* valops.c: Include "objfiles.h" and "symtab.h".
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "language.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "target.h"
33 #include "breakpoint.h"
34 #include "demangle.h"
35 #include "valprint.h"
36 #include "annotate.h"
37 #include "symfile.h" /* for overlay functions */
38 #include "objfiles.h" /* ditto */
39 #include "completer.h" /* for completion functions */
40 #include "ui-out.h"
41 #include "gdb_assert.h"
42 #include "block.h"
43 #include "disasm.h"
44 #include "dfp.h"
45
46 #ifdef TUI
47 #include "tui/tui.h" /* For tui_active et.al. */
48 #endif
49
50 #if defined(__MINGW32__)
51 # define USE_PRINTF_I64 1
52 # define PRINTF_HAS_LONG_LONG
53 #else
54 # define USE_PRINTF_I64 0
55 #endif
56
57 extern int asm_demangle; /* Whether to demangle syms in asm printouts */
58 extern int addressprint; /* Whether to print hex addresses in HLL " */
59
60 struct format_data
61 {
62 int count;
63 char format;
64 char size;
65 };
66
67 /* Last specified output format. */
68
69 static char last_format = 'x';
70
71 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
72
73 static char last_size = 'w';
74
75 /* Default address to examine next. */
76
77 static CORE_ADDR next_address;
78
79 /* Number of delay instructions following current disassembled insn. */
80
81 static int branch_delay_insns;
82
83 /* Last address examined. */
84
85 static CORE_ADDR last_examine_address;
86
87 /* Contents of last address examined.
88 This is not valid past the end of the `x' command! */
89
90 static struct value *last_examine_value;
91
92 /* Largest offset between a symbolic value and an address, that will be
93 printed as `0x1234 <symbol+offset>'. */
94
95 static unsigned int max_symbolic_offset = UINT_MAX;
96 static void
97 show_max_symbolic_offset (struct ui_file *file, int from_tty,
98 struct cmd_list_element *c, const char *value)
99 {
100 fprintf_filtered (file, _("\
101 The largest offset that will be printed in <symbol+1234> form is %s.\n"),
102 value);
103 }
104
105 /* Append the source filename and linenumber of the symbol when
106 printing a symbolic value as `<symbol at filename:linenum>' if set. */
107 static int print_symbol_filename = 0;
108 static void
109 show_print_symbol_filename (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
111 {
112 fprintf_filtered (file, _("\
113 Printing of source filename and line number with <symbol> is %s.\n"),
114 value);
115 }
116
117 /* Number of auto-display expression currently being displayed.
118 So that we can disable it if we get an error or a signal within it.
119 -1 when not doing one. */
120
121 int current_display_number;
122
123 /* Flag to low-level print routines that this value is being printed
124 in an epoch window. We'd like to pass this as a parameter, but
125 every routine would need to take it. Perhaps we can encapsulate
126 this in the I/O stream once we have GNU stdio. */
127
128 int inspect_it = 0;
129
130 struct display
131 {
132 /* Chain link to next auto-display item. */
133 struct display *next;
134 /* Expression to be evaluated and displayed. */
135 struct expression *exp;
136 /* Item number of this auto-display item. */
137 int number;
138 /* Display format specified. */
139 struct format_data format;
140 /* Innermost block required by this expression when evaluated */
141 struct block *block;
142 /* Status of this display (enabled or disabled) */
143 int enabled_p;
144 };
145
146 /* Chain of expressions whose values should be displayed
147 automatically each time the program stops. */
148
149 static struct display *display_chain;
150
151 static int display_number;
152
153 /* Prototypes for exported functions. */
154
155 void output_command (char *, int);
156
157 void _initialize_printcmd (void);
158
159 /* Prototypes for local functions. */
160
161 static void do_one_display (struct display *);
162 \f
163
164 /* Decode a format specification. *STRING_PTR should point to it.
165 OFORMAT and OSIZE are used as defaults for the format and size
166 if none are given in the format specification.
167 If OSIZE is zero, then the size field of the returned value
168 should be set only if a size is explicitly specified by the
169 user.
170 The structure returned describes all the data
171 found in the specification. In addition, *STRING_PTR is advanced
172 past the specification and past all whitespace following it. */
173
174 static struct format_data
175 decode_format (char **string_ptr, int oformat, int osize)
176 {
177 struct format_data val;
178 char *p = *string_ptr;
179
180 val.format = '?';
181 val.size = '?';
182 val.count = 1;
183
184 if (*p >= '0' && *p <= '9')
185 val.count = atoi (p);
186 while (*p >= '0' && *p <= '9')
187 p++;
188
189 /* Now process size or format letters that follow. */
190
191 while (1)
192 {
193 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
194 val.size = *p++;
195 else if (*p >= 'a' && *p <= 'z')
196 val.format = *p++;
197 else
198 break;
199 }
200
201 while (*p == ' ' || *p == '\t')
202 p++;
203 *string_ptr = p;
204
205 /* Set defaults for format and size if not specified. */
206 if (val.format == '?')
207 {
208 if (val.size == '?')
209 {
210 /* Neither has been specified. */
211 val.format = oformat;
212 val.size = osize;
213 }
214 else
215 /* If a size is specified, any format makes a reasonable
216 default except 'i'. */
217 val.format = oformat == 'i' ? 'x' : oformat;
218 }
219 else if (val.size == '?')
220 switch (val.format)
221 {
222 case 'a':
223 case 's':
224 /* Pick the appropriate size for an address. */
225 if (gdbarch_ptr_bit (current_gdbarch) == 64)
226 val.size = osize ? 'g' : osize;
227 else if (gdbarch_ptr_bit (current_gdbarch) == 32)
228 val.size = osize ? 'w' : osize;
229 else if (gdbarch_ptr_bit (current_gdbarch) == 16)
230 val.size = osize ? 'h' : osize;
231 else
232 /* Bad value for gdbarch_ptr_bit. */
233 internal_error (__FILE__, __LINE__,
234 _("failed internal consistency check"));
235 break;
236 case 'f':
237 /* Floating point has to be word or giantword. */
238 if (osize == 'w' || osize == 'g')
239 val.size = osize;
240 else
241 /* Default it to giantword if the last used size is not
242 appropriate. */
243 val.size = osize ? 'g' : osize;
244 break;
245 case 'c':
246 /* Characters default to one byte. */
247 val.size = osize ? 'b' : osize;
248 break;
249 default:
250 /* The default is the size most recently specified. */
251 val.size = osize;
252 }
253
254 return val;
255 }
256 \f
257 /* Print value VAL on stream according to FORMAT, a letter or 0.
258 Do not end with a newline.
259 0 means print VAL according to its own type.
260 SIZE is the letter for the size of datum being printed.
261 This is used to pad hex numbers so they line up. SIZE is 0
262 for print / output and set for examine. */
263
264 static void
265 print_formatted (struct value *val, int format, int size,
266 struct ui_file *stream)
267 {
268 struct type *type = check_typedef (value_type (val));
269 int len = TYPE_LENGTH (type);
270
271 if (VALUE_LVAL (val) == lval_memory)
272 next_address = VALUE_ADDRESS (val) + len;
273
274 if (size)
275 {
276 switch (format)
277 {
278 case 's':
279 /* FIXME: Need to handle wchar_t's here... */
280 next_address = VALUE_ADDRESS (val)
281 + val_print_string (VALUE_ADDRESS (val), -1, 1, stream);
282 return;
283
284 case 'i':
285 /* We often wrap here if there are long symbolic names. */
286 wrap_here (" ");
287 next_address = (VALUE_ADDRESS (val)
288 + gdb_print_insn (VALUE_ADDRESS (val), stream,
289 &branch_delay_insns));
290 return;
291 }
292 }
293
294 if (format == 0 || format == 's'
295 || TYPE_CODE (type) == TYPE_CODE_REF
296 || TYPE_CODE (type) == TYPE_CODE_ARRAY
297 || TYPE_CODE (type) == TYPE_CODE_STRING
298 || TYPE_CODE (type) == TYPE_CODE_STRUCT
299 || TYPE_CODE (type) == TYPE_CODE_UNION
300 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
301 /* If format is 0, use the 'natural' format for that type of
302 value. If the type is non-scalar, we have to use language
303 rules to print it as a series of scalars. */
304 value_print (val, stream, format, Val_pretty_default);
305 else
306 /* User specified format, so don't look to the the type to
307 tell us what to do. */
308 print_scalar_formatted (value_contents (val), type,
309 format, size, stream);
310 }
311
312 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
313 according to letters FORMAT and SIZE on STREAM.
