_ADDR
907 find_string_backward (struct gdbarch *gdbarch,
908 CORE_ADDR addr, int count, int char_size,
909 const struct value_print_options *options,
910 int *strings_counted)
911 {
912 const int chunk_size = 0x20;
913 int read_error = 0;
914 int chars_read = 0;
915 int chars_to_read = chunk_size;
916 int chars_counted = 0;
917 int count_original = count;
918 CORE_ADDR string_start_addr = addr;
919
920 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
921 gdb::byte_vector buffer (chars_to_read * char_size);
922 while (count > 0 && read_error == 0)
923 {
924 int i;
925
926 addr -= chars_to_read * char_size;
927 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
928 chars_to_read * char_size);
929 chars_read /= char_size;
930 read_error = (chars_read == chars_to_read) ? 0 : 1;
931 /* Searching for '\0' from the end of buffer in backward direction. */
932 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
933 {
934 int offset = (chars_to_read - i - 1) * char_size;
935
936 if (integer_is_zero (&buffer[offset], char_size)
937 || chars_counted == options->print_max)
938 {
939 /* Found '\0' or reached print_max. As OFFSET is the offset to
940 '\0', we add CHAR_SIZE to return the start address of
941 a string. */
942 --count;
943 string_start_addr = addr + offset + char_size;
944 chars_counted = 0;
945 }
946 }
947 }
948
949 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
950 *strings_counted = count_original - count;
951
952 if (read_error != 0)
953 {
954 /* In error case, STRING_START_ADDR is pointing to the string that
955 was last successfully loaded. Rewind the partially loaded string. */
956 string_start_addr -= chars_counted * char_size;
957 }
958
959 return string_start_addr;
960 }
961
962 /* Examine data at address ADDR in format FMT.
963 Fetch it from memory and print on gdb_stdout. */
964
965 static void
966 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
967 {
968 char format = 0;
969 char size;
970 int count = 1;
971 struct type *val_type = NULL;
972 int i;
973 int maxelts;
974 struct value_print_options opts;
975 int need_to_update_next_address = 0;
976 CORE_ADDR addr_rewound = 0;
977
978 format = fmt.format;
979 size = fmt.size;
980 count = fmt.count;
981 next_gdbarch = gdbarch;
982 next_address = addr;
983
984 /* Instruction format implies fetch single bytes
985 regardless of the specified size.
986 The case of strings is handled in decode_format, only explicit
987 size operator are not changed to 'b'. */
988 if (format == 'i')
989 size = 'b';
990
991 if (size == 'a')
992 {
993 /* Pick the appropriate size for an address. */
994 if (gdbarch_ptr_bit (next_gdbarch) == 64)
995 size = 'g';
996 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
997 size = 'w';
998 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
999 size = 'h';
1000 else
1001 /* Bad value for gdbarch_ptr_bit. */
1002 internal_error (__FILE__, __LINE__,
1003 _("failed internal consistency check"));
1004 }
1005
1006 if (size == 'b')
1007 val_type = builtin_type (next_gdbarch)->builtin_int8;
1008 else if (size == 'h')
1009 val_type = builtin_type (next_gdbarch)->builtin_int16;
1010 else if (size == 'w')
1011 val_type = builtin_type (next_gdbarch)->builtin_int32;
1012 else if (size == 'g')
1013 val_type = builtin_type (next_gdbarch)->builtin_int64;
1014
1015 if (format == 's')
1016 {
1017 struct type *char_type = NULL;
1018
1019 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1020 if type is not found. */
1021 if (size == 'h')
1022 char_type = builtin_type (next_gdbarch)->builtin_char16;
1023 else if (size == 'w')
1024 char_type = builtin_type (next_gdbarch)->builtin_char32;
1025 if (char_type)
1026 val_type = char_type;
1027 else
1028 {
1029 if (size != '\0' && size != 'b')
1030 warning (_("Unable to display strings with "
1031 "size '%c', using 'b' instead."), size);
1032 size = 'b';
1033 val_type = builtin_type (next_gdbarch)->builtin_int8;
1034 }
1035 }
1036
1037 maxelts = 8;
1038 if (size == 'w')
1039 maxelts = 4;
1040 if (size == 'g')
1041 maxelts = 2;
1042 if (format == 's' || format == 'i')
1043 maxelts = 1;
1044
1045 get_formatted_print_options (&opts, format);
1046
1047 if (count < 0)
1048 {
1049 /* This is the negative repeat count case.
1050 We rewind the address based on the given repeat count and format,
1051 then examine memory from there in forward direction. */
1052
1053 count = -count;
1054 if (format == 'i')
1055 {
1056 next_address = find_instruction_backward (gdbarch, addr, count,
1057 &count);
1058 }
1059 else if (format == 's')
1060 {
1061 next_address = find_string_backward (gdbarch, addr, count,
1062 TYPE_LENGTH (val_type),
1063 &opts, &count);
1064 }
1065 else
1066 {
1067 next_address = addr - count * TYPE_LENGTH (val_type);
1068 }
1069
1070 /* The following call to print_formatted updates next_address in every
1071 iteration. In backward case, we store the start address here
1072 and update next_address with it before exiting the function. */
1073 addr_rewound = (format == 's'
1074 ? next_address - TYPE_LENGTH (val_type)
1075 : next_address);
1076 need_to_update_next_address = 1;
1077 }
1078
1079 /* Print as many objects as specified in COUNT, at most maxelts per line,
1080 with the address of the next one at the start of each line. */
1081
1082 while (count > 0)
1083 {
1084 QUIT;
1085 if (format == 'i')
1086 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1087 print_address (next_gdbarch, next_address, gdb_stdout);
1088 printf_filtered (":");
1089 for (i = maxelts;
1090 i > 0 && count > 0;
1091 i--, count--)
1092 {
1093 printf_filtered ("\t");
1094 /* Note that print_formatted sets next_address for the next
1095 object. */
1096 last_examine_address = next_address;
1097
1098 /* The value to be displayed is not fetched greedily.
1099 Instead, to avoid the possibility of a fetched value not
1100 being used, its retrieval is delayed until the print code
1101 uses it. When examining an instruction stream, the
1102 disassembler will perform its own memory fetch using just
1103 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1104 the disassembler be modified so that LAST_EXAMINE_VALUE
1105 is left with the byte sequence from the last complete
1106 instruction fetched from memory? */
1107 last_examine_value
1108 = release_value (value_at_lazy (val_type, next_address));
1109
1110 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1111
1112 /* Display any branch delay slots following the final insn. */
1113 if (format == 'i' && count == 1)
1114 count += branch_delay_insns;
1115 }
1116 printf_filtered ("\n");
1117 }
1118
1119 if (need_to_update_next_address)
1120 next_address = addr_rewound;
1121 }
1122 \f
1123 static void
1124 validate_format (struct format_data fmt, const char *cmdname)
1125 {
1126 if (fmt.size != 0)
1127 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1128 if (fmt.count != 1)
1129 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1130 cmdname);
1131 if (fmt.format == 'i')
1132 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1133 fmt.format, cmdname);
1134 }
1135
1136 /* Parse print command format string into *OPTS and update *EXPP.
