RISC-V: Only relax to C.LUI when imm != 0 and rd != 0/2
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "expression.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "breakpoint.h"
31 #include "demangle.h"
32 #include "gdb-demangle.h"
33 #include "valprint.h"
34 #include "annotate.h"
35 #include "symfile.h" /* for overlay functions */
36 #include "objfiles.h" /* ditto */
37 #include "completer.h" /* for completion functions */
38 #include "ui-out.h"
39 #include "block.h"
40 #include "disasm.h"
41 #include "dfp.h"
42 #include "observer.h"
43 #include "solist.h"
44 #include "parser-defs.h"
45 #include "charset.h"
46 #include "arch-utils.h"
47 #include "cli/cli-utils.h"
48 #include "cli/cli-script.h"
49 #include "format.h"
50 #include "source.h"
51 #include "common/byte-vector.h"
52
53 #ifdef TUI
54 #include "tui/tui.h" /* For tui_active et al. */
55 #endif
56
57 /* Last specified output format. */
58
59 static char last_format = 0;
60
61 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
62
63 static char last_size = 'w';
64
65 /* Default address to examine next, and associated architecture. */
66
67 static struct gdbarch *next_gdbarch;
68 static CORE_ADDR next_address;
69
70 /* Number of delay instructions following current disassembled insn. */
71
72 static int branch_delay_insns;
73
74 /* Last address examined. */
75
76 static CORE_ADDR last_examine_address;
77
78 /* Contents of last address examined.
79 This is not valid past the end of the `x' command! */
80
81 static struct value *last_examine_value;
82
83 /* Largest offset between a symbolic value and an address, that will be
84 printed as `0x1234 <symbol+offset>'. */
85
86 static unsigned int max_symbolic_offset = UINT_MAX;
87 static void
88 show_max_symbolic_offset (struct ui_file *file, int from_tty,
89 struct cmd_list_element *c, const char *value)
90 {
91 fprintf_filtered (file,
92 _("The largest offset that will be "
93 "printed in <symbol+1234> form is %s.\n"),
94 value);
95 }
96
97 /* Append the source filename and linenumber of the symbol when
98 printing a symbolic value as `<symbol at filename:linenum>' if set. */
99 static int print_symbol_filename = 0;
100 static void
101 show_print_symbol_filename (struct ui_file *file, int from_tty,
102 struct cmd_list_element *c, const char *value)
103 {
104 fprintf_filtered (file, _("Printing of source filename and "
105 "line number with <symbol> is %s.\n"),
106 value);
107 }
108
109 /* Number of auto-display expression currently being displayed.
110 So that we can disable it if we get a signal within it.
111 -1 when not doing one. */
112
113 static int current_display_number;
114
115 struct display
116 {
117 /* Chain link to next auto-display item. */
118 struct display *next;
119
120 /* The expression as the user typed it. */
121 char *exp_string;
122
123 /* Expression to be evaluated and displayed. */
124 expression_up exp;
125
126 /* Item number of this auto-display item. */
127 int number;
128
129 /* Display format specified. */
130 struct format_data format;
131
132 /* Program space associated with `block'. */
133 struct program_space *pspace;
134
135 /* Innermost block required by this expression when evaluated. */
136 const struct block *block;
137
138 /* Status of this display (enabled or disabled). */
139 int enabled_p;
140 };
141
142 /* Chain of expressions whose values should be displayed
143 automatically each time the program stops. */
144
145 static struct display *display_chain;
146
147 static int display_number;
148
149 /* Walk the following statement or block through all displays.
150 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
151 display. */
152
153 #define ALL_DISPLAYS(B) \
154 for (B = display_chain; B; B = B->next)
155
156 #define ALL_DISPLAYS_SAFE(B,TMP) \
157 for (B = display_chain; \
158 B ? (TMP = B->next, 1): 0; \
159 B = TMP)
160
161 /* Prototypes for local functions. */
162
163 static void do_one_display (struct display *);
164 \f
165
166 /* Decode a format specification. *STRING_PTR should point to it.
167 OFORMAT and OSIZE are used as defaults for the format and size
168 if none are given in the format specification.
169 If OSIZE is zero, then the size field of the returned value
170 should be set only if a size is explicitly specified by the
171 user.
172 The structure returned describes all the data
173 found in the specification. In addition, *STRING_PTR is advanced
174 past the specification and past all whitespace following it. */
175
176 static struct format_data
177 decode_format (const char **string_ptr, int oformat, int osize)
178 {
179 struct format_data val;
180 const char *p = *string_ptr;
181
182 val.format = '?';
183 val.size = '?';
184 val.count = 1;
185 val.raw = 0;
186
187 if (*p == '-')
188 {
189 val.count = -1;
190 p++;
191 }
192 if (*p >= '0' && *p <= '9')
193 val.count *= atoi (p);
194 while (*p >= '0' && *p <= '9')
195 p++;
196
197 /* Now process size or format letters that follow. */
198
199 while (1)
200 {
201 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
202 val.size = *p++;
203 else if (*p == 'r')
204 {
205 val.raw = 1;
206 p++;
207 }
208 else if (*p >= 'a' && *p <= 'z')
209 val.format = *p++;
210 else
211 break;
212 }
213
214 while (*p == ' ' || *p == '\t')
215 p++;
216 *string_ptr = p;
217
218 /* Set defaults for format and size if not specified. */
219 if (val.format == '?')
220 {
221 if (val.size == '?')
222 {
223 /* Neither has been specified. */
224 val.format = oformat;
225 val.size = osize;
226 }
227 else
228 /* If a size is specified, any format makes a reasonable
229 default except 'i'. */
230 val.format = oformat == 'i' ? 'x' : oformat;
231 }
232 else if (val.size == '?')
233 switch (val.format)
234 {
235 case 'a':
236 /* Pick the appropriate size for an address. This is deferred
237 until do_examine when we know the actual architecture to use.
238 A special size value of 'a' is used to indicate this case. */
239 val.size = osize ? 'a' : osize;
240 break;
241 case 'f':
242 /* Floating point has to be word or giantword. */
243 if (osize == 'w' || osize == 'g')
244 val.size = osize;
245 else
246 /* Default it to giantword if the last used size is not
247 appropriate. */
248 val.size = osize ? 'g' : osize;
249 break;
250 case 'c':
251 /* Characters default to one byte. */
252 val.size = osize ? 'b' : osize;
253 break;
254 case 's':
255 /* Display strings with byte size chars unless explicitly
256 specified. */
257 val.size = '\0';
258 break;
259
260 default:
261 /* The default is the size most recently specified. */
262 val.size = osize;
263 }
264
265 return val;
266 }
267 \f
268 /* Print value VAL on stream according to OPTIONS.
269 Do not end with a newline.
270 SIZE is the letter for the size of datum being printed.
271 This is used to pad hex numbers so they line up. SIZE is 0
272 for print / output and set for examine. */
273
274 static void
275 print_formatted (struct value *val, int size,
276 const struct value_print_options *options,
277 struct ui_file *stream)
278 {
279 struct type *type = check_typedef (value_type (val));
280 int len = TYPE_LENGTH (type);
281
282 if (VALUE_LVAL (val) == lval_memory)
283 next_address = value_address (val) + len;
284
285 if (size)
286 {
287 switch (options->format)
288 {
289 case 's':
290 {
291 struct type *elttype = value_type (val);
292
293 next_address = (value_address (val)
294 + val_print_string (elttype, NULL,
295 value_address (val), -1,
296 stream, options) * len);
297 }
298 return;
299
300 case 'i':
301 /* We often wrap here if there are long symbolic names. */
302 wrap_here (" ");
303 next_address = (value_address (val)
304 + gdb_print_insn (get_type_arch (type),
305 value_address (val), stream,
306 &branch_delay_insns));
307 return;
308 }
309 }
310
311 if (options->format == 0 || options->format == 's'
312 || TYPE_CODE (type) == TYPE_CODE_REF
313 || TYPE_CODE (type) == TYPE_CODE_ARRAY
314 || TYPE_CODE (type) == TYPE_CODE_STRING
315 || TYPE_CODE (type) == TYPE_CODE_STRUCT
316 || TYPE_CODE (type) == TYPE_CODE_UNION
317 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
318 value_print (val, stream, options);
319 else
320 /* User specified format, so don't look to the type to tell us
321 what to do. */
322 val_print_scalar_formatted (type,
323 value_embedded_offset (val),
324 val,
325 options, size, stream);
326 }
327
328 /* Return builtin floating point type of same length as TYPE.
329 If no such type is found, return TYPE itself. */
330 static struct type *
331 float_type_from_length (struct type *type)
332 {
333 struct gdbarch *gdbarch = get_type_arch (type);
334 const struct builtin_type *builtin = builtin_type (gdbarch);
335
336 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
337 type = builtin->builtin_float;
338 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
339 type = builtin->builtin_double;
340 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
341 type = builtin->builtin_long_double;
342
343 return type;
344 }
345
346 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
347 according to OPTIONS and SIZE on STREAM. Formats s and i are not
348 supported at this level. */
349
350 void
351 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
352 const struct value_print_options *options,
353 int size, struct ui_file *stream)
354 {
355 struct gdbarch *gdbarch = get_type_arch (type);
356 unsigned int len = TYPE_LENGTH (type);
357 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
358
359 /* String printing should go through val_print_scalar_formatted. */
360 gdb_assert (options->format != 's');
361
362 /* If the value is a pointer, and pointers and addresses are not the
363 same, then at this point, the value's length (in target bytes) is
364 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
365 if (TYPE_CODE (type) == TYPE_CODE_PTR)
366 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
367
368 /* If we are printing it as unsigned, truncate it in case it is actually
369 a negative signed value (e.g. "print/u (short)-1" should print 65535
370 (if shorts are 16 bits) instead of 4294967295). */
371 if (options->format != 'c'
372 && (options->format != 'd' || TYPE_UNSIGNED (type)))
373 {
374 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
375 valaddr += TYPE_LENGTH (type) - len;
376 }
377
378 if (size != 0 && (options->format == 'x' || options->format == 't'))
379 {
380 /* Truncate to fit. */
381 unsigned newlen;
382 switch (size)
383 {
384 case 'b':
385 newlen = 1;
386 break;
387 case 'h':
388 newlen = 2;
389 break;
390 case 'w':
391 newlen = 4;
392 break;
393 case 'g':
394 newlen = 8;
395 break;
396 default:
397 error (_("Undefined output size \"%c\"."), size);
398 }
399 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
400 valaddr += len - newlen;
401 len = newlen;
402 }
403
404 /* Historically gdb has printed floats by first casting them to a
405 long, and then printing the long. PR cli/16242 suggests changing
406 this to using C-style hex float format. */
407 gdb::byte_vector converted_float_bytes;
408 if (TYPE_CODE (type) == TYPE_CODE_FLT
409 && (options->format == 'o'
410 || options->format == 'x'
411 || options->format == 't'
412 || options->format == 'z'
413 || options->format == 'd'
414 || options->format == 'u'))
415 {
416 LONGEST val_long = unpack_long (type, valaddr);
417 converted_float_bytes.resize (TYPE_LENGTH (type));
418 store_signed_integer (converted_float_bytes.data (), TYPE_LENGTH (type),
419 byte_order, val_long);
420 valaddr = converted_float_bytes.data ();
421 }
422
423 switch (options->format)
424 {
425 case 'o':
426 print_octal_chars (stream, valaddr, len, byte_order);
427 break;
428 case 'd':
429 print_decimal_chars (stream, valaddr, len, true, byte_order);
430 break;
431 case 'u':
432 print_decimal_chars (stream, valaddr, len, false, byte_order);
433 break;
434 case 0:
435 if (TYPE_CODE (type) != TYPE_CODE_FLT)
436 {
437 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
438 byte_order);
439 break;
440 }
441 /* FALLTHROUGH */
442 case 'f':
443 type = float_type_from_length (type);
444 print_floating (valaddr, type, stream);
445 break;
446
447 case 't':
448 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
449 break;
450 case 'x':
451 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
452 break;
453 case 'z':
454 print_hex_chars (stream, valaddr, len, byte_order, true);
455 break;
456 case 'c':
457 {
458 struct value_print_options opts = *options;
459
460 LONGEST val_long = unpack_long (type, valaddr);
461
462 opts.format = 0;
463 if (TYPE_UNSIGNED (type))
464 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
465 else
466 type = builtin_type (gdbarch)->builtin_true_char;
467
468 value_print (value_from_longest (type, val_long), stream, &opts);
469 }
470 break;
471
472 case 'a':
473 {
474 CORE_ADDR addr = unpack_pointer (type, valaddr);
475
476 print_address (gdbarch, addr, stream);
477 }
478 break;
479
480 default:
481 error (_("Undefined output format \"%c\"."), options->format);
482 }
483 }
484
485 /* Specify default address for `x' command.
