Remove unused declarations
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "expression.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "breakpoint.h"
31 #include "demangle.h"
32 #include "gdb-demangle.h"
33 #include "valprint.h"
34 #include "annotate.h"
35 #include "symfile.h" /* for overlay functions */
36 #include "objfiles.h" /* ditto */
37 #include "completer.h" /* for completion functions */
38 #include "ui-out.h"
39 #include "block.h"
40 #include "disasm.h"
41 #include "dfp.h"
42 #include "observer.h"
43 #include "solist.h"
44 #include "parser-defs.h"
45 #include "charset.h"
46 #include "arch-utils.h"
47 #include "cli/cli-utils.h"
48 #include "cli/cli-script.h"
49 #include "format.h"
50 #include "source.h"
51 #include "common/byte-vector.h"
52
53 #ifdef TUI
54 #include "tui/tui.h" /* For tui_active et al. */
55 #endif
56
57 /* Last specified output format. */
58
59 static char last_format = 0;
60
61 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
62
63 static char last_size = 'w';
64
65 /* Default address to examine next, and associated architecture. */
66
67 static struct gdbarch *next_gdbarch;
68 static CORE_ADDR next_address;
69
70 /* Number of delay instructions following current disassembled insn. */
71
72 static int branch_delay_insns;
73
74 /* Last address examined. */
75
76 static CORE_ADDR last_examine_address;
77
78 /* Contents of last address examined.
79 This is not valid past the end of the `x' command! */
80
81 static struct value *last_examine_value;
82
83 /* Largest offset between a symbolic value and an address, that will be
84 printed as `0x1234 <symbol+offset>'. */
85
86 static unsigned int max_symbolic_offset = UINT_MAX;
87 static void
88 show_max_symbolic_offset (struct ui_file *file, int from_tty,
89 struct cmd_list_element *c, const char *value)
90 {
91 fprintf_filtered (file,
92 _("The largest offset that will be "
93 "printed in <symbol+1234> form is %s.\n"),
94 value);
95 }
96
97 /* Append the source filename and linenumber of the symbol when
98 printing a symbolic value as `<symbol at filename:linenum>' if set. */
99 static int print_symbol_filename = 0;
100 static void
101 show_print_symbol_filename (struct ui_file *file, int from_tty,
102 struct cmd_list_element *c, const char *value)
103 {
104 fprintf_filtered (file, _("Printing of source filename and "
105 "line number with <symbol> is %s.\n"),
106 value);
107 }
108
109 /* Number of auto-display expression currently being displayed.
110 So that we can disable it if we get a signal within it.
111 -1 when not doing one. */
112
113 static int current_display_number;
114
115 struct display
116 {
117 /* Chain link to next auto-display item. */
118 struct display *next;
119
120 /* The expression as the user typed it. */
121 char *exp_string;
122
123 /* Expression to be evaluated and displayed. */
124 expression_up exp;
125
126 /* Item number of this auto-display item. */
127 int number;
128
129 /* Display format specified. */
130 struct format_data format;
131
132 /* Program space associated with `block'. */
133 struct program_space *pspace;
134
135 /* Innermost block required by this expression when evaluated. */
136 const struct block *block;
137
138 /* Status of this display (enabled or disabled). */
139 int enabled_p;
140 };
141
142 /* Chain of expressions whose values should be displayed
143 automatically each time the program stops. */
144
145 static struct display *display_chain;
146
147 static int display_number;
148
149 /* Walk the following statement or block through all displays.
150 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
151 display. */
152
153 #define ALL_DISPLAYS(B) \
154 for (B = display_chain; B; B = B->next)
155
156 #define ALL_DISPLAYS_SAFE(B,TMP) \
157 for (B = display_chain; \
158 B ? (TMP = B->next, 1): 0; \
159 B = TMP)
160
161 /* Prototypes for local functions. */
162
163 static void do_one_display (struct display *);
164 \f
165
166 /* Decode a format specification. *STRING_PTR should point to it.
167 OFORMAT and OSIZE are used as defaults for the format and size
168 if none are given in the format specification.
169 If OSIZE is zero, then the size field of the returned value
170 should be set only if a size is explicitly specified by the
171 user.
172 The structure returned describes all the data
173 found in the specification. In addition, *STRING_PTR is advanced
174 past the specification and past all whitespace following it. */
175
176 static struct format_data
177 decode_format (const char **string_ptr, int oformat, int osize)
178 {
179 struct format_data val;
180 const char *p = *string_ptr;
181
182 val.format = '?';
183 val.size = '?';
184 val.count = 1;
185 val.raw = 0;
186
187 if (*p == '-')
188 {
189 val.count = -1;
190 p++;
191 }
192 if (*p >= '0' && *p <= '9')
193 val.count *= atoi (p);
194 while (*p >= '0' && *p <= '9')
195 p++;
196
197 /* Now process size or format letters that follow. */
198
199 while (1)
200 {
201 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
202 val.size = *p++;
203 else if (*p == 'r')
204 {
205 val.raw = 1;
206 p++;
207 }
208 else if (*p >= 'a' && *p <= 'z')
209 val.format = *p++;
210 else
211 break;
212 }
213
214 while (*p == ' ' || *p == '\t')
215 p++;
216 *string_ptr = p;
217
218 /* Set defaults for format and size if not specified. */
219 if (val.format == '?')
220 {
221 if (val.size == '?')
222 {
223 /* Neither has been specified. */
224 val.format = oformat;
225 val.size = osize;
226 }
227 else
228 /* If a size is specified, any format makes a reasonable
229 default except 'i'. */
230 val.format = oformat == 'i' ? 'x' : oformat;
231 }
232 else if (val.size == '?')
233 switch (val.format)
234 {
235 case 'a':
236 /* Pick the appropriate size for an address. This is deferred
237 until do_examine when we know the actual architecture to use.
238 A special size value of 'a' is used to indicate this case. */
239 val.size = osize ? 'a' : osize;
240 break;
241 case 'f':
242 /* Floating point has to be word or giantword. */
243 if (osize == 'w' || osize == 'g')
244 val.size = osize;
245 else
246 /* Default it to giantword if the last used size is not
247 appropriate. */
248 val.size = osize ? 'g' : osize;
249 break;
250 case 'c':
251 /* Characters default to one byte. */
252 val.size = osize ? 'b' : osize;
253 break;
254 case 's':
255 /* Display strings with byte size chars unless explicitly
256 specified. */
257 val.size = '\0';
258 break;
259
260 default:
261 /* The default is the size most recently specified. */
262 val.size = osize;
263 }
264
265 return val;
266 }
267 \f
268 /* Print value VAL on stream according to OPTIONS.
269 Do not end with a newline.
270 SIZE is the letter for the size of datum being printed.
271 This is used to pad hex numbers so they line up. SIZE is 0
272 for print / output and set for examine. */
273
274 static void
275 print_formatted (struct value *val, int size,
276 const struct value_print_options *options,
277 struct ui_file *stream)
278 {
279 struct type *type = check_typedef (value_type (val));
280 int len = TYPE_LENGTH (type);
281
282 if (VALUE_LVAL (val) == lval_memory)
283 next_address = value_address (val) + len;
284
285 if (size)
286 {
287 switch (options->format)
288 {
289 case 's':
290 {
291 struct type *elttype = value_type (val);
292
293 next_address = (value_address (val)
294 + val_print_string (elttype, NULL,
295 value_address (val), -1,
296 stream, options) * len);
297 }
298 return;
299
300 case 'i':
301 /* We often wrap here if there are long symbolic names. */
302 wrap_here (" ");
303 next_address = (value_address (val)
304 + gdb_print_insn (get_type_arch (type),
305 value_address (val), stream,
306 &branch_delay_insns));
307 return;
308 }
309 }
310
311 if (options->format == 0 || options->format == 's'
312 || TYPE_CODE (type) == TYPE_CODE_REF
313 || TYPE_CODE (type) == TYPE_CODE_ARRAY
314 || TYPE_CODE (type) == TYPE_CODE_STRING
315 || TYPE_CODE (type) == TYPE_CODE_STRUCT
316 || TYPE_CODE (type) == TYPE_CODE_UNION
317 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
318 value_print (val, stream, options);
319 else
320 /* User specified format, so don't look to the type to tell us
321 what to do. */
322 val_print_scalar_formatted (type,
323 value_embedded_offset (val),
324 val,
325 options, size, stream);
326 }
327
328 /* Return builtin floating point type of same length as TYPE.
329 If no such type is found, return TYPE itself. */
330 static struct type *
331 float_type_from_length (struct type *type)
332 {
333 struct gdbarch *gdbarch = get_type_arch (type);
334 const struct builtin_type *builtin = builtin_type (gdbarch);
335
336 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
337 type = builtin->builtin_float;
338 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
339 type = builtin->builtin_double;
340 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
341 type = builtin->builtin_long_double;
342
343 return type;
344 }
345
346 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
347 according to OPTIONS and SIZE on STREAM. Formats s and i are not
348 supported at this level. */
349
350 void
351 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
352 const struct value_print_options *options,
353 int size, struct ui_file *stream)
354 {
355 struct gdbarch *gdbarch = get_type_arch (type);
356 unsigned int len = TYPE_LENGTH (type);
357 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
358
359 /* String printing should go through val_print_scalar_formatted. */
360 gdb_assert (options->format != 's');
361
362 /* If the value is a pointer, and pointers and addresses are not the
363 same, then at this point, the value's length (in target bytes) is
364 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
365 if (TYPE_CODE (type) == TYPE_CODE_PTR)
366 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
367
368 /* If we are printing it as unsigned, truncate it in case it is actually
369 a negative signed value (e.g. "print/u (short)-1" should print 65535
370 (if shorts are 16 bits) instead of 4294967295). */
371 if (options->format != 'c'
372 && (options->format != 'd' || TYPE_UNSIGNED (type)))
373 {
374 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
375 valaddr += TYPE_LENGTH (type) - len;
376 }
377
378 if (size != 0 && (options->format == 'x' || options->format == 't'))
379 {
380 /* Truncate to fit. */
381 unsigned newlen;
382 switch (size)
383 {
384 case 'b':
385 newlen = 1;
386 break;
387 case 'h':
388 newlen = 2;
389 break;
390 case 'w':
391 newlen = 4;
392 break;
393 case 'g':
394 newlen = 8;
395 break;
396 default:
397 error (_("Undefined output size \"%c\"."), size);
398 }
399 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
400 valaddr += len - newlen;
401 len = newlen;
402 }
403
404 /* Historically gdb has printed floats by first casting them to a
405 long, and then printing the long. PR cli/16242 suggests changing
406 this to using C-style hex float format. */
407 gdb::byte_vector converted_float_bytes;
408 if (TYPE_CODE (type) == TYPE_CODE_FLT
409 && (options->format == 'o'
410 || options->format == 'x'
411 || options->format == 't'
412 || options->format == 'z'
413 || options->format == 'd'
414 || options->format == 'u'))
415 {
416 LONGEST val_long = unpack_long (type, valaddr);
417 converted_float_bytes.resize (TYPE_LENGTH (type));
418 store_signed_integer (converted_float_bytes.data (), TYPE_LENGTH (type),
419 byte_order, val_long);
420 valaddr = converted_float_bytes.data ();
421 }
422
423 switch (options->format)
424 {
425 case 'o':
426 print_octal_chars (stream, valaddr, len, byte_order);
427 break;
428 case 'd':
429 print_decimal_chars (stream, valaddr, len, true, byte_order);
430 break;
431 case 'u':
432 print_decimal_chars (stream, valaddr, len, false, byte_order);
433 break;
434 case 0:
435 if (TYPE_CODE (type) != TYPE_CODE_FLT)
436 {
437 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
438 byte_order);
439 break;
440 }
441 /* FALLTHROUGH */
442 case 'f':
443 type = float_type_from_length (type);
444 print_floating (valaddr, type, stream);
445 break;
446
447 case 't':
448 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
449 break;
450 case 'x':
451 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
452 break;
453 case 'z':
454 print_hex_chars (stream, valaddr, len, byte_order, true);
455 break;
456 case 'c':
457 {
458 struct value_print_options opts = *options;
459
460 LONGEST val_long = unpack_long (type, valaddr);
461
462 opts.format = 0;
463 if (TYPE_UNSIGNED (type))
464 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
465 else
466 type = builtin_type (gdbarch)->builtin_true_char;
467
468 value_print (value_from_longest (type, val_long), stream, &opts);
469 }
470 break;
471
472 case 'a':
473 {
474 CORE_ADDR addr = unpack_pointer (type, valaddr);
475
476 print_address (gdbarch, addr, stream);
477 }
478 break;
479
480 default:
481 error (_("Undefined output format \"%c\"."), options->format);
482 }
483 }
484
485 /* Specify default address for `x' command.
