2002-07-11 Daniel Jacobowitz <drow@mvista.com>
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "frame.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "value.h"
30 #include "language.h"
31 #include "expression.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "target.h"
35 #include "breakpoint.h"
36 #include "demangle.h"
37 #include "valprint.h"
38 #include "annotate.h"
39 #include "symfile.h" /* for overlay functions */
40 #include "objfiles.h" /* ditto */
41 #include "completer.h" /* for completion functions */
42 #include "ui-out.h"
43 #include "gdb_assert.h"
44
45 extern int asm_demangle; /* Whether to demangle syms in asm printouts */
46 extern int addressprint; /* Whether to print hex addresses in HLL " */
47
48 struct format_data
49 {
50 int count;
51 char format;
52 char size;
53 };
54
55 /* Last specified output format. */
56
57 static char last_format = 'x';
58
59 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
60
61 static char last_size = 'w';
62
63 /* Default address to examine next. */
64
65 static CORE_ADDR next_address;
66
67 /* Default section to examine next. */
68
69 static asection *next_section;
70
71 /* Last address examined. */
72
73 static CORE_ADDR last_examine_address;
74
75 /* Contents of last address examined.
76 This is not valid past the end of the `x' command! */
77
78 static struct value *last_examine_value;
79
80 /* Largest offset between a symbolic value and an address, that will be
81 printed as `0x1234 <symbol+offset>'. */
82
83 static unsigned int max_symbolic_offset = UINT_MAX;
84
85 /* Append the source filename and linenumber of the symbol when
86 printing a symbolic value as `<symbol at filename:linenum>' if set. */
87 static int print_symbol_filename = 0;
88
89 /* Number of auto-display expression currently being displayed.
90 So that we can disable it if we get an error or a signal within it.
91 -1 when not doing one. */
92
93 int current_display_number;
94
95 /* Flag to low-level print routines that this value is being printed
96 in an epoch window. We'd like to pass this as a parameter, but
97 every routine would need to take it. Perhaps we can encapsulate
98 this in the I/O stream once we have GNU stdio. */
99
100 int inspect_it = 0;
101
102 struct display
103 {
104 /* Chain link to next auto-display item. */
105 struct display *next;
106 /* Expression to be evaluated and displayed. */
107 struct expression *exp;
108 /* Item number of this auto-display item. */
109 int number;
110 /* Display format specified. */
111 struct format_data format;
112 /* Innermost block required by this expression when evaluated */
113 struct block *block;
114 /* Status of this display (enabled or disabled) */
115 int enabled_p;
116 };
117
118 /* Chain of expressions whose values should be displayed
119 automatically each time the program stops. */
120
121 static struct display *display_chain;
122
123 static int display_number;
124
125 /* Prototypes for exported functions. */
126
127 void output_command (char *, int);
128
129 void _initialize_printcmd (void);
130
131 /* Prototypes for local functions. */
132
133 static void delete_display (int);
134
135 static void enable_display (char *, int);
136
137 static void disable_display_command (char *, int);
138
139 static void disassemble_command (char *, int);
140
141 static void printf_command (char *, int);
142
143 static void print_frame_nameless_args (struct frame_info *, long,
144 int, int, struct ui_file *);
145
146 static void display_info (char *, int);
147
148 static void do_one_display (struct display *);
149
150 static void undisplay_command (char *, int);
151
152 static void free_display (struct display *);
153
154 static void display_command (char *, int);
155
156 void x_command (char *, int);
157
158 static void address_info (char *, int);
159
160 static void set_command (char *, int);
161
162 static void call_command (char *, int);
163
164 static void inspect_command (char *, int);
165
166 static void print_command (char *, int);
167
168 static void print_command_1 (char *, int, int);
169
170 static void validate_format (struct format_data, char *);
171
172 static void do_examine (struct format_data, CORE_ADDR addr,
173 asection * section);
174
175 static void print_formatted (struct value *, int, int, struct ui_file *);
176
177 static struct format_data decode_format (char **, int, int);
178
179 static int print_insn (CORE_ADDR, struct ui_file *);
180
181 static void sym_info (char *, int);
182 \f
183
184 /* Decode a format specification. *STRING_PTR should point to it.
185 OFORMAT and OSIZE are used as defaults for the format and size
186 if none are given in the format specification.
187 If OSIZE is zero, then the size field of the returned value
188 should be set only if a size is explicitly specified by the
189 user.
190 The structure returned describes all the data
191 found in the specification. In addition, *STRING_PTR is advanced
192 past the specification and past all whitespace following it. */
193
194 static struct format_data
195 decode_format (char **string_ptr, int oformat, int osize)
196 {
197 struct format_data val;
198 register char *p = *string_ptr;
199
200 val.format = '?';
201 val.size = '?';
202 val.count = 1;
203
204 if (*p >= '0' && *p <= '9')
205 val.count = atoi (p);
206 while (*p >= '0' && *p <= '9')
207 p++;
208
209 /* Now process size or format letters that follow. */
210
211 while (1)
212 {
213 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
214 val.size = *p++;
215 else if (*p >= 'a' && *p <= 'z')
216 val.format = *p++;
217 else
218 break;
219 }
220
221 while (*p == ' ' || *p == '\t')
222 p++;
223 *string_ptr = p;
224
225 /* Set defaults for format and size if not specified. */
226 if (val.format == '?')
227 {
228 if (val.size == '?')
229 {
230 /* Neither has been specified. */
231 val.format = oformat;
232 val.size = osize;
233 }
234 else
235 /* If a size is specified, any format makes a reasonable
236 default except 'i'. */
237 val.format = oformat == 'i' ? 'x' : oformat;
238 }
239 else if (val.size == '?')
240 switch (val.format)
241 {
242 case 'a':
243 case 's':
244 /* Pick the appropriate size for an address. */
245 if (TARGET_PTR_BIT == 64)
246 val.size = osize ? 'g' : osize;
247 else if (TARGET_PTR_BIT == 32)
248 val.size = osize ? 'w' : osize;
249 else if (TARGET_PTR_BIT == 16)
250 val.size = osize ? 'h' : osize;
251 else
252 /* Bad value for TARGET_PTR_BIT */
253 internal_error (__FILE__, __LINE__, "failed internal consistency check");
254 break;
255 case 'f':
256 /* Floating point has to be word or giantword. */
257 if (osize == 'w' || osize == 'g')
258 val.size = osize;
259 else
260 /* Default it to giantword if the last used size is not
261 appropriate. */
262 val.size = osize ? 'g' : osize;
263 break;
264 case 'c':
265 /* Characters default to one byte. */
266 val.size = osize ? 'b' : osize;
267 break;
268 default:
269 /* The default is the size most recently specified. */
270 val.size = osize;
271 }
272
273 return val;
274 }
275 \f
276 /* Print value VAL on stream according to FORMAT, a letter or 0.
277 Do not end with a newline.
278 0 means print VAL according to its own type.
279 SIZE is the letter for the size of datum being printed.
280 This is used to pad hex numbers so they line up. */
281
282 static void
283 print_formatted (struct value *val, register int format, int size,
284 struct ui_file *stream)
285 {
286 struct type *type = check_typedef (VALUE_TYPE (val));
287 int len = TYPE_LENGTH (type);
288
289 if (VALUE_LVAL (val) == lval_memory)
290 {
291 next_address = VALUE_ADDRESS (val) + len;
292 next_section = VALUE_BFD_SECTION (val);
293 }
294
295 switch (format)
296 {
297 case 's':
298 /* FIXME: Need to handle wchar_t's here... */
299 next_address = VALUE_ADDRESS (val)
300 + val_print_string (VALUE_ADDRESS (val), -1, 1, stream);
301 next_section = VALUE_BFD_SECTION (val);
302 break;
303
304 case 'i':
305 /* The old comment says
306 "Force output out, print_insn not using _filtered".
307 I'm not completely sure what that means, I suspect most print_insn
308 now do use _filtered, so I guess it's obsolete.
309 --Yes, it does filter now, and so this is obsolete. -JB */
310
311 /* We often wrap here if there are long symbolic names. */
312 wrap_here (" ");
313 next_address = VALUE_ADDRESS (val)
314 + print_insn (VALUE_ADDRESS (val), stream);
315 next_section = VALUE_BFD_SECTION (val);
316 break;
317
318 default:
319 if (format == 0
320 || TYPE_CODE (type) == TYPE_CODE_ARRAY
321 || TYPE_CODE (type) == TYPE_CODE_STRING
322 || TYPE_CODE (type) == TYPE_CODE_STRUCT
323 || TYPE_CODE (type) == TYPE_CODE_UNION)
324 /* If format is 0, use the 'natural' format for
325 * that type of value. If the type is non-scalar,
326 * we have to use language rules to print it as
327 * a series of scalars.
328 */
329 value_print (val, stream, format, Val_pretty_default);
330 else
331 /* User specified format, so don't look to the
332 * the type to tell us what to do.
333 */
334 print_scalar_formatted (VALUE_CONTENTS (val), type,
335 format, size, stream);
336 }
337 }
338
339 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
340 according to letters FORMAT and SIZE on STREAM.
341 FORMAT may not be zero. Formats s and i are not supported at this level.
342
343 This is how the elements of an array or structure are printed
344 with a format. */
345
346 void
347 print_scalar_formatted (char *valaddr, struct type *type, int format, int size,
348 struct ui_file *stream)
349 {
350 LONGEST val_long;
351 unsigned int len = TYPE_LENGTH (type);
352
353 if (len > sizeof (LONGEST)
354 && (format == 't'
355 || format == 'c'
356 || format == 'o'
357 || format == 'u'
358 || format == 'd'
359 || format == 'x'))
360 {
361 if (!TYPE_UNSIGNED (type)
362 || !extract_long_unsigned_integer (valaddr, len, &val_long))
363 {
364 /* We can't print it normally, but we can print it in hex.