486 The `info lines' command uses this. */
487
488 void
489 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
490 {
491 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
492
493 next_gdbarch = gdbarch;
494 next_address = addr;
495
496 /* Make address available to the user as $_. */
497 set_internalvar (lookup_internalvar ("_"),
498 value_from_pointer (ptr_type, addr));
499 }
500
501 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
502 after LEADIN. Print nothing if no symbolic name is found nearby.
503 Optionally also print source file and line number, if available.
504 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
505 or to interpret it as a possible C++ name and convert it back to source
506 form. However note that DO_DEMANGLE can be overridden by the specific
507 settings of the demangle and asm_demangle variables. Returns
508 non-zero if anything was printed; zero otherwise. */
509
510 int
511 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
512 struct ui_file *stream,
513 int do_demangle, const char *leadin)
514 {
515 char *name = NULL;
516 char *filename = NULL;
517 int unmapped = 0;
518 int offset = 0;
519 int line = 0;
520
521 /* Throw away both name and filename. */
522 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
523 make_cleanup (free_current_contents, &filename);
524
525 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
526 &filename, &line, &unmapped))
527 {
528 do_cleanups (cleanup_chain);
529 return 0;
530 }
531
532 fputs_filtered (leadin, stream);
533 if (unmapped)
534 fputs_filtered ("<*", stream);
535 else
536 fputs_filtered ("<", stream);
537 fputs_filtered (name, stream);
538 if (offset != 0)
539 fprintf_filtered (stream, "+%u", (unsigned int) offset);
540
541 /* Append source filename and line number if desired. Give specific
542 line # of this addr, if we have it; else line # of the nearest symbol. */
543 if (print_symbol_filename && filename != NULL)
544 {
545 if (line != -1)
546 fprintf_filtered (stream, " at %s:%d", filename, line);
547 else
548 fprintf_filtered (stream, " in %s", filename);
549 }
550 if (unmapped)
551 fputs_filtered ("*>", stream);
552 else
553 fputs_filtered (">", stream);
554
555 do_cleanups (cleanup_chain);
556 return 1;
557 }
558
559 /* Given an address ADDR return all the elements needed to print the
560 address in a symbolic form. NAME can be mangled or not depending
561 on DO_DEMANGLE (and also on the asm_demangle global variable,
562 manipulated via ''set print asm-demangle''). Return 0 in case of
563 success, when all the info in the OUT paramters is valid. Return 1
564 otherwise. */
565 int
566 build_address_symbolic (struct gdbarch *gdbarch,
567 CORE_ADDR addr, /* IN */
568 int do_demangle, /* IN */
569 char **name, /* OUT */
570 int *offset, /* OUT */
571 char **filename, /* OUT */
572 int *line, /* OUT */
573 int *unmapped) /* OUT */
574 {
575 struct bound_minimal_symbol msymbol;
576 struct symbol *symbol;
577 CORE_ADDR name_location = 0;
578 struct obj_section *section = NULL;
579 const char *name_temp = "";
580
581 /* Let's say it is mapped (not unmapped). */
582 *unmapped = 0;
583
584 /* Determine if the address is in an overlay, and whether it is
585 mapped. */
586 if (overlay_debugging)
587 {
588 section = find_pc_overlay (addr);
589 if (pc_in_unmapped_range (addr, section))
590 {
591 *unmapped = 1;
592 addr = overlay_mapped_address (addr, section);
593 }
594 }
595
596 /* First try to find the address in the symbol table, then
597 in the minsyms. Take the closest one. */
598
599 /* This is defective in the sense that it only finds text symbols. So
600 really this is kind of pointless--we should make sure that the
601 minimal symbols have everything we need (by changing that we could
602 save some memory, but for many debug format--ELF/DWARF or
603 anything/stabs--it would be inconvenient to eliminate those minimal
604 symbols anyway). */
605 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
606 symbol = find_pc_sect_function (addr, section);
607
608 if (symbol)
609 {
610 /* If this is a function (i.e. a code address), strip out any
611 non-address bits. For instance, display a pointer to the
612 first instruction of a Thumb function as <function>; the
613 second instruction will be <function+2>, even though the
614 pointer is <function+3>. This matches the ISA behavior. */
615 addr = gdbarch_addr_bits_remove (gdbarch, addr);
616
617 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
618 if (do_demangle || asm_demangle)
619 name_temp = SYMBOL_PRINT_NAME (symbol);
620 else
621 name_temp = SYMBOL_LINKAGE_NAME (symbol);
622 }
623
624 if (msymbol.minsym != NULL
625 && MSYMBOL_HAS_SIZE (msymbol.minsym)
626 && MSYMBOL_SIZE (msymbol.minsym) == 0
627 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
628 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
629 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
630 msymbol.minsym = NULL;
631
632 if (msymbol.minsym != NULL)
633 {
634 if (BMSYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
635 {
636 /* If this is a function (i.e. a code address), strip out any
637 non-address bits. For instance, display a pointer to the
638 first instruction of a Thumb function as <function>; the
639 second instruction will be <function+2>, even though the
640 pointer is <function+3>. This matches the ISA behavior. */
641 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
642 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
643 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
644 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
645 addr = gdbarch_addr_bits_remove (gdbarch, addr);
646
647 /* The msymbol is closer to the address than the symbol;
648 use the msymbol instead. */
649 symbol = 0;
650 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
651 if (do_demangle || asm_demangle)
652 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
653 else
654 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
655 }
656 }
657 if (symbol == NULL && msymbol.minsym == NULL)
658 return 1;
659
660 /* If the nearest symbol is too far away, don't print anything symbolic. */
661
662 /* For when CORE_ADDR is larger than unsigned int, we do math in
663 CORE_ADDR. But when we detect unsigned wraparound in the
664 CORE_ADDR math, we ignore this test and print the offset,
665 because addr+max_symbolic_offset has wrapped through the end
666 of the address space back to the beginning, giving bogus comparison. */
667 if (addr > name_location + max_symbolic_offset
668 && name_location + max_symbolic_offset > name_location)
669 return 1;
670
671 *offset = addr - name_location;
672
673 *name = xstrdup (name_temp);
674
675 if (print_symbol_filename)
676 {
677 struct symtab_and_line sal;
678
679 sal = find_pc_sect_line (addr, section, 0);
680
681 if (sal.symtab)
682 {
683 *filename = xstrdup (symtab_to_filename_for_display (sal.symtab));
684 *line = sal.line;
685 }
686 }
687 return 0;
688 }
689
690
691 /* Print address ADDR symbolically on STREAM.
692 First print it as a number. Then perhaps print
693 <SYMBOL + OFFSET> after the number. */
694
695 void
696 print_address (struct gdbarch *gdbarch,
697 CORE_ADDR addr, struct ui_file *stream)
698 {
699 fputs_filtered (paddress (gdbarch, addr), stream);
700 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
701 }
702
703 /* Return a prefix for instruction address:
704 "=> " for current instruction, else " ". */
705
706 const char *
707 pc_prefix (CORE_ADDR addr)
708 {
709 if (has_stack_frames ())
710 {
711 struct frame_info *frame;
712 CORE_ADDR pc;
713
714 frame = get_selected_frame (NULL);
715 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
716 return "=> ";
717 }
718 return " ";
719 }
720
721 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
722 controls whether to print the symbolic name "raw" or demangled.
723 Return non-zero if anything was printed; zero otherwise. */
724
725 int
726 print_address_demangle (const struct value_print_options *opts,
727 struct gdbarch *gdbarch, CORE_ADDR addr,
728 struct ui_file *stream, int do_demangle)
729 {
730 if (opts->addressprint)
731 {
732 fputs_filtered (paddress (gdbarch, addr), stream);
733 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
734 }
735 else
736 {
737 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
738 }
739 return 1;
740 }
741 \f
742
743 /* Find the address of the instruction that is INST_COUNT instructions before
744 the instruction at ADDR.
745 Since some architectures have variable-length instructions, we can't just
746 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
747 number information to locate the nearest known instruction boundary,
748 and disassemble forward from there. If we go out of the symbol range
749 during disassembling, we return the lowest address we've got so far and
750 set the number of instructions read to INST_READ. */
751
752 static CORE_ADDR
753 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
754 int inst_count, int *inst_read)
755 {
756 /* The vector PCS is used to store instruction addresses within
757 a pc range. */
758 CORE_ADDR loop_start, loop_end, p;
759 std::vector<CORE_ADDR> pcs;
760 struct symtab_and_line sal;
761
762 *inst_read = 0;
763 loop_start = loop_end = addr;
764
765 /* In each iteration of the outer loop, we get a pc range that ends before
766 LOOP_START, then we count and store every instruction address of the range
767 iterated in the loop.
768 If the number of instructions counted reaches INST_COUNT, return the
769 stored address that is located INST_COUNT instructions back from ADDR.
