btrace: remove leftover comment
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "expression.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "breakpoint.h"
31 #include "demangle.h"
32 #include "gdb-demangle.h"
33 #include "valprint.h"
34 #include "annotate.h"
35 #include "symfile.h" /* for overlay functions */
36 #include "objfiles.h" /* ditto */
37 #include "completer.h" /* for completion functions */
38 #include "ui-out.h"
39 #include "block.h"
40 #include "disasm.h"
41 #include "dfp.h"
42 #include "observer.h"
43 #include "solist.h"
44 #include "parser-defs.h"
45 #include "charset.h"
46 #include "arch-utils.h"
47 #include "cli/cli-utils.h"
48 #include "format.h"
49 #include "source.h"
50
51 #ifdef TUI
52 #include "tui/tui.h" /* For tui_active et al. */
53 #endif
54
55 /* Last specified output format. */
56
57 static char last_format = 0;
58
59 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
60
61 static char last_size = 'w';
62
63 /* Default address to examine next, and associated architecture. */
64
65 static struct gdbarch *next_gdbarch;
66 static CORE_ADDR next_address;
67
68 /* Number of delay instructions following current disassembled insn. */
69
70 static int branch_delay_insns;
71
72 /* Last address examined. */
73
74 static CORE_ADDR last_examine_address;
75
76 /* Contents of last address examined.
77 This is not valid past the end of the `x' command! */
78
79 static struct value *last_examine_value;
80
81 /* Largest offset between a symbolic value and an address, that will be
82 printed as `0x1234 <symbol+offset>'. */
83
84 static unsigned int max_symbolic_offset = UINT_MAX;
85 static void
86 show_max_symbolic_offset (struct ui_file *file, int from_tty,
87 struct cmd_list_element *c, const char *value)
88 {
89 fprintf_filtered (file,
90 _("The largest offset that will be "
91 "printed in <symbol+1234> form is %s.\n"),
92 value);
93 }
94
95 /* Append the source filename and linenumber of the symbol when
96 printing a symbolic value as `<symbol at filename:linenum>' if set. */
97 static int print_symbol_filename = 0;
98 static void
99 show_print_symbol_filename (struct ui_file *file, int from_tty,
100 struct cmd_list_element *c, const char *value)
101 {
102 fprintf_filtered (file, _("Printing of source filename and "
103 "line number with <symbol> is %s.\n"),
104 value);
105 }
106
107 /* Number of auto-display expression currently being displayed.
108 So that we can disable it if we get a signal within it.
109 -1 when not doing one. */
110
111 static int current_display_number;
112
113 struct display
114 {
115 /* Chain link to next auto-display item. */
116 struct display *next;
117
118 /* The expression as the user typed it. */
119 char *exp_string;
120
121 /* Expression to be evaluated and displayed. */
122 struct expression *exp;
123
124 /* Item number of this auto-display item. */
125 int number;
126
127 /* Display format specified. */
128 struct format_data format;
129
130 /* Program space associated with `block'. */
131 struct program_space *pspace;
132
133 /* Innermost block required by this expression when evaluated. */
134 const struct block *block;
135
136 /* Status of this display (enabled or disabled). */
137 int enabled_p;
138 };
139
140 /* Chain of expressions whose values should be displayed
141 automatically each time the program stops. */
142
143 static struct display *display_chain;
144
145 static int display_number;
146
147 /* Walk the following statement or block through all displays.
148 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
149 display. */
150
151 #define ALL_DISPLAYS(B) \
152 for (B = display_chain; B; B = B->next)
153
154 #define ALL_DISPLAYS_SAFE(B,TMP) \
155 for (B = display_chain; \
156 B ? (TMP = B->next, 1): 0; \
157 B = TMP)
158
159 /* Prototypes for exported functions. */
160
161 void _initialize_printcmd (void);
162
163 /* Prototypes for local functions. */
164
165 static void do_one_display (struct display *);
166 \f
167
168 /* Decode a format specification. *STRING_PTR should point to it.
169 OFORMAT and OSIZE are used as defaults for the format and size
170 if none are given in the format specification.
171 If OSIZE is zero, then the size field of the returned value
172 should be set only if a size is explicitly specified by the
173 user.
174 The structure returned describes all the data
175 found in the specification. In addition, *STRING_PTR is advanced
176 past the specification and past all whitespace following it. */
177
178 static struct format_data
179 decode_format (const char **string_ptr, int oformat, int osize)
180 {
181 struct format_data val;
182 const char *p = *string_ptr;
183
184 val.format = '?';
185 val.size = '?';
186 val.count = 1;
187 val.raw = 0;
188
189 if (*p == '-')
190 {
191 val.count = -1;
192 p++;
193 }
194 if (*p >= '0' && *p <= '9')
195 val.count *= atoi (p);
196 while (*p >= '0' && *p <= '9')
197 p++;
198
199 /* Now process size or format letters that follow. */
200
201 while (1)
202 {
203 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
204 val.size = *p++;
205 else if (*p == 'r')
206 {
207 val.raw = 1;
208 p++;
209 }
210 else if (*p >= 'a' && *p <= 'z')
211 val.format = *p++;
212 else
213 break;
214 }
215
216 while (*p == ' ' || *p == '\t')
217 p++;
218 *string_ptr = p;
219
220 /* Set defaults for format and size if not specified. */
221 if (val.format == '?')
222 {
223 if (val.size == '?')
224 {
225 /* Neither has been specified. */
226 val.format = oformat;
227 val.size = osize;
228 }
229 else
230 /* If a size is specified, any format makes a reasonable
231 default except 'i'. */
232 val.format = oformat == 'i' ? 'x' : oformat;
233 }
234 else if (val.size == '?')
235 switch (val.format)
236 {
237 case 'a':
238 /* Pick the appropriate size for an address. This is deferred
239 until do_examine when we know the actual architecture to use.
240 A special size value of 'a' is used to indicate this case. */
241 val.size = osize ? 'a' : osize;
242 break;
243 case 'f':
244 /* Floating point has to be word or giantword. */
245 if (osize == 'w' || osize == 'g')
246 val.size = osize;
247 else
248 /* Default it to giantword if the last used size is not
249 appropriate. */
250 val.size = osize ? 'g' : osize;
251 break;
252 case 'c':
253 /* Characters default to one byte. */
254 val.size = osize ? 'b' : osize;
255 break;
256 case 's':
257 /* Display strings with byte size chars unless explicitly
258 specified. */
259 val.size = '\0';
260 break;
261
262 default:
263 /* The default is the size most recently specified. */
264 val.size = osize;
265 }
266
267 return val;
268 }
269 \f
270 /* Print value VAL on stream according to OPTIONS.
271 Do not end with a newline.
272 SIZE is the letter for the size of datum being printed.
273 This is used to pad hex numbers so they line up. SIZE is 0
274 for print / output and set for examine. */
275
276 static void
277 print_formatted (struct value *val, int size,
278 const struct value_print_options *options,
279 struct ui_file *stream)
280 {
281 struct type *type = check_typedef (value_type (val));
282 int len = TYPE_LENGTH (type);
283
284 if (VALUE_LVAL (val) == lval_memory)
285 next_address = value_address (val) + len;
286
287 if (size)
288 {
289 switch (options->format)
290 {
291 case 's':
292 {
293 struct type *elttype = value_type (val);
294
295 next_address = (value_address (val)
296 + val_print_string (elttype, NULL,
297 value_address (val), -1,
298 stream, options) * len);
299 }
300 return;
301
302 case 'i':
303 /* We often wrap here if there are long symbolic names. */
304 wrap_here (" ");
305 next_address = (value_address (val)
306 + gdb_print_insn (get_type_arch (type),
307 value_address (val), stream,
308 &branch_delay_insns));
309 return;
310 }
311 }
312
313 if (options->format == 0 || options->format == 's'
314 || TYPE_CODE (type) == TYPE_CODE_REF
315 || TYPE_CODE (type) == TYPE_CODE_ARRAY
316 || TYPE_CODE (type) == TYPE_CODE_STRING
317 || TYPE_CODE (type) == TYPE_CODE_STRUCT
318 || TYPE_CODE (type) == TYPE_CODE_UNION
319 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
320 value_print (val, stream, options);
321 else
322 /* User specified format, so don't look to the type to tell us
323 what to do. */
324 val_print_scalar_formatted (type,
325 value_contents_for_printing (val),
326 value_embedded_offset (val),
327 val,
328 options, size, stream);
329 }
330
331 /* Return builtin floating point type of same length as TYPE.
332 If no such type is found, return TYPE itself. */
333 static struct type *
334 float_type_from_length (struct type *type)
335 {
336 struct gdbarch *gdbarch = get_type_arch (type);
337 const struct builtin_type *builtin = builtin_type (gdbarch);
338
339 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
340 type = builtin->builtin_float;
341 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
342 type = builtin->builtin_double;
343 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
344 type = builtin->builtin_long_double;
345
346 return type;
347 }
348
349 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
350 according to OPTIONS and SIZE on STREAM. Formats s and i are not
351 supported at this level. */
352
353 void
354 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
355 const struct value_print_options *options,
356 int size, struct ui_file *stream)
357 {
358 struct gdbarch *gdbarch = get_type_arch (type);
359 LONGEST val_long = 0;
360 unsigned int len = TYPE_LENGTH (type);
361 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
362
363 /* String printing should go through val_print_scalar_formatted. */
364 gdb_assert (options->format != 's');
365
366 if (len > sizeof(LONGEST)
367 && (TYPE_CODE (type) == TYPE_CODE_INT
368 || TYPE_CODE (type) == TYPE_CODE_ENUM))
369 {
370 switch (options->format)
371 {
372 case 'o':
373 print_octal_chars (stream, valaddr, len, byte_order);
374 return;
375 case 'u':
376 case 'd':
377 print_decimal_chars (stream, valaddr, len, byte_order);
378 return;
379 case 't':
380 print_binary_chars (stream, valaddr, len, byte_order);
381 return;
382 case 'x':
383 print_hex_chars (stream, valaddr, len, byte_order);
384 return;
385 case 'c':
386 print_char_chars (stream, type, valaddr, len, byte_order);
387 return;
388 default:
389 break;
390 };
391 }
392
393 if (options->format != 'f')
394 val_long = unpack_long (type, valaddr);
395
396 /* If the value is a pointer, and pointers and addresses are not the
397 same, then at this point, the value's length (in target bytes) is
398 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
399 if (TYPE_CODE (type) == TYPE_CODE_PTR)
400 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
401
402 /* If we are printing it as unsigned, truncate it in case it is actually
403 a negative signed value (e.g. "print/u (short)-1" should print 65535
404 (if shorts are 16 bits) instead of 4294967295). */
405 if (options->format != 'd' || TYPE_UNSIGNED (type))
406 {
407 if (len < sizeof (LONGEST))
408 val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
409 }
410
411 switch (options->format)
412 {
413 case 'x':
414 if (!size)
415 {
416 /* No size specified, like in print. Print varying # of digits. */
417 print_longest (stream, 'x', 1, val_long);
418 }
419 else
420 switch (size)
421 {
422 case 'b':
423 case 'h':
424 case 'w':
425 case 'g':
426 print_longest (stream, size, 1, val_long);
427 break;
428 default:
429 error (_("Undefined output size \"%c\"."), size);
430 }
431 break;
432
433 case 'd':
434 print_longest (stream, 'd', 1, val_long);
435 break;
436
437 case 'u':
438 print_longest (stream, 'u', 0, val_long);
439 break;
440
441 case 'o':
442 if (val_long)
443 print_longest (stream, 'o', 1, val_long);
444 else
445 fprintf_filtered (stream, "0");
446 break;
447
448 case 'a':
449 {
450 CORE_ADDR addr = unpack_pointer (type, valaddr);
451
452 print_address (gdbarch, addr, stream);
453 }
454 break;
455
456 case 'c':
457 {
458 struct value_print_options opts = *options;
459
460 opts.format = 0;
461 if (TYPE_UNSIGNED (type))
462 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
463 else
464 type = builtin_type (gdbarch)->builtin_true_char;
465
466 value_print (value_from_longest (type, val_long), stream, &opts);
467 }
468 break;
469
470 case 'f':
471 type = float_type_from_length (type);
472 print_floating (valaddr, type, stream);
473 break;
474
475 case 0:
476 internal_error (__FILE__, __LINE__,
477 _("failed internal consistency check"));
478
479 case 't':
480 /* Binary; 't' stands for "two". */
481 {
482 char bits[8 * (sizeof val_long) + 1];
483 char buf[8 * (sizeof val_long) + 32];
484 char *cp = bits;
485 int width;
486
487 if (!size)
488 width = 8 * (sizeof val_long);
489 else
490 switch (size)
491 {
492 case 'b':
493 width = 8;
494 break;
495 case 'h':
496 width = 16;
497 break;
498 case 'w':
499 width = 32;
500 break;
501 case 'g':
502 width = 64;
503 break;
504 default:
505 error (_("Undefined output size \"%c\"."), size);
506 }
507
508 bits[width] = '\0';
509 while (width-- > 0)
510 {
511 bits[width] = (val_long & 1) ? '1' : '0';
512 val_long >>= 1;
513 }
514 if (!size)
515 {
516 while (*cp && *cp == '0')
517 cp++;
518 if (*cp == '\0')
519 cp--;
520 }
521 strncpy (buf, cp, sizeof (bits));
522 fputs_filtered (buf, stream);
523 }
524 break;
525
526 case 'z':
527 print_hex_chars (stream, valaddr, len, byte_order);
528 break;
529
530 default:
531 error (_("Undefined output format \"%c\"."), options->format);
532 }
533 }
534
535 /* Specify default address for `x' command.