1137 CMDNAME should name the current command. */
1138
1139 void
1140 print_command_parse_format (const char **expp, const char *cmdname,
1141 value_print_options *opts)
1142 {
1143 const char *exp = *expp;
1144
1145 if (exp && *exp == '/')
1146 {
1147 format_data fmt;
1148
1149 exp++;
1150 fmt = decode_format (&exp, last_format, 0);
1151 validate_format (fmt, cmdname);
1152 last_format = fmt.format;
1153
1154 opts->format = fmt.format;
1155 opts->raw = fmt.raw;
1156 }
1157 else
1158 {
1159 opts->format = 0;
1160 opts->raw = 0;
1161 }
1162
1163 *expp = exp;
1164 }
1165
1166 /* See valprint.h. */
1167
1168 void
1169 print_value (value *val, const value_print_options &opts)
1170 {
1171 int histindex = record_latest_value (val);
1172
1173 annotate_value_history_begin (histindex, value_type (val));
1174
1175 printf_filtered ("$%d = ", histindex);
1176
1177 annotate_value_history_value ();
1178
1179 print_formatted (val, 0, &opts, gdb_stdout);
1180 printf_filtered ("\n");
1181
1182 annotate_value_history_end ();
1183 }
1184
1185 /* Implementation of the "print" and "call" commands. */
1186
1187 static void
1188 print_command_1 (const char *args, int voidprint)
1189 {
1190 struct value *val;
1191 value_print_options print_opts;
1192
1193 get_user_print_options (&print_opts);
1194 /* Override global settings with explicit options, if any. */
1195 auto group = make_value_print_options_def_group (&print_opts);
1196 gdb::option::process_options
1197 (&args, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group);
1198
1199 print_command_parse_format (&args, "print", &print_opts);
1200
1201 const char *exp = args;
1202
1203 if (exp != nullptr && *exp)
1204 {
1205 expression_up expr = parse_expression (exp);
1206 val = evaluate_expression (expr.get ());
1207 }
1208 else
1209 val = access_value_history (0);
1210
1211 if (voidprint || (val && value_type (val) &&
1212 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1213 print_value (val, print_opts);
1214 }
1215
1216 /* See valprint.h. */
1217
1218 void
1219 print_command_completer (struct cmd_list_element *ignore,
1220 completion_tracker &tracker,
1221 const char *text, const char * /*word*/)
1222 {
1223 const auto group = make_value_print_options_def_group (nullptr);
1224 if (gdb::option::complete_options
1225 (tracker, &text, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group))
1226 return;
1227
1228 const char *word = advance_to_expression_complete_word_point (tracker, text);
1229 expression_completer (ignore, tracker, text, word);
1230 }
1231
1232 static void
1233 print_command (const char *exp, int from_tty)
1234 {
1235 print_command_1 (exp, 1);
1236 }
1237
1238 /* Same as print, except it doesn't print void results. */
1239 static void
1240 call_command (const char *exp, int from_tty)
1241 {
1242 print_command_1 (exp, 0);
1243 }
1244
1245 /* Implementation of the "output" command. */
1246
1247 void
1248 output_command (const char *exp, int from_tty)
1249 {
1250 char format = 0;
1251 struct value *val;
1252 struct format_data fmt;
1253 struct value_print_options opts;
1254
1255 fmt.size = 0;
1256 fmt.raw = 0;
1257
1258 if (exp && *exp == '/')
1259 {
1260 exp++;
1261 fmt = decode_format (&exp, 0, 0);
1262 validate_format (fmt, "output");
1263 format = fmt.format;
1264 }
1265
1266 expression_up expr = parse_expression (exp);
1267
1268 val = evaluate_expression (expr.get ());
1269
1270 annotate_value_begin (value_type (val));
1271
1272 get_formatted_print_options (&opts, format);
1273 opts.raw = fmt.raw;
1274 print_formatted (val, fmt.size, &opts, gdb_stdout);
1275
1276 annotate_value_end ();
1277
1278 wrap_here ("");
1279 gdb_flush (gdb_stdout);
1280 }
1281
1282 static void
1283 set_command (const char *exp, int from_tty)
1284 {
1285 expression_up expr = parse_expression (exp);
1286
1287 if (expr->nelts >= 1)
1288 switch (expr->elts[0].opcode)
1289 {
1290 case UNOP_PREINCREMENT:
1291 case UNOP_POSTINCREMENT:
1292 case UNOP_PREDECREMENT:
1293 case UNOP_POSTDECREMENT:
1294 case BINOP_ASSIGN:
1295 case BINOP_ASSIGN_MODIFY:
1296 case BINOP_COMMA:
1297 break;
1298 default:
1299 warning
1300 (_("Expression is not an assignment (and might have no effect)"));
1301 }
1302
1303 evaluate_expression (expr.get ());
1304 }
1305
1306 static void
1307 info_symbol_command (const char *arg, int from_tty)
1308 {
1309 struct minimal_symbol *msymbol;
1310 struct obj_section *osect;
1311 CORE_ADDR addr, sect_addr;
1312 int matches = 0;
1313 unsigned int offset;
1314
1315 if (!arg)
1316 error_no_arg (_("address"));
1317
1318 addr = parse_and_eval_address (arg);
1319 for (objfile *objfile : current_program_space->objfiles ())
1320 ALL_OBJFILE_OSECTIONS (objfile, osect)
1321 {
1322 /* Only process each object file once, even if there's a separate
1323 debug file. */
1324 if (objfile->separate_debug_objfile_backlink)
1325 continue;
1326
1327 sect_addr = overlay_mapped_address (addr, osect);
1328
1329 if (obj_section_addr (osect) <= sect_addr
1330 && sect_addr < obj_section_endaddr (osect)
1331 && (msymbol
1332 = lookup_minimal_symbol_by_pc_section (sect_addr,
1333 osect).minsym))
1334 {
1335 const char *obj_name, *mapped, *sec_name, *msym_name;
1336 const char *loc_string;
1337
1338 matches = 1;
1339 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1340 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1341 sec_name = osect->the_bfd_section->name;
1342 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1343
1344 /* Don't print the offset if it is zero.
1345 We assume there's no need to handle i18n of "sym + offset". */
1346 std::string string_holder;
1347 if (offset)
1348 {
1349 string_holder = string_printf ("%s + %u", msym_name, offset);
1350 loc_string = string_holder.c_str ();
1351 }
1352 else
1353 loc_string = msym_name;
1354
1355 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1356 obj_name = objfile_name (osect->objfile);
1357
1358 if (MULTI_OBJFILE_P ())
1359 if (pc_in_unmapped_range (addr, osect))
1360 if (section_is_overlay (osect))
1361 printf_filtered (_("%s in load address range of "
1362 "%s overlay section %s of %s\n"),
1363 loc_string, mapped, sec_name, obj_name);
1364 else
1365 printf_filtered (_("%s in load address range of "
1366 "section %s of %s\n"),
1367 loc_string, sec_name, obj_name);
1368 else
1369 if (section_is_overlay (osect))
1370 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1371 loc_string, mapped, sec_name, obj_name);
1372 else
1373 printf_filtered (_("%s in section %s of %s\n"),
1374 loc_string, sec_name, obj_name);
1375 else
1376 if (pc_in_unmapped_range (addr, osect))
1377 if (section_is_overlay (osect))
1378 printf_filtered (_("%s in load address range of %s overlay "
1379 "section %s\n"),
1380 loc_string, mapped, sec_name);
1381 else
1382 printf_filtered
1383 (_("%s in load address range of section %s\n"),
1384 loc_string, sec_name);
1385 else
1386 if (section_is_overlay (osect))
1387 printf_filtered (_("%s in %s overlay section %s\n"),
1388 loc_string, mapped, sec_name);
1389 else
1390 printf_filtered (_("%s in section %s\n"),
1391 loc_string, sec_name);
1392 }
1393 }
1394 if (matches == 0)
1395 printf_filtered (_("No symbol matches %s.\n"), arg);
1396 }
1397
1398 static void
1399 info_address_command (const char *exp, int from_tty)
1400 {
1401 struct gdbarch *gdbarch;
1402 int regno;
1403 struct symbol *sym;
1404 struct bound_minimal_symbol msymbol;
1405 long val;
1406 struct obj_section *section;
1407 CORE_ADDR load_addr, context_pc = 0;
1408 struct field_of_this_result is_a_field_of_this;
1409
1410 if (exp == 0)
1411 error (_("Argument required."));
1412
1413 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1414 &is_a_field_of_this).symbol;
1415 if (sym == NULL)
1416 {
1417 if (is_a_field_of_this.type != NULL)
1418 {
1419 printf_filtered ("Symbol \"");
1420 fprintf_symbol_filtered (gdb_stdout, exp,
1421 current_language->la_language, DMGL_ANSI);
1422 printf_filtered ("\" is a field of the local class variable ");
1423 if (current_language->la_language == language_objc)
1424 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1425 else
1426 printf_filtered ("`this'\n");
1427 return;
1428 }
1429
1430 msymbol = lookup_bound_minimal_symbol (exp);
1431
1432 if (msymbol.minsym != NULL)
1433 {
1434 struct objfile *objfile = msymbol.objfile;
1435
1436 gdbarch = get_objfile_arch (objfile);
1437 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1438
1439 printf_filtered ("Symbol \"");
1440 fprintf_symbol_filtered (gdb_stdout, exp,
1441 current_language->la_language, DMGL_ANSI);
1442 printf_filtered ("\" is at ");
1443 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1444 gdb_stdout);
