*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "frame.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "language.h"
28 #include "expression.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "breakpoint.h"
33 #include "demangle.h"
34 #include "valprint.h"
35 #include "annotate.h"
36 #include "symfile.h" /* for overlay functions */
37 #include "objfiles.h" /* ditto */
38
39 extern int asm_demangle; /* Whether to demangle syms in asm printouts */
40 extern int addressprint; /* Whether to print hex addresses in HLL " */
41
42 struct format_data
43 {
44 int count;
45 char format;
46 char size;
47 };
48
49 /* Last specified output format. */
50
51 static char last_format = 'x';
52
53 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
54
55 static char last_size = 'w';
56
57 /* Default address to examine next. */
58
59 static CORE_ADDR next_address;
60
61 /* Default section to examine next. */
62
63 static asection *next_section;
64
65 /* Last address examined. */
66
67 static CORE_ADDR last_examine_address;
68
69 /* Contents of last address examined.
70 This is not valid past the end of the `x' command! */
71
72 static value_ptr last_examine_value;
73
74 /* Largest offset between a symbolic value and an address, that will be
75 printed as `0x1234 <symbol+offset>'. */
76
77 static unsigned int max_symbolic_offset = UINT_MAX;
78
79 /* Append the source filename and linenumber of the symbol when
80 printing a symbolic value as `<symbol at filename:linenum>' if set. */
81 static int print_symbol_filename = 0;
82
83 /* Number of auto-display expression currently being displayed.
84 So that we can disable it if we get an error or a signal within it.
85 -1 when not doing one. */
86
87 int current_display_number;
88
89 /* Flag to low-level print routines that this value is being printed
90 in an epoch window. We'd like to pass this as a parameter, but
91 every routine would need to take it. Perhaps we can encapsulate
92 this in the I/O stream once we have GNU stdio. */
93
94 int inspect_it = 0;
95
96 struct display
97 {
98 /* Chain link to next auto-display item. */
99 struct display *next;
100 /* Expression to be evaluated and displayed. */
101 struct expression *exp;
102 /* Item number of this auto-display item. */
103 int number;
104 /* Display format specified. */
105 struct format_data format;
106 /* Innermost block required by this expression when evaluated */
107 struct block *block;
108 /* Status of this display (enabled or disabled) */
109 enum enable status;
110 };
111
112 /* Chain of expressions whose values should be displayed
113 automatically each time the program stops. */
114
115 static struct display *display_chain;
116
117 static int display_number;
118
119 /* Pointer to the target-dependent disassembly function. */
120
121 int (*tm_print_insn) PARAMS ((bfd_vma, disassemble_info *));
122 disassemble_info tm_print_insn_info;
123
124 /* Functions exported for general use: */
125
126 void output_command PARAMS ((char *, int));
127
128
129 /* Prototypes for local functions. */
130
131 static void delete_display PARAMS ((int));
132
133 static void enable_display PARAMS ((char *, int));
134
135 static void disable_display_command PARAMS ((char *, int));
136
137 static void disassemble_command PARAMS ((char *, int));
138
139 static void printf_command PARAMS ((char *, int));
140
141 static void print_frame_nameless_args PARAMS ((struct frame_info *, long,
142 int, int, GDB_FILE *));
143
144 static void display_info PARAMS ((char *, int));
145
146 static void do_one_display PARAMS ((struct display *));
147
148 static void undisplay_command PARAMS ((char *, int));
149
150 static void free_display PARAMS ((struct display *));
151
152 static void display_command PARAMS ((char *, int));
153
154 void x_command PARAMS ((char *, int));
155
156 static void address_info PARAMS ((char *, int));
157
158 static void set_command PARAMS ((char *, int));
159
160 static void call_command PARAMS ((char *, int));
161
162 static void inspect_command PARAMS ((char *, int));
163
164 static void print_command PARAMS ((char *, int));
165
166 static void print_command_1 PARAMS ((char *, int, int));
167
168 static void validate_format PARAMS ((struct format_data, char *));
169
170 static void do_examine PARAMS ((struct format_data, CORE_ADDR addr, asection *section));
171
172 static void print_formatted PARAMS ((value_ptr, int, int));
173
174 static struct format_data decode_format PARAMS ((char **, int, int));
175
176 static int print_insn PARAMS ((CORE_ADDR, GDB_FILE *));
177
178 \f
179 /* Decode a format specification. *STRING_PTR should point to it.
180 OFORMAT and OSIZE are used as defaults for the format and size
181 if none are given in the format specification.
182 If OSIZE is zero, then the size field of the returned value
183 should be set only if a size is explicitly specified by the
184 user.
185 The structure returned describes all the data
186 found in the specification. In addition, *STRING_PTR is advanced
187 past the specification and past all whitespace following it. */
188
189 static struct format_data
190 decode_format (string_ptr, oformat, osize)
191 char **string_ptr;
192 int oformat;
193 int osize;
194 {
195 struct format_data val;
196 register char *p = *string_ptr;
197
198 val.format = '?';
199 val.size = '?';
200 val.count = 1;
201
202 if (*p >= '0' && *p <= '9')
203 val.count = atoi (p);
204 while (*p >= '0' && *p <= '9') p++;
205
206 /* Now process size or format letters that follow. */
207
208 while (1)
209 {
210 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
211 val.size = *p++;
212 else if (*p >= 'a' && *p <= 'z')
213 val.format = *p++;
214 else
215 break;
216 }
217
218 while (*p == ' ' || *p == '\t') p++;
219 *string_ptr = p;
220
221 /* Set defaults for format and size if not specified. */
222 if (val.format == '?')
223 {
224 if (val.size == '?')
225 {
226 /* Neither has been specified. */
227 val.format = oformat;
228 val.size = osize;
229 }
230 else
231 /* If a size is specified, any format makes a reasonable
232 default except 'i'. */
233 val.format = oformat == 'i' ? 'x' : oformat;
234 }
235 else if (val.size == '?')
236 switch (val.format)
237 {
238 case 'a':
239 case 's':
240 /* Pick the appropriate size for an address. */
241 if (TARGET_PTR_BIT == 64)
242 val.size = osize ? 'g' : osize;
243 else if (TARGET_PTR_BIT == 32)
244 val.size = osize ? 'w' : osize;
245 else if (TARGET_PTR_BIT == 16)
246 val.size = osize ? 'h' : osize;
247 else
248 /* Bad value for TARGET_PTR_BIT */
249 abort ();
250 break;
251 case 'f':
252 /* Floating point has to be word or giantword. */
253 if (osize == 'w' || osize == 'g')
254 val.size = osize;
255 else
256 /* Default it to giantword if the last used size is not
257 appropriate. */
258 val.size = osize ? 'g' : osize;
259 break;
260 case 'c':
261 /* Characters default to one byte. */
262 val.size = osize ? 'b' : osize;
263 break;
264 default:
265 /* The default is the size most recently specified. */
266 val.size = osize;
267 }
268
269 return val;
270 }
271 \f
272 /* Print value VAL on gdb_stdout according to FORMAT, a letter or 0.
273 Do not end with a newline.
274 0 means print VAL according to its own type.
275 SIZE is the letter for the size of datum being printed.
276 This is used to pad hex numbers so they line up. */
277
278 static void
279 print_formatted (val, format, size)
280 register value_ptr val;
281 register int format;
282 int size;
283 {
284 struct type *type = check_typedef (VALUE_TYPE (val));
285 int len = TYPE_LENGTH (type);
286
287 if (VALUE_LVAL (val) == lval_memory)
288 {
289 next_address = VALUE_ADDRESS (val) + len;
290 next_section = VALUE_BFD_SECTION (val);
291 }
292
293 switch (format)
294 {
295 case 's':
296 next_address = VALUE_ADDRESS (val)
297 + val_print_string (VALUE_ADDRESS (val), 0, gdb_stdout);
298 next_section = VALUE_BFD_SECTION (val);
299 break;
300
301 case 'i':
302 /* The old comment says
303 "Force output out, print_insn not using _filtered".
304 I'm not completely sure what that means, I suspect most print_insn
305 now do use _filtered, so I guess it's obsolete. */
306 /* We often wrap here if there are long symbolic names. */
307 wrap_here (" ");
308 next_address = VALUE_ADDRESS (val)
309 + print_insn (VALUE_ADDRESS (val), gdb_stdout);
310 next_section = VALUE_BFD_SECTION (val);
311 break;
312
313 default:
314 if (format == 0
315 || TYPE_CODE (type) == TYPE_CODE_ARRAY
316 || TYPE_CODE (type) == TYPE_CODE_STRING
317 || TYPE_CODE (type) == TYPE_CODE_STRUCT
318 || TYPE_CODE (type) == TYPE_CODE_UNION)
319 value_print (val, gdb_stdout, format, Val_pretty_default);
320 else
321 print_scalar_formatted (VALUE_CONTENTS (val), type,
322 format, size, gdb_stdout);
323 }
324 }
325
326 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
327 according to letters FORMAT and SIZE on STREAM.
328 FORMAT may not be zero. Formats s and i are not supported at this level.
329
330 This is how the elements of an array or structure are printed
331 with a format. */
332
333 void
334 print_scalar_formatted (valaddr, type, format, size, stream)
335 char *valaddr;
336 struct type *type;
337 int format;
338 int size;
339 GDB_FILE *stream;
340 {
341 LONGEST val_long;
342 unsigned int len = TYPE_LENGTH (type);
343
344 if (len > sizeof (LONGEST)
345 && (format == 't'
346 || format == 'c'
347 || format == 'o'
348 || format == 'u'
349 || format == 'd'
350 || format == 'x'))
351 {
352 if (! TYPE_UNSIGNED (type)
353 || ! extract_long_unsigned_integer (valaddr, len, &val_long))
354 {
355 /* We can't print it normally, but we can print it in hex.
