Move innermost_block_tracker global to parse_state
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "expression.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "breakpoint.h"
31 #include "demangle.h"
32 #include "gdb-demangle.h"
33 #include "valprint.h"
34 #include "annotate.h"
35 #include "symfile.h" /* for overlay functions */
36 #include "objfiles.h" /* ditto */
37 #include "completer.h" /* for completion functions */
38 #include "ui-out.h"
39 #include "block.h"
40 #include "disasm.h"
41 #include "target-float.h"
42 #include "observable.h"
43 #include "solist.h"
44 #include "parser-defs.h"
45 #include "charset.h"
46 #include "arch-utils.h"
47 #include "cli/cli-utils.h"
48 #include "cli/cli-script.h"
49 #include "cli/cli-style.h"
50 #include "common/format.h"
51 #include "source.h"
52 #include "common/byte-vector.h"
53
54 /* Last specified output format. */
55
56 static char last_format = 0;
57
58 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
59
60 static char last_size = 'w';
61
62 /* Last specified count for the 'x' command. */
63
64 static int last_count;
65
66 /* Default address to examine next, and associated architecture. */
67
68 static struct gdbarch *next_gdbarch;
69 static CORE_ADDR next_address;
70
71 /* Number of delay instructions following current disassembled insn. */
72
73 static int branch_delay_insns;
74
75 /* Last address examined. */
76
77 static CORE_ADDR last_examine_address;
78
79 /* Contents of last address examined.
80 This is not valid past the end of the `x' command! */
81
82 static value_ref_ptr last_examine_value;
83
84 /* Largest offset between a symbolic value and an address, that will be
85 printed as `0x1234 <symbol+offset>'. */
86
87 static unsigned int max_symbolic_offset = UINT_MAX;
88 static void
89 show_max_symbolic_offset (struct ui_file *file, int from_tty,
90 struct cmd_list_element *c, const char *value)
91 {
92 fprintf_filtered (file,
93 _("The largest offset that will be "
94 "printed in <symbol+1234> form is %s.\n"),
95 value);
96 }
97
98 /* Append the source filename and linenumber of the symbol when
99 printing a symbolic value as `<symbol at filename:linenum>' if set. */
100 static int print_symbol_filename = 0;
101 static void
102 show_print_symbol_filename (struct ui_file *file, int from_tty,
103 struct cmd_list_element *c, const char *value)
104 {
105 fprintf_filtered (file, _("Printing of source filename and "
106 "line number with <symbol> is %s.\n"),
107 value);
108 }
109
110 /* Number of auto-display expression currently being displayed.
111 So that we can disable it if we get a signal within it.
112 -1 when not doing one. */
113
114 static int current_display_number;
115
116 struct display
117 {
118 /* Chain link to next auto-display item. */
119 struct display *next;
120
121 /* The expression as the user typed it. */
122 char *exp_string;
123
124 /* Expression to be evaluated and displayed. */
125 expression_up exp;
126
127 /* Item number of this auto-display item. */
128 int number;
129
130 /* Display format specified. */
131 struct format_data format;
132
133 /* Program space associated with `block'. */
134 struct program_space *pspace;
135
136 /* Innermost block required by this expression when evaluated. */
137 const struct block *block;
138
139 /* Status of this display (enabled or disabled). */
140 int enabled_p;
141 };
142
143 /* Chain of expressions whose values should be displayed
144 automatically each time the program stops. */
145
146 static struct display *display_chain;
147
148 static int display_number;
149
150 /* Walk the following statement or block through all displays.
151 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
152 display. */
153
154 #define ALL_DISPLAYS(B) \
155 for (B = display_chain; B; B = B->next)
156
157 #define ALL_DISPLAYS_SAFE(B,TMP) \
158 for (B = display_chain; \
159 B ? (TMP = B->next, 1): 0; \
160 B = TMP)
161
162 /* Prototypes for local functions. */
163
164 static void do_one_display (struct display *);
165 \f
166
167 /* Decode a format specification. *STRING_PTR should point to it.
168 OFORMAT and OSIZE are used as defaults for the format and size
169 if none are given in the format specification.
170 If OSIZE is zero, then the size field of the returned value
171 should be set only if a size is explicitly specified by the
172 user.
173 The structure returned describes all the data
174 found in the specification. In addition, *STRING_PTR is advanced
175 past the specification and past all whitespace following it. */
176
177 static struct format_data
178 decode_format (const char **string_ptr, int oformat, int osize)
179 {
180 struct format_data val;
181 const char *p = *string_ptr;
182
183 val.format = '?';
184 val.size = '?';
185 val.count = 1;
186 val.raw = 0;
187
188 if (*p == '-')
189 {
190 val.count = -1;
191 p++;
192 }
193 if (*p >= '0' && *p <= '9')
194 val.count *= atoi (p);
195 while (*p >= '0' && *p <= '9')
196 p++;
197
198 /* Now process size or format letters that follow. */
199
200 while (1)
201 {
202 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
203 val.size = *p++;
204 else if (*p == 'r')
205 {
206 val.raw = 1;
207 p++;
208 }
209 else if (*p >= 'a' && *p <= 'z')
210 val.format = *p++;
211 else
212 break;
213 }
214
215 *string_ptr = skip_spaces (p);
216
217 /* Set defaults for format and size if not specified. */
218 if (val.format == '?')
219 {
220 if (val.size == '?')
221 {
222 /* Neither has been specified. */
223 val.format = oformat;
224 val.size = osize;
225 }
226 else
227 /* If a size is specified, any format makes a reasonable
228 default except 'i'. */
229 val.format = oformat == 'i' ? 'x' : oformat;
230 }
231 else if (val.size == '?')
232 switch (val.format)
233 {
234 case 'a':
235 /* Pick the appropriate size for an address. This is deferred
236 until do_examine when we know the actual architecture to use.
237 A special size value of 'a' is used to indicate this case. */
238 val.size = osize ? 'a' : osize;
239 break;
240 case 'f':
241 /* Floating point has to be word or giantword. */
242 if (osize == 'w' || osize == 'g')
243 val.size = osize;
244 else
245 /* Default it to giantword if the last used size is not
246 appropriate. */
247 val.size = osize ? 'g' : osize;
248 break;
249 case 'c':
250 /* Characters default to one byte. */
251 val.size = osize ? 'b' : osize;
252 break;
253 case 's':
254 /* Display strings with byte size chars unless explicitly
255 specified. */
256 val.size = '\0';
257 break;
258
259 default:
260 /* The default is the size most recently specified. */
261 val.size = osize;
262 }
263
264 return val;
265 }
266 \f
267 /* Print value VAL on stream according to OPTIONS.
268 Do not end with a newline.
269 SIZE is the letter for the size of datum being printed.
270 This is used to pad hex numbers so they line up. SIZE is 0
271 for print / output and set for examine. */
272
273 static void
274 print_formatted (struct value *val, int size,
275 const struct value_print_options *options,
276 struct ui_file *stream)
277 {
278 struct type *type = check_typedef (value_type (val));
279 int len = TYPE_LENGTH (type);
280
281 if (VALUE_LVAL (val) == lval_memory)
282 next_address = value_address (val) + len;
283
284 if (size)
285 {
286 switch (options->format)
287 {
288 case 's':
289 {
290 struct type *elttype = value_type (val);
291
292 next_address = (value_address (val)
293 + val_print_string (elttype, NULL,
294 value_address (val), -1,
295 stream, options) * len);
296 }
297 return;
298
299 case 'i':
300 /* We often wrap here if there are long symbolic names. */
301 wrap_here (" ");
302 next_address = (value_address (val)
303 + gdb_print_insn (get_type_arch (type),
304 value_address (val), stream,
305 &branch_delay_insns));
306 return;
307 }
308 }
309
310 if (options->format == 0 || options->format == 's'
311 || TYPE_CODE (type) == TYPE_CODE_REF
312 || TYPE_CODE (type) == TYPE_CODE_ARRAY
313 || TYPE_CODE (type) == TYPE_CODE_STRING
314 || TYPE_CODE (type) == TYPE_CODE_STRUCT
315 || TYPE_CODE (type) == TYPE_CODE_UNION
316 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
317 value_print (val, stream, options);
318 else
319 /* User specified format, so don't look to the type to tell us
320 what to do. */
321 val_print_scalar_formatted (type,
322 value_embedded_offset (val),
323 val,
324 options, size, stream);
325 }
326
327 /* Return builtin floating point type of same length as TYPE.
328 If no such type is found, return TYPE itself. */
329 static struct type *
330 float_type_from_length (struct type *type)
331 {
332 struct gdbarch *gdbarch = get_type_arch (type);
333 const struct builtin_type *builtin = builtin_type (gdbarch);
334
335 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
336 type = builtin->builtin_float;
337 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
338 type = builtin->builtin_double;
339 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
340 type = builtin->builtin_long_double;
341
342 return type;
343 }
344
345 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
346 according to OPTIONS and SIZE on STREAM. Formats s and i are not
347 supported at this level. */
348
349 void
350 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
351 const struct value_print_options *options,
352 int size, struct ui_file *stream)
353 {
354 struct gdbarch *gdbarch = get_type_arch (type);
355 unsigned int len = TYPE_LENGTH (type);
356 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
357
358 /* String printing should go through val_print_scalar_formatted. */
359 gdb_assert (options->format != 's');
360
361 /* If the value is a pointer, and pointers and addresses are not the
362 same, then at this point, the value's length (in target bytes) is
363 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
364 if (TYPE_CODE (type) == TYPE_CODE_PTR)
365 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
366
367 /* If we are printing it as unsigned, truncate it in case it is actually
368 a negative signed value (e.g. "print/u (short)-1" should print 65535
369 (if shorts are 16 bits) instead of 4294967295). */
370 if (options->format != 'c'
371 && (options->format != 'd' || TYPE_UNSIGNED (type)))
372 {
373 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
374 valaddr += TYPE_LENGTH (type) - len;
375 }
376
377 if (size != 0 && (options->format == 'x' || options->format == 't'))
378 {
379 /* Truncate to fit. */
380 unsigned newlen;
381 switch (size)
382 {
383 case 'b':
384 newlen = 1;
385 break;
386 case 'h':
387 newlen = 2;
388 break;
389 case 'w':
390 newlen = 4;
391 break;
392 case 'g':
393 newlen = 8;
394 break;
395 default:
396 error (_("Undefined output size \"%c\"."), size);
397 }
398 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
399 valaddr += len - newlen;
400 len = newlen;
401 }
402
403 /* Historically gdb has printed floats by first casting them to a
404 long, and then printing the long. PR cli/16242 suggests changing
405 this to using C-style hex float format. */
406 gdb::byte_vector converted_float_bytes;
407 if (TYPE_CODE (type) == TYPE_CODE_FLT
408 && (options->format == 'o'
409 || options->format == 'x'
410 || options->format == 't'
411 || options->format == 'z'
412 || options->format == 'd'
413 || options->format == 'u'))
414 {
415 LONGEST val_long = unpack_long (type, valaddr);
416 converted_float_bytes.resize (TYPE_LENGTH (type));
417 store_signed_integer (converted_float_bytes.data (), TYPE_LENGTH (type),
418 byte_order, val_long);
419 valaddr = converted_float_bytes.data ();
420 }
421
422 /* Printing a non-float type as 'f' will interpret the data as if it were
423 of a floating-point type of the same length, if that exists. Otherwise,
424 the data is printed as integer. */
425 char format = options->format;
426 if (format == 'f' && TYPE_CODE (type) != TYPE_CODE_FLT)
427 {
428 type = float_type_from_length (type);
429 if (TYPE_CODE (type) != TYPE_CODE_FLT)
430 format = 0;
431 }
432
433 switch (format)
434 {
435 case 'o':
436 print_octal_chars (stream, valaddr, len, byte_order);
437 break;
438 case 'd':
439 print_decimal_chars (stream, valaddr, len, true, byte_order);
440 break;
441 case 'u':
442 print_decimal_chars (stream, valaddr, len, false, byte_order);
443 break;
444 case 0:
445 if (TYPE_CODE (type) != TYPE_CODE_FLT)
446 {
447 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
448 byte_order);
449 break;
450 }
451 /* FALLTHROUGH */
452 case 'f':
453 print_floating (valaddr, type, stream);
454 break;
455
456 case 't':
457 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
458 break;
459 case 'x':
460 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
461 break;
462 case 'z':
463 print_hex_chars (stream, valaddr, len, byte_order, true);
464 break;
465 case 'c':
466 {
467 struct value_print_options opts = *options;
468
469 LONGEST val_long = unpack_long (type, valaddr);
470
471 opts.format = 0;
472 if (TYPE_UNSIGNED (type))
473 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
474 else
475 type = builtin_type (gdbarch)->builtin_true_char;
476
477 value_print (value_from_longest (type, val_long), stream, &opts);
478 }
479 break;
480
481 case 'a':
482 {
483 CORE_ADDR addr = unpack_pointer (type, valaddr);
484
485 print_address (gdbarch, addr, stream);
486 }
487 break;
488
489 default:
490 error (_("Undefined output format \"%c\"."), format);
491 }
492 }
493
494 /* Specify default address for `x' command.