1445 printf_filtered (" in a file compiled without debugging");
1446 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1447 if (section_is_overlay (section))
1448 {
1449 load_addr = overlay_unmapped_address (load_addr, section);
1450 printf_filtered (",\n -- loaded at ");
1451 fputs_styled (paddress (gdbarch, load_addr),
1452 address_style.style (),
1453 gdb_stdout);
1454 printf_filtered (" in overlay section %s",
1455 section->the_bfd_section->name);
1456 }
1457 printf_filtered (".\n");
1458 }
1459 else
1460 error (_("No symbol \"%s\" in current context."), exp);
1461 return;
1462 }
1463
1464 printf_filtered ("Symbol \"");
1465 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1466 current_language->la_language, DMGL_ANSI);
1467 printf_filtered ("\" is ");
1468 val = SYMBOL_VALUE (sym);
1469 if (SYMBOL_OBJFILE_OWNED (sym))
1470 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1471 else
1472 section = NULL;
1473 gdbarch = symbol_arch (sym);
1474
1475 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1476 {
1477 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1478 gdb_stdout);
1479 printf_filtered (".\n");
1480 return;
1481 }
1482
1483 switch (SYMBOL_CLASS (sym))
1484 {
1485 case LOC_CONST:
1486 case LOC_CONST_BYTES:
1487 printf_filtered ("constant");
1488 break;
1489
1490 case LOC_LABEL:
1491 printf_filtered ("a label at address ");
1492 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1493 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1494 gdb_stdout);
1495 if (section_is_overlay (section))
1496 {
1497 load_addr = overlay_unmapped_address (load_addr, section);
1498 printf_filtered (",\n -- loaded at ");
1499 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1500 gdb_stdout);
1501 printf_filtered (" in overlay section %s",
1502 section->the_bfd_section->name);
1503 }
1504 break;
1505
1506 case LOC_COMPUTED:
1507 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1508
1509 case LOC_REGISTER:
1510 /* GDBARCH is the architecture associated with the objfile the symbol
1511 is defined in; the target architecture may be different, and may
1512 provide additional registers. However, we do not know the target
1513 architecture at this point. We assume the objfile architecture
1514 will contain all the standard registers that occur in debug info
1515 in that objfile. */
1516 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1517
1518 if (SYMBOL_IS_ARGUMENT (sym))
1519 printf_filtered (_("an argument in register %s"),
1520 gdbarch_register_name (gdbarch, regno));
1521 else
1522 printf_filtered (_("a variable in register %s"),
1523 gdbarch_register_name (gdbarch, regno));
1524 break;
1525
1526 case LOC_STATIC:
1527 printf_filtered (_("static storage at address "));
1528 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1529 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1530 gdb_stdout);
1531 if (section_is_overlay (section))
1532 {
1533 load_addr = overlay_unmapped_address (load_addr, section);
1534 printf_filtered (_(",\n -- loaded at "));
1535 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1536 gdb_stdout);
1537 printf_filtered (_(" in overlay section %s"),
1538 section->the_bfd_section->name);
1539 }
1540 break;
1541
1542 case LOC_REGPARM_ADDR:
1543 /* Note comment at LOC_REGISTER. */
1544 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1545 printf_filtered (_("address of an argument in register %s"),
1546 gdbarch_register_name (gdbarch, regno));
1547 break;
1548
1549 case LOC_ARG:
1550 printf_filtered (_("an argument at offset %ld"), val);
1551 break;
1552
1553 case LOC_LOCAL:
1554 printf_filtered (_("a local variable at frame offset %ld"), val);
1555 break;
1556
1557 case LOC_REF_ARG:
1558 printf_filtered (_("a reference argument at offset %ld"), val);
1559 break;
1560
1561 case LOC_TYPEDEF:
1562 printf_filtered (_("a typedef"));
1563 break;
1564
1565 case LOC_BLOCK:
1566 printf_filtered (_("a function at address "));
1567 load_addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1568 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1569 gdb_stdout);
1570 if (section_is_overlay (section))
1571 {
1572 load_addr = overlay_unmapped_address (load_addr, section);
1573 printf_filtered (_(",\n -- loaded at "));
1574 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1575 gdb_stdout);
1576 printf_filtered (_(" in overlay section %s"),
1577 section->the_bfd_section->name);
1578 }
1579 break;
1580
1581 case LOC_UNRESOLVED:
1582 {
1583 struct bound_minimal_symbol msym;
1584
1585 msym = lookup_bound_minimal_symbol (SYMBOL_LINKAGE_NAME (sym));
1586 if (msym.minsym == NULL)
1587 printf_filtered ("unresolved");
1588 else
1589 {
1590 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1591
1592 if (section
1593 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1594 {
1595 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1596 printf_filtered (_("a thread-local variable at offset %s "
1597 "in the thread-local storage for `%s'"),
1598 paddress (gdbarch, load_addr),
1599 objfile_name (section->objfile));
1600 }
1601 else
1602 {
1603 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1604 printf_filtered (_("static storage at address "));
1605 fputs_styled (paddress (gdbarch, load_addr),
1606 address_style.style (), gdb_stdout);
1607 if (section_is_overlay (section))
1608 {
1609 load_addr = overlay_unmapped_address (load_addr, section);
1610 printf_filtered (_(",\n -- loaded at "));
1611 fputs_styled (paddress (gdbarch, load_addr),
1612 address_style.style (),
1613 gdb_stdout);
1614 printf_filtered (_(" in overlay section %s"),
1615 section->the_bfd_section->name);
1616 }
1617 }
1618 }
1619 }
1620 break;
1621
1622 case LOC_OPTIMIZED_OUT:
1623 printf_filtered (_("optimized out"));
1624 break;
1625
1626 default:
1627 printf_filtered (_("of unknown (botched) type"));
1628 break;
1629 }
1630 printf_filtered (".\n");
1631 }
1632 \f
1633
1634 static void
1635 x_command (const char *exp, int from_tty)
1636 {
1637 struct format_data fmt;
1638 struct value *val;
1639
1640 fmt.format = last_format ? last_format : 'x';
1641 fmt.size = last_size;
1642 fmt.count = 1;
1643 fmt.raw = 0;
1644
1645 /* If there is no expression and no format, use the most recent
1646 count. */
1647 if (exp == nullptr && last_count > 0)
1648 fmt.count = last_count;
1649
1650 if (exp && *exp == '/')
1651 {
1652 const char *tmp = exp + 1;
1653
1654 fmt = decode_format (&tmp, last_format, last_size);
1655 exp = (char *) tmp;
1656 }
1657
1658 last_count = fmt.count;
1659
1660 /* If we have an expression, evaluate it and use it as the address. */
1661
1662 if (exp != 0 && *exp != 0)
1663 {
1664 expression_up expr = parse_expression (exp);
1665 /* Cause expression not to be there any more if this command is
1666 repeated with Newline. But don't clobber a user-defined
1667 command's definition. */
1668 if (from_tty)
1669 set_repeat_arguments ("");
1670 val = evaluate_expression (expr.get ());
1671 if (TYPE_IS_REFERENCE (value_type (val)))
1672 val = coerce_ref (val);
1673 /* In rvalue contexts, such as this, functions are coerced into
1674 pointers to functions. This makes "x/i main" work. */
1675 if (/* last_format == 'i' && */
1676 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1677 && VALUE_LVAL (val) == lval_memory)
1678 next_address = value_address (val);
1679 else
1680 next_address = value_as_address (val);
1681
1682 next_gdbarch = expr->gdbarch;
1683 }
1684
1685 if (!next_gdbarch)
1686 error_no_arg (_("starting display address"));
1687
1688 do_examine (fmt, next_gdbarch, next_address);
1689
1690 /* If the examine succeeds, we remember its size and format for next
1691 time. Set last_size to 'b' for strings. */
1692 if (fmt.format == 's')
1693 last_size = 'b';
1694 else
1695 last_size = fmt.size;
1696 last_format = fmt.format;
1697
1698 /* Set a couple of internal variables if appropriate. */
1699 if (last_examine_value != nullptr)
1700 {
1701 /* Make last address examined available to the user as $_. Use
1702 the correct pointer type. */
1703 struct type *pointer_type
1704 = lookup_pointer_type (value_type (last_examine_value.get ()));
1705 set_internalvar (lookup_internalvar ("_"),
1706 value_from_pointer (pointer_type,
1707 last_examine_address));
1708
1709 /* Make contents of last address examined available to the user
1710 as $__. If the last value has not been fetched from memory
1711 then don't fetch it now; instead mark it by voiding the $__
1712 variable. */
1713 if (value_lazy (last_examine_value.get ()))
1714 clear_internalvar (lookup_internalvar ("__"));
1715 else
1716 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1717 }
1718 }
1719 \f
1720
1721 /* Add an expression to the auto-display chain.