314 FORMAT may not be zero. Formats s and i are not supported at this level.
315
316 This is how the elements of an array or structure are printed
317 with a format. */
318
319 void
320 print_scalar_formatted (const void *valaddr, struct type *type,
321 int format, int size, struct ui_file *stream)
322 {
323 LONGEST val_long = 0;
324 unsigned int len = TYPE_LENGTH (type);
325 enum bfd_endian byte_order = gdbarch_byte_order (current_gdbarch);
326
327 /* If we get here with a string format, try again without it. Go
328 all the way back to the language printers, which may call us
329 again. */
330 if (format == 's')
331 {
332 val_print (type, valaddr, 0, 0, stream, 0, 0, 0, Val_pretty_default,
333 current_language);
334 return;
335 }
336
337 if (len > sizeof(LONGEST) &&
338 (TYPE_CODE (type) == TYPE_CODE_INT
339 || TYPE_CODE (type) == TYPE_CODE_ENUM))
340 {
341 switch (format)
342 {
343 case 'o':
344 print_octal_chars (stream, valaddr, len, byte_order);
345 return;
346 case 'u':
347 case 'd':
348 print_decimal_chars (stream, valaddr, len, byte_order);
349 return;
350 case 't':
351 print_binary_chars (stream, valaddr, len, byte_order);
352 return;
353 case 'x':
354 print_hex_chars (stream, valaddr, len, byte_order);
355 return;
356 case 'c':
357 print_char_chars (stream, valaddr, len, byte_order);
358 return;
359 default:
360 break;
361 };
362 }
363
364 if (format != 'f')
365 val_long = unpack_long (type, valaddr);
366
367 /* If the value is a pointer, and pointers and addresses are not the
368 same, then at this point, the value's length (in target bytes) is
369 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
370 if (TYPE_CODE (type) == TYPE_CODE_PTR)
371 len = gdbarch_addr_bit (current_gdbarch) / TARGET_CHAR_BIT;
372
373 /* If we are printing it as unsigned, truncate it in case it is actually
374 a negative signed value (e.g. "print/u (short)-1" should print 65535
375 (if shorts are 16 bits) instead of 4294967295). */
376 if (format != 'd')
377 {
378 if (len < sizeof (LONGEST))
379 val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
380 }
381
382 switch (format)
383 {
384 case 'x':
385 if (!size)
386 {
387 /* No size specified, like in print. Print varying # of digits. */
388 print_longest (stream, 'x', 1, val_long);
389 }
390 else
391 switch (size)
392 {
393 case 'b':
394 case 'h':
395 case 'w':
396 case 'g':
397 print_longest (stream, size, 1, val_long);
398 break;
399 default:
400 error (_("Undefined output size \"%c\"."), size);
401 }
402 break;
403
404 case 'd':
405 print_longest (stream, 'd', 1, val_long);
406 break;
407
408 case 'u':
409 print_longest (stream, 'u', 0, val_long);
410 break;
411
412 case 'o':
413 if (val_long)
414 print_longest (stream, 'o', 1, val_long);
415 else
416 fprintf_filtered (stream, "0");
417 break;
418
419 case 'a':
420 {
421 CORE_ADDR addr = unpack_pointer (type, valaddr);
422 print_address (addr, stream);
423 }
424 break;
425
426 case 'c':
427 if (TYPE_UNSIGNED (type))
428 value_print (value_from_longest (builtin_type_true_unsigned_char,
429 val_long),
430 stream, 0, Val_pretty_default);
431 else
432 value_print (value_from_longest (builtin_type_true_char, val_long),
433 stream, 0, Val_pretty_default);
434 break;
435
436 case 'f':
437 if (len == TYPE_LENGTH (builtin_type_float))
438 type = builtin_type_float;
439 else if (len == TYPE_LENGTH (builtin_type_double))
440 type = builtin_type_double;
441 else if (len == TYPE_LENGTH (builtin_type_long_double))
442 type = builtin_type_long_double;
443 print_floating (valaddr, type, stream);
444 break;
445
446 case 0:
447 internal_error (__FILE__, __LINE__,
448 _("failed internal consistency check"));
449
450 case 't':
451 /* Binary; 't' stands for "two". */
452 {
453 char bits[8 * (sizeof val_long) + 1];
454 char buf[8 * (sizeof val_long) + 32];
455 char *cp = bits;
456 int width;
457
458 if (!size)
459 width = 8 * (sizeof val_long);
460 else
461 switch (size)
462 {
463 case 'b':
464 width = 8;
465 break;
466 case 'h':
467 width = 16;
468 break;
469 case 'w':
470 width = 32;
471 break;
472 case 'g':
473 width = 64;
474 break;
475 default:
476 error (_("Undefined output size \"%c\"."), size);
477 }
478
479 bits[width] = '\0';
480 while (width-- > 0)
481 {
482 bits[width] = (val_long & 1) ? '1' : '0';
483 val_long >>= 1;
484 }
485 if (!size)
486 {
487 while (*cp && *cp == '0')
488 cp++;
489 if (*cp == '\0')
490 cp--;
491 }
492 strcpy (buf, cp);
493 fputs_filtered (buf, stream);
494 }
495 break;
496
497 default:
498 error (_("Undefined output format \"%c\"."), format);
499 }
500 }
501
502 /* Specify default address for `x' command.
503 The `info lines' command uses this. */
504
505 void
506 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
507 {
508 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
509
510 next_address = addr;
511
512 /* Make address available to the user as $_. */
513 set_internalvar (lookup_internalvar ("_"),
514 value_from_pointer (ptr_type, addr));
515 }
516
517 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
518 after LEADIN. Print nothing if no symbolic name is found nearby.
519 Optionally also print source file and line number, if available.
520 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
521 or to interpret it as a possible C++ name and convert it back to source
522 form. However note that DO_DEMANGLE can be overridden by the specific
523 settings of the demangle and asm_demangle variables. */
524
525 void
526 print_address_symbolic (CORE_ADDR addr, struct ui_file *stream,
527 int do_demangle, char *leadin)
528 {
529 char *name = NULL;
530 char *filename = NULL;
531 int unmapped = 0;
532 int offset = 0;
533 int line = 0;
534
535 /* Throw away both name and filename. */
536 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
537 make_cleanup (free_current_contents, &filename);
538
539 if (build_address_symbolic (addr, do_demangle, &name, &offset,
540 &filename, &line, &unmapped))
541 {
542 do_cleanups (cleanup_chain);
543 return;
544 }
545
546 fputs_filtered (leadin, stream);
547 if (unmapped)
548 fputs_filtered ("<*", stream);
549 else
550 fputs_filtered ("<", stream);
551 fputs_filtered (name, stream);
552 if (offset != 0)
553 fprintf_filtered (stream, "+%u", (unsigned int) offset);
554
555 /* Append source filename and line number if desired. Give specific
556 line # of this addr, if we have it; else line # of the nearest symbol. */
557 if (print_symbol_filename && filename != NULL)
558 {
559 if (line != -1)
560 fprintf_filtered (stream, " at %s:%d", filename, line);
561 else
562 fprintf_filtered (stream, " in %s", filename);
563 }
564 if (unmapped)
565 fputs_filtered ("*>", stream);
566 else
567 fputs_filtered (">", stream);
568
569 do_cleanups (cleanup_chain);
570 }
571
572 /* Given an address ADDR return all the elements needed to print the
573 address in a symbolic form. NAME can be mangled or not depending
574 on DO_DEMANGLE (and also on the asm_demangle global variable,
575 manipulated via ''set print asm-demangle''). Return 0 in case of
576 success, when all the info in the OUT paramters is valid. Return 1
577 otherwise. */
578 int
579 build_address_symbolic (CORE_ADDR addr, /* IN */
580 int do_demangle, /* IN */
581 char **name, /* OUT */
582 int *offset, /* OUT */
583 char **filename, /* OUT */
584 int *line, /* OUT */
585 int *unmapped) /* OUT */
586 {
587 struct minimal_symbol *msymbol;
588 struct symbol *symbol;
589 CORE_ADDR name_location = 0;
590 struct obj_section *section = NULL;
591 char *name_temp = "";
592
593 /* Let's say it is unmapped. */
594 *unmapped = 0;
595
596 /* Determine if the address is in an overlay, and whether it is
597 mapped. */
598 if (overlay_debugging)
599 {
600 section = find_pc_overlay (addr);
601 if (pc_in_unmapped_range (addr, section))
602 {
603 *unmapped = 1;
604 addr = overlay_mapped_address (addr, section);
605 }
606 }
607
608 /* First try to find the address in the symbol table, then
609 in the minsyms. Take the closest one. */
610
611 /* This is defective in the sense that it only finds text symbols. So
612 really this is kind of pointless--we should make sure that the
613 minimal symbols have everything we need (by changing that we could
614 save some memory, but for many debug format--ELF/DWARF or
615 anything/stabs--it would be inconvenient to eliminate those minimal
616 symbols anyway). */
617 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
618 symbol = find_pc_sect_function (addr, section);
619
620 if (symbol)
621 {
622 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
623 if (do_demangle || asm_demangle)
624 name_temp = SYMBOL_PRINT_NAME (symbol);
625 else
626 name_temp = SYMBOL_LINKAGE_NAME (symbol);
627 }
628
629 if (msymbol != NULL)
630 {
631 if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
632 {
633 /* The msymbol is closer to the address than the symbol;
634 use the msymbol instead. */
635 symbol = 0;
636 name_location = SYMBOL_VALUE_ADDRESS (msymbol);
637 if (do_demangle || asm_demangle)
638 name_temp = SYMBOL_PRINT_NAME (msymbol);
639 else
640 name_temp = SYMBOL_LINKAGE_NAME (msymbol);
641 }
642 }
643 if (symbol == NULL && msymbol == NULL)
644 return 1;
645
646 /* If the nearest symbol is too far away, don't print anything symbolic. */
647
648 /* For when CORE_ADDR is larger than unsigned int, we do math in
649 CORE_ADDR. But when we detect unsigned wraparound in the
650 CORE_ADDR math, we ignore this test and print the offset,
651 because addr+max_symbolic_offset has wrapped through the end
652 of the address space back to the beginning, giving bogus comparison. */
653 if (addr > name_location + max_symbolic_offset
654 && name_location + max_symbolic_offset > name_location)
655 return 1;
656
657 *offset = addr - name_location;
658
659 *name = xstrdup (name_temp);
660
661 if (print_symbol_filename)
662 {
663 struct symtab_and_line sal;
664
665 sal = find_pc_sect_line (addr, section, 0);
666
667 if (sal.symtab)
668 {
669 *filename = xstrdup (sal.symtab->filename);
670 *line = sal.line;
671 }
672 }
673 return 0;
674 }
675
676
677 /* Print address ADDR symbolically on STREAM.