495 The `info lines' command uses this. */
496
497 void
498 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
499 {
500 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
501
502 next_gdbarch = gdbarch;
503 next_address = addr;
504
505 /* Make address available to the user as $_. */
506 set_internalvar (lookup_internalvar ("_"),
507 value_from_pointer (ptr_type, addr));
508 }
509
510 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
511 after LEADIN. Print nothing if no symbolic name is found nearby.
512 Optionally also print source file and line number, if available.
513 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
514 or to interpret it as a possible C++ name and convert it back to source
515 form. However note that DO_DEMANGLE can be overridden by the specific
516 settings of the demangle and asm_demangle variables. Returns
517 non-zero if anything was printed; zero otherwise. */
518
519 int
520 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
521 struct ui_file *stream,
522 int do_demangle, const char *leadin)
523 {
524 std::string name, filename;
525 int unmapped = 0;
526 int offset = 0;
527 int line = 0;
528
529 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
530 &filename, &line, &unmapped))
531 return 0;
532
533 fputs_filtered (leadin, stream);
534 if (unmapped)
535 fputs_filtered ("<*", stream);
536 else
537 fputs_filtered ("<", stream);
538 fputs_styled (name.c_str (), function_name_style.style (), stream);
539 if (offset != 0)
540 fprintf_filtered (stream, "+%u", (unsigned int) offset);
541
542 /* Append source filename and line number if desired. Give specific
543 line # of this addr, if we have it; else line # of the nearest symbol. */
544 if (print_symbol_filename && !filename.empty ())
545 {
546 fputs_filtered (line == -1 ? " in " : " at ", stream);
547 fputs_styled (filename.c_str (), file_name_style.style (), stream);
548 if (line != -1)
549 fprintf_filtered (stream, ":%d", line);
550 }
551 if (unmapped)
552 fputs_filtered ("*>", stream);
553 else
554 fputs_filtered (">", stream);
555
556 return 1;
557 }
558
559 /* See valprint.h. */
560
561 int
562 build_address_symbolic (struct gdbarch *gdbarch,
563 CORE_ADDR addr, /* IN */
564 int do_demangle, /* IN */
565 std::string *name, /* OUT */
566 int *offset, /* OUT */
567 std::string *filename, /* OUT */
568 int *line, /* OUT */
569 int *unmapped) /* OUT */
570 {
571 struct bound_minimal_symbol msymbol;
572 struct symbol *symbol;
573 CORE_ADDR name_location = 0;
574 struct obj_section *section = NULL;
575 const char *name_temp = "";
576
577 /* Let's say it is mapped (not unmapped). */
578 *unmapped = 0;
579
580 /* Determine if the address is in an overlay, and whether it is
581 mapped. */
582 if (overlay_debugging)
583 {
584 section = find_pc_overlay (addr);
585 if (pc_in_unmapped_range (addr, section))
586 {
587 *unmapped = 1;
588 addr = overlay_mapped_address (addr, section);
589 }
590 }
591
592 /* First try to find the address in the symbol table, then
593 in the minsyms. Take the closest one. */
594
595 /* This is defective in the sense that it only finds text symbols. So
596 really this is kind of pointless--we should make sure that the
597 minimal symbols have everything we need (by changing that we could
598 save some memory, but for many debug format--ELF/DWARF or
599 anything/stabs--it would be inconvenient to eliminate those minimal
600 symbols anyway). */
601 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
602 symbol = find_pc_sect_function (addr, section);
603
604 if (symbol)
605 {
606 /* If this is a function (i.e. a code address), strip out any
607 non-address bits. For instance, display a pointer to the
608 first instruction of a Thumb function as <function>; the
609 second instruction will be <function+2>, even though the
610 pointer is <function+3>. This matches the ISA behavior. */
611 addr = gdbarch_addr_bits_remove (gdbarch, addr);
612
613 name_location = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (symbol));
614 if (do_demangle || asm_demangle)
615 name_temp = SYMBOL_PRINT_NAME (symbol);
616 else
617 name_temp = SYMBOL_LINKAGE_NAME (symbol);
618 }
619
620 if (msymbol.minsym != NULL
621 && MSYMBOL_HAS_SIZE (msymbol.minsym)
622 && MSYMBOL_SIZE (msymbol.minsym) == 0
623 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
624 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
625 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
626 msymbol.minsym = NULL;
627
628 if (msymbol.minsym != NULL)
629 {
630 if (BMSYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
631 {
632 /* If this is a function (i.e. a code address), strip out any
633 non-address bits. For instance, display a pointer to the
634 first instruction of a Thumb function as <function>; the
635 second instruction will be <function+2>, even though the
636 pointer is <function+3>. This matches the ISA behavior. */
637 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
638 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
639 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
640 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
641 addr = gdbarch_addr_bits_remove (gdbarch, addr);
642
643 /* The msymbol is closer to the address than the symbol;
644 use the msymbol instead. */
645 symbol = 0;
646 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
647 if (do_demangle || asm_demangle)
648 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
649 else
650 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
651 }
652 }
653 if (symbol == NULL && msymbol.minsym == NULL)
654 return 1;
655
656 /* If the nearest symbol is too far away, don't print anything symbolic. */
657
658 /* For when CORE_ADDR is larger than unsigned int, we do math in
659 CORE_ADDR. But when we detect unsigned wraparound in the
660 CORE_ADDR math, we ignore this test and print the offset,
661 because addr+max_symbolic_offset has wrapped through the end
662 of the address space back to the beginning, giving bogus comparison. */
663 if (addr > name_location + max_symbolic_offset
664 && name_location + max_symbolic_offset > name_location)
665 return 1;
666
667 *offset = addr - name_location;
668
669 *name = name_temp;
670
671 if (print_symbol_filename)
672 {
673 struct symtab_and_line sal;
674
675 sal = find_pc_sect_line (addr, section, 0);
676
677 if (sal.symtab)
678 {
679 *filename = symtab_to_filename_for_display (sal.symtab);
680 *line = sal.line;
681 }
682 }
683 return 0;
684 }
685
686
687 /* Print address ADDR symbolically on STREAM.
688 First print it as a number. Then perhaps print
689 <SYMBOL + OFFSET> after the number. */
690
691 void
692 print_address (struct gdbarch *gdbarch,
693 CORE_ADDR addr, struct ui_file *stream)
694 {
695 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
696 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
697 }
698
699 /* Return a prefix for instruction address:
700 "=> " for current instruction, else " ". */
701
702 const char *
703 pc_prefix (CORE_ADDR addr)
704 {
705 if (has_stack_frames ())
706 {
707 struct frame_info *frame;
708 CORE_ADDR pc;
709
710 frame = get_selected_frame (NULL);
711 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
712 return "=> ";
713 }
714 return " ";
715 }
716
717 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
718 controls whether to print the symbolic name "raw" or demangled.
719 Return non-zero if anything was printed; zero otherwise. */
720
721 int
722 print_address_demangle (const struct value_print_options *opts,
723 struct gdbarch *gdbarch, CORE_ADDR addr,
724 struct ui_file *stream, int do_demangle)
725 {
726 if (opts->addressprint)
727 {
728 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
729 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
730 }
731 else
732 {
733 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
734 }
735 return 1;
736 }
737 \f
738
739 /* Find the address of the instruction that is INST_COUNT instructions before
740 the instruction at ADDR.
741 Since some architectures have variable-length instructions, we can't just
742 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
743 number information to locate the nearest known instruction boundary,
744 and disassemble forward from there. If we go out of the symbol range
745 during disassembling, we return the lowest address we've got so far and
746 set the number of instructions read to INST_READ. */
747
748 static CORE_ADDR
749 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
750 int inst_count, int *inst_read)
751 {
752 /* The vector PCS is used to store instruction addresses within
753 a pc range. */
754 CORE_ADDR loop_start, loop_end, p;
755 std::vector<CORE_ADDR> pcs;
756 struct symtab_and_line sal;
757
758 *inst_read = 0;
759 loop_start = loop_end = addr;
760
761 /* In each iteration of the outer loop, we get a pc range that ends before
762 LOOP_START, then we count and store every instruction address of the range
763 iterated in the loop.
764 If the number of instructions counted reaches INST_COUNT, return the
765 stored address that is located INST_COUNT instructions back from ADDR.