536 The `info lines' command uses this. */
537
538 void
539 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
540 {
541 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
542
543 next_gdbarch = gdbarch;
544 next_address = addr;
545
546 /* Make address available to the user as $_. */
547 set_internalvar (lookup_internalvar ("_"),
548 value_from_pointer (ptr_type, addr));
549 }
550
551 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
552 after LEADIN. Print nothing if no symbolic name is found nearby.
553 Optionally also print source file and line number, if available.
554 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
555 or to interpret it as a possible C++ name and convert it back to source
556 form. However note that DO_DEMANGLE can be overridden by the specific
557 settings of the demangle and asm_demangle variables. Returns
558 non-zero if anything was printed; zero otherwise. */
559
560 int
561 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
562 struct ui_file *stream,
563 int do_demangle, char *leadin)
564 {
565 char *name = NULL;
566 char *filename = NULL;
567 int unmapped = 0;
568 int offset = 0;
569 int line = 0;
570
571 /* Throw away both name and filename. */
572 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
573 make_cleanup (free_current_contents, &filename);
574
575 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
576 &filename, &line, &unmapped))
577 {
578 do_cleanups (cleanup_chain);
579 return 0;
580 }
581
582 fputs_filtered (leadin, stream);
583 if (unmapped)
584 fputs_filtered ("<*", stream);
585 else
586 fputs_filtered ("<", stream);
587 fputs_filtered (name, stream);
588 if (offset != 0)
589 fprintf_filtered (stream, "+%u", (unsigned int) offset);
590
591 /* Append source filename and line number if desired. Give specific
592 line # of this addr, if we have it; else line # of the nearest symbol. */
593 if (print_symbol_filename && filename != NULL)
594 {
595 if (line != -1)
596 fprintf_filtered (stream, " at %s:%d", filename, line);
597 else
598 fprintf_filtered (stream, " in %s", filename);
599 }
600 if (unmapped)
601 fputs_filtered ("*>", stream);
602 else
603 fputs_filtered (">", stream);
604
605 do_cleanups (cleanup_chain);
606 return 1;
607 }
608
609 /* Given an address ADDR return all the elements needed to print the
610 address in a symbolic form. NAME can be mangled or not depending
611 on DO_DEMANGLE (and also on the asm_demangle global variable,
612 manipulated via ''set print asm-demangle''). Return 0 in case of
613 success, when all the info in the OUT paramters is valid. Return 1
614 otherwise. */
615 int
616 build_address_symbolic (struct gdbarch *gdbarch,
617 CORE_ADDR addr, /* IN */
618 int do_demangle, /* IN */
619 char **name, /* OUT */
620 int *offset, /* OUT */
621 char **filename, /* OUT */
622 int *line, /* OUT */
623 int *unmapped) /* OUT */
624 {
625 struct bound_minimal_symbol msymbol;
626 struct symbol *symbol;
627 CORE_ADDR name_location = 0;
628 struct obj_section *section = NULL;
629 const char *name_temp = "";
630
631 /* Let's say it is mapped (not unmapped). */
632 *unmapped = 0;
633
634 /* Determine if the address is in an overlay, and whether it is
635 mapped. */
636 if (overlay_debugging)
637 {
638 section = find_pc_overlay (addr);
639 if (pc_in_unmapped_range (addr, section))
640 {
641 *unmapped = 1;
642 addr = overlay_mapped_address (addr, section);
643 }
644 }
645
646 /* First try to find the address in the symbol table, then
647 in the minsyms. Take the closest one. */
648
649 /* This is defective in the sense that it only finds text symbols. So
650 really this is kind of pointless--we should make sure that the
651 minimal symbols have everything we need (by changing that we could
652 save some memory, but for many debug format--ELF/DWARF or
653 anything/stabs--it would be inconvenient to eliminate those minimal
654 symbols anyway). */
655 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
656 symbol = find_pc_sect_function (addr, section);
657
658 if (symbol)
659 {
660 /* If this is a function (i.e. a code address), strip out any
661 non-address bits. For instance, display a pointer to the
662 first instruction of a Thumb function as <function>; the
663 second instruction will be <function+2>, even though the
664 pointer is <function+3>. This matches the ISA behavior. */
665 addr = gdbarch_addr_bits_remove (gdbarch, addr);
666
667 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
668 if (do_demangle || asm_demangle)
669 name_temp = SYMBOL_PRINT_NAME (symbol);
670 else
671 name_temp = SYMBOL_LINKAGE_NAME (symbol);
672 }
673
674 if (msymbol.minsym != NULL
675 && MSYMBOL_HAS_SIZE (msymbol.minsym)
676 && MSYMBOL_SIZE (msymbol.minsym) == 0
677 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
678 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
679 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
680 msymbol.minsym = NULL;
681
682 if (msymbol.minsym != NULL)
683 {
684 if (BMSYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
685 {
686 /* If this is a function (i.e. a code address), strip out any
687 non-address bits. For instance, display a pointer to the
688 first instruction of a Thumb function as <function>; the
689 second instruction will be <function+2>, even though the
690 pointer is <function+3>. This matches the ISA behavior. */
691 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
692 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
693 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
694 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
695 addr = gdbarch_addr_bits_remove (gdbarch, addr);
696
697 /* The msymbol is closer to the address than the symbol;
698 use the msymbol instead. */
699 symbol = 0;
700 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
701 if (do_demangle || asm_demangle)
702 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
703 else
704 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
705 }
706 }
707 if (symbol == NULL && msymbol.minsym == NULL)
708 return 1;
709
710 /* If the nearest symbol is too far away, don't print anything symbolic. */
711
712 /* For when CORE_ADDR is larger than unsigned int, we do math in
713 CORE_ADDR. But when we detect unsigned wraparound in the
714 CORE_ADDR math, we ignore this test and print the offset,
715 because addr+max_symbolic_offset has wrapped through the end
716 of the address space back to the beginning, giving bogus comparison. */
717 if (addr > name_location + max_symbolic_offset
718 && name_location + max_symbolic_offset > name_location)
719 return 1;
720
721 *offset = addr - name_location;
722
723 *name = xstrdup (name_temp);
724
725 if (print_symbol_filename)
726 {
727 struct symtab_and_line sal;
728
729 sal = find_pc_sect_line (addr, section, 0);
730
731 if (sal.symtab)
732 {
733 *filename = xstrdup (symtab_to_filename_for_display (sal.symtab));
734 *line = sal.line;
735 }
736 }
737 return 0;
738 }
739
740
741 /* Print address ADDR symbolically on STREAM.
742 First print it as a number. Then perhaps print
743 <SYMBOL + OFFSET> after the number. */
744
745 void
746 print_address (struct gdbarch *gdbarch,
747 CORE_ADDR addr, struct ui_file *stream)
748 {
749 fputs_filtered (paddress (gdbarch, addr), stream);
750 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
751 }
752
753 /* Return a prefix for instruction address:
754 "=> " for current instruction, else " ". */
755
756 const char *
757 pc_prefix (CORE_ADDR addr)
758 {
759 if (has_stack_frames ())
760 {
761 struct frame_info *frame;
762 CORE_ADDR pc;
763
764 frame = get_selected_frame (NULL);
765 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
766 return "=> ";
767 }
768 return " ";
769 }
770
771 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
772 controls whether to print the symbolic name "raw" or demangled.
773 Return non-zero if anything was printed; zero otherwise. */
774
775 int
776 print_address_demangle (const struct value_print_options *opts,
777 struct gdbarch *gdbarch, CORE_ADDR addr,
778 struct ui_file *stream, int do_demangle)
779 {
780 if (opts->addressprint)
781 {
782 fputs_filtered (paddress (gdbarch, addr), stream);
783 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
784 }
785 else
786 {
787 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
788 }
789 return 1;
790 }
791 \f
792
793 /* Find the address of the instruction that is INST_COUNT instructions before
794 the instruction at ADDR.
795 Since some architectures have variable-length instructions, we can't just
796 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
797 number information to locate the nearest known instruction boundary,
798 and disassemble forward from there. If we go out of the symbol range
799 during disassembling, we return the lowest address we've got so far and
800 set the number of instructions read to INST_READ. */
801
802 static CORE_ADDR
803 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
804 int inst_count, int *inst_read)
805 {
806 /* The vector PCS is used to store instruction addresses within
807 a pc range. */
808 CORE_ADDR loop_start, loop_end, p;
809 VEC (CORE_ADDR) *pcs = NULL;
810 struct symtab_and_line sal;
811 struct cleanup *cleanup = make_cleanup (VEC_cleanup (CORE_ADDR), &pcs);
812
813 *inst_read = 0;
814 loop_start = loop_end = addr;
815
816 /* In each iteration of the outer loop, we get a pc range that ends before
817 LOOP_START, then we count and store every instruction address of the range
818 iterated in the loop.