486 The `info lines' command uses this. */
487
488 void
489 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
490 {
491 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
492
493 next_gdbarch = gdbarch;
494 next_address = addr;
495
496 /* Make address available to the user as $_. */
497 set_internalvar (lookup_internalvar ("_"),
498 value_from_pointer (ptr_type, addr));
499 }
500
501 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
502 after LEADIN. Print nothing if no symbolic name is found nearby.
503 Optionally also print source file and line number, if available.
504 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
505 or to interpret it as a possible C++ name and convert it back to source
506 form. However note that DO_DEMANGLE can be overridden by the specific
507 settings of the demangle and asm_demangle variables. Returns
508 non-zero if anything was printed; zero otherwise. */
509
510 int
511 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
512 struct ui_file *stream,
513 int do_demangle, const char *leadin)
514 {
515 char *name = NULL;
516 char *filename = NULL;
517 int unmapped = 0;
518 int offset = 0;
519 int line = 0;
520
521 /* Throw away both name and filename. */
522 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
523 make_cleanup (free_current_contents, &filename);
524
525 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
526 &filename, &line, &unmapped))
527 {
528 do_cleanups (cleanup_chain);
529 return 0;
530 }
531
532 fputs_filtered (leadin, stream);
533 if (unmapped)
534 fputs_filtered ("<*", stream);
535 else
536 fputs_filtered ("<", stream);
537 fputs_filtered (name, stream);
538 if (offset != 0)
539 fprintf_filtered (stream, "+%u", (unsigned int) offset);
540
541 /* Append source filename and line number if desired. Give specific
542 line # of this addr, if we have it; else line # of the nearest symbol. */
543 if (print_symbol_filename && filename != NULL)
544 {
545 if (line != -1)
546 fprintf_filtered (stream, " at %s:%d", filename, line);
547 else
548 fprintf_filtered (stream, " in %s", filename);
549 }
550 if (unmapped)
551 fputs_filtered ("*>", stream);
552 else
553 fputs_filtered (">", stream);
554
555 do_cleanups (cleanup_chain);
556 return 1;
557 }
558
559 /* Given an address ADDR return all the elements needed to print the
560 address in a symbolic form. NAME can be mangled or not depending
561 on DO_DEMANGLE (and also on the asm_demangle global variable,
562 manipulated via ''set print asm-demangle''). Return 0 in case of
563 success, when all the info in the OUT paramters is valid. Return 1
564 otherwise. */
565 int
566 build_address_symbolic (struct gdbarch *gdbarch,
567 CORE_ADDR addr, /* IN */
568 int do_demangle, /* IN */
569 char **name, /* OUT */
570 int *offset, /* OUT */
571 char **filename, /* OUT */
572 int *line, /* OUT */
573 int *unmapped) /* OUT */
574 {
575 struct bound_minimal_symbol msymbol;
576 struct symbol *symbol;
577 CORE_ADDR name_location = 0;
578 struct obj_section *section = NULL;
579 const char *name_temp = "";
580
581 /* Let's say it is mapped (not unmapped). */
582 *unmapped = 0;
583
584 /* Determine if the address is in an overlay, and whether it is
585 mapped. */
586 if (overlay_debugging)
587 {
588 section = find_pc_overlay (addr);
589 if (pc_in_unmapped_range (addr, section))
590 {
591 *unmapped = 1;
592 addr = overlay_mapped_address (addr, section);
593 }
594 }
595
596 /* First try to find the address in the symbol table, then
597 in the minsyms. Take the closest one. */
598
599 /* This is defective in the sense that it only finds text symbols. So
600 really this is kind of pointless--we should make sure that the
601 minimal symbols have everything we need (by changing that we could
602 save some memory, but for many debug format--ELF/DWARF or
603 anything/stabs--it would be inconvenient to eliminate those minimal
604 symbols anyway). */
605 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
606 symbol = find_pc_sect_function (addr, section);
607
608 if (symbol)
609 {
610 /* If this is a function (i.e. a code address), strip out any
611 non-address bits. For instance, display a pointer to the
612 first instruction of a Thumb function as <function>; the
613 second instruction will be <function+2>, even though the
614 pointer is <function+3>. This matches the ISA behavior. */
615 addr = gdbarch_addr_bits_remove (gdbarch, addr);
616
617 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
618 if (do_demangle || asm_demangle)
619 name_temp = SYMBOL_PRINT_NAME (symbol);
620 else
621 name_temp = SYMBOL_LINKAGE_NAME (symbol);
622 }
623
624 if (msymbol.minsym != NULL
625 && MSYMBOL_HAS_SIZE (msymbol.minsym)
626 && MSYMBOL_SIZE (msymbol.minsym) == 0
627 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
628 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
629 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
630 msymbol.minsym = NULL;
631
632 if (msymbol.minsym != NULL)
633 {
634 if (BMSYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
635 {
636 /* If this is a function (i.e. a code address), strip out any
637 non-address bits. For instance, display a pointer to the
638 first instruction of a Thumb function as <function>; the
639 second instruction will be <function+2>, even though the
640 pointer is <function+3>. This matches the ISA behavior. */
641 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
642 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
643 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
644 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
645 addr = gdbarch_addr_bits_remove (gdbarch, addr);
646
647 /* The msymbol is closer to the address than the symbol;
648 use the msymbol instead. */
649 symbol = 0;
650 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
651 if (do_demangle || asm_demangle)
652 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
653 else
654 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
655 }
656 }
657 if (symbol == NULL && msymbol.minsym == NULL)
658 return 1;
659
660 /* If the nearest symbol is too far away, don't print anything symbolic. */
661
662 /* For when CORE_ADDR is larger than unsigned int, we do math in
663 CORE_ADDR. But when we detect unsigned wraparound in the
664 CORE_ADDR math, we ignore this test and print the offset,
665 because addr+max_symbolic_offset has wrapped through the end
666 of the address space back to the beginning, giving bogus comparison. */
667 if (addr > name_location + max_symbolic_offset
668 && name_location + max_symbolic_offset > name_location)
669 return 1;
670
671 *offset = addr - name_location;
672
673 *name = xstrdup (name_temp);
674
675 if (print_symbol_filename)
676 {
677 struct symtab_and_line sal;
678
679 sal = find_pc_sect_line (addr, section, 0);
680
681 if (sal.symtab)
682 {
683 *filename = xstrdup (symtab_to_filename_for_display (sal.symtab));
684 *line = sal.line;
685 }
686 }
687 return 0;
688 }
689
690
691 /* Print address ADDR symbolically on STREAM.
692 First print it as a number. Then perhaps print
693 <SYMBOL + OFFSET> after the number. */
694
695 void
696 print_address (struct gdbarch *gdbarch,
697 CORE_ADDR addr, struct ui_file *stream)
698 {
699 fputs_filtered (paddress (gdbarch, addr), stream);
700 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
701 }
702
703 /* Return a prefix for instruction address:
704 "=> " for current instruction, else " ". */
705
706 const char *
707 pc_prefix (CORE_ADDR addr)
708 {
709 if (has_stack_frames ())
710 {
711 struct frame_info *frame;
712 CORE_ADDR pc;
713
714 frame = get_selected_frame (NULL);
715 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
716 return "=> ";
717 }
718 return " ";
719 }
720
721 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
722 controls whether to print the symbolic name "raw" or demangled.
723 Return non-zero if anything was printed; zero otherwise. */
724
725 int
726 print_address_demangle (const struct value_print_options *opts,
727 struct gdbarch *gdbarch, CORE_ADDR addr,
728 struct ui_file *stream, int do_demangle)
729 {
730 if (opts->addressprint)
731 {
732 fputs_filtered (paddress (gdbarch, addr), stream);
733 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
734 }
735 else
736 {
737 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
738 }
739 return 1;
740 }
741 \f
742
743 /* Find the address of the instruction that is INST_COUNT instructions before
744 the instruction at ADDR.
745 Since some architectures have variable-length instructions, we can't just
746 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
747 number information to locate the nearest known instruction boundary,
748 and disassemble forward from there. If we go out of the symbol range
749 during disassembling, we return the lowest address we've got so far and
750 set the number of instructions read to INST_READ. */
751
752 static CORE_ADDR
753 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
754 int inst_count, int *inst_read)
755 {
756 /* The vector PCS is used to store instruction addresses within
757 a pc range. */
758 CORE_ADDR loop_start, loop_end, p;
759 std::vector<CORE_ADDR> pcs;
760 struct symtab_and_line sal;
761
762 *inst_read = 0;
763 loop_start = loop_end = addr;
764
765 /* In each iteration of the outer loop, we get a pc range that ends before
766 LOOP_START, then we count and store every instruction address of the range
767 iterated in the loop.
768 If the number of instructions counted reaches INST_COUNT, return the
769 stored address that is located INST_COUNT instructions back from ADDR.