365 Printing it in the wrong radix is more useful than saying
366 "use /x, you dummy". */
367 /* FIXME: we could also do octal or binary if that was the
368 desired format. */
369 /* FIXME: we should be using the size field to give us a
370 minimum field width to print. */
371
372 if (format == 'o')
373 print_octal_chars (stream, valaddr, len);
374 else if (format == 'd')
375 print_decimal_chars (stream, valaddr, len);
376 else if (format == 't')
377 print_binary_chars (stream, valaddr, len);
378 else
379 /* replace with call to print_hex_chars? Looks
380 like val_print_type_code_int is redoing
381 work. - edie */
382
383 val_print_type_code_int (type, valaddr, stream);
384
385 return;
386 }
387
388 /* If we get here, extract_long_unsigned_integer set val_long. */
389 }
390 else if (format != 'f')
391 val_long = unpack_long (type, valaddr);
392
393 /* If the value is a pointer, and pointers and addresses are not the
394 same, then at this point, the value's length is TARGET_ADDR_BIT, not
395 TYPE_LENGTH (type). */
396 if (TYPE_CODE (type) == TYPE_CODE_PTR)
397 len = TARGET_ADDR_BIT;
398
399 /* If we are printing it as unsigned, truncate it in case it is actually
400 a negative signed value (e.g. "print/u (short)-1" should print 65535
401 (if shorts are 16 bits) instead of 4294967295). */
402 if (format != 'd')
403 {
404 if (len < sizeof (LONGEST))
405 val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
406 }
407
408 switch (format)
409 {
410 case 'x':
411 if (!size)
412 {
413 /* no size specified, like in print. Print varying # of digits. */
414 print_longest (stream, 'x', 1, val_long);
415 }
416 else
417 switch (size)
418 {
419 case 'b':
420 case 'h':
421 case 'w':
422 case 'g':
423 print_longest (stream, size, 1, val_long);
424 break;
425 default:
426 error ("Undefined output size \"%c\".", size);
427 }
428 break;
429
430 case 'd':
431 print_longest (stream, 'd', 1, val_long);
432 break;
433
434 case 'u':
435 print_longest (stream, 'u', 0, val_long);
436 break;
437
438 case 'o':
439 if (val_long)
440 print_longest (stream, 'o', 1, val_long);
441 else
442 fprintf_filtered (stream, "0");
443 break;
444
445 case 'a':
446 {
447 CORE_ADDR addr = unpack_pointer (type, valaddr);
448 print_address (addr, stream);
449 }
450 break;
451
452 case 'c':
453 value_print (value_from_longest (builtin_type_true_char, val_long),
454 stream, 0, Val_pretty_default);
455 break;
456
457 case 'f':
458 if (len == TYPE_LENGTH (builtin_type_float))
459 type = builtin_type_float;
460 else if (len == TYPE_LENGTH (builtin_type_double))
461 type = builtin_type_double;
462 else if (len == TYPE_LENGTH (builtin_type_long_double))
463 type = builtin_type_long_double;
464 print_floating (valaddr, type, stream);
465 break;
466
467 case 0:
468 internal_error (__FILE__, __LINE__, "failed internal consistency check");
469
470 case 't':
471 /* Binary; 't' stands for "two". */
472 {
473 char bits[8 * (sizeof val_long) + 1];
474 char buf[8 * (sizeof val_long) + 32];
475 char *cp = bits;
476 int width;
477
478 if (!size)
479 width = 8 * (sizeof val_long);
480 else
481 switch (size)
482 {
483 case 'b':
484 width = 8;
485 break;
486 case 'h':
487 width = 16;
488 break;
489 case 'w':
490 width = 32;
491 break;
492 case 'g':
493 width = 64;
494 break;
495 default:
496 error ("Undefined output size \"%c\".", size);
497 }
498
499 bits[width] = '\0';
500 while (width-- > 0)
501 {
502 bits[width] = (val_long & 1) ? '1' : '0';
503 val_long >>= 1;
504 }
505 if (!size)
506 {
507 while (*cp && *cp == '0')
508 cp++;
509 if (*cp == '\0')
510 cp--;
511 }
512 strcpy (buf, local_binary_format_prefix ());
513 strcat (buf, cp);
514 strcat (buf, local_binary_format_suffix ());
515 fprintf_filtered (stream, buf);
516 }
517 break;
518
519 default:
520 error ("Undefined output format \"%c\".", format);
521 }
522 }
523
524 /* Specify default address for `x' command.
525 `info lines' uses this. */
526
527 void
528 set_next_address (CORE_ADDR addr)
529 {
530 next_address = addr;
531
532 /* Make address available to the user as $_. */
533 set_internalvar (lookup_internalvar ("_"),
534 value_from_pointer (lookup_pointer_type (builtin_type_void),
535 addr));
536 }
537
538 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
539 after LEADIN. Print nothing if no symbolic name is found nearby.
540 Optionally also print source file and line number, if available.
541 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
542 or to interpret it as a possible C++ name and convert it back to source
543 form. However note that DO_DEMANGLE can be overridden by the specific
544 settings of the demangle and asm_demangle variables. */
545
546 void
547 print_address_symbolic (CORE_ADDR addr, struct ui_file *stream, int do_demangle,
548 char *leadin)
549 {
550 char *name = NULL;
551 char *filename = NULL;
552 int unmapped = 0;
553 int offset = 0;
554 int line = 0;
555
556 /* throw away both name and filename */
557 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
558 make_cleanup (free_current_contents, &filename);
559
560 if (build_address_symbolic (addr, do_demangle, &name, &offset, &filename, &line, &unmapped))
561 {
562 do_cleanups (cleanup_chain);
563 return;
564 }
565
566 fputs_filtered (leadin, stream);
567 if (unmapped)
568 fputs_filtered ("<*", stream);
569 else
570 fputs_filtered ("<", stream);
571 fputs_filtered (name, stream);
572 if (offset != 0)
573 fprintf_filtered (stream, "+%u", (unsigned int) offset);
574
575 /* Append source filename and line number if desired. Give specific
576 line # of this addr, if we have it; else line # of the nearest symbol. */
577 if (print_symbol_filename && filename != NULL)
578 {
579 if (line != -1)
580 fprintf_filtered (stream, " at %s:%d", filename, line);
581 else
582 fprintf_filtered (stream, " in %s", filename);
583 }
584 if (unmapped)
585 fputs_filtered ("*>", stream);
586 else
587 fputs_filtered (">", stream);
588
589 do_cleanups (cleanup_chain);
590 }
591
592 /* Given an address ADDR return all the elements needed to print the
593 address in a symbolic form. NAME can be mangled or not depending
594 on DO_DEMANGLE (and also on the asm_demangle global variable,
595 manipulated via ''set print asm-demangle''). Return 0 in case of
596 success, when all the info in the OUT paramters is valid. Return 1
597 otherwise. */
598 int
599 build_address_symbolic (CORE_ADDR addr, /* IN */
600 int do_demangle, /* IN */
601 char **name, /* OUT */
602 int *offset, /* OUT */
603 char **filename, /* OUT */
604 int *line, /* OUT */
605 int *unmapped) /* OUT */
606 {
607 struct minimal_symbol *msymbol;
608 struct symbol *symbol;
609 struct symtab *symtab = 0;
610 CORE_ADDR name_location = 0;
611 asection *section = 0;
612 char *name_temp = "";
613
614 /* Let's say it is unmapped. */
615 *unmapped = 0;
616
617 /* Determine if the address is in an overlay, and whether it is
618 mapped. */
619 if (overlay_debugging)
620 {
621 section = find_pc_overlay (addr);
622 if (pc_in_unmapped_range (addr, section))
623 {
624 *unmapped = 1;
625 addr = overlay_mapped_address (addr, section);
626 }
627 }
628
629 /* On some targets, add in extra "flag" bits to PC for
630 disassembly. This should ensure that "rounding errors" in
631 symbol addresses that are masked for disassembly favour the
632 the correct symbol. */
633
634 #ifdef GDB_TARGET_UNMASK_DISAS_PC
635 addr = GDB_TARGET_UNMASK_DISAS_PC (addr);
636 #endif
637
638 /* First try to find the address in the symbol table, then
639 in the minsyms. Take the closest one. */
640
641 /* This is defective in the sense that it only finds text symbols. So
642 really this is kind of pointless--we should make sure that the
643 minimal symbols have everything we need (by changing that we could
644 save some memory, but for many debug format--ELF/DWARF or
645 anything/stabs--it would be inconvenient to eliminate those minimal
646 symbols anyway). */
647 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
648 symbol = find_pc_sect_function (addr, section);
649
650 if (symbol)
651 {
652 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
653 if (do_demangle)
654 name_temp = SYMBOL_SOURCE_NAME (symbol);
655 else
656 name_temp = SYMBOL_LINKAGE_NAME (symbol);
657 }
658
659 if (msymbol != NULL)
660 {
661 if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
662 {
663 /* The msymbol is closer to the address than the symbol;
664 use the msymbol instead. */
665 symbol = 0;
666 symtab = 0;
667 name_location = SYMBOL_VALUE_ADDRESS (msymbol);
668 if (do_demangle)
669 name_temp = SYMBOL_SOURCE_NAME (msymbol);
670 else
671 name_temp = SYMBOL_LINKAGE_NAME (msymbol);
672 }
673 }
674 if (symbol == NULL && msymbol == NULL)
675 return 1;
676
677 /* On some targets, mask out extra "flag" bits from PC for handsome
678 disassembly. */
679
680 #ifdef GDB_TARGET_MASK_DISAS_PC
681 name_location = GDB_TARGET_MASK_DISAS_PC (name_location);
682 addr = GDB_TARGET_MASK_DISAS_PC (addr);
683 #endif
684
685 /* If the nearest symbol is too far away, don't print anything symbolic. */
686
687 /* For when CORE_ADDR is larger than unsigned int, we do math in
688 CORE_ADDR. But when we detect unsigned wraparound in the
689 CORE_ADDR math, we ignore this test and print the offset,
690 because addr+max_symbolic_offset has wrapped through the end
691 of the address space back to the beginning, giving bogus comparison. */
692 if (addr > name_location + max_symbolic_offset
693 && name_location + max_symbolic_offset > name_location)
694 return 1;
695
696 *offset = addr - name_location;
697
698 *name = xstrdup (name_temp);
699
700 if (print_symbol_filename)
701 {
702 struct symtab_and_line sal;
703
704 sal = find_pc_sect_line (addr, section, 0);
705
706 if (sal.symtab)
707 {
708 *filename = xstrdup (sal.symtab->filename);
709 *line = sal.line;
710 }
711 else if (symtab && symbol && symbol->line)
712 {
713 *filename = xstrdup (symtab->filename);
714 *line = symbol->line;
715 }
716 else if (symtab)
717 {
718 *filename = xstrdup (symtab->filename);
719 *line = -1;
720 }
721 }
722 return 0;
723 }
724
725 /* Print address ADDR on STREAM. USE_LOCAL means the same thing as for
726 print_longest. */
727 void
728 print_address_numeric (CORE_ADDR addr, int use_local, struct ui_file *stream)
729 {
730 /* Truncate address to the size of a target address, avoiding shifts
731 larger or equal than the width of a CORE_ADDR. The local
732 variable ADDR_BIT stops the compiler reporting a shift overflow
733 when it won't occur. */
734 /* NOTE: This assumes that the significant address information is
735 kept in the least significant bits of ADDR - the upper bits were
736 either zero or sign extended. Should ADDRESS_TO_POINTER() or
737 some ADDRESS_TO_PRINTABLE() be used to do the conversion? */
738
739 int addr_bit = TARGET_ADDR_BIT;
740
741 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
742 addr &= ((CORE_ADDR) 1 << addr_bit) - 1;
743 print_longest (stream, 'x', use_local, (ULONGEST) addr);
744 }
745
746 /* Print address ADDR symbolically on STREAM.