766 If INST_COUNT is not reached, we subtract the number of counted
767 instructions from INST_COUNT, and go to the next iteration. */
768 do
769 {
770 pcs.clear ();
771 sal = find_pc_sect_line (loop_start, NULL, 1);
772 if (sal.line <= 0)
773 {
774 /* We reach here when line info is not available. In this case,
775 we print a message and just exit the loop. The return value
776 is calculated after the loop. */
777 printf_filtered (_("No line number information available "
778 "for address "));
779 wrap_here (" ");
780 print_address (gdbarch, loop_start - 1, gdb_stdout);
781 printf_filtered ("\n");
782 break;
783 }
784
785 loop_end = loop_start;
786 loop_start = sal.pc;
787
788 /* This loop pushes instruction addresses in the range from
789 LOOP_START to LOOP_END. */
790 for (p = loop_start; p < loop_end;)
791 {
792 pcs.push_back (p);
793 p += gdb_insn_length (gdbarch, p);
794 }
795
796 inst_count -= pcs.size ();
797 *inst_read += pcs.size ();
798 }
799 while (inst_count > 0);
800
801 /* After the loop, the vector PCS has instruction addresses of the last
802 source line we processed, and INST_COUNT has a negative value.
803 We return the address at the index of -INST_COUNT in the vector for
804 the reason below.
805 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
806 Line X of File
807 0x4000
808 0x4001
809 0x4005
810 Line Y of File
811 0x4009
812 0x400c
813 => 0x400e
814 0x4011
815 find_instruction_backward is called with INST_COUNT = 4 and expected to
816 return 0x4001. When we reach here, INST_COUNT is set to -1 because
817 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
818 4001 is located at the index 1 of the last iterated line (= Line X),
819 which is simply calculated by -INST_COUNT.
820 The case when the length of PCS is 0 means that we reached an area for
821 which line info is not available. In such case, we return LOOP_START,
822 which was the lowest instruction address that had line info. */
823 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
824
825 /* INST_READ includes all instruction addresses in a pc range. Need to
826 exclude the beginning part up to the address we're returning. That
827 is, exclude {0x4000} in the example above. */
828 if (inst_count < 0)
829 *inst_read += inst_count;
830
831 return p;
832 }
833
834 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
835 placing the results in GDB's memory from MYADDR + LEN. Returns
836 a count of the bytes actually read. */
837
838 static int
839 read_memory_backward (struct gdbarch *gdbarch,
840 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
841 {
842 int errcode;
843 int nread; /* Number of bytes actually read. */
844
845 /* First try a complete read. */
846 errcode = target_read_memory (memaddr, myaddr, len);
847 if (errcode == 0)
848 {
849 /* Got it all. */
850 nread = len;
851 }
852 else
853 {
854 /* Loop, reading one byte at a time until we get as much as we can. */
855 memaddr += len;
856 myaddr += len;
857 for (nread = 0; nread < len; ++nread)
858 {
859 errcode = target_read_memory (--memaddr, --myaddr, 1);
860 if (errcode != 0)
861 {
862 /* The read was unsuccessful, so exit the loop. */
863 printf_filtered (_("Cannot access memory at address %s\n"),
864 paddress (gdbarch, memaddr));
865 break;
866 }
867 }
868 }
869 return nread;
870 }
871
872 /* Returns true if X (which is LEN bytes wide) is the number zero. */
873
874 static int
875 integer_is_zero (const gdb_byte *x, int len)
876 {
877 int i = 0;
878
879 while (i < len && x[i] == 0)
880 ++i;
881 return (i == len);
882 }
883
884 /* Find the start address of a string in which ADDR is included.
885 Basically we search for '\0' and return the next address,
886 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
887 we stop searching and return the address to print characters as many as
888 PRINT_MAX from the string. */
889
890 static CORE_ADDR
891 find_string_backward (struct gdbarch *gdbarch,
892 CORE_ADDR addr, int count, int char_size,
893 const struct value_print_options *options,
894 int *strings_counted)
895 {
896 const int chunk_size = 0x20;
897 int read_error = 0;
898 int chars_read = 0;
899 int chars_to_read = chunk_size;
900 int chars_counted = 0;
901 int count_original = count;
902 CORE_ADDR string_start_addr = addr;
903
904 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
905 gdb::byte_vector buffer (chars_to_read * char_size);
906 while (count > 0 && read_error == 0)
907 {
908 int i;
909
910 addr -= chars_to_read * char_size;
911 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
912 chars_to_read * char_size);
913 chars_read /= char_size;
914 read_error = (chars_read == chars_to_read) ? 0 : 1;
915 /* Searching for '\0' from the end of buffer in backward direction. */
916 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
917 {
918 int offset = (chars_to_read - i - 1) * char_size;
919
920 if (integer_is_zero (&buffer[offset], char_size)
921 || chars_counted == options->print_max)
922 {
923 /* Found '\0' or reached print_max. As OFFSET is the offset to
924 '\0', we add CHAR_SIZE to return the start address of
925 a string. */
926 --count;
927 string_start_addr = addr + offset + char_size;
928 chars_counted = 0;
929 }
930 }
931 }
932
933 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
934 *strings_counted = count_original - count;
935
936 if (read_error != 0)
937 {
938 /* In error case, STRING_START_ADDR is pointing to the string that
939 was last successfully loaded. Rewind the partially loaded string. */
940 string_start_addr -= chars_counted * char_size;
941 }
942
943 return string_start_addr;
944 }
945
946 /* Examine data at address ADDR in format FMT.
947 Fetch it from memory and print on gdb_stdout. */
948
949 static void
950 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
951 {
952 char format = 0;
953 char size;
954 int count = 1;
955 struct type *val_type = NULL;
956 int i;
957 int maxelts;
958 struct value_print_options opts;
959 int need_to_update_next_address = 0;
960 CORE_ADDR addr_rewound = 0;
961
962 format = fmt.format;
963 size = fmt.size;
964 count = fmt.count;
965 next_gdbarch = gdbarch;
966 next_address = addr;
967
968 /* Instruction format implies fetch single bytes
969 regardless of the specified size.
970 The case of strings is handled in decode_format, only explicit
971 size operator are not changed to 'b'. */
972 if (format == 'i')
973 size = 'b';
974
975 if (size == 'a')
976 {
977 /* Pick the appropriate size for an address. */
978 if (gdbarch_ptr_bit (next_gdbarch) == 64)
979 size = 'g';
980 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
981 size = 'w';
982 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
983 size = 'h';
984 else
985 /* Bad value for gdbarch_ptr_bit. */
986 internal_error (__FILE__, __LINE__,
987 _("failed internal consistency check"));
988 }
989
990 if (size == 'b')
991 val_type = builtin_type (next_gdbarch)->builtin_int8;
992 else if (size == 'h')
993 val_type = builtin_type (next_gdbarch)->builtin_int16;
994 else if (size == 'w')
995 val_type = builtin_type (next_gdbarch)->builtin_int32;
996 else if (size == 'g')
997 val_type = builtin_type (next_gdbarch)->builtin_int64;
998
999 if (format == 's')
1000 {
1001 struct type *char_type = NULL;
1002
1003 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1004 if type is not found. */
1005 if (size == 'h')
1006 char_type = builtin_type (next_gdbarch)->builtin_char16;
1007 else if (size == 'w')
1008 char_type = builtin_type (next_gdbarch)->builtin_char32;
1009 if (char_type)
1010 val_type = char_type;
1011 else
1012 {
1013 if (size != '\0' && size != 'b')
1014 warning (_("Unable to display strings with "
1015 "size '%c', using 'b' instead."), size);
1016 size = 'b';
1017 val_type = builtin_type (next_gdbarch)->builtin_int8;
1018 }
1019 }
1020
1021 maxelts = 8;
1022 if (size == 'w')
1023 maxelts = 4;
1024 if (size == 'g')
1025 maxelts = 2;
1026 if (format == 's' || format == 'i')
1027 maxelts = 1;
1028
1029 get_formatted_print_options (&opts, format);
1030
1031 if (count < 0)
1032 {
1033 /* This is the negative repeat count case.
1034 We rewind the address based on the given repeat count and format,
1035 then examine memory from there in forward direction. */
1036
1037 count = -count;
1038 if (format == 'i')
1039 {
1040 next_address = find_instruction_backward (gdbarch, addr, count,
1041 &count);
1042 }
1043 else if (format == 's')
1044 {
1045 next_address = find_string_backward (gdbarch, addr, count,
1046 TYPE_LENGTH (val_type),
1047 &opts, &count);
1048 }
1049 else
1050 {
1051 next_address = addr - count * TYPE_LENGTH (val_type);
1052 }
1053
1054 /* The following call to print_formatted updates next_address in every
1055 iteration. In backward case, we store the start address here
1056 and update next_address with it before exiting the function. */
1057 addr_rewound = (format == 's'
1058 ? next_address - TYPE_LENGTH (val_type)
1059 : next_address);
1060 need_to_update_next_address = 1;
1061 }
1062
1063 /* Print as many objects as specified in COUNT, at most maxelts per line,
1064 with the address of the next one at the start of each line. */
1065
1066 while (count > 0)
1067 {
1068 QUIT;
1069 if (format == 'i')
1070 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1071 print_address (next_gdbarch, next_address, gdb_stdout);
1072 printf_filtered (":");
1073 for (i = maxelts;
1074 i > 0 && count > 0;
1075 i--, count--)
1076 {
1077 printf_filtered ("\t");
1078 /* Note that print_formatted sets next_address for the next
1079 object. */
1080 last_examine_address = next_address;
1081
1082 /* The value to be displayed is not fetched greedily.
1083 Instead, to avoid the possibility of a fetched value not
1084 being used, its retrieval is delayed until the print code
1085 uses it. When examining an instruction stream, the
1086 disassembler will perform its own memory fetch using just
1087 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1088 the disassembler be modified so that LAST_EXAMINE_VALUE
1089 is left with the byte sequence from the last complete
1090 instruction fetched from memory? */
1091 last_examine_value
1092 = release_value (value_at_lazy (val_type, next_address));
1093
1094 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1095
1096 /* Display any branch delay slots following the final insn. */
1097 if (format == 'i' && count == 1)
1098 count += branch_delay_insns;
1099 }
1100 printf_filtered ("\n");
1101 }
1102
1103 if (need_to_update_next_address)
1104 next_address = addr_rewound;
1105 }
1106 \f
1107 static void
1108 validate_format (struct format_data fmt, const char *cmdname)
1109 {
1110 if (fmt.size != 0)
1111 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1112 if (fmt.count != 1)
1113 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1114 cmdname);
1115 if (fmt.format == 'i')
1116 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1117 fmt.format, cmdname);
1118 }
1119
1120 /* Parse print command format string into *FMTP and update *EXPP.