819 If the number of instructions counted reaches INST_COUNT, return the
820 stored address that is located INST_COUNT instructions back from ADDR.
821 If INST_COUNT is not reached, we subtract the number of counted
822 instructions from INST_COUNT, and go to the next iteration. */
823 do
824 {
825 VEC_truncate (CORE_ADDR, pcs, 0);
826 sal = find_pc_sect_line (loop_start, NULL, 1);
827 if (sal.line <= 0)
828 {
829 /* We reach here when line info is not available. In this case,
830 we print a message and just exit the loop. The return value
831 is calculated after the loop. */
832 printf_filtered (_("No line number information available "
833 "for address "));
834 wrap_here (" ");
835 print_address (gdbarch, loop_start - 1, gdb_stdout);
836 printf_filtered ("\n");
837 break;
838 }
839
840 loop_end = loop_start;
841 loop_start = sal.pc;
842
843 /* This loop pushes instruction addresses in the range from
844 LOOP_START to LOOP_END. */
845 for (p = loop_start; p < loop_end;)
846 {
847 VEC_safe_push (CORE_ADDR, pcs, p);
848 p += gdb_insn_length (gdbarch, p);
849 }
850
851 inst_count -= VEC_length (CORE_ADDR, pcs);
852 *inst_read += VEC_length (CORE_ADDR, pcs);
853 }
854 while (inst_count > 0);
855
856 /* After the loop, the vector PCS has instruction addresses of the last
857 source line we processed, and INST_COUNT has a negative value.
858 We return the address at the index of -INST_COUNT in the vector for
859 the reason below.
860 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
861 Line X of File
862 0x4000
863 0x4001
864 0x4005
865 Line Y of File
866 0x4009
867 0x400c
868 => 0x400e
869 0x4011
870 find_instruction_backward is called with INST_COUNT = 4 and expected to
871 return 0x4001. When we reach here, INST_COUNT is set to -1 because
872 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
873 4001 is located at the index 1 of the last iterated line (= Line X),
874 which is simply calculated by -INST_COUNT.
875 The case when the length of PCS is 0 means that we reached an area for
876 which line info is not available. In such case, we return LOOP_START,
877 which was the lowest instruction address that had line info. */
878 p = VEC_length (CORE_ADDR, pcs) > 0
879 ? VEC_index (CORE_ADDR, pcs, -inst_count)
880 : loop_start;
881
882 /* INST_READ includes all instruction addresses in a pc range. Need to
883 exclude the beginning part up to the address we're returning. That
884 is, exclude {0x4000} in the example above. */
885 if (inst_count < 0)
886 *inst_read += inst_count;
887
888 do_cleanups (cleanup);
889 return p;
890 }
891
892 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
893 placing the results in GDB's memory from MYADDR + LEN. Returns
894 a count of the bytes actually read. */
895
896 static int
897 read_memory_backward (struct gdbarch *gdbarch,
898 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
899 {
900 int errcode;
901 int nread; /* Number of bytes actually read. */
902
903 /* First try a complete read. */
904 errcode = target_read_memory (memaddr, myaddr, len);
905 if (errcode == 0)
906 {
907 /* Got it all. */
908 nread = len;
909 }
910 else
911 {
912 /* Loop, reading one byte at a time until we get as much as we can. */
913 memaddr += len;
914 myaddr += len;
915 for (nread = 0; nread < len; ++nread)
916 {
917 errcode = target_read_memory (--memaddr, --myaddr, 1);
918 if (errcode != 0)
919 {
920 /* The read was unsuccessful, so exit the loop. */
921 printf_filtered (_("Cannot access memory at address %s\n"),
922 paddress (gdbarch, memaddr));
923 break;
924 }
925 }
926 }
927 return nread;
928 }
929
930 /* Returns true if X (which is LEN bytes wide) is the number zero. */
931
932 static int
933 integer_is_zero (const gdb_byte *x, int len)
934 {
935 int i = 0;
936
937 while (i < len && x[i] == 0)
938 ++i;
939 return (i == len);
940 }
941
942 /* Find the start address of a string in which ADDR is included.
943 Basically we search for '\0' and return the next address,
944 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
945 we stop searching and return the address to print characters as many as
946 PRINT_MAX from the string. */
947
948 static CORE_ADDR
949 find_string_backward (struct gdbarch *gdbarch,
950 CORE_ADDR addr, int count, int char_size,
951 const struct value_print_options *options,
952 int *strings_counted)
953 {
954 const int chunk_size = 0x20;
955 gdb_byte *buffer = NULL;
956 struct cleanup *cleanup = NULL;
957 int read_error = 0;
958 int chars_read = 0;
959 int chars_to_read = chunk_size;
960 int chars_counted = 0;
961 int count_original = count;
962 CORE_ADDR string_start_addr = addr;
963
964 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
965 buffer = (gdb_byte *) xmalloc (chars_to_read * char_size);
966 cleanup = make_cleanup (xfree, buffer);
967 while (count > 0 && read_error == 0)
968 {
969 int i;
970
971 addr -= chars_to_read * char_size;
972 chars_read = read_memory_backward (gdbarch, addr, buffer,
973 chars_to_read * char_size);
974 chars_read /= char_size;
975 read_error = (chars_read == chars_to_read) ? 0 : 1;
976 /* Searching for '\0' from the end of buffer in backward direction. */
977 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
978 {
979 int offset = (chars_to_read - i - 1) * char_size;
980
981 if (integer_is_zero (buffer + offset, char_size)
982 || chars_counted == options->print_max)
983 {
984 /* Found '\0' or reached print_max. As OFFSET is the offset to
985 '\0', we add CHAR_SIZE to return the start address of
986 a string. */
987 --count;
988 string_start_addr = addr + offset + char_size;
989 chars_counted = 0;
990 }
991 }
992 }
993
994 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
995 *strings_counted = count_original - count;
996
997 if (read_error != 0)
998 {
999 /* In error case, STRING_START_ADDR is pointing to the string that
1000 was last successfully loaded. Rewind the partially loaded string. */
1001 string_start_addr -= chars_counted * char_size;
1002 }
1003
1004 do_cleanups (cleanup);
1005 return string_start_addr;
1006 }
1007
1008 /* Examine data at address ADDR in format FMT.
1009 Fetch it from memory and print on gdb_stdout. */
1010
1011 static void
1012 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
1013 {
1014 char format = 0;
1015 char size;
1016 int count = 1;
1017 struct type *val_type = NULL;
1018 int i;
1019 int maxelts;
1020 struct value_print_options opts;
1021 int need_to_update_next_address = 0;
1022 CORE_ADDR addr_rewound = 0;
1023
1024 format = fmt.format;
1025 size = fmt.size;
1026 count = fmt.count;
1027 next_gdbarch = gdbarch;
1028 next_address = addr;
1029
1030 /* Instruction format implies fetch single bytes
1031 regardless of the specified size.
1032 The case of strings is handled in decode_format, only explicit
1033 size operator are not changed to 'b'. */
1034 if (format == 'i')
1035 size = 'b';
1036
1037 if (size == 'a')
1038 {
1039 /* Pick the appropriate size for an address. */
1040 if (gdbarch_ptr_bit (next_gdbarch) == 64)
1041 size = 'g';
1042 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
1043 size = 'w';
1044 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
1045 size = 'h';
1046 else
1047 /* Bad value for gdbarch_ptr_bit. */
1048 internal_error (__FILE__, __LINE__,
1049 _("failed internal consistency check"));
1050 }
1051
1052 if (size == 'b')
1053 val_type = builtin_type (next_gdbarch)->builtin_int8;
1054 else if (size == 'h')
1055 val_type = builtin_type (next_gdbarch)->builtin_int16;
1056 else if (size == 'w')
1057 val_type = builtin_type (next_gdbarch)->builtin_int32;
1058 else if (size == 'g')
1059 val_type = builtin_type (next_gdbarch)->builtin_int64;
1060
1061 if (format == 's')
1062 {
1063 struct type *char_type = NULL;
1064
1065 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1066 if type is not found. */
1067 if (size == 'h')
1068 char_type = builtin_type (next_gdbarch)->builtin_char16;
1069 else if (size == 'w')
1070 char_type = builtin_type (next_gdbarch)->builtin_char32;
1071 if (char_type)
1072 val_type = char_type;
1073 else
1074 {
1075 if (size != '\0' && size != 'b')
1076 warning (_("Unable to display strings with "
1077 "size '%c', using 'b' instead."), size);
1078 size = 'b';
1079 val_type = builtin_type (next_gdbarch)->builtin_int8;
1080 }
1081 }
1082
1083 maxelts = 8;
1084 if (size == 'w')
1085 maxelts = 4;
1086 if (size == 'g')
1087 maxelts = 2;
1088 if (format == 's' || format == 'i')
1089 maxelts = 1;
1090
1091 get_formatted_print_options (&opts, format);
1092
1093 if (count < 0)
1094 {
1095 /* This is the negative repeat count case.
1096 We rewind the address based on the given repeat count and format,
1097 then examine memory from there in forward direction. */
1098
1099 count = -count;
1100 if (format == 'i')
1101 {
1102 next_address = find_instruction_backward (gdbarch, addr, count,
1103 &count);
1104 }
1105 else if (format == 's')
1106 {
1107 next_address = find_string_backward (gdbarch, addr, count,
1108 TYPE_LENGTH (val_type),
1109 &opts, &count);
1110 }
1111 else
1112 {
1113 next_address = addr - count * TYPE_LENGTH (val_type);
1114 }
1115
1116 /* The following call to print_formatted updates next_address in every
1117 iteration. In backward case, we store the start address here
1118 and update next_address with it before exiting the function. */
1119 addr_rewound = (format == 's'
1120 ? next_address - TYPE_LENGTH (val_type)
1121 : next_address);
1122 need_to_update_next_address = 1;
1123 }
1124
1125 /* Print as many objects as specified in COUNT, at most maxelts per line,
1126 with the address of the next one at the start of each line. */
1127
1128 while (count > 0)
1129 {
1130 QUIT;
1131 if (format == 'i')
1132 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1133 print_address (next_gdbarch, next_address, gdb_stdout);
1134 printf_filtered (":");
1135 for (i = maxelts;
1136 i > 0 && count > 0;
1137 i--, count--)
1138 {
1139 printf_filtered ("\t");
1140 /* Note that print_formatted sets next_address for the next
1141 object. */
1142 last_examine_address = next_address;
1143
1144 if (last_examine_value)
1145 value_free (last_examine_value);
1146
1147 /* The value to be displayed is not fetched greedily.