356 Printing it in the wrong radix is more useful than saying
357 "use /x, you dummy". */
358 /* FIXME: we could also do octal or binary if that was the
359 desired format. */
360 /* FIXME: we should be using the size field to give us a
361 minimum field width to print. */
362 val_print_type_code_int (type, valaddr, stream);
363 return;
364 }
365
366 /* If we get here, extract_long_unsigned_integer set val_long. */
367 }
368 else if (format != 'f')
369 val_long = unpack_long (type, valaddr);
370
371 /* If we are printing it as unsigned, truncate it in case it is actually
372 a negative signed value (e.g. "print/u (short)-1" should print 65535
373 (if shorts are 16 bits) instead of 4294967295). */
374 if (format != 'd')
375 {
376 if (len < sizeof (LONGEST))
377 val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
378 }
379
380 switch (format)
381 {
382 case 'x':
383 if (!size)
384 {
385 /* no size specified, like in print. Print varying # of digits. */
386 print_longest (stream, 'x', 1, val_long);
387 }
388 else
389 switch (size)
390 {
391 case 'b':
392 case 'h':
393 case 'w':
394 case 'g':
395 print_longest (stream, size, 1, val_long);
396 break;
397 default:
398 error ("Undefined output size \"%c\".", size);
399 }
400 break;
401
402 case 'd':
403 print_longest (stream, 'd', 1, val_long);
404 break;
405
406 case 'u':
407 print_longest (stream, 'u', 0, val_long);
408 break;
409
410 case 'o':
411 if (val_long)
412 print_longest (stream, 'o', 1, val_long);
413 else
414 fprintf_filtered (stream, "0");
415 break;
416
417 case 'a':
418 print_address (unpack_pointer (type, valaddr), stream);
419 break;
420
421 case 'c':
422 value_print (value_from_longest (builtin_type_char, val_long), stream, 0,
423 Val_pretty_default);
424 break;
425
426 case 'f':
427 if (len == sizeof (float))
428 type = builtin_type_float;
429 else if (len == sizeof (double))
430 type = builtin_type_double;
431 print_floating (valaddr, type, stream);
432 break;
433
434 case 0:
435 abort ();
436
437 case 't':
438 /* Binary; 't' stands for "two". */
439 {
440 char bits[8*(sizeof val_long) + 1];
441 char *cp = bits;
442 int width;
443
444 if (!size)
445 width = 8*(sizeof val_long);
446 else
447 switch (size)
448 {
449 case 'b':
450 width = 8;
451 break;
452 case 'h':
453 width = 16;
454 break;
455 case 'w':
456 width = 32;
457 break;
458 case 'g':
459 width = 64;
460 break;
461 default:
462 error ("Undefined output size \"%c\".", size);
463 }
464
465 bits[width] = '\0';
466 while (width-- > 0)
467 {
468 bits[width] = (val_long & 1) ? '1' : '0';
469 val_long >>= 1;
470 }
471 if (!size)
472 {
473 while (*cp && *cp == '0')
474 cp++;
475 if (*cp == '\0')
476 cp--;
477 }
478 fprintf_filtered (stream, local_binary_format_prefix());
479 fprintf_filtered (stream, cp);
480 fprintf_filtered (stream, local_binary_format_suffix());
481 }
482 break;
483
484 default:
485 error ("Undefined output format \"%c\".", format);
486 }
487 }
488
489 /* Specify default address for `x' command.
490 `info lines' uses this. */
491
492 void
493 set_next_address (addr)
494 CORE_ADDR addr;
495 {
496 next_address = addr;
497
498 /* Make address available to the user as $_. */
499 set_internalvar (lookup_internalvar ("_"),
500 value_from_longest (lookup_pointer_type (builtin_type_void),
501 (LONGEST) addr));
502 }
503
504 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
505 after LEADIN. Print nothing if no symbolic name is found nearby.
506 Optionally also print source file and line number, if available.
507 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
508 or to interpret it as a possible C++ name and convert it back to source
509 form. However note that DO_DEMANGLE can be overridden by the specific
510 settings of the demangle and asm_demangle variables. */
511
512 void
513 print_address_symbolic (addr, stream, do_demangle, leadin)
514 CORE_ADDR addr;
515 GDB_FILE *stream;
516 int do_demangle;
517 char *leadin;
518 {
519 struct minimal_symbol *msymbol;
520 struct symbol *symbol;
521 struct symtab *symtab = 0;
522 CORE_ADDR name_location = 0;
523 char *name = "";
524 asection *section = 0;
525 int unmapped = 0;
526
527 /* Determine if the address is in an overlay, and whether it is mapped. */
528 if (overlay_debugging)
529 {
530 section = find_pc_overlay (addr);
531 if (pc_in_unmapped_range (addr, section))
532 {
533 unmapped = 1;
534 addr = overlay_mapped_address (addr, section);
535 }
536 }
537
538 /* On some targets, add in extra "flag" bits to PC for
539 disassembly. This should ensure that "rounding errors" in
540 symbol addresses that are masked for disassembly favour the
541 the correct symbol. */
542
543 #ifdef GDB_TARGET_UNMASK_DISAS_PC
544 addr = GDB_TARGET_UNMASK_DISAS_PC (addr);
545 #endif
546
547 /* First try to find the address in the symbol table, then
548 in the minsyms. Take the closest one. */
549
550 /* This is defective in the sense that it only finds text symbols. So
551 really this is kind of pointless--we should make sure that the
552 minimal symbols have everything we need (by changing that we could
553 save some memory, but for many debug format--ELF/DWARF or
554 anything/stabs--it would be inconvenient to eliminate those minimal
555 symbols anyway). */
556 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
557 symbol = find_pc_sect_function (addr, section);
558
559 if (symbol)
560 {
561 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
562 if (do_demangle)
563 name = SYMBOL_SOURCE_NAME (symbol);
564 else
565 name = SYMBOL_LINKAGE_NAME (symbol);
566 }
567
568 if (msymbol != NULL)
569 {
570 if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
571 {
572 /* The msymbol is closer to the address than the symbol;
573 use the msymbol instead. */
574 symbol = 0;
575 symtab = 0;
576 name_location = SYMBOL_VALUE_ADDRESS (msymbol);
577 if (do_demangle)
578 name = SYMBOL_SOURCE_NAME (msymbol);
579 else
580 name = SYMBOL_LINKAGE_NAME (msymbol);
581 }
582 }
583 if (symbol == NULL && msymbol == NULL)
584 return;
585
586 /* On some targets, mask out extra "flag" bits from PC for handsome
587 disassembly. */
588
589 #ifdef GDB_TARGET_MASK_DISAS_PC
590 name_location = GDB_TARGET_MASK_DISAS_PC (name_location);
591 addr = GDB_TARGET_MASK_DISAS_PC (addr);
592 #endif
593
594 /* If the nearest symbol is too far away, don't print anything symbolic. */
595
596 /* For when CORE_ADDR is larger than unsigned int, we do math in
597 CORE_ADDR. But when we detect unsigned wraparound in the
598 CORE_ADDR math, we ignore this test and print the offset,
599 because addr+max_symbolic_offset has wrapped through the end
600 of the address space back to the beginning, giving bogus comparison. */
601 if (addr > name_location + max_symbolic_offset
602 && name_location + max_symbolic_offset > name_location)
603 return;
604
605 fputs_filtered (leadin, stream);
606 if (unmapped)
607 fputs_filtered ("<*", stream);
608 else
609 fputs_filtered ("<", stream);
610 fputs_filtered (name, stream);
611 if (addr != name_location)
612 fprintf_filtered (stream, "+%u", (unsigned int)(addr - name_location));
613
614 /* Append source filename and line number if desired. Give specific
615 line # of this addr, if we have it; else line # of the nearest symbol. */
616 if (print_symbol_filename)
617 {
618 struct symtab_and_line sal;
619
620 sal = find_pc_sect_line (addr, section, 0);
621
622 if (sal.symtab)
623 fprintf_filtered (stream, " at %s:%d", sal.symtab->filename, sal.line);
624 else if (symtab && symbol && symbol->line)
625 fprintf_filtered (stream, " at %s:%d", symtab->filename, symbol->line);
626 else if (symtab)
627 fprintf_filtered (stream, " in %s", symtab->filename);
628 }
629 if (unmapped)
630 fputs_filtered ("*>", stream);
631 else
632 fputs_filtered (">", stream);
633 }
634
635 /* Print address ADDR on STREAM. USE_LOCAL means the same thing as for
636 print_longest. */
637 void
638 print_address_numeric (addr, use_local, stream)
639 CORE_ADDR addr;
640 int use_local;
641 GDB_FILE *stream;
642 {
643 /* This assumes a CORE_ADDR can fit in a LONGEST. Probably a safe
644 assumption. */
645 print_longest (stream, 'x', use_local, (ULONGEST) addr);
646 }
647
648 /* Print address ADDR symbolically on STREAM.
649 First print it as a number. Then perhaps print
650 <SYMBOL + OFFSET> after the number. */
651
652 void
653 print_address (addr, stream)
654 CORE_ADDR addr;
655 GDB_FILE *stream;
656 {
657 print_address_numeric (addr, 1, stream);
658 print_address_symbolic (addr, stream, asm_demangle, " ");
659 }
660
661 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
662 controls whether to print the symbolic name "raw" or demangled.