1121 CMDNAME should name the current command. */
1122
1123 void
1124 print_command_parse_format (const char **expp, const char *cmdname,
1125 struct format_data *fmtp)
1126 {
1127 const char *exp = *expp;
1128
1129 if (exp && *exp == '/')
1130 {
1131 exp++;
1132 *fmtp = decode_format (&exp, last_format, 0);
1133 validate_format (*fmtp, cmdname);
1134 last_format = fmtp->format;
1135 }
1136 else
1137 {
1138 fmtp->count = 1;
1139 fmtp->format = 0;
1140 fmtp->size = 0;
1141 fmtp->raw = 0;
1142 }
1143
1144 *expp = exp;
1145 }
1146
1147 /* Print VAL to console according to *FMTP, including recording it to
1148 the history. */
1149
1150 void
1151 print_value (struct value *val, const struct format_data *fmtp)
1152 {
1153 struct value_print_options opts;
1154 int histindex = record_latest_value (val);
1155
1156 annotate_value_history_begin (histindex, value_type (val));
1157
1158 printf_filtered ("$%d = ", histindex);
1159
1160 annotate_value_history_value ();
1161
1162 get_formatted_print_options (&opts, fmtp->format);
1163 opts.raw = fmtp->raw;
1164
1165 print_formatted (val, fmtp->size, &opts, gdb_stdout);
1166 printf_filtered ("\n");
1167
1168 annotate_value_history_end ();
1169 }
1170
1171 /* Evaluate string EXP as an expression in the current language and
1172 print the resulting value. EXP may contain a format specifier as the
1173 first argument ("/x myvar" for example, to print myvar in hex). */
1174
1175 static void
1176 print_command_1 (const char *exp, int voidprint)
1177 {
1178 struct value *val;
1179 struct format_data fmt;
1180
1181 print_command_parse_format (&exp, "print", &fmt);
1182
1183 if (exp && *exp)
1184 {
1185 expression_up expr = parse_expression (exp);
1186 val = evaluate_expression (expr.get ());
1187 }
1188 else
1189 val = access_value_history (0);
1190
1191 if (voidprint || (val && value_type (val) &&
1192 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1193 print_value (val, &fmt);
1194 }
1195
1196 static void
1197 print_command (const char *exp, int from_tty)
1198 {
1199 print_command_1 (exp, 1);
1200 }
1201
1202 /* Same as print, except it doesn't print void results. */
1203 static void
1204 call_command (const char *exp, int from_tty)
1205 {
1206 print_command_1 (exp, 0);
1207 }
1208
1209 /* Implementation of the "output" command. */
1210
1211 void
1212 output_command (const char *exp, int from_tty)
1213 {
1214 char format = 0;
1215 struct value *val;
1216 struct format_data fmt;
1217 struct value_print_options opts;
1218
1219 fmt.size = 0;
1220 fmt.raw = 0;
1221
1222 if (exp && *exp == '/')
1223 {
1224 exp++;
1225 fmt = decode_format (&exp, 0, 0);
1226 validate_format (fmt, "output");
1227 format = fmt.format;
1228 }
1229
1230 expression_up expr = parse_expression (exp);
1231
1232 val = evaluate_expression (expr.get ());
1233
1234 annotate_value_begin (value_type (val));
1235
1236 get_formatted_print_options (&opts, format);
1237 opts.raw = fmt.raw;
1238 print_formatted (val, fmt.size, &opts, gdb_stdout);
1239
1240 annotate_value_end ();
1241
1242 wrap_here ("");
1243 gdb_flush (gdb_stdout);
1244 }
1245
1246 static void
1247 set_command (const char *exp, int from_tty)
1248 {
1249 expression_up expr = parse_expression (exp);
1250
1251 if (expr->nelts >= 1)
1252 switch (expr->elts[0].opcode)
1253 {
1254 case UNOP_PREINCREMENT:
1255 case UNOP_POSTINCREMENT:
1256 case UNOP_PREDECREMENT:
1257 case UNOP_POSTDECREMENT:
1258 case BINOP_ASSIGN:
1259 case BINOP_ASSIGN_MODIFY:
1260 case BINOP_COMMA:
1261 break;
1262 default:
1263 warning
1264 (_("Expression is not an assignment (and might have no effect)"));
1265 }
1266
1267 evaluate_expression (expr.get ());
1268 }
1269
1270 static void
1271 info_symbol_command (const char *arg, int from_tty)
1272 {
1273 struct minimal_symbol *msymbol;
1274 struct obj_section *osect;
1275 CORE_ADDR addr, sect_addr;
1276 int matches = 0;
1277 unsigned int offset;
1278
1279 if (!arg)
1280 error_no_arg (_("address"));
1281
1282 addr = parse_and_eval_address (arg);
1283 for (objfile *objfile : current_program_space->objfiles ())
1284 ALL_OBJFILE_OSECTIONS (objfile, osect)
1285 {
1286 /* Only process each object file once, even if there's a separate
1287 debug file. */
1288 if (objfile->separate_debug_objfile_backlink)
1289 continue;
1290
1291 sect_addr = overlay_mapped_address (addr, osect);
1292
1293 if (obj_section_addr (osect) <= sect_addr
1294 && sect_addr < obj_section_endaddr (osect)
1295 && (msymbol
1296 = lookup_minimal_symbol_by_pc_section (sect_addr,
1297 osect).minsym))
1298 {
1299 const char *obj_name, *mapped, *sec_name, *msym_name;
1300 const char *loc_string;
1301
1302 matches = 1;
1303 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1304 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1305 sec_name = osect->the_bfd_section->name;
1306 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1307
1308 /* Don't print the offset if it is zero.
1309 We assume there's no need to handle i18n of "sym + offset". */
1310 std::string string_holder;
1311 if (offset)
1312 {
1313 string_holder = string_printf ("%s + %u", msym_name, offset);
1314 loc_string = string_holder.c_str ();
1315 }
1316 else
1317 loc_string = msym_name;
1318
1319 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1320 obj_name = objfile_name (osect->objfile);
1321
1322 if (MULTI_OBJFILE_P ())
1323 if (pc_in_unmapped_range (addr, osect))
1324 if (section_is_overlay (osect))
1325 printf_filtered (_("%s in load address range of "
1326 "%s overlay section %s of %s\n"),
1327 loc_string, mapped, sec_name, obj_name);
1328 else
1329 printf_filtered (_("%s in load address range of "
1330 "section %s of %s\n"),
1331 loc_string, sec_name, obj_name);
1332 else
1333 if (section_is_overlay (osect))
1334 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1335 loc_string, mapped, sec_name, obj_name);
1336 else
1337 printf_filtered (_("%s in section %s of %s\n"),
1338 loc_string, sec_name, obj_name);
1339 else
1340 if (pc_in_unmapped_range (addr, osect))
1341 if (section_is_overlay (osect))
1342 printf_filtered (_("%s in load address range of %s overlay "
1343 "section %s\n"),
1344 loc_string, mapped, sec_name);
1345 else
1346 printf_filtered
1347 (_("%s in load address range of section %s\n"),
1348 loc_string, sec_name);
1349 else
1350 if (section_is_overlay (osect))
1351 printf_filtered (_("%s in %s overlay section %s\n"),
1352 loc_string, mapped, sec_name);
1353 else
1354 printf_filtered (_("%s in section %s\n"),
1355 loc_string, sec_name);
1356 }
1357 }
1358 if (matches == 0)
1359 printf_filtered (_("No symbol matches %s.\n"), arg);
1360 }
1361
1362 static void
1363 info_address_command (const char *exp, int from_tty)
1364 {
1365 struct gdbarch *gdbarch;
1366 int regno;
1367 struct symbol *sym;
1368 struct bound_minimal_symbol msymbol;
1369 long val;
1370 struct obj_section *section;
1371 CORE_ADDR load_addr, context_pc = 0;
1372 struct field_of_this_result is_a_field_of_this;
1373
1374 if (exp == 0)
1375 error (_("Argument required."));
1376
1377 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1378 &is_a_field_of_this).symbol;
1379 if (sym == NULL)
1380 {
1381 if (is_a_field_of_this.type != NULL)
1382 {
1383 printf_filtered ("Symbol \"");
1384 fprintf_symbol_filtered (gdb_stdout, exp,
1385 current_language->la_language, DMGL_ANSI);
1386 printf_filtered ("\" is a field of the local class variable ");
1387 if (current_language->la_language == language_objc)
1388 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1389 else
1390 printf_filtered ("`this'\n");
1391 return;
1392 }
1393
1394 msymbol = lookup_bound_minimal_symbol (exp);
1395
1396 if (msymbol.minsym != NULL)
1397 {
1398 struct objfile *objfile = msymbol.objfile;
1399
1400 gdbarch = get_objfile_arch (objfile);
1401 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1402
1403 printf_filtered ("Symbol \"");
1404 fprintf_symbol_filtered (gdb_stdout, exp,
1405 current_language->la_language, DMGL_ANSI);
1406 printf_filtered ("\" is at ");
1407 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1408 gdb_stdout);
1409 printf_filtered (" in a file compiled without debugging");
1410 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1411 if (section_is_overlay (section))
1412 {
1413 load_addr = overlay_unmapped_address (load_addr, section);
1414 printf_filtered (",\n -- loaded at ");
1415 fputs_styled (paddress (gdbarch, load_addr),
1416 address_style.style (),
1417 gdb_stdout);
1418 printf_filtered (" in overlay section %s",
1419 section->the_bfd_section->name);
1420 }
1421 printf_filtered (".\n");
1422 }
1423 else
1424 error (_("No symbol \"%s\" in current context."), exp);
1425 return;
1426 }
1427
1428 printf_filtered ("Symbol \"");
1429 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1430 current_language->la_language, DMGL_ANSI);
1431 printf_filtered ("\" is ");
1432 val = SYMBOL_VALUE (sym);
1433 if (SYMBOL_OBJFILE_OWNED (sym))
1434 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1435 else
1436 section = NULL;
1437 gdbarch = symbol_arch (sym);
1438
1439 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1440 {
1441 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1442 gdb_stdout);
1443 printf_filtered (".\n");
1444 return;
1445 }
1446
1447 switch (SYMBOL_CLASS (sym))
1448 {
1449 case LOC_CONST:
1450 case LOC_CONST_BYTES:
1451 printf_filtered ("constant");
1452 break;
1453
1454 case LOC_LABEL:
1455 printf_filtered ("a label at address ");
1456 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1457 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1458 gdb_stdout);
1459 if (section_is_overlay (section))
1460 {
1461 load_addr = overlay_unmapped_address (load_addr, section);
1462 printf_filtered (",\n -- loaded at ");
1463 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1464 gdb_stdout);
1465 printf_filtered (" in overlay section %s",
1466 section->the_bfd_section->name);
1467 }
1468 break;
1469
1470 case LOC_COMPUTED:
1471 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1472
1473 case LOC_REGISTER:
1474 /* GDBARCH is the architecture associated with the objfile the symbol
1475 is defined in; the target architecture may be different, and may
1476 provide additional registers. However, we do not know the target