1148 Instead, to avoid the possibility of a fetched value not
1149 being used, its retrieval is delayed until the print code
1150 uses it. When examining an instruction stream, the
1151 disassembler will perform its own memory fetch using just
1152 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1153 the disassembler be modified so that LAST_EXAMINE_VALUE
1154 is left with the byte sequence from the last complete
1155 instruction fetched from memory? */
1156 last_examine_value = value_at_lazy (val_type, next_address);
1157
1158 if (last_examine_value)
1159 release_value (last_examine_value);
1160
1161 print_formatted (last_examine_value, size, &opts, gdb_stdout);
1162
1163 /* Display any branch delay slots following the final insn. */
1164 if (format == 'i' && count == 1)
1165 count += branch_delay_insns;
1166 }
1167 printf_filtered ("\n");
1168 gdb_flush (gdb_stdout);
1169 }
1170
1171 if (need_to_update_next_address)
1172 next_address = addr_rewound;
1173 }
1174 \f
1175 static void
1176 validate_format (struct format_data fmt, const char *cmdname)
1177 {
1178 if (fmt.size != 0)
1179 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1180 if (fmt.count != 1)
1181 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1182 cmdname);
1183 if (fmt.format == 'i')
1184 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1185 fmt.format, cmdname);
1186 }
1187
1188 /* Parse print command format string into *FMTP and update *EXPP.
1189 CMDNAME should name the current command. */
1190
1191 void
1192 print_command_parse_format (const char **expp, const char *cmdname,
1193 struct format_data *fmtp)
1194 {
1195 const char *exp = *expp;
1196
1197 if (exp && *exp == '/')
1198 {
1199 exp++;
1200 *fmtp = decode_format (&exp, last_format, 0);
1201 validate_format (*fmtp, cmdname);
1202 last_format = fmtp->format;
1203 }
1204 else
1205 {
1206 fmtp->count = 1;
1207 fmtp->format = 0;
1208 fmtp->size = 0;
1209 fmtp->raw = 0;
1210 }
1211
1212 *expp = exp;
1213 }
1214
1215 /* Print VAL to console according to *FMTP, including recording it to
1216 the history. */
1217
1218 void
1219 print_value (struct value *val, const struct format_data *fmtp)
1220 {
1221 struct value_print_options opts;
1222 int histindex = record_latest_value (val);
1223
1224 annotate_value_history_begin (histindex, value_type (val));
1225
1226 printf_filtered ("$%d = ", histindex);
1227
1228 annotate_value_history_value ();
1229
1230 get_formatted_print_options (&opts, fmtp->format);
1231 opts.raw = fmtp->raw;
1232
1233 print_formatted (val, fmtp->size, &opts, gdb_stdout);
1234 printf_filtered ("\n");
1235
1236 annotate_value_history_end ();
1237 }
1238
1239 /* Evaluate string EXP as an expression in the current language and
1240 print the resulting value. EXP may contain a format specifier as the
1241 first argument ("/x myvar" for example, to print myvar in hex). */
1242
1243 static void
1244 print_command_1 (const char *exp, int voidprint)
1245 {
1246 struct expression *expr;
1247 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1248 struct value *val;
1249 struct format_data fmt;
1250
1251 print_command_parse_format (&exp, "print", &fmt);
1252
1253 if (exp && *exp)
1254 {
1255 expr = parse_expression (exp);
1256 make_cleanup (free_current_contents, &expr);
1257 val = evaluate_expression (expr);
1258 }
1259 else
1260 val = access_value_history (0);
1261
1262 if (voidprint || (val && value_type (val) &&
1263 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1264 print_value (val, &fmt);
1265
1266 do_cleanups (old_chain);
1267 }
1268
1269 static void
1270 print_command (char *exp, int from_tty)
1271 {
1272 print_command_1 (exp, 1);
1273 }
1274
1275 /* Same as print, except it doesn't print void results. */
1276 static void
1277 call_command (char *exp, int from_tty)
1278 {
1279 print_command_1 (exp, 0);
1280 }
1281
1282 /* Implementation of the "output" command. */
1283
1284 static void
1285 output_command (char *exp, int from_tty)
1286 {
1287 output_command_const (exp, from_tty);
1288 }
1289
1290 /* Like output_command, but takes a const string as argument. */
1291
1292 void
1293 output_command_const (const char *exp, int from_tty)
1294 {
1295 struct expression *expr;
1296 struct cleanup *old_chain;
1297 char format = 0;
1298 struct value *val;
1299 struct format_data fmt;
1300 struct value_print_options opts;
1301
1302 fmt.size = 0;
1303 fmt.raw = 0;
1304
1305 if (exp && *exp == '/')
1306 {
1307 exp++;
1308 fmt = decode_format (&exp, 0, 0);
1309 validate_format (fmt, "output");
1310 format = fmt.format;
1311 }
1312
1313 expr = parse_expression (exp);
1314 old_chain = make_cleanup (free_current_contents, &expr);
1315
1316 val = evaluate_expression (expr);
1317
1318 annotate_value_begin (value_type (val));
1319
1320 get_formatted_print_options (&opts, format);
1321 opts.raw = fmt.raw;
1322 print_formatted (val, fmt.size, &opts, gdb_stdout);
1323
1324 annotate_value_end ();
1325
1326 wrap_here ("");
1327 gdb_flush (gdb_stdout);
1328
1329 do_cleanups (old_chain);
1330 }
1331
1332 static void
1333 set_command (char *exp, int from_tty)
1334 {
1335 struct expression *expr = parse_expression (exp);
1336 struct cleanup *old_chain =
1337 make_cleanup (free_current_contents, &expr);
1338
1339 if (expr->nelts >= 1)
1340 switch (expr->elts[0].opcode)
1341 {
1342 case UNOP_PREINCREMENT:
1343 case UNOP_POSTINCREMENT:
1344 case UNOP_PREDECREMENT:
1345 case UNOP_POSTDECREMENT:
1346 case BINOP_ASSIGN:
1347 case BINOP_ASSIGN_MODIFY:
1348 case BINOP_COMMA:
1349 break;
1350 default:
1351 warning
1352 (_("Expression is not an assignment (and might have no effect)"));
1353 }
1354
1355 evaluate_expression (expr);
1356 do_cleanups (old_chain);
1357 }
1358
1359 static void
1360 sym_info (char *arg, int from_tty)
1361 {
1362 struct minimal_symbol *msymbol;
1363 struct objfile *objfile;
1364 struct obj_section *osect;
1365 CORE_ADDR addr, sect_addr;
1366 int matches = 0;
1367 unsigned int offset;
1368
1369 if (!arg)
1370 error_no_arg (_("address"));
1371
1372 addr = parse_and_eval_address (arg);
1373 ALL_OBJSECTIONS (objfile, osect)
1374 {
1375 /* Only process each object file once, even if there's a separate
1376 debug file. */
1377 if (objfile->separate_debug_objfile_backlink)
1378 continue;
1379
1380 sect_addr = overlay_mapped_address (addr, osect);
1381
1382 if (obj_section_addr (osect) <= sect_addr
1383 && sect_addr < obj_section_endaddr (osect)
1384 && (msymbol
1385 = lookup_minimal_symbol_by_pc_section (sect_addr, osect).minsym))
1386 {
1387 const char *obj_name, *mapped, *sec_name, *msym_name;
1388 char *loc_string;
1389 struct cleanup *old_chain;
1390
1391 matches = 1;
1392 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1393 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1394 sec_name = osect->the_bfd_section->name;
1395 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1396
1397 /* Don't print the offset if it is zero.
1398 We assume there's no need to handle i18n of "sym + offset". */
1399 if (offset)
1400 loc_string = xstrprintf ("%s + %u", msym_name, offset);
1401 else
1402 loc_string = xstrprintf ("%s", msym_name);
1403
1404 /* Use a cleanup to free loc_string in case the user quits
1405 a pagination request inside printf_filtered. */
1406 old_chain = make_cleanup (xfree, loc_string);
1407
1408 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1409 obj_name = objfile_name (osect->objfile);
1410
1411 if (MULTI_OBJFILE_P ())
1412 if (pc_in_unmapped_range (addr, osect))
1413 if (section_is_overlay (osect))
1414 printf_filtered (_("%s in load address range of "
1415 "%s overlay section %s of %s\n"),
1416 loc_string, mapped, sec_name, obj_name);
1417 else
1418 printf_filtered (_("%s in load address range of "
1419 "section %s of %s\n"),
1420 loc_string, sec_name, obj_name);
1421 else
1422 if (section_is_overlay (osect))
1423 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1424 loc_string, mapped, sec_name, obj_name);
1425 else
1426 printf_filtered (_("%s in section %s of %s\n"),
1427 loc_string, sec_name, obj_name);
1428 else
1429 if (pc_in_unmapped_range (addr, osect))
1430 if (section_is_overlay (osect))
1431 printf_filtered (_("%s in load address range of %s overlay "
1432 "section %s\n"),
1433 loc_string, mapped, sec_name);
1434 else
1435 printf_filtered (_("%s in load address range of section %s\n"),
1436 loc_string, sec_name);
1437 else
1438 if (section_is_overlay (osect))
1439 printf_filtered (_("%s in %s overlay section %s\n"),
1440 loc_string, mapped, sec_name);
1441 else
1442 printf_filtered (_("%s in section %s\n"),
1443 loc_string, sec_name);
1444
1445 do_cleanups (old_chain);
1446 }
1447 }
1448 if (matches == 0)
1449 printf_filtered (_("No symbol matches %s.\n"), arg);
1450 }
1451
1452 static void
1453 address_info (char *exp, int from_tty)
1454 {
1455 struct gdbarch *gdbarch;
1456 int regno;
1457 struct symbol *sym;
1458 struct bound_minimal_symbol msymbol;
1459 long val;
1460 struct obj_section *section;
1461 CORE_ADDR load_addr, context_pc = 0;
1462 struct field_of_this_result is_a_field_of_this;
1463
1464 if (exp == 0)
1465 error (_("Argument required."));
1466
1467 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1468 &is_a_field_of_this).symbol;
1469 if (sym == NULL)
1470 {
1471 if (is_a_field_of_this.type != NULL)
1472 {
1473 printf_filtered ("Symbol \"");
1474 fprintf_symbol_filtered (gdb_stdout, exp,
1475 current_language->la_language, DMGL_ANSI);
1476 printf_filtered ("\" is a field of the local class variable ");
1477 if (current_language->la_language == language_objc)
1478 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1479 else
1480 printf_filtered ("`this'\n");
1481 return;
1482 }
1483
1484 msymbol = lookup_bound_minimal_symbol (exp);
1485
1486 if (msymbol.minsym != NULL)
1487 {
1488 struct objfile *objfile = msymbol.objfile;
1489
1490 gdbarch = get_objfile_arch (objfile);
1491 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1492
1493 printf_filtered ("Symbol \"");
1494 fprintf_symbol_filtered (gdb_stdout, exp,
1495 current_language->la_language, DMGL_ANSI);
1496 printf_filtered ("\" is at ");
1497 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1498 printf_filtered (" in a file compiled without debugging");
1499 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1500 if (section_is_overlay (section))
1501 {
1502 load_addr = overlay_unmapped_address (load_addr, section);
1503 printf_filtered (",\n -- loaded at ");
1504 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1505 printf_filtered (" in overlay section %s",
1506 section->the_bfd_section->name);
1507 }
1508 printf_filtered (".\n");
1509 }
1510 else
1511 error (_("No symbol \"%s\" in current context."), exp);
1512 return;
1513 }
1514
1515 printf_filtered ("Symbol \"");
1516 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1517 current_language->la_language, DMGL_ANSI);
1518 printf_filtered ("\" is ");
1519 val = SYMBOL_VALUE (sym);
1520 if (SYMBOL_OBJFILE_OWNED (sym))
1521 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1522 else
1523 section = NULL;
1524 gdbarch = symbol_arch (sym);
1525