678 First print it as a number. Then perhaps print
679 <SYMBOL + OFFSET> after the number. */
680
681 void
682 print_address (CORE_ADDR addr, struct ui_file *stream)
683 {
684 fputs_filtered (paddress (addr), stream);
685 print_address_symbolic (addr, stream, asm_demangle, " ");
686 }
687
688 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
689 controls whether to print the symbolic name "raw" or demangled.
690 Global setting "addressprint" controls whether to print hex address
691 or not. */
692
693 void
694 print_address_demangle (CORE_ADDR addr, struct ui_file *stream,
695 int do_demangle)
696 {
697 if (addr == 0)
698 {
699 fprintf_filtered (stream, "0");
700 }
701 else if (addressprint)
702 {
703 fputs_filtered (paddress (addr), stream);
704 print_address_symbolic (addr, stream, do_demangle, " ");
705 }
706 else
707 {
708 print_address_symbolic (addr, stream, do_demangle, "");
709 }
710 }
711 \f
712
713 /* These are the types that $__ will get after an examine command of one
714 of these sizes. */
715
716 static struct type *examine_i_type;
717
718 static struct type *examine_b_type;
719 static struct type *examine_h_type;
720 static struct type *examine_w_type;
721 static struct type *examine_g_type;
722
723 /* Examine data at address ADDR in format FMT.
724 Fetch it from memory and print on gdb_stdout. */
725
726 static void
727 do_examine (struct format_data fmt, CORE_ADDR addr)
728 {
729 char format = 0;
730 char size;
731 int count = 1;
732 struct type *val_type = NULL;
733 int i;
734 int maxelts;
735
736 format = fmt.format;
737 size = fmt.size;
738 count = fmt.count;
739 next_address = addr;
740
741 /* String or instruction format implies fetch single bytes
742 regardless of the specified size. */
743 if (format == 's' || format == 'i')
744 size = 'b';
745
746 if (format == 'i')
747 val_type = examine_i_type;
748 else if (size == 'b')
749 val_type = examine_b_type;
750 else if (size == 'h')
751 val_type = examine_h_type;
752 else if (size == 'w')
753 val_type = examine_w_type;
754 else if (size == 'g')
755 val_type = examine_g_type;
756
757 maxelts = 8;
758 if (size == 'w')
759 maxelts = 4;
760 if (size == 'g')
761 maxelts = 2;
762 if (format == 's' || format == 'i')
763 maxelts = 1;
764
765 /* Print as many objects as specified in COUNT, at most maxelts per line,
766 with the address of the next one at the start of each line. */
767
768 while (count > 0)
769 {
770 QUIT;
771 print_address (next_address, gdb_stdout);
772 printf_filtered (":");
773 for (i = maxelts;
774 i > 0 && count > 0;
775 i--, count--)
776 {
777 printf_filtered ("\t");
778 /* Note that print_formatted sets next_address for the next
779 object. */
780 last_examine_address = next_address;
781
782 if (last_examine_value)
783 value_free (last_examine_value);
784
785 /* The value to be displayed is not fetched greedily.
786 Instead, to avoid the possibility of a fetched value not
787 being used, its retrieval is delayed until the print code
788 uses it. When examining an instruction stream, the
789 disassembler will perform its own memory fetch using just
790 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
791 the disassembler be modified so that LAST_EXAMINE_VALUE
792 is left with the byte sequence from the last complete
793 instruction fetched from memory? */
794 last_examine_value = value_at_lazy (val_type, next_address);
795
796 if (last_examine_value)
797 release_value (last_examine_value);
798
799 print_formatted (last_examine_value, format, size, gdb_stdout);
800
801 /* Display any branch delay slots following the final insn. */
802 if (format == 'i' && count == 1)
803 count += branch_delay_insns;
804 }
805 printf_filtered ("\n");
806 gdb_flush (gdb_stdout);
807 }
808 }
809 \f
810 static void
811 validate_format (struct format_data fmt, char *cmdname)
812 {
813 if (fmt.size != 0)
814 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
815 if (fmt.count != 1)
816 error (_("Item count other than 1 is meaningless in \"%s\" command."),
817 cmdname);
818 if (fmt.format == 'i')
819 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
820 fmt.format, cmdname);
821 }
822
823 /* Evaluate string EXP as an expression in the current language and
824 print the resulting value. EXP may contain a format specifier as the
825 first argument ("/x myvar" for example, to print myvar in hex). */
826
827 static void
828 print_command_1 (char *exp, int inspect, int voidprint)
829 {
830 struct expression *expr;
831 struct cleanup *old_chain = 0;
832 char format = 0;
833 struct value *val;
834 struct format_data fmt;
835 int cleanup = 0;
836
837 /* Pass inspect flag to the rest of the print routines in a global
838 (sigh). */
839 inspect_it = inspect;
840
841 if (exp && *exp == '/')
842 {
843 exp++;
844 fmt = decode_format (&exp, last_format, 0);
845 validate_format (fmt, "print");
846 last_format = format = fmt.format;
847 }
848 else
849 {
850 fmt.count = 1;
851 fmt.format = 0;
852 fmt.size = 0;
853 }
854
855 if (exp && *exp)
856 {
857 struct type *type;
858 expr = parse_expression (exp);
859 old_chain = make_cleanup (free_current_contents, &expr);
860 cleanup = 1;
861 val = evaluate_expression (expr);
862 }
863 else
864 val = access_value_history (0);
865
866 if (voidprint || (val && value_type (val) &&
867 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
868 {
869 int histindex = record_latest_value (val);
870
871 if (histindex >= 0)
872 annotate_value_history_begin (histindex, value_type (val));
873 else
874 annotate_value_begin (value_type (val));
875
876 if (inspect)
877 printf_unfiltered ("\031(gdb-makebuffer \"%s\" %d '(\"",
878 exp, histindex);
879 else if (histindex >= 0)
880 printf_filtered ("$%d = ", histindex);
881
882 if (histindex >= 0)
883 annotate_value_history_value ();
884
885 print_formatted (val, format, fmt.size, gdb_stdout);
886 printf_filtered ("\n");
887
888 if (histindex >= 0)
889 annotate_value_history_end ();
890 else
891 annotate_value_end ();
892
893 if (inspect)
894 printf_unfiltered ("\") )\030");
895 }
896
897 if (cleanup)
898 do_cleanups (old_chain);
899 inspect_it = 0; /* Reset print routines to normal. */
900 }
901
902 static void
903 print_command (char *exp, int from_tty)
904 {
905 print_command_1 (exp, 0, 1);
906 }
907
908 /* Same as print, except in epoch, it gets its own window. */
909 static void
910 inspect_command (char *exp, int from_tty)
911 {
912 extern int epoch_interface;
913
914 print_command_1 (exp, epoch_interface, 1);
915 }
916
917 /* Same as print, except it doesn't print void results. */
918 static void
919 call_command (char *exp, int from_tty)
920 {
921 print_command_1 (exp, 0, 0);
922 }
923
924 void
925 output_command (char *exp, int from_tty)
926 {
927 struct expression *expr;
928 struct cleanup *old_chain;
929 char format = 0;
930 struct value *val;
931 struct format_data fmt;
932
933 fmt.size = 0;
934
935 if (exp && *exp == '/')
936 {
937 exp++;
938 fmt = decode_format (&exp, 0, 0);
939 validate_format (fmt, "output");
940 format = fmt.format;
941 }
942
943 expr = parse_expression (exp);
944 old_chain = make_cleanup (free_current_contents, &expr);
945
946 val = evaluate_expression (expr);
947
948 annotate_value_begin (value_type (val));
949
950 print_formatted (val, format, fmt.size, gdb_stdout);
951
952 annotate_value_end ();
953
954 wrap_here ("");
955 gdb_flush (gdb_stdout);
956
957 do_cleanups (old_chain);
958 }
959
960 static void
961 set_command (char *exp, int from_tty)
962 {
963 struct expression *expr = parse_expression (exp);
964 struct cleanup *old_chain =
965 make_cleanup (free_current_contents, &expr);
966 evaluate_expression (expr);
967 do_cleanups (old_chain);
968 }
969
970 static void
971 sym_info (char *arg, int from_tty)
972 {
973 struct minimal_symbol *msymbol;
974 struct objfile *objfile;
975 struct obj_section *osect;
976 CORE_ADDR addr, sect_addr;
977 int matches = 0;
978 unsigned int offset;
979
980 if (!arg)
981 error_no_arg (_("address"));
982
983 addr = parse_and_eval_address (arg);
984 ALL_OBJSECTIONS (objfile, osect)
985 {
986 /* Only process each object file once, even if there's a separate
987 debug file. */
988 if (objfile->separate_debug_objfile_backlink)
989 continue;
990
991 sect_addr = overlay_mapped_address (addr, osect);
992
993 if (obj_section_addr (osect) <= sect_addr
994 && sect_addr < obj_section_endaddr (osect)
995 && (msymbol = lookup_minimal_symbol_by_pc_section (sect_addr, osect)))
996 {
997 matches = 1;
998 offset = sect_addr - SYMBOL_VALUE_ADDRESS (msymbol);
999 if (offset)
1000 printf_filtered ("%s + %u in ",
1001 SYMBOL_PRINT_NAME (msymbol), offset);
1002 else
1003 printf_filtered ("%s in ",
1004 SYMBOL_PRINT_NAME (msymbol));
1005 if (pc_in_unmapped_range (addr, osect))
1006 printf_filtered (_("load address range of "));