663 Global setting "addressprint" controls whether to print hex address
664 or not. */
665
666 void
667 print_address_demangle (addr, stream, do_demangle)
668 CORE_ADDR addr;
669 GDB_FILE *stream;
670 int do_demangle;
671 {
672 if (addr == 0)
673 {
674 fprintf_filtered (stream, "0");
675 }
676 else if (addressprint)
677 {
678 print_address_numeric (addr, 1, stream);
679 print_address_symbolic (addr, stream, do_demangle, " ");
680 }
681 else
682 {
683 print_address_symbolic (addr, stream, do_demangle, "");
684 }
685 }
686 \f
687
688 /* These are the types that $__ will get after an examine command of one
689 of these sizes. */
690
691 static struct type *examine_b_type;
692 static struct type *examine_h_type;
693 static struct type *examine_w_type;
694 static struct type *examine_g_type;
695
696 /* Examine data at address ADDR in format FMT.
697 Fetch it from memory and print on gdb_stdout. */
698
699 static void
700 do_examine (fmt, addr, sect)
701 struct format_data fmt;
702 CORE_ADDR addr;
703 asection *sect;
704 {
705 register char format = 0;
706 register char size;
707 register int count = 1;
708 struct type *val_type = NULL;
709 register int i;
710 register int maxelts;
711
712 format = fmt.format;
713 size = fmt.size;
714 count = fmt.count;
715 next_address = addr;
716 next_section = sect;
717
718 /* String or instruction format implies fetch single bytes
719 regardless of the specified size. */
720 if (format == 's' || format == 'i')
721 size = 'b';
722
723 if (size == 'b')
724 val_type = examine_b_type;
725 else if (size == 'h')
726 val_type = examine_h_type;
727 else if (size == 'w')
728 val_type = examine_w_type;
729 else if (size == 'g')
730 val_type = examine_g_type;
731
732 maxelts = 8;
733 if (size == 'w')
734 maxelts = 4;
735 if (size == 'g')
736 maxelts = 2;
737 if (format == 's' || format == 'i')
738 maxelts = 1;
739
740 /* Print as many objects as specified in COUNT, at most maxelts per line,
741 with the address of the next one at the start of each line. */
742
743 while (count > 0)
744 {
745 QUIT;
746 print_address (next_address, gdb_stdout);
747 printf_filtered (":");
748 for (i = maxelts;
749 i > 0 && count > 0;
750 i--, count--)
751 {
752 printf_filtered ("\t");
753 /* Note that print_formatted sets next_address for the next
754 object. */
755 last_examine_address = next_address;
756 last_examine_value = value_at (val_type, next_address, sect);
757 print_formatted (last_examine_value, format, size);
758 }
759 printf_filtered ("\n");
760 gdb_flush (gdb_stdout);
761 }
762 }
763 \f
764 static void
765 validate_format (fmt, cmdname)
766 struct format_data fmt;
767 char *cmdname;
768 {
769 if (fmt.size != 0)
770 error ("Size letters are meaningless in \"%s\" command.", cmdname);
771 if (fmt.count != 1)
772 error ("Item count other than 1 is meaningless in \"%s\" command.",
773 cmdname);
774 if (fmt.format == 'i' || fmt.format == 's')
775 error ("Format letter \"%c\" is meaningless in \"%s\" command.",
776 fmt.format, cmdname);
777 }
778
779 /* Evaluate string EXP as an expression in the current language and
780 print the resulting value. EXP may contain a format specifier as the
781 first argument ("/x myvar" for example, to print myvar in hex).
782 */
783
784 static void
785 print_command_1 (exp, inspect, voidprint)
786 char *exp;
787 int inspect;
788 int voidprint;
789 {
790 struct expression *expr;
791 register struct cleanup *old_chain = 0;
792 register char format = 0;
793 register value_ptr val;
794 struct format_data fmt;
795 int cleanup = 0;
796
797 /* Pass inspect flag to the rest of the print routines in a global (sigh). */
798 inspect_it = inspect;
799
800 if (exp && *exp == '/')
801 {
802 exp++;
803 fmt = decode_format (&exp, last_format, 0);
804 validate_format (fmt, "print");
805 last_format = format = fmt.format;
806 }
807 else
808 {
809 fmt.count = 1;
810 fmt.format = 0;
811 fmt.size = 0;
812 }
813
814 if (exp && *exp)
815 {
816 extern int objectprint;
817 struct type *type;
818 expr = parse_expression (exp);
819 old_chain = make_cleanup (free_current_contents, &expr);
820 cleanup = 1;
821 val = evaluate_expression (expr);
822
823 /* C++: figure out what type we actually want to print it as. */
824 type = VALUE_TYPE (val);
825
826 if (objectprint
827 && ( TYPE_CODE (type) == TYPE_CODE_PTR
828 || TYPE_CODE (type) == TYPE_CODE_REF)
829 && ( TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRUCT
830 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_UNION))
831 {
832 value_ptr v;
833
834 v = value_from_vtable_info (val, TYPE_TARGET_TYPE (type));
835 if (v != 0)
836 {
837 val = v;
838 type = VALUE_TYPE (val);
839 }
840 }
841 }
842 else
843 val = access_value_history (0);
844
845 if (voidprint || (val && VALUE_TYPE (val) &&
846 TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_VOID))
847 {
848 int histindex = record_latest_value (val);
849
850 if (histindex >= 0)
851 annotate_value_history_begin (histindex, VALUE_TYPE (val));
852 else
853 annotate_value_begin (VALUE_TYPE (val));
854
855 if (inspect)
856 printf_unfiltered ("\031(gdb-makebuffer \"%s\" %d '(\"", exp, histindex);
857 else
858 if (histindex >= 0) printf_filtered ("$%d = ", histindex);
859
860 if (histindex >= 0)
861 annotate_value_history_value ();
862
863 print_formatted (val, format, fmt.size);
864 printf_filtered ("\n");
865
866 if (histindex >= 0)
867 annotate_value_history_end ();
868 else
869 annotate_value_end ();
870
871 if (inspect)
872 printf_unfiltered("\") )\030");
873 }
874
875 if (cleanup)
876 do_cleanups (old_chain);
877 inspect_it = 0; /* Reset print routines to normal */
878 }
879
880 /* ARGSUSED */
881 static void
882 print_command (exp, from_tty)
883 char *exp;
884 int from_tty;
885 {
886 print_command_1 (exp, 0, 1);
887 }
888
889 /* Same as print, except in epoch, it gets its own window */
890 /* ARGSUSED */
891 static void
892 inspect_command (exp, from_tty)
893 char *exp;
894 int from_tty;
895 {
896 extern int epoch_interface;
897
898 print_command_1 (exp, epoch_interface, 1);
899 }
900
901 /* Same as print, except it doesn't print void results. */
902 /* ARGSUSED */
903 static void
904 call_command (exp, from_tty)
905 char *exp;
906 int from_tty;
907 {
908 print_command_1 (exp, 0, 0);
909 }
910
911 /* ARGSUSED */
912 void
913 output_command (exp, from_tty)
914 char *exp;
915 int from_tty;
916 {
917 struct expression *expr;
918 register struct cleanup *old_chain;
919 register char format = 0;
920 register value_ptr val;
921 struct format_data fmt;
922
923 if (exp && *exp == '/')
924 {
925 exp++;
926 fmt = decode_format (&exp, 0, 0);
927 validate_format (fmt, "output");
928 format = fmt.format;
929 }
930
931 expr = parse_expression (exp);
932 old_chain = make_cleanup (free_current_contents, &expr);
933
934 val = evaluate_expression (expr);
935
936 annotate_value_begin (VALUE_TYPE (val));
937
938 print_formatted (val, format, fmt.size);
939
940 annotate_value_end ();
941
942 do_cleanups (old_chain);
943 }
944
945 /* ARGSUSED */
946 static void
947 set_command (exp, from_tty)
948 char *exp;
949 int from_tty;
950 {
951 struct expression *expr = parse_expression (exp);
952 register struct cleanup *old_chain
953 = make_cleanup (free_current_contents, &expr);
954 evaluate_expression (expr);
955 do_cleanups (old_chain);
956 }
957
958 /* ARGSUSED */
959 static void
960 sym_info (arg, from_tty)
961 char *arg;
962 int from_tty;
963 {
964 struct minimal_symbol *msymbol;
965 struct objfile *objfile;
966 struct obj_section *osect;
967 asection *sect;
968 CORE_ADDR addr, sect_addr;
969 int matches = 0;
970 unsigned int offset;
971
972 if (!arg)
973 error_no_arg ("address");
974
975 addr = parse_and_eval_address (arg);
976 ALL_OBJSECTIONS (objfile, osect)
977 {
978 sect = osect->the_bfd_section;
979 sect_addr = overlay_mapped_address (addr, sect);
980
981 if (osect->addr <= sect_addr && sect_addr < osect->endaddr &&
982 (msymbol = lookup_minimal_symbol_by_pc_section (sect_addr, sect)))
983 {
984 matches = 1;
985 offset = sect_addr - SYMBOL_VALUE_ADDRESS (msymbol);
986 if (offset)
987 printf_filtered ("%s + %u in ",
988 SYMBOL_SOURCE_NAME (msymbol), offset);
989 else
990 printf_filtered ("%s in ",
991 SYMBOL_SOURCE_NAME (msymbol));
992 if (pc_in_unmapped_range (addr, sect))
993 printf_filtered ("load address range of ");
994 if (section_is_overlay (sect))