747 First print it as a number. Then perhaps print
748 <SYMBOL + OFFSET> after the number. */
749
750 void
751 print_address (CORE_ADDR addr, struct ui_file *stream)
752 {
753 print_address_numeric (addr, 1, stream);
754 print_address_symbolic (addr, stream, asm_demangle, " ");
755 }
756
757 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
758 controls whether to print the symbolic name "raw" or demangled.
759 Global setting "addressprint" controls whether to print hex address
760 or not. */
761
762 void
763 print_address_demangle (CORE_ADDR addr, struct ui_file *stream, int do_demangle)
764 {
765 if (addr == 0)
766 {
767 fprintf_filtered (stream, "0");
768 }
769 else if (addressprint)
770 {
771 print_address_numeric (addr, 1, stream);
772 print_address_symbolic (addr, stream, do_demangle, " ");
773 }
774 else
775 {
776 print_address_symbolic (addr, stream, do_demangle, "");
777 }
778 }
779 \f
780
781 /* These are the types that $__ will get after an examine command of one
782 of these sizes. */
783
784 static struct type *examine_i_type;
785
786 static struct type *examine_b_type;
787 static struct type *examine_h_type;
788 static struct type *examine_w_type;
789 static struct type *examine_g_type;
790
791 /* Examine data at address ADDR in format FMT.
792 Fetch it from memory and print on gdb_stdout. */
793
794 static void
795 do_examine (struct format_data fmt, CORE_ADDR addr, asection *sect)
796 {
797 register char format = 0;
798 register char size;
799 register int count = 1;
800 struct type *val_type = NULL;
801 register int i;
802 register int maxelts;
803
804 format = fmt.format;
805 size = fmt.size;
806 count = fmt.count;
807 next_address = addr;
808 next_section = sect;
809
810 /* String or instruction format implies fetch single bytes
811 regardless of the specified size. */
812 if (format == 's' || format == 'i')
813 size = 'b';
814
815 if (format == 'i')
816 val_type = examine_i_type;
817 else if (size == 'b')
818 val_type = examine_b_type;
819 else if (size == 'h')
820 val_type = examine_h_type;
821 else if (size == 'w')
822 val_type = examine_w_type;
823 else if (size == 'g')
824 val_type = examine_g_type;
825
826 maxelts = 8;
827 if (size == 'w')
828 maxelts = 4;
829 if (size == 'g')
830 maxelts = 2;
831 if (format == 's' || format == 'i')
832 maxelts = 1;
833
834 /* Print as many objects as specified in COUNT, at most maxelts per line,
835 with the address of the next one at the start of each line. */
836
837 while (count > 0)
838 {
839 QUIT;
840 print_address (next_address, gdb_stdout);
841 printf_filtered (":");
842 for (i = maxelts;
843 i > 0 && count > 0;
844 i--, count--)
845 {
846 printf_filtered ("\t");
847 /* Note that print_formatted sets next_address for the next
848 object. */
849 last_examine_address = next_address;
850
851 if (last_examine_value)
852 value_free (last_examine_value);
853
854 /* The value to be displayed is not fetched greedily.
855 Instead, to avoid the posibility of a fetched value not
856 being used, its retreval is delayed until the print code
857 uses it. When examining an instruction stream, the
858 disassembler will perform its own memory fetch using just
859 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
860 the disassembler be modified so that LAST_EXAMINE_VALUE
861 is left with the byte sequence from the last complete
862 instruction fetched from memory? */
863 last_examine_value = value_at_lazy (val_type, next_address, sect);
864
865 if (last_examine_value)
866 release_value (last_examine_value);
867
868 print_formatted (last_examine_value, format, size, gdb_stdout);
869 }
870 printf_filtered ("\n");
871 gdb_flush (gdb_stdout);
872 }
873 }
874 \f
875 static void
876 validate_format (struct format_data fmt, char *cmdname)
877 {
878 if (fmt.size != 0)
879 error ("Size letters are meaningless in \"%s\" command.", cmdname);
880 if (fmt.count != 1)
881 error ("Item count other than 1 is meaningless in \"%s\" command.",
882 cmdname);
883 if (fmt.format == 'i' || fmt.format == 's')
884 error ("Format letter \"%c\" is meaningless in \"%s\" command.",
885 fmt.format, cmdname);
886 }
887
888 /* Evaluate string EXP as an expression in the current language and
889 print the resulting value. EXP may contain a format specifier as the
890 first argument ("/x myvar" for example, to print myvar in hex).
891 */
892
893 static void
894 print_command_1 (char *exp, int inspect, int voidprint)
895 {
896 struct expression *expr;
897 register struct cleanup *old_chain = 0;
898 register char format = 0;
899 struct value *val;
900 struct format_data fmt;
901 int cleanup = 0;
902
903 /* Pass inspect flag to the rest of the print routines in a global (sigh). */
904 inspect_it = inspect;
905
906 if (exp && *exp == '/')
907 {
908 exp++;
909 fmt = decode_format (&exp, last_format, 0);
910 validate_format (fmt, "print");
911 last_format = format = fmt.format;
912 }
913 else
914 {
915 fmt.count = 1;
916 fmt.format = 0;
917 fmt.size = 0;
918 }
919
920 if (exp && *exp)
921 {
922 struct type *type;
923 expr = parse_expression (exp);
924 old_chain = make_cleanup (free_current_contents, &expr);
925 cleanup = 1;
926 val = evaluate_expression (expr);
927 }
928 else
929 val = access_value_history (0);
930
931 if (voidprint || (val && VALUE_TYPE (val) &&
932 TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_VOID))
933 {
934 int histindex = record_latest_value (val);
935
936 if (histindex >= 0)
937 annotate_value_history_begin (histindex, VALUE_TYPE (val));
938 else
939 annotate_value_begin (VALUE_TYPE (val));
940
941 if (inspect)
942 printf_unfiltered ("\031(gdb-makebuffer \"%s\" %d '(\"", exp, histindex);
943 else if (histindex >= 0)
944 printf_filtered ("$%d = ", histindex);
945
946 if (histindex >= 0)
947 annotate_value_history_value ();
948
949 print_formatted (val, format, fmt.size, gdb_stdout);
950 printf_filtered ("\n");
951
952 if (histindex >= 0)
953 annotate_value_history_end ();
954 else
955 annotate_value_end ();
956
957 if (inspect)
958 printf_unfiltered ("\") )\030");
959 }
960
961 if (cleanup)
962 do_cleanups (old_chain);
963 inspect_it = 0; /* Reset print routines to normal */
964 }
965
966 /* ARGSUSED */
967 static void
968 print_command (char *exp, int from_tty)
969 {
970 print_command_1 (exp, 0, 1);
971 }
972
973 /* Same as print, except in epoch, it gets its own window */
974 /* ARGSUSED */
975 static void
976 inspect_command (char *exp, int from_tty)
977 {
978 extern int epoch_interface;
979
980 print_command_1 (exp, epoch_interface, 1);
981 }
982
983 /* Same as print, except it doesn't print void results. */
984 /* ARGSUSED */
985 static void
986 call_command (char *exp, int from_tty)
987 {
988 print_command_1 (exp, 0, 0);
989 }
990
991 /* ARGSUSED */
992 void
993 output_command (char *exp, int from_tty)
994 {
995 struct expression *expr;
996 register struct cleanup *old_chain;
997 register char format = 0;
998 struct value *val;
999 struct format_data fmt;
1000
1001 if (exp && *exp == '/')
1002 {
1003 exp++;
1004 fmt = decode_format (&exp, 0, 0);
1005 validate_format (fmt, "output");
1006 format = fmt.format;
1007 }
1008
1009 expr = parse_expression (exp);
1010 old_chain = make_cleanup (free_current_contents, &expr);
1011
1012 val = evaluate_expression (expr);
1013
1014 annotate_value_begin (VALUE_TYPE (val));
1015
1016 print_formatted (val, format, fmt.size, gdb_stdout);
1017
1018 annotate_value_end ();
1019
1020 wrap_here ("");
1021 gdb_flush (gdb_stdout);
1022
1023 do_cleanups (old_chain);
1024 }
1025
1026 /* ARGSUSED */
1027 static void
1028 set_command (char *exp, int from_tty)
1029 {
1030 struct expression *expr = parse_expression (exp);
1031 register struct cleanup *old_chain =
1032 make_cleanup (free_current_contents, &expr);
1033 evaluate_expression (expr);
1034 do_cleanups (old_chain);
1035 }
1036
1037 /* ARGSUSED */
1038 static void
1039 sym_info (char *arg, int from_tty)
1040 {
1041 struct minimal_symbol *msymbol;
1042 struct objfile *objfile;
1043 struct obj_section *osect;
1044 asection *sect;
1045 CORE_ADDR addr, sect_addr;
1046 int matches = 0;
1047 unsigned int offset;
1048
1049 if (!arg)
1050 error_no_arg ("address");