1722 Specify the expression. */
1723
1724 static void
1725 display_command (const char *arg, int from_tty)
1726 {
1727 struct format_data fmt;
1728 struct display *newobj;
1729 const char *exp = arg;
1730
1731 if (exp == 0)
1732 {
1733 do_displays ();
1734 return;
1735 }
1736
1737 if (*exp == '/')
1738 {
1739 exp++;
1740 fmt = decode_format (&exp, 0, 0);
1741 if (fmt.size && fmt.format == 0)
1742 fmt.format = 'x';
1743 if (fmt.format == 'i' || fmt.format == 's')
1744 fmt.size = 'b';
1745 }
1746 else
1747 {
1748 fmt.format = 0;
1749 fmt.size = 0;
1750 fmt.count = 0;
1751 fmt.raw = 0;
1752 }
1753
1754 innermost_block_tracker tracker;
1755 expression_up expr = parse_expression (exp, &tracker);
1756
1757 newobj = new display ();
1758
1759 newobj->exp_string = xstrdup (exp);
1760 newobj->exp = std::move (expr);
1761 newobj->block = tracker.block ();
1762 newobj->pspace = current_program_space;
1763 newobj->number = ++display_number;
1764 newobj->format = fmt;
1765 newobj->enabled_p = 1;
1766 newobj->next = NULL;
1767
1768 if (display_chain == NULL)
1769 display_chain = newobj;
1770 else
1771 {
1772 struct display *last;
1773
1774 for (last = display_chain; last->next != NULL; last = last->next)
1775 ;
1776 last->next = newobj;
1777 }
1778
1779 if (from_tty)
1780 do_one_display (newobj);
1781
1782 dont_repeat ();
1783 }
1784
1785 static void
1786 free_display (struct display *d)
1787 {
1788 xfree (d->exp_string);
1789 delete d;
1790 }
1791
1792 /* Clear out the display_chain. Done when new symtabs are loaded,
1793 since this invalidates the types stored in many expressions. */
1794
1795 void
1796 clear_displays (void)
1797 {
1798 struct display *d;
1799
1800 while ((d = display_chain) != NULL)
1801 {
1802 display_chain = d->next;
1803 free_display (d);
1804 }
1805 }
1806
1807 /* Delete the auto-display DISPLAY. */
1808
1809 static void
1810 delete_display (struct display *display)
1811 {
1812 struct display *d;
1813
1814 gdb_assert (display != NULL);
1815
1816 if (display_chain == display)
1817 display_chain = display->next;
1818
1819 ALL_DISPLAYS (d)
1820 if (d->next == display)
1821 {
1822 d->next = display->next;
1823 break;
1824 }
1825
1826 free_display (display);
1827 }
1828
1829 /* Call FUNCTION on each of the displays whose numbers are given in
1830 ARGS. DATA is passed unmodified to FUNCTION. */
1831
1832 static void
1833 map_display_numbers (const char *args,
1834 void (*function) (struct display *,
1835 void *),
1836 void *data)
1837 {
1838 int num;
1839
1840 if (args == NULL)
1841 error_no_arg (_("one or more display numbers"));
1842
1843 number_or_range_parser parser (args);
1844
1845 while (!parser.finished ())
1846 {
1847 const char *p = parser.cur_tok ();
1848
1849 num = parser.get_number ();
1850 if (num == 0)
1851 warning (_("bad display number at or near '%s'"), p);
1852 else
1853 {
1854 struct display *d, *tmp;
1855
1856 ALL_DISPLAYS_SAFE (d, tmp)
1857 if (d->number == num)
1858 break;
1859 if (d == NULL)
1860 printf_unfiltered (_("No display number %d.\n"), num);
1861 else
1862 function (d, data);
1863 }
1864 }
1865 }
1866
1867 /* Callback for map_display_numbers, that deletes a display. */
1868
1869 static void
1870 do_delete_display (struct display *d, void *data)
1871 {
1872 delete_display (d);
1873 }
1874
1875 /* "undisplay" command. */
1876
1877 static void
1878 undisplay_command (const char *args, int from_tty)
1879 {
1880 if (args == NULL)
1881 {
1882 if (query (_("Delete all auto-display expressions? ")))
1883 clear_displays ();
1884 dont_repeat ();
1885 return;
1886 }
1887
1888 map_display_numbers (args, do_delete_display, NULL);
1889 dont_repeat ();
1890 }
1891
1892 /* Display a single auto-display.
1893 Do nothing if the display cannot be printed in the current context,
1894 or if the display is disabled. */
1895
1896 static void
1897 do_one_display (struct display *d)
1898 {
1899 int within_current_scope;
1900
1901 if (d->enabled_p == 0)
1902 return;
1903
1904 /* The expression carries the architecture that was used at parse time.
1905 This is a problem if the expression depends on architecture features
1906 (e.g. register numbers), and the current architecture is now different.