1526 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1527 {
1528 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1529 gdb_stdout);
1530 printf_filtered (".\n");
1531 return;
1532 }
1533
1534 switch (SYMBOL_CLASS (sym))
1535 {
1536 case LOC_CONST:
1537 case LOC_CONST_BYTES:
1538 printf_filtered ("constant");
1539 break;
1540
1541 case LOC_LABEL:
1542 printf_filtered ("a label at address ");
1543 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1544 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1545 if (section_is_overlay (section))
1546 {
1547 load_addr = overlay_unmapped_address (load_addr, section);
1548 printf_filtered (",\n -- loaded at ");
1549 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1550 printf_filtered (" in overlay section %s",
1551 section->the_bfd_section->name);
1552 }
1553 break;
1554
1555 case LOC_COMPUTED:
1556 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1557
1558 case LOC_REGISTER:
1559 /* GDBARCH is the architecture associated with the objfile the symbol
1560 is defined in; the target architecture may be different, and may
1561 provide additional registers. However, we do not know the target
1562 architecture at this point. We assume the objfile architecture
1563 will contain all the standard registers that occur in debug info
1564 in that objfile. */
1565 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1566
1567 if (SYMBOL_IS_ARGUMENT (sym))
1568 printf_filtered (_("an argument in register %s"),
1569 gdbarch_register_name (gdbarch, regno));
1570 else
1571 printf_filtered (_("a variable in register %s"),
1572 gdbarch_register_name (gdbarch, regno));
1573 break;
1574
1575 case LOC_STATIC:
1576 printf_filtered (_("static storage at address "));
1577 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1578 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1579 if (section_is_overlay (section))
1580 {
1581 load_addr = overlay_unmapped_address (load_addr, section);
1582 printf_filtered (_(",\n -- loaded at "));
1583 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1584 printf_filtered (_(" in overlay section %s"),
1585 section->the_bfd_section->name);
1586 }
1587 break;
1588
1589 case LOC_REGPARM_ADDR:
1590 /* Note comment at LOC_REGISTER. */
1591 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1592 printf_filtered (_("address of an argument in register %s"),
1593 gdbarch_register_name (gdbarch, regno));
1594 break;
1595
1596 case LOC_ARG:
1597 printf_filtered (_("an argument at offset %ld"), val);
1598 break;
1599
1600 case LOC_LOCAL:
1601 printf_filtered (_("a local variable at frame offset %ld"), val);
1602 break;
1603
1604 case LOC_REF_ARG:
1605 printf_filtered (_("a reference argument at offset %ld"), val);
1606 break;
1607
1608 case LOC_TYPEDEF:
1609 printf_filtered (_("a typedef"));
1610 break;
1611
1612 case LOC_BLOCK:
1613 printf_filtered (_("a function at address "));
1614 load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1615 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1616 if (section_is_overlay (section))
1617 {
1618 load_addr = overlay_unmapped_address (load_addr, section);
1619 printf_filtered (_(",\n -- loaded at "));
1620 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1621 printf_filtered (_(" in overlay section %s"),
1622 section->the_bfd_section->name);
1623 }
1624 break;
1625
1626 case LOC_UNRESOLVED:
1627 {
1628 struct bound_minimal_symbol msym;
1629
1630 msym = lookup_minimal_symbol_and_objfile (SYMBOL_LINKAGE_NAME (sym));
1631 if (msym.minsym == NULL)
1632 printf_filtered ("unresolved");
1633 else
1634 {
1635 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1636
1637 if (section
1638 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1639 {
1640 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1641 printf_filtered (_("a thread-local variable at offset %s "
1642 "in the thread-local storage for `%s'"),
1643 paddress (gdbarch, load_addr),
1644 objfile_name (section->objfile));
1645 }
1646 else
1647 {
1648 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1649 printf_filtered (_("static storage at address "));
1650 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1651 if (section_is_overlay (section))
1652 {
1653 load_addr = overlay_unmapped_address (load_addr, section);
1654 printf_filtered (_(",\n -- loaded at "));
1655 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1656 printf_filtered (_(" in overlay section %s"),
1657 section->the_bfd_section->name);
1658 }
1659 }
1660 }
1661 }
1662 break;
1663
1664 case LOC_OPTIMIZED_OUT:
1665 printf_filtered (_("optimized out"));
1666 break;
1667
1668 default:
1669 printf_filtered (_("of unknown (botched) type"));
1670 break;
1671 }
1672 printf_filtered (".\n");
1673 }
1674 \f
1675
1676 static void
1677 x_command (char *exp, int from_tty)
1678 {
1679 struct expression *expr;
1680 struct format_data fmt;
1681 struct cleanup *old_chain;
1682 struct value *val;
1683
1684 fmt.format = last_format ? last_format : 'x';
1685 fmt.size = last_size;
1686 fmt.count = 1;
1687 fmt.raw = 0;
1688
1689 if (exp && *exp == '/')
1690 {
1691 const char *tmp = exp + 1;
1692
1693 fmt = decode_format (&tmp, last_format, last_size);
1694 exp = (char *) tmp;
1695 }
1696
1697 /* If we have an expression, evaluate it and use it as the address. */
1698
1699 if (exp != 0 && *exp != 0)
1700 {
1701 expr = parse_expression (exp);
1702 /* Cause expression not to be there any more if this command is
1703 repeated with Newline. But don't clobber a user-defined
1704 command's definition. */
1705 if (from_tty)
1706 *exp = 0;
1707 old_chain = make_cleanup (free_current_contents, &expr);
1708 val = evaluate_expression (expr);
1709 if (TYPE_CODE (value_type (val)) == TYPE_CODE_REF)
1710 val = coerce_ref (val);
1711 /* In rvalue contexts, such as this, functions are coerced into
1712 pointers to functions. This makes "x/i main" work. */
1713 if (/* last_format == 'i' && */
1714 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1715 && VALUE_LVAL (val) == lval_memory)
1716 next_address = value_address (val);
1717 else
1718 next_address = value_as_address (val);
1719
1720 next_gdbarch = expr->gdbarch;
1721 do_cleanups (old_chain);
1722 }
1723
1724 if (!next_gdbarch)
1725 error_no_arg (_("starting display address"));
1726
1727 do_examine (fmt, next_gdbarch, next_address);
1728
1729 /* If the examine succeeds, we remember its size and format for next
1730 time. Set last_size to 'b' for strings. */
1731 if (fmt.format == 's')
1732 last_size = 'b';
1733 else
1734 last_size = fmt.size;
1735 last_format = fmt.format;
1736
1737 /* Set a couple of internal variables if appropriate. */
1738 if (last_examine_value)
1739 {
1740 /* Make last address examined available to the user as $_. Use
1741 the correct pointer type. */
1742 struct type *pointer_type
1743 = lookup_pointer_type (value_type (last_examine_value));
1744 set_internalvar (lookup_internalvar ("_"),
1745 value_from_pointer (pointer_type,
1746 last_examine_address));
1747
1748 /* Make contents of last address examined available to the user
1749 as $__. If the last value has not been fetched from memory
1750 then don't fetch it now; instead mark it by voiding the $__
1751 variable. */
1752 if (value_lazy (last_examine_value))
1753 clear_internalvar (lookup_internalvar ("__"));
1754 else
1755 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1756 }
1757 }
1758 \f
1759
1760 /* Add an expression to the auto-display chain.
1761 Specify the expression. */
1762
1763 static void
1764 display_command (char *arg, int from_tty)
1765 {
1766 struct format_data fmt;
1767 struct expression *expr;
1768 struct display *newobj;
1769 const char *exp = arg;
1770
1771 if (exp == 0)
1772 {
1773 do_displays ();
1774 return;
1775 }
1776
1777 if (*exp == '/')
1778 {
1779 exp++;
1780 fmt = decode_format (&exp, 0, 0);
1781 if (fmt.size && fmt.format == 0)
1782 fmt.format = 'x';
1783 if (fmt.format == 'i' || fmt.format == 's')
1784 fmt.size = 'b';
1785 }
1786 else
1787 {
1788 fmt.format = 0;
1789 fmt.size = 0;
1790 fmt.count = 0;
1791 fmt.raw = 0;
1792 }
1793
1794 innermost_block = NULL;
1795 expr = parse_expression (exp);
1796
1797 newobj = XNEW (struct display);
1798
1799 newobj->exp_string = xstrdup (exp);
1800 newobj->exp = expr;
1801 newobj->block = innermost_block;
1802 newobj->pspace = current_program_space;
1803 newobj->number = ++display_number;
1804 newobj->format = fmt;
1805 newobj->enabled_p = 1;
1806 newobj->next = NULL;
1807
1808 if (display_chain == NULL)
1809 display_chain = newobj;
1810 else
1811 {
1812 struct display *last;
1813
1814 for (last = display_chain; last->next != NULL; last = last->next)
1815 ;
1816 last->next = newobj;
1817 }
1818
1819 if (from_tty)
1820 do_one_display (newobj);
1821
1822 dont_repeat ();
1823 }
1824
1825 static void
1826 free_display (struct display *d)
1827 {
1828 xfree (d->exp_string);
1829 xfree (d->exp);
1830 xfree (d);
1831 }
1832
1833 /* Clear out the display_chain. Done when new symtabs are loaded,
1834 since this invalidates the types stored in many expressions. */
1835
1836 void
1837 clear_displays (void)
1838 {
1839 struct display *d;
1840
1841 while ((d = display_chain) != NULL)
1842 {
1843 display_chain = d->next;
1844 free_display (d);
1845 }
1846 }
1847
1848 /* Delete the auto-display DISPLAY. */
1849
1850 static void
1851 delete_display (struct display *display)
1852 {
1853 struct display *d;
1854
1855 gdb_assert (display != NULL);
1856
1857 if (display_chain == display)
1858 display_chain = display->next;
1859
1860 ALL_DISPLAYS (d)
1861 if (d->next == display)
1862 {
1863 d->next = display->next;
1864 break;
1865 }
1866
1867 free_display (display);
1868 }
1869
1870 /* Call FUNCTION on each of the displays whose numbers are given in
1871 ARGS. DATA is passed unmodified to FUNCTION. */
1872
1873 static void
1874 map_display_numbers (char *args,
1875 void (*function) (struct display *,
1876 void *),
1877 void *data)
1878 {
1879 int num;
1880
1881 if (args == NULL)
1882 error_no_arg (_("one or more display numbers"));
1883
1884 number_or_range_parser parser (args);
1885
1886 while (!parser.finished ())
1887 {
1888 const char *p = parser.cur_tok ();
1889
1890 num = parser.get_number ();
1891 if (num == 0)
1892 warning (_("bad display number at or near '%s'"), p);
1893 else
1894 {
1895 struct display *d, *tmp;
1896
1897 ALL_DISPLAYS_SAFE (d, tmp)
1898 if (d->number == num)
1899 break;
1900 if (d == NULL)
1901 printf_unfiltered (_("No display number %d.\n"), num);
1902 else
1903 function (d, data);
1904 }
1905 }
1906 }
1907
1908 /* Callback for map_display_numbers, that deletes a display. */
1909
1910 static void
1911 do_delete_display (struct display *d, void *data)
1912 {
1913 delete_display (d);
1914 }
1915
1916 /* "undisplay" command. */
1917
1918 static void
1919 undisplay_command (char *args, int from_tty)
1920 {
1921 if (args == NULL)
1922 {
1923 if (query (_("Delete all auto-display expressions? ")))
1924 clear_displays ();
1925 dont_repeat ();
1926 return;
1927 }
1928
1929 map_display_numbers (args, do_delete_display, NULL);
1930 dont_repeat ();
1931 }
1932
1933 /* Display a single auto-display.