995 printf_filtered ("%s overlay ",
996 section_is_mapped (sect) ? "mapped" : "unmapped");
997 printf_filtered ("section %s", sect->name);
998 printf_filtered ("\n");
999 }
1000 }
1001 if (matches == 0)
1002 printf_filtered ("No symbol matches %s.\n", arg);
1003 }
1004
1005 /* ARGSUSED */
1006 static void
1007 address_info (exp, from_tty)
1008 char *exp;
1009 int from_tty;
1010 {
1011 register struct symbol *sym;
1012 register struct minimal_symbol *msymbol;
1013 register long val;
1014 register long basereg;
1015 asection *section;
1016 CORE_ADDR load_addr;
1017 int is_a_field_of_this; /* C++: lookup_symbol sets this to nonzero
1018 if exp is a field of `this'. */
1019
1020 if (exp == 0)
1021 error ("Argument required.");
1022
1023 sym = lookup_symbol (exp, get_selected_block (), VAR_NAMESPACE,
1024 &is_a_field_of_this, (struct symtab **)NULL);
1025 if (sym == NULL)
1026 {
1027 if (is_a_field_of_this)
1028 {
1029 printf_filtered ("Symbol \"");
1030 fprintf_symbol_filtered (gdb_stdout, exp,
1031 current_language->la_language, DMGL_ANSI);
1032 printf_filtered ("\" is a field of the local class variable `this'\n");
1033 return;
1034 }
1035
1036 msymbol = lookup_minimal_symbol (exp, NULL, NULL);
1037
1038 if (msymbol != NULL)
1039 {
1040 load_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1041
1042 printf_filtered ("Symbol \"");
1043 fprintf_symbol_filtered (gdb_stdout, exp,
1044 current_language->la_language, DMGL_ANSI);
1045 printf_filtered ("\" is at ");
1046 print_address_numeric (load_addr, 1, gdb_stdout);
1047 printf_filtered (" in a file compiled without debugging");
1048 section = SYMBOL_BFD_SECTION (msymbol);
1049 if (section_is_overlay (section))
1050 {
1051 load_addr = overlay_unmapped_address (load_addr, section);
1052 printf_filtered (",\n -- loaded at ");
1053 print_address_numeric (load_addr, 1, gdb_stdout);
1054 printf_filtered (" in overlay section %s", section->name);
1055 }
1056 printf_filtered (".\n");
1057 }
1058 else
1059 error ("No symbol \"%s\" in current context.", exp);
1060 return;
1061 }
1062
1063 printf_filtered ("Symbol \"");
1064 fprintf_symbol_filtered (gdb_stdout, SYMBOL_NAME (sym),
1065 current_language->la_language, DMGL_ANSI);
1066 printf_filtered ("\" is ");
1067 val = SYMBOL_VALUE (sym);
1068 basereg = SYMBOL_BASEREG (sym);
1069 section = SYMBOL_BFD_SECTION (sym);
1070
1071 switch (SYMBOL_CLASS (sym))
1072 {
1073 case LOC_CONST:
1074 case LOC_CONST_BYTES:
1075 printf_filtered ("constant");
1076 break;
1077
1078 case LOC_LABEL:
1079 printf_filtered ("a label at address ");
1080 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1081 1, gdb_stdout);
1082 if (section_is_overlay (section))
1083 {
1084 load_addr = overlay_unmapped_address (load_addr, section);
1085 printf_filtered (",\n -- loaded at ");
1086 print_address_numeric (load_addr, 1, gdb_stdout);
1087 printf_filtered (" in overlay section %s", section->name);
1088 }
1089 break;
1090
1091 case LOC_REGISTER:
1092 printf_filtered ("a variable in register %s", reg_names[val]);
1093 break;
1094
1095 case LOC_STATIC:
1096 printf_filtered ("static storage at address ");
1097 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1098 1, gdb_stdout);
1099 if (section_is_overlay (section))
1100 {
1101 load_addr = overlay_unmapped_address (load_addr, section);
1102 printf_filtered (",\n -- loaded at ");
1103 print_address_numeric (load_addr, 1, gdb_stdout);
1104 printf_filtered (" in overlay section %s", section->name);
1105 }
1106 break;
1107
1108 case LOC_REGPARM:
1109 printf_filtered ("an argument in register %s", reg_names[val]);
1110 break;
1111
1112 case LOC_REGPARM_ADDR:
1113 printf_filtered ("address of an argument in register %s", reg_names[val]);
1114 break;
1115
1116 case LOC_ARG:
1117 printf_filtered ("an argument at offset %ld", val);
1118 break;
1119
1120 case LOC_LOCAL_ARG:
1121 printf_filtered ("an argument at frame offset %ld", val);
1122 break;
1123
1124 case LOC_LOCAL:
1125 printf_filtered ("a local variable at frame offset %ld", val);
1126 break;
1127
1128 case LOC_REF_ARG:
1129 printf_filtered ("a reference argument at offset %ld", val);
1130 break;
1131
1132 case LOC_BASEREG:
1133 printf_filtered ("a variable at offset %ld from register %s",
1134 val, reg_names[basereg]);
1135 break;
1136
1137 case LOC_BASEREG_ARG:
1138 printf_filtered ("an argument at offset %ld from register %s",
1139 val, reg_names[basereg]);
1140 break;
1141
1142 case LOC_TYPEDEF:
1143 printf_filtered ("a typedef");
1144 break;
1145
1146 case LOC_BLOCK:
1147 printf_filtered ("a function at address ");
1148 #ifdef GDB_TARGET_MASK_DISAS_PC
1149 print_address_numeric
1150 (load_addr= GDB_TARGET_MASK_DISAS_PC (BLOCK_START (SYMBOL_BLOCK_VALUE (sym))),
1151 1, gdb_stdout);
1152 #else
1153 print_address_numeric (load_addr=BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
1154 1, gdb_stdout);
1155 #endif
1156 if (section_is_overlay (section))
1157 {
1158 load_addr = overlay_unmapped_address (load_addr, section);
1159 printf_filtered (",\n -- loaded at ");
1160 print_address_numeric (load_addr, 1, gdb_stdout);
1161 printf_filtered (" in overlay section %s", section->name);
1162 }
1163 break;
1164
1165 case LOC_UNRESOLVED:
1166 {
1167 struct minimal_symbol *msym;
1168
1169 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, NULL);
1170 if (msym == NULL)
1171 printf_filtered ("unresolved");
1172 else
1173 {
1174 section = SYMBOL_BFD_SECTION (msym);
1175 printf_filtered ("static storage at address ");
1176 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (msym),
1177 1, gdb_stdout);
1178 if (section_is_overlay (section))
1179 {
1180 load_addr = overlay_unmapped_address (load_addr, section);
1181 printf_filtered (",\n -- loaded at ");
1182 print_address_numeric (load_addr, 1, gdb_stdout);
1183 printf_filtered (" in overlay section %s", section->name);
1184 }
1185 }
1186 }
1187 break;
1188
1189 case LOC_OPTIMIZED_OUT:
1190 printf_filtered ("optimized out");
1191 break;
1192
1193 default:
1194 printf_filtered ("of unknown (botched) type");
1195 break;
1196 }
1197 printf_filtered (".\n");
1198 }
1199 \f
1200 void
1201 x_command (exp, from_tty)
1202 char *exp;
1203 int from_tty;
1204 {
1205 struct expression *expr;
1206 struct format_data fmt;
1207 struct cleanup *old_chain;
1208 struct value *val;
1209
1210 fmt.format = last_format;
1211 fmt.size = last_size;
1212 fmt.count = 1;
1213
1214 if (exp && *exp == '/')
1215 {
1216 exp++;
1217 fmt = decode_format (&exp, last_format, last_size);
1218 }
1219
1220 /* If we have an expression, evaluate it and use it as the address. */
1221
1222 if (exp != 0 && *exp != 0)
1223 {
1224 expr = parse_expression (exp);
1225 /* Cause expression not to be there any more
1226 if this command is repeated with Newline.
1227 But don't clobber a user-defined command's definition. */
1228 if (from_tty)
1229 *exp = 0;
1230 old_chain = make_cleanup (free_current_contents, &expr);
1231 val = evaluate_expression (expr);
1232 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_REF)
1233 val = value_ind (val);
1234 /* In rvalue contexts, such as this, functions are coerced into
1235 pointers to functions. This makes "x/i main" work. */
1236 if (/* last_format == 'i'
1237 && */ TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
1238 && VALUE_LVAL (val) == lval_memory)
1239 next_address = VALUE_ADDRESS (val);
1240 else
1241 next_address = value_as_pointer (val);
1242 if (VALUE_BFD_SECTION (val))
1243 next_section = VALUE_BFD_SECTION (val);
1244 do_cleanups (old_chain);
1245 }
1246
1247 do_examine (fmt, next_address, next_section);
1248
1249 /* If the examine succeeds, we remember its size and format for next time. */
1250 last_size = fmt.size;
1251 last_format = fmt.format;
1252
1253 /* Set a couple of internal variables if appropriate. */
1254 if (last_examine_value)
1255 {
1256 /* Make last address examined available to the user as $_. Use
1257 the correct pointer type. */
1258 set_internalvar (lookup_internalvar ("_"),
1259 value_from_longest (
1260 lookup_pointer_type (VALUE_TYPE (last_examine_value)),
1261 (LONGEST) last_examine_address));
1262
1263 /* Make contents of last address examined available to the user as $__.*/
1264 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1265 }
1266 }
1267
1268 \f
1269 /* Add an expression to the auto-display chain.