1007 if (section_is_overlay (osect))
1008 printf_filtered (_("%s overlay "),
1009 section_is_mapped (osect) ? "mapped" : "unmapped");
1010 printf_filtered (_("section %s"), osect->the_bfd_section->name);
1011 printf_filtered ("\n");
1012 }
1013 }
1014 if (matches == 0)
1015 printf_filtered (_("No symbol matches %s.\n"), arg);
1016 }
1017
1018 static void
1019 address_info (char *exp, int from_tty)
1020 {
1021 struct symbol *sym;
1022 struct minimal_symbol *msymbol;
1023 long val;
1024 struct obj_section *section;
1025 CORE_ADDR load_addr;
1026 int is_a_field_of_this; /* C++: lookup_symbol sets this to nonzero
1027 if exp is a field of `this'. */
1028
1029 if (exp == 0)
1030 error (_("Argument required."));
1031
1032 sym = lookup_symbol (exp, get_selected_block (0), VAR_DOMAIN,
1033 &is_a_field_of_this);
1034 if (sym == NULL)
1035 {
1036 if (is_a_field_of_this)
1037 {
1038 printf_filtered ("Symbol \"");
1039 fprintf_symbol_filtered (gdb_stdout, exp,
1040 current_language->la_language, DMGL_ANSI);
1041 printf_filtered ("\" is a field of the local class variable ");
1042 if (current_language->la_language == language_objc)
1043 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1044 else
1045 printf_filtered ("`this'\n");
1046 return;
1047 }
1048
1049 msymbol = lookup_minimal_symbol (exp, NULL, NULL);
1050
1051 if (msymbol != NULL)
1052 {
1053 load_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1054
1055 printf_filtered ("Symbol \"");
1056 fprintf_symbol_filtered (gdb_stdout, exp,
1057 current_language->la_language, DMGL_ANSI);
1058 printf_filtered ("\" is at ");
1059 fputs_filtered (paddress (load_addr), gdb_stdout);
1060 printf_filtered (" in a file compiled without debugging");
1061 section = SYMBOL_OBJ_SECTION (msymbol);
1062 if (section_is_overlay (section))
1063 {
1064 load_addr = overlay_unmapped_address (load_addr, section);
1065 printf_filtered (",\n -- loaded at ");
1066 fputs_filtered (paddress (load_addr), gdb_stdout);
1067 printf_filtered (" in overlay section %s",
1068 section->the_bfd_section->name);
1069 }
1070 printf_filtered (".\n");
1071 }
1072 else
1073 error (_("No symbol \"%s\" in current context."), exp);
1074 return;
1075 }
1076
1077 printf_filtered ("Symbol \"");
1078 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1079 current_language->la_language, DMGL_ANSI);
1080 printf_filtered ("\" is ");
1081 val = SYMBOL_VALUE (sym);
1082 section = SYMBOL_OBJ_SECTION (sym);
1083
1084 switch (SYMBOL_CLASS (sym))
1085 {
1086 case LOC_CONST:
1087 case LOC_CONST_BYTES:
1088 printf_filtered ("constant");
1089 break;
1090
1091 case LOC_LABEL:
1092 printf_filtered ("a label at address ");
1093 fputs_filtered (paddress (load_addr = SYMBOL_VALUE_ADDRESS (sym)),
1094 gdb_stdout);
1095 if (section_is_overlay (section))
1096 {
1097 load_addr = overlay_unmapped_address (load_addr, section);
1098 printf_filtered (",\n -- loaded at ");
1099 fputs_filtered (paddress (load_addr), gdb_stdout);
1100 printf_filtered (" in overlay section %s",
1101 section->the_bfd_section->name);
1102 }
1103 break;
1104
1105 case LOC_COMPUTED:
1106 /* FIXME: cagney/2004-01-26: It should be possible to
1107 unconditionally call the SYMBOL_OPS method when available.
1108 Unfortunately DWARF 2 stores the frame-base (instead of the
1109 function) location in a function's symbol. Oops! For the
1110 moment enable this when/where applicable. */
1111 SYMBOL_OPS (sym)->describe_location (sym, gdb_stdout);
1112 break;
1113
1114 case LOC_REGISTER:
1115 if (SYMBOL_IS_ARGUMENT (sym))
1116 printf_filtered (_("an argument in register %s"),
1117 gdbarch_register_name (current_gdbarch, val));
1118 else
1119 printf_filtered (_("a variable in register %s"),
1120 gdbarch_register_name (current_gdbarch, val));
1121 break;
1122
1123 case LOC_STATIC:
1124 printf_filtered (_("static storage at address "));
1125 fputs_filtered (paddress (load_addr = SYMBOL_VALUE_ADDRESS (sym)),
1126 gdb_stdout);
1127 if (section_is_overlay (section))
1128 {
1129 load_addr = overlay_unmapped_address (load_addr, section);
1130 printf_filtered (_(",\n -- loaded at "));
1131 fputs_filtered (paddress (load_addr), gdb_stdout);
1132 printf_filtered (_(" in overlay section %s"),
1133 section->the_bfd_section->name);
1134 }
1135 break;
1136
1137 case LOC_REGPARM_ADDR:
1138 printf_filtered (_("address of an argument in register %s"),
1139 gdbarch_register_name (current_gdbarch, val));
1140 break;
1141
1142 case LOC_ARG:
1143 printf_filtered (_("an argument at offset %ld"), val);
1144 break;
1145
1146 case LOC_LOCAL:
1147 printf_filtered (_("a local variable at frame offset %ld"), val);
1148 break;
1149
1150 case LOC_REF_ARG:
1151 printf_filtered (_("a reference argument at offset %ld"), val);
1152 break;
1153
1154 case LOC_TYPEDEF:
1155 printf_filtered (_("a typedef"));
1156 break;
1157
1158 case LOC_BLOCK:
1159 printf_filtered (_("a function at address "));
1160 load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1161 fputs_filtered (paddress (load_addr), gdb_stdout);
1162 if (section_is_overlay (section))
1163 {
1164 load_addr = overlay_unmapped_address (load_addr, section);
1165 printf_filtered (_(",\n -- loaded at "));
1166 fputs_filtered (paddress (load_addr), gdb_stdout);
1167 printf_filtered (_(" in overlay section %s"),
1168 section->the_bfd_section->name);
1169 }
1170 break;
1171
1172 case LOC_UNRESOLVED:
1173 {
1174 struct minimal_symbol *msym;
1175
1176 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, NULL);
1177 if (msym == NULL)
1178 printf_filtered ("unresolved");
1179 else
1180 {
1181 section = SYMBOL_OBJ_SECTION (msym);
1182 printf_filtered (_("static storage at address "));
1183 load_addr = SYMBOL_VALUE_ADDRESS (msym);
1184 fputs_filtered (paddress (load_addr), gdb_stdout);
1185 if (section_is_overlay (section))
1186 {
1187 load_addr = overlay_unmapped_address (load_addr, section);
1188 printf_filtered (_(",\n -- loaded at "));
1189 fputs_filtered (paddress (load_addr), gdb_stdout);
1190 printf_filtered (_(" in overlay section %s"),
1191 section->the_bfd_section->name);
1192 }
1193 }
1194 }
1195 break;
1196
1197 case LOC_OPTIMIZED_OUT:
1198 printf_filtered (_("optimized out"));
1199 break;
1200
1201 default:
1202 printf_filtered (_("of unknown (botched) type"));
1203 break;
1204 }
1205 printf_filtered (".\n");
1206 }
1207 \f
1208
1209 static void
1210 x_command (char *exp, int from_tty)
1211 {
1212 struct expression *expr;
1213 struct format_data fmt;
1214 struct cleanup *old_chain;
1215 struct value *val;
1216
1217 fmt.format = last_format;
1218 fmt.size = last_size;
1219 fmt.count = 1;
1220
1221 if (exp && *exp == '/')
1222 {
1223 exp++;
1224 fmt = decode_format (&exp, last_format, last_size);
1225 }
1226
1227 /* If we have an expression, evaluate it and use it as the address. */
1228
1229 if (exp != 0 && *exp != 0)
1230 {
1231 expr = parse_expression (exp);
1232 /* Cause expression not to be there any more if this command is
1233 repeated with Newline. But don't clobber a user-defined
1234 command's definition. */
1235 if (from_tty)
1236 *exp = 0;
1237 old_chain = make_cleanup (free_current_contents, &expr);
1238 val = evaluate_expression (expr);
1239 if (TYPE_CODE (value_type (val)) == TYPE_CODE_REF)
1240 val = value_ind (val);
1241 /* In rvalue contexts, such as this, functions are coerced into
1242 pointers to functions. This makes "x/i main" work. */
1243 if (/* last_format == 'i' && */
1244 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1245 && VALUE_LVAL (val) == lval_memory)
1246 next_address = VALUE_ADDRESS (val);
1247 else
1248 next_address = value_as_address (val);
1249 do_cleanups (old_chain);
1250 }
1251
1252 do_examine (fmt, next_address);
1253
1254 /* If the examine succeeds, we remember its size and format for next
1255 time. */
1256 last_size = fmt.size;
1257 last_format = fmt.format;
1258
1259 /* Set a couple of internal variables if appropriate. */
1260 if (last_examine_value)
1261 {
1262 /* Make last address examined available to the user as $_. Use
1263 the correct pointer type. */
1264 struct type *pointer_type
1265 = lookup_pointer_type (value_type (last_examine_value));
1266 set_internalvar (lookup_internalvar ("_"),
1267 value_from_pointer (pointer_type,
1268 last_examine_address));
1269
1270 /* Make contents of last address examined available to the user
1271 as $__. If the last value has not been fetched from memory
1272 then don't fetch it now; instead mark it by voiding the $__
1273 variable. */
1274 if (value_lazy (last_examine_value))
1275 set_internalvar (lookup_internalvar ("__"),
1276 allocate_value (builtin_type_void));
1277 else
1278 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1279 }
1280 }
1281 \f
1282
1283 /* Add an expression to the auto-display chain.