1477 architecture at this point. We assume the objfile architecture
1478 will contain all the standard registers that occur in debug info
1479 in that objfile. */
1480 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1481
1482 if (SYMBOL_IS_ARGUMENT (sym))
1483 printf_filtered (_("an argument in register %s"),
1484 gdbarch_register_name (gdbarch, regno));
1485 else
1486 printf_filtered (_("a variable in register %s"),
1487 gdbarch_register_name (gdbarch, regno));
1488 break;
1489
1490 case LOC_STATIC:
1491 printf_filtered (_("static storage at address "));
1492 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1493 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1494 gdb_stdout);
1495 if (section_is_overlay (section))
1496 {
1497 load_addr = overlay_unmapped_address (load_addr, section);
1498 printf_filtered (_(",\n -- loaded at "));
1499 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1500 gdb_stdout);
1501 printf_filtered (_(" in overlay section %s"),
1502 section->the_bfd_section->name);
1503 }
1504 break;
1505
1506 case LOC_REGPARM_ADDR:
1507 /* Note comment at LOC_REGISTER. */
1508 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1509 printf_filtered (_("address of an argument in register %s"),
1510 gdbarch_register_name (gdbarch, regno));
1511 break;
1512
1513 case LOC_ARG:
1514 printf_filtered (_("an argument at offset %ld"), val);
1515 break;
1516
1517 case LOC_LOCAL:
1518 printf_filtered (_("a local variable at frame offset %ld"), val);
1519 break;
1520
1521 case LOC_REF_ARG:
1522 printf_filtered (_("a reference argument at offset %ld"), val);
1523 break;
1524
1525 case LOC_TYPEDEF:
1526 printf_filtered (_("a typedef"));
1527 break;
1528
1529 case LOC_BLOCK:
1530 printf_filtered (_("a function at address "));
1531 load_addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1532 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1533 gdb_stdout);
1534 if (section_is_overlay (section))
1535 {
1536 load_addr = overlay_unmapped_address (load_addr, section);
1537 printf_filtered (_(",\n -- loaded at "));
1538 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1539 gdb_stdout);
1540 printf_filtered (_(" in overlay section %s"),
1541 section->the_bfd_section->name);
1542 }
1543 break;
1544
1545 case LOC_UNRESOLVED:
1546 {
1547 struct bound_minimal_symbol msym;
1548
1549 msym = lookup_bound_minimal_symbol (SYMBOL_LINKAGE_NAME (sym));
1550 if (msym.minsym == NULL)
1551 printf_filtered ("unresolved");
1552 else
1553 {
1554 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1555
1556 if (section
1557 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1558 {
1559 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1560 printf_filtered (_("a thread-local variable at offset %s "
1561 "in the thread-local storage for `%s'"),
1562 paddress (gdbarch, load_addr),
1563 objfile_name (section->objfile));
1564 }
1565 else
1566 {
1567 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1568 printf_filtered (_("static storage at address "));
1569 fputs_styled (paddress (gdbarch, load_addr),
1570 address_style.style (), gdb_stdout);
1571 if (section_is_overlay (section))
1572 {
1573 load_addr = overlay_unmapped_address (load_addr, section);
1574 printf_filtered (_(",\n -- loaded at "));
1575 fputs_styled (paddress (gdbarch, load_addr),
1576 address_style.style (),
1577 gdb_stdout);
1578 printf_filtered (_(" in overlay section %s"),
1579 section->the_bfd_section->name);
1580 }
1581 }
1582 }
1583 }
1584 break;
1585
1586 case LOC_OPTIMIZED_OUT:
1587 printf_filtered (_("optimized out"));
1588 break;
1589
1590 default:
1591 printf_filtered (_("of unknown (botched) type"));
1592 break;
1593 }
1594 printf_filtered (".\n");
1595 }
1596 \f
1597
1598 static void
1599 x_command (const char *exp, int from_tty)
1600 {
1601 struct format_data fmt;
1602 struct value *val;
1603
1604 fmt.format = last_format ? last_format : 'x';
1605 fmt.size = last_size;
1606 fmt.count = 1;
1607 fmt.raw = 0;
1608
1609 /* If there is no expression and no format, use the most recent
1610 count. */
1611 if (exp == nullptr && last_count > 0)
1612 fmt.count = last_count;
1613
1614 if (exp && *exp == '/')
1615 {
1616 const char *tmp = exp + 1;
1617
1618 fmt = decode_format (&tmp, last_format, last_size);
1619 exp = (char *) tmp;
1620 }
1621
1622 last_count = fmt.count;
1623
1624 /* If we have an expression, evaluate it and use it as the address. */
1625
1626 if (exp != 0 && *exp != 0)
1627 {
1628 expression_up expr = parse_expression (exp);
1629 /* Cause expression not to be there any more if this command is
1630 repeated with Newline. But don't clobber a user-defined
1631 command's definition. */
1632 if (from_tty)
1633 set_repeat_arguments ("");
1634 val = evaluate_expression (expr.get ());
1635 if (TYPE_IS_REFERENCE (value_type (val)))
1636 val = coerce_ref (val);
1637 /* In rvalue contexts, such as this, functions are coerced into
1638 pointers to functions. This makes "x/i main" work. */
1639 if (/* last_format == 'i' && */
1640 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1641 && VALUE_LVAL (val) == lval_memory)
1642 next_address = value_address (val);
1643 else
1644 next_address = value_as_address (val);
1645
1646 next_gdbarch = expr->gdbarch;
1647 }
1648
1649 if (!next_gdbarch)
1650 error_no_arg (_("starting display address"));
1651
1652 do_examine (fmt, next_gdbarch, next_address);
1653
1654 /* If the examine succeeds, we remember its size and format for next
1655 time. Set last_size to 'b' for strings. */
1656 if (fmt.format == 's')
1657 last_size = 'b';
1658 else
1659 last_size = fmt.size;
1660 last_format = fmt.format;
1661
1662 /* Set a couple of internal variables if appropriate. */
1663 if (last_examine_value != nullptr)
1664 {
1665 /* Make last address examined available to the user as $_. Use
1666 the correct pointer type. */
1667 struct type *pointer_type
1668 = lookup_pointer_type (value_type (last_examine_value.get ()));
1669 set_internalvar (lookup_internalvar ("_"),
1670 value_from_pointer (pointer_type,
1671 last_examine_address));
1672
1673 /* Make contents of last address examined available to the user
1674 as $__. If the last value has not been fetched from memory
1675 then don't fetch it now; instead mark it by voiding the $__
1676 variable. */
1677 if (value_lazy (last_examine_value.get ()))
1678 clear_internalvar (lookup_internalvar ("__"));
1679 else
1680 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1681 }
1682 }
1683 \f
1684
1685 /* Add an expression to the auto-display chain.
1686 Specify the expression. */
1687
1688 static void
1689 display_command (const char *arg, int from_tty)
1690 {
1691 struct format_data fmt;
1692 struct display *newobj;
1693 const char *exp = arg;
1694
1695 if (exp == 0)
1696 {
1697 do_displays ();
1698 return;
1699 }
1700
1701 if (*exp == '/')
1702 {
1703 exp++;
1704 fmt = decode_format (&exp, 0, 0);
1705 if (fmt.size && fmt.format == 0)
1706 fmt.format = 'x';
1707 if (fmt.format == 'i' || fmt.format == 's')
1708 fmt.size = 'b';
1709 }
1710 else
1711 {
1712 fmt.format = 0;
1713 fmt.size = 0;
1714 fmt.count = 0;
1715 fmt.raw = 0;
1716 }
1717
1718 innermost_block_tracker tracker;
1719 expression_up expr = parse_expression (exp, &tracker);
1720
1721 newobj = new display ();
1722
1723 newobj->exp_string = xstrdup (exp);
1724 newobj->exp = std::move (expr);
1725 newobj->block = tracker.block ();
1726 newobj->pspace = current_program_space;
1727 newobj->number = ++display_number;
1728 newobj->format = fmt;
1729 newobj->enabled_p = 1;
1730 newobj->next = NULL;
1731
1732 if (display_chain == NULL)
1733 display_chain = newobj;
1734 else
1735 {
1736 struct display *last;
1737
1738 for (last = display_chain; last->next != NULL; last = last->next)
1739 ;
1740 last->next = newobj;
1741 }
1742
1743 if (from_tty)
1744 do_one_display (newobj);
1745
1746 dont_repeat ();
1747 }
1748
1749 static void
1750 free_display (struct display *d)
1751 {
1752 xfree (d->exp_string);
1753 delete d;
1754 }
1755
1756 /* Clear out the display_chain. Done when new symtabs are loaded,
1757 since this invalidates the types stored in many expressions. */
1758
1759 void
1760 clear_displays (void)
1761 {
1762 struct display *d;
1763
1764 while ((d = display_chain) != NULL)
1765 {
1766 display_chain = d->next;
1767 free_display (d);
1768 }
1769 }
1770
1771 /* Delete the auto-display DISPLAY. */
1772
1773 static void
1774 delete_display (struct display *display)
1775 {
1776 struct display *d;
1777
1778 gdb_assert (display != NULL);
1779
1780 if (display_chain == display)
1781 display_chain = display->next;
1782
1783 ALL_DISPLAYS (d)
1784 if (d->next == display)
1785 {
1786 d->next = display->next;
1787 break;
1788 }
1789
1790 free_display (display);
1791 }
1792
1793 /* Call FUNCTION on each of the displays whose numbers are given in
1794 ARGS. DATA is passed unmodified to FUNCTION. */
1795
1796 static void
1797 map_display_numbers (const char *args,
1798 void (*function) (struct display *,
1799 void *),
1800 void *data)
1801 {
1802 int num;
1803
1804 if (args == NULL)
1805 error_no_arg (_("one or more display numbers"));
1806
1807 number_or_range_parser parser (args);
1808
1809 while (!parser.finished ())
1810 {
1811 const char *p = parser.cur_tok ();
1812
1813 num = parser.get_number ();
1814 if (num == 0)
1815 warning (_("bad display number at or near '%s'"), p);
1816 else
1817 {
1818 struct display *d, *tmp;
1819
1820 ALL_DISPLAYS_SAFE (d, tmp)
1821 if (d->number == num)
1822 break;
1823 if (d == NULL)
1824 printf_unfiltered (_("No display number %d.\n"), num);
1825 else
1826 function (d, data);
1827 }
1828 }
1829 }
1830
1831 /* Callback for map_display_numbers, that deletes a display. */
1832
1833 static void
1834 do_delete_display (struct display *d, void *data)
1835 {
1836 delete_display (d);
1837 }
1838
1839 /* "undisplay" command. */
1840
1841 static void
1842 undisplay_command (const char *args, int from_tty)
1843 {
1844 if (args == NULL)
1845 {
1846 if (query (_("Delete all auto-display expressions? ")))
1847 clear_displays ();
1848 dont_repeat ();
1849 return;
1850 }
1851
1852 map_display_numbers (args, do_delete_display, NULL);
1853 dont_repeat ();
1854 }
1855
1856 /* Display a single auto-display.