1934 Do nothing if the display cannot be printed in the current context,
1935 or if the display is disabled. */
1936
1937 static void
1938 do_one_display (struct display *d)
1939 {
1940 struct cleanup *old_chain;
1941 int within_current_scope;
1942
1943 if (d->enabled_p == 0)
1944 return;
1945
1946 /* The expression carries the architecture that was used at parse time.
1947 This is a problem if the expression depends on architecture features
1948 (e.g. register numbers), and the current architecture is now different.
1949 For example, a display statement like "display/i $pc" is expected to
1950 display the PC register of the current architecture, not the arch at
1951 the time the display command was given. Therefore, we re-parse the
1952 expression if the current architecture has changed. */
1953 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1954 {
1955 xfree (d->exp);
1956 d->exp = NULL;
1957 d->block = NULL;
1958 }
1959
1960 if (d->exp == NULL)
1961 {
1962
1963 TRY
1964 {
1965 innermost_block = NULL;
1966 d->exp = parse_expression (d->exp_string);
1967 d->block = innermost_block;
1968 }
1969 CATCH (ex, RETURN_MASK_ALL)
1970 {
1971 /* Can't re-parse the expression. Disable this display item. */
1972 d->enabled_p = 0;
1973 warning (_("Unable to display \"%s\": %s"),
1974 d->exp_string, ex.message);
1975 return;
1976 }
1977 END_CATCH
1978 }
1979
1980 if (d->block)
1981 {
1982 if (d->pspace == current_program_space)
1983 within_current_scope = contained_in (get_selected_block (0), d->block);
1984 else
1985 within_current_scope = 0;
1986 }
1987 else
1988 within_current_scope = 1;
1989 if (!within_current_scope)
1990 return;
1991
1992 old_chain = make_cleanup_restore_integer (&current_display_number);
1993 current_display_number = d->number;
1994
1995 annotate_display_begin ();
1996 printf_filtered ("%d", d->number);
1997 annotate_display_number_end ();
1998 printf_filtered (": ");
1999 if (d->format.size)
2000 {
2001
2002 annotate_display_format ();
2003
2004 printf_filtered ("x/");
2005 if (d->format.count != 1)
2006 printf_filtered ("%d", d->format.count);
2007 printf_filtered ("%c", d->format.format);
2008 if (d->format.format != 'i' && d->format.format != 's')
2009 printf_filtered ("%c", d->format.size);
2010 printf_filtered (" ");
2011
2012 annotate_display_expression ();
2013
2014 puts_filtered (d->exp_string);
2015 annotate_display_expression_end ();
2016
2017 if (d->format.count != 1 || d->format.format == 'i')
2018 printf_filtered ("\n");
2019 else
2020 printf_filtered (" ");
2021
2022 annotate_display_value ();
2023
2024 TRY
2025 {
2026 struct value *val;
2027 CORE_ADDR addr;
2028
2029 val = evaluate_expression (d->exp);
2030 addr = value_as_address (val);
2031 if (d->format.format == 'i')
2032 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
2033 do_examine (d->format, d->exp->gdbarch, addr);
2034 }
2035 CATCH (ex, RETURN_MASK_ERROR)
2036 {
2037 fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
2038 }
2039 END_CATCH
2040 }
2041 else
2042 {
2043 struct value_print_options opts;
2044
2045 annotate_display_format ();
2046
2047 if (d->format.format)
2048 printf_filtered ("/%c ", d->format.format);
2049
2050 annotate_display_expression ();
2051
2052 puts_filtered (d->exp_string);
2053 annotate_display_expression_end ();
2054
2055 printf_filtered (" = ");
2056
2057 annotate_display_expression ();
2058
2059 get_formatted_print_options (&opts, d->format.format);
2060 opts.raw = d->format.raw;
2061
2062 TRY
2063 {
2064 struct value *val;
2065
2066 val = evaluate_expression (d->exp);
2067 print_formatted (val, d->format.size, &opts, gdb_stdout);
2068 }
2069 CATCH (ex, RETURN_MASK_ERROR)
2070 {
2071 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2072 }
2073 END_CATCH
2074
2075 printf_filtered ("\n");
2076 }
2077
2078 annotate_display_end ();
2079
2080 gdb_flush (gdb_stdout);
2081 do_cleanups (old_chain);
2082 }
2083
2084 /* Display all of the values on the auto-display chain which can be
2085 evaluated in the current scope. */
2086
2087 void
2088 do_displays (void)
2089 {
2090 struct display *d;
2091
2092 for (d = display_chain; d; d = d->next)
2093 do_one_display (d);
2094 }
2095
2096 /* Delete the auto-display which we were in the process of displaying.
2097 This is done when there is an error or a signal. */
2098
2099 void
2100 disable_display (int num)
2101 {
2102 struct display *d;
2103
2104 for (d = display_chain; d; d = d->next)
2105 if (d->number == num)
2106 {
2107 d->enabled_p = 0;
2108 return;
2109 }
2110 printf_unfiltered (_("No display number %d.\n"), num);
2111 }
2112
2113 void
2114 disable_current_display (void)
2115 {
2116 if (current_display_number >= 0)
2117 {
2118 disable_display (current_display_number);
2119 fprintf_unfiltered (gdb_stderr,
2120 _("Disabling display %d to "
2121 "avoid infinite recursion.\n"),
2122 current_display_number);
2123 }
2124 current_display_number = -1;
2125 }
2126
2127 static void
2128 display_info (char *ignore, int from_tty)
2129 {
2130 struct display *d;
2131
2132 if (!display_chain)
2133 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2134 else
2135 printf_filtered (_("Auto-display expressions now in effect:\n\
2136 Num Enb Expression\n"));
2137
2138 for (d = display_chain; d; d = d->next)
2139 {
2140 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2141 if (d->format.size)
2142 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2143 d->format.format);
2144 else if (d->format.format)
2145 printf_filtered ("/%c ", d->format.format);
2146 puts_filtered (d->exp_string);
2147 if (d->block && !contained_in (get_selected_block (0), d->block))
2148 printf_filtered (_(" (cannot be evaluated in the current context)"));
2149 printf_filtered ("\n");
2150 gdb_flush (gdb_stdout);
2151 }
2152 }
2153
2154 /* Callback fo map_display_numbers, that enables or disables the
2155 passed in display D. */
2156
2157 static void
2158 do_enable_disable_display (struct display *d, void *data)
2159 {
2160 d->enabled_p = *(int *) data;
2161 }
2162
2163 /* Implamentation of both the "disable display" and "enable display"
2164 commands. ENABLE decides what to do. */
2165
2166 static void
2167 enable_disable_display_command (char *args, int from_tty, int enable)
2168 {
2169 if (args == NULL)
2170 {
2171 struct display *d;
2172
2173 ALL_DISPLAYS (d)
2174 d->enabled_p = enable;
2175 return;
2176 }
2177
2178 map_display_numbers (args, do_enable_disable_display, &enable);
2179 }
2180
2181 /* The "enable display" command. */
2182
2183 static void
2184 enable_display_command (char *args, int from_tty)
2185 {
2186 enable_disable_display_command (args, from_tty, 1);
2187 }
2188
2189 /* The "disable display" command. */
2190
2191 static void
2192 disable_display_command (char *args, int from_tty)
2193 {
2194 enable_disable_display_command (args, from_tty, 0);
2195 }
2196
2197 /* display_chain items point to blocks and expressions. Some expressions in
2198 turn may point to symbols.
2199 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2200 obstack_free'd when a shared library is unloaded.
2201 Clear pointers that are about to become dangling.
2202 Both .exp and .block fields will be restored next time we need to display
2203 an item by re-parsing .exp_string field in the new execution context. */
2204
2205 static void
2206 clear_dangling_display_expressions (struct objfile *objfile)
2207 {
2208 struct display *d;
2209 struct program_space *pspace;
2210
2211 /* With no symbol file we cannot have a block or expression from it. */
2212 if (objfile == NULL)
2213 return;
2214 pspace = objfile->pspace;
2215 if (objfile->separate_debug_objfile_backlink)
2216 {
2217 objfile = objfile->separate_debug_objfile_backlink;
2218 gdb_assert (objfile->pspace == pspace);
2219 }
2220
2221 for (d = display_chain; d != NULL; d = d->next)
2222 {
2223 if (d->pspace != pspace)
2224 continue;
2225
2226 if (lookup_objfile_from_block (d->block) == objfile
2227 || (d->exp && exp_uses_objfile (d->exp, objfile)))
2228 {
2229 xfree (d->exp);
2230 d->exp = NULL;
2231 d->block = NULL;
2232 }
2233 }
2234 }
2235 \f
2236
2237 /* Print the value in stack frame FRAME of a variable specified by a
2238 struct symbol. NAME is the name to print; if NULL then VAR's print
2239 name will be used. STREAM is the ui_file on which to print the
2240 value. INDENT specifies the number of indent levels to print
2241 before printing the variable name.
2242
2243 This function invalidates FRAME. */
2244
2245 void
2246 print_variable_and_value (const char *name, struct symbol *var,
2247 struct frame_info *frame,
2248 struct ui_file *stream, int indent)
2249 {
2250
2251 if (!name)
2252 name = SYMBOL_PRINT_NAME (var);
2253
2254 fprintf_filtered (stream, "%s%s = ", n_spaces (2 * indent), name);
2255 TRY
2256 {
2257 struct value *val;
2258 struct value_print_options opts;
2259
2260 /* READ_VAR_VALUE needs a block in order to deal with non-local
2261 references (i.e. to handle nested functions). In this context, we
2262 print variables that are local to this frame, so we can avoid passing
2263 a block to it. */
2264 val = read_var_value (var, NULL, frame);
2265 get_user_print_options (&opts);
2266 opts.deref_ref = 1;
2267 common_val_print (val, stream, indent, &opts, current_language);
2268
2269 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2270 function. */
2271 frame = NULL;
2272 }
2273 CATCH (except, RETURN_MASK_ERROR)
2274 {
2275 fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
2276 except.message);
2277 }
2278 END_CATCH
2279
2280 fprintf_filtered (stream, "\n");
2281 }
2282
2283 /* Subroutine of ui_printf to simplify it.