1284 Specify the expression. */
1285
1286 static void
1287 display_command (char *exp, int from_tty)
1288 {
1289 struct format_data fmt;
1290 struct expression *expr;
1291 struct display *new;
1292 int display_it = 1;
1293
1294 #if defined(TUI)
1295 /* NOTE: cagney/2003-02-13 The `tui_active' was previously
1296 `tui_version'. */
1297 if (tui_active && exp != NULL && *exp == '$')
1298 display_it = (tui_set_layout_for_display_command (exp) == TUI_FAILURE);
1299 #endif
1300
1301 if (display_it)
1302 {
1303 if (exp == 0)
1304 {
1305 do_displays ();
1306 return;
1307 }
1308
1309 if (*exp == '/')
1310 {
1311 exp++;
1312 fmt = decode_format (&exp, 0, 0);
1313 if (fmt.size && fmt.format == 0)
1314 fmt.format = 'x';
1315 if (fmt.format == 'i' || fmt.format == 's')
1316 fmt.size = 'b';
1317 }
1318 else
1319 {
1320 fmt.format = 0;
1321 fmt.size = 0;
1322 fmt.count = 0;
1323 }
1324
1325 innermost_block = 0;
1326 expr = parse_expression (exp);
1327
1328 new = (struct display *) xmalloc (sizeof (struct display));
1329
1330 new->exp = expr;
1331 new->block = innermost_block;
1332 new->next = display_chain;
1333 new->number = ++display_number;
1334 new->format = fmt;
1335 new->enabled_p = 1;
1336 display_chain = new;
1337
1338 if (from_tty && target_has_execution)
1339 do_one_display (new);
1340
1341 dont_repeat ();
1342 }
1343 }
1344
1345 static void
1346 free_display (struct display *d)
1347 {
1348 xfree (d->exp);
1349 xfree (d);
1350 }
1351
1352 /* Clear out the display_chain. Done when new symtabs are loaded,
1353 since this invalidates the types stored in many expressions. */
1354
1355 void
1356 clear_displays (void)
1357 {
1358 struct display *d;
1359
1360 while ((d = display_chain) != NULL)
1361 {
1362 xfree (d->exp);
1363 display_chain = d->next;
1364 xfree (d);
1365 }
1366 }
1367
1368 /* Delete the auto-display number NUM. */
1369
1370 static void
1371 delete_display (int num)
1372 {
1373 struct display *d1, *d;
1374
1375 if (!display_chain)
1376 error (_("No display number %d."), num);
1377
1378 if (display_chain->number == num)
1379 {
1380 d1 = display_chain;
1381 display_chain = d1->next;
1382 free_display (d1);
1383 }
1384 else
1385 for (d = display_chain;; d = d->next)
1386 {
1387 if (d->next == 0)
1388 error (_("No display number %d."), num);
1389 if (d->next->number == num)
1390 {
1391 d1 = d->next;
1392 d->next = d1->next;
1393 free_display (d1);
1394 break;
1395 }
1396 }
1397 }
1398
1399 /* Delete some values from the auto-display chain.
1400 Specify the element numbers. */
1401
1402 static void
1403 undisplay_command (char *args, int from_tty)
1404 {
1405 char *p = args;
1406 char *p1;
1407 int num;
1408
1409 if (args == 0)
1410 {
1411 if (query ("Delete all auto-display expressions? "))
1412 clear_displays ();
1413 dont_repeat ();
1414 return;
1415 }
1416
1417 while (*p)
1418 {
1419 p1 = p;
1420 while (*p1 >= '0' && *p1 <= '9')
1421 p1++;
1422 if (*p1 && *p1 != ' ' && *p1 != '\t')
1423 error (_("Arguments must be display numbers."));
1424
1425 num = atoi (p);
1426
1427 delete_display (num);
1428
1429 p = p1;
1430 while (*p == ' ' || *p == '\t')
1431 p++;
1432 }
1433 dont_repeat ();
1434 }
1435
1436 /* Display a single auto-display.
1437 Do nothing if the display cannot be printed in the current context,
1438 or if the display is disabled. */
1439
1440 static void
1441 do_one_display (struct display *d)
1442 {
1443 int within_current_scope;
1444
1445 if (d->enabled_p == 0)
1446 return;
1447
1448 if (d->block)
1449 within_current_scope = contained_in (get_selected_block (0), d->block);
1450 else
1451 within_current_scope = 1;
1452 if (!within_current_scope)
1453 return;
1454
1455 current_display_number = d->number;
1456
1457 annotate_display_begin ();
1458 printf_filtered ("%d", d->number);
1459 annotate_display_number_end ();
1460 printf_filtered (": ");
1461 if (d->format.size)
1462 {
1463 CORE_ADDR addr;
1464 struct value *val;
1465
1466 annotate_display_format ();
1467
1468 printf_filtered ("x/");
1469 if (d->format.count != 1)
1470 printf_filtered ("%d", d->format.count);
1471 printf_filtered ("%c", d->format.format);
1472 if (d->format.format != 'i' && d->format.format != 's')
1473 printf_filtered ("%c", d->format.size);
1474 printf_filtered (" ");
1475
1476 annotate_display_expression ();
1477
1478 print_expression (d->exp, gdb_stdout);
1479 annotate_display_expression_end ();
1480
1481 if (d->format.count != 1 || d->format.format == 'i')
1482 printf_filtered ("\n");
1483 else
1484 printf_filtered (" ");
1485
1486 val = evaluate_expression (d->exp);
1487 addr = value_as_address (val);
1488 if (d->format.format == 'i')
1489 addr = gdbarch_addr_bits_remove (current_gdbarch, addr);
1490
1491 annotate_display_value ();
1492
1493 do_examine (d->format, addr);
1494 }
1495 else
1496 {
1497 annotate_display_format ();
1498
1499 if (d->format.format)
1500 printf_filtered ("/%c ", d->format.format);
1501
1502 annotate_display_expression ();
1503
1504 print_expression (d->exp, gdb_stdout);
1505 annotate_display_expression_end ();
1506
1507 printf_filtered (" = ");
1508
1509 annotate_display_expression ();
1510
1511 print_formatted (evaluate_expression (d->exp),
1512 d->format.format, d->format.size, gdb_stdout);
1513 printf_filtered ("\n");
1514 }
1515
1516 annotate_display_end ();
1517
1518 gdb_flush (gdb_stdout);
1519 current_display_number = -1;
1520 }
1521
1522 /* Display all of the values on the auto-display chain which can be
1523 evaluated in the current scope. */
1524
1525 void
1526 do_displays (void)
1527 {
1528 struct display *d;
1529
1530 for (d = display_chain; d; d = d->next)
1531 do_one_display (d);
1532 }
1533
1534 /* Delete the auto-display which we were in the process of displaying.