770 If INST_COUNT is not reached, we subtract the number of counted
771 instructions from INST_COUNT, and go to the next iteration. */
772 do
773 {
774 pcs.clear ();
775 sal = find_pc_sect_line (loop_start, NULL, 1);
776 if (sal.line <= 0)
777 {
778 /* We reach here when line info is not available. In this case,
779 we print a message and just exit the loop. The return value
780 is calculated after the loop. */
781 printf_filtered (_("No line number information available "
782 "for address "));
783 wrap_here (" ");
784 print_address (gdbarch, loop_start - 1, gdb_stdout);
785 printf_filtered ("\n");
786 break;
787 }
788
789 loop_end = loop_start;
790 loop_start = sal.pc;
791
792 /* This loop pushes instruction addresses in the range from
793 LOOP_START to LOOP_END. */
794 for (p = loop_start; p < loop_end;)
795 {
796 pcs.push_back (p);
797 p += gdb_insn_length (gdbarch, p);
798 }
799
800 inst_count -= pcs.size ();
801 *inst_read += pcs.size ();
802 }
803 while (inst_count > 0);
804
805 /* After the loop, the vector PCS has instruction addresses of the last
806 source line we processed, and INST_COUNT has a negative value.
807 We return the address at the index of -INST_COUNT in the vector for
808 the reason below.
809 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
810 Line X of File
811 0x4000
812 0x4001
813 0x4005
814 Line Y of File
815 0x4009
816 0x400c
817 => 0x400e
818 0x4011
819 find_instruction_backward is called with INST_COUNT = 4 and expected to
820 return 0x4001. When we reach here, INST_COUNT is set to -1 because
821 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
822 4001 is located at the index 1 of the last iterated line (= Line X),
823 which is simply calculated by -INST_COUNT.
824 The case when the length of PCS is 0 means that we reached an area for
825 which line info is not available. In such case, we return LOOP_START,
826 which was the lowest instruction address that had line info. */
827 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
828
829 /* INST_READ includes all instruction addresses in a pc range. Need to
830 exclude the beginning part up to the address we're returning. That
831 is, exclude {0x4000} in the example above. */
832 if (inst_count < 0)
833 *inst_read += inst_count;
834
835 return p;
836 }
837
838 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
839 placing the results in GDB's memory from MYADDR + LEN. Returns
840 a count of the bytes actually read. */
841
842 static int
843 read_memory_backward (struct gdbarch *gdbarch,
844 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
845 {
846 int errcode;
847 int nread; /* Number of bytes actually read. */
848
849 /* First try a complete read. */
850 errcode = target_read_memory (memaddr, myaddr, len);
851 if (errcode == 0)
852 {
853 /* Got it all. */
854 nread = len;
855 }
856 else
857 {
858 /* Loop, reading one byte at a time until we get as much as we can. */
859 memaddr += len;
860 myaddr += len;
861 for (nread = 0; nread < len; ++nread)
862 {
863 errcode = target_read_memory (--memaddr, --myaddr, 1);
864 if (errcode != 0)
865 {
866 /* The read was unsuccessful, so exit the loop. */
867 printf_filtered (_("Cannot access memory at address %s\n"),
868 paddress (gdbarch, memaddr));
869 break;
870 }
871 }
872 }
873 return nread;
874 }
875
876 /* Returns true if X (which is LEN bytes wide) is the number zero. */
877
878 static int
879 integer_is_zero (const gdb_byte *x, int len)
880 {
881 int i = 0;
882
883 while (i < len && x[i] == 0)
884 ++i;
885 return (i == len);
886 }
887
888 /* Find the start address of a string in which ADDR is included.
889 Basically we search for '\0' and return the next address,
890 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
891 we stop searching and return the address to print characters as many as
892 PRINT_MAX from the string. */
893
894 static CORE_ADDR
895 find_string_backward (struct gdbarch *gdbarch,
896 CORE_ADDR addr, int count, int char_size,
897 const struct value_print_options *options,
898 int *strings_counted)
899 {
900 const int chunk_size = 0x20;
901 int read_error = 0;
902 int chars_read = 0;
903 int chars_to_read = chunk_size;
904 int chars_counted = 0;
905 int count_original = count;
906 CORE_ADDR string_start_addr = addr;
907
908 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
909 gdb::byte_vector buffer (chars_to_read * char_size);
910 while (count > 0 && read_error == 0)
911 {
912 int i;
913
914 addr -= chars_to_read * char_size;
915 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
916 chars_to_read * char_size);
917 chars_read /= char_size;
918 read_error = (chars_read == chars_to_read) ? 0 : 1;
919 /* Searching for '\0' from the end of buffer in backward direction. */
920 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
921 {
922 int offset = (chars_to_read - i - 1) * char_size;
923
924 if (integer_is_zero (&buffer[offset], char_size)
925 || chars_counted == options->print_max)
926 {
927 /* Found '\0' or reached print_max. As OFFSET is the offset to
928 '\0', we add CHAR_SIZE to return the start address of
929 a string. */
930 --count;
931 string_start_addr = addr + offset + char_size;
932 chars_counted = 0;
933 }
934 }
935 }
936
937 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
938 *strings_counted = count_original - count;
939
940 if (read_error != 0)
941 {
942 /* In error case, STRING_START_ADDR is pointing to the string that
943 was last successfully loaded. Rewind the partially loaded string. */
944 string_start_addr -= chars_counted * char_size;
945 }
946
947 return string_start_addr;
948 }
949
950 /* Examine data at address ADDR in format FMT.
951 Fetch it from memory and print on gdb_stdout. */
952
953 static void
954 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
955 {
956 char format = 0;
957 char size;
958 int count = 1;
959 struct type *val_type = NULL;
960 int i;
961 int maxelts;
962 struct value_print_options opts;
963 int need_to_update_next_address = 0;
964 CORE_ADDR addr_rewound = 0;
965
966 format = fmt.format;
967 size = fmt.size;
968 count = fmt.count;
969 next_gdbarch = gdbarch;
970 next_address = addr;
971
972 /* Instruction format implies fetch single bytes
973 regardless of the specified size.
974 The case of strings is handled in decode_format, only explicit
975 size operator are not changed to 'b'. */
976 if (format == 'i')
977 size = 'b';
978
979 if (size == 'a')
980 {
981 /* Pick the appropriate size for an address. */
982 if (gdbarch_ptr_bit (next_gdbarch) == 64)
983 size = 'g';
984 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
985 size = 'w';
986 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
987 size = 'h';
988 else
989 /* Bad value for gdbarch_ptr_bit. */
990 internal_error (__FILE__, __LINE__,
991 _("failed internal consistency check"));
992 }
993
994 if (size == 'b')
995 val_type = builtin_type (next_gdbarch)->builtin_int8;
996 else if (size == 'h')
997 val_type = builtin_type (next_gdbarch)->builtin_int16;
998 else if (size == 'w')
999 val_type = builtin_type (next_gdbarch)->builtin_int32;
1000 else if (size == 'g')
1001 val_type = builtin_type (next_gdbarch)->builtin_int64;
1002
1003 if (format == 's')
1004 {
1005 struct type *char_type = NULL;
1006
1007 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1008 if type is not found. */
1009 if (size == 'h')
1010 char_type = builtin_type (next_gdbarch)->builtin_char16;
1011 else if (size == 'w')
1012 char_type = builtin_type (next_gdbarch)->builtin_char32;
1013 if (char_type)
1014 val_type = char_type;
1015 else
1016 {
1017 if (size != '\0' && size != 'b')
1018 warning (_("Unable to display strings with "
1019 "size '%c', using 'b' instead."), size);
1020 size = 'b';
1021 val_type = builtin_type (next_gdbarch)->builtin_int8;
1022 }
1023 }
1024
1025 maxelts = 8;
1026 if (size == 'w')
1027 maxelts = 4;
1028 if (size == 'g')
1029 maxelts = 2;
1030 if (format == 's' || format == 'i')
1031 maxelts = 1;
1032
1033 get_formatted_print_options (&opts, format);
1034
1035 if (count < 0)
1036 {
1037 /* This is the negative repeat count case.
1038 We rewind the address based on the given repeat count and format,
1039 then examine memory from there in forward direction. */
1040
1041 count = -count;
1042 if (format == 'i')
1043 {
1044 next_address = find_instruction_backward (gdbarch, addr, count,
1045 &count);
1046 }
1047 else if (format == 's')
1048 {
1049 next_address = find_string_backward (gdbarch, addr, count,
1050 TYPE_LENGTH (val_type),
1051 &opts, &count);
1052 }
1053 else
1054 {
1055 next_address = addr - count * TYPE_LENGTH (val_type);
1056 }
1057
1058 /* The following call to print_formatted updates next_address in every
1059 iteration. In backward case, we store the start address here
1060 and update next_address with it before exiting the function. */
1061 addr_rewound = (format == 's'
1062 ? next_address - TYPE_LENGTH (val_type)
1063 : next_address);
1064 need_to_update_next_address = 1;
1065 }
1066
1067 /* Print as many objects as specified in COUNT, at most maxelts per line,
1068 with the address of the next one at the start of each line. */
1069
1070 while (count > 0)
1071 {
1072 QUIT;
1073 if (format == 'i')
1074 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1075 print_address (next_gdbarch, next_address, gdb_stdout);
1076 printf_filtered (":");
1077 for (i = maxelts;
1078 i > 0 && count > 0;
1079 i--, count--)
1080 {
1081 printf_filtered ("\t");
1082 /* Note that print_formatted sets next_address for the next
1083 object. */
1084 last_examine_address = next_address;
1085
1086 if (last_examine_value)
1087 value_free (last_examine_value);
1088
1089 /* The value to be displayed is not fetched greedily.
1090 Instead, to avoid the possibility of a fetched value not
1091 being used, its retrieval is delayed until the print code
1092 uses it. When examining an instruction stream, the
1093 disassembler will perform its own memory fetch using just
1094 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1095 the disassembler be modified so that LAST_EXAMINE_VALUE
1096 is left with the byte sequence from the last complete
1097 instruction fetched from memory? */
1098 last_examine_value = value_at_lazy (val_type, next_address);
1099
1100 if (last_examine_value)
1101 release_value (last_examine_value);
1102
1103 print_formatted (last_examine_value, size, &opts, gdb_stdout);
1104
1105 /* Display any branch delay slots following the final insn. */
1106 if (format == 'i' && count == 1)
1107 count += branch_delay_insns;
1108 }
1109 printf_filtered ("\n");
1110 gdb_flush (gdb_stdout);
1111 }
1112
1113 if (need_to_update_next_address)
1114 next_address = addr_rewound;
1115 }
1116 \f
1117 static void
1118 validate_format (struct format_data fmt, const char *cmdname)
1119 {
1120 if (fmt.size != 0)
1121 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1122 if (fmt.count != 1)
1123 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1124 cmdname);
1125 if (fmt.format == 'i')
1126 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1127 fmt.format, cmdname);
1128 }
1129
1130 /* Parse print command format string into *FMTP and update *EXPP.