1051
1052 addr = parse_and_eval_address (arg);
1053 ALL_OBJSECTIONS (objfile, osect)
1054 {
1055 sect = osect->the_bfd_section;
1056 sect_addr = overlay_mapped_address (addr, sect);
1057
1058 if (osect->addr <= sect_addr && sect_addr < osect->endaddr &&
1059 (msymbol = lookup_minimal_symbol_by_pc_section (sect_addr, sect)))
1060 {
1061 matches = 1;
1062 offset = sect_addr - SYMBOL_VALUE_ADDRESS (msymbol);
1063 if (offset)
1064 printf_filtered ("%s + %u in ",
1065 SYMBOL_SOURCE_NAME (msymbol), offset);
1066 else
1067 printf_filtered ("%s in ",
1068 SYMBOL_SOURCE_NAME (msymbol));
1069 if (pc_in_unmapped_range (addr, sect))
1070 printf_filtered ("load address range of ");
1071 if (section_is_overlay (sect))
1072 printf_filtered ("%s overlay ",
1073 section_is_mapped (sect) ? "mapped" : "unmapped");
1074 printf_filtered ("section %s", sect->name);
1075 printf_filtered ("\n");
1076 }
1077 }
1078 if (matches == 0)
1079 printf_filtered ("No symbol matches %s.\n", arg);
1080 }
1081
1082 /* ARGSUSED */
1083 static void
1084 address_info (char *exp, int from_tty)
1085 {
1086 register struct symbol *sym;
1087 register struct minimal_symbol *msymbol;
1088 register long val;
1089 register long basereg;
1090 asection *section;
1091 CORE_ADDR load_addr;
1092 int is_a_field_of_this; /* C++: lookup_symbol sets this to nonzero
1093 if exp is a field of `this'. */
1094
1095 if (exp == 0)
1096 error ("Argument required.");
1097
1098 sym = lookup_symbol (exp, get_selected_block (0), VAR_NAMESPACE,
1099 &is_a_field_of_this, (struct symtab **) NULL);
1100 if (sym == NULL)
1101 {
1102 if (is_a_field_of_this)
1103 {
1104 printf_filtered ("Symbol \"");
1105 fprintf_symbol_filtered (gdb_stdout, exp,
1106 current_language->la_language, DMGL_ANSI);
1107 printf_filtered ("\" is a field of the local class variable `this'\n");
1108 return;
1109 }
1110
1111 msymbol = lookup_minimal_symbol (exp, NULL, NULL);
1112
1113 if (msymbol != NULL)
1114 {
1115 load_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1116
1117 printf_filtered ("Symbol \"");
1118 fprintf_symbol_filtered (gdb_stdout, exp,
1119 current_language->la_language, DMGL_ANSI);
1120 printf_filtered ("\" is at ");
1121 print_address_numeric (load_addr, 1, gdb_stdout);
1122 printf_filtered (" in a file compiled without debugging");
1123 section = SYMBOL_BFD_SECTION (msymbol);
1124 if (section_is_overlay (section))
1125 {
1126 load_addr = overlay_unmapped_address (load_addr, section);
1127 printf_filtered (",\n -- loaded at ");
1128 print_address_numeric (load_addr, 1, gdb_stdout);
1129 printf_filtered (" in overlay section %s", section->name);
1130 }
1131 printf_filtered (".\n");
1132 }
1133 else
1134 error ("No symbol \"%s\" in current context.", exp);
1135 return;
1136 }
1137
1138 printf_filtered ("Symbol \"");
1139 fprintf_symbol_filtered (gdb_stdout, SYMBOL_NAME (sym),
1140 current_language->la_language, DMGL_ANSI);
1141 printf_filtered ("\" is ");
1142 val = SYMBOL_VALUE (sym);
1143 basereg = SYMBOL_BASEREG (sym);
1144 section = SYMBOL_BFD_SECTION (sym);
1145
1146 switch (SYMBOL_CLASS (sym))
1147 {
1148 case LOC_CONST:
1149 case LOC_CONST_BYTES:
1150 printf_filtered ("constant");
1151 break;
1152
1153 case LOC_LABEL:
1154 printf_filtered ("a label at address ");
1155 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1156 1, gdb_stdout);
1157 if (section_is_overlay (section))
1158 {
1159 load_addr = overlay_unmapped_address (load_addr, section);
1160 printf_filtered (",\n -- loaded at ");
1161 print_address_numeric (load_addr, 1, gdb_stdout);
1162 printf_filtered (" in overlay section %s", section->name);
1163 }
1164 break;
1165
1166 case LOC_REGISTER:
1167 printf_filtered ("a variable in register %s", REGISTER_NAME (val));
1168 break;
1169
1170 case LOC_STATIC:
1171 printf_filtered ("static storage at address ");
1172 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1173 1, gdb_stdout);
1174 if (section_is_overlay (section))
1175 {
1176 load_addr = overlay_unmapped_address (load_addr, section);
1177 printf_filtered (",\n -- loaded at ");
1178 print_address_numeric (load_addr, 1, gdb_stdout);
1179 printf_filtered (" in overlay section %s", section->name);
1180 }
1181 break;
1182
1183 case LOC_INDIRECT:
1184 printf_filtered ("external global (indirect addressing), at address *(");
1185 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1186 1, gdb_stdout);
1187 printf_filtered (")");
1188 if (section_is_overlay (section))
1189 {
1190 load_addr = overlay_unmapped_address (load_addr, section);
1191 printf_filtered (",\n -- loaded at ");
1192 print_address_numeric (load_addr, 1, gdb_stdout);
1193 printf_filtered (" in overlay section %s", section->name);
1194 }
1195 break;
1196
1197 case LOC_REGPARM:
1198 printf_filtered ("an argument in register %s", REGISTER_NAME (val));
1199 break;
1200
1201 case LOC_REGPARM_ADDR:
1202 printf_filtered ("address of an argument in register %s", REGISTER_NAME (val));
1203 break;
1204
1205 case LOC_ARG:
1206 printf_filtered ("an argument at offset %ld", val);
1207 break;
1208
1209 case LOC_LOCAL_ARG:
1210 printf_filtered ("an argument at frame offset %ld", val);
1211 break;
1212
1213 case LOC_LOCAL:
1214 printf_filtered ("a local variable at frame offset %ld", val);
1215 break;
1216
1217 case LOC_REF_ARG:
1218 printf_filtered ("a reference argument at offset %ld", val);
1219 break;
1220
1221 case LOC_BASEREG:
1222 printf_filtered ("a variable at offset %ld from register %s",
1223 val, REGISTER_NAME (basereg));
1224 break;
1225
1226 case LOC_BASEREG_ARG:
1227 printf_filtered ("an argument at offset %ld from register %s",
1228 val, REGISTER_NAME (basereg));
1229 break;
1230
1231 case LOC_TYPEDEF:
1232 printf_filtered ("a typedef");
1233 break;
1234
1235 case LOC_BLOCK:
1236 printf_filtered ("a function at address ");
1237 #ifdef GDB_TARGET_MASK_DISAS_PC
1238 print_address_numeric
1239 (load_addr = GDB_TARGET_MASK_DISAS_PC (BLOCK_START (SYMBOL_BLOCK_VALUE (sym))),
1240 1, gdb_stdout);
1241 #else
1242 print_address_numeric (load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
1243 1, gdb_stdout);
1244 #endif
1245 if (section_is_overlay (section))
1246 {
1247 load_addr = overlay_unmapped_address (load_addr, section);
1248 printf_filtered (",\n -- loaded at ");
1249 print_address_numeric (load_addr, 1, gdb_stdout);
1250 printf_filtered (" in overlay section %s", section->name);
1251 }
1252 break;
1253
1254 case LOC_UNRESOLVED:
1255 {
1256 struct minimal_symbol *msym;
1257
1258 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, NULL);
1259 if (msym == NULL)
1260 printf_filtered ("unresolved");
1261 else
1262 {
1263 section = SYMBOL_BFD_SECTION (msym);
1264 printf_filtered ("static storage at address ");
1265 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (msym),
1266 1, gdb_stdout);
1267 if (section_is_overlay (section))
1268 {
1269 load_addr = overlay_unmapped_address (load_addr, section);
1270 printf_filtered (",\n -- loaded at ");
1271 print_address_numeric (load_addr, 1, gdb_stdout);
1272 printf_filtered (" in overlay section %s", section->name);
1273 }
1274 }
1275 }
1276 break;
1277
1278 case LOC_THREAD_LOCAL_STATIC:
1279 printf_filtered (
1280 "a thread-local variable at offset %ld from the thread base register %s",
1281 val, REGISTER_NAME (basereg));
1282 break;
1283
1284 case LOC_OPTIMIZED_OUT:
1285 printf_filtered ("optimized out");
1286 break;
1287
1288 default:
1289 printf_filtered ("of unknown (botched) type");
1290 break;
1291 }
1292 printf_filtered (".\n");
1293 }
1294 \f
1295 void
1296 x_command (char *exp, int from_tty)
1297 {
1298 struct expression *expr;
1299 struct format_data fmt;
1300 struct cleanup *old_chain;
1301 struct value *val;
1302
1303 fmt.format = last_format;
1304 fmt.size = last_size;
1305 fmt.count = 1;
1306
1307 if (exp && *exp == '/')
1308 {
1309 exp++;
1310 fmt = decode_format (&exp, last_format, last_size);
1311 }
1312
1313 /* If we have an expression, evaluate it and use it as the address. */
1314
1315 if (exp != 0 && *exp != 0)
1316 {
1317 expr = parse_expression (exp);
1318 /* Cause expression not to be there any more
1319 if this command is repeated with Newline.