1535 This is done when there is an error or a signal. */
1536
1537 void
1538 disable_display (int num)
1539 {
1540 struct display *d;
1541
1542 for (d = display_chain; d; d = d->next)
1543 if (d->number == num)
1544 {
1545 d->enabled_p = 0;
1546 return;
1547 }
1548 printf_unfiltered (_("No display number %d.\n"), num);
1549 }
1550
1551 void
1552 disable_current_display (void)
1553 {
1554 if (current_display_number >= 0)
1555 {
1556 disable_display (current_display_number);
1557 fprintf_unfiltered (gdb_stderr, _("\
1558 Disabling display %d to avoid infinite recursion.\n"),
1559 current_display_number);
1560 }
1561 current_display_number = -1;
1562 }
1563
1564 static void
1565 display_info (char *ignore, int from_tty)
1566 {
1567 struct display *d;
1568
1569 if (!display_chain)
1570 printf_unfiltered (_("There are no auto-display expressions now.\n"));
1571 else
1572 printf_filtered (_("Auto-display expressions now in effect:\n\
1573 Num Enb Expression\n"));
1574
1575 for (d = display_chain; d; d = d->next)
1576 {
1577 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
1578 if (d->format.size)
1579 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
1580 d->format.format);
1581 else if (d->format.format)
1582 printf_filtered ("/%c ", d->format.format);
1583 print_expression (d->exp, gdb_stdout);
1584 if (d->block && !contained_in (get_selected_block (0), d->block))
1585 printf_filtered (_(" (cannot be evaluated in the current context)"));
1586 printf_filtered ("\n");
1587 gdb_flush (gdb_stdout);
1588 }
1589 }
1590
1591 static void
1592 enable_display (char *args, int from_tty)
1593 {
1594 char *p = args;
1595 char *p1;
1596 int num;
1597 struct display *d;
1598
1599 if (p == 0)
1600 {
1601 for (d = display_chain; d; d = d->next)
1602 d->enabled_p = 1;
1603 }
1604 else
1605 while (*p)
1606 {
1607 p1 = p;
1608 while (*p1 >= '0' && *p1 <= '9')
1609 p1++;
1610 if (*p1 && *p1 != ' ' && *p1 != '\t')
1611 error (_("Arguments must be display numbers."));
1612
1613 num = atoi (p);
1614
1615 for (d = display_chain; d; d = d->next)
1616 if (d->number == num)
1617 {
1618 d->enabled_p = 1;
1619 goto win;
1620 }
1621 printf_unfiltered (_("No display number %d.\n"), num);
1622 win:
1623 p = p1;
1624 while (*p == ' ' || *p == '\t')
1625 p++;
1626 }
1627 }
1628
1629 static void
1630 disable_display_command (char *args, int from_tty)
1631 {
1632 char *p = args;
1633 char *p1;
1634 struct display *d;
1635
1636 if (p == 0)
1637 {
1638 for (d = display_chain; d; d = d->next)
1639 d->enabled_p = 0;
1640 }
1641 else
1642 while (*p)
1643 {
1644 p1 = p;
1645 while (*p1 >= '0' && *p1 <= '9')
1646 p1++;
1647 if (*p1 && *p1 != ' ' && *p1 != '\t')
1648 error (_("Arguments must be display numbers."));
1649
1650 disable_display (atoi (p));
1651
1652 p = p1;
1653 while (*p == ' ' || *p == '\t')
1654 p++;
1655 }
1656 }
1657 \f
1658
1659 /* Print the value in stack frame FRAME of a variable specified by a
1660 struct symbol. */
1661
1662 void
1663 print_variable_value (struct symbol *var, struct frame_info *frame,
1664 struct ui_file *stream)
1665 {
1666 struct value *val = read_var_value (var, frame);
1667
1668 value_print (val, stream, 0, Val_pretty_default);
1669 }
1670
1671 static void
1672 printf_command (char *arg, int from_tty)
1673 {
1674 char *f = NULL;
1675 char *s = arg;
1676 char *string = NULL;
1677 struct value **val_args;
1678 char *substrings;
1679 char *current_substring;
1680 int nargs = 0;
1681 int allocated_args = 20;
1682 struct cleanup *old_cleanups;
1683
1684 val_args = xmalloc (allocated_args * sizeof (struct value *));
1685 old_cleanups = make_cleanup (free_current_contents, &val_args);
1686
1687 if (s == 0)
1688 error_no_arg (_("format-control string and values to print"));
1689
1690 /* Skip white space before format string */
1691 while (*s == ' ' || *s == '\t')
1692 s++;
1693
1694 /* A format string should follow, enveloped in double quotes. */
1695 if (*s++ != '"')
1696 error (_("Bad format string, missing '\"'."));
1697
1698 /* Parse the format-control string and copy it into the string STRING,
1699 processing some kinds of escape sequence. */
1700
1701 f = string = (char *) alloca (strlen (s) + 1);
1702
1703 while (*s != '"')
1704 {
1705 int c = *s++;
1706 switch (c)
1707 {
1708 case '\0':
1709 error (_("Bad format string, non-terminated '\"'."));
1710
1711 case '\\':
1712 switch (c = *s++)
1713 {
1714 case '\\':
1715 *f++ = '\\';
1716 break;
1717 case 'a':
1718 *f++ = '\a';
1719 break;
1720 case 'b':
1721 *f++ = '\b';
1722 break;
1723 case 'f':
1724 *f++ = '\f';
1725 break;
1726 case 'n':
1727 *f++ = '\n';
1728 break;
1729 case 'r':
1730 *f++ = '\r';
1731 break;
1732 case 't':
1733 *f++ = '\t';
1734 break;
1735 case 'v':
1736 *f++ = '\v';
1737 break;
1738 case '"':
1739 *f++ = '"';
1740 break;
1741 default:
1742 /* ??? TODO: handle other escape sequences */
1743 error (_("Unrecognized escape character \\%c in format string."),
1744 c);
1745 }
1746 break;
1747
1748 default:
1749 *f++ = c;
1750 }
1751 }
1752
1753 /* Skip over " and following space and comma. */
1754 s++;
1755 *f++ = '\0';
1756 while (*s == ' ' || *s == '\t')
1757 s++;
1758
1759 if (*s != ',' && *s != 0)
1760 error (_("Invalid argument syntax"));
1761
1762 if (*s == ',')
1763 s++;
1764 while (*s == ' ' || *s == '\t')
1765 s++;
1766
1767 /* Need extra space for the '\0's. Doubling the size is sufficient. */
1768 substrings = alloca (strlen (string) * 2);
1769 current_substring = substrings;
1770
1771 {
1772 /* Now scan the string for %-specs and see what kinds of args they want.
1773 argclass[I] classifies the %-specs so we can give printf_filtered
1774 something of the right size. */
1775
1776 enum argclass
1777 {
1778 int_arg, long_arg, long_long_arg, ptr_arg, string_arg,
1779 double_arg, long_double_arg, decfloat_arg
1780 };
1781 enum argclass *argclass;
1782 enum argclass this_argclass;
1783 char *last_arg;
1784 int nargs_wanted;
1785 int i;
1786
1787 argclass = (enum argclass *) alloca (strlen (s) * sizeof *argclass);
1788 nargs_wanted = 0;
1789 f = string;
1790 last_arg = string;
1791 while (*f)
1792 if (*f++ == '%')
1793 {
1794 int seen_hash = 0, seen_zero = 0, lcount = 0, seen_prec = 0;
1795 int seen_space = 0, seen_plus = 0;
1796 int seen_big_l = 0, seen_h = 0, seen_big_h = 0;
1797 int seen_big_d = 0, seen_double_big_d = 0;
1798 int bad = 0;
1799
1800 /* Check the validity of the format specifier, and work
1801 out what argument it expects. We only accept C89
1802 format strings, with the exception of long long (which
1803 we autoconf for). */
1804
1805 /* Skip over "%%". */
1806 if (*f == '%')
1807 {
1808 f++;
1809 continue;
1810 }
1811
1812 /* The first part of a format specifier is a set of flag
1813 characters. */
1814 while (strchr ("0-+ #", *f))
1815 {
1816 if (*f == '#')
1817 seen_hash = 1;
1818 else if (*f == '0')
1819 seen_zero = 1;
1820 else if (*f == ' ')
1821 seen_space = 1;
1822 else if (*f == '+')
1823 seen_plus = 1;
1824 f++;
1825 }
1826
1827 /* The next part of a format specifier is a width. */
1828 while (strchr ("0123456789", *f))
1829 f++;
1830
1831 /* The next part of a format specifier is a precision. */
1832 if (*f == '.')
1833 {
1834 seen_prec = 1;
1835 f++;
1836 while (strchr ("0123456789", *f))
1837 f++;
1838 }
1839
1840 /* The next part of a format specifier is a length modifier. */
1841 if (*f == 'h')
1842 {
1843 seen_h = 1;
1844 f++;
1845 }
1846 else if (*f == 'l')
1847 {
1848 f++;
1849 lcount++;
1850 if (*f == 'l')
1851 {
1852 f++;
1853 lcount++;
1854 }
1855 }
1856 else if (*f == 'L')
1857 {
1858 seen_big_l = 1;
1859 f++;
1860 }
1861 /* Decimal32 modifier. */
1862 else if (*f == 'H')
1863 {
1864 seen_big_h = 1;
1865 f++;
1866 }
1867 /* Decimal64 and Decimal128 modifiers. */
1868 else if (*f == 'D')
1869 {
1870 f++;
1871
1872 /* Check for a Decimal128. */
1873 if (*f == 'D')
1874 {
1875 f++;
1876 seen_double_big_d = 1;
1877 }
1878 else
1879 seen_big_d = 1;
1880 }
1881
1882 switch (*f)
1883 {
1884 case 'u':
1885 if (seen_hash)
1886 bad = 1;
1887 /* FALLTHROUGH */
1888
1889 case 'o':
1890 case 'x':
1891 case 'X':
1892 if (seen_space || seen_plus)
1893 bad = 1;
1894 /* FALLTHROUGH */
1895
1896 case 'd':
1897 case 'i':
1898 if (lcount == 0)
1899 this_argclass = int_arg;
1900 else if (lcount == 1)
1901 this_argclass = long_arg;
1902 else
1903 this_argclass = long_long_arg;
1904
1905 if (seen_big_l)
1906 bad = 1;
1907 break;
1908
1909 case 'c':
1910 this_argclass = int_arg;
1911 if (lcount || seen_h || seen_big_l)
1912 bad = 1;
1913 if (seen_prec || seen_zero || seen_space || seen_plus)
1914 bad = 1;
1915 break;
1916
1917 case 'p':
1918 this_argclass = ptr_arg;
1919 if (lcount || seen_h || seen_big_l)
1920 bad = 1;
1921 if (seen_prec || seen_zero || seen_space || seen_plus)
1922 bad = 1;
1923 break;
1924
1925 case 's':
1926 this_argclass = string_arg;
1927 if (lcount || seen_h || seen_big_l)
1928 bad = 1;
1929 if (seen_zero || seen_space || seen_plus)
1930 bad = 1;
1931 break;
1932
1933 case 'e':
1934 case 'f':
1935 case 'g':
1936 case 'E':
1937 case 'G':
1938 if (seen_big_h || seen_big_d || seen_double_big_d)
1939 this_argclass = decfloat_arg;
1940 else if (seen_big_l)
1941 this_argclass = long_double_arg;
1942 else
1943 this_argclass = double_arg;
1944
1945 if (lcount || seen_h)
1946 bad = 1;
1947 break;
1948
1949 case '*':
1950 error (_("`*' not supported for precision or width in printf"));
1951
1952 case 'n':
1953 error (_("Format specifier `n' not supported in printf"));
1954
1955 case '\0':
1956 error (_("Incomplete format specifier at end of format string"));
1957
1958 default:
1959 error (_("Unrecognized format specifier '%c' in printf"), *f);
1960 }
1961
1962 if (bad)
1963 error (_("Inappropriate modifiers to format specifier '%c' in printf"),
1964 *f);
1965
1966 f++;
1967
1968 if (lcount > 1 && USE_PRINTF_I64)
1969 {
1970 /* Windows' printf does support long long, but not the usual way.