770 If INST_COUNT is not reached, we subtract the number of counted
771 instructions from INST_COUNT, and go to the next iteration. */
772 do
773 {
774 pcs.clear ();
775 sal = find_pc_sect_line (loop_start, NULL, 1);
776 if (sal.line <= 0)
777 {
778 /* We reach here when line info is not available. In this case,
779 we print a message and just exit the loop. The return value
780 is calculated after the loop. */
781 printf_filtered (_("No line number information available "
782 "for address "));
783 wrap_here (" ");
784 print_address (gdbarch, loop_start - 1, gdb_stdout);
785 printf_filtered ("\n");
786 break;
787 }
788
789 loop_end = loop_start;
790 loop_start = sal.pc;
791
792 /* This loop pushes instruction addresses in the range from
793 LOOP_START to LOOP_END. */
794 for (p = loop_start; p < loop_end;)
795 {
796 pcs.push_back (p);
797 p += gdb_insn_length (gdbarch, p);
798 }
799
800 inst_count -= pcs.size ();
801 *inst_read += pcs.size ();
802 }
803 while (inst_count > 0);
804
805 /* After the loop, the vector PCS has instruction addresses of the last
806 source line we processed, and INST_COUNT has a negative value.
807 We return the address at the index of -INST_COUNT in the vector for
808 the reason below.
809 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
810 Line X of File
811 0x4000
812 0x4001
813 0x4005
814 Line Y of File
815 0x4009
816 0x400c
817 => 0x400e
818 0x4011
819 find_instruction_backward is called with INST_COUNT = 4 and expected to
820 return 0x4001. When we reach here, INST_COUNT is set to -1 because
821 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
822 4001 is located at the index 1 of the last iterated line (= Line X),
823 which is simply calculated by -INST_COUNT.
824 The case when the length of PCS is 0 means that we reached an area for
825 which line info is not available. In such case, we return LOOP_START,
826 which was the lowest instruction address that had line info. */
827 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
828
829 /* INST_READ includes all instruction addresses in a pc range. Need to
830 exclude the beginning part up to the address we're returning. That
831 is, exclude {0x4000} in the example above. */
832 if (inst_count < 0)
833 *inst_read += inst_count;
834
835 return p;
836 }
837
838 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
839 placing the results in GDB's memory from MYADDR + LEN. Returns
840 a count of the bytes actually read. */
841
842 static int
843 read_memory_backward (struct gdbarch *gdbarch,
844 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
845 {
846 int errcode;
847 int nread; /* Number of bytes actually read. */
848
849 /* First try a complete read. */
850 errcode = target_read_memory (memaddr, myaddr, len);
851 if (errcode == 0)
852 {
853 /* Got it all. */
854 nread = len;
855 }
856 else
857 {
858 /* Loop, reading one byte at a time until we get as much as we can. */
859 memaddr += len;
860 myaddr += len;
861 for (nread = 0; nread < len; ++nread)
862 {
863 errcode = target_read_memory (--memaddr, --myaddr, 1);
864 if (errcode != 0)
865 {
866 /* The read was unsuccessful, so exit the loop. */
867 printf_filtered (_("Cannot access memory at address %s\n"),
868 paddress (gdbarch, memaddr));
869 break;
870 }
871 }
872 }
873 return nread;
874 }
875
876 /* Returns true if X (which is LEN bytes wide) is the number zero. */
877
878 static int
879 integer_is_zero (const gdb_byte *x, int len)
880 {
881 int i = 0;
882
883 while (i < len && x[i] == 0)
884 ++i;
885 return (i == len);
886 }
887
888 /* Find the start address of a string in which ADDR is included.
889 Basically we search for '\0' and return the next address,
890 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
891 we stop searching and return the address to print characters as many as
892 PRINT_MAX from the string. */
893
894 static CORE_ADDR
895 find_string_backward (struct gdbarch *gdbarch,
896 CORE_ADDR addr, int count, int char_size,
897 const struct value_print_options *options,
898 int *strings_counted)
899 {
900 const int chunk_size = 0x20;
901 int read_error = 0;
902 int chars_read = 0;
903 int chars_to_read = chunk_size;
904 int chars_counted = 0;
905 int count_original = count;
906 CORE_ADDR string_start_addr = addr;
907
908 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
909 gdb::byte_vector buffer (chars_to_read * char_size);
910 while (count > 0 && read_error == 0)
911 {
912 int i;
913
914 addr -= chars_to_read * char_size;
915 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
916 chars_to_read * char_size);
917 chars_read /= char_size;
918 read_error = (chars_read == chars_to_read) ? 0 : 1;
919 /* Searching for '\0' from the end of buffer in backward direction. */
920 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
921 {
922 int offset = (chars_to_read - i - 1) * char_size;
923
924 if (integer_is_zero (&buffer[offset], char_size)
925 || chars_counted == options->print_max)
926 {
927 /* Found '\0' or reached print_max. As OFFSET is the offset to
928 '\0', we add CHAR_SIZE to return the start address of
929 a string. */
930 --count;
931 string_start_addr = addr + offset + char_size;
932 chars_counted = 0;
933 }
934 }
935 }
936
937 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
938 *strings_counted = count_original - count;
939
940 if (read_error != 0)
941 {
942 /* In error case, STRING_START_ADDR is pointing to the string that
943 was last successfully loaded. Rewind the partially loaded string. */
944 string_start_addr -= chars_counted * char_size;
945 }
946
947 return string_start_addr;
948 }
949
950 /* Examine data at address ADDR in format FMT.
951 Fetch it from memory and print on gdb_stdout. */
952
953 static void
954 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
955 {
956 char format = 0;
957 char size;
958 int count = 1;
959 struct type *val_type = NULL;
960 int i;
961 int maxelts;
962 struct value_print_options opts;
963 int need_to_update_next_address = 0;
964 CORE_ADDR addr_rewound = 0;
965
966 format = fmt.format;
967 size = fmt.size;
968 count = fmt.count;
969 next_gdbarch = gdbarch;
970 next_address = addr;
971
972 /* Instruction format implies fetch single bytes
973 regardless of the specified size.
974 The case of strings is handled in decode_format, only explicit
975 size operator are not changed to 'b'. */
976 if (format == 'i')
977 size = 'b';
978
979 if (size == 'a')
980 {
981 /* Pick the appropriate size for an address. */
982 if (gdbarch_ptr_bit (next_gdbarch) == 64)
983 size = 'g';
984 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
985 size = 'w';
986 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
987 size = 'h';
988 else
989 /* Bad value for gdbarch_ptr_bit. */
990 internal_error (__FILE__, __LINE__,
991 _("failed internal consistency check"));
992 }
993
994 if (size == 'b')
995 val_type = builtin_type (next_gdbarch)->builtin_int8;
996 else if (size == 'h')
997 val_type = builtin_type (next_gdbarch)->builtin_int16;
998 else if (size == 'w')
999 val_type = builtin_type (next_gdbarch)->builtin_int32;
1000 else if (size == 'g')
1001 val_type = builtin_type (next_gdbarch)->builtin_int64;
1002
1003 if (format == 's')
1004 {
1005 struct type *char_type = NULL;
1006
1007 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1008 if type is not found. */
1009 if (size == 'h')
1010 char_type = builtin_type (next_gdbarch)->builtin_char16;
1011 else if (size == 'w')
1012 char_type = builtin_type (next_gdbarch)->builtin_char32;
1013 if (char_type)
1014 val_type = char_type;
1015 else
1016 {
1017 if (size != '\0' && size != 'b')
1018 warning (_("Unable to display strings with "
1019 "size '%c', using 'b' instead."), size);
1020 size = 'b';
1021 val_type = builtin_type (next_gdbarch)->builtin_int8;
1022 }
1023 }
1024
1025 maxelts = 8;
1026 if (size == 'w')
1027 maxelts = 4;
1028 if (size == 'g')
1029 maxelts = 2;
1030 if (format == 's' || format == 'i')
1031 maxelts = 1;
1032
1033 get_formatted_print_options (&opts, format);
1034
1035 if (count < 0)
1036 {
1037 /* This is the negative repeat count case.
1038 We rewind the address based on the given repeat count and format,
1039 then examine memory from there in forward direction. */
1040
1041 count = -count;
1042 if (format == 'i')
1043 {
1044 next_address = find_instruction_backward (gdbarch, addr, count,
1045 &count);
1046 }
1047 else if (format == 's')
1048 {
1049 next_address = find_string_backward (gdbarch, addr, count,
1050 TYPE_LENGTH (val_type),
1051 &opts, &count);
1052 }
1053 else
1054 {
1055 next_address = addr - count * TYPE_LENGTH (val_type);
1056 }
1057
1058 /* The following call to print_formatted updates next_address in every
1059 iteration. In backward case, we store the start address here
1060 and update next_address with it before exiting the function. */
1061 addr_rewound = (format == 's'
1062 ? next_address - TYPE_LENGTH (val_type)
1063 : next_address);
1064 need_to_update_next_address = 1;
1065 }
1066
1067 /* Print as many objects as specified in COUNT, at most maxelts per line,
1068 with the address of the next one at the start of each line. */
1069
1070 while (count > 0)
1071 {
1072 QUIT;
1073 if (format == 'i')
1074 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1075 print_address (next_gdbarch, next_address, gdb_stdout);
1076 printf_filtered (":");
1077 for (i = maxelts;
1078 i > 0 && count > 0;
1079 i--, count--)
1080 {
1081 printf_filtered ("\t");
1082 /* Note that print_formatted sets next_address for the next
1083 object. */
1084 last_examine_address = next_address;
1085
1086 if (last_examine_value)
1087 value_free (last_examine_value);
1088
1089 /* The value to be displayed is not fetched greedily.
1090 Instead, to avoid the possibility of a fetched value not
1091 being used, its retrieval is delayed until the print code
1092 uses it. When examining an instruction stream, the
1093 disassembler will perform its own memory fetch using just
1094 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1095 the disassembler be modified so that LAST_EXAMINE_VALUE
1096 is left with the byte sequence from the last complete
1097 instruction fetched from memory? */
1098 last_examine_value = value_at_lazy (val_type, next_address);
1099
1100 if (last_examine_value)
1101 release_value (last_examine_value);
1102
1103 print_formatted (last_examine_value, size, &opts, gdb_stdout);
1104
1105 /* Display any branch delay slots following the final insn. */
1106 if (format == 'i' && count == 1)
1107 count += branch_delay_insns;
1108 }
1109 printf_filtered ("\n");
1110 gdb_flush (gdb_stdout);
1111 }
1112
1113 if (need_to_update_next_address)
1114 next_address = addr_rewound;
1115 }
1116 \f
1117 static void
1118 validate_format (struct format_data fmt, const char *cmdname)
1119 {
1120 if (fmt.size != 0)
1121 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1122 if (fmt.count != 1)
1123 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1124 cmdname);
1125 if (fmt.format == 'i')
1126 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1127 fmt.format, cmdname);
1128 }
1129
1130 /* Parse print command format string into *FMTP and update *EXPP.