1320 But don't clobber a user-defined command's definition. */
1321 if (from_tty)
1322 *exp = 0;
1323 old_chain = make_cleanup (free_current_contents, &expr);
1324 val = evaluate_expression (expr);
1325 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_REF)
1326 val = value_ind (val);
1327 /* In rvalue contexts, such as this, functions are coerced into
1328 pointers to functions. This makes "x/i main" work. */
1329 if (/* last_format == 'i' && */
1330 TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
1331 && VALUE_LVAL (val) == lval_memory)
1332 next_address = VALUE_ADDRESS (val);
1333 else
1334 next_address = value_as_address (val);
1335 if (VALUE_BFD_SECTION (val))
1336 next_section = VALUE_BFD_SECTION (val);
1337 do_cleanups (old_chain);
1338 }
1339
1340 do_examine (fmt, next_address, next_section);
1341
1342 /* If the examine succeeds, we remember its size and format for next time. */
1343 last_size = fmt.size;
1344 last_format = fmt.format;
1345
1346 /* Set a couple of internal variables if appropriate. */
1347 if (last_examine_value)
1348 {
1349 /* Make last address examined available to the user as $_. Use
1350 the correct pointer type. */
1351 struct type *pointer_type
1352 = lookup_pointer_type (VALUE_TYPE (last_examine_value));
1353 set_internalvar (lookup_internalvar ("_"),
1354 value_from_pointer (pointer_type,
1355 last_examine_address));
1356
1357 /* Make contents of last address examined available to the user as $__. */
1358 /* If the last value has not been fetched from memory then don't
1359 fetch it now - instead mark it by voiding the $__ variable. */
1360 if (VALUE_LAZY (last_examine_value))
1361 set_internalvar (lookup_internalvar ("__"),
1362 allocate_value (builtin_type_void));
1363 else
1364 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1365 }
1366 }
1367 \f
1368
1369 /* Add an expression to the auto-display chain.
1370 Specify the expression. */
1371
1372 static void
1373 display_command (char *exp, int from_tty)
1374 {
1375 struct format_data fmt;
1376 register struct expression *expr;
1377 register struct display *new;
1378 int display_it = 1;
1379
1380 #if defined(TUI)
1381 if (tui_version && *exp == '$')
1382 display_it = (tui_set_layout (exp) == TUI_FAILURE);
1383 #endif
1384
1385 if (display_it)
1386 {
1387 if (exp == 0)
1388 {
1389 do_displays ();
1390 return;
1391 }
1392
1393 if (*exp == '/')
1394 {
1395 exp++;
1396 fmt = decode_format (&exp, 0, 0);
1397 if (fmt.size && fmt.format == 0)
1398 fmt.format = 'x';
1399 if (fmt.format == 'i' || fmt.format == 's')
1400 fmt.size = 'b';
1401 }
1402 else
1403 {
1404 fmt.format = 0;
1405 fmt.size = 0;
1406 fmt.count = 0;
1407 }
1408
1409 innermost_block = 0;
1410 expr = parse_expression (exp);
1411
1412 new = (struct display *) xmalloc (sizeof (struct display));
1413
1414 new->exp = expr;
1415 new->block = innermost_block;
1416 new->next = display_chain;
1417 new->number = ++display_number;
1418 new->format = fmt;
1419 new->enabled_p = 1;
1420 display_chain = new;
1421
1422 if (from_tty && target_has_execution)
1423 do_one_display (new);
1424
1425 dont_repeat ();
1426 }
1427 }
1428
1429 static void
1430 free_display (struct display *d)
1431 {
1432 xfree (d->exp);
1433 xfree (d);
1434 }
1435
1436 /* Clear out the display_chain.
1437 Done when new symtabs are loaded, since this invalidates
1438 the types stored in many expressions. */
1439
1440 void
1441 clear_displays (void)
1442 {
1443 register struct display *d;
1444
1445 while ((d = display_chain) != NULL)
1446 {
1447 xfree (d->exp);
1448 display_chain = d->next;
1449 xfree (d);
1450 }
1451 }
1452
1453 /* Delete the auto-display number NUM. */
1454
1455 static void
1456 delete_display (int num)
1457 {
1458 register struct display *d1, *d;
1459
1460 if (!display_chain)
1461 error ("No display number %d.", num);
1462
1463 if (display_chain->number == num)
1464 {
1465 d1 = display_chain;
1466 display_chain = d1->next;
1467 free_display (d1);
1468 }
1469 else
1470 for (d = display_chain;; d = d->next)
1471 {
1472 if (d->next == 0)
1473 error ("No display number %d.", num);
1474 if (d->next->number == num)
1475 {
1476 d1 = d->next;
1477 d->next = d1->next;
1478 free_display (d1);
1479 break;
1480 }
1481 }
1482 }
1483
1484 /* Delete some values from the auto-display chain.
1485 Specify the element numbers. */
1486
1487 static void
1488 undisplay_command (char *args, int from_tty)
1489 {
1490 register char *p = args;
1491 register char *p1;
1492 register int num;
1493
1494 if (args == 0)
1495 {
1496 if (query ("Delete all auto-display expressions? "))
1497 clear_displays ();
1498 dont_repeat ();
1499 return;
1500 }
1501
1502 while (*p)
1503 {
1504 p1 = p;
1505 while (*p1 >= '0' && *p1 <= '9')
1506 p1++;
1507 if (*p1 && *p1 != ' ' && *p1 != '\t')
1508 error ("Arguments must be display numbers.");
1509
1510 num = atoi (p);
1511
1512 delete_display (num);
1513
1514 p = p1;
1515 while (*p == ' ' || *p == '\t')
1516 p++;
1517 }
1518 dont_repeat ();
1519 }
1520
1521 /* Display a single auto-display.
1522 Do nothing if the display cannot be printed in the current context,
1523 or if the display is disabled. */
1524
1525 static void
1526 do_one_display (struct display *d)
1527 {
1528 int within_current_scope;
1529
1530 if (d->enabled_p == 0)
1531 return;
1532
1533 if (d->block)
1534 within_current_scope = contained_in (get_selected_block (0), d->block);
1535 else
1536 within_current_scope = 1;
1537 if (!within_current_scope)
1538 return;
1539
1540 current_display_number = d->number;
1541
1542 annotate_display_begin ();
1543 printf_filtered ("%d", d->number);
1544 annotate_display_number_end ();
1545 printf_filtered (": ");
1546 if (d->format.size)
1547 {
1548 CORE_ADDR addr;
1549 struct value *val;
1550
1551 annotate_display_format ();
1552
1553 printf_filtered ("x/");
1554 if (d->format.count != 1)
1555 printf_filtered ("%d", d->format.count);
1556 printf_filtered ("%c", d->format.format);
1557 if (d->format.format != 'i' && d->format.format != 's')
1558 printf_filtered ("%c", d->format.size);
1559 printf_filtered (" ");
1560
1561 annotate_display_expression ();
1562
1563 print_expression (d->exp, gdb_stdout);
1564 annotate_display_expression_end ();
1565
1566 if (d->format.count != 1)
1567 printf_filtered ("\n");
1568 else
1569 printf_filtered (" ");
1570
1571 val = evaluate_expression (d->exp);
1572 addr = value_as_address (val);
1573 if (d->format.format == 'i')
1574 addr = ADDR_BITS_REMOVE (addr);
1575
1576 annotate_display_value ();
1577
1578 do_examine (d->format, addr, VALUE_BFD_SECTION (val));
1579 }
1580 else
1581 {
1582 annotate_display_format ();
1583
1584 if (d->format.format)
1585 printf_filtered ("/%c ", d->format.format);
1586
1587 annotate_display_expression ();
1588
1589 print_expression (d->exp, gdb_stdout);
1590 annotate_display_expression_end ();
1591
1592 printf_filtered (" = ");
1593
1594 annotate_display_expression ();
1595
1596 print_formatted (evaluate_expression (d->exp),
1597 d->format.format, d->format.size, gdb_stdout);
1598 printf_filtered ("\n");
1599 }
1600
1601 annotate_display_end ();
1602
1603 gdb_flush (gdb_stdout);
1604 current_display_number = -1;
1605 }
1606
1607 /* Display all of the values on the auto-display chain which can be
1608 evaluated in the current scope. */
1609
1610 void
1611 do_displays (void)
1612 {
1613 register struct display *d;
1614
1615 for (d = display_chain; d; d = d->next)
1616 do_one_display (d);
1617 }
1618
1619 /* Delete the auto-display which we were in the process of displaying.
1620 This is done when there is an error or a signal. */
1621
1622 void
1623 disable_display (int num)
1624 {
1625 register struct display *d;
1626
1627 for (d = display_chain; d; d = d->next)
1628 if (d->number == num)
1629 {
1630 d->enabled_p = 0;
1631 return;
1632 }
1633 printf_unfiltered ("No display number %d.\n", num);
1634 }
1635
1636 void
1637 disable_current_display (void)
1638 {
1639 if (current_display_number >= 0)
1640 {
1641 disable_display (current_display_number);
1642 fprintf_unfiltered (gdb_stderr, "Disabling display %d to avoid infinite recursion.\n",
1643 current_display_number);
1644 }
1645 current_display_number = -1;
1646 }
1647
1648 static void
1649 display_info (char *ignore, int from_tty)
1650 {
1651 register struct display *d;
1652
1653 if (!display_chain)
1654 printf_unfiltered ("There are no auto-display expressions now.\n");
1655 else
1656 printf_filtered ("Auto-display expressions now in effect:\n\
1657 Num Enb Expression\n");
1658
1659 for (d = display_chain; d; d = d->next)
1660 {
1661 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
1662 if (d->format.size)
1663 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
1664 d->format.format);
1665 else if (d->format.format)
1666 printf_filtered ("/%c ", d->format.format);
1667 print_expression (d->exp, gdb_stdout);
1668 if (d->block && !contained_in (get_selected_block (0), d->block))
1669 printf_filtered (" (cannot be evaluated in the current context)");
1670 printf_filtered ("\n");
1671 gdb_flush (gdb_stdout);
1672 }
1673 }
1674
1675 static void
1676 enable_display (char *args, int from_tty)
1677 {
1678 register char *p = args;
1679 register char *p1;
1680 register int num;
1681 register struct display *d;
1682
1683 if (p == 0)
1684 {
1685 for (d = display_chain; d; d = d->next)
1686 d->enabled_p = 1;
1687 }
1688 else
1689 while (*p)
1690 {
1691 p1 = p;
1692 while (*p1 >= '0' && *p1 <= '9')
1693 p1++;
1694 if (*p1 && *p1 != ' ' && *p1 != '\t')
1695 error ("Arguments must be display numbers.");
1696
1697 num = atoi (p);
1698
1699 for (d = display_chain; d; d = d->next)
1700 if (d->number == num)
1701 {
1702 d->enabled_p = 1;
1703 goto win;
1704 }
1705 printf_unfiltered ("No display number %d.\n", num);
1706 win:
1707 p = p1;
1708 while (*p == ' ' || *p == '\t')
1709 p++;
1710 }
1711 }
1712
1713 /* ARGSUSED */
1714 static void
1715 disable_display_command (char *args, int from_tty)
1716 {
1717 register char *p = args;
1718 register char *p1;
1719 register struct display *d;
1720
1721 if (p == 0)
1722 {
1723 for (d = display_chain; d; d = d->next)
1724 d->enabled_p = 0;
1725 }
1726 else
1727 while (*p)
1728 {
1729 p1 = p;
1730 while (*p1 >= '0' && *p1 <= '9')
1731 p1++;
1732 if (*p1 && *p1 != ' ' && *p1 != '\t')
1733 error ("Arguments must be display numbers.");
1734
1735 disable_display (atoi (p));
1736
1737 p = p1;
1738 while (*p == ' ' || *p == '\t')
1739 p++;
1740 }
1741 }
1742 \f
1743
1744 /* Print the value in stack frame FRAME of a variable
1745 specified by a struct symbol. */
1746
1747 void
1748 print_variable_value (struct symbol *var, struct frame_info *frame,
1749 struct ui_file *stream)
1750 {
1751 struct value *val = read_var_value (var, frame);
1752
1753 value_print (val, stream, 0, Val_pretty_default);
1754 }
1755
1756 /* Print the arguments of a stack frame, given the function FUNC
1757 running in that frame (as a symbol), the info on the frame,
1758 and the number of args according to the stack frame (or -1 if unknown). */
1759
1760 /* References here and elsewhere to "number of args according to the
1761 stack frame" appear in all cases to refer to "number of ints of args
1762 according to the stack frame". At least for VAX, i386, isi. */
1763
1764 void
1765 print_frame_args (struct symbol *func, struct frame_info *fi, int num,
1766 struct ui_file *stream)
1767 {
1768 struct block *b = NULL;
1769 int first = 1;
1770 register int i;
1771 register struct symbol *sym;
1772 struct value *val;
1773 /* Offset of next stack argument beyond the one we have seen that is
1774 at the highest offset.