1131 CMDNAME should name the current command. */
1132
1133 void
1134 print_command_parse_format (const char **expp, const char *cmdname,
1135 struct format_data *fmtp)
1136 {
1137 const char *exp = *expp;
1138
1139 if (exp && *exp == '/')
1140 {
1141 exp++;
1142 *fmtp = decode_format (&exp, last_format, 0);
1143 validate_format (*fmtp, cmdname);
1144 last_format = fmtp->format;
1145 }
1146 else
1147 {
1148 fmtp->count = 1;
1149 fmtp->format = 0;
1150 fmtp->size = 0;
1151 fmtp->raw = 0;
1152 }
1153
1154 *expp = exp;
1155 }
1156
1157 /* Print VAL to console according to *FMTP, including recording it to
1158 the history. */
1159
1160 void
1161 print_value (struct value *val, const struct format_data *fmtp)
1162 {
1163 struct value_print_options opts;
1164 int histindex = record_latest_value (val);
1165
1166 annotate_value_history_begin (histindex, value_type (val));
1167
1168 printf_filtered ("$%d = ", histindex);
1169
1170 annotate_value_history_value ();
1171
1172 get_formatted_print_options (&opts, fmtp->format);
1173 opts.raw = fmtp->raw;
1174
1175 print_formatted (val, fmtp->size, &opts, gdb_stdout);
1176 printf_filtered ("\n");
1177
1178 annotate_value_history_end ();
1179 }
1180
1181 /* Evaluate string EXP as an expression in the current language and
1182 print the resulting value. EXP may contain a format specifier as the
1183 first argument ("/x myvar" for example, to print myvar in hex). */
1184
1185 static void
1186 print_command_1 (const char *exp, int voidprint)
1187 {
1188 struct value *val;
1189 struct format_data fmt;
1190
1191 print_command_parse_format (&exp, "print", &fmt);
1192
1193 if (exp && *exp)
1194 {
1195 expression_up expr = parse_expression (exp);
1196 val = evaluate_expression (expr.get ());
1197 }
1198 else
1199 val = access_value_history (0);
1200
1201 if (voidprint || (val && value_type (val) &&
1202 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1203 print_value (val, &fmt);
1204 }
1205
1206 static void
1207 print_command (char *exp, int from_tty)
1208 {
1209 print_command_1 (exp, 1);
1210 }
1211
1212 /* Same as print, except it doesn't print void results. */
1213 static void
1214 call_command (char *exp, int from_tty)
1215 {
1216 print_command_1 (exp, 0);
1217 }
1218
1219 /* Implementation of the "output" command. */
1220
1221 static void
1222 output_command (char *exp, int from_tty)
1223 {
1224 output_command_const (exp, from_tty);
1225 }
1226
1227 /* Like output_command, but takes a const string as argument. */
1228
1229 void
1230 output_command_const (const char *exp, int from_tty)
1231 {
1232 char format = 0;
1233 struct value *val;
1234 struct format_data fmt;
1235 struct value_print_options opts;
1236
1237 fmt.size = 0;
1238 fmt.raw = 0;
1239
1240 if (exp && *exp == '/')
1241 {
1242 exp++;
1243 fmt = decode_format (&exp, 0, 0);
1244 validate_format (fmt, "output");
1245 format = fmt.format;
1246 }
1247
1248 expression_up expr = parse_expression (exp);
1249
1250 val = evaluate_expression (expr.get ());
1251
1252 annotate_value_begin (value_type (val));
1253
1254 get_formatted_print_options (&opts, format);
1255 opts.raw = fmt.raw;
1256 print_formatted (val, fmt.size, &opts, gdb_stdout);
1257
1258 annotate_value_end ();
1259
1260 wrap_here ("");
1261 gdb_flush (gdb_stdout);
1262 }
1263
1264 static void
1265 set_command (const char *exp, int from_tty)
1266 {
1267 expression_up expr = parse_expression (exp);
1268
1269 if (expr->nelts >= 1)
1270 switch (expr->elts[0].opcode)
1271 {
1272 case UNOP_PREINCREMENT:
1273 case UNOP_POSTINCREMENT:
1274 case UNOP_PREDECREMENT:
1275 case UNOP_POSTDECREMENT:
1276 case BINOP_ASSIGN:
1277 case BINOP_ASSIGN_MODIFY:
1278 case BINOP_COMMA:
1279 break;
1280 default:
1281 warning
1282 (_("Expression is not an assignment (and might have no effect)"));
1283 }
1284
1285 evaluate_expression (expr.get ());
1286 }
1287
1288 /* Temporary non-const version of set_command. */
1289
1290 static void
1291 non_const_set_command (char *exp, int from_tty)
1292 {
1293 set_command (exp, from_tty);
1294 }
1295
1296 static void
1297 info_symbol_command (char *arg, int from_tty)
1298 {
1299 struct minimal_symbol *msymbol;
1300 struct objfile *objfile;
1301 struct obj_section *osect;
1302 CORE_ADDR addr, sect_addr;
1303 int matches = 0;
1304 unsigned int offset;
1305
1306 if (!arg)
1307 error_no_arg (_("address"));
1308
1309 addr = parse_and_eval_address (arg);
1310 ALL_OBJSECTIONS (objfile, osect)
1311 {
1312 /* Only process each object file once, even if there's a separate
1313 debug file. */
1314 if (objfile->separate_debug_objfile_backlink)
1315 continue;
1316
1317 sect_addr = overlay_mapped_address (addr, osect);
1318
1319 if (obj_section_addr (osect) <= sect_addr
1320 && sect_addr < obj_section_endaddr (osect)
1321 && (msymbol
1322 = lookup_minimal_symbol_by_pc_section (sect_addr, osect).minsym))
1323 {
1324 const char *obj_name, *mapped, *sec_name, *msym_name;
1325 const char *loc_string;
1326 struct cleanup *old_chain;
1327
1328 matches = 1;
1329 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1330 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1331 sec_name = osect->the_bfd_section->name;
1332 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1333
1334 /* Don't print the offset if it is zero.
1335 We assume there's no need to handle i18n of "sym + offset". */
1336 std::string string_holder;
1337 if (offset)
1338 {
1339 string_holder = string_printf ("%s + %u", msym_name, offset);
1340 loc_string = string_holder.c_str ();
1341 }
1342 else
1343 loc_string = msym_name;
1344
1345 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1346 obj_name = objfile_name (osect->objfile);
1347
1348 if (MULTI_OBJFILE_P ())
1349 if (pc_in_unmapped_range (addr, osect))
1350 if (section_is_overlay (osect))
1351 printf_filtered (_("%s in load address range of "
1352 "%s overlay section %s of %s\n"),
1353 loc_string, mapped, sec_name, obj_name);
1354 else
1355 printf_filtered (_("%s in load address range of "
1356 "section %s of %s\n"),
1357 loc_string, sec_name, obj_name);
1358 else
1359 if (section_is_overlay (osect))
1360 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1361 loc_string, mapped, sec_name, obj_name);
1362 else
1363 printf_filtered (_("%s in section %s of %s\n"),
1364 loc_string, sec_name, obj_name);
1365 else
1366 if (pc_in_unmapped_range (addr, osect))
1367 if (section_is_overlay (osect))
1368 printf_filtered (_("%s in load address range of %s overlay "
1369 "section %s\n"),
1370 loc_string, mapped, sec_name);
1371 else
1372 printf_filtered (_("%s in load address range of section %s\n"),
1373 loc_string, sec_name);
1374 else
1375 if (section_is_overlay (osect))
1376 printf_filtered (_("%s in %s overlay section %s\n"),
1377 loc_string, mapped, sec_name);
1378 else
1379 printf_filtered (_("%s in section %s\n"),
1380 loc_string, sec_name);
1381 }
1382 }
1383 if (matches == 0)
1384 printf_filtered (_("No symbol matches %s.\n"), arg);
1385 }
1386
1387 static void
1388 info_address_command (char *exp, int from_tty)
1389 {
1390 struct gdbarch *gdbarch;
1391 int regno;
1392 struct symbol *sym;
1393 struct bound_minimal_symbol msymbol;
1394 long val;
1395 struct obj_section *section;
1396 CORE_ADDR load_addr, context_pc = 0;
1397 struct field_of_this_result is_a_field_of_this;
1398
1399 if (exp == 0)
1400 error (_("Argument required."));
1401
1402 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1403 &is_a_field_of_this).symbol;
1404 if (sym == NULL)
1405 {
1406 if (is_a_field_of_this.type != NULL)
1407 {
1408 printf_filtered ("Symbol \"");
1409 fprintf_symbol_filtered (gdb_stdout, exp,
1410 current_language->la_language, DMGL_ANSI);
1411 printf_filtered ("\" is a field of the local class variable ");
1412 if (current_language->la_language == language_objc)
1413 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1414 else
1415 printf_filtered ("`this'\n");
1416 return;
1417 }
1418
1419 msymbol = lookup_bound_minimal_symbol (exp);
1420
1421 if (msymbol.minsym != NULL)
1422 {
1423 struct objfile *objfile = msymbol.objfile;
1424
1425 gdbarch = get_objfile_arch (objfile);
1426 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1427
1428 printf_filtered ("Symbol \"");
1429 fprintf_symbol_filtered (gdb_stdout, exp,
1430 current_language->la_language, DMGL_ANSI);
1431 printf_filtered ("\" is at ");
1432 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1433 printf_filtered (" in a file compiled without debugging");
1434 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1435 if (section_is_overlay (section))
1436 {
1437 load_addr = overlay_unmapped_address (load_addr, section);
1438 printf_filtered (",\n -- loaded at ");
1439 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1440 printf_filtered (" in overlay section %s",
1441 section->the_bfd_section->name);
1442 }
1443 printf_filtered (".\n");
1444 }
1445 else
1446 error (_("No symbol \"%s\" in current context."), exp);
1447 return;
1448 }
1449
1450 printf_filtered ("Symbol \"");
1451 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1452 current_language->la_language, DMGL_ANSI);
1453 printf_filtered ("\" is ");
1454 val = SYMBOL_VALUE (sym);
1455 if (SYMBOL_OBJFILE_OWNED (sym))
1456 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1457 else
1458 section = NULL;
1459 gdbarch = symbol_arch (sym);
1460
1461 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1462 {
1463 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1464 gdb_stdout);
1465 printf_filtered (".\n");
1466 return;
1467 }
1468
1469 switch (SYMBOL_CLASS (sym))
1470 {
1471 case LOC_CONST:
1472 case LOC_CONST_BYTES:
1473 printf_filtered ("constant");
1474 break;
1475
1476 case LOC_LABEL:
1477 printf_filtered ("a label at address ");
1478 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1479 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1480 if (section_is_overlay (section))
1481 {
1482 load_addr = overlay_unmapped_address (load_addr, section);
1483 printf_filtered (",\n -- loaded at ");
1484 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1485 printf_filtered (" in overlay section %s",
1486 section->the_bfd_section->name);
1487 }