1907 For example, a display statement like "display/i $pc" is expected to
1908 display the PC register of the current architecture, not the arch at
1909 the time the display command was given. Therefore, we re-parse the
1910 expression if the current architecture has changed. */
1911 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1912 {
1913 d->exp.reset ();
1914 d->block = NULL;
1915 }
1916
1917 if (d->exp == NULL)
1918 {
1919
1920 try
1921 {
1922 innermost_block_tracker tracker;
1923 d->exp = parse_expression (d->exp_string, &tracker);
1924 d->block = tracker.block ();
1925 }
1926 catch (const gdb_exception &ex)
1927 {
1928 /* Can't re-parse the expression. Disable this display item. */
1929 d->enabled_p = 0;
1930 warning (_("Unable to display \"%s\": %s"),
1931 d->exp_string, ex.what ());
1932 return;
1933 }
1934 }
1935
1936 if (d->block)
1937 {
1938 if (d->pspace == current_program_space)
1939 within_current_scope = contained_in (get_selected_block (0), d->block,
1940 true);
1941 else
1942 within_current_scope = 0;
1943 }
1944 else
1945 within_current_scope = 1;
1946 if (!within_current_scope)
1947 return;
1948
1949 scoped_restore save_display_number
1950 = make_scoped_restore (&current_display_number, d->number);
1951
1952 annotate_display_begin ();
1953 printf_filtered ("%d", d->number);
1954 annotate_display_number_end ();
1955 printf_filtered (": ");
1956 if (d->format.size)
1957 {
1958
1959 annotate_display_format ();
1960
1961 printf_filtered ("x/");
1962 if (d->format.count != 1)
1963 printf_filtered ("%d", d->format.count);
1964 printf_filtered ("%c", d->format.format);
1965 if (d->format.format != 'i' && d->format.format != 's')
1966 printf_filtered ("%c", d->format.size);
1967 printf_filtered (" ");
1968
1969 annotate_display_expression ();
1970
1971 puts_filtered (d->exp_string);
1972 annotate_display_expression_end ();
1973
1974 if (d->format.count != 1 || d->format.format == 'i')
1975 printf_filtered ("\n");
1976 else
1977 printf_filtered (" ");
1978
1979 annotate_display_value ();
1980
1981 try
1982 {
1983 struct value *val;
1984 CORE_ADDR addr;
1985
1986 val = evaluate_expression (d->exp.get ());
1987 addr = value_as_address (val);
1988 if (d->format.format == 'i')
1989 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1990 do_examine (d->format, d->exp->gdbarch, addr);
1991 }
1992 catch (const gdb_exception_error &ex)
1993 {
1994 fprintf_filtered (gdb_stdout, _("<error: %s>\n"),
1995 ex.what ());
1996 }
1997 }
1998 else
1999 {
2000 struct value_print_options opts;
2001
2002 annotate_display_format ();
2003
2004 if (d->format.format)
2005 printf_filtered ("/%c ", d->format.format);
2006
2007 annotate_display_expression ();
2008
2009 puts_filtered (d->exp_string);
2010 annotate_display_expression_end ();
2011
2012 printf_filtered (" = ");
2013
2014 annotate_display_expression ();
2015
2016 get_formatted_print_options (&opts, d->format.format);
2017 opts.raw = d->format.raw;
2018
2019 try
2020 {
2021 struct value *val;
2022
2023 val = evaluate_expression (d->exp.get ());
2024 print_formatted (val, d->format.size, &opts, gdb_stdout);
2025 }
2026 catch (const gdb_exception_error &ex)
2027 {
2028 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.what ());
2029 }
2030
2031 printf_filtered ("\n");
2032 }
2033
2034 annotate_display_end ();
2035
2036 gdb_flush (gdb_stdout);
2037 }
2038
2039 /* Display all of the values on the auto-display chain which can be
2040 evaluated in the current scope. */
2041
2042 void
2043 do_displays (void)
2044 {
2045 struct display *d;
2046
2047 for (d = display_chain; d; d = d->next)
2048 do_one_display (d);
2049 }
2050
2051 /* Delete the auto-display which we were in the process of displaying.
2052 This is done when there is an error or a signal. */
2053
2054 void
2055 disable_display (int num)
2056 {
2057 struct display *d;
2058
2059 for (d = display_chain; d; d = d->next)
2060 if (d->number == num)
2061 {
2062 d->enabled_p = 0;
2063 return;
2064 }
2065 printf_unfiltered (_("No display number %d.\n"), num);
2066 }
2067
2068 void
2069 disable_current_display (void)
2070 {
2071 if (current_display_number >= 0)
2072 {
2073 disable_display (current_display_number);
2074 fprintf_unfiltered (gdb_stderr,
2075 _("Disabling display %d to "
2076 "avoid infinite recursion.\n"),
2077 current_display_number);
2078 }
2079 current_display_number = -1;
2080 }
2081
2082 static void
2083 info_display_command (const char *ignore, int from_tty)
2084 {
2085 struct display *d;
2086
2087 if (!display_chain)
2088 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2089 else
2090 printf_filtered (_("Auto-display expressions now in effect:\n\
2091 Num Enb Expression\n"));
2092
2093 for (d = display_chain; d; d = d->next)
2094 {
2095 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2096 if (d->format.size)
2097 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2098 d->format.format);
2099 else if (d->format.format)
2100 printf_filtered ("/%c ", d->format.format);
2101 puts_filtered (d->exp_string);
2102 if (d->block && !contained_in (get_selected_block (0), d->block, true))
2103 printf_filtered (_(" (cannot be evaluated in the current context)"));
2104 printf_filtered ("\n");
2105 }
2106 }
2107
2108 /* Callback fo map_display_numbers, that enables or disables the
2109 passed in display D. */
2110
2111 static void
2112 do_enable_disable_display (struct display *d, void *data)
2113 {
2114 d->enabled_p = *(int *) data;
2115 }
2116
2117 /* Implamentation of both the "disable display" and "enable display"
2118 commands. ENABLE decides what to do. */
2119
2120 static void
2121 enable_disable_display_command (const char *args, int from_tty, int enable)
2122 {
2123 if (args == NULL)
2124 {
2125 struct display *d;
2126
2127 ALL_DISPLAYS (d)
2128 d->enabled_p = enable;
2129 return;
2130 }
2131
2132 map_display_numbers (args, do_enable_disable_display, &enable);
2133 }
2134
2135 /* The "enable display" command. */
2136
2137 static void
2138 enable_display_command (const char *args, int from_tty)
2139 {
2140 enable_disable_display_command (args, from_tty, 1);
2141 }
2142
2143 /* The "disable display" command. */
2144
2145 static void
2146 disable_display_command (const char *args, int from_tty)
2147 {
2148 enable_disable_display_command (args, from_tty, 0);
2149 }
2150
2151 /* display_chain items point to blocks and expressions. Some expressions in
2152 turn may point to symbols.
2153 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2154 obstack_free'd when a shared library is unloaded.
2155 Clear pointers that are about to become dangling.
2156 Both .exp and .block fields will be restored next time we need to display
2157 an item by re-parsing .exp_string field in the new execution context. */
2158
2159 static void
2160 clear_dangling_display_expressions (struct objfile *objfile)
2161 {
2162 struct display *d;
2163 struct program_space *pspace;
2164
2165 /* With no symbol file we cannot have a block or expression from it. */
2166 if (objfile == NULL)
2167 return;
2168 pspace = objfile->pspace;
2169 if (objfile->separate_debug_objfile_backlink)
2170 {
2171 objfile = objfile->separate_debug_objfile_backlink;
2172 gdb_assert (objfile->pspace == pspace);
2173 }
2174
2175 for (d = display_chain; d != NULL; d = d->next)
2176 {
2177 if (d->pspace != pspace)
2178 continue;
2179
2180 if (lookup_objfile_from_block (d->block) == objfile
2181 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2182 {
2183 d->exp.reset ();
2184 d->block = NULL;
2185 }
2186 }
2187 }
2188 \f
2189
2190 /* Print the value in stack frame FRAME of a variable specified by a
2191 struct symbol. NAME is the name to print; if NULL then VAR's print
2192 name will be used. STREAM is the ui_file on which to print the
2193 value. INDENT specifies the number of indent levels to print
2194 before printing the variable name.
2195
2196 This function invalidates FRAME. */
2197
2198 void
2199 print_variable_and_value (const char *name, struct symbol *var,
2200 struct frame_info *frame,
2201 struct ui_file *stream, int indent)
2202 {
2203
2204 if (!name)
2205 name = SYMBOL_PRINT_NAME (var);
2206
2207 fputs_filtered (n_spaces (2 * indent), stream);
2208 fputs_styled (name, variable_name_style.style (), stream);
2209 fputs_filtered (" = ", stream);
2210
2211 try
2212 {
2213 struct value *val;
2214 struct value_print_options opts;
2215
2216 /* READ_VAR_VALUE needs a block in order to deal with non-local
2217 references (i.e. to handle nested functions). In this context, we
2218 print variables that are local to this frame, so we can avoid passing
2219 a block to it. */
2220 val = read_var_value (var, NULL, frame);
2221 get_user_print_options (&opts);
2222 opts.deref_ref = 1;
2223 common_val_print (val, stream, indent, &opts, current_language);
2224
2225 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2226 function. */
2227 frame = NULL;
2228 }
2229 catch (const gdb_exception_error &except)
2230 {
2231 fprintf_filtered (stream, "<error reading variable %s (%s)>", name,
2232 except.what ());
2233 }
2234
2235 fprintf_filtered (stream, "\n");
2236 }
2237
2238 /* Subroutine of ui_printf to simplify it.