1775 -1 if we haven't come to a stack argument yet. */
1776 long highest_offset = -1;
1777 int arg_size;
1778 /* Number of ints of arguments that we have printed so far. */
1779 int args_printed = 0;
1780 struct cleanup *old_chain, *list_chain;
1781 struct ui_stream *stb;
1782
1783 stb = ui_out_stream_new (uiout);
1784 old_chain = make_cleanup_ui_out_stream_delete (stb);
1785
1786 if (func)
1787 {
1788 b = SYMBOL_BLOCK_VALUE (func);
1789 /* Function blocks are order sensitive, and thus should not be
1790 hashed. */
1791 gdb_assert (BLOCK_HASHTABLE (b) == 0);
1792
1793 ALL_BLOCK_SYMBOLS (b, i, sym)
1794 {
1795 QUIT;
1796
1797 /* Keep track of the highest stack argument offset seen, and
1798 skip over any kinds of symbols we don't care about. */
1799
1800 switch (SYMBOL_CLASS (sym))
1801 {
1802 case LOC_ARG:
1803 case LOC_REF_ARG:
1804 {
1805 long current_offset = SYMBOL_VALUE (sym);
1806 arg_size = TYPE_LENGTH (SYMBOL_TYPE (sym));
1807
1808 /* Compute address of next argument by adding the size of
1809 this argument and rounding to an int boundary. */
1810 current_offset =
1811 ((current_offset + arg_size + sizeof (int) - 1)
1812 & ~(sizeof (int) - 1));
1813
1814 /* If this is the highest offset seen yet, set highest_offset. */
1815 if (highest_offset == -1
1816 || (current_offset > highest_offset))
1817 highest_offset = current_offset;
1818
1819 /* Add the number of ints we're about to print to args_printed. */
1820 args_printed += (arg_size + sizeof (int) - 1) / sizeof (int);
1821 }
1822
1823 /* We care about types of symbols, but don't need to keep track of
1824 stack offsets in them. */
1825 case LOC_REGPARM:
1826 case LOC_REGPARM_ADDR:
1827 case LOC_LOCAL_ARG:
1828 case LOC_BASEREG_ARG:
1829 break;
1830
1831 /* Other types of symbols we just skip over. */
1832 default:
1833 continue;
1834 }
1835
1836 /* We have to look up the symbol because arguments can have
1837 two entries (one a parameter, one a local) and the one we
1838 want is the local, which lookup_symbol will find for us.
1839 This includes gcc1 (not gcc2) on the sparc when passing a
1840 small structure and gcc2 when the argument type is float
1841 and it is passed as a double and converted to float by
1842 the prologue (in the latter case the type of the LOC_ARG
1843 symbol is double and the type of the LOC_LOCAL symbol is
1844 float). */
1845 /* But if the parameter name is null, don't try it.
1846 Null parameter names occur on the RS/6000, for traceback tables.
1847 FIXME, should we even print them? */
1848
1849 if (*SYMBOL_NAME (sym))
1850 {
1851 struct symbol *nsym;
1852 nsym = lookup_symbol
1853 (SYMBOL_NAME (sym),
1854 b, VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL);
1855 if (SYMBOL_CLASS (nsym) == LOC_REGISTER)
1856 {
1857 /* There is a LOC_ARG/LOC_REGISTER pair. This means that
1858 it was passed on the stack and loaded into a register,
1859 or passed in a register and stored in a stack slot.
1860 GDB 3.x used the LOC_ARG; GDB 4.0-4.11 used the LOC_REGISTER.
1861
1862 Reasons for using the LOC_ARG:
1863 (1) because find_saved_registers may be slow for remote
1864 debugging,
1865 (2) because registers are often re-used and stack slots
1866 rarely (never?) are. Therefore using the stack slot is
1867 much less likely to print garbage.
1868
1869 Reasons why we might want to use the LOC_REGISTER:
1870 (1) So that the backtrace prints the same value as
1871 "print foo". I see no compelling reason why this needs
1872 to be the case; having the backtrace print the value which
1873 was passed in, and "print foo" print the value as modified
1874 within the called function, makes perfect sense to me.
1875
1876 Additional note: It might be nice if "info args" displayed
1877 both values.
1878 One more note: There is a case with sparc structure passing
1879 where we need to use the LOC_REGISTER, but this is dealt with
1880 by creating a single LOC_REGPARM in symbol reading. */
1881
1882 /* Leave sym (the LOC_ARG) alone. */
1883 ;
1884 }
1885 else
1886 sym = nsym;
1887 }
1888
1889 /* Print the current arg. */
1890 if (!first)
1891 ui_out_text (uiout, ", ");
1892 ui_out_wrap_hint (uiout, " ");
1893
1894 annotate_arg_begin ();
1895
1896 list_chain = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1897 fprintf_symbol_filtered (stb->stream, SYMBOL_SOURCE_NAME (sym),
1898 SYMBOL_LANGUAGE (sym), DMGL_PARAMS | DMGL_ANSI);
1899 ui_out_field_stream (uiout, "name", stb);
1900 annotate_arg_name_end ();
1901 ui_out_text (uiout, "=");
1902
1903 /* Avoid value_print because it will deref ref parameters. We just
1904 want to print their addresses. Print ??? for args whose address
1905 we do not know. We pass 2 as "recurse" to val_print because our
1906 standard indentation here is 4 spaces, and val_print indents
1907 2 for each recurse. */
1908 val = read_var_value (sym, fi);
1909
1910 annotate_arg_value (val == NULL ? NULL : VALUE_TYPE (val));
1911
1912 if (val)
1913 {
1914 val_print (VALUE_TYPE (val), VALUE_CONTENTS (val), 0,
1915 VALUE_ADDRESS (val),
1916 stb->stream, 0, 0, 2, Val_no_prettyprint);
1917 ui_out_field_stream (uiout, "value", stb);
1918 }
1919 else
1920 ui_out_text (uiout, "???");
1921
1922 /* Invoke ui_out_tuple_end. */
1923 do_cleanups (list_chain);
1924
1925 annotate_arg_end ();
1926
1927 first = 0;
1928 }
1929 }
1930
1931 /* Don't print nameless args in situations where we don't know
1932 enough about the stack to find them. */
1933 if (num != -1)
1934 {
1935 long start;
1936
1937 if (highest_offset == -1)
1938 start = FRAME_ARGS_SKIP;
1939 else
1940 start = highest_offset;
1941
1942 print_frame_nameless_args (fi, start, num - args_printed,
1943 first, stream);
1944 }
1945 do_cleanups (old_chain);
1946 }
1947
1948 /* Print nameless args on STREAM.