1270 Specify the expression. */
1271
1272 static void
1273 display_command (exp, from_tty)
1274 char *exp;
1275 int from_tty;
1276 {
1277 struct format_data fmt;
1278 register struct expression *expr;
1279 register struct display *new;
1280
1281 if (exp == 0)
1282 {
1283 do_displays ();
1284 return;
1285 }
1286
1287 if (*exp == '/')
1288 {
1289 exp++;
1290 fmt = decode_format (&exp, 0, 0);
1291 if (fmt.size && fmt.format == 0)
1292 fmt.format = 'x';
1293 if (fmt.format == 'i' || fmt.format == 's')
1294 fmt.size = 'b';
1295 }
1296 else
1297 {
1298 fmt.format = 0;
1299 fmt.size = 0;
1300 fmt.count = 0;
1301 }
1302
1303 innermost_block = 0;
1304 expr = parse_expression (exp);
1305
1306 new = (struct display *) xmalloc (sizeof (struct display));
1307
1308 new->exp = expr;
1309 new->block = innermost_block;
1310 new->next = display_chain;
1311 new->number = ++display_number;
1312 new->format = fmt;
1313 new->status = enabled;
1314 display_chain = new;
1315
1316 if (from_tty && target_has_execution)
1317 do_one_display (new);
1318
1319 dont_repeat ();
1320 }
1321
1322 static void
1323 free_display (d)
1324 struct display *d;
1325 {
1326 free ((PTR)d->exp);
1327 free ((PTR)d);
1328 }
1329
1330 /* Clear out the display_chain.
1331 Done when new symtabs are loaded, since this invalidates
1332 the types stored in many expressions. */
1333
1334 void
1335 clear_displays ()
1336 {
1337 register struct display *d;
1338
1339 while ((d = display_chain) != NULL)
1340 {
1341 free ((PTR)d->exp);
1342 display_chain = d->next;
1343 free ((PTR)d);
1344 }
1345 }
1346
1347 /* Delete the auto-display number NUM. */
1348
1349 static void
1350 delete_display (num)
1351 int num;
1352 {
1353 register struct display *d1, *d;
1354
1355 if (!display_chain)
1356 error ("No display number %d.", num);
1357
1358 if (display_chain->number == num)
1359 {
1360 d1 = display_chain;
1361 display_chain = d1->next;
1362 free_display (d1);
1363 }
1364 else
1365 for (d = display_chain; ; d = d->next)
1366 {
1367 if (d->next == 0)
1368 error ("No display number %d.", num);
1369 if (d->next->number == num)
1370 {
1371 d1 = d->next;
1372 d->next = d1->next;
1373 free_display (d1);
1374 break;
1375 }
1376 }
1377 }
1378
1379 /* Delete some values from the auto-display chain.
1380 Specify the element numbers. */
1381
1382 static void
1383 undisplay_command (args, from_tty)
1384 char *args;
1385 int from_tty;
1386 {
1387 register char *p = args;
1388 register char *p1;
1389 register int num;
1390
1391 if (args == 0)
1392 {
1393 if (query ("Delete all auto-display expressions? "))
1394 clear_displays ();
1395 dont_repeat ();
1396 return;
1397 }
1398
1399 while (*p)
1400 {
1401 p1 = p;
1402 while (*p1 >= '0' && *p1 <= '9') p1++;
1403 if (*p1 && *p1 != ' ' && *p1 != '\t')
1404 error ("Arguments must be display numbers.");
1405
1406 num = atoi (p);
1407
1408 delete_display (num);
1409
1410 p = p1;
1411 while (*p == ' ' || *p == '\t') p++;
1412 }
1413 dont_repeat ();
1414 }
1415
1416 /* Display a single auto-display.
1417 Do nothing if the display cannot be printed in the current context,
1418 or if the display is disabled. */
1419
1420 static void
1421 do_one_display (d)
1422 struct display *d;
1423 {
1424 int within_current_scope;
1425
1426 if (d->status == disabled)
1427 return;
1428
1429 if (d->block)
1430 within_current_scope = contained_in (get_selected_block (), d->block);
1431 else
1432 within_current_scope = 1;
1433 if (!within_current_scope)
1434 return;
1435
1436 current_display_number = d->number;
1437
1438 annotate_display_begin ();
1439 printf_filtered ("%d", d->number);
1440 annotate_display_number_end ();
1441 printf_filtered (": ");
1442 if (d->format.size)
1443 {
1444 CORE_ADDR addr;
1445 value_ptr val;
1446
1447 annotate_display_format ();
1448
1449 printf_filtered ("x/");
1450 if (d->format.count != 1)
1451 printf_filtered ("%d", d->format.count);
1452 printf_filtered ("%c", d->format.format);
1453 if (d->format.format != 'i' && d->format.format != 's')
1454 printf_filtered ("%c", d->format.size);
1455 printf_filtered (" ");
1456
1457 annotate_display_expression ();
1458
1459 print_expression (d->exp, gdb_stdout);
1460 annotate_display_expression_end ();
1461
1462 if (d->format.count != 1)
1463 printf_filtered ("\n");
1464 else
1465 printf_filtered (" ");
1466
1467 val = evaluate_expression (d->exp);
1468 addr = value_as_pointer (val);
1469 if (d->format.format == 'i')
1470 addr = ADDR_BITS_REMOVE (addr);
1471
1472 annotate_display_value ();
1473
1474 do_examine (d->format, addr, VALUE_BFD_SECTION (val));
1475 }
1476 else
1477 {
1478 annotate_display_format ();
1479
1480 if (d->format.format)
1481 printf_filtered ("/%c ", d->format.format);
1482
1483 annotate_display_expression ();
1484
1485 print_expression (d->exp, gdb_stdout);
1486 annotate_display_expression_end ();
1487
1488 printf_filtered (" = ");
1489
1490 annotate_display_expression ();
1491
1492 print_formatted (evaluate_expression (d->exp),
1493 d->format.format, d->format.size);
1494 printf_filtered ("\n");
1495 }
1496
1497 annotate_display_end ();
1498
1499 gdb_flush (gdb_stdout);
1500 current_display_number = -1;
1501 }
1502
1503 /* Display all of the values on the auto-display chain which can be
1504 evaluated in the current scope. */
1505
1506 void
1507 do_displays ()
1508 {
1509 register struct display *d;
1510
1511 for (d = display_chain; d; d = d->next)
1512 do_one_display (d);
1513 }
1514
1515 /* Delete the auto-display which we were in the process of displaying.
1516 This is done when there is an error or a signal. */
1517
1518 void
1519 disable_display (num)
1520 int num;
1521 {
1522 register struct display *d;
1523
1524 for (d = display_chain; d; d = d->next)
1525 if (d->number == num)
1526 {
1527 d->status = disabled;
1528 return;
1529 }
1530 printf_unfiltered ("No display number %d.\n", num);
1531 }
1532
1533 void
1534 disable_current_display ()
1535 {
1536 if (current_display_number >= 0)
1537 {
1538 disable_display (current_display_number);
1539 fprintf_unfiltered (gdb_stderr, "Disabling display %d to avoid infinite recursion.\n",
1540 current_display_number);
1541 }
1542 current_display_number = -1;
1543 }
1544
1545 static void
1546 display_info (ignore, from_tty)
1547 char *ignore;
1548 int from_tty;
1549 {
1550 register struct display *d;
1551
1552 if (!display_chain)
1553 printf_unfiltered ("There are no auto-display expressions now.\n");
1554 else
1555 printf_filtered ("Auto-display expressions now in effect:\n\
1556 Num Enb Expression\n");
1557
1558 for (d = display_chain; d; d = d->next)
1559 {
1560 printf_filtered ("%d: %c ", d->number, "ny"[(int)d->status]);
1561 if (d->format.size)
1562 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
1563 d->format.format);
1564 else if (d->format.format)
1565 printf_filtered ("/%c ", d->format.format);
1566 print_expression (d->exp, gdb_stdout);
1567 if (d->block && !contained_in (get_selected_block (), d->block))
1568 printf_filtered (" (cannot be evaluated in the current context)");
1569 printf_filtered ("\n");
1570 gdb_flush (gdb_stdout);
1571 }
1572 }
1573
1574 static void
1575 enable_display (args, from_tty)
1576 char *args;
1577 int from_tty;
1578 {
1579 register char *p = args;
1580 register char *p1;
1581 register int num;
1582 register struct display *d;
1583
1584 if (p == 0)
1585 {
1586 for (d = display_chain; d; d = d->next)
1587 d->status = enabled;
1588 }
1589 else
1590 while (*p)
1591 {
1592 p1 = p;
1593 while (*p1 >= '0' && *p1 <= '9')
1594 p1++;
1595 if (*p1 && *p1 != ' ' && *p1 != '\t')
1596 error ("Arguments must be display numbers.");
1597
1598 num = atoi (p);
1599
1600 for (d = display_chain; d; d = d->next)
1601 if (d->number == num)
1602 {
1603 d->status = enabled;
1604 goto win;
1605 }
1606 printf_unfiltered ("No display number %d.\n", num);
1607 win:
1608 p = p1;
1609 while (*p == ' ' || *p == '\t')
1610 p++;
1611 }
1612 }
1613
1614 /* ARGSUSED */
1615 static void
1616 disable_display_command (args, from_tty)
1617 char *args;
1618 int from_tty;
1619 {
1620 register char *p = args;
1621 register char *p1;
1622 register struct display *d;
1623
1624 if (p == 0)
1625 {
1626 for (d = display_chain; d; d = d->next)
1627 d->status = disabled;
1628 }
1629 else
1630 while (*p)
1631 {
1632 p1 = p;
1633 while (*p1 >= '0' && *p1 <= '9')
1634 p1++;
1635 if (*p1 && *p1 != ' ' && *p1 != '\t')
1636 error ("Arguments must be display numbers.");
1637
1638 disable_display (atoi (p));
1639
1640 p = p1;
1641 while (*p == ' ' || *p == '\t')
1642 p++;
1643 }
1644 }
1645
1646 \f
1647 /* Print the value in stack frame FRAME of a variable
1648 specified by a struct symbol. */
1649
1650 void
1651 print_variable_value (var, frame, stream)
1652 struct symbol *var;
1653 struct frame_info *frame;
1654 GDB_FILE *stream;
1655 {
1656 value_ptr val = read_var_value (var, frame);
1657
1658 value_print (val, stream, 0, Val_pretty_default);
1659 }
1660
1661 /* Print the arguments of a stack frame, given the function FUNC
1662 running in that frame (as a symbol), the info on the frame,
1663 and the number of args according to the stack frame (or -1 if unknown). */
1664
1665 /* References here and elsewhere to "number of args according to the
1666 stack frame" appear in all cases to refer to "number of ints of args
1667 according to the stack frame". At least for VAX, i386, isi. */
1668
1669 void
1670 print_frame_args (func, fi, num, stream)
1671 struct symbol *func;
1672 struct frame_info *fi;
1673 int num;
1674 GDB_FILE *stream;
1675 {
1676 struct block *b = NULL;
1677 int nsyms = 0;
1678 int first = 1;
1679 register int i;
1680 register struct symbol *sym;
1681 register value_ptr val;
1682 /* Offset of next stack argument beyond the one we have seen that is
1683 at the highest offset.