1488 break;
1489
1490 case LOC_COMPUTED:
1491 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1492
1493 case LOC_REGISTER:
1494 /* GDBARCH is the architecture associated with the objfile the symbol
1495 is defined in; the target architecture may be different, and may
1496 provide additional registers. However, we do not know the target
1497 architecture at this point. We assume the objfile architecture
1498 will contain all the standard registers that occur in debug info
1499 in that objfile. */
1500 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1501
1502 if (SYMBOL_IS_ARGUMENT (sym))
1503 printf_filtered (_("an argument in register %s"),
1504 gdbarch_register_name (gdbarch, regno));
1505 else
1506 printf_filtered (_("a variable in register %s"),
1507 gdbarch_register_name (gdbarch, regno));
1508 break;
1509
1510 case LOC_STATIC:
1511 printf_filtered (_("static storage at address "));
1512 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1513 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1514 if (section_is_overlay (section))
1515 {
1516 load_addr = overlay_unmapped_address (load_addr, section);
1517 printf_filtered (_(",\n -- loaded at "));
1518 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1519 printf_filtered (_(" in overlay section %s"),
1520 section->the_bfd_section->name);
1521 }
1522 break;
1523
1524 case LOC_REGPARM_ADDR:
1525 /* Note comment at LOC_REGISTER. */
1526 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1527 printf_filtered (_("address of an argument in register %s"),
1528 gdbarch_register_name (gdbarch, regno));
1529 break;
1530
1531 case LOC_ARG:
1532 printf_filtered (_("an argument at offset %ld"), val);
1533 break;
1534
1535 case LOC_LOCAL:
1536 printf_filtered (_("a local variable at frame offset %ld"), val);
1537 break;
1538
1539 case LOC_REF_ARG:
1540 printf_filtered (_("a reference argument at offset %ld"), val);
1541 break;
1542
1543 case LOC_TYPEDEF:
1544 printf_filtered (_("a typedef"));
1545 break;
1546
1547 case LOC_BLOCK:
1548 printf_filtered (_("a function at address "));
1549 load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1550 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1551 if (section_is_overlay (section))
1552 {
1553 load_addr = overlay_unmapped_address (load_addr, section);
1554 printf_filtered (_(",\n -- loaded at "));
1555 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1556 printf_filtered (_(" in overlay section %s"),
1557 section->the_bfd_section->name);
1558 }
1559 break;
1560
1561 case LOC_UNRESOLVED:
1562 {
1563 struct bound_minimal_symbol msym;
1564
1565 msym = lookup_minimal_symbol_and_objfile (SYMBOL_LINKAGE_NAME (sym));
1566 if (msym.minsym == NULL)
1567 printf_filtered ("unresolved");
1568 else
1569 {
1570 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1571
1572 if (section
1573 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1574 {
1575 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1576 printf_filtered (_("a thread-local variable at offset %s "
1577 "in the thread-local storage for `%s'"),
1578 paddress (gdbarch, load_addr),
1579 objfile_name (section->objfile));
1580 }
1581 else
1582 {
1583 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1584 printf_filtered (_("static storage at address "));
1585 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1586 if (section_is_overlay (section))
1587 {
1588 load_addr = overlay_unmapped_address (load_addr, section);
1589 printf_filtered (_(",\n -- loaded at "));
1590 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1591 printf_filtered (_(" in overlay section %s"),
1592 section->the_bfd_section->name);
1593 }
1594 }
1595 }
1596 }
1597 break;
1598
1599 case LOC_OPTIMIZED_OUT:
1600 printf_filtered (_("optimized out"));
1601 break;
1602
1603 default:
1604 printf_filtered (_("of unknown (botched) type"));
1605 break;
1606 }
1607 printf_filtered (".\n");
1608 }
1609 \f
1610
1611 static void
1612 x_command (char *exp, int from_tty)
1613 {
1614 struct format_data fmt;
1615 struct value *val;
1616
1617 fmt.format = last_format ? last_format : 'x';
1618 fmt.size = last_size;
1619 fmt.count = 1;
1620 fmt.raw = 0;
1621
1622 if (exp && *exp == '/')
1623 {
1624 const char *tmp = exp + 1;
1625
1626 fmt = decode_format (&tmp, last_format, last_size);
1627 exp = (char *) tmp;
1628 }
1629
1630 /* If we have an expression, evaluate it and use it as the address. */
1631
1632 if (exp != 0 && *exp != 0)
1633 {
1634 expression_up expr = parse_expression (exp);
1635 /* Cause expression not to be there any more if this command is
1636 repeated with Newline. But don't clobber a user-defined
1637 command's definition. */
1638 if (from_tty)
1639 *exp = 0;
1640 val = evaluate_expression (expr.get ());
1641 if (TYPE_IS_REFERENCE (value_type (val)))
1642 val = coerce_ref (val);
1643 /* In rvalue contexts, such as this, functions are coerced into
1644 pointers to functions. This makes "x/i main" work. */
1645 if (/* last_format == 'i' && */
1646 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1647 && VALUE_LVAL (val) == lval_memory)
1648 next_address = value_address (val);
1649 else
1650 next_address = value_as_address (val);
1651
1652 next_gdbarch = expr->gdbarch;
1653 }
1654
1655 if (!next_gdbarch)
1656 error_no_arg (_("starting display address"));
1657
1658 do_examine (fmt, next_gdbarch, next_address);
1659
1660 /* If the examine succeeds, we remember its size and format for next
1661 time. Set last_size to 'b' for strings. */
1662 if (fmt.format == 's')
1663 last_size = 'b';
1664 else
1665 last_size = fmt.size;
1666 last_format = fmt.format;
1667
1668 /* Set a couple of internal variables if appropriate. */
1669 if (last_examine_value)
1670 {
1671 /* Make last address examined available to the user as $_. Use
1672 the correct pointer type. */
1673 struct type *pointer_type
1674 = lookup_pointer_type (value_type (last_examine_value));
1675 set_internalvar (lookup_internalvar ("_"),
1676 value_from_pointer (pointer_type,
1677 last_examine_address));
1678
1679 /* Make contents of last address examined available to the user
1680 as $__. If the last value has not been fetched from memory
1681 then don't fetch it now; instead mark it by voiding the $__
1682 variable. */
1683 if (value_lazy (last_examine_value))
1684 clear_internalvar (lookup_internalvar ("__"));
1685 else
1686 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1687 }
1688 }
1689 \f
1690
1691 /* Add an expression to the auto-display chain.
1692 Specify the expression. */
1693
1694 static void
1695 display_command (char *arg, int from_tty)
1696 {
1697 struct format_data fmt;
1698 struct display *newobj;
1699 const char *exp = arg;
1700
1701 if (exp == 0)
1702 {
1703 do_displays ();
1704 return;
1705 }
1706
1707 if (*exp == '/')
1708 {
1709 exp++;
1710 fmt = decode_format (&exp, 0, 0);
1711 if (fmt.size && fmt.format == 0)
1712 fmt.format = 'x';
1713 if (fmt.format == 'i' || fmt.format == 's')
1714 fmt.size = 'b';
1715 }
1716 else
1717 {
1718 fmt.format = 0;
1719 fmt.size = 0;
1720 fmt.count = 0;
1721 fmt.raw = 0;
1722 }
1723
1724 innermost_block = NULL;
1725 expression_up expr = parse_expression (exp);
1726
1727 newobj = new display ();
1728
1729 newobj->exp_string = xstrdup (exp);
1730 newobj->exp = std::move (expr);
1731 newobj->block = innermost_block;
1732 newobj->pspace = current_program_space;
1733 newobj->number = ++display_number;
1734 newobj->format = fmt;
1735 newobj->enabled_p = 1;
1736 newobj->next = NULL;
1737
1738 if (display_chain == NULL)
1739 display_chain = newobj;
1740 else
1741 {
1742 struct display *last;
1743
1744 for (last = display_chain; last->next != NULL; last = last->next)
1745 ;
1746 last->next = newobj;
1747 }
1748
1749 if (from_tty)
1750 do_one_display (newobj);
1751
1752 dont_repeat ();
1753 }
1754
1755 static void
1756 free_display (struct display *d)
1757 {
1758 xfree (d->exp_string);
1759 delete d;
1760 }
1761
1762 /* Clear out the display_chain. Done when new symtabs are loaded,
1763 since this invalidates the types stored in many expressions. */
1764
1765 void
1766 clear_displays (void)
1767 {
1768 struct display *d;
1769
1770 while ((d = display_chain) != NULL)
1771 {
1772 display_chain = d->next;
1773 free_display (d);
1774 }
1775 }
1776
1777 /* Delete the auto-display DISPLAY. */
1778
1779 static void
1780 delete_display (struct display *display)
1781 {
1782 struct display *d;
1783
1784 gdb_assert (display != NULL);
1785
1786 if (display_chain == display)
1787 display_chain = display->next;
1788
1789 ALL_DISPLAYS (d)
1790 if (d->next == display)
1791 {
1792 d->next = display->next;
1793 break;
1794 }
1795
1796 free_display (display);
1797 }
1798
1799 /* Call FUNCTION on each of the displays whose numbers are given in
1800 ARGS. DATA is passed unmodified to FUNCTION. */
1801
1802 static void
1803 map_display_numbers (const char *args,
1804 void (*function) (struct display *,
1805 void *),
1806 void *data)
1807 {
1808 int num;
1809
1810 if (args == NULL)
1811 error_no_arg (_("one or more display numbers"));
1812
1813 number_or_range_parser parser (args);
1814
1815 while (!parser.finished ())
1816 {
1817 const char *p = parser.cur_tok ();
1818
1819 num = parser.get_number ();
1820 if (num == 0)
1821 warning (_("bad display number at or near '%s'"), p);
1822 else
1823 {
1824 struct display *d, *tmp;
1825
1826 ALL_DISPLAYS_SAFE (d, tmp)
1827 if (d->number == num)
1828 break;
1829 if (d == NULL)
1830 printf_unfiltered (_("No display number %d.\n"), num);
1831 else
1832 function (d, data);
1833 }
1834 }
1835 }
1836
1837 /* Callback for map_display_numbers, that deletes a display. */
1838
1839 static void
1840 do_delete_display (struct display *d, void *data)
1841 {
1842 delete_display (d);
1843 }
1844
1845 /* "undisplay" command. */
1846
1847 static void
1848 undisplay_command (const char *args, int from_tty)
1849 {
1850 if (args == NULL)
1851 {
1852 if (query (_("Delete all auto-display expressions? ")))
1853 clear_displays ();
1854 dont_repeat ();
1855 return;
1856 }
1857
1858 map_display_numbers (args, do_delete_display, NULL);
1859 dont_repeat ();
1860 }
1861
1862 /* Display a single auto-display.