2239 Print VALUE to STREAM using FORMAT.
2240 VALUE is a C-style string either on the target or
2241 in a GDB internal variable. */
2242
2243 static void
2244 printf_c_string (struct ui_file *stream, const char *format,
2245 struct value *value)
2246 {
2247 const gdb_byte *str;
2248
2249 if (VALUE_LVAL (value) == lval_internalvar
2250 && c_is_string_type_p (value_type (value)))
2251 {
2252 size_t len = TYPE_LENGTH (value_type (value));
2253
2254 /* Copy the internal var value to TEM_STR and append a terminating null
2255 character. This protects against corrupted C-style strings that lack
2256 the terminating null char. It also allows Ada-style strings (not
2257 null terminated) to be printed without problems. */
2258 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2259
2260 memcpy (tem_str, value_contents (value), len);
2261 tem_str [len] = 0;
2262 str = tem_str;
2263 }
2264 else
2265 {
2266 CORE_ADDR tem = value_as_address (value);;
2267
2268 if (tem == 0)
2269 {
2270 DIAGNOSTIC_PUSH
2271 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2272 fprintf_filtered (stream, format, "(null)");
2273 DIAGNOSTIC_POP
2274 return;
2275 }
2276
2277 /* This is a %s argument. Find the length of the string. */
2278 size_t len;
2279
2280 for (len = 0;; len++)
2281 {
2282 gdb_byte c;
2283
2284 QUIT;
2285 read_memory (tem + len, &c, 1);
2286 if (c == 0)
2287 break;
2288 }
2289
2290 /* Copy the string contents into a string inside GDB. */
2291 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2292
2293 if (len != 0)
2294 read_memory (tem, tem_str, len);
2295 tem_str[len] = 0;
2296 str = tem_str;
2297 }
2298
2299 DIAGNOSTIC_PUSH
2300 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2301 fprintf_filtered (stream, format, (char *) str);
2302 DIAGNOSTIC_POP
2303 }
2304
2305 /* Subroutine of ui_printf to simplify it.
2306 Print VALUE to STREAM using FORMAT.
2307 VALUE is a wide C-style string on the target or
2308 in a GDB internal variable. */
2309
2310 static void
2311 printf_wide_c_string (struct ui_file *stream, const char *format,
2312 struct value *value)
2313 {
2314 const gdb_byte *str;
2315 size_t len;
2316 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2317 struct type *wctype = lookup_typename (current_language, gdbarch,
2318 "wchar_t", NULL, 0);
2319 int wcwidth = TYPE_LENGTH (wctype);
2320
2321 if (VALUE_LVAL (value) == lval_internalvar
2322 && c_is_string_type_p (value_type (value)))
2323 {
2324 str = value_contents (value);
2325 len = TYPE_LENGTH (value_type (value));
2326 }
2327 else
2328 {
2329 CORE_ADDR tem = value_as_address (value);
2330
2331 if (tem == 0)
2332 {
2333 DIAGNOSTIC_PUSH
2334 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2335 fprintf_filtered (stream, format, "(null)");
2336 DIAGNOSTIC_POP
2337 return;
2338 }
2339
2340 /* This is a %s argument. Find the length of the string. */
2341 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2342 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2343
2344 for (len = 0;; len += wcwidth)
2345 {
2346 QUIT;
2347 read_memory (tem + len, buf, wcwidth);
2348 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2349 break;
2350 }
2351
2352 /* Copy the string contents into a string inside GDB. */
2353 gdb_byte *tem_str = (gdb_byte *) alloca (len + wcwidth);
2354
2355 if (len != 0)
2356 read_memory (tem, tem_str, len);
2357 memset (&tem_str[len], 0, wcwidth);
2358 str = tem_str;
2359 }
2360
2361 auto_obstack output;
2362
2363 convert_between_encodings (target_wide_charset (gdbarch),
2364 host_charset (),
2365 str, len, wcwidth,
2366 &output, translit_char);
2367 obstack_grow_str0 (&output, "");
2368
2369 DIAGNOSTIC_PUSH
2370 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2371 fprintf_filtered (stream, format, obstack_base (&output));
2372 DIAGNOSTIC_POP
2373 }
2374
2375 /* Subroutine of ui_printf to simplify it.
2376 Print VALUE, a floating point value, to STREAM using FORMAT. */
2377
2378 static void
2379 printf_floating (struct ui_file *stream, const char *format,
2380 struct value *value, enum argclass argclass)
2381 {
2382 /* Parameter data. */
2383 struct type *param_type = value_type (value);
2384 struct gdbarch *gdbarch = get_type_arch (param_type);
2385
2386 /* Determine target type corresponding to the format string. */
2387 struct type *fmt_type;
2388 switch (argclass)
2389 {
2390 case double_arg:
2391 fmt_type = builtin_type (gdbarch)->builtin_double;
2392 break;
2393 case long_double_arg:
2394 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2395 break;
2396 case dec32float_arg:
2397 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2398 break;
2399 case dec64float_arg:
2400 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2401 break;
2402 case dec128float_arg:
2403 fmt_type = builtin_type (gdbarch)->builtin_declong;
2404 break;
2405 default:
2406 gdb_assert_not_reached ("unexpected argument class");
2407 }
2408
2409 /* To match the traditional GDB behavior, the conversion is
2410 done differently depending on the type of the parameter:
2411
2412 - if the parameter has floating-point type, it's value
2413 is converted to the target type;
2414
2415 - otherwise, if the parameter has a type that is of the
2416 same size as a built-in floating-point type, the value
2417 bytes are interpreted as if they were of that type, and
2418 then converted to the target type (this is not done for
2419 decimal floating-point argument classes);
2420
2421 - otherwise, if the source value has an integer value,
2422 it's value is converted to the target type;
2423
2424 - otherwise, an error is raised.
2425
2426 In either case, the result of the conversion is a byte buffer
2427 formatted in the target format for the target type. */
2428
2429 if (TYPE_CODE (fmt_type) == TYPE_CODE_FLT)
2430 {
2431 param_type = float_type_from_length (param_type);
2432 if (param_type != value_type (value))
2433 value = value_from_contents (param_type, value_contents (value));
2434 }
2435
2436 value = value_cast (fmt_type, value);
2437
2438 /* Convert the value to a string and print it. */
2439 std::string str
2440 = target_float_to_string (value_contents (value), fmt_type, format);
2441 fputs_filtered (str.c_str (), stream);
2442 }
2443
2444 /* Subroutine of ui_printf to simplify it.