1857 Do nothing if the display cannot be printed in the current context,
1858 or if the display is disabled. */
1859
1860 static void
1861 do_one_display (struct display *d)
1862 {
1863 int within_current_scope;
1864
1865 if (d->enabled_p == 0)
1866 return;
1867
1868 /* The expression carries the architecture that was used at parse time.
1869 This is a problem if the expression depends on architecture features
1870 (e.g. register numbers), and the current architecture is now different.
1871 For example, a display statement like "display/i $pc" is expected to
1872 display the PC register of the current architecture, not the arch at
1873 the time the display command was given. Therefore, we re-parse the
1874 expression if the current architecture has changed. */
1875 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1876 {
1877 d->exp.reset ();
1878 d->block = NULL;
1879 }
1880
1881 if (d->exp == NULL)
1882 {
1883
1884 TRY
1885 {
1886 innermost_block_tracker tracker;
1887 d->exp = parse_expression (d->exp_string, &tracker);
1888 d->block = tracker.block ();
1889 }
1890 CATCH (ex, RETURN_MASK_ALL)
1891 {
1892 /* Can't re-parse the expression. Disable this display item. */
1893 d->enabled_p = 0;
1894 warning (_("Unable to display \"%s\": %s"),
1895 d->exp_string, ex.message);
1896 return;
1897 }
1898 END_CATCH
1899 }
1900
1901 if (d->block)
1902 {
1903 if (d->pspace == current_program_space)
1904 within_current_scope = contained_in (get_selected_block (0), d->block);
1905 else
1906 within_current_scope = 0;
1907 }
1908 else
1909 within_current_scope = 1;
1910 if (!within_current_scope)
1911 return;
1912
1913 scoped_restore save_display_number
1914 = make_scoped_restore (&current_display_number, d->number);
1915
1916 annotate_display_begin ();
1917 printf_filtered ("%d", d->number);
1918 annotate_display_number_end ();
1919 printf_filtered (": ");
1920 if (d->format.size)
1921 {
1922
1923 annotate_display_format ();
1924
1925 printf_filtered ("x/");
1926 if (d->format.count != 1)
1927 printf_filtered ("%d", d->format.count);
1928 printf_filtered ("%c", d->format.format);
1929 if (d->format.format != 'i' && d->format.format != 's')
1930 printf_filtered ("%c", d->format.size);
1931 printf_filtered (" ");
1932
1933 annotate_display_expression ();
1934
1935 puts_filtered (d->exp_string);
1936 annotate_display_expression_end ();
1937
1938 if (d->format.count != 1 || d->format.format == 'i')
1939 printf_filtered ("\n");
1940 else
1941 printf_filtered (" ");
1942
1943 annotate_display_value ();
1944
1945 TRY
1946 {
1947 struct value *val;
1948 CORE_ADDR addr;
1949
1950 val = evaluate_expression (d->exp.get ());
1951 addr = value_as_address (val);
1952 if (d->format.format == 'i')
1953 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1954 do_examine (d->format, d->exp->gdbarch, addr);
1955 }
1956 CATCH (ex, RETURN_MASK_ERROR)
1957 {
1958 fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
1959 }
1960 END_CATCH
1961 }
1962 else
1963 {
1964 struct value_print_options opts;
1965
1966 annotate_display_format ();
1967
1968 if (d->format.format)
1969 printf_filtered ("/%c ", d->format.format);
1970
1971 annotate_display_expression ();
1972
1973 puts_filtered (d->exp_string);
1974 annotate_display_expression_end ();
1975
1976 printf_filtered (" = ");
1977
1978 annotate_display_expression ();
1979
1980 get_formatted_print_options (&opts, d->format.format);
1981 opts.raw = d->format.raw;
1982
1983 TRY
1984 {
1985 struct value *val;
1986
1987 val = evaluate_expression (d->exp.get ());
1988 print_formatted (val, d->format.size, &opts, gdb_stdout);
1989 }
1990 CATCH (ex, RETURN_MASK_ERROR)
1991 {
1992 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
1993 }
1994 END_CATCH
1995
1996 printf_filtered ("\n");
1997 }
1998
1999 annotate_display_end ();
2000
2001 gdb_flush (gdb_stdout);
2002 }
2003
2004 /* Display all of the values on the auto-display chain which can be
2005 evaluated in the current scope. */
2006
2007 void
2008 do_displays (void)
2009 {
2010 struct display *d;
2011
2012 for (d = display_chain; d; d = d->next)
2013 do_one_display (d);
2014 }
2015
2016 /* Delete the auto-display which we were in the process of displaying.
2017 This is done when there is an error or a signal. */
2018
2019 void
2020 disable_display (int num)
2021 {
2022 struct display *d;
2023
2024 for (d = display_chain; d; d = d->next)
2025 if (d->number == num)
2026 {
2027 d->enabled_p = 0;
2028 return;
2029 }
2030 printf_unfiltered (_("No display number %d.\n"), num);
2031 }
2032
2033 void
2034 disable_current_display (void)
2035 {
2036 if (current_display_number >= 0)
2037 {
2038 disable_display (current_display_number);
2039 fprintf_unfiltered (gdb_stderr,
2040 _("Disabling display %d to "
2041 "avoid infinite recursion.\n"),
2042 current_display_number);
2043 }
2044 current_display_number = -1;
2045 }
2046
2047 static void
2048 info_display_command (const char *ignore, int from_tty)
2049 {
2050 struct display *d;
2051
2052 if (!display_chain)
2053 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2054 else
2055 printf_filtered (_("Auto-display expressions now in effect:\n\
2056 Num Enb Expression\n"));
2057
2058 for (d = display_chain; d; d = d->next)
2059 {
2060 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2061 if (d->format.size)
2062 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2063 d->format.format);
2064 else if (d->format.format)
2065 printf_filtered ("/%c ", d->format.format);
2066 puts_filtered (d->exp_string);
2067 if (d->block && !contained_in (get_selected_block (0), d->block))
2068 printf_filtered (_(" (cannot be evaluated in the current context)"));
2069 printf_filtered ("\n");
2070 }
2071 }
2072
2073 /* Callback fo map_display_numbers, that enables or disables the
2074 passed in display D. */
2075
2076 static void
2077 do_enable_disable_display (struct display *d, void *data)
2078 {
2079 d->enabled_p = *(int *) data;
2080 }
2081
2082 /* Implamentation of both the "disable display" and "enable display"
2083 commands. ENABLE decides what to do. */
2084
2085 static void
2086 enable_disable_display_command (const char *args, int from_tty, int enable)
2087 {
2088 if (args == NULL)
2089 {
2090 struct display *d;
2091
2092 ALL_DISPLAYS (d)
2093 d->enabled_p = enable;
2094 return;
2095 }
2096
2097 map_display_numbers (args, do_enable_disable_display, &enable);
2098 }
2099
2100 /* The "enable display" command. */
2101
2102 static void
2103 enable_display_command (const char *args, int from_tty)
2104 {
2105 enable_disable_display_command (args, from_tty, 1);
2106 }
2107
2108 /* The "disable display" command. */
2109
2110 static void
2111 disable_display_command (const char *args, int from_tty)
2112 {
2113 enable_disable_display_command (args, from_tty, 0);
2114 }
2115
2116 /* display_chain items point to blocks and expressions. Some expressions in
2117 turn may point to symbols.
2118 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2119 obstack_free'd when a shared library is unloaded.
2120 Clear pointers that are about to become dangling.
2121 Both .exp and .block fields will be restored next time we need to display
2122 an item by re-parsing .exp_string field in the new execution context. */
2123
2124 static void
2125 clear_dangling_display_expressions (struct objfile *objfile)
2126 {
2127 struct display *d;
2128 struct program_space *pspace;
2129
2130 /* With no symbol file we cannot have a block or expression from it. */
2131 if (objfile == NULL)
2132 return;
2133 pspace = objfile->pspace;
2134 if (objfile->separate_debug_objfile_backlink)
2135 {
2136 objfile = objfile->separate_debug_objfile_backlink;
2137 gdb_assert (objfile->pspace == pspace);
2138 }
2139
2140 for (d = display_chain; d != NULL; d = d->next)
2141 {
2142 if (d->pspace != pspace)
2143 continue;
2144
2145 if (lookup_objfile_from_block (d->block) == objfile
2146 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2147 {
2148 d->exp.reset ();
2149 d->block = NULL;
2150 }
2151 }
2152 }
2153 \f
2154
2155 /* Print the value in stack frame FRAME of a variable specified by a
2156 struct symbol. NAME is the name to print; if NULL then VAR's print
2157 name will be used. STREAM is the ui_file on which to print the
2158 value. INDENT specifies the number of indent levels to print
2159 before printing the variable name.
2160
2161 This function invalidates FRAME. */
2162
2163 void
2164 print_variable_and_value (const char *name, struct symbol *var,
2165 struct frame_info *frame,
2166 struct ui_file *stream, int indent)
2167 {
2168
2169 if (!name)
2170 name = SYMBOL_PRINT_NAME (var);
2171
2172 fputs_filtered (n_spaces (2 * indent), stream);
2173 fputs_styled (name, variable_name_style.style (), stream);
2174 fputs_filtered (" = ", stream);
2175
2176 TRY
2177 {
2178 struct value *val;
2179 struct value_print_options opts;
2180
2181 /* READ_VAR_VALUE needs a block in order to deal with non-local
2182 references (i.e. to handle nested functions). In this context, we
2183 print variables that are local to this frame, so we can avoid passing
2184 a block to it. */
2185 val = read_var_value (var, NULL, frame);
2186 get_user_print_options (&opts);
2187 opts.deref_ref = 1;
2188 common_val_print (val, stream, indent, &opts, current_language);
2189
2190 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2191 function. */
2192 frame = NULL;
2193 }
2194 CATCH (except, RETURN_MASK_ERROR)
2195 {
2196 fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
2197 except.message);
2198 }
2199 END_CATCH
2200
2201 fprintf_filtered (stream, "\n");
2202 }
2203
2204 /* Subroutine of ui_printf to simplify it.