1971 Convert %lld to %I64d. */
1972 int length_before_ll = f - last_arg - 1 - lcount;
1973 strncpy (current_substring, last_arg, length_before_ll);
1974 strcpy (current_substring + length_before_ll, "I64");
1975 current_substring[length_before_ll + 3] =
1976 last_arg[length_before_ll + lcount];
1977 current_substring += length_before_ll + 4;
1978 }
1979 else
1980 {
1981 strncpy (current_substring, last_arg, f - last_arg);
1982 current_substring += f - last_arg;
1983 }
1984 *current_substring++ = '\0';
1985 last_arg = f;
1986 argclass[nargs_wanted++] = this_argclass;
1987 }
1988
1989 /* Now, parse all arguments and evaluate them.
1990 Store the VALUEs in VAL_ARGS. */
1991
1992 while (*s != '\0')
1993 {
1994 char *s1;
1995 if (nargs == allocated_args)
1996 val_args = (struct value **) xrealloc ((char *) val_args,
1997 (allocated_args *= 2)
1998 * sizeof (struct value *));
1999 s1 = s;
2000 val_args[nargs] = parse_to_comma_and_eval (&s1);
2001
2002 /* If format string wants a float, unchecked-convert the value to
2003 floating point of the same size */
2004
2005 if (argclass[nargs] == double_arg)
2006 {
2007 struct type *type = value_type (val_args[nargs]);
2008 if (TYPE_LENGTH (type) == sizeof (float))
2009 deprecated_set_value_type (val_args[nargs], builtin_type_float);
2010 if (TYPE_LENGTH (type) == sizeof (double))
2011 deprecated_set_value_type (val_args[nargs], builtin_type_double);
2012 }
2013 nargs++;
2014 s = s1;
2015 if (*s == ',')
2016 s++;
2017 }
2018
2019 if (nargs != nargs_wanted)
2020 error (_("Wrong number of arguments for specified format-string"));
2021
2022 /* Now actually print them. */
2023 current_substring = substrings;
2024 for (i = 0; i < nargs; i++)
2025 {
2026 switch (argclass[i])
2027 {
2028 case string_arg:
2029 {
2030 gdb_byte *str;
2031 CORE_ADDR tem;
2032 int j;
2033 tem = value_as_address (val_args[i]);
2034
2035 /* This is a %s argument. Find the length of the string. */
2036 for (j = 0;; j++)
2037 {
2038 gdb_byte c;
2039 QUIT;
2040 read_memory (tem + j, &c, 1);
2041 if (c == 0)
2042 break;
2043 }
2044
2045 /* Copy the string contents into a string inside GDB. */
2046 str = (gdb_byte *) alloca (j + 1);
2047 if (j != 0)
2048 read_memory (tem, str, j);
2049 str[j] = 0;
2050
2051 printf_filtered (current_substring, (char *) str);
2052 }
2053 break;
2054 case double_arg:
2055 {
2056 double val = value_as_double (val_args[i]);
2057 printf_filtered (current_substring, val);
2058 break;
2059 }
2060 case long_double_arg:
2061 #ifdef HAVE_LONG_DOUBLE
2062 {
2063 long double val = value_as_double (val_args[i]);
2064 printf_filtered (current_substring, val);
2065 break;
2066 }
2067 #else
2068 error (_("long double not supported in printf"));
2069 #endif
2070 case long_long_arg:
2071 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
2072 {
2073 long long val = value_as_long (val_args[i]);
2074 printf_filtered (current_substring, val);
2075 break;
2076 }
2077 #else
2078 error (_("long long not supported in printf"));
2079 #endif
2080 case int_arg:
2081 {
2082 int val = value_as_long (val_args[i]);
2083 printf_filtered (current_substring, val);
2084 break;
2085 }
2086 case long_arg:
2087 {
2088 long val = value_as_long (val_args[i]);
2089 printf_filtered (current_substring, val);
2090 break;
2091 }
2092
2093 /* Handles decimal floating values. */
2094 case decfloat_arg:
2095 {
2096 const gdb_byte *param_ptr = value_contents (val_args[i]);
2097 #if defined (PRINTF_HAS_DECFLOAT)
2098 /* If we have native support for Decimal floating
2099 printing, handle it here. */
2100 printf_filtered (current_substring, param_ptr);
2101 #else
2102
2103 /* As a workaround until vasprintf has native support for DFP
2104 we convert the DFP values to string and print them using
2105 the %s format specifier. */
2106
2107 char *eos, *sos;
2108 int nnull_chars = 0;
2109
2110 /* Parameter data. */
2111 struct type *param_type = value_type (val_args[i]);
2112 unsigned int param_len = TYPE_LENGTH (param_type);
2113
2114 /* DFP output data. */
2115 struct value *dfp_value = NULL;
2116 gdb_byte *dfp_ptr;
2117 int dfp_len = 16;
2118 gdb_byte dec[16];
2119 struct type *dfp_type = NULL;
2120 char decstr[MAX_DECIMAL_STRING];
2121
2122 /* Points to the end of the string so that we can go back
2123 and check for DFP length modifiers. */
2124 eos = current_substring + strlen (current_substring);
2125
2126 /* Look for the float/double format specifier. */
2127 while (*eos != 'f' && *eos != 'e' && *eos != 'E'
2128 && *eos != 'g' && *eos != 'G')
2129 eos--;
2130
2131 sos = eos;
2132
2133 /* Search for the '%' char and extract the size and type of
2134 the output decimal value based on its modifiers
2135 (%Hf, %Df, %DDf). */
2136 while (*--sos != '%')
2137 {
2138 if (*sos == 'H')
2139 {
2140 dfp_len = 4;
2141 dfp_type = builtin_type (current_gdbarch)->builtin_decfloat;
2142 }
2143 else if (*sos == 'D' && *(sos - 1) == 'D')
2144 {
2145 dfp_len = 16;
2146 dfp_type = builtin_type (current_gdbarch)->builtin_declong;
2147 sos--;
2148 }
2149 else
2150 {
2151 dfp_len = 8;
2152 dfp_type = builtin_type (current_gdbarch)->builtin_decdouble;
2153 }
2154 }
2155
2156 /* Replace %Hf, %Df and %DDf with %s's. */
2157 *++sos = 's';
2158
2159 /* Go through the whole format string and pull the correct
2160 number of chars back to compensate for the change in the
2161 format specifier. */
2162 while (nnull_chars < nargs - i)
2163 {
2164 if (*eos == '\0')
2165 nnull_chars++;
2166
2167 *++sos = *++eos;
2168 }
2169
2170 /* Conversion between different DFP types. */
2171 if (TYPE_CODE (param_type) == TYPE_CODE_DECFLOAT)
2172 decimal_convert (param_ptr, param_len, dec, dfp_len);
2173 else
2174 /* If this is a non-trivial conversion, just output 0.