2284 Print VALUE to STREAM using FORMAT.
2285 VALUE is a C-style string on the target. */
2286
2287 static void
2288 printf_c_string (struct ui_file *stream, const char *format,
2289 struct value *value)
2290 {
2291 gdb_byte *str;
2292 CORE_ADDR tem;
2293 int j;
2294
2295 tem = value_as_address (value);
2296
2297 /* This is a %s argument. Find the length of the string. */
2298 for (j = 0;; j++)
2299 {
2300 gdb_byte c;
2301
2302 QUIT;
2303 read_memory (tem + j, &c, 1);
2304 if (c == 0)
2305 break;
2306 }
2307
2308 /* Copy the string contents into a string inside GDB. */
2309 str = (gdb_byte *) alloca (j + 1);
2310 if (j != 0)
2311 read_memory (tem, str, j);
2312 str[j] = 0;
2313
2314 fprintf_filtered (stream, format, (char *) str);
2315 }
2316
2317 /* Subroutine of ui_printf to simplify it.
2318 Print VALUE to STREAM using FORMAT.
2319 VALUE is a wide C-style string on the target. */
2320
2321 static void
2322 printf_wide_c_string (struct ui_file *stream, const char *format,
2323 struct value *value)
2324 {
2325 gdb_byte *str;
2326 CORE_ADDR tem;
2327 int j;
2328 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2329 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2330 struct type *wctype = lookup_typename (current_language, gdbarch,
2331 "wchar_t", NULL, 0);
2332 int wcwidth = TYPE_LENGTH (wctype);
2333 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2334 struct obstack output;
2335 struct cleanup *inner_cleanup;
2336
2337 tem = value_as_address (value);
2338
2339 /* This is a %s argument. Find the length of the string. */
2340 for (j = 0;; j += wcwidth)
2341 {
2342 QUIT;
2343 read_memory (tem + j, buf, wcwidth);
2344 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2345 break;
2346 }
2347
2348 /* Copy the string contents into a string inside GDB. */
2349 str = (gdb_byte *) alloca (j + wcwidth);
2350 if (j != 0)
2351 read_memory (tem, str, j);
2352 memset (&str[j], 0, wcwidth);
2353
2354 obstack_init (&output);
2355 inner_cleanup = make_cleanup_obstack_free (&output);
2356
2357 convert_between_encodings (target_wide_charset (gdbarch),
2358 host_charset (),
2359 str, j, wcwidth,
2360 &output, translit_char);
2361 obstack_grow_str0 (&output, "");
2362
2363 fprintf_filtered (stream, format, obstack_base (&output));
2364 do_cleanups (inner_cleanup);
2365 }
2366
2367 /* Subroutine of ui_printf to simplify it.
2368 Print VALUE, a decimal floating point value, to STREAM using FORMAT. */
2369
2370 static void
2371 printf_decfloat (struct ui_file *stream, const char *format,
2372 struct value *value)
2373 {
2374 const gdb_byte *param_ptr = value_contents (value);
2375
2376 #if defined (PRINTF_HAS_DECFLOAT)
2377 /* If we have native support for Decimal floating
2378 printing, handle it here. */
2379 fprintf_filtered (stream, format, param_ptr);
2380 #else
2381 /* As a workaround until vasprintf has native support for DFP
2382 we convert the DFP values to string and print them using
2383 the %s format specifier. */
2384 const char *p;
2385
2386 /* Parameter data. */
2387 struct type *param_type = value_type (value);
2388 struct gdbarch *gdbarch = get_type_arch (param_type);
2389 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2390
2391 /* DFP output data. */
2392 struct value *dfp_value = NULL;
2393 gdb_byte *dfp_ptr;
2394 int dfp_len = 16;
2395 gdb_byte dec[16];
2396 struct type *dfp_type = NULL;
2397 char decstr[MAX_DECIMAL_STRING];
2398
2399 /* Points to the end of the string so that we can go back
2400 and check for DFP length modifiers. */
2401 p = format + strlen (format);
2402
2403 /* Look for the float/double format specifier. */
2404 while (*p != 'f' && *p != 'e' && *p != 'E'
2405 && *p != 'g' && *p != 'G')
2406 p--;
2407
2408 /* Search for the '%' char and extract the size and type of
2409 the output decimal value based on its modifiers
2410 (%Hf, %Df, %DDf). */
2411 while (*--p != '%')
2412 {
2413 if (*p == 'H')
2414 {
2415 dfp_len = 4;
2416 dfp_type = builtin_type (gdbarch)->builtin_decfloat;
2417 }
2418 else if (*p == 'D' && *(p - 1) == 'D')
2419 {
2420 dfp_len = 16;
2421 dfp_type = builtin_type (gdbarch)->builtin_declong;
2422 p--;
2423 }
2424 else
2425 {
2426 dfp_len = 8;
2427 dfp_type = builtin_type (gdbarch)->builtin_decdouble;
2428 }
2429 }
2430
2431 /* Conversion between different DFP types. */
2432 if (TYPE_CODE (param_type) == TYPE_CODE_DECFLOAT)
2433 decimal_convert (param_ptr, TYPE_LENGTH (param_type),
2434 byte_order, dec, dfp_len, byte_order);
2435 else
2436 /* If this is a non-trivial conversion, just output 0.
2437 A correct converted value can be displayed by explicitly
2438 casting to a DFP type. */
2439 decimal_from_string (dec, dfp_len, byte_order, "0");
2440
2441 dfp_value = value_from_decfloat (dfp_type, dec);
2442
2443 dfp_ptr = (gdb_byte *) value_contents (dfp_value);
2444
2445 decimal_to_string (dfp_ptr, dfp_len, byte_order, decstr);
2446
2447 /* Print the DFP value. */
2448 fprintf_filtered (stream, "%s", decstr);
2449 #endif
2450 }
2451
2452 /* Subroutine of ui_printf to simplify it.
2453 Print VALUE, a target pointer, to STREAM using FORMAT. */
2454
2455 static void
2456 printf_pointer (struct ui_file *stream, const char *format,
2457 struct value *value)
2458 {
2459 /* We avoid the host's %p because pointers are too
2460 likely to be the wrong size. The only interesting
2461 modifier for %p is a width; extract that, and then
2462 handle %p as glibc would: %#x or a literal "(nil)". */
2463
2464 const char *p;
2465 char *fmt, *fmt_p;
2466 #ifdef PRINTF_HAS_LONG_LONG
2467 long long val = value_as_long (value);
2468 #else
2469 long val = value_as_long (value);
2470 #endif
2471
2472 fmt = (char *) alloca (strlen (format) + 5);
2473
2474 /* Copy up to the leading %. */
2475 p = format;
2476 fmt_p = fmt;
2477 while (*p)
2478 {
2479 int is_percent = (*p == '%');
2480
2481 *fmt_p++ = *p++;
2482 if (is_percent)
2483 {
2484 if (*p == '%')
2485 *fmt_p++ = *p++;
2486 else
2487 break;
2488 }
2489 }
2490
2491 if (val != 0)
2492 *fmt_p++ = '#';
2493
2494 /* Copy any width. */
2495 while (*p >= '0' && *p < '9')
2496 *fmt_p++ = *p++;
2497
2498 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2499 if (val != 0)
2500 {
2501 #ifdef PRINTF_HAS_LONG_LONG
2502 *fmt_p++ = 'l';
2503 #endif
2504 *fmt_p++ = 'l';
2505 *fmt_p++ = 'x';
2506 *fmt_p++ = '\0';
2507 fprintf_filtered (stream, fmt, val);
2508 }
2509 else
2510 {
2511 *fmt_p++ = 's';
2512 *fmt_p++ = '\0';
2513 fprintf_filtered (stream, fmt, "(nil)");
2514 }
2515 }
2516
2517 /* printf "printf format string" ARG to STREAM. */
2518
2519 static void
2520 ui_printf (const char *arg, struct ui_file *stream)
2521 {
2522 struct format_piece *fpieces;
2523 const char *s = arg;
2524 struct value **val_args;
2525 int allocated_args = 20;
2526 struct cleanup *old_cleanups;
2527
2528 val_args = XNEWVEC (struct value *, allocated_args);
2529 old_cleanups = make_cleanup (free_current_contents, &val_args);
2530
2531 if (s == 0)
2532 error_no_arg (_("format-control string and values to print"));
2533
2534 s = skip_spaces_const (s);
2535
2536 /* A format string should follow, enveloped in double quotes. */
2537 if (*s++ != '"')
2538 error (_("Bad format string, missing '\"'."));
2539
2540 fpieces = parse_format_string (&s);
2541
2542 make_cleanup (free_format_pieces_cleanup, &fpieces);
2543
2544 if (*s++ != '"')
2545 error (_("Bad format string, non-terminated '\"'."));
2546
2547 s = skip_spaces_const (s);
2548
2549 if (*s != ',' && *s != 0)
2550 error (_("Invalid argument syntax"));
2551
2552 if (*s == ',')
2553 s++;
2554 s = skip_spaces_const (s);
2555
2556 {
2557 int nargs = 0;
2558 int nargs_wanted;
2559 int i, fr;
2560 char *current_substring;
2561
2562 nargs_wanted = 0;
2563 for (fr = 0; fpieces[fr].string != NULL; fr++)
2564 if (fpieces[fr].argclass != literal_piece)
2565 ++nargs_wanted;
2566
2567 /* Now, parse all arguments and evaluate them.