1684 -1 if we haven't come to a stack argument yet. */
1685 long highest_offset = -1;
1686 int arg_size;
1687 /* Number of ints of arguments that we have printed so far. */
1688 int args_printed = 0;
1689
1690 if (func)
1691 {
1692 b = SYMBOL_BLOCK_VALUE (func);
1693 nsyms = BLOCK_NSYMS (b);
1694 }
1695
1696 for (i = 0; i < nsyms; i++)
1697 {
1698 QUIT;
1699 sym = BLOCK_SYM (b, i);
1700
1701 /* Keep track of the highest stack argument offset seen, and
1702 skip over any kinds of symbols we don't care about. */
1703
1704 switch (SYMBOL_CLASS (sym)) {
1705 case LOC_ARG:
1706 case LOC_REF_ARG:
1707 {
1708 long current_offset = SYMBOL_VALUE (sym);
1709 arg_size = TYPE_LENGTH (SYMBOL_TYPE (sym));
1710
1711 /* Compute address of next argument by adding the size of
1712 this argument and rounding to an int boundary. */
1713 current_offset
1714 = ((current_offset + arg_size + sizeof (int) - 1)
1715 & ~(sizeof (int) - 1));
1716
1717 /* If this is the highest offset seen yet, set highest_offset. */
1718 if (highest_offset == -1
1719 || (current_offset > highest_offset))
1720 highest_offset = current_offset;
1721
1722 /* Add the number of ints we're about to print to args_printed. */
1723 args_printed += (arg_size + sizeof (int) - 1) / sizeof (int);
1724 }
1725
1726 /* We care about types of symbols, but don't need to keep track of
1727 stack offsets in them. */
1728 case LOC_REGPARM:
1729 case LOC_REGPARM_ADDR:
1730 case LOC_LOCAL_ARG:
1731 case LOC_BASEREG_ARG:
1732 break;
1733
1734 /* Other types of symbols we just skip over. */
1735 default:
1736 continue;
1737 }
1738
1739 /* We have to look up the symbol because arguments can have
1740 two entries (one a parameter, one a local) and the one we
1741 want is the local, which lookup_symbol will find for us.
1742 This includes gcc1 (not gcc2) on the sparc when passing a
1743 small structure and gcc2 when the argument type is float
1744 and it is passed as a double and converted to float by
1745 the prologue (in the latter case the type of the LOC_ARG
1746 symbol is double and the type of the LOC_LOCAL symbol is
1747 float). */
1748 /* But if the parameter name is null, don't try it.
1749 Null parameter names occur on the RS/6000, for traceback tables.
1750 FIXME, should we even print them? */
1751
1752 if (*SYMBOL_NAME (sym))
1753 {
1754 struct symbol *nsym;
1755 nsym = lookup_symbol
1756 (SYMBOL_NAME (sym),
1757 b, VAR_NAMESPACE, (int *)NULL, (struct symtab **)NULL);
1758 if (SYMBOL_CLASS (nsym) == LOC_REGISTER)
1759 {
1760 /* There is a LOC_ARG/LOC_REGISTER pair. This means that
1761 it was passed on the stack and loaded into a register,
1762 or passed in a register and stored in a stack slot.
1763 GDB 3.x used the LOC_ARG; GDB 4.0-4.11 used the LOC_REGISTER.
1764
1765 Reasons for using the LOC_ARG:
1766 (1) because find_saved_registers may be slow for remote
1767 debugging,
1768 (2) because registers are often re-used and stack slots
1769 rarely (never?) are. Therefore using the stack slot is
1770 much less likely to print garbage.
1771
1772 Reasons why we might want to use the LOC_REGISTER:
1773 (1) So that the backtrace prints the same value as
1774 "print foo". I see no compelling reason why this needs
1775 to be the case; having the backtrace print the value which
1776 was passed in, and "print foo" print the value as modified
1777 within the called function, makes perfect sense to me.
1778
1779 Additional note: It might be nice if "info args" displayed
1780 both values.
1781 One more note: There is a case with sparc structure passing
1782 where we need to use the LOC_REGISTER, but this is dealt with
1783 by creating a single LOC_REGPARM in symbol reading. */
1784
1785 /* Leave sym (the LOC_ARG) alone. */
1786 ;
1787 }
1788 else
1789 sym = nsym;
1790 }
1791
1792 /* Print the current arg. */
1793 if (! first)
1794 fprintf_filtered (stream, ", ");
1795 wrap_here (" ");
1796
1797 annotate_arg_begin ();
1798
1799 fprintf_symbol_filtered (stream, SYMBOL_SOURCE_NAME (sym),
1800 SYMBOL_LANGUAGE (sym), DMGL_PARAMS | DMGL_ANSI);
1801 annotate_arg_name_end ();
1802 fputs_filtered ("=", stream);
1803
1804 /* Avoid value_print because it will deref ref parameters. We just
1805 want to print their addresses. Print ??? for args whose address
1806 we do not know. We pass 2 as "recurse" to val_print because our
1807 standard indentation here is 4 spaces, and val_print indents
1808 2 for each recurse. */
1809 val = read_var_value (sym, fi);
1810
1811 annotate_arg_value (val == NULL ? NULL : VALUE_TYPE (val));
1812
1813 if (val)
1814 {
1815 #ifdef GDB_TARGET_IS_D10V
1816 if (SYMBOL_CLASS(sym) == LOC_REGPARM && TYPE_CODE(VALUE_TYPE(val)) == TYPE_CODE_PTR)
1817 TYPE_LENGTH(VALUE_TYPE(val)) = 2;
1818 #endif
1819 val_print (VALUE_TYPE (val), VALUE_CONTENTS (val), VALUE_ADDRESS (val),
1820 stream, 0, 0, 2, Val_no_prettyprint);
1821 }
1822 else
1823 fputs_filtered ("???", stream);
1824
1825 annotate_arg_end ();
1826
1827 first = 0;
1828 }
1829
1830 /* Don't print nameless args in situations where we don't know
1831 enough about the stack to find them. */
1832 if (num != -1)
1833 {
1834 long start;
1835
1836 if (highest_offset == -1)
1837 start = FRAME_ARGS_SKIP;
1838 else
1839 start = highest_offset;
1840
1841 print_frame_nameless_args (fi, start, num - args_printed,
1842 first, stream);
1843 }
1844 }
1845
1846 /* Print nameless args on STREAM.