2205 Print VALUE to STREAM using FORMAT.
2206 VALUE is a C-style string on the target. */
2207
2208 static void
2209 printf_c_string (struct ui_file *stream, const char *format,
2210 struct value *value)
2211 {
2212 gdb_byte *str;
2213 CORE_ADDR tem;
2214 int j;
2215
2216 tem = value_as_address (value);
2217 if (tem == 0)
2218 {
2219 DIAGNOSTIC_PUSH
2220 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2221 fprintf_filtered (stream, format, "(null)");
2222 DIAGNOSTIC_POP
2223 return;
2224 }
2225
2226 /* This is a %s argument. Find the length of the string. */
2227 for (j = 0;; j++)
2228 {
2229 gdb_byte c;
2230
2231 QUIT;
2232 read_memory (tem + j, &c, 1);
2233 if (c == 0)
2234 break;
2235 }
2236
2237 /* Copy the string contents into a string inside GDB. */
2238 str = (gdb_byte *) alloca (j + 1);
2239 if (j != 0)
2240 read_memory (tem, str, j);
2241 str[j] = 0;
2242
2243 DIAGNOSTIC_PUSH
2244 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2245 fprintf_filtered (stream, format, (char *) str);
2246 DIAGNOSTIC_POP
2247 }
2248
2249 /* Subroutine of ui_printf to simplify it.
2250 Print VALUE to STREAM using FORMAT.
2251 VALUE is a wide C-style string on the target. */
2252
2253 static void
2254 printf_wide_c_string (struct ui_file *stream, const char *format,
2255 struct value *value)
2256 {
2257 gdb_byte *str;
2258 CORE_ADDR tem;
2259 int j;
2260 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2261 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2262 struct type *wctype = lookup_typename (current_language, gdbarch,
2263 "wchar_t", NULL, 0);
2264 int wcwidth = TYPE_LENGTH (wctype);
2265 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2266
2267 tem = value_as_address (value);
2268 if (tem == 0)
2269 {
2270 DIAGNOSTIC_PUSH
2271 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2272 fprintf_filtered (stream, format, "(null)");
2273 DIAGNOSTIC_POP
2274 return;
2275 }
2276
2277 /* This is a %s argument. Find the length of the string. */
2278 for (j = 0;; j += wcwidth)
2279 {
2280 QUIT;
2281 read_memory (tem + j, buf, wcwidth);
2282 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2283 break;
2284 }
2285
2286 /* Copy the string contents into a string inside GDB. */
2287 str = (gdb_byte *) alloca (j + wcwidth);
2288 if (j != 0)
2289 read_memory (tem, str, j);
2290 memset (&str[j], 0, wcwidth);
2291
2292 auto_obstack output;
2293
2294 convert_between_encodings (target_wide_charset (gdbarch),
2295 host_charset (),
2296 str, j, wcwidth,
2297 &output, translit_char);
2298 obstack_grow_str0 (&output, "");
2299
2300 DIAGNOSTIC_PUSH
2301 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2302 fprintf_filtered (stream, format, obstack_base (&output));
2303 DIAGNOSTIC_POP
2304 }
2305
2306 /* Subroutine of ui_printf to simplify it.
2307 Print VALUE, a floating point value, to STREAM using FORMAT. */
2308
2309 static void
2310 printf_floating (struct ui_file *stream, const char *format,
2311 struct value *value, enum argclass argclass)
2312 {
2313 /* Parameter data. */
2314 struct type *param_type = value_type (value);
2315 struct gdbarch *gdbarch = get_type_arch (param_type);
2316
2317 /* Determine target type corresponding to the format string. */
2318 struct type *fmt_type;
2319 switch (argclass)
2320 {
2321 case double_arg:
2322 fmt_type = builtin_type (gdbarch)->builtin_double;
2323 break;
2324 case long_double_arg:
2325 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2326 break;
2327 case dec32float_arg:
2328 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2329 break;
2330 case dec64float_arg:
2331 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2332 break;
2333 case dec128float_arg:
2334 fmt_type = builtin_type (gdbarch)->builtin_declong;
2335 break;
2336 default:
2337 gdb_assert_not_reached ("unexpected argument class");
2338 }
2339
2340 /* To match the traditional GDB behavior, the conversion is
2341 done differently depending on the type of the parameter:
2342
2343 - if the parameter has floating-point type, it's value
2344 is converted to the target type;
2345
2346 - otherwise, if the parameter has a type that is of the
2347 same size as a built-in floating-point type, the value
2348 bytes are interpreted as if they were of that type, and
2349 then converted to the target type (this is not done for
2350 decimal floating-point argument classes);
2351
2352 - otherwise, if the source value has an integer value,
2353 it's value is converted to the target type;
2354
2355 - otherwise, an error is raised.
2356
2357 In either case, the result of the conversion is a byte buffer
2358 formatted in the target format for the target type. */
2359
2360 if (TYPE_CODE (fmt_type) == TYPE_CODE_FLT)
2361 {
2362 param_type = float_type_from_length (param_type);
2363 if (param_type != value_type (value))
2364 value = value_from_contents (param_type, value_contents (value));
2365 }
2366
2367 value = value_cast (fmt_type, value);
2368
2369 /* Convert the value to a string and print it. */
2370 std::string str
2371 = target_float_to_string (value_contents (value), fmt_type, format);
2372 fputs_filtered (str.c_str (), stream);
2373 }
2374
2375 /* Subroutine of ui_printf to simplify it.
2376 Print VALUE, a target pointer, to STREAM using FORMAT. */
2377
2378 static void
2379 printf_pointer (struct ui_file *stream, const char *format,
2380 struct value *value)
2381 {
2382 /* We avoid the host's %p because pointers are too
2383 likely to be the wrong size. The only interesting
2384 modifier for %p is a width; extract that, and then
2385 handle %p as glibc would: %#x or a literal "(nil)". */
2386
2387 const char *p;
2388 char *fmt, *fmt_p;
2389 #ifdef PRINTF_HAS_LONG_LONG
2390 long long val = value_as_long (value);
2391 #else
2392 long val = value_as_long (value);
2393 #endif
2394
2395 fmt = (char *) alloca (strlen (format) + 5);
2396
2397 /* Copy up to the leading %. */
2398 p = format;
2399 fmt_p = fmt;
2400 while (*p)
2401 {
2402 int is_percent = (*p == '%');
2403
2404 *fmt_p++ = *p++;
2405 if (is_percent)
2406 {
2407 if (*p == '%')
2408 *fmt_p++ = *p++;
2409 else
2410 break;
2411 }
2412 }
2413
2414 if (val != 0)
2415 *fmt_p++ = '#';
2416
2417 /* Copy any width or flags. Only the "-" flag is valid for pointers
2418 -- see the format_pieces constructor. */
2419 while (*p == '-' || (*p >= '0' && *p < '9'))
2420 *fmt_p++ = *p++;
2421
2422 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2423 if (val != 0)
2424 {
2425 #ifdef PRINTF_HAS_LONG_LONG
2426 *fmt_p++ = 'l';
2427 #endif
2428 *fmt_p++ = 'l';
2429 *fmt_p++ = 'x';
2430 *fmt_p++ = '\0';
2431 DIAGNOSTIC_PUSH
2432 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2433 fprintf_filtered (stream, fmt, val);
2434 DIAGNOSTIC_POP
2435 }
2436 else
2437 {
2438 *fmt_p++ = 's';
2439 *fmt_p++ = '\0';
2440 DIAGNOSTIC_PUSH
2441 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2442 fprintf_filtered (stream, fmt, "(nil)");
2443 DIAGNOSTIC_POP
2444 }
2445 }
2446
2447 /* printf "printf format string" ARG to STREAM. */
2448
2449 static void
2450 ui_printf (const char *arg, struct ui_file *stream)
2451 {
2452 const char *s = arg;
2453 std::vector<struct value *> val_args;
2454
2455 if (s == 0)
2456 error_no_arg (_("format-control string and values to print"));
2457
2458 s = skip_spaces (s);
2459
2460 /* A format string should follow, enveloped in double quotes. */
2461 if (*s++ != '"')
2462 error (_("Bad format string, missing '\"'."));
2463
2464 format_pieces fpieces (&s);
2465
2466 if (*s++ != '"')
2467 error (_("Bad format string, non-terminated '\"'."));
2468
2469 s = skip_spaces (s);
2470
2471 if (*s != ',' && *s != 0)
2472 error (_("Invalid argument syntax"));
2473
2474 if (*s == ',')
2475 s++;
2476 s = skip_spaces (s);
2477
2478 {
2479 int nargs_wanted;
2480 int i;
2481 const char *current_substring;
2482
2483 nargs_wanted = 0;
2484 for (auto &&piece : fpieces)
2485 if (piece.argclass != literal_piece)
2486 ++nargs_wanted;
2487
2488 /* Now, parse all arguments and evaluate them.
2489 Store the VALUEs in VAL_ARGS. */
2490
2491 while (*s != '\0')
2492 {
2493 const char *s1;
2494
2495 s1 = s;
2496 val_args.push_back (parse_to_comma_and_eval (&s1));
2497
2498 s = s1;
2499 if (*s == ',')
2500 s++;
2501 }
2502
2503 if (val_args.size () != nargs_wanted)
2504 error (_("Wrong number of arguments for specified format-string"));
2505
2506 /* Now actually print them. */
2507 i = 0;
2508 for (auto &&piece : fpieces)
2509 {
2510 current_substring = piece.string;
2511 switch (piece.argclass)
2512 {
2513 case string_arg:
2514 printf_c_string (stream, current_substring, val_args[i]);
2515 break;
2516 case wide_string_arg:
2517 printf_wide_c_string (stream, current_substring, val_args[i]);
2518 break;
2519 case wide_char_arg:
2520 {
2521 struct gdbarch *gdbarch
2522 = get_type_arch (value_type (val_args[i]));
2523 struct type *wctype = lookup_typename (current_language, gdbarch,
2524 "wchar_t", NULL, 0);
2525 struct type *valtype;
2526 const gdb_byte *bytes;
2527
2528 valtype = value_type (val_args[i]);
2529 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2530 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2531 error (_("expected wchar_t argument for %%lc"));
2532
2533 bytes = value_contents (val_args[i]);
2534
2535 auto_obstack output;
2536
2537 convert_between_encodings (target_wide_charset (gdbarch),
2538 host_charset (),
2539 bytes, TYPE_LENGTH (valtype),
2540 TYPE_LENGTH (valtype),
2541 &output, translit_char);
2542 obstack_grow_str0 (&output, "");
2543
2544 DIAGNOSTIC_PUSH
2545 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2546 fprintf_filtered (stream, current_substring,
2547 obstack_base (&output));
2548 DIAGNOSTIC_POP
2549 }
2550 break;
2551 case long_long_arg:
2552 #ifdef PRINTF_HAS_LONG_LONG
2553 {
2554 long long val = value_as_long (val_args[i]);
2555
2556 DIAGNOSTIC_PUSH
2557 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2558 fprintf_filtered (stream, current_substring, val);
2559 DIAGNOSTIC_POP
2560 break;
2561 }
2562 #else
2563 error (_("long long not supported in printf"));
2564 #endif
2565 case int_arg:
2566 {
2567 int val = value_as_long (val_args[i]);
2568
2569 DIAGNOSTIC_PUSH
2570 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2571 fprintf_filtered (stream, current_substring, val);
2572 DIAGNOSTIC_POP
2573 break;
2574 }
2575 case long_arg:
2576 {
2577 long val = value_as_long (val_args[i]);
2578
2579 DIAGNOSTIC_PUSH
2580 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2581 fprintf_filtered (stream, current_substring, val);
2582 DIAGNOSTIC_POP
2583 break;
2584 }
2585 /* Handles floating-point values. */
2586 case double_arg:
2587 case long_double_arg:
2588 case dec32float_arg:
2589 case dec64float_arg:
2590 case dec128float_arg:
2591 printf_floating (stream, current_substring, val_args[i],
2592 piece.argclass);
2593 break;
2594 case ptr_arg:
2595 printf_pointer (stream, current_substring, val_args[i]);
2596 break;
2597 case literal_piece:
2598 /* Print a portion of the format string that has no
2599 directives. Note that this will not include any
2600 ordinary %-specs, but it might include "%%". That is
2601 why we use printf_filtered and not puts_filtered here.