1949 FI is the frameinfo for this frame, START is the offset
1950 of the first nameless arg, and NUM is the number of nameless args to
1951 print. FIRST is nonzero if this is the first argument (not just
1952 the first nameless arg). */
1953
1954 static void
1955 print_frame_nameless_args (struct frame_info *fi, long start, int num,
1956 int first, struct ui_file *stream)
1957 {
1958 int i;
1959 CORE_ADDR argsaddr;
1960 long arg_value;
1961
1962 for (i = 0; i < num; i++)
1963 {
1964 QUIT;
1965 #ifdef NAMELESS_ARG_VALUE
1966 NAMELESS_ARG_VALUE (fi, start, &arg_value);
1967 #else
1968 argsaddr = FRAME_ARGS_ADDRESS (fi);
1969 if (!argsaddr)
1970 return;
1971
1972 arg_value = read_memory_integer (argsaddr + start, sizeof (int));
1973 #endif
1974
1975 if (!first)
1976 fprintf_filtered (stream, ", ");
1977
1978 #ifdef PRINT_NAMELESS_INTEGER
1979 PRINT_NAMELESS_INTEGER (stream, arg_value);
1980 #else
1981 #ifdef PRINT_TYPELESS_INTEGER
1982 PRINT_TYPELESS_INTEGER (stream, builtin_type_int, (LONGEST) arg_value);
1983 #else
1984 fprintf_filtered (stream, "%ld", arg_value);
1985 #endif /* PRINT_TYPELESS_INTEGER */
1986 #endif /* PRINT_NAMELESS_INTEGER */
1987 first = 0;
1988 start += sizeof (int);
1989 }
1990 }
1991 \f
1992 /* ARGSUSED */
1993 static void
1994 printf_command (char *arg, int from_tty)
1995 {
1996 register char *f = NULL;
1997 register char *s = arg;
1998 char *string = NULL;
1999 struct value **val_args;
2000 char *substrings;
2001 char *current_substring;
2002 int nargs = 0;
2003 int allocated_args = 20;
2004 struct cleanup *old_cleanups;
2005
2006 val_args = (struct value **) xmalloc (allocated_args
2007 * sizeof (struct value *));
2008 old_cleanups = make_cleanup (free_current_contents, &val_args);
2009
2010 if (s == 0)
2011 error_no_arg ("format-control string and values to print");
2012
2013 /* Skip white space before format string */
2014 while (*s == ' ' || *s == '\t')
2015 s++;
2016
2017 /* A format string should follow, enveloped in double quotes */
2018 if (*s++ != '"')
2019 error ("Bad format string, missing '\"'.");
2020
2021 /* Parse the format-control string and copy it into the string STRING,
2022 processing some kinds of escape sequence. */
2023
2024 f = string = (char *) alloca (strlen (s) + 1);
2025
2026 while (*s != '"')
2027 {
2028 int c = *s++;
2029 switch (c)
2030 {
2031 case '\0':
2032 error ("Bad format string, non-terminated '\"'.");
2033
2034 case '\\':
2035 switch (c = *s++)
2036 {
2037 case '\\':
2038 *f++ = '\\';
2039 break;
2040 case 'a':
2041 *f++ = '\a';
2042 break;
2043 case 'b':
2044 *f++ = '\b';
2045 break;
2046 case 'f':
2047 *f++ = '\f';
2048 break;
2049 case 'n':
2050 *f++ = '\n';
2051 break;
2052 case 'r':
2053 *f++ = '\r';
2054 break;
2055 case 't':
2056 *f++ = '\t';
2057 break;
2058 case 'v':
2059 *f++ = '\v';
2060 break;
2061 case '"':
2062 *f++ = '"';
2063 break;
2064 default:
2065 /* ??? TODO: handle other escape sequences */
2066 error ("Unrecognized escape character \\%c in format string.",
2067 c);
2068 }
2069 break;
2070
2071 default:
2072 *f++ = c;
2073 }
2074 }
2075
2076 /* Skip over " and following space and comma. */
2077 s++;
2078 *f++ = '\0';
2079 while (*s == ' ' || *s == '\t')
2080 s++;
2081
2082 if (*s != ',' && *s != 0)
2083 error ("Invalid argument syntax");
2084
2085 if (*s == ',')
2086 s++;
2087 while (*s == ' ' || *s == '\t')
2088 s++;
2089
2090 /* Need extra space for the '\0's. Doubling the size is sufficient. */
2091 substrings = alloca (strlen (string) * 2);
2092 current_substring = substrings;
2093
2094 {
2095 /* Now scan the string for %-specs and see what kinds of args they want.
2096 argclass[I] classifies the %-specs so we can give printf_filtered
2097 something of the right size. */
2098
2099 enum argclass
2100 {
2101 no_arg, int_arg, string_arg, double_arg, long_long_arg
2102 };
2103 enum argclass *argclass;
2104 enum argclass this_argclass;
2105 char *last_arg;
2106 int nargs_wanted;
2107 int lcount;
2108 int i;
2109
2110 argclass = (enum argclass *) alloca (strlen (s) * sizeof *argclass);
2111 nargs_wanted = 0;
2112 f = string;
2113 last_arg = string;
2114 while (*f)
2115 if (*f++ == '%')
2116 {
2117 lcount = 0;
2118 while (strchr ("0123456789.hlL-+ #", *f))
2119 {
2120 if (*f == 'l' || *f == 'L')
2121 lcount++;
2122 f++;
2123 }
2124 switch (*f)
2125 {
2126 case 's':
2127 this_argclass = string_arg;
2128 break;
2129
2130 case 'e':
2131 case 'f':
2132 case 'g':
2133 this_argclass = double_arg;
2134 break;
2135
2136 case '*':
2137 error ("`*' not supported for precision or width in printf");
2138
2139 case 'n':
2140 error ("Format specifier `n' not supported in printf");
2141
2142 case '%':
2143 this_argclass = no_arg;
2144 break;
2145
2146 default:
2147 if (lcount > 1)
2148 this_argclass = long_long_arg;
2149 else
2150 this_argclass = int_arg;
2151 break;
2152 }
2153 f++;
2154 if (this_argclass != no_arg)
2155 {
2156 strncpy (current_substring, last_arg, f - last_arg);
2157 current_substring += f - last_arg;
2158 *current_substring++ = '\0';
2159 last_arg = f;
2160 argclass[nargs_wanted++] = this_argclass;
2161 }
2162 }
2163
2164 /* Now, parse all arguments and evaluate them.
2165 Store the VALUEs in VAL_ARGS. */
2166
2167 while (*s != '\0')
2168 {
2169 char *s1;
2170 if (nargs == allocated_args)
2171 val_args = (struct value **) xrealloc ((char *) val_args,
2172 (allocated_args *= 2)
2173 * sizeof (struct value *));
2174 s1 = s;
2175 val_args[nargs] = parse_to_comma_and_eval (&s1);
2176
2177 /* If format string wants a float, unchecked-convert the value to
2178 floating point of the same size */
2179
2180 if (argclass[nargs] == double_arg)
2181 {
2182 struct type *type = VALUE_TYPE (val_args[nargs]);
2183 if (TYPE_LENGTH (type) == sizeof (float))
2184 VALUE_TYPE (val_args[nargs]) = builtin_type_float;
2185 if (TYPE_LENGTH (type) == sizeof (double))
2186 VALUE_TYPE (val_args[nargs]) = builtin_type_double;
2187 }
2188 nargs++;
2189 s = s1;
2190 if (*s == ',')
2191 s++;
2192 }
2193
2194 if (nargs != nargs_wanted)
2195 error ("Wrong number of arguments for specified format-string");
2196
2197 /* Now actually print them. */
2198 current_substring = substrings;
2199 for (i = 0; i < nargs; i++)
2200 {
2201 switch (argclass[i])
2202 {
2203 case string_arg:
2204 {
2205 char *str;
2206 CORE_ADDR tem;
2207 int j;
2208 tem = value_as_address (val_args[i]);
2209
2210 /* This is a %s argument. Find the length of the string. */
2211 for (j = 0;; j++)
2212 {
2213 char c;
2214 QUIT;
2215 read_memory (tem + j, &c, 1);
2216 if (c == 0)
2217 break;
2218 }
2219
2220 /* Copy the string contents into a string inside GDB. */
2221 str = (char *) alloca (j + 1);
2222 if (j != 0)
2223 read_memory (tem, str, j);
2224 str[j] = 0;
2225
2226 printf_filtered (current_substring, str);
2227 }
2228 break;
2229 case double_arg:
2230 {
2231 double val = value_as_double (val_args[i]);
2232 printf_filtered (current_substring, val);
2233 break;
2234 }
2235 case long_long_arg:
2236 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
2237 {
2238 long long val = value_as_long (val_args[i]);
2239 printf_filtered (current_substring, val);
2240 break;
2241 }
2242 #else
2243 error ("long long not supported in printf");
2244 #endif
2245 case int_arg:
2246 {
2247 /* FIXME: there should be separate int_arg and long_arg. */
2248 long val = value_as_long (val_args[i]);
2249 printf_filtered (current_substring, val);
2250 break;
2251 }
2252 default: /* purecov: deadcode */
2253 error ("internal error in printf_command"); /* purecov: deadcode */
2254 }
2255 /* Skip to the next substring. */
2256 current_substring += strlen (current_substring) + 1;
2257 }
2258 /* Print the portion of the format string after the last argument. */
2259 printf_filtered (last_arg);
2260 }
2261 do_cleanups (old_cleanups);
2262 }
2263 \f
2264 /* Dump a specified section of assembly code. With no command line
2265 arguments, this command will dump the assembly code for the
2266 function surrounding the pc value in the selected frame. With one
2267 argument, it will dump the assembly code surrounding that pc value.