2568 Store the VALUEs in VAL_ARGS. */
2569
2570 while (*s != '\0')
2571 {
2572 const char *s1;
2573
2574 if (nargs == allocated_args)
2575 val_args = (struct value **) xrealloc ((char *) val_args,
2576 (allocated_args *= 2)
2577 * sizeof (struct value *));
2578 s1 = s;
2579 val_args[nargs] = parse_to_comma_and_eval (&s1);
2580
2581 nargs++;
2582 s = s1;
2583 if (*s == ',')
2584 s++;
2585 }
2586
2587 if (nargs != nargs_wanted)
2588 error (_("Wrong number of arguments for specified format-string"));
2589
2590 /* Now actually print them. */
2591 i = 0;
2592 for (fr = 0; fpieces[fr].string != NULL; fr++)
2593 {
2594 current_substring = fpieces[fr].string;
2595 switch (fpieces[fr].argclass)
2596 {
2597 case string_arg:
2598 printf_c_string (stream, current_substring, val_args[i]);
2599 break;
2600 case wide_string_arg:
2601 printf_wide_c_string (stream, current_substring, val_args[i]);
2602 break;
2603 case wide_char_arg:
2604 {
2605 struct gdbarch *gdbarch
2606 = get_type_arch (value_type (val_args[i]));
2607 struct type *wctype = lookup_typename (current_language, gdbarch,
2608 "wchar_t", NULL, 0);
2609 struct type *valtype;
2610 struct obstack output;
2611 struct cleanup *inner_cleanup;
2612 const gdb_byte *bytes;
2613
2614 valtype = value_type (val_args[i]);
2615 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2616 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2617 error (_("expected wchar_t argument for %%lc"));
2618
2619 bytes = value_contents (val_args[i]);
2620
2621 obstack_init (&output);
2622 inner_cleanup = make_cleanup_obstack_free (&output);
2623
2624 convert_between_encodings (target_wide_charset (gdbarch),
2625 host_charset (),
2626 bytes, TYPE_LENGTH (valtype),
2627 TYPE_LENGTH (valtype),
2628 &output, translit_char);
2629 obstack_grow_str0 (&output, "");
2630
2631 fprintf_filtered (stream, current_substring,
2632 obstack_base (&output));
2633 do_cleanups (inner_cleanup);
2634 }
2635 break;
2636 case double_arg:
2637 {
2638 struct type *type = value_type (val_args[i]);
2639 DOUBLEST val;
2640 int inv;
2641
2642 /* If format string wants a float, unchecked-convert the value
2643 to floating point of the same size. */
2644 type = float_type_from_length (type);
2645 val = unpack_double (type, value_contents (val_args[i]), &inv);
2646 if (inv)
2647 error (_("Invalid floating value found in program."));
2648
2649 fprintf_filtered (stream, current_substring, (double) val);
2650 break;
2651 }
2652 case long_double_arg:
2653 #ifdef HAVE_LONG_DOUBLE
2654 {
2655 struct type *type = value_type (val_args[i]);
2656 DOUBLEST val;
2657 int inv;
2658
2659 /* If format string wants a float, unchecked-convert the value
2660 to floating point of the same size. */
2661 type = float_type_from_length (type);
2662 val = unpack_double (type, value_contents (val_args[i]), &inv);
2663 if (inv)
2664 error (_("Invalid floating value found in program."));
2665
2666 fprintf_filtered (stream, current_substring,
2667 (long double) val);
2668 break;
2669 }
2670 #else
2671 error (_("long double not supported in printf"));
2672 #endif
2673 case long_long_arg:
2674 #ifdef PRINTF_HAS_LONG_LONG
2675 {
2676 long long val = value_as_long (val_args[i]);
2677
2678 fprintf_filtered (stream, current_substring, val);
2679 break;
2680 }
2681 #else
2682 error (_("long long not supported in printf"));
2683 #endif
2684 case int_arg:
2685 {
2686 int val = value_as_long (val_args[i]);
2687
2688 fprintf_filtered (stream, current_substring, val);
2689 break;
2690 }
2691 case long_arg:
2692 {
2693 long val = value_as_long (val_args[i]);
2694
2695 fprintf_filtered (stream, current_substring, val);
2696 break;
2697 }
2698 /* Handles decimal floating values. */
2699 case decfloat_arg:
2700 printf_decfloat (stream, current_substring, val_args[i]);
2701 break;
2702 case ptr_arg:
2703 printf_pointer (stream, current_substring, val_args[i]);
2704 break;
2705 case literal_piece:
2706 /* Print a portion of the format string that has no
2707 directives. Note that this will not include any
2708 ordinary %-specs, but it might include "%%". That is
2709 why we use printf_filtered and not puts_filtered here.
2710 Also, we pass a dummy argument because some platforms
2711 have modified GCC to include -Wformat-security by
2712 default, which will warn here if there is no
2713 argument. */
2714 fprintf_filtered (stream, current_substring, 0);
2715 break;
2716 default:
2717 internal_error (__FILE__, __LINE__,
2718 _("failed internal consistency check"));
2719 }
2720 /* Maybe advance to the next argument. */
2721 if (fpieces[fr].argclass != literal_piece)
2722 ++i;
2723 }
2724 }
2725 do_cleanups (old_cleanups);
2726 }
2727
2728 /* Implement the "printf" command. */
2729
2730 static void
2731 printf_command (char *arg, int from_tty)
2732 {
2733 ui_printf (arg, gdb_stdout);
2734 gdb_flush (gdb_stdout);
2735 }
2736
2737 /* Implement the "eval" command. */
2738
2739 static void
2740 eval_command (char *arg, int from_tty)
2741 {
2742 struct ui_file *ui_out = mem_fileopen ();
2743 struct cleanup *cleanups = make_cleanup_ui_file_delete (ui_out);
2744 char *expanded;
2745
2746 ui_printf (arg, ui_out);
2747
2748 expanded = ui_file_xstrdup (ui_out, NULL);
2749 make_cleanup (xfree, expanded);
2750
2751 execute_command (expanded, from_tty);
2752
2753 do_cleanups (cleanups);
2754 }
2755
2756 void
2757 _initialize_printcmd (void)
2758 {
2759 struct cmd_list_element *c;
2760
2761 current_display_number = -1;
2762
2763 observer_attach_free_objfile (clear_dangling_display_expressions);
2764
2765 add_info ("address", address_info,
2766 _("Describe where symbol SYM is stored."));
2767
2768 add_info ("symbol", sym_info, _("\
2769 Describe what symbol is at location ADDR.\n\
2770 Only for symbols with fixed locations (global or static scope)."));
2771
2772 add_com ("x", class_vars, x_command, _("\
2773 Examine memory: x/FMT ADDRESS.\n\
2774 ADDRESS is an expression for the memory address to examine.\n\
2775 FMT is a repeat count followed by a format letter and a size letter.\n\
2776 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2777 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2778 and z(hex, zero padded on the left).\n\
2779 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2780 The specified number of objects of the specified size are printed\n\
2781 according to the format. If a negative number is specified, memory is\n\
2782 examined backward from the address.\n\n\
2783 Defaults for format and size letters are those previously used.\n\
2784 Default count is 1. Default address is following last thing printed\n\
2785 with this command or \"print\"."));
2786
2787 #if 0
2788 add_com ("whereis", class_vars, whereis_command,
2789 _("Print line number and file of definition of variable."));
2790 #endif
2791
2792 add_info ("display", display_info, _("\
2793 Expressions to display when program stops, with code numbers."));
2794
2795 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2796 Cancel some expressions to be displayed when program stops.\n\
2797 Arguments are the code numbers of the expressions to stop displaying.\n\
2798 No argument means cancel all automatic-display expressions.\n\
2799 \"delete display\" has the same effect as this command.\n\
2800 Do \"info display\" to see current list of code numbers."),
2801 &cmdlist);
2802
2803 add_com ("display", class_vars, display_command, _("\
2804 Print value of expression EXP each time the program stops.\n\
2805 /FMT may be used before EXP as in the \"print\" command.\n\
2806 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2807 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2808 and examining is done as in the \"x\" command.\n\n\
2809 With no argument, display all currently requested auto-display expressions.\n\
2810 Use \"undisplay\" to cancel display requests previously made."));
2811
2812 add_cmd ("display", class_vars, enable_display_command, _("\
2813 Enable some expressions to be displayed when program stops.\n\
2814 Arguments are the code numbers of the expressions to resume displaying.\n\
2815 No argument means enable all automatic-display expressions.\n\
2816 Do \"info display\" to see current list of code numbers."), &enablelist);
2817
2818 add_cmd ("display", class_vars, disable_display_command, _("\
2819 Disable some expressions to be displayed when program stops.\n\
2820 Arguments are the code numbers of the expressions to stop displaying.\n\
2821 No argument means disable all automatic-display expressions.\n\
2822 Do \"info display\" to see current list of code numbers."), &disablelist);
2823
2824 add_cmd ("display", class_vars, undisplay_command, _("\
2825 Cancel some expressions to be displayed when program stops.\n\
2826 Arguments are the code numbers of the expressions to stop displaying.\n\
2827 No argument means cancel all automatic-display expressions.\n\
2828 Do \"info display\" to see current list of code numbers."), &deletelist);
2829
2830 add_com ("printf", class_vars, printf_command, _("\
2831 printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2832 This is useful for formatted output in user-defined commands."));
2833
2834 add_com ("output", class_vars, output_command, _("\
2835 Like \"print\" but don't put in value history and don't print newline.\n\
2836 This is useful in user-defined commands."));
2837
2838 add_prefix_cmd ("set", class_vars, set_command, _("\
2839 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2840 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2841 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2842 with $), a register (a few standard names starting with $), or an actual\n\
2843 variable in the program being debugged. EXP is any valid expression.\n\
2844 Use \"set variable\" for variables with names identical to set subcommands.\n\
2845 \n\
2846 With a subcommand, this command modifies parts of the gdb environment.\n\
2847 You can see these environment settings with the \"show\" command."),
2848 &setlist, "set ", 1, &cmdlist);
2849 if (dbx_commands)
2850 add_com ("assign", class_vars, set_command, _("\
2851 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2852 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2853 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2854 with $), a register (a few standard names starting with $), or an actual\n\
2855 variable in the program being debugged. EXP is any valid expression.\n\
2856 Use \"set variable\" for variables with names identical to set subcommands.\n\
2857 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2858 You can see these environment settings with the \"show\" command."));
2859
2860 /* "call" is the same as "set", but handy for dbx users to call fns. */
2861 c = add_com ("call", class_vars, call_command, _("\
2862 Call a function in the program.\n\
2863 The argument is the function name and arguments, in the notation of the\n\
2864 current working language. The result is printed and saved in the value\n\
2865 history, if it is not void."));
2866 set_cmd_completer (c, expression_completer);
2867
2868 add_cmd ("variable", class_vars, set_command, _("\
2869 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2870 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2871 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2872 with $), a register (a few standard names starting with $), or an actual\n\
2873 variable in the program being debugged. EXP is any valid expression.\n\
2874 This may usually be abbreviated to simply \"set\"."),
2875 &setlist);
2876
2877 c = add_com ("print", class_vars, print_command, _("\
2878 Print value of expression EXP.\n\
2879 Variables accessible are those of the lexical environment of the selected\n\
2880 stack frame, plus all those whose scope is global or an entire file.\n\
2881 \n\
2882 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2883 $$NUM refers to NUM'th value back from the last one.\n\
2884 Names starting with $ refer to registers (with the values they would have\n\
2885 if the program were to return to the stack frame now selected, restoring\n\
2886 all registers saved by frames farther in) or else to debugger\n\
2887 \"convenience\" variables (any such name not a known register).\n\
2888 Use assignment expressions to give values to convenience variables.\n\
2889 \n\
2890 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2891 @ is a binary operator for treating consecutive data objects\n\
2892 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2893 element is FOO, whose second element is stored in the space following\n\
2894 where FOO is stored, etc. FOO must be an expression whose value\n\
2895 resides in memory.\n\
2896 \n\
2897 EXP may be preceded with /FMT, where FMT is a format letter\n\
2898 but no count or size letter (see \"x\" command)."));
2899 set_cmd_completer (c, expression_completer);
2900 add_com_alias ("p", "print", class_vars, 1);
2901 add_com_alias ("inspect", "print", class_vars, 1);
2902
2903 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2904 &max_symbolic_offset, _("\
2905 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2906 Show the largest offset that will be printed in <symbol+1234> form."), _("\
2907 Tell GDB to only display the symbolic form of an address if the\n\
2908 offset between the closest earlier symbol and the address is less than\n\
2909 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2910 to always print the symbolic form of an address if any symbol precedes\n\
2911 it. Zero is equivalent to \"unlimited\"."),
2912 NULL,
2913 show_max_symbolic_offset,
2914 &setprintlist, &showprintlist);
2915 add_setshow_boolean_cmd ("symbol-filename", no_class,
2916 &print_symbol_filename, _("\
2917 Set printing of source filename and line number with <symbol>."), _("\
2918 Show printing of source filename and line number with <symbol>."), NULL,
2919 NULL,
2920 show_print_symbol_filename,
2921 &setprintlist, &showprintlist);
2922
2923 add_com ("eval", no_class, eval_command, _("\
2924 Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\
2925 a command line, and call it."));
2926 }
This page took 0.091935 seconds and 4 git commands to generate.