2602 Also, we pass a dummy argument because some platforms
2603 have modified GCC to include -Wformat-security by
2604 default, which will warn here if there is no
2605 argument. */
2606 DIAGNOSTIC_PUSH
2607 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2608 fprintf_filtered (stream, current_substring, 0);
2609 DIAGNOSTIC_POP
2610 break;
2611 default:
2612 internal_error (__FILE__, __LINE__,
2613 _("failed internal consistency check"));
2614 }
2615 /* Maybe advance to the next argument. */
2616 if (piece.argclass != literal_piece)
2617 ++i;
2618 }
2619 }
2620 }
2621
2622 /* Implement the "printf" command. */
2623
2624 static void
2625 printf_command (const char *arg, int from_tty)
2626 {
2627 ui_printf (arg, gdb_stdout);
2628 reset_terminal_style (gdb_stdout);
2629 wrap_here ("");
2630 gdb_flush (gdb_stdout);
2631 }
2632
2633 /* Implement the "eval" command. */
2634
2635 static void
2636 eval_command (const char *arg, int from_tty)
2637 {
2638 string_file stb;
2639
2640 ui_printf (arg, &stb);
2641
2642 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2643
2644 execute_command (expanded.c_str (), from_tty);
2645 }
2646
2647 void
2648 _initialize_printcmd (void)
2649 {
2650 struct cmd_list_element *c;
2651
2652 current_display_number = -1;
2653
2654 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2655
2656 add_info ("address", info_address_command,
2657 _("Describe where symbol SYM is stored.\n\
2658 Usage: info address SYM"));
2659
2660 add_info ("symbol", info_symbol_command, _("\
2661 Describe what symbol is at location ADDR.\n\
2662 Usage: info symbol ADDR\n\
2663 Only for symbols with fixed locations (global or static scope)."));
2664
2665 add_com ("x", class_vars, x_command, _("\
2666 Examine memory: x/FMT ADDRESS.\n\
2667 ADDRESS is an expression for the memory address to examine.\n\
2668 FMT is a repeat count followed by a format letter and a size letter.\n\
2669 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2670 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2671 and z(hex, zero padded on the left).\n\
2672 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2673 The specified number of objects of the specified size are printed\n\
2674 according to the format. If a negative number is specified, memory is\n\
2675 examined backward from the address.\n\n\
2676 Defaults for format and size letters are those previously used.\n\
2677 Default count is 1. Default address is following last thing printed\n\
2678 with this command or \"print\"."));
2679
2680 add_info ("display", info_display_command, _("\
2681 Expressions to display when program stops, with code numbers.\n\
2682 Usage: info display"));
2683
2684 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2685 Cancel some expressions to be displayed when program stops.\n\
2686 Usage: undisplay [NUM]...\n\
2687 Arguments are the code numbers of the expressions to stop displaying.\n\
2688 No argument means cancel all automatic-display expressions.\n\
2689 \"delete display\" has the same effect as this command.\n\
2690 Do \"info display\" to see current list of code numbers."),
2691 &cmdlist);
2692
2693 add_com ("display", class_vars, display_command, _("\
2694 Print value of expression EXP each time the program stops.\n\
2695 Usage: display[/FMT] EXP\n\
2696 /FMT may be used before EXP as in the \"print\" command.\n\
2697 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2698 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2699 and examining is done as in the \"x\" command.\n\n\
2700 With no argument, display all currently requested auto-display expressions.\n\
2701 Use \"undisplay\" to cancel display requests previously made."));
2702
2703 add_cmd ("display", class_vars, enable_display_command, _("\
2704 Enable some expressions to be displayed when program stops.\n\
2705 Usage: enable display [NUM]...\n\
2706 Arguments are the code numbers of the expressions to resume displaying.\n\
2707 No argument means enable all automatic-display expressions.\n\
2708 Do \"info display\" to see current list of code numbers."), &enablelist);
2709
2710 add_cmd ("display", class_vars, disable_display_command, _("\
2711 Disable some expressions to be displayed when program stops.\n\
2712 Usage: disable display [NUM]...\n\
2713 Arguments are the code numbers of the expressions to stop displaying.\n\
2714 No argument means disable all automatic-display expressions.\n\
2715 Do \"info display\" to see current list of code numbers."), &disablelist);
2716
2717 add_cmd ("display", class_vars, undisplay_command, _("\
2718 Cancel some expressions to be displayed when program stops.\n\
2719 Usage: delete display [NUM]...\n\
2720 Arguments are the code numbers of the expressions to stop displaying.\n\
2721 No argument means cancel all automatic-display expressions.\n\
2722 Do \"info display\" to see current list of code numbers."), &deletelist);
2723
2724 add_com ("printf", class_vars, printf_command, _("\
2725 Formatted printing, like the C \"printf\" function.\n\
2726 Usage: printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2727 This supports most C printf format specifications, like %s, %d, etc."));
2728
2729 add_com ("output", class_vars, output_command, _("\
2730 Like \"print\" but don't put in value history and don't print newline.\n\
2731 Usage: output EXP\n\
2732 This is useful in user-defined commands."));
2733
2734 add_prefix_cmd ("set", class_vars, set_command, _("\
2735 Evaluate expression EXP and assign result to variable VAR\n\
2736 Usage: set VAR = EXP\n\
2737 This uses assignment syntax appropriate for the current language\n\
2738 (VAR = EXP or VAR := EXP for example).\n\
2739 VAR may be a debugger \"convenience\" variable (names starting\n\
2740 with $), a register (a few standard names starting with $), or an actual\n\
2741 variable in the program being debugged. EXP is any valid expression.\n\
2742 Use \"set variable\" for variables with names identical to set subcommands.\n\
2743 \n\
2744 With a subcommand, this command modifies parts of the gdb environment.\n\
2745 You can see these environment settings with the \"show\" command."),
2746 &setlist, "set ", 1, &cmdlist);
2747 if (dbx_commands)
2748 add_com ("assign", class_vars, set_command, _("\
2749 Evaluate expression EXP and assign result to variable VAR\n\
2750 Usage: assign VAR = EXP\n\
2751 This uses assignment syntax appropriate for the current language\n\
2752 (VAR = EXP or VAR := EXP for example).\n\
2753 VAR may be a debugger \"convenience\" variable (names starting\n\
2754 with $), a register (a few standard names starting with $), or an actual\n\
2755 variable in the program being debugged. EXP is any valid expression.\n\
2756 Use \"set variable\" for variables with names identical to set subcommands.\n\
2757 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2758 You can see these environment settings with the \"show\" command."));
2759
2760 /* "call" is the same as "set", but handy for dbx users to call fns. */
2761 c = add_com ("call", class_vars, call_command, _("\
2762 Call a function in the program.\n\
2763 Usage: call EXP\n\
2764 The argument is the function name and arguments, in the notation of the\n\
2765 current working language. The result is printed and saved in the value\n\
2766 history, if it is not void."));
2767 set_cmd_completer (c, expression_completer);
2768
2769 add_cmd ("variable", class_vars, set_command, _("\
2770 Evaluate expression EXP and assign result to variable VAR\n\
2771 Usage: set variable VAR = EXP\n\
2772 This uses assignment syntax appropriate for the current language\n\
2773 (VAR = EXP or VAR := EXP for example).\n\
2774 VAR may be a debugger \"convenience\" variable (names starting\n\
2775 with $), a register (a few standard names starting with $), or an actual\n\
2776 variable in the program being debugged. EXP is any valid expression.\n\
2777 This may usually be abbreviated to simply \"set\"."),
2778 &setlist);
2779 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2780
2781 c = add_com ("print", class_vars, print_command, _("\
2782 Print value of expression EXP.\n\
2783 Usage: print[/FMT] EXP\n\
2784 Variables accessible are those of the lexical environment of the selected\n\
2785 stack frame, plus all those whose scope is global or an entire file.\n\
2786 \n\
2787 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2788 $$NUM refers to NUM'th value back from the last one.\n\
2789 Names starting with $ refer to registers (with the values they would have\n\
2790 if the program were to return to the stack frame now selected, restoring\n\
2791 all registers saved by frames farther in) or else to debugger\n\
2792 \"convenience\" variables (any such name not a known register).\n\
2793 Use assignment expressions to give values to convenience variables.\n\
2794 \n\
2795 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2796 @ is a binary operator for treating consecutive data objects\n\
2797 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2798 element is FOO, whose second element is stored in the space following\n\
2799 where FOO is stored, etc. FOO must be an expression whose value\n\
2800 resides in memory.\n\
2801 \n\
2802 EXP may be preceded with /FMT, where FMT is a format letter\n\
2803 but no count or size letter (see \"x\" command)."));
2804 set_cmd_completer (c, expression_completer);
2805 add_com_alias ("p", "print", class_vars, 1);
2806 add_com_alias ("inspect", "print", class_vars, 1);
2807
2808 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2809 &max_symbolic_offset, _("\
2810 Set the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2811 Show the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2812 Tell GDB to only display the symbolic form of an address if the\n\
2813 offset between the closest earlier symbol and the address is less than\n\
2814 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2815 to always print the symbolic form of an address if any symbol precedes\n\
2816 it. Zero is equivalent to \"unlimited\"."),
2817 NULL,
2818 show_max_symbolic_offset,
2819 &setprintlist, &showprintlist);
2820 add_setshow_boolean_cmd ("symbol-filename", no_class,
2821 &print_symbol_filename, _("\
2822 Set printing of source filename and line number with <SYMBOL>."), _("\
2823 Show printing of source filename and line number with <SYMBOL>."), NULL,
2824 NULL,
2825 show_print_symbol_filename,
2826 &setprintlist, &showprintlist);
2827
2828 add_com ("eval", no_class, eval_command, _("\
2829 Construct a GDB command and then evaluate it.\n\
2830 Usage: eval \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2831 Convert the arguments to a string as \"printf\" would, but then\n\
2832 treat this string as a command line, and evaluate it."));
2833 }
This page took 0.176797 seconds and 4 git commands to generate.