1847 FI is the frameinfo for this frame, START is the offset
1848 of the first nameless arg, and NUM is the number of nameless args to
1849 print. FIRST is nonzero if this is the first argument (not just
1850 the first nameless arg). */
1851
1852 static void
1853 print_frame_nameless_args (fi, start, num, first, stream)
1854 struct frame_info *fi;
1855 long start;
1856 int num;
1857 int first;
1858 GDB_FILE *stream;
1859 {
1860 int i;
1861 CORE_ADDR argsaddr;
1862 long arg_value;
1863
1864 for (i = 0; i < num; i++)
1865 {
1866 QUIT;
1867 #ifdef NAMELESS_ARG_VALUE
1868 NAMELESS_ARG_VALUE (fi, start, &arg_value);
1869 #else
1870 argsaddr = FRAME_ARGS_ADDRESS (fi);
1871 if (!argsaddr)
1872 return;
1873
1874 arg_value = read_memory_integer (argsaddr + start, sizeof (int));
1875 #endif
1876
1877 if (!first)
1878 fprintf_filtered (stream, ", ");
1879
1880 #ifdef PRINT_NAMELESS_INTEGER
1881 PRINT_NAMELESS_INTEGER (stream, arg_value);
1882 #else
1883 #ifdef PRINT_TYPELESS_INTEGER
1884 PRINT_TYPELESS_INTEGER (stream, builtin_type_int, (LONGEST) arg_value);
1885 #else
1886 fprintf_filtered (stream, "%ld", arg_value);
1887 #endif /* PRINT_TYPELESS_INTEGER */
1888 #endif /* PRINT_NAMELESS_INTEGER */
1889 first = 0;
1890 start += sizeof (int);
1891 }
1892 }
1893 \f
1894 /* ARGSUSED */
1895 static void
1896 printf_command (arg, from_tty)
1897 char *arg;
1898 int from_tty;
1899 {
1900 register char *f;
1901 register char *s = arg;
1902 char *string;
1903 value_ptr *val_args;
1904 char *substrings;
1905 char *current_substring;
1906 int nargs = 0;
1907 int allocated_args = 20;
1908 struct cleanup *old_cleanups;
1909
1910 val_args = (value_ptr *) xmalloc (allocated_args * sizeof (value_ptr));
1911 old_cleanups = make_cleanup (free_current_contents, &val_args);
1912
1913 if (s == 0)
1914 error_no_arg ("format-control string and values to print");
1915
1916 /* Skip white space before format string */
1917 while (*s == ' ' || *s == '\t') s++;
1918
1919 /* A format string should follow, enveloped in double quotes */
1920 if (*s++ != '"')
1921 error ("Bad format string, missing '\"'.");
1922
1923 /* Parse the format-control string and copy it into the string STRING,
1924 processing some kinds of escape sequence. */
1925
1926 f = string = (char *) alloca (strlen (s) + 1);
1927
1928 while (*s != '"')
1929 {
1930 int c = *s++;
1931 switch (c)
1932 {
1933 case '\0':
1934 error ("Bad format string, non-terminated '\"'.");
1935
1936 case '\\':
1937 switch (c = *s++)
1938 {
1939 case '\\':
1940 *f++ = '\\';
1941 break;
1942 case 'a':
1943 #ifdef __STDC__
1944 *f++ = '\a';
1945 #else
1946 *f++ = '\007'; /* Bell */
1947 #endif
1948 break;
1949 case 'b':
1950 *f++ = '\b';
1951 break;
1952 case 'f':
1953 *f++ = '\f';
1954 break;
1955 case 'n':
1956 *f++ = '\n';
1957 break;
1958 case 'r':
1959 *f++ = '\r';
1960 break;
1961 case 't':
1962 *f++ = '\t';
1963 break;
1964 case 'v':
1965 *f++ = '\v';
1966 break;
1967 case '"':
1968 *f++ = '"';
1969 break;
1970 default:
1971 /* ??? TODO: handle other escape sequences */
1972 error ("Unrecognized escape character \\%c in format string.",
1973 c);
1974 }
1975 break;
1976
1977 default:
1978 *f++ = c;
1979 }
1980 }
1981
1982 /* Skip over " and following space and comma. */
1983 s++;
1984 *f++ = '\0';
1985 while (*s == ' ' || *s == '\t') s++;
1986
1987 if (*s != ',' && *s != 0)
1988 error ("Invalid argument syntax");
1989
1990 if (*s == ',') s++;
1991 while (*s == ' ' || *s == '\t') s++;
1992
1993 /* Need extra space for the '\0's. Doubling the size is sufficient. */
1994 substrings = alloca (strlen (string) * 2);
1995 current_substring = substrings;
1996
1997 {
1998 /* Now scan the string for %-specs and see what kinds of args they want.
1999 argclass[I] classifies the %-specs so we can give printf_filtered
2000 something of the right size. */
2001
2002 enum argclass {no_arg, int_arg, string_arg, double_arg, long_long_arg};
2003 enum argclass *argclass;
2004 enum argclass this_argclass;
2005 char *last_arg;
2006 int nargs_wanted;
2007 int lcount;
2008 int i;
2009
2010 argclass = (enum argclass *) alloca (strlen (s) * sizeof *argclass);
2011 nargs_wanted = 0;
2012 f = string;
2013 last_arg = string;
2014 while (*f)
2015 if (*f++ == '%')
2016 {
2017 lcount = 0;
2018 while (strchr ("0123456789.hlL-+ #", *f))
2019 {
2020 if (*f == 'l' || *f == 'L')
2021 lcount++;
2022 f++;
2023 }
2024 switch (*f)
2025 {
2026 case 's':
2027 this_argclass = string_arg;
2028 break;
2029
2030 case 'e':
2031 case 'f':
2032 case 'g':
2033 this_argclass = double_arg;
2034 break;
2035
2036 case '*':
2037 error ("`*' not supported for precision or width in printf");
2038
2039 case 'n':
2040 error ("Format specifier `n' not supported in printf");
2041
2042 case '%':
2043 this_argclass = no_arg;
2044 break;
2045
2046 default:
2047 if (lcount > 1)
2048 this_argclass = long_long_arg;
2049 else
2050 this_argclass = int_arg;
2051 break;
2052 }
2053 f++;
2054 if (this_argclass != no_arg)
2055 {
2056 strncpy (current_substring, last_arg, f - last_arg);
2057 current_substring += f - last_arg;
2058 *current_substring++ = '\0';
2059 last_arg = f;
2060 argclass[nargs_wanted++] = this_argclass;
2061 }
2062 }
2063
2064 /* Now, parse all arguments and evaluate them.
2065 Store the VALUEs in VAL_ARGS. */
2066
2067 while (*s != '\0')
2068 {
2069 char *s1;
2070 if (nargs == allocated_args)
2071 val_args = (value_ptr *) xrealloc ((char *) val_args,
2072 (allocated_args *= 2)
2073 * sizeof (value_ptr));
2074 s1 = s;
2075 val_args[nargs] = parse_to_comma_and_eval (&s1);
2076
2077 /* If format string wants a float, unchecked-convert the value to
2078 floating point of the same size */
2079
2080 if (argclass[nargs] == double_arg)
2081 {
2082 struct type *type = VALUE_TYPE (val_args[nargs]);
2083 if (TYPE_LENGTH (type) == sizeof (float))
2084 VALUE_TYPE (val_args[nargs]) = builtin_type_float;
2085 if (TYPE_LENGTH (type) == sizeof (double))
2086 VALUE_TYPE (val_args[nargs]) = builtin_type_double;
2087 }
2088 nargs++;
2089 s = s1;
2090 if (*s == ',')
2091 s++;
2092 }
2093
2094 if (nargs != nargs_wanted)
2095 error ("Wrong number of arguments for specified format-string");
2096
2097 /* Now actually print them. */
2098 current_substring = substrings;
2099 for (i = 0; i < nargs; i++)
2100 {
2101 switch (argclass[i])
2102 {
2103 case string_arg:
2104 {
2105 char *str;
2106 CORE_ADDR tem;
2107 int j;
2108 tem = value_as_pointer (val_args[i]);
2109
2110 /* This is a %s argument. Find the length of the string. */
2111 for (j = 0; ; j++)
2112 {
2113 char c;
2114 QUIT;
2115 read_memory_section (tem + j, &c, 1,
2116 VALUE_BFD_SECTION (val_args[i]));
2117 if (c == 0)
2118 break;
2119 }
2120
2121 /* Copy the string contents into a string inside GDB. */
2122 str = (char *) alloca (j + 1);
2123 read_memory_section (tem, str, j, VALUE_BFD_SECTION (val_args[i]));
2124 str[j] = 0;
2125
2126 printf_filtered (current_substring, str);
2127 }
2128 break;
2129 case double_arg:
2130 {
2131 double val = value_as_double (val_args[i]);
2132 printf_filtered (current_substring, val);
2133 break;
2134 }
2135 case long_long_arg:
2136 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
2137 {
2138 long long val = value_as_long (val_args[i]);
2139 printf_filtered (current_substring, val);
2140 break;
2141 }
2142 #else
2143 error ("long long not supported in printf");
2144 #endif
2145 case int_arg:
2146 {
2147 /* FIXME: there should be separate int_arg and long_arg. */
2148 long val = value_as_long (val_args[i]);
2149 printf_filtered (current_substring, val);
2150 break;
2151 }
2152 default:
2153 error ("internal error in printf_command");
2154 }
2155 /* Skip to the next substring. */
2156 current_substring += strlen (current_substring) + 1;
2157 }
2158 /* Print the portion of the format string after the last argument. */
2159 printf_filtered (last_arg);
2160 }
2161 do_cleanups (old_cleanups);
2162 }
2163 \f
2164 /* Dump a specified section of assembly code. With no command line
2165 arguments, this command will dump the assembly code for the
2166 function surrounding the pc value in the selected frame. With one
2167 argument, it will dump the assembly code surrounding that pc value.