2445 Print VALUE, a target pointer, to STREAM using FORMAT. */
2446
2447 static void
2448 printf_pointer (struct ui_file *stream, const char *format,
2449 struct value *value)
2450 {
2451 /* We avoid the host's %p because pointers are too
2452 likely to be the wrong size. The only interesting
2453 modifier for %p is a width; extract that, and then
2454 handle %p as glibc would: %#x or a literal "(nil)". */
2455
2456 const char *p;
2457 char *fmt, *fmt_p;
2458 #ifdef PRINTF_HAS_LONG_LONG
2459 long long val = value_as_long (value);
2460 #else
2461 long val = value_as_long (value);
2462 #endif
2463
2464 fmt = (char *) alloca (strlen (format) + 5);
2465
2466 /* Copy up to the leading %. */
2467 p = format;
2468 fmt_p = fmt;
2469 while (*p)
2470 {
2471 int is_percent = (*p == '%');
2472
2473 *fmt_p++ = *p++;
2474 if (is_percent)
2475 {
2476 if (*p == '%')
2477 *fmt_p++ = *p++;
2478 else
2479 break;
2480 }
2481 }
2482
2483 if (val != 0)
2484 *fmt_p++ = '#';
2485
2486 /* Copy any width or flags. Only the "-" flag is valid for pointers
2487 -- see the format_pieces constructor. */
2488 while (*p == '-' || (*p >= '0' && *p < '9'))
2489 *fmt_p++ = *p++;
2490
2491 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2492 if (val != 0)
2493 {
2494 #ifdef PRINTF_HAS_LONG_LONG
2495 *fmt_p++ = 'l';
2496 #endif
2497 *fmt_p++ = 'l';
2498 *fmt_p++ = 'x';
2499 *fmt_p++ = '\0';
2500 DIAGNOSTIC_PUSH
2501 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2502 fprintf_filtered (stream, fmt, val);
2503 DIAGNOSTIC_POP
2504 }
2505 else
2506 {
2507 *fmt_p++ = 's';
2508 *fmt_p++ = '\0';
2509 DIAGNOSTIC_PUSH
2510 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2511 fprintf_filtered (stream, fmt, "(nil)");
2512 DIAGNOSTIC_POP
2513 }
2514 }
2515
2516 /* printf "printf format string" ARG to STREAM. */
2517
2518 static void
2519 ui_printf (const char *arg, struct ui_file *stream)
2520 {
2521 const char *s = arg;
2522 std::vector<struct value *> val_args;
2523
2524 if (s == 0)
2525 error_no_arg (_("format-control string and values to print"));
2526
2527 s = skip_spaces (s);
2528
2529 /* A format string should follow, enveloped in double quotes. */
2530 if (*s++ != '"')
2531 error (_("Bad format string, missing '\"'."));
2532
2533 format_pieces fpieces (&s);
2534
2535 if (*s++ != '"')
2536 error (_("Bad format string, non-terminated '\"'."));
2537
2538 s = skip_spaces (s);
2539
2540 if (*s != ',' && *s != 0)
2541 error (_("Invalid argument syntax"));
2542
2543 if (*s == ',')
2544 s++;
2545 s = skip_spaces (s);
2546
2547 {
2548 int nargs_wanted;
2549 int i;
2550 const char *current_substring;
2551
2552 nargs_wanted = 0;
2553 for (auto &&piece : fpieces)
2554 if (piece.argclass != literal_piece)
2555 ++nargs_wanted;
2556
2557 /* Now, parse all arguments and evaluate them.
2558 Store the VALUEs in VAL_ARGS. */
2559
2560 while (*s != '\0')
2561 {
2562 const char *s1;
2563
2564 s1 = s;
2565 val_args.push_back (parse_to_comma_and_eval (&s1));
2566
2567 s = s1;
2568 if (*s == ',')
2569 s++;
2570 }
2571
2572 if (val_args.size () != nargs_wanted)
2573 error (_("Wrong number of arguments for specified format-string"));
2574
2575 /* Now actually print them. */
2576 i = 0;
2577 for (auto &&piece : fpieces)
2578 {
2579 current_substring = piece.string;
2580 switch (piece.argclass)
2581 {
2582 case string_arg:
2583 printf_c_string (stream, current_substring, val_args[i]);
2584 break;
2585 case wide_string_arg:
2586 printf_wide_c_string (stream, current_substring, val_args[i]);
2587 break;
2588 case wide_char_arg:
2589 {
2590 struct gdbarch *gdbarch
2591 = get_type_arch (value_type (val_args[i]));
2592 struct type *wctype = lookup_typename (current_language, gdbarch,
2593 "wchar_t", NULL, 0);
2594 struct type *valtype;
2595 const gdb_byte *bytes;
2596
2597 valtype = value_type (val_args[i]);
2598 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2599 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2600 error (_("expected wchar_t argument for %%lc"));
2601
2602 bytes = value_contents (val_args[i]);
2603
2604 auto_obstack output;
2605
2606 convert_between_encodings (target_wide_charset (gdbarch),
2607 host_charset (),
2608 bytes, TYPE_LENGTH (valtype),
2609 TYPE_LENGTH (valtype),
2610 &output, translit_char);
2611 obstack_grow_str0 (&output, "");
2612
2613 DIAGNOSTIC_PUSH
2614 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2615 fprintf_filtered (stream, current_substring,
2616 obstack_base (&output));
2617 DIAGNOSTIC_POP
2618 }
2619 break;
2620 case long_long_arg:
2621 #ifdef PRINTF_HAS_LONG_LONG
2622 {
2623 long long val = value_as_long (val_args[i]);
2624
2625 DIAGNOSTIC_PUSH
2626 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2627 fprintf_filtered (stream, current_substring, val);
2628 DIAGNOSTIC_POP
2629 break;
2630 }
2631 #else
2632 error (_("long long not supported in printf"));
2633 #endif
2634 case int_arg:
2635 {
2636 int val = value_as_long (val_args[i]);
2637
2638 DIAGNOSTIC_PUSH
2639 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2640 fprintf_filtered (stream, current_substring, val);
2641 DIAGNOSTIC_POP
2642 break;
2643 }
2644 case long_arg:
2645 {
2646 long val = value_as_long (val_args[i]);
2647
2648 DIAGNOSTIC_PUSH
2649 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2650 fprintf_filtered (stream, current_substring, val);
2651 DIAGNOSTIC_POP
2652 break;
2653 }
2654 /* Handles floating-point values. */
2655 case double_arg:
2656 case long_double_arg:
2657 case dec32float_arg:
2658 case dec64float_arg:
2659 case dec128float_arg:
2660 printf_floating (stream, current_substring, val_args[i],
2661 piece.argclass);
2662 break;
2663 case ptr_arg:
2664 printf_pointer (stream, current_substring, val_args[i]);
2665 break;
2666 case literal_piece:
2667 /* Print a portion of the format string that has no
2668 directives. Note that this will not include any
2669 ordinary %-specs, but it might include "%%". That is
2670 why we use printf_filtered and not puts_filtered here.
2671 Also, we pass a dummy argument because some platforms
2672 have modified GCC to include -Wformat-security by
2673 default, which will warn here if there is no
2674 argument. */
2675 DIAGNOSTIC_PUSH
2676 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2677 fprintf_filtered (stream, current_substring, 0);
2678 DIAGNOSTIC_POP
2679 break;
2680 default:
2681 internal_error (__FILE__, __LINE__,
2682 _("failed internal consistency check"));
2683 }
2684 /* Maybe advance to the next argument. */
2685 if (piece.argclass != literal_piece)
2686 ++i;
2687 }
2688 }
2689 }
2690
2691 /* Implement the "printf" command. */
2692
2693 static void
2694 printf_command (const char *arg, int from_tty)
2695 {
2696 ui_printf (arg, gdb_stdout);
2697 reset_terminal_style (gdb_stdout);
2698 wrap_here ("");
2699 gdb_flush (gdb_stdout);
2700 }
2701
2702 /* Implement the "eval" command. */
2703
2704 static void
2705 eval_command (const char *arg, int from_tty)
2706 {
2707 string_file stb;
2708
2709 ui_printf (arg, &stb);
2710
2711 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2712
2713 execute_command (expanded.c_str (), from_tty);
2714 }
2715
2716 void
2717 _initialize_printcmd (void)
2718 {
2719 struct cmd_list_element *c;
2720
2721 current_display_number = -1;
2722
2723 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2724
2725 add_info ("address", info_address_command,
2726 _("Describe where symbol SYM is stored.\n\
2727 Usage: info address SYM"));
2728
2729 add_info ("symbol", info_symbol_command, _("\
2730 Describe what symbol is at location ADDR.\n\
2731 Usage: info symbol ADDR\n\
2732 Only for symbols with fixed locations (global or static scope)."));
2733
2734 add_com ("x", class_vars, x_command, _("\
2735 Examine memory: x/FMT ADDRESS.\n\
2736 ADDRESS is an expression for the memory address to examine.\n\
2737 FMT is a repeat count followed by a format letter and a size letter.\n\
2738 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2739 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2740 and z(hex, zero padded on the left).\n\
2741 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2742 The specified number of objects of the specified size are printed\n\
2743 according to the format. If a negative number is specified, memory is\n\
2744 examined backward from the address.\n\n\
2745 Defaults for format and size letters are those previously used.\n\
2746 Default count is 1. Default address is following last thing printed\n\
2747 with this command or \"print\"."));
2748
2749 add_info ("display", info_display_command, _("\
2750 Expressions to display when program stops, with code numbers.\n\
2751 Usage: info display"));
2752