1131 CMDNAME should name the current command. */
1132
1133 void
1134 print_command_parse_format (const char **expp, const char *cmdname,
1135 struct format_data *fmtp)
1136 {
1137 const char *exp = *expp;
1138
1139 if (exp && *exp == '/')
1140 {
1141 exp++;
1142 *fmtp = decode_format (&exp, last_format, 0);
1143 validate_format (*fmtp, cmdname);
1144 last_format = fmtp->format;
1145 }
1146 else
1147 {
1148 fmtp->count = 1;
1149 fmtp->format = 0;
1150 fmtp->size = 0;
1151 fmtp->raw = 0;
1152 }
1153
1154 *expp = exp;
1155 }
1156
1157 /* Print VAL to console according to *FMTP, including recording it to
1158 the history. */
1159
1160 void
1161 print_value (struct value *val, const struct format_data *fmtp)
1162 {
1163 struct value_print_options opts;
1164 int histindex = record_latest_value (val);
1165
1166 annotate_value_history_begin (histindex, value_type (val));
1167
1168 printf_filtered ("$%d = ", histindex);
1169
1170 annotate_value_history_value ();
1171
1172 get_formatted_print_options (&opts, fmtp->format);
1173 opts.raw = fmtp->raw;
1174
1175 print_formatted (val, fmtp->size, &opts, gdb_stdout);
1176 printf_filtered ("\n");
1177
1178 annotate_value_history_end ();
1179 }
1180
1181 /* Evaluate string EXP as an expression in the current language and
1182 print the resulting value. EXP may contain a format specifier as the
1183 first argument ("/x myvar" for example, to print myvar in hex). */
1184
1185 static void
1186 print_command_1 (const char *exp, int voidprint)
1187 {
1188 struct value *val;
1189 struct format_data fmt;
1190
1191 print_command_parse_format (&exp, "print", &fmt);
1192
1193 if (exp && *exp)
1194 {
1195 expression_up expr = parse_expression (exp);
1196 val = evaluate_expression (expr.get ());
1197 }
1198 else
1199 val = access_value_history (0);
1200
1201 if (voidprint || (val && value_type (val) &&
1202 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1203 print_value (val, &fmt);
1204 }
1205
1206 static void
1207 print_command (char *exp, int from_tty)
1208 {
1209 print_command_1 (exp, 1);
1210 }
1211
1212 /* Same as print, except it doesn't print void results. */
1213 static void
1214 call_command (char *exp, int from_tty)
1215 {
1216 print_command_1 (exp, 0);
1217 }
1218
1219 /* Implementation of the "output" command. */
1220
1221 static void
1222 output_command (char *exp, int from_tty)
1223 {
1224 output_command_const (exp, from_tty);
1225 }
1226
1227 /* Like output_command, but takes a const string as argument. */
1228
1229 void
1230 output_command_const (const char *exp, int from_tty)
1231 {
1232 char format = 0;
1233 struct value *val;
1234 struct format_data fmt;
1235 struct value_print_options opts;
1236
1237 fmt.size = 0;
1238 fmt.raw = 0;
1239
1240 if (exp && *exp == '/')
1241 {
1242 exp++;
1243 fmt = decode_format (&exp, 0, 0);
1244 validate_format (fmt, "output");
1245 format = fmt.format;
1246 }
1247
1248 expression_up expr = parse_expression (exp);
1249
1250 val = evaluate_expression (expr.get ());
1251
1252 annotate_value_begin (value_type (val));
1253
1254 get_formatted_print_options (&opts, format);
1255 opts.raw = fmt.raw;
1256 print_formatted (val, fmt.size, &opts, gdb_stdout);
1257
1258 annotate_value_end ();
1259
1260 wrap_here ("");
1261 gdb_flush (gdb_stdout);
1262 }
1263
1264 static void
1265 set_command (char *exp, int from_tty)
1266 {
1267 expression_up expr = parse_expression (exp);
1268
1269 if (expr->nelts >= 1)
1270 switch (expr->elts[0].opcode)
1271 {
1272 case UNOP_PREINCREMENT:
1273 case UNOP_POSTINCREMENT:
1274 case UNOP_PREDECREMENT:
1275 case UNOP_POSTDECREMENT:
1276 case BINOP_ASSIGN:
1277 case BINOP_ASSIGN_MODIFY:
1278 case BINOP_COMMA:
1279 break;
1280 default:
1281 warning
1282 (_("Expression is not an assignment (and might have no effect)"));
1283 }
1284
1285 evaluate_expression (expr.get ());
1286 }
1287
1288 static void
1289 info_symbol_command (char *arg, int from_tty)
1290 {
1291 struct minimal_symbol *msymbol;
1292 struct objfile *objfile;
1293 struct obj_section *osect;
1294 CORE_ADDR addr, sect_addr;
1295 int matches = 0;
1296 unsigned int offset;
1297
1298 if (!arg)
1299 error_no_arg (_("address"));
1300
1301 addr = parse_and_eval_address (arg);
1302 ALL_OBJSECTIONS (objfile, osect)
1303 {
1304 /* Only process each object file once, even if there's a separate
1305 debug file. */
1306 if (objfile->separate_debug_objfile_backlink)
1307 continue;
1308
1309 sect_addr = overlay_mapped_address (addr, osect);
1310
1311 if (obj_section_addr (osect) <= sect_addr
1312 && sect_addr < obj_section_endaddr (osect)
1313 && (msymbol
1314 = lookup_minimal_symbol_by_pc_section (sect_addr, osect).minsym))
1315 {
1316 const char *obj_name, *mapped, *sec_name, *msym_name;
1317 char *loc_string;
1318 struct cleanup *old_chain;
1319
1320 matches = 1;
1321 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1322 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1323 sec_name = osect->the_bfd_section->name;
1324 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1325
1326 /* Don't print the offset if it is zero.
1327 We assume there's no need to handle i18n of "sym + offset". */
1328 if (offset)
1329 loc_string = xstrprintf ("%s + %u", msym_name, offset);
1330 else
1331 loc_string = xstrprintf ("%s", msym_name);
1332
1333 /* Use a cleanup to free loc_string in case the user quits
1334 a pagination request inside printf_filtered. */
1335 old_chain = make_cleanup (xfree, loc_string);
1336
1337 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1338 obj_name = objfile_name (osect->objfile);
1339
1340 if (MULTI_OBJFILE_P ())
1341 if (pc_in_unmapped_range (addr, osect))
1342 if (section_is_overlay (osect))
1343 printf_filtered (_("%s in load address range of "
1344 "%s overlay section %s of %s\n"),
1345 loc_string, mapped, sec_name, obj_name);
1346 else
1347 printf_filtered (_("%s in load address range of "
1348 "section %s of %s\n"),
1349 loc_string, sec_name, obj_name);
1350 else
1351 if (section_is_overlay (osect))
1352 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1353 loc_string, mapped, sec_name, obj_name);
1354 else
1355 printf_filtered (_("%s in section %s of %s\n"),
1356 loc_string, sec_name, obj_name);
1357 else
1358 if (pc_in_unmapped_range (addr, osect))
1359 if (section_is_overlay (osect))
1360 printf_filtered (_("%s in load address range of %s overlay "
1361 "section %s\n"),
1362 loc_string, mapped, sec_name);
1363 else
1364 printf_filtered (_("%s in load address range of section %s\n"),
1365 loc_string, sec_name);
1366 else
1367 if (section_is_overlay (osect))
1368 printf_filtered (_("%s in %s overlay section %s\n"),
1369 loc_string, mapped, sec_name);
1370 else
1371 printf_filtered (_("%s in section %s\n"),
1372 loc_string, sec_name);
1373
1374 do_cleanups (old_chain);
1375 }
1376 }
1377 if (matches == 0)
1378 printf_filtered (_("No symbol matches %s.\n"), arg);
1379 }
1380
1381 static void
1382 info_address_command (char *exp, int from_tty)
1383 {
1384 struct gdbarch *gdbarch;
1385 int regno;
1386 struct symbol *sym;
1387 struct bound_minimal_symbol msymbol;
1388 long val;
1389 struct obj_section *section;
1390 CORE_ADDR load_addr, context_pc = 0;
1391 struct field_of_this_result is_a_field_of_this;
1392
1393 if (exp == 0)
1394 error (_("Argument required."));
1395
1396 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1397 &is_a_field_of_this).symbol;
1398 if (sym == NULL)
1399 {
1400 if (is_a_field_of_this.type != NULL)
1401 {
1402 printf_filtered ("Symbol \"");
1403 fprintf_symbol_filtered (gdb_stdout, exp,
1404 current_language->la_language, DMGL_ANSI);
1405 printf_filtered ("\" is a field of the local class variable ");
1406 if (current_language->la_language == language_objc)
1407 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1408 else
1409 printf_filtered ("`this'\n");
1410 return;
1411 }
1412
1413 msymbol = lookup_bound_minimal_symbol (exp);
1414
1415 if (msymbol.minsym != NULL)
1416 {
1417 struct objfile *objfile = msymbol.objfile;
1418
1419 gdbarch = get_objfile_arch (objfile);
1420 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1421
1422 printf_filtered ("Symbol \"");
1423 fprintf_symbol_filtered (gdb_stdout, exp,
1424 current_language->la_language, DMGL_ANSI);
1425 printf_filtered ("\" is at ");
1426 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1427 printf_filtered (" in a file compiled without debugging");
1428 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1429 if (section_is_overlay (section))
1430 {
1431 load_addr = overlay_unmapped_address (load_addr, section);
1432 printf_filtered (",\n -- loaded at ");
1433 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1434 printf_filtered (" in overlay section %s",
1435 section->the_bfd_section->name);
1436 }
1437 printf_filtered (".\n");
1438 }
1439 else
1440 error (_("No symbol \"%s\" in current context."), exp);
1441 return;
1442 }
1443
1444 printf_filtered ("Symbol \"");
1445 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1446 current_language->la_language, DMGL_ANSI);
1447 printf_filtered ("\" is ");
1448 val = SYMBOL_VALUE (sym);
1449 if (SYMBOL_OBJFILE_OWNED (sym))
1450 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1451 else
1452 section = NULL;
1453 gdbarch = symbol_arch (sym);
1454
1455 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1456 {
1457 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1458 gdb_stdout);
1459 printf_filtered (".\n");
1460 return;
1461 }
1462
1463 switch (SYMBOL_CLASS (sym))
1464 {
1465 case LOC_CONST:
1466 case LOC_CONST_BYTES:
1467 printf_filtered ("constant");
1468 break;
1469
1470 case LOC_LABEL:
1471 printf_filtered ("a label at address ");
1472 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1473 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1474 if (section_is_overlay (section))
1475 {
1476 load_addr = overlay_unmapped_address (load_addr, section);
1477 printf_filtered (",\n -- loaded at ");
1478 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1479 printf_filtered (" in overlay section %s",
1480 section->the_bfd_section->name);
1481 }
1482 break;
1483
1484 case LOC_COMPUTED:
1485 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1486
1487 case LOC_REGISTER:
1488 /* GDBARCH is the architecture associated with the objfile the symbol
1489 is defined in; the target architecture may be different, and may
1490 provide additional registers. However, we do not know the target
1491 architecture at this point. We assume the objfile architecture
1492 will contain all the standard registers that occur in debug info
1493 in that objfile. */
1494 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1495
1496 if (SYMBOL_IS_ARGUMENT (sym))
1497 printf_filtered (_("an argument in register %s"),
1498 gdbarch_register_name (gdbarch, regno));
1499 else
1500 printf_filtered (_("a variable in register %s"),
1501 gdbarch_register_name (gdbarch, regno));
1502 break;
1503
1504 case LOC_STATIC:
1505 printf_filtered (_("static storage at address "));
1506 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1507 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1508 if (section_is_overlay (section))
1509 {
1510 load_addr = overlay_unmapped_address (load_addr, section);
1511 printf_filtered (_(",\n -- loaded at "));
1512 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1513 printf_filtered (_(" in overlay section %s"),
1514 section->the_bfd_section->name);
1515 }
1516 break;
1517
1518 case LOC_REGPARM_ADDR:
1519 /* Note comment at LOC_REGISTER. */
1520 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1521 printf_filtered (_("address of an argument in register %s"),
1522 gdbarch_register_name (gdbarch, regno));
1523 break;
1524
1525 case LOC_ARG:
1526 printf_filtered (_("an argument at offset %ld"), val);
1527 break;
1528
1529 case LOC_LOCAL:
1530 printf_filtered (_("a local variable at frame offset %ld"), val);
1531 break;
1532
1533 case LOC_REF_ARG:
1534 printf_filtered (_("a reference argument at offset %ld"), val);
1535 break;
1536
1537 case LOC_TYPEDEF:
1538 printf_filtered (_("a typedef"));
1539 break;
1540
1541 case LOC_BLOCK:
1542 printf_filtered (_("a function at address "));
1543 load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1544 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1545 if (section_is_overlay (section))
1546 {
1547 load_addr = overlay_unmapped_address (load_addr, section);
1548 printf_filtered (_(",\n -- loaded at "));
1549 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1550 printf_filtered (_(" in overlay section %s"),
1551 section->the_bfd_section->name);
1552 }
1553 break;
1554
1555 case LOC_UNRESOLVED:
1556 {
1557 struct bound_minimal_symbol msym;
1558
1559 msym = lookup_minimal_symbol_and_objfile (SYMBOL_LINKAGE_NAME (sym));
1560 if (msym.minsym == NULL)
1561 printf_filtered ("unresolved");
1562 else
1563 {
1564 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1565
1566 if (section
1567 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1568 {
1569 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1570 printf_filtered (_("a thread-local variable at offset %s "
1571 "in the thread-local storage for `%s'"),
1572 paddress (gdbarch, load_addr),
1573 objfile_name (section->objfile));
1574 }
1575 else
1576 {
1577 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1578 printf_filtered (_("static storage at address "));
1579 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1580 if (section_is_overlay (section))
1581 {
1582 load_addr = overlay_unmapped_address (load_addr, section);
1583 printf_filtered (_(",\n -- loaded at "));
1584 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1585 printf_filtered (_(" in overlay section %s"),
1586 section->the_bfd_section->name);
1587 }
1588 }
1589 }
1590 }
1591 break;
1592
1593 case LOC_OPTIMIZED_OUT:
1594 printf_filtered (_("optimized out"));
1595 break;
1596
1597 default:
1598 printf_filtered (_("of unknown (botched) type"));
1599 break;
1600 }
1601 printf_filtered (".\n");
1602 }
1603 \f
1604
1605 static void
1606 x_command (char *exp, int from_tty)
1607 {
1608 struct format_data fmt;
1609 struct value *val;
1610
1611 fmt.format = last_format ? last_format : 'x';
1612 fmt.size = last_size;
1613 fmt.count = 1;
1614 fmt.raw = 0;
1615
1616 if (exp && *exp == '/')
1617 {
1618 const char *tmp = exp + 1;
1619
1620 fmt = decode_format (&tmp, last_format, last_size);
1621 exp = (char *) tmp;
1622 }
1623
1624 /* If we have an expression, evaluate it and use it as the address. */
1625
1626 if (exp != 0 && *exp != 0)
1627 {
1628 expression_up expr = parse_expression (exp);
1629 /* Cause expression not to be there any more if this command is
1630 repeated with Newline. But don't clobber a user-defined
1631 command's definition. */
1632 if (from_tty)
1633 *exp = 0;
1634 val = evaluate_expression (expr.get ());
1635 if (TYPE_IS_REFERENCE (value_type (val)))
1636 val = coerce_ref (val);
1637 /* In rvalue contexts, such as this, functions are coerced into
1638 pointers to functions. This makes "x/i main" work. */
1639 if (/* last_format == 'i' && */
1640 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1641 && VALUE_LVAL (val) == lval_memory)
1642 next_address = value_address (val);
1643 else
1644 next_address = value_as_address (val);
1645
1646 next_gdbarch = expr->gdbarch;
1647 }
1648
1649 if (!next_gdbarch)
1650 error_no_arg (_("starting display address"));
1651
1652 do_examine (fmt, next_gdbarch, next_address);
1653
1654 /* If the examine succeeds, we remember its size and format for next
1655 time. Set last_size to 'b' for strings. */
1656 if (fmt.format == 's')
1657 last_size = 'b';
1658 else
1659 last_size = fmt.size;
1660 last_format = fmt.format;
1661
1662 /* Set a couple of internal variables if appropriate. */
1663 if (last_examine_value)
1664 {
1665 /* Make last address examined available to the user as $_. Use
1666 the correct pointer type. */
1667 struct type *pointer_type
1668 = lookup_pointer_type (value_type (last_examine_value));
1669 set_internalvar (lookup_internalvar ("_"),
1670 value_from_pointer (pointer_type,
1671 last_examine_address));
1672
1673 /* Make contents of last address examined available to the user
1674 as $__. If the last value has not been fetched from memory
1675 then don't fetch it now; instead mark it by voiding the $__
1676 variable. */
1677 if (value_lazy (last_examine_value))
1678 clear_internalvar (lookup_internalvar ("__"));
1679 else
1680 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1681 }
1682 }
1683 \f
1684
1685 /* Add an expression to the auto-display chain.
1686 Specify the expression. */
1687
1688 static void
1689 display_command (char *arg, int from_tty)
1690 {
1691 struct format_data fmt;
1692 struct display *newobj;
1693 const char *exp = arg;
1694
1695 if (exp == 0)
1696 {
1697 do_displays ();
1698 return;
1699 }
1700
1701 if (*exp == '/')
1702 {
1703 exp++;
1704 fmt = decode_format (&exp, 0, 0);
1705 if (fmt.size && fmt.format == 0)
1706 fmt.format = 'x';
1707 if (fmt.format == 'i' || fmt.format == 's')
1708 fmt.size = 'b';
1709 }
1710 else
1711 {
1712 fmt.format = 0;
1713 fmt.size = 0;
1714 fmt.count = 0;
1715 fmt.raw = 0;
1716 }
1717
1718 innermost_block = NULL;
1719 expression_up expr = parse_expression (exp);
1720
1721 newobj = new display ();
1722
1723 newobj->exp_string = xstrdup (exp);
1724 newobj->exp = std::move (expr);
1725 newobj->block = innermost_block;
1726 newobj->pspace = current_program_space;
1727 newobj->number = ++display_number;
1728 newobj->format = fmt;
1729 newobj->enabled_p = 1;
1730 newobj->next = NULL;
1731
1732 if (display_chain == NULL)
1733 display_chain = newobj;
1734 else
1735 {
1736 struct display *last;
1737
1738 for (last = display_chain; last->next != NULL; last = last->next)
1739 ;
1740 last->next = newobj;
1741 }
1742
1743 if (from_tty)
1744 do_one_display (newobj);
1745
1746 dont_repeat ();
1747 }
1748
1749 static void
1750 free_display (struct display *d)
1751 {
1752 xfree (d->exp_string);
1753 delete d;
1754 }
1755
1756 /* Clear out the display_chain. Done when new symtabs are loaded,
1757 since this invalidates the types stored in many expressions. */
1758
1759 void
1760 clear_displays (void)
1761 {
1762 struct display *d;
1763
1764 while ((d = display_chain) != NULL)
1765 {
1766 display_chain = d->next;
1767 free_display (d);
1768 }
1769 }
1770
1771 /* Delete the auto-display DISPLAY. */
1772
1773 static void
1774 delete_display (struct display *display)
1775 {
1776 struct display *d;
1777
1778 gdb_assert (display != NULL);
1779
1780 if (display_chain == display)
1781 display_chain = display->next;
1782
1783 ALL_DISPLAYS (d)
1784 if (d->next == display)
1785 {
1786 d->next = display->next;
1787 break;
1788 }
1789
1790 free_display (display);
1791 }
1792
1793 /* Call FUNCTION on each of the displays whose numbers are given in
1794 ARGS. DATA is passed unmodified to FUNCTION. */
1795
1796 static void
1797 map_display_numbers (const char *args,
1798 void (*function) (struct display *,
1799 void *),
1800 void *data)
1801 {
1802 int num;
1803
1804 if (args == NULL)
1805 error_no_arg (_("one or more display numbers"));
1806
1807 number_or_range_parser parser (args);
1808
1809 while (!parser.finished ())
1810 {
1811 const char *p = parser.cur_tok ();
1812
1813 num = parser.get_number ();
1814 if (num == 0)
1815 warning (_("bad display number at or near '%s'"), p);
1816 else
1817 {
1818 struct display *d, *tmp;
1819
1820 ALL_DISPLAYS_SAFE (d, tmp)
1821 if (d->number == num)
1822 break;
1823 if (d == NULL)
1824 printf_unfiltered (_("No display number %d.\n"), num);
1825 else
1826 function (d, data);
1827 }
1828 }
1829 }
1830
1831 /* Callback for map_display_numbers, that deletes a display. */
1832
1833 static void
1834 do_delete_display (struct display *d, void *data)
1835 {
1836 delete_display (d);
1837 }
1838
1839 /* "undisplay" command. */
1840
1841 static void
1842 undisplay_command (const char *args, int from_tty)
1843 {
1844 if (args == NULL)
1845 {
1846 if (query (_("Delete all auto-display expressions? ")))
1847 clear_displays ();
1848 dont_repeat ();
1849 return;
1850 }
1851
1852 map_display_numbers (args, do_delete_display, NULL);
1853 dont_repeat ();
1854 }
1855
1856 /* Display a single auto-display.