2168 Two arguments are interpeted as bounds within which to dump
2169 assembly. */
2170
2171 /* ARGSUSED */
2172 static void
2173 disassemble_command (arg, from_tty)
2174 char *arg;
2175 int from_tty;
2176 {
2177 CORE_ADDR low, high;
2178 char *name;
2179 CORE_ADDR pc, pc_masked;
2180 char *space_index;
2181 asection *section;
2182
2183 name = NULL;
2184 if (!arg)
2185 {
2186 if (!selected_frame)
2187 error ("No frame selected.\n");
2188
2189 pc = get_frame_pc (selected_frame);
2190 if (find_pc_partial_function (pc, &name, &low, &high) == 0)
2191 error ("No function contains program counter for selected frame.\n");
2192 low += FUNCTION_START_OFFSET;
2193 high -= 1;
2194 }
2195 else if (!(space_index = (char *) strchr (arg, ' ')))
2196 {
2197 /* One argument. */
2198 pc = parse_and_eval_address (arg);
2199 if (find_pc_partial_function (pc, &name, &low, &high) == 0)
2200 error ("No function contains specified address.\n");
2201 low += FUNCTION_START_OFFSET;
2202 high -= 1;
2203 if (overlay_debugging)
2204 {
2205 section = find_pc_overlay (pc);
2206 if (pc_in_unmapped_range (pc, section))
2207 {
2208 /* find_pc_partial_function will have returned low and high
2209 relative to the symbolic (mapped) address range. Need to
2210 translate them back to the unmapped range where PC is. */
2211
2212 low = overlay_unmapped_address (low, section);
2213 high = overlay_unmapped_address (high, section);
2214 }
2215 }
2216 }
2217 else
2218 {
2219 /* Two arguments. */
2220 *space_index = '\0';
2221 low = parse_and_eval_address (arg);
2222 high = parse_and_eval_address (space_index + 1);
2223 high -= 1;
2224 }
2225
2226 printf_filtered ("Dump of assembler code ");
2227 if (name != NULL)
2228 {
2229 printf_filtered ("for function %s:\n", name);
2230 }
2231 else
2232 {
2233 printf_filtered ("from ");
2234 print_address_numeric (low, 1, gdb_stdout);
2235 printf_filtered (" to ");
2236 print_address_numeric (high, 1, gdb_stdout);
2237 printf_filtered (":\n");
2238 }
2239
2240 /* Dump the specified range. */
2241 pc = low;
2242
2243 #ifdef GDB_TARGET_MASK_DISAS_PC
2244 pc_masked = GDB_TARGET_MASK_DISAS_PC (pc);
2245 #else
2246 pc_masked = pc;
2247 #endif
2248
2249 while (pc_masked <= high)
2250 {
2251 QUIT;
2252 print_address (pc_masked, gdb_stdout);
2253 printf_filtered (":\t");
2254 /* We often wrap here if there are long symbolic names. */
2255 wrap_here (" ");
2256 pc += print_insn (pc, gdb_stdout);
2257 printf_filtered ("\n");
2258
2259 #ifdef GDB_TARGET_MASK_DISAS_PC
2260 pc_masked = GDB_TARGET_MASK_DISAS_PC (pc);
2261 #else
2262 pc_masked = pc;
2263 #endif
2264 }
2265 printf_filtered ("End of assembler dump.\n");
2266 gdb_flush (gdb_stdout);
2267 }
2268
2269 /* Print the instruction at address MEMADDR in debugged memory,
2270 on STREAM. Returns length of the instruction, in bytes. */
2271
2272 static int
2273 print_insn (memaddr, stream)
2274 CORE_ADDR memaddr;
2275 GDB_FILE *stream;
2276 {
2277 /* If there's no disassembler, something is very wrong. */
2278 if (tm_print_insn == NULL)
2279 abort ();
2280
2281 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2282 tm_print_insn_info.endian = BFD_ENDIAN_BIG;
2283 else
2284 tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
2285
2286 if (target_architecture != NULL)
2287 tm_print_insn_info.mach = target_architecture->mach;
2288 /* else: should set .mach=0 but some disassemblers don't grok this */
2289
2290 return (*tm_print_insn) (memaddr, &tm_print_insn_info);
2291 }
2292
2293 \f
2294 void
2295 _initialize_printcmd ()
2296 {
2297 current_display_number = -1;
2298
2299 add_info ("address", address_info,
2300 "Describe where symbol SYM is stored.");
2301
2302 add_info ("symbol", sym_info,
2303 "Describe what symbol is at location ADDR.\n\
2304 Only for symbols with fixed locations (global or static scope).");
2305
2306 add_com ("x", class_vars, x_command,
2307 concat ("Examine memory: x/FMT ADDRESS.\n\
2308 ADDRESS is an expression for the memory address to examine.\n\
2309 FMT is a repeat count followed by a format letter and a size letter.\n\
2310 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2311 t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n",
2312 "Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2313 The specified number of objects of the specified size are printed\n\
2314 according to the format.\n\n\
2315 Defaults for format and size letters are those previously used.\n\
2316 Default count is 1. Default address is following last thing printed\n\
2317 with this command or \"print\".", NULL));
2318
2319 add_com ("disassemble", class_vars, disassemble_command,
2320 "Disassemble a specified section of memory.\n\
2321 Default is the function surrounding the pc of the selected frame.\n\
2322 With a single argument, the function surrounding that address is dumped.\n\
2323 Two arguments are taken as a range of memory to dump.");
2324
2325 #if 0
2326 add_com ("whereis", class_vars, whereis_command,
2327 "Print line number and file of definition of variable.");
2328 #endif
2329
2330 add_info ("display", display_info,
2331 "Expressions to display when program stops, with code numbers.");
2332
2333 add_cmd ("undisplay", class_vars, undisplay_command,
2334 "Cancel some expressions to be displayed when program stops.\n\
2335 Arguments are the code numbers of the expressions to stop displaying.\n\
2336 No argument means cancel all automatic-display expressions.\n\
2337 \"delete display\" has the same effect as this command.\n\
2338 Do \"info display\" to see current list of code numbers.",
2339 &cmdlist);
2340
2341 add_com ("display", class_vars, display_command,
2342 "Print value of expression EXP each time the program stops.\n\
2343 /FMT may be used before EXP as in the \"print\" command.\n\
2344 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2345 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2346 and examining is done as in the \"x\" command.\n\n\
2347 With no argument, display all currently requested auto-display expressions.\n\
2348 Use \"undisplay\" to cancel display requests previously made."
2349 );
2350
2351 add_cmd ("display", class_vars, enable_display,
2352 "Enable some expressions to be displayed when program stops.\n\
2353 Arguments are the code numbers of the expressions to resume displaying.\n\
2354 No argument means enable all automatic-display expressions.\n\
2355 Do \"info display\" to see current list of code numbers.", &enablelist);
2356
2357 add_cmd ("display", class_vars, disable_display_command,
2358 "Disable some expressions to be displayed when program stops.\n\
2359 Arguments are the code numbers of the expressions to stop displaying.\n\
2360 No argument means disable all automatic-display expressions.\n\
2361 Do \"info display\" to see current list of code numbers.", &disablelist);
2362
2363 add_cmd ("display", class_vars, undisplay_command,
2364 "Cancel some expressions to be displayed when program stops.\n\
2365 Arguments are the code numbers of the expressions to stop displaying.\n\
2366 No argument means cancel all automatic-display expressions.\n\
2367 Do \"info display\" to see current list of code numbers.", &deletelist);
2368
2369 add_com ("printf", class_vars, printf_command,
2370 "printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2371 This is useful for formatted output in user-defined commands.");
2372
2373 add_com ("output", class_vars, output_command,
2374 "Like \"print\" but don't put in value history and don't print newline.\n\
2375 This is useful in user-defined commands.");
2376
2377 add_prefix_cmd ("set", class_vars, set_command,
2378 concat ("Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2379 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2380 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2381 with $), a register (a few standard names starting with $), or an actual\n\
2382 variable in the program being debugged. EXP is any valid expression.\n",
2383 "Use \"set variable\" for variables with names identical to set subcommands.\n\
2384 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2385 You can see these environment settings with the \"show\" command.", NULL),
2386 &setlist, "set ", 1, &cmdlist);
2387
2388 /* "call" is the same as "set", but handy for dbx users to call fns. */
2389 add_com ("call", class_vars, call_command,
2390 "Call a function in the program.\n\
2391 The argument is the function name and arguments, in the notation of the\n\
2392 current working language. The result is printed and saved in the value\n\
2393 history, if it is not void.");
2394
2395 add_cmd ("variable", class_vars, set_command,
2396 "Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2397 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2398 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2399 with $), a register (a few standard names starting with $), or an actual\n\
2400 variable in the program being debugged. EXP is any valid expression.\n\
2401 This may usually be abbreviated to simply \"set\".",
2402 &setlist);
2403
2404 add_com ("print", class_vars, print_command,
2405 concat ("Print value of expression EXP.\n\
2406 Variables accessible are those of the lexical environment of the selected\n\
2407 stack frame, plus all those whose scope is global or an entire file.\n\
2408 \n\
2409 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2410 $$NUM refers to NUM'th value back from the last one.\n\
2411 Names starting with $ refer to registers (with the values they would have\n",
2412 "if the program were to return to the stack frame now selected, restoring\n\
2413 all registers saved by frames farther in) or else to debugger\n\
2414 \"convenience\" variables (any such name not a known register).\n\
2415 Use assignment expressions to give values to convenience variables.\n",
2416 "\n\
2417 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2418 @ is a binary operator for treating consecutive data objects\n\
2419 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2420 element is FOO, whose second element is stored in the space following\n\
2421 where FOO is stored, etc. FOO must be an expression whose value\n\
2422 resides in memory.\n",
2423 "\n\
2424 EXP may be preceded with /FMT, where FMT is a format letter\n\
2425 but no count or size letter (see \"x\" command).", NULL));
2426 add_com_alias ("p", "print", class_vars, 1);
2427
2428 add_com ("inspect", class_vars, inspect_command,
2429 "Same as \"print\" command, except that if you are running in the epoch\n\
2430 environment, the value is printed in its own window.");
2431
2432 add_show_from_set (
2433 add_set_cmd ("max-symbolic-offset", no_class, var_uinteger,
2434 (char *)&max_symbolic_offset,
2435 "Set the largest offset that will be printed in <symbol+1234> form.",
2436 &setprintlist),
2437 &showprintlist);
2438 add_show_from_set (
2439 add_set_cmd ("symbol-filename", no_class, var_boolean,
2440 (char *)&print_symbol_filename,
2441 "Set printing of source filename and line number with <symbol>.",
2442 &setprintlist),
2443 &showprintlist);
2444
2445 examine_b_type = init_type (TYPE_CODE_INT, 1, 0, "examine_b_type", NULL);
2446 examine_h_type = init_type (TYPE_CODE_INT, 2, 0, "examine_h_type", NULL);
2447 examine_w_type = init_type (TYPE_CODE_INT, 4, 0, "examine_w_type", NULL);
2448 examine_g_type = init_type (TYPE_CODE_INT, 8, 0, "examine_g_type", NULL);
2449
2450 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2451 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2452 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2453 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2454 tm_print_insn_info.print_address_func = dis_asm_print_address;
2455 }
This page took 0.080627 seconds and 4 git commands to generate.