1863 Do nothing if the display cannot be printed in the current context,
1864 or if the display is disabled. */
1865
1866 static void
1867 do_one_display (struct display *d)
1868 {
1869 int within_current_scope;
1870
1871 if (d->enabled_p == 0)
1872 return;
1873
1874 /* The expression carries the architecture that was used at parse time.
1875 This is a problem if the expression depends on architecture features
1876 (e.g. register numbers), and the current architecture is now different.
1877 For example, a display statement like "display/i $pc" is expected to
1878 display the PC register of the current architecture, not the arch at
1879 the time the display command was given. Therefore, we re-parse the
1880 expression if the current architecture has changed. */
1881 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1882 {
1883 d->exp.reset ();
1884 d->block = NULL;
1885 }
1886
1887 if (d->exp == NULL)
1888 {
1889
1890 TRY
1891 {
1892 innermost_block = NULL;
1893 d->exp = parse_expression (d->exp_string);
1894 d->block = innermost_block;
1895 }
1896 CATCH (ex, RETURN_MASK_ALL)
1897 {
1898 /* Can't re-parse the expression. Disable this display item. */
1899 d->enabled_p = 0;
1900 warning (_("Unable to display \"%s\": %s"),
1901 d->exp_string, ex.message);
1902 return;
1903 }
1904 END_CATCH
1905 }
1906
1907 if (d->block)
1908 {
1909 if (d->pspace == current_program_space)
1910 within_current_scope = contained_in (get_selected_block (0), d->block);
1911 else
1912 within_current_scope = 0;
1913 }
1914 else
1915 within_current_scope = 1;
1916 if (!within_current_scope)
1917 return;
1918
1919 scoped_restore save_display_number
1920 = make_scoped_restore (&current_display_number, d->number);
1921
1922 annotate_display_begin ();
1923 printf_filtered ("%d", d->number);
1924 annotate_display_number_end ();
1925 printf_filtered (": ");
1926 if (d->format.size)
1927 {
1928
1929 annotate_display_format ();
1930
1931 printf_filtered ("x/");
1932 if (d->format.count != 1)
1933 printf_filtered ("%d", d->format.count);
1934 printf_filtered ("%c", d->format.format);
1935 if (d->format.format != 'i' && d->format.format != 's')
1936 printf_filtered ("%c", d->format.size);
1937 printf_filtered (" ");
1938
1939 annotate_display_expression ();
1940
1941 puts_filtered (d->exp_string);
1942 annotate_display_expression_end ();
1943
1944 if (d->format.count != 1 || d->format.format == 'i')
1945 printf_filtered ("\n");
1946 else
1947 printf_filtered (" ");
1948
1949 annotate_display_value ();
1950
1951 TRY
1952 {
1953 struct value *val;
1954 CORE_ADDR addr;
1955
1956 val = evaluate_expression (d->exp.get ());
1957 addr = value_as_address (val);
1958 if (d->format.format == 'i')
1959 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1960 do_examine (d->format, d->exp->gdbarch, addr);
1961 }
1962 CATCH (ex, RETURN_MASK_ERROR)
1963 {
1964 fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
1965 }
1966 END_CATCH
1967 }
1968 else
1969 {
1970 struct value_print_options opts;
1971
1972 annotate_display_format ();
1973
1974 if (d->format.format)
1975 printf_filtered ("/%c ", d->format.format);
1976
1977 annotate_display_expression ();
1978
1979 puts_filtered (d->exp_string);
1980 annotate_display_expression_end ();
1981
1982 printf_filtered (" = ");
1983
1984 annotate_display_expression ();
1985
1986 get_formatted_print_options (&opts, d->format.format);
1987 opts.raw = d->format.raw;
1988
1989 TRY
1990 {
1991 struct value *val;
1992
1993 val = evaluate_expression (d->exp.get ());
1994 print_formatted (val, d->format.size, &opts, gdb_stdout);
1995 }
1996 CATCH (ex, RETURN_MASK_ERROR)
1997 {
1998 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
1999 }
2000 END_CATCH
2001
2002 printf_filtered ("\n");
2003 }
2004
2005 annotate_display_end ();
2006
2007 gdb_flush (gdb_stdout);
2008 }
2009
2010 /* Display all of the values on the auto-display chain which can be
2011 evaluated in the current scope. */
2012
2013 void
2014 do_displays (void)
2015 {
2016 struct display *d;
2017
2018 for (d = display_chain; d; d = d->next)
2019 do_one_display (d);
2020 }
2021
2022 /* Delete the auto-display which we were in the process of displaying.
2023 This is done when there is an error or a signal. */
2024
2025 void
2026 disable_display (int num)
2027 {
2028 struct display *d;
2029
2030 for (d = display_chain; d; d = d->next)
2031 if (d->number == num)
2032 {
2033 d->enabled_p = 0;
2034 return;
2035 }
2036 printf_unfiltered (_("No display number %d.\n"), num);
2037 }
2038
2039 void
2040 disable_current_display (void)
2041 {
2042 if (current_display_number >= 0)
2043 {
2044 disable_display (current_display_number);
2045 fprintf_unfiltered (gdb_stderr,
2046 _("Disabling display %d to "
2047 "avoid infinite recursion.\n"),
2048 current_display_number);
2049 }
2050 current_display_number = -1;
2051 }
2052
2053 static void
2054 info_display_command (char *ignore, int from_tty)
2055 {
2056 struct display *d;
2057
2058 if (!display_chain)
2059 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2060 else
2061 printf_filtered (_("Auto-display expressions now in effect:\n\
2062 Num Enb Expression\n"));
2063
2064 for (d = display_chain; d; d = d->next)
2065 {
2066 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2067 if (d->format.size)
2068 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2069 d->format.format);
2070 else if (d->format.format)
2071 printf_filtered ("/%c ", d->format.format);
2072 puts_filtered (d->exp_string);
2073 if (d->block && !contained_in (get_selected_block (0), d->block))
2074 printf_filtered (_(" (cannot be evaluated in the current context)"));
2075 printf_filtered ("\n");
2076 gdb_flush (gdb_stdout);
2077 }
2078 }
2079
2080 /* Callback fo map_display_numbers, that enables or disables the
2081 passed in display D. */
2082
2083 static void
2084 do_enable_disable_display (struct display *d, void *data)
2085 {
2086 d->enabled_p = *(int *) data;
2087 }
2088
2089 /* Implamentation of both the "disable display" and "enable display"
2090 commands. ENABLE decides what to do. */
2091
2092 static void
2093 enable_disable_display_command (const char *args, int from_tty, int enable)
2094 {
2095 if (args == NULL)
2096 {
2097 struct display *d;
2098
2099 ALL_DISPLAYS (d)
2100 d->enabled_p = enable;
2101 return;
2102 }
2103
2104 map_display_numbers (args, do_enable_disable_display, &enable);
2105 }
2106
2107 /* The "enable display" command. */
2108
2109 static void
2110 enable_display_command (const char *args, int from_tty)
2111 {
2112 enable_disable_display_command (args, from_tty, 1);
2113 }
2114
2115 /* The "disable display" command. */
2116
2117 static void
2118 disable_display_command (const char *args, int from_tty)
2119 {
2120 enable_disable_display_command (args, from_tty, 0);
2121 }
2122
2123 /* display_chain items point to blocks and expressions. Some expressions in
2124 turn may point to symbols.
2125 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2126 obstack_free'd when a shared library is unloaded.
2127 Clear pointers that are about to become dangling.
2128 Both .exp and .block fields will be restored next time we need to display
2129 an item by re-parsing .exp_string field in the new execution context. */
2130
2131 static void
2132 clear_dangling_display_expressions (struct objfile *objfile)
2133 {
2134 struct display *d;
2135 struct program_space *pspace;
2136
2137 /* With no symbol file we cannot have a block or expression from it. */
2138 if (objfile == NULL)
2139 return;
2140 pspace = objfile->pspace;
2141 if (objfile->separate_debug_objfile_backlink)
2142 {
2143 objfile = objfile->separate_debug_objfile_backlink;
2144 gdb_assert (objfile->pspace == pspace);
2145 }
2146
2147 for (d = display_chain; d != NULL; d = d->next)
2148 {
2149 if (d->pspace != pspace)
2150 continue;
2151
2152 if (lookup_objfile_from_block (d->block) == objfile
2153 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2154 {
2155 d->exp.reset ();
2156 d->block = NULL;
2157 }
2158 }
2159 }
2160 \f
2161
2162 /* Print the value in stack frame FRAME of a variable specified by a
2163 struct symbol. NAME is the name to print; if NULL then VAR's print
2164 name will be used. STREAM is the ui_file on which to print the
2165 value. INDENT specifies the number of indent levels to print
2166 before printing the variable name.
2167
2168 This function invalidates FRAME. */
2169
2170 void
2171 print_variable_and_value (const char *name, struct symbol *var,
2172 struct frame_info *frame,
2173 struct ui_file *stream, int indent)
2174 {
2175
2176 if (!name)
2177 name = SYMBOL_PRINT_NAME (var);
2178
2179 fprintf_filtered (stream, "%s%s = ", n_spaces (2 * indent), name);
2180 TRY
2181 {
2182 struct value *val;
2183 struct value_print_options opts;
2184
2185 /* READ_VAR_VALUE needs a block in order to deal with non-local
2186 references (i.e. to handle nested functions). In this context, we
2187 print variables that are local to this frame, so we can avoid passing
2188 a block to it. */
2189 val = read_var_value (var, NULL, frame);
2190 get_user_print_options (&opts);
2191 opts.deref_ref = 1;
2192 common_val_print (val, stream, indent, &opts, current_language);
2193
2194 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2195 function. */
2196 frame = NULL;
2197 }
2198 CATCH (except, RETURN_MASK_ERROR)
2199 {
2200 fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
2201 except.message);
2202 }
2203 END_CATCH
2204
2205 fprintf_filtered (stream, "\n");
2206 }
2207
2208 /* Subroutine of ui_printf to simplify it.