2753 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2754 Cancel some expressions to be displayed when program stops.\n\
2755 Usage: undisplay [NUM]...\n\
2756 Arguments are the code numbers of the expressions to stop displaying.\n\
2757 No argument means cancel all automatic-display expressions.\n\
2758 \"delete display\" has the same effect as this command.\n\
2759 Do \"info display\" to see current list of code numbers."),
2760 &cmdlist);
2761
2762 add_com ("display", class_vars, display_command, _("\
2763 Print value of expression EXP each time the program stops.\n\
2764 Usage: display[/FMT] EXP\n\
2765 /FMT may be used before EXP as in the \"print\" command.\n\
2766 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2767 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2768 and examining is done as in the \"x\" command.\n\n\
2769 With no argument, display all currently requested auto-display expressions.\n\
2770 Use \"undisplay\" to cancel display requests previously made."));
2771
2772 add_cmd ("display", class_vars, enable_display_command, _("\
2773 Enable some expressions to be displayed when program stops.\n\
2774 Usage: enable display [NUM]...\n\
2775 Arguments are the code numbers of the expressions to resume displaying.\n\
2776 No argument means enable all automatic-display expressions.\n\
2777 Do \"info display\" to see current list of code numbers."), &enablelist);
2778
2779 add_cmd ("display", class_vars, disable_display_command, _("\
2780 Disable some expressions to be displayed when program stops.\n\
2781 Usage: disable display [NUM]...\n\
2782 Arguments are the code numbers of the expressions to stop displaying.\n\
2783 No argument means disable all automatic-display expressions.\n\
2784 Do \"info display\" to see current list of code numbers."), &disablelist);
2785
2786 add_cmd ("display", class_vars, undisplay_command, _("\
2787 Cancel some expressions to be displayed when program stops.\n\
2788 Usage: delete display [NUM]...\n\
2789 Arguments are the code numbers of the expressions to stop displaying.\n\
2790 No argument means cancel all automatic-display expressions.\n\
2791 Do \"info display\" to see current list of code numbers."), &deletelist);
2792
2793 add_com ("printf", class_vars, printf_command, _("\
2794 Formatted printing, like the C \"printf\" function.\n\
2795 Usage: printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2796 This supports most C printf format specifications, like %s, %d, etc."));
2797
2798 add_com ("output", class_vars, output_command, _("\
2799 Like \"print\" but don't put in value history and don't print newline.\n\
2800 Usage: output EXP\n\
2801 This is useful in user-defined commands."));
2802
2803 add_prefix_cmd ("set", class_vars, set_command, _("\
2804 Evaluate expression EXP and assign result to variable VAR.\n\
2805 Usage: set VAR = EXP\n\
2806 This uses assignment syntax appropriate for the current language\n\
2807 (VAR = EXP or VAR := EXP for example).\n\
2808 VAR may be a debugger \"convenience\" variable (names starting\n\
2809 with $), a register (a few standard names starting with $), or an actual\n\
2810 variable in the program being debugged. EXP is any valid expression.\n\
2811 Use \"set variable\" for variables with names identical to set subcommands.\n\
2812 \n\
2813 With a subcommand, this command modifies parts of the gdb environment.\n\
2814 You can see these environment settings with the \"show\" command."),
2815 &setlist, "set ", 1, &cmdlist);
2816 if (dbx_commands)
2817 add_com ("assign", class_vars, set_command, _("\
2818 Evaluate expression EXP and assign result to variable VAR.\n\
2819 Usage: assign VAR = EXP\n\
2820 This uses assignment syntax appropriate for the current language\n\
2821 (VAR = EXP or VAR := EXP for example).\n\
2822 VAR may be a debugger \"convenience\" variable (names starting\n\
2823 with $), a register (a few standard names starting with $), or an actual\n\
2824 variable in the program being debugged. EXP is any valid expression.\n\
2825 Use \"set variable\" for variables with names identical to set subcommands.\n\
2826 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2827 You can see these environment settings with the \"show\" command."));
2828
2829 /* "call" is the same as "set", but handy for dbx users to call fns. */
2830 c = add_com ("call", class_vars, call_command, _("\
2831 Call a function in the program.\n\
2832 Usage: call EXP\n\
2833 The argument is the function name and arguments, in the notation of the\n\
2834 current working language. The result is printed and saved in the value\n\
2835 history, if it is not void."));
2836 set_cmd_completer_handle_brkchars (c, print_command_completer);
2837
2838 add_cmd ("variable", class_vars, set_command, _("\
2839 Evaluate expression EXP and assign result to variable VAR.\n\
2840 Usage: set variable VAR = EXP\n\
2841 This uses assignment syntax appropriate for the current language\n\
2842 (VAR = EXP or VAR := EXP for example).\n\
2843 VAR may be a debugger \"convenience\" variable (names starting\n\
2844 with $), a register (a few standard names starting with $), or an actual\n\
2845 variable in the program being debugged. EXP is any valid expression.\n\
2846 This may usually be abbreviated to simply \"set\"."),
2847 &setlist);
2848 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2849
2850 const auto print_opts = make_value_print_options_def_group (nullptr);
2851
2852 static const std::string print_help = gdb::option::build_help (_("\
2853 Print value of expression EXP.\n\
2854 Usage: print [[OPTION]... --] [/FMT] [EXP]\n\
2855 \n\
2856 Options:\n\
2857 %OPTIONS%\n\
2858 \n\
2859 Note: because this command accepts arbitrary expressions, if you\n\
2860 specify any command option, you must use a double dash (\"--\")\n\
2861 to mark the end of option processing. E.g.: \"print -o -- myobj\".\n\
2862 \n\
2863 Variables accessible are those of the lexical environment of the selected\n\
2864 stack frame, plus all those whose scope is global or an entire file.\n\
2865 \n\
2866 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2867 $$NUM refers to NUM'th value back from the last one.\n\
2868 Names starting with $ refer to registers (with the values they would have\n\
2869 if the program were to return to the stack frame now selected, restoring\n\
2870 all registers saved by frames farther in) or else to debugger\n\
2871 \"convenience\" variables (any such name not a known register).\n\
2872 Use assignment expressions to give values to convenience variables.\n\
2873 \n\
2874 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2875 @ is a binary operator for treating consecutive data objects\n\
2876 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2877 element is FOO, whose second element is stored in the space following\n\
2878 where FOO is stored, etc. FOO must be an expression whose value\n\
2879 resides in memory.\n\
2880 \n\
2881 EXP may be preceded with /FMT, where FMT is a format letter\n\
2882 but no count or size letter (see \"x\" command)."),
2883 print_opts);
2884
2885 c = add_com ("print", class_vars, print_command, print_help.c_str ());
2886 set_cmd_completer_handle_brkchars (c, print_command_completer);
2887 add_com_alias ("p", "print", class_vars, 1);
2888 add_com_alias ("inspect", "print", class_vars, 1);
2889
2890 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2891 &max_symbolic_offset, _("\
2892 Set the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2893 Show the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2894 Tell GDB to only display the symbolic form of an address if the\n\
2895 offset between the closest earlier symbol and the address is less than\n\
2896 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2897 to always print the symbolic form of an address if any symbol precedes\n\
2898 it. Zero is equivalent to \"unlimited\"."),
2899 NULL,
2900 show_max_symbolic_offset,
2901 &setprintlist, &showprintlist);
2902 add_setshow_boolean_cmd ("symbol-filename", no_class,
2903 &print_symbol_filename, _("\
2904 Set printing of source filename and line number with <SYMBOL>."), _("\
2905 Show printing of source filename and line number with <SYMBOL>."), NULL,
2906 NULL,
2907 show_print_symbol_filename,
2908 &setprintlist, &showprintlist);
2909
2910 add_com ("eval", no_class, eval_command, _("\
2911 Construct a GDB command and then evaluate it.\n\
2912 Usage: eval \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2913 Convert the arguments to a string as \"printf\" would, but then\n\
2914 treat this string as a command line, and evaluate it."));
2915 }
This page took 0.092271 seconds and 4 git commands to generate.