2175 A correct converted value can be displayed by explicitly
2176 casting to a DFP type. */
2177 decimal_from_string (dec, dfp_len, "0");
2178
2179 dfp_value = value_from_decfloat (dfp_type, dec);
2180
2181 dfp_ptr = (gdb_byte *) value_contents (dfp_value);
2182
2183 decimal_to_string (dfp_ptr, dfp_len, decstr);
2184
2185 /* Print the DFP value. */
2186 printf_filtered (current_substring, decstr);
2187
2188 break;
2189 #endif
2190 }
2191
2192 case ptr_arg:
2193 {
2194 /* We avoid the host's %p because pointers are too
2195 likely to be the wrong size. The only interesting
2196 modifier for %p is a width; extract that, and then
2197 handle %p as glibc would: %#x or a literal "(nil)". */
2198
2199 char *p, *fmt, *fmt_p;
2200 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
2201 long long val = value_as_long (val_args[i]);
2202 #else
2203 long val = value_as_long (val_args[i]);
2204 #endif
2205
2206 fmt = alloca (strlen (current_substring) + 5);
2207
2208 /* Copy up to the leading %. */
2209 p = current_substring;
2210 fmt_p = fmt;
2211 while (*p)
2212 {
2213 int is_percent = (*p == '%');
2214 *fmt_p++ = *p++;
2215 if (is_percent)
2216 {
2217 if (*p == '%')
2218 *fmt_p++ = *p++;
2219 else
2220 break;
2221 }
2222 }
2223
2224 if (val != 0)
2225 *fmt_p++ = '#';
2226
2227 /* Copy any width. */
2228 while (*p >= '0' && *p < '9')
2229 *fmt_p++ = *p++;
2230
2231 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2232 if (val != 0)
2233 {
2234 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
2235 *fmt_p++ = 'l';
2236 #endif
2237 *fmt_p++ = 'l';
2238 *fmt_p++ = 'x';
2239 *fmt_p++ = '\0';
2240 printf_filtered (fmt, val);
2241 }
2242 else
2243 {
2244 *fmt_p++ = 's';
2245 *fmt_p++ = '\0';
2246 printf_filtered (fmt, "(nil)");
2247 }
2248
2249 break;
2250 }
2251 default:
2252 internal_error (__FILE__, __LINE__,
2253 _("failed internal consistency check"));
2254 }
2255 /* Skip to the next substring. */
2256 current_substring += strlen (current_substring) + 1;
2257 }
2258 /* Print the portion of the format string after the last argument. */
2259 puts_filtered (last_arg);
2260 }
2261 do_cleanups (old_cleanups);
2262 }
2263
2264 void
2265 _initialize_printcmd (void)
2266 {
2267 struct cmd_list_element *c;
2268
2269 current_display_number = -1;
2270
2271 add_info ("address", address_info,
2272 _("Describe where symbol SYM is stored."));
2273
2274 add_info ("symbol", sym_info, _("\
2275 Describe what symbol is at location ADDR.\n\
2276 Only for symbols with fixed locations (global or static scope)."));
2277
2278 add_com ("x", class_vars, x_command, _("\
2279 Examine memory: x/FMT ADDRESS.\n\
2280 ADDRESS is an expression for the memory address to examine.\n\
2281 FMT is a repeat count followed by a format letter and a size letter.\n\
2282 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2283 t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n\
2284 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2285 The specified number of objects of the specified size are printed\n\
2286 according to the format.\n\n\
2287 Defaults for format and size letters are those previously used.\n\
2288 Default count is 1. Default address is following last thing printed\n\
2289 with this command or \"print\"."));
2290
2291 #if 0
2292 add_com ("whereis", class_vars, whereis_command,
2293 _("Print line number and file of definition of variable."));
2294 #endif
2295
2296 add_info ("display", display_info, _("\
2297 Expressions to display when program stops, with code numbers."));
2298
2299 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2300 Cancel some expressions to be displayed when program stops.\n\
2301 Arguments are the code numbers of the expressions to stop displaying.\n\
2302 No argument means cancel all automatic-display expressions.\n\
2303 \"delete display\" has the same effect as this command.\n\
2304 Do \"info display\" to see current list of code numbers."),
2305 &cmdlist);
2306
2307 add_com ("display", class_vars, display_command, _("\
2308 Print value of expression EXP each time the program stops.\n\
2309 /FMT may be used before EXP as in the \"print\" command.\n\
2310 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2311 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2312 and examining is done as in the \"x\" command.\n\n\
2313 With no argument, display all currently requested auto-display expressions.\n\
2314 Use \"undisplay\" to cancel display requests previously made."));
2315
2316 add_cmd ("display", class_vars, enable_display, _("\
2317 Enable some expressions to be displayed when program stops.\n\
2318 Arguments are the code numbers of the expressions to resume displaying.\n\
2319 No argument means enable all automatic-display expressions.\n\
2320 Do \"info display\" to see current list of code numbers."), &enablelist);
2321
2322 add_cmd ("display", class_vars, disable_display_command, _("\
2323 Disable some expressions to be displayed when program stops.\n\
2324 Arguments are the code numbers of the expressions to stop displaying.\n\
2325 No argument means disable all automatic-display expressions.\n\
2326 Do \"info display\" to see current list of code numbers."), &disablelist);
2327
2328 add_cmd ("display", class_vars, undisplay_command, _("\
2329 Cancel some expressions to be displayed when program stops.\n\
2330 Arguments are the code numbers of the expressions to stop displaying.\n\
2331 No argument means cancel all automatic-display expressions.\n\
2332 Do \"info display\" to see current list of code numbers."), &deletelist);
2333
2334 add_com ("printf", class_vars, printf_command, _("\
2335 printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2336 This is useful for formatted output in user-defined commands."));
2337
2338 add_com ("output", class_vars, output_command, _("\
2339 Like \"print\" but don't put in value history and don't print newline.\n\
2340 This is useful in user-defined commands."));
2341
2342 add_prefix_cmd ("set", class_vars, set_command, _("\
2343 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2344 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2345 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2346 with $), a register (a few standard names starting with $), or an actual\n\
2347 variable in the program being debugged. EXP is any valid expression.\n\
2348 Use \"set variable\" for variables with names identical to set subcommands.\n\
2349 \n\
2350 With a subcommand, this command modifies parts of the gdb environment.\n\
2351 You can see these environment settings with the \"show\" command."),
2352 &setlist, "set ", 1, &cmdlist);
2353 if (dbx_commands)
2354 add_com ("assign", class_vars, set_command, _("\
2355 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2356 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2357 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2358 with $), a register (a few standard names starting with $), or an actual\n\
2359 variable in the program being debugged. EXP is any valid expression.\n\
2360 Use \"set variable\" for variables with names identical to set subcommands.\n\
2361 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2362 You can see these environment settings with the \"show\" command."));
2363
2364 /* "call" is the same as "set", but handy for dbx users to call fns. */
2365 c = add_com ("call", class_vars, call_command, _("\
2366 Call a function in the program.\n\
2367 The argument is the function name and arguments, in the notation of the\n\
2368 current working language. The result is printed and saved in the value\n\
2369 history, if it is not void."));
2370 set_cmd_completer (c, expression_completer);
2371
2372 add_cmd ("variable", class_vars, set_command, _("\
2373 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2374 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2375 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2376 with $), a register (a few standard names starting with $), or an actual\n\
2377 variable in the program being debugged. EXP is any valid expression.\n\
2378 This may usually be abbreviated to simply \"set\"."),
2379 &setlist);
2380
2381 c = add_com ("print", class_vars, print_command, _("\
2382 Print value of expression EXP.\n\
2383 Variables accessible are those of the lexical environment of the selected\n\
2384 stack frame, plus all those whose scope is global or an entire file.\n\
2385 \n\
2386 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2387 $$NUM refers to NUM'th value back from the last one.\n\
2388 Names starting with $ refer to registers (with the values they would have\n\
2389 if the program were to return to the stack frame now selected, restoring\n\
2390 all registers saved by frames farther in) or else to debugger\n\
2391 \"convenience\" variables (any such name not a known register).\n\
2392 Use assignment expressions to give values to convenience variables.\n\
2393 \n\
2394 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2395 @ is a binary operator for treating consecutive data objects\n\
2396 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2397 element is FOO, whose second element is stored in the space following\n\
2398 where FOO is stored, etc. FOO must be an expression whose value\n\
2399 resides in memory.\n\
2400 \n\
2401 EXP may be preceded with /FMT, where FMT is a format letter\n\
2402 but no count or size letter (see \"x\" command)."));
2403 set_cmd_completer (c, expression_completer);
2404 add_com_alias ("p", "print", class_vars, 1);
2405
2406 c = add_com ("inspect", class_vars, inspect_command, _("\
2407 Same as \"print\" command, except that if you are running in the epoch\n\
2408 environment, the value is printed in its own window."));
2409 set_cmd_completer (c, expression_completer);
2410
2411 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2412 &max_symbolic_offset, _("\
2413 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2414 Show the largest offset that will be printed in <symbol+1234> form."), NULL,
2415 NULL,
2416 show_max_symbolic_offset,
2417 &setprintlist, &showprintlist);
2418 add_setshow_boolean_cmd ("symbol-filename", no_class,
2419 &print_symbol_filename, _("\
2420 Set printing of source filename and line number with <symbol>."), _("\
2421 Show printing of source filename and line number with <symbol>."), NULL,
2422 NULL,
2423 show_print_symbol_filename,
2424 &setprintlist, &showprintlist);
2425
2426 /* For examine/instruction a single byte quantity is specified as
2427 the data. This avoids problems with value_at_lazy() requiring a
2428 valid data type (and rejecting VOID). */
2429 examine_i_type = init_type (TYPE_CODE_INT, 1, 0, "examine_i_type", NULL);
2430
2431 examine_b_type = init_type (TYPE_CODE_INT, 1, 0, "examine_b_type", NULL);
2432 examine_h_type = init_type (TYPE_CODE_INT, 2, 0, "examine_h_type", NULL);
2433 examine_w_type = init_type (TYPE_CODE_INT, 4, 0, "examine_w_type", NULL);
2434 examine_g_type = init_type (TYPE_CODE_INT, 8, 0, "examine_g_type", NULL);
2435
2436 }
This page took 0.101531 seconds and 5 git commands to generate.