1857 Do nothing if the display cannot be printed in the current context,
1858 or if the display is disabled. */
1859
1860 static void
1861 do_one_display (struct display *d)
1862 {
1863 int within_current_scope;
1864
1865 if (d->enabled_p == 0)
1866 return;
1867
1868 /* The expression carries the architecture that was used at parse time.
1869 This is a problem if the expression depends on architecture features
1870 (e.g. register numbers), and the current architecture is now different.
1871 For example, a display statement like "display/i $pc" is expected to
1872 display the PC register of the current architecture, not the arch at
1873 the time the display command was given. Therefore, we re-parse the
1874 expression if the current architecture has changed. */
1875 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1876 {
1877 d->exp.reset ();
1878 d->block = NULL;
1879 }
1880
1881 if (d->exp == NULL)
1882 {
1883
1884 TRY
1885 {
1886 innermost_block = NULL;
1887 d->exp = parse_expression (d->exp_string);
1888 d->block = innermost_block;
1889 }
1890 CATCH (ex, RETURN_MASK_ALL)
1891 {
1892 /* Can't re-parse the expression. Disable this display item. */
1893 d->enabled_p = 0;
1894 warning (_("Unable to display \"%s\": %s"),
1895 d->exp_string, ex.message);
1896 return;
1897 }
1898 END_CATCH
1899 }
1900
1901 if (d->block)
1902 {
1903 if (d->pspace == current_program_space)
1904 within_current_scope = contained_in (get_selected_block (0), d->block);
1905 else
1906 within_current_scope = 0;
1907 }
1908 else
1909 within_current_scope = 1;
1910 if (!within_current_scope)
1911 return;
1912
1913 scoped_restore save_display_number
1914 = make_scoped_restore (&current_display_number, d->number);
1915
1916 annotate_display_begin ();
1917 printf_filtered ("%d", d->number);
1918 annotate_display_number_end ();
1919 printf_filtered (": ");
1920 if (d->format.size)
1921 {
1922
1923 annotate_display_format ();
1924
1925 printf_filtered ("x/");
1926 if (d->format.count != 1)
1927 printf_filtered ("%d", d->format.count);
1928 printf_filtered ("%c", d->format.format);
1929 if (d->format.format != 'i' && d->format.format != 's')
1930 printf_filtered ("%c", d->format.size);
1931 printf_filtered (" ");
1932
1933 annotate_display_expression ();
1934
1935 puts_filtered (d->exp_string);
1936 annotate_display_expression_end ();
1937
1938 if (d->format.count != 1 || d->format.format == 'i')
1939 printf_filtered ("\n");
1940 else
1941 printf_filtered (" ");
1942
1943 annotate_display_value ();
1944
1945 TRY
1946 {
1947 struct value *val;
1948 CORE_ADDR addr;
1949
1950 val = evaluate_expression (d->exp.get ());
1951 addr = value_as_address (val);
1952 if (d->format.format == 'i')
1953 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1954 do_examine (d->format, d->exp->gdbarch, addr);
1955 }
1956 CATCH (ex, RETURN_MASK_ERROR)
1957 {
1958 fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
1959 }
1960 END_CATCH
1961 }
1962 else
1963 {
1964 struct value_print_options opts;
1965
1966 annotate_display_format ();
1967
1968 if (d->format.format)
1969 printf_filtered ("/%c ", d->format.format);
1970
1971 annotate_display_expression ();
1972
1973 puts_filtered (d->exp_string);
1974 annotate_display_expression_end ();
1975
1976 printf_filtered (" = ");
1977
1978 annotate_display_expression ();
1979
1980 get_formatted_print_options (&opts, d->format.format);
1981 opts.raw = d->format.raw;
1982
1983 TRY
1984 {
1985 struct value *val;
1986
1987 val = evaluate_expression (d->exp.get ());
1988 print_formatted (val, d->format.size, &opts, gdb_stdout);
1989 }
1990 CATCH (ex, RETURN_MASK_ERROR)
1991 {
1992 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
1993 }
1994 END_CATCH
1995
1996 printf_filtered ("\n");
1997 }
1998
1999 annotate_display_end ();
2000
2001 gdb_flush (gdb_stdout);
2002 }
2003
2004 /* Display all of the values on the auto-display chain which can be
2005 evaluated in the current scope. */
2006
2007 void
2008 do_displays (void)
2009 {
2010 struct display *d;
2011
2012 for (d = display_chain; d; d = d->next)
2013 do_one_display (d);
2014 }
2015
2016 /* Delete the auto-display which we were in the process of displaying.
2017 This is done when there is an error or a signal. */
2018
2019 void
2020 disable_display (int num)
2021 {
2022 struct display *d;
2023
2024 for (d = display_chain; d; d = d->next)
2025 if (d->number == num)
2026 {
2027 d->enabled_p = 0;
2028 return;
2029 }
2030 printf_unfiltered (_("No display number %d.\n"), num);
2031 }
2032
2033 void
2034 disable_current_display (void)
2035 {
2036 if (current_display_number >= 0)
2037 {
2038 disable_display (current_display_number);
2039 fprintf_unfiltered (gdb_stderr,
2040 _("Disabling display %d to "
2041 "avoid infinite recursion.\n"),
2042 current_display_number);
2043 }
2044 current_display_number = -1;
2045 }
2046
2047 static void
2048 info_display_command (char *ignore, int from_tty)
2049 {
2050 struct display *d;
2051
2052 if (!display_chain)
2053 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2054 else
2055 printf_filtered (_("Auto-display expressions now in effect:\n\
2056 Num Enb Expression\n"));
2057
2058 for (d = display_chain; d; d = d->next)
2059 {
2060 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2061 if (d->format.size)
2062 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2063 d->format.format);
2064 else if (d->format.format)
2065 printf_filtered ("/%c ", d->format.format);
2066 puts_filtered (d->exp_string);
2067 if (d->block && !contained_in (get_selected_block (0), d->block))
2068 printf_filtered (_(" (cannot be evaluated in the current context)"));
2069 printf_filtered ("\n");
2070 gdb_flush (gdb_stdout);
2071 }
2072 }
2073
2074 /* Callback fo map_display_numbers, that enables or disables the
2075 passed in display D. */
2076
2077 static void
2078 do_enable_disable_display (struct display *d, void *data)
2079 {
2080 d->enabled_p = *(int *) data;
2081 }
2082
2083 /* Implamentation of both the "disable display" and "enable display"
2084 commands. ENABLE decides what to do. */
2085
2086 static void
2087 enable_disable_display_command (const char *args, int from_tty, int enable)
2088 {
2089 if (args == NULL)
2090 {
2091 struct display *d;
2092
2093 ALL_DISPLAYS (d)
2094 d->enabled_p = enable;
2095 return;
2096 }
2097
2098 map_display_numbers (args, do_enable_disable_display, &enable);
2099 }
2100
2101 /* The "enable display" command. */
2102
2103 static void
2104 enable_display_command (const char *args, int from_tty)
2105 {
2106 enable_disable_display_command (args, from_tty, 1);
2107 }
2108
2109 /* The "disable display" command. */
2110
2111 static void
2112 disable_display_command (const char *args, int from_tty)
2113 {
2114 enable_disable_display_command (args, from_tty, 0);
2115 }
2116
2117 /* display_chain items point to blocks and expressions. Some expressions in
2118 turn may point to symbols.
2119 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2120 obstack_free'd when a shared library is unloaded.
2121 Clear pointers that are about to become dangling.
2122 Both .exp and .block fields will be restored next time we need to display
2123 an item by re-parsing .exp_string field in the new execution context. */
2124
2125 static void
2126 clear_dangling_display_expressions (struct objfile *objfile)
2127 {
2128 struct display *d;
2129 struct program_space *pspace;
2130
2131 /* With no symbol file we cannot have a block or expression from it. */
2132 if (objfile == NULL)
2133 return;
2134 pspace = objfile->pspace;
2135 if (objfile->separate_debug_objfile_backlink)
2136 {
2137 objfile = objfile->separate_debug_objfile_backlink;
2138 gdb_assert (objfile->pspace == pspace);
2139 }
2140
2141 for (d = display_chain; d != NULL; d = d->next)
2142 {
2143 if (d->pspace != pspace)
2144 continue;
2145
2146 if (lookup_objfile_from_block (d->block) == objfile
2147 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2148 {
2149 d->exp.reset ();
2150 d->block = NULL;
2151 }
2152 }
2153 }
2154 \f
2155
2156 /* Print the value in stack frame FRAME of a variable specified by a
2157 struct symbol. NAME is the name to print; if NULL then VAR's print
2158 name will be used. STREAM is the ui_file on which to print the
2159 value. INDENT specifies the number of indent levels to print
2160 before printing the variable name.
2161
2162 This function invalidates FRAME. */
2163
2164 void
2165 print_variable_and_value (const char *name, struct symbol *var,
2166 struct frame_info *frame,
2167 struct ui_file *stream, int indent)
2168 {
2169
2170 if (!name)
2171 name = SYMBOL_PRINT_NAME (var);
2172
2173 fprintf_filtered (stream, "%s%s = ", n_spaces (2 * indent), name);
2174 TRY
2175 {
2176 struct value *val;
2177 struct value_print_options opts;
2178
2179 /* READ_VAR_VALUE needs a block in order to deal with non-local
2180 references (i.e. to handle nested functions). In this context, we
2181 print variables that are local to this frame, so we can avoid passing
2182 a block to it. */
2183 val = read_var_value (var, NULL, frame);
2184 get_user_print_options (&opts);
2185 opts.deref_ref = 1;
2186 common_val_print (val, stream, indent, &opts, current_language);
2187
2188 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2189 function. */
2190 frame = NULL;
2191 }
2192 CATCH (except, RETURN_MASK_ERROR)
2193 {
2194 fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
2195 except.message);
2196 }
2197 END_CATCH
2198
2199 fprintf_filtered (stream, "\n");
2200 }
2201
2202 /* Subroutine of ui_printf to simplify it.
2203 Print VALUE to STREAM using FORMAT.
2204 VALUE is a C-style string on the target. */
2205
2206 static void
2207 printf_c_string (struct ui_file *stream, const char *format,
2208 struct value *value)
2209 {
2210 gdb_byte *str;
2211 CORE_ADDR tem;
2212 int j;
2213
2214 tem = value_as_address (value);
2215
2216 /* This is a %s argument. Find the length of the string. */
2217 for (j = 0;; j++)
2218 {
2219 gdb_byte c;
2220
2221 QUIT;
2222 read_memory (tem + j, &c, 1);
2223 if (c == 0)
2224 break;
2225 }
2226
2227 /* Copy the string contents into a string inside GDB. */
2228 str = (gdb_byte *) alloca (j + 1);
2229 if (j != 0)
2230 read_memory (tem, str, j);
2231 str[j] = 0;
2232
2233 fprintf_filtered (stream, format, (char *) str);
2234 }
2235
2236 /* Subroutine of ui_printf to simplify it.