2268 Two arguments are interpeted as bounds within which to dump
2269 assembly. */
2270
2271 /* ARGSUSED */
2272 static void
2273 disassemble_command (char *arg, int from_tty)
2274 {
2275 CORE_ADDR low, high;
2276 char *name;
2277 CORE_ADDR pc, pc_masked;
2278 char *space_index;
2279 #if 0
2280 asection *section;
2281 #endif
2282
2283 name = NULL;
2284 if (!arg)
2285 {
2286 if (!selected_frame)
2287 error ("No frame selected.\n");
2288
2289 pc = get_frame_pc (selected_frame);
2290 if (find_pc_partial_function (pc, &name, &low, &high) == 0)
2291 error ("No function contains program counter for selected frame.\n");
2292 #if defined(TUI)
2293 else if (tui_version)
2294 low = tuiGetLowDisassemblyAddress (low, pc);
2295 #endif
2296 low += FUNCTION_START_OFFSET;
2297 }
2298 else if (!(space_index = (char *) strchr (arg, ' ')))
2299 {
2300 /* One argument. */
2301 pc = parse_and_eval_address (arg);
2302 if (find_pc_partial_function (pc, &name, &low, &high) == 0)
2303 error ("No function contains specified address.\n");
2304 #if defined(TUI)
2305 else if (tui_version)
2306 low = tuiGetLowDisassemblyAddress (low, pc);
2307 #endif
2308 low += FUNCTION_START_OFFSET;
2309 }
2310 else
2311 {
2312 /* Two arguments. */
2313 *space_index = '\0';
2314 low = parse_and_eval_address (arg);
2315 high = parse_and_eval_address (space_index + 1);
2316 }
2317
2318 #if defined(TUI)
2319 if (!tui_is_window_visible (DISASSEM_WIN))
2320 #endif
2321 {
2322 printf_filtered ("Dump of assembler code ");
2323 if (name != NULL)
2324 {
2325 printf_filtered ("for function %s:\n", name);
2326 }
2327 else
2328 {
2329 printf_filtered ("from ");
2330 print_address_numeric (low, 1, gdb_stdout);
2331 printf_filtered (" to ");
2332 print_address_numeric (high, 1, gdb_stdout);
2333 printf_filtered (":\n");
2334 }
2335
2336 /* Dump the specified range. */
2337 pc = low;
2338
2339 #ifdef GDB_TARGET_MASK_DISAS_PC
2340 pc_masked = GDB_TARGET_MASK_DISAS_PC (pc);
2341 #else
2342 pc_masked = pc;
2343 #endif
2344
2345 while (pc_masked < high)
2346 {
2347 QUIT;
2348 print_address (pc_masked, gdb_stdout);
2349 printf_filtered (":\t");
2350 /* We often wrap here if there are long symbolic names. */
2351 wrap_here (" ");
2352 pc += print_insn (pc, gdb_stdout);
2353 printf_filtered ("\n");
2354
2355 #ifdef GDB_TARGET_MASK_DISAS_PC
2356 pc_masked = GDB_TARGET_MASK_DISAS_PC (pc);
2357 #else
2358 pc_masked = pc;
2359 #endif
2360 }
2361 printf_filtered ("End of assembler dump.\n");
2362 gdb_flush (gdb_stdout);
2363 }
2364 #if defined(TUI)
2365 else
2366 {
2367 tui_show_assembly (low);
2368 }
2369 #endif
2370 }
2371
2372 /* Print the instruction at address MEMADDR in debugged memory,
2373 on STREAM. Returns length of the instruction, in bytes. */
2374
2375 static int
2376 print_insn (CORE_ADDR memaddr, struct ui_file *stream)
2377 {
2378 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2379 TARGET_PRINT_INSN_INFO->endian = BFD_ENDIAN_BIG;
2380 else
2381 TARGET_PRINT_INSN_INFO->endian = BFD_ENDIAN_LITTLE;
2382
2383 if (TARGET_ARCHITECTURE != NULL)
2384 TARGET_PRINT_INSN_INFO->mach = TARGET_ARCHITECTURE->mach;
2385 /* else: should set .mach=0 but some disassemblers don't grok this */
2386
2387 TARGET_PRINT_INSN_INFO->stream = stream;
2388
2389 return TARGET_PRINT_INSN (memaddr, TARGET_PRINT_INSN_INFO);
2390 }
2391 \f
2392
2393 void
2394 _initialize_printcmd (void)
2395 {
2396 struct cmd_list_element *c;
2397
2398 current_display_number = -1;
2399
2400 add_info ("address", address_info,
2401 "Describe where symbol SYM is stored.");
2402
2403 add_info ("symbol", sym_info,
2404 "Describe what symbol is at location ADDR.\n\
2405 Only for symbols with fixed locations (global or static scope).");
2406
2407 add_com ("x", class_vars, x_command,
2408 concat ("Examine memory: x/FMT ADDRESS.\n\
2409 ADDRESS is an expression for the memory address to examine.\n\
2410 FMT is a repeat count followed by a format letter and a size letter.\n\
2411 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2412 t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n",
2413 "Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2414 The specified number of objects of the specified size are printed\n\
2415 according to the format.\n\n\
2416 Defaults for format and size letters are those previously used.\n\
2417 Default count is 1. Default address is following last thing printed\n\
2418 with this command or \"print\".", NULL));
2419
2420 c = add_com ("disassemble", class_vars, disassemble_command,
2421 "Disassemble a specified section of memory.\n\
2422 Default is the function surrounding the pc of the selected frame.\n\
2423 With a single argument, the function surrounding that address is dumped.\n\
2424 Two arguments are taken as a range of memory to dump.");
2425 set_cmd_completer (c, location_completer);
2426 if (xdb_commands)
2427 add_com_alias ("va", "disassemble", class_xdb, 0);
2428
2429 #if 0
2430 add_com ("whereis", class_vars, whereis_command,
2431 "Print line number and file of definition of variable.");
2432 #endif
2433
2434 add_info ("display", display_info,
2435 "Expressions to display when program stops, with code numbers.");
2436
2437 add_cmd ("undisplay", class_vars, undisplay_command,
2438 "Cancel some expressions to be displayed when program stops.\n\
2439 Arguments are the code numbers of the expressions to stop displaying.\n\
2440 No argument means cancel all automatic-display expressions.\n\
2441 \"delete display\" has the same effect as this command.\n\
2442 Do \"info display\" to see current list of code numbers.",
2443 &cmdlist);
2444
2445 add_com ("display", class_vars, display_command,
2446 "Print value of expression EXP each time the program stops.\n\
2447 /FMT may be used before EXP as in the \"print\" command.\n\
2448 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2449 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2450 and examining is done as in the \"x\" command.\n\n\
2451 With no argument, display all currently requested auto-display expressions.\n\
2452 Use \"undisplay\" to cancel display requests previously made."
2453 );
2454
2455 add_cmd ("display", class_vars, enable_display,
2456 "Enable some expressions to be displayed when program stops.\n\
2457 Arguments are the code numbers of the expressions to resume displaying.\n\
2458 No argument means enable all automatic-display expressions.\n\
2459 Do \"info display\" to see current list of code numbers.", &enablelist);
2460
2461 add_cmd ("display", class_vars, disable_display_command,
2462 "Disable some expressions to be displayed when program stops.\n\
2463 Arguments are the code numbers of the expressions to stop displaying.\n\
2464 No argument means disable all automatic-display expressions.\n\
2465 Do \"info display\" to see current list of code numbers.", &disablelist);
2466
2467 add_cmd ("display", class_vars, undisplay_command,
2468 "Cancel some expressions to be displayed when program stops.\n\
2469 Arguments are the code numbers of the expressions to stop displaying.\n\
2470 No argument means cancel all automatic-display expressions.\n\
2471 Do \"info display\" to see current list of code numbers.", &deletelist);
2472
2473 add_com ("printf", class_vars, printf_command,
2474 "printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2475 This is useful for formatted output in user-defined commands.");
2476
2477 add_com ("output", class_vars, output_command,
2478 "Like \"print\" but don't put in value history and don't print newline.\n\
2479 This is useful in user-defined commands.");
2480
2481 add_prefix_cmd ("set", class_vars, set_command,
2482 concat ("Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2483 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2484 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2485 with $), a register (a few standard names starting with $), or an actual\n\
2486 variable in the program being debugged. EXP is any valid expression.\n",
2487 "Use \"set variable\" for variables with names identical to set subcommands.\n\
2488 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2489 You can see these environment settings with the \"show\" command.", NULL),
2490 &setlist, "set ", 1, &cmdlist);
2491 if (dbx_commands)
2492 add_com ("assign", class_vars, set_command, concat ("Evaluate expression \
2493 EXP and assign result to variable VAR, using assignment\n\
2494 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2495 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2496 with $), a register (a few standard names starting with $), or an actual\n\
2497 variable in the program being debugged. EXP is any valid expression.\n",
2498 "Use \"set variable\" for variables with names identical to set subcommands.\n\
2499 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2500 You can see these environment settings with the \"show\" command.", NULL));
2501
2502 /* "call" is the same as "set", but handy for dbx users to call fns. */
2503 c = add_com ("call", class_vars, call_command,
2504 "Call a function in the program.\n\
2505 The argument is the function name and arguments, in the notation of the\n\
2506 current working language. The result is printed and saved in the value\n\
2507 history, if it is not void.");
2508 set_cmd_completer (c, location_completer);
2509
2510 add_cmd ("variable", class_vars, set_command,
2511 "Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2512 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2513 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2514 with $), a register (a few standard names starting with $), or an actual\n\
2515 variable in the program being debugged. EXP is any valid expression.\n\
2516 This may usually be abbreviated to simply \"set\".",
2517 &setlist);
2518
2519 c = add_com ("print", class_vars, print_command,
2520 concat ("Print value of expression EXP.\n\
2521 Variables accessible are those of the lexical environment of the selected\n\
2522 stack frame, plus all those whose scope is global or an entire file.\n\
2523 \n\
2524 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2525 $$NUM refers to NUM'th value back from the last one.\n\
2526 Names starting with $ refer to registers (with the values they would have\n",
2527 "if the program were to return to the stack frame now selected, restoring\n\
2528 all registers saved by frames farther in) or else to debugger\n\
2529 \"convenience\" variables (any such name not a known register).\n\
2530 Use assignment expressions to give values to convenience variables.\n",
2531 "\n\
2532 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2533 @ is a binary operator for treating consecutive data objects\n\
2534 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2535 element is FOO, whose second element is stored in the space following\n\
2536 where FOO is stored, etc. FOO must be an expression whose value\n\
2537 resides in memory.\n",
2538 "\n\
2539 EXP may be preceded with /FMT, where FMT is a format letter\n\
2540 but no count or size letter (see \"x\" command).", NULL));
2541 set_cmd_completer (c, location_completer);
2542 add_com_alias ("p", "print", class_vars, 1);
2543
2544 c = add_com ("inspect", class_vars, inspect_command,
2545 "Same as \"print\" command, except that if you are running in the epoch\n\
2546 environment, the value is printed in its own window.");
2547 set_cmd_completer (c, location_completer);
2548
2549 add_show_from_set (
2550 add_set_cmd ("max-symbolic-offset", no_class, var_uinteger,
2551 (char *) &max_symbolic_offset,
2552 "Set the largest offset that will be printed in <symbol+1234> form.",
2553 &setprintlist),
2554 &showprintlist);
2555 add_show_from_set (
2556 add_set_cmd ("symbol-filename", no_class, var_boolean,
2557 (char *) &print_symbol_filename,
2558 "Set printing of source filename and line number with <symbol>.",
2559 &setprintlist),
2560 &showprintlist);
2561
2562 /* For examine/instruction a single byte quantity is specified as
2563 the data. This avoids problems with value_at_lazy() requiring a
2564 valid data type (and rejecting VOID). */
2565 examine_i_type = init_type (TYPE_CODE_INT, 1, 0, "examine_i_type", NULL);
2566
2567 examine_b_type = init_type (TYPE_CODE_INT, 1, 0, "examine_b_type", NULL);
2568 examine_h_type = init_type (TYPE_CODE_INT, 2, 0, "examine_h_type", NULL);
2569 examine_w_type = init_type (TYPE_CODE_INT, 4, 0, "examine_w_type", NULL);
2570 examine_g_type = init_type (TYPE_CODE_INT, 8, 0, "examine_g_type", NULL);
2571
2572 }
This page took 0.093827 seconds and 5 git commands to generate.