2209 Print VALUE to STREAM using FORMAT.
2210 VALUE is a C-style string on the target. */
2211
2212 static void
2213 printf_c_string (struct ui_file *stream, const char *format,
2214 struct value *value)
2215 {
2216 gdb_byte *str;
2217 CORE_ADDR tem;
2218 int j;
2219
2220 tem = value_as_address (value);
2221
2222 /* This is a %s argument. Find the length of the string. */
2223 for (j = 0;; j++)
2224 {
2225 gdb_byte c;
2226
2227 QUIT;
2228 read_memory (tem + j, &c, 1);
2229 if (c == 0)
2230 break;
2231 }
2232
2233 /* Copy the string contents into a string inside GDB. */
2234 str = (gdb_byte *) alloca (j + 1);
2235 if (j != 0)
2236 read_memory (tem, str, j);
2237 str[j] = 0;
2238
2239 fprintf_filtered (stream, format, (char *) str);
2240 }
2241
2242 /* Subroutine of ui_printf to simplify it.
2243 Print VALUE to STREAM using FORMAT.
2244 VALUE is a wide C-style string on the target. */
2245
2246 static void
2247 printf_wide_c_string (struct ui_file *stream, const char *format,
2248 struct value *value)
2249 {
2250 gdb_byte *str;
2251 CORE_ADDR tem;
2252 int j;
2253 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2254 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2255 struct type *wctype = lookup_typename (current_language, gdbarch,
2256 "wchar_t", NULL, 0);
2257 int wcwidth = TYPE_LENGTH (wctype);
2258 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2259
2260 tem = value_as_address (value);
2261
2262 /* This is a %s argument. Find the length of the string. */
2263 for (j = 0;; j += wcwidth)
2264 {
2265 QUIT;
2266 read_memory (tem + j, buf, wcwidth);
2267 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2268 break;
2269 }
2270
2271 /* Copy the string contents into a string inside GDB. */
2272 str = (gdb_byte *) alloca (j + wcwidth);
2273 if (j != 0)
2274 read_memory (tem, str, j);
2275 memset (&str[j], 0, wcwidth);
2276
2277 auto_obstack output;
2278
2279 convert_between_encodings (target_wide_charset (gdbarch),
2280 host_charset (),
2281 str, j, wcwidth,
2282 &output, translit_char);
2283 obstack_grow_str0 (&output, "");
2284
2285 fprintf_filtered (stream, format, obstack_base (&output));
2286 }
2287
2288 /* Subroutine of ui_printf to simplify it.
2289 Print VALUE, a decimal floating point value, to STREAM using FORMAT. */
2290
2291 static void
2292 printf_decfloat (struct ui_file *stream, const char *format,
2293 struct value *value)
2294 {
2295 const gdb_byte *param_ptr = value_contents (value);
2296
2297 #if defined (PRINTF_HAS_DECFLOAT)
2298 /* If we have native support for Decimal floating
2299 printing, handle it here. */
2300 fprintf_filtered (stream, format, param_ptr);
2301 #else
2302 /* As a workaround until vasprintf has native support for DFP
2303 we convert the DFP values to string and print them using
2304 the %s format specifier. */
2305 const char *p;
2306
2307 /* Parameter data. */
2308 struct type *param_type = value_type (value);
2309 struct gdbarch *gdbarch = get_type_arch (param_type);
2310 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2311
2312 /* DFP output data. */
2313 struct value *dfp_value = NULL;
2314 gdb_byte *dfp_ptr;
2315 int dfp_len = 16;
2316 gdb_byte dec[16];
2317 struct type *dfp_type = NULL;
2318
2319 /* Points to the end of the string so that we can go back
2320 and check for DFP length modifiers. */
2321 p = format + strlen (format);
2322
2323 /* Look for the float/double format specifier. */
2324 while (*p != 'f' && *p != 'e' && *p != 'E'
2325 && *p != 'g' && *p != 'G')
2326 p--;
2327
2328 /* Search for the '%' char and extract the size and type of
2329 the output decimal value based on its modifiers
2330 (%Hf, %Df, %DDf). */
2331 while (*--p != '%')
2332 {
2333 if (*p == 'H')
2334 {
2335 dfp_len = 4;
2336 dfp_type = builtin_type (gdbarch)->builtin_decfloat;
2337 }
2338 else if (*p == 'D' && *(p - 1) == 'D')
2339 {
2340 dfp_len = 16;
2341 dfp_type = builtin_type (gdbarch)->builtin_declong;
2342 p--;
2343 }
2344 else
2345 {
2346 dfp_len = 8;
2347 dfp_type = builtin_type (gdbarch)->builtin_decdouble;
2348 }
2349 }
2350
2351 /* Conversion between different DFP types. */
2352 if (TYPE_CODE (param_type) == TYPE_CODE_DECFLOAT)
2353 decimal_convert (param_ptr, TYPE_LENGTH (param_type),
2354 byte_order, dec, dfp_len, byte_order);
2355 else
2356 /* If this is a non-trivial conversion, just output 0.
2357 A correct converted value can be displayed by explicitly
2358 casting to a DFP type. */
2359 decimal_from_string (dec, dfp_len, byte_order, "0");
2360
2361 dfp_value = value_from_decfloat (dfp_type, dec);
2362
2363 dfp_ptr = (gdb_byte *) value_contents (dfp_value);
2364
2365 /* Convert the value to a string and print it. */
2366 std::string str = decimal_to_string (dfp_ptr, dfp_len, byte_order);
2367 fputs_filtered (str.c_str (), stream);
2368 #endif
2369 }
2370
2371 /* Subroutine of ui_printf to simplify it.
2372 Print VALUE, a target pointer, to STREAM using FORMAT. */
2373
2374 static void
2375 printf_pointer (struct ui_file *stream, const char *format,
2376 struct value *value)
2377 {
2378 /* We avoid the host's %p because pointers are too
2379 likely to be the wrong size. The only interesting
2380 modifier for %p is a width; extract that, and then
2381 handle %p as glibc would: %#x or a literal "(nil)". */
2382
2383 const char *p;
2384 char *fmt, *fmt_p;
2385 #ifdef PRINTF_HAS_LONG_LONG
2386 long long val = value_as_long (value);
2387 #else
2388 long val = value_as_long (value);
2389 #endif
2390
2391 fmt = (char *) alloca (strlen (format) + 5);
2392
2393 /* Copy up to the leading %. */
2394 p = format;
2395 fmt_p = fmt;
2396 while (*p)
2397 {
2398 int is_percent = (*p == '%');
2399
2400 *fmt_p++ = *p++;
2401 if (is_percent)
2402 {
2403 if (*p == '%')
2404 *fmt_p++ = *p++;
2405 else
2406 break;
2407 }
2408 }
2409
2410 if (val != 0)
2411 *fmt_p++ = '#';
2412
2413 /* Copy any width. */
2414 while (*p >= '0' && *p < '9')
2415 *fmt_p++ = *p++;
2416
2417 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2418 if (val != 0)
2419 {
2420 #ifdef PRINTF_HAS_LONG_LONG
2421 *fmt_p++ = 'l';
2422 #endif
2423 *fmt_p++ = 'l';
2424 *fmt_p++ = 'x';
2425 *fmt_p++ = '\0';
2426 fprintf_filtered (stream, fmt, val);
2427 }
2428 else
2429 {
2430 *fmt_p++ = 's';
2431 *fmt_p++ = '\0';
2432 fprintf_filtered (stream, fmt, "(nil)");
2433 }
2434 }
2435
2436 /* printf "printf format string" ARG to STREAM. */
2437
2438 static void
2439 ui_printf (const char *arg, struct ui_file *stream)
2440 {
2441 struct format_piece *fpieces;
2442 const char *s = arg;
2443 struct value **val_args;
2444 int allocated_args = 20;
2445 struct cleanup *old_cleanups;
2446
2447 val_args = XNEWVEC (struct value *, allocated_args);
2448 old_cleanups = make_cleanup (free_current_contents, &val_args);
2449
2450 if (s == 0)
2451 error_no_arg (_("format-control string and values to print"));
2452
2453 s = skip_spaces (s);
2454
2455 /* A format string should follow, enveloped in double quotes. */
2456 if (*s++ != '"')
2457 error (_("Bad format string, missing '\"'."));
2458
2459 fpieces = parse_format_string (&s);
2460
2461 make_cleanup (free_format_pieces_cleanup, &fpieces);
2462
2463 if (*s++ != '"')
2464 error (_("Bad format string, non-terminated '\"'."));
2465
2466 s = skip_spaces (s);
2467
2468 if (*s != ',' && *s != 0)
2469 error (_("Invalid argument syntax"));
2470
2471 if (*s == ',')
2472 s++;
2473 s = skip_spaces (s);
2474
2475 {
2476 int nargs = 0;
2477 int nargs_wanted;
2478 int i, fr;
2479 char *current_substring;
2480
2481 nargs_wanted = 0;
2482 for (fr = 0; fpieces[fr].string != NULL; fr++)
2483 if (fpieces[fr].argclass != literal_piece)
2484 ++nargs_wanted;
2485
2486 /* Now, parse all arguments and evaluate them.