2237 Print VALUE to STREAM using FORMAT.
2238 VALUE is a wide C-style string on the target. */
2239
2240 static void
2241 printf_wide_c_string (struct ui_file *stream, const char *format,
2242 struct value *value)
2243 {
2244 gdb_byte *str;
2245 CORE_ADDR tem;
2246 int j;
2247 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2248 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2249 struct type *wctype = lookup_typename (current_language, gdbarch,
2250 "wchar_t", NULL, 0);
2251 int wcwidth = TYPE_LENGTH (wctype);
2252 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2253
2254 tem = value_as_address (value);
2255
2256 /* This is a %s argument. Find the length of the string. */
2257 for (j = 0;; j += wcwidth)
2258 {
2259 QUIT;
2260 read_memory (tem + j, buf, wcwidth);
2261 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2262 break;
2263 }
2264
2265 /* Copy the string contents into a string inside GDB. */
2266 str = (gdb_byte *) alloca (j + wcwidth);
2267 if (j != 0)
2268 read_memory (tem, str, j);
2269 memset (&str[j], 0, wcwidth);
2270
2271 auto_obstack output;
2272
2273 convert_between_encodings (target_wide_charset (gdbarch),
2274 host_charset (),
2275 str, j, wcwidth,
2276 &output, translit_char);
2277 obstack_grow_str0 (&output, "");
2278
2279 fprintf_filtered (stream, format, obstack_base (&output));
2280 }
2281
2282 /* Subroutine of ui_printf to simplify it.
2283 Print VALUE, a decimal floating point value, to STREAM using FORMAT. */
2284
2285 static void
2286 printf_decfloat (struct ui_file *stream, const char *format,
2287 struct value *value)
2288 {
2289 const gdb_byte *param_ptr = value_contents (value);
2290
2291 #if defined (PRINTF_HAS_DECFLOAT)
2292 /* If we have native support for Decimal floating
2293 printing, handle it here. */
2294 fprintf_filtered (stream, format, param_ptr);
2295 #else
2296 /* As a workaround until vasprintf has native support for DFP
2297 we convert the DFP values to string and print them using
2298 the %s format specifier. */
2299 const char *p;
2300
2301 /* Parameter data. */
2302 struct type *param_type = value_type (value);
2303 struct gdbarch *gdbarch = get_type_arch (param_type);
2304 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2305
2306 /* DFP output data. */
2307 struct value *dfp_value = NULL;
2308 gdb_byte *dfp_ptr;
2309 int dfp_len = 16;
2310 gdb_byte dec[16];
2311 struct type *dfp_type = NULL;
2312 char decstr[MAX_DECIMAL_STRING];
2313
2314 /* Points to the end of the string so that we can go back
2315 and check for DFP length modifiers. */
2316 p = format + strlen (format);
2317
2318 /* Look for the float/double format specifier. */
2319 while (*p != 'f' && *p != 'e' && *p != 'E'
2320 && *p != 'g' && *p != 'G')
2321 p--;
2322
2323 /* Search for the '%' char and extract the size and type of
2324 the output decimal value based on its modifiers
2325 (%Hf, %Df, %DDf). */
2326 while (*--p != '%')
2327 {
2328 if (*p == 'H')
2329 {
2330 dfp_len = 4;
2331 dfp_type = builtin_type (gdbarch)->builtin_decfloat;
2332 }
2333 else if (*p == 'D' && *(p - 1) == 'D')
2334 {
2335 dfp_len = 16;
2336 dfp_type = builtin_type (gdbarch)->builtin_declong;
2337 p--;
2338 }
2339 else
2340 {
2341 dfp_len = 8;
2342 dfp_type = builtin_type (gdbarch)->builtin_decdouble;
2343 }
2344 }
2345
2346 /* Conversion between different DFP types. */
2347 if (TYPE_CODE (param_type) == TYPE_CODE_DECFLOAT)
2348 decimal_convert (param_ptr, TYPE_LENGTH (param_type),
2349 byte_order, dec, dfp_len, byte_order);
2350 else
2351 /* If this is a non-trivial conversion, just output 0.
2352 A correct converted value can be displayed by explicitly
2353 casting to a DFP type. */
2354 decimal_from_string (dec, dfp_len, byte_order, "0");
2355
2356 dfp_value = value_from_decfloat (dfp_type, dec);
2357
2358 dfp_ptr = (gdb_byte *) value_contents (dfp_value);
2359
2360 decimal_to_string (dfp_ptr, dfp_len, byte_order, decstr);
2361
2362 /* Print the DFP value. */
2363 fprintf_filtered (stream, "%s", decstr);
2364 #endif
2365 }
2366
2367 /* Subroutine of ui_printf to simplify it.
2368 Print VALUE, a target pointer, to STREAM using FORMAT. */
2369
2370 static void
2371 printf_pointer (struct ui_file *stream, const char *format,
2372 struct value *value)
2373 {
2374 /* We avoid the host's %p because pointers are too
2375 likely to be the wrong size. The only interesting
2376 modifier for %p is a width; extract that, and then
2377 handle %p as glibc would: %#x or a literal "(nil)". */
2378
2379 const char *p;
2380 char *fmt, *fmt_p;
2381 #ifdef PRINTF_HAS_LONG_LONG
2382 long long val = value_as_long (value);
2383 #else
2384 long val = value_as_long (value);
2385 #endif
2386
2387 fmt = (char *) alloca (strlen (format) + 5);
2388
2389 /* Copy up to the leading %. */
2390 p = format;
2391 fmt_p = fmt;
2392 while (*p)
2393 {
2394 int is_percent = (*p == '%');
2395
2396 *fmt_p++ = *p++;
2397 if (is_percent)
2398 {
2399 if (*p == '%')
2400 *fmt_p++ = *p++;
2401 else
2402 break;
2403 }
2404 }
2405
2406 if (val != 0)
2407 *fmt_p++ = '#';
2408
2409 /* Copy any width. */
2410 while (*p >= '0' && *p < '9')
2411 *fmt_p++ = *p++;
2412
2413 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2414 if (val != 0)
2415 {
2416 #ifdef PRINTF_HAS_LONG_LONG
2417 *fmt_p++ = 'l';
2418 #endif
2419 *fmt_p++ = 'l';
2420 *fmt_p++ = 'x';
2421 *fmt_p++ = '\0';
2422 fprintf_filtered (stream, fmt, val);
2423 }
2424 else
2425 {
2426 *fmt_p++ = 's';
2427 *fmt_p++ = '\0';
2428 fprintf_filtered (stream, fmt, "(nil)");
2429 }
2430 }
2431
2432 /* printf "printf format string" ARG to STREAM. */
2433
2434 static void
2435 ui_printf (const char *arg, struct ui_file *stream)
2436 {
2437 struct format_piece *fpieces;
2438 const char *s = arg;
2439 struct value **val_args;
2440 int allocated_args = 20;
2441 struct cleanup *old_cleanups;
2442
2443 val_args = XNEWVEC (struct value *, allocated_args);
2444 old_cleanups = make_cleanup (free_current_contents, &val_args);
2445
2446 if (s == 0)
2447 error_no_arg (_("format-control string and values to print"));
2448
2449 s = skip_spaces (s);
2450
2451 /* A format string should follow, enveloped in double quotes. */
2452 if (*s++ != '"')
2453 error (_("Bad format string, missing '\"'."));
2454
2455 fpieces = parse_format_string (&s);
2456
2457 make_cleanup (free_format_pieces_cleanup, &fpieces);
2458
2459 if (*s++ != '"')
2460 error (_("Bad format string, non-terminated '\"'."));
2461
2462 s = skip_spaces (s);
2463
2464 if (*s != ',' && *s != 0)
2465 error (_("Invalid argument syntax"));
2466
2467 if (*s == ',')
2468 s++;
2469 s = skip_spaces (s);
2470
2471 {
2472 int nargs = 0;
2473 int nargs_wanted;
2474 int i, fr;
2475 char *current_substring;
2476
2477 nargs_wanted = 0;
2478 for (fr = 0; fpieces[fr].string != NULL; fr++)
2479 if (fpieces[fr].argclass != literal_piece)
2480 ++nargs_wanted;
2481
2482 /* Now, parse all arguments and evaluate them.
2483 Store the VALUEs in VAL_ARGS. */
2484
2485 while (*s != '\0')
2486 {
2487 const char *s1;
2488
2489 if (nargs == allocated_args)
2490 val_args = (struct value **) xrealloc ((char *) val_args,
2491 (allocated_args *= 2)
2492 * sizeof (struct value *));
2493 s1 = s;
2494 val_args[nargs] = parse_to_comma_and_eval (&s1);
2495
2496 nargs++;
2497 s = s1;
2498 if (*s == ',')
2499 s++;
2500 }
2501
2502 if (nargs != nargs_wanted)
2503 error (_("Wrong number of arguments for specified format-string"));
2504
2505 /* Now actually print them. */
2506 i = 0;
2507 for (fr = 0; fpieces[fr].string != NULL; fr++)
2508 {
2509 current_substring = fpieces[fr].string;
2510 switch (fpieces[fr].argclass)
2511 {
2512 case string_arg:
2513 printf_c_string (stream, current_substring, val_args[i]);
2514 break;
2515 case wide_string_arg:
2516 printf_wide_c_string (stream, current_substring, val_args[i]);
2517 break;
2518 case wide_char_arg:
2519 {
2520 struct gdbarch *gdbarch
2521 = get_type_arch (value_type (val_args[i]));
2522 struct type *wctype = lookup_typename (current_language, gdbarch,
2523 "wchar_t", NULL, 0);
2524 struct type *valtype;
2525 const gdb_byte *bytes;
2526
2527 valtype = value_type (val_args[i]);
2528 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2529 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2530 error (_("expected wchar_t argument for %%lc"));
2531
2532 bytes = value_contents (val_args[i]);
2533
2534 auto_obstack output;
2535
2536 convert_between_encodings (target_wide_charset (gdbarch),
2537 host_charset (),
2538 bytes, TYPE_LENGTH (valtype),
2539 TYPE_LENGTH (valtype),
2540 &output, translit_char);
2541 obstack_grow_str0 (&output, "");
2542
2543 fprintf_filtered (stream, current_substring,
2544 obstack_base (&output));
2545 }
2546 break;
2547 case double_arg:
2548 {
2549 struct type *type = value_type (val_args[i]);
2550 DOUBLEST val;
2551 int inv;
2552
2553 /* If format string wants a float, unchecked-convert the value
2554 to floating point of the same size. */
2555 type = float_type_from_length (type);
2556 val = unpack_double (type, value_contents (val_args[i]), &inv);
2557 if (inv)
2558 error (_("Invalid floating value found in program."));
2559
2560 fprintf_filtered (stream, current_substring, (double) val);
2561 break;
2562 }
2563 case long_double_arg:
2564 #ifdef HAVE_LONG_DOUBLE
2565 {
2566 struct type *type = value_type (val_args[i]);
2567 DOUBLEST val;
2568 int inv;
2569
2570 /* If format string wants a float, unchecked-convert the value
2571 to floating point of the same size. */
2572 type = float_type_from_length (type);
2573 val = unpack_double (type, value_contents (val_args[i]), &inv);
2574 if (inv)
2575 error (_("Invalid floating value found in program."));
2576
2577 fprintf_filtered (stream, current_substring,
2578 (long double) val);
2579 break;
2580 }
2581 #else
2582 error (_("long double not supported in printf"));
2583 #endif
2584 case long_long_arg:
2585 #ifdef PRINTF_HAS_LONG_LONG
2586 {
2587 long long val = value_as_long (val_args[i]);
2588
2589 fprintf_filtered (stream, current_substring, val);
2590 break;
2591 }
2592 #else
2593 error (_("long long not supported in printf"));
2594 #endif
2595 case int_arg:
2596 {
2597 int val = value_as_long (val_args[i]);
2598
2599 fprintf_filtered (stream, current_substring, val);
2600 break;
2601 }
2602 case long_arg:
2603 {
2604 long val = value_as_long (val_args[i]);
2605
2606 fprintf_filtered (stream, current_substring, val);
2607 break;
2608 }
2609 /* Handles decimal floating values. */
2610 case decfloat_arg:
2611 printf_decfloat (stream, current_substring, val_args[i]);
2612 break;
2613 case ptr_arg:
2614 printf_pointer (stream, current_substring, val_args[i]);
2615 break;
2616 case literal_piece:
2617 /* Print a portion of the format string that has no
2618 directives. Note that this will not include any
2619 ordinary %-specs, but it might include "%%". That is
2620 why we use printf_filtered and not puts_filtered here.
2621 Also, we pass a dummy argument because some platforms
2622 have modified GCC to include -Wformat-security by
2623 default, which will warn here if there is no
2624 argument. */
2625 fprintf_filtered (stream, current_substring, 0);
2626 break;
2627 default:
2628 internal_error (__FILE__, __LINE__,
2629 _("failed internal consistency check"));
2630 }
2631 /* Maybe advance to the next argument. */
2632 if (fpieces[fr].argclass != literal_piece)
2633 ++i;
2634 }
2635 }
2636 do_cleanups (old_cleanups);
2637 }
2638
2639 /* Implement the "printf" command. */
2640
2641 static void
2642 printf_command (char *arg, int from_tty)
2643 {
2644 ui_printf (arg, gdb_stdout);
2645 gdb_flush (gdb_stdout);
2646 }
2647
2648 /* Implement the "eval" command. */
2649
2650 static void
2651 eval_command (char *arg, int from_tty)
2652 {
2653 string_file stb;
2654
2655 ui_printf (arg, &stb);
2656
2657 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2658
2659 execute_command (&expanded[0], from_tty);
2660 }
2661
2662 void
2663 _initialize_printcmd (void)
2664 {
2665 struct cmd_list_element *c;
2666
2667 current_display_number = -1;
2668
2669 observer_attach_free_objfile (clear_dangling_display_expressions);
2670
2671 add_info ("address", info_address_command,
2672 _("Describe where symbol SYM is stored."));
2673
2674 add_info ("symbol", info_symbol_command, _("\
2675 Describe what symbol is at location ADDR.\n\
2676 Only for symbols with fixed locations (global or static scope)."));
2677
2678 add_com ("x", class_vars, x_command, _("\
2679 Examine memory: x/FMT ADDRESS.\n\
2680 ADDRESS is an expression for the memory address to examine.\n\
2681 FMT is a repeat count followed by a format letter and a size letter.\n\
2682 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2683 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2684 and z(hex, zero padded on the left).\n\
2685 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2686 The specified number of objects of the specified size are printed\n\
2687 according to the format. If a negative number is specified, memory is\n\
2688 examined backward from the address.\n\n\
2689 Defaults for format and size letters are those previously used.\n\
2690 Default count is 1. Default address is following last thing printed\n\
2691 with this command or \"print\"."));
2692
2693 #if 0
2694 add_com ("whereis", class_vars, whereis_command,
2695 _("Print line number and file of definition of variable."));
2696 #endif
2697
2698 add_info ("display", info_display_command, _("\
2699 Expressions to display when program stops, with code numbers."));
2700
2701 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2702 Cancel some expressions to be displayed when program stops.\n\
2703 Arguments are the code numbers of the expressions to stop displaying.\n\
2704 No argument means cancel all automatic-display expressions.\n\
2705 \"delete display\" has the same effect as this command.\n\
2706 Do \"info display\" to see current list of code numbers."),
2707 &cmdlist);
2708
2709 add_com ("display", class_vars, display_command, _("\
2710 Print value of expression EXP each time the program stops.\n\
2711 /FMT may be used before EXP as in the \"print\" command.\n\
2712 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2713 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2714 and examining is done as in the \"x\" command.\n\n\
2715 With no argument, display all currently requested auto-display expressions.\n\
2716 Use \"undisplay\" to cancel display requests previously made."));
2717
2718 add_cmd ("display", class_vars, enable_display_command, _("\
2719 Enable some expressions to be displayed when program stops.\n\
2720 Arguments are the code numbers of the expressions to resume displaying.\n\
2721 No argument means enable all automatic-display expressions.\n\
2722 Do \"info display\" to see current list of code numbers."), &enablelist);
2723
2724 add_cmd ("display", class_vars, disable_display_command, _("\
2725 Disable some expressions to be displayed when program stops.\n\
2726 Arguments are the code numbers of the expressions to stop displaying.\n\
2727 No argument means disable all automatic-display expressions.\n\
2728 Do \"info display\" to see current list of code numbers."), &disablelist);
2729
2730 add_cmd ("display", class_vars, undisplay_command, _("\
2731 Cancel some expressions to be displayed when program stops.\n\
2732 Arguments are the code numbers of the expressions to stop displaying.\n\
2733 No argument means cancel all automatic-display expressions.\n\
2734 Do \"info display\" to see current list of code numbers."), &deletelist);
2735
2736 add_com ("printf", class_vars, printf_command, _("\
2737 printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2738 This is useful for formatted output in user-defined commands."));
2739
2740 add_com ("output", class_vars, output_command, _("\
2741 Like \"print\" but don't put in value history and don't print newline.\n\
2742 This is useful in user-defined commands."));
2743
2744 add_prefix_cmd ("set", class_vars, set_command, _("\
2745 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2746 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2747 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2748 with $), a register (a few standard names starting with $), or an actual\n\
2749 variable in the program being debugged. EXP is any valid expression.\n\
2750 Use \"set variable\" for variables with names identical to set subcommands.\n\
2751 \n\
2752 With a subcommand, this command modifies parts of the gdb environment.\n\
2753 You can see these environment settings with the \"show\" command."),
2754 &setlist, "set ", 1, &cmdlist);
2755 if (dbx_commands)
2756 add_com ("assign", class_vars, set_command, _("\
2757 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2758 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2759 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2760 with $), a register (a few standard names starting with $), or an actual\n\
2761 variable in the program being debugged. EXP is any valid expression.\n\
2762 Use \"set variable\" for variables with names identical to set subcommands.\n\
2763 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2764 You can see these environment settings with the \"show\" command."));
2765
2766 /* "call" is the same as "set", but handy for dbx users to call fns. */
2767 c = add_com ("call", class_vars, call_command, _("\
2768 Call a function in the program.\n\
2769 The argument is the function name and arguments, in the notation of the\n\
2770 current working language. The result is printed and saved in the value\n\
2771 history, if it is not void."));
2772 set_cmd_completer (c, expression_completer);
2773
2774 add_cmd ("variable", class_vars, set_command, _("\
2775 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2776 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2777 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2778 with $), a register (a few standard names starting with $), or an actual\n\
2779 variable in the program being debugged. EXP is any valid expression.\n\
2780 This may usually be abbreviated to simply \"set\"."),
2781 &setlist);
2782
2783 c = add_com ("print", class_vars, print_command, _("\
2784 Print value of expression EXP.\n\
2785 Variables accessible are those of the lexical environment of the selected\n\
2786 stack frame, plus all those whose scope is global or an entire file.\n\
2787 \n\
2788 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2789 $$NUM refers to NUM'th value back from the last one.\n\
2790 Names starting with $ refer to registers (with the values they would have\n\
2791 if the program were to return to the stack frame now selected, restoring\n\
2792 all registers saved by frames farther in) or else to debugger\n\
2793 \"convenience\" variables (any such name not a known register).\n\
2794 Use assignment expressions to give values to convenience variables.\n\
2795 \n\
2796 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2797 @ is a binary operator for treating consecutive data objects\n\
2798 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2799 element is FOO, whose second element is stored in the space following\n\
2800 where FOO is stored, etc. FOO must be an expression whose value\n\
2801 resides in memory.\n\
2802 \n\
2803 EXP may be preceded with /FMT, where FMT is a format letter\n\
2804 but no count or size letter (see \"x\" command)."));
2805 set_cmd_completer (c, expression_completer);
2806 add_com_alias ("p", "print", class_vars, 1);
2807 add_com_alias ("inspect", "print", class_vars, 1);
2808
2809 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2810 &max_symbolic_offset, _("\
2811 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2812 Show the largest offset that will be printed in <symbol+1234> form."), _("\
2813 Tell GDB to only display the symbolic form of an address if the\n\
2814 offset between the closest earlier symbol and the address is less than\n\
2815 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2816 to always print the symbolic form of an address if any symbol precedes\n\
2817 it. Zero is equivalent to \"unlimited\"."),
2818 NULL,
2819 show_max_symbolic_offset,
2820 &setprintlist, &showprintlist);
2821 add_setshow_boolean_cmd ("symbol-filename", no_class,
2822 &print_symbol_filename, _("\
2823 Set printing of source filename and line number with <symbol>."), _("\
2824 Show printing of source filename and line number with <symbol>."), NULL,
2825 NULL,
2826 show_print_symbol_filename,
2827 &setprintlist, &showprintlist);
2828
2829 add_com ("eval", no_class, eval_command, _("\
2830 Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\
2831 a command line, and call it."));
2832 }
This page took 0.113611 seconds and 5 git commands to generate.