2487 Store the VALUEs in VAL_ARGS. */
2488
2489 while (*s != '\0')
2490 {
2491 const char *s1;
2492
2493 if (nargs == allocated_args)
2494 val_args = (struct value **) xrealloc ((char *) val_args,
2495 (allocated_args *= 2)
2496 * sizeof (struct value *));
2497 s1 = s;
2498 val_args[nargs] = parse_to_comma_and_eval (&s1);
2499
2500 nargs++;
2501 s = s1;
2502 if (*s == ',')
2503 s++;
2504 }
2505
2506 if (nargs != nargs_wanted)
2507 error (_("Wrong number of arguments for specified format-string"));
2508
2509 /* Now actually print them. */
2510 i = 0;
2511 for (fr = 0; fpieces[fr].string != NULL; fr++)
2512 {
2513 current_substring = fpieces[fr].string;
2514 switch (fpieces[fr].argclass)
2515 {
2516 case string_arg:
2517 printf_c_string (stream, current_substring, val_args[i]);
2518 break;
2519 case wide_string_arg:
2520 printf_wide_c_string (stream, current_substring, val_args[i]);
2521 break;
2522 case wide_char_arg:
2523 {
2524 struct gdbarch *gdbarch
2525 = get_type_arch (value_type (val_args[i]));
2526 struct type *wctype = lookup_typename (current_language, gdbarch,
2527 "wchar_t", NULL, 0);
2528 struct type *valtype;
2529 const gdb_byte *bytes;
2530
2531 valtype = value_type (val_args[i]);
2532 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2533 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2534 error (_("expected wchar_t argument for %%lc"));
2535
2536 bytes = value_contents (val_args[i]);
2537
2538 auto_obstack output;
2539
2540 convert_between_encodings (target_wide_charset (gdbarch),
2541 host_charset (),
2542 bytes, TYPE_LENGTH (valtype),
2543 TYPE_LENGTH (valtype),
2544 &output, translit_char);
2545 obstack_grow_str0 (&output, "");
2546
2547 fprintf_filtered (stream, current_substring,
2548 obstack_base (&output));
2549 }
2550 break;
2551 case double_arg:
2552 {
2553 struct type *type = value_type (val_args[i]);
2554 DOUBLEST val;
2555 int inv;
2556
2557 /* If format string wants a float, unchecked-convert the value
2558 to floating point of the same size. */
2559 type = float_type_from_length (type);
2560 val = unpack_double (type, value_contents (val_args[i]), &inv);
2561 if (inv)
2562 error (_("Invalid floating value found in program."));
2563
2564 fprintf_filtered (stream, current_substring, (double) val);
2565 break;
2566 }
2567 case long_double_arg:
2568 #ifdef HAVE_LONG_DOUBLE
2569 {
2570 struct type *type = value_type (val_args[i]);
2571 DOUBLEST val;
2572 int inv;
2573
2574 /* If format string wants a float, unchecked-convert the value
2575 to floating point of the same size. */
2576 type = float_type_from_length (type);
2577 val = unpack_double (type, value_contents (val_args[i]), &inv);
2578 if (inv)
2579 error (_("Invalid floating value found in program."));
2580
2581 fprintf_filtered (stream, current_substring,
2582 (long double) val);
2583 break;
2584 }
2585 #else
2586 error (_("long double not supported in printf"));
2587 #endif
2588 case long_long_arg:
2589 #ifdef PRINTF_HAS_LONG_LONG
2590 {
2591 long long val = value_as_long (val_args[i]);
2592
2593 fprintf_filtered (stream, current_substring, val);
2594 break;
2595 }
2596 #else
2597 error (_("long long not supported in printf"));
2598 #endif
2599 case int_arg:
2600 {
2601 int val = value_as_long (val_args[i]);
2602
2603 fprintf_filtered (stream, current_substring, val);
2604 break;
2605 }
2606 case long_arg:
2607 {
2608 long val = value_as_long (val_args[i]);
2609
2610 fprintf_filtered (stream, current_substring, val);
2611 break;
2612 }
2613 /* Handles decimal floating values. */
2614 case decfloat_arg:
2615 printf_decfloat (stream, current_substring, val_args[i]);
2616 break;
2617 case ptr_arg:
2618 printf_pointer (stream, current_substring, val_args[i]);
2619 break;
2620 case literal_piece:
2621 /* Print a portion of the format string that has no
2622 directives. Note that this will not include any
2623 ordinary %-specs, but it might include "%%". That is
2624 why we use printf_filtered and not puts_filtered here.
2625 Also, we pass a dummy argument because some platforms
2626 have modified GCC to include -Wformat-security by
2627 default, which will warn here if there is no
2628 argument. */
2629 fprintf_filtered (stream, current_substring, 0);
2630 break;
2631 default:
2632 internal_error (__FILE__, __LINE__,
2633 _("failed internal consistency check"));
2634 }
2635 /* Maybe advance to the next argument. */
2636 if (fpieces[fr].argclass != literal_piece)
2637 ++i;
2638 }
2639 }
2640 do_cleanups (old_cleanups);
2641 }
2642
2643 /* Implement the "printf" command. */
2644
2645 static void
2646 printf_command (char *arg, int from_tty)
2647 {
2648 ui_printf (arg, gdb_stdout);
2649 gdb_flush (gdb_stdout);
2650 }
2651
2652 /* Implement the "eval" command. */
2653
2654 static void
2655 eval_command (char *arg, int from_tty)
2656 {
2657 string_file stb;
2658
2659 ui_printf (arg, &stb);
2660
2661 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2662
2663 execute_command (&expanded[0], from_tty);
2664 }
2665
2666 void
2667 _initialize_printcmd (void)
2668 {
2669 struct cmd_list_element *c;
2670
2671 current_display_number = -1;
2672
2673 observer_attach_free_objfile (clear_dangling_display_expressions);
2674
2675 add_info ("address", info_address_command,
2676 _("Describe where symbol SYM is stored."));
2677
2678 add_info ("symbol", info_symbol_command, _("\
2679 Describe what symbol is at location ADDR.\n\
2680 Only for symbols with fixed locations (global or static scope)."));
2681
2682 add_com ("x", class_vars, x_command, _("\
2683 Examine memory: x/FMT ADDRESS.\n\
2684 ADDRESS is an expression for the memory address to examine.\n\
2685 FMT is a repeat count followed by a format letter and a size letter.\n\
2686 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2687 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2688 and z(hex, zero padded on the left).\n\
2689 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2690 The specified number of objects of the specified size are printed\n\
2691 according to the format. If a negative number is specified, memory is\n\
2692 examined backward from the address.\n\n\
2693 Defaults for format and size letters are those previously used.\n\
2694 Default count is 1. Default address is following last thing printed\n\
2695 with this command or \"print\"."));
2696
2697 #if 0
2698 add_com ("whereis", class_vars, whereis_command,
2699 _("Print line number and file of definition of variable."));
2700 #endif
2701
2702 add_info ("display", info_display_command, _("\
2703 Expressions to display when program stops, with code numbers."));
2704
2705 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2706 Cancel some expressions to be displayed when program stops.\n\
2707 Arguments are the code numbers of the expressions to stop displaying.\n\
2708 No argument means cancel all automatic-display expressions.\n\
2709 \"delete display\" has the same effect as this command.\n\
2710 Do \"info display\" to see current list of code numbers."),
2711 &cmdlist);
2712
2713 add_com ("display", class_vars, display_command, _("\
2714 Print value of expression EXP each time the program stops.\n\
2715 /FMT may be used before EXP as in the \"print\" command.\n\
2716 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2717 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2718 and examining is done as in the \"x\" command.\n\n\
2719 With no argument, display all currently requested auto-display expressions.\n\
2720 Use \"undisplay\" to cancel display requests previously made."));
2721
2722 add_cmd ("display", class_vars, enable_display_command, _("\
2723 Enable some expressions to be displayed when program stops.\n\
2724 Arguments are the code numbers of the expressions to resume displaying.\n\
2725 No argument means enable all automatic-display expressions.\n\
2726 Do \"info display\" to see current list of code numbers."), &enablelist);
2727
2728 add_cmd ("display", class_vars, disable_display_command, _("\
2729 Disable some expressions to be displayed when program stops.\n\
2730 Arguments are the code numbers of the expressions to stop displaying.\n\
2731 No argument means disable all automatic-display expressions.\n\
2732 Do \"info display\" to see current list of code numbers."), &disablelist);
2733
2734 add_cmd ("display", class_vars, undisplay_command, _("\
2735 Cancel some expressions to be displayed when program stops.\n\
2736 Arguments are the code numbers of the expressions to stop displaying.\n\
2737 No argument means cancel all automatic-display expressions.\n\
2738 Do \"info display\" to see current list of code numbers."), &deletelist);
2739
2740 add_com ("printf", class_vars, printf_command, _("\
2741 printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2742 This is useful for formatted output in user-defined commands."));
2743
2744 add_com ("output", class_vars, output_command, _("\
2745 Like \"print\" but don't put in value history and don't print newline.\n\
2746 This is useful in user-defined commands."));
2747
2748 add_prefix_cmd ("set", class_vars, set_command, _("\
2749 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2750 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2751 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2752 with $), a register (a few standard names starting with $), or an actual\n\
2753 variable in the program being debugged. EXP is any valid expression.\n\
2754 Use \"set variable\" for variables with names identical to set subcommands.\n\
2755 \n\
2756 With a subcommand, this command modifies parts of the gdb environment.\n\
2757 You can see these environment settings with the \"show\" command."),
2758 &setlist, "set ", 1, &cmdlist);
2759 if (dbx_commands)
2760 add_com ("assign", class_vars, non_const_set_command, _("\
2761 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2762 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2763 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2764 with $), a register (a few standard names starting with $), or an actual\n\
2765 variable in the program being debugged. EXP is any valid expression.\n\
2766 Use \"set variable\" for variables with names identical to set subcommands.\n\
2767 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2768 You can see these environment settings with the \"show\" command."));
2769
2770 /* "call" is the same as "set", but handy for dbx users to call fns. */
2771 c = add_com ("call", class_vars, call_command, _("\
2772 Call a function in the program.\n\
2773 The argument is the function name and arguments, in the notation of the\n\
2774 current working language. The result is printed and saved in the value\n\
2775 history, if it is not void."));
2776 set_cmd_completer (c, expression_completer);
2777
2778 add_cmd ("variable", class_vars, set_command, _("\
2779 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2780 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2781 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2782 with $), a register (a few standard names starting with $), or an actual\n\
2783 variable in the program being debugged. EXP is any valid expression.\n\
2784 This may usually be abbreviated to simply \"set\"."),
2785 &setlist);
2786
2787 c = add_com ("print", class_vars, print_command, _("\
2788 Print value of expression EXP.\n\
2789 Variables accessible are those of the lexical environment of the selected\n\
2790 stack frame, plus all those whose scope is global or an entire file.\n\
2791 \n\
2792 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2793 $$NUM refers to NUM'th value back from the last one.\n\
2794 Names starting with $ refer to registers (with the values they would have\n\
2795 if the program were to return to the stack frame now selected, restoring\n\
2796 all registers saved by frames farther in) or else to debugger\n\
2797 \"convenience\" variables (any such name not a known register).\n\
2798 Use assignment expressions to give values to convenience variables.\n\
2799 \n\
2800 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2801 @ is a binary operator for treating consecutive data objects\n\
2802 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2803 element is FOO, whose second element is stored in the space following\n\
2804 where FOO is stored, etc. FOO must be an expression whose value\n\
2805 resides in memory.\n\
2806 \n\
2807 EXP may be preceded with /FMT, where FMT is a format letter\n\
2808 but no count or size letter (see \"x\" command)."));
2809 set_cmd_completer (c, expression_completer);
2810 add_com_alias ("p", "print", class_vars, 1);
2811 add_com_alias ("inspect", "print", class_vars, 1);
2812
2813 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2814 &max_symbolic_offset, _("\
2815 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2816 Show the largest offset that will be printed in <symbol+1234> form."), _("\
2817 Tell GDB to only display the symbolic form of an address if the\n\
2818 offset between the closest earlier symbol and the address is less than\n\
2819 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2820 to always print the symbolic form of an address if any symbol precedes\n\
2821 it. Zero is equivalent to \"unlimited\"."),
2822 NULL,
2823 show_max_symbolic_offset,
2824 &setprintlist, &showprintlist);
2825 add_setshow_boolean_cmd ("symbol-filename", no_class,
2826 &print_symbol_filename, _("\
2827 Set printing of source filename and line number with <symbol>."), _("\
2828 Show printing of source filename and line number with <symbol>."), NULL,
2829 NULL,
2830 show_print_symbol_filename,
2831 &setprintlist, &showprintlist);
2832
2833 add_com ("eval", no_class, eval_command, _("\
2834 Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\
2835 a command line, and call it."));
2836 }
This page took 0.0879 seconds and 5 git commands to generate.