rotate gdb/ChangeLog
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "expression.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "breakpoint.h"
31 #include "demangle.h"
32 #include "gdb-demangle.h"
33 #include "valprint.h"
34 #include "annotate.h"
35 #include "symfile.h" /* for overlay functions */
36 #include "objfiles.h" /* ditto */
37 #include "completer.h" /* for completion functions */
38 #include "ui-out.h"
39 #include "block.h"
40 #include "disasm.h"
41 #include "target-float.h"
42 #include "observable.h"
43 #include "solist.h"
44 #include "parser-defs.h"
45 #include "charset.h"
46 #include "arch-utils.h"
47 #include "cli/cli-utils.h"
48 #include "cli/cli-script.h"
49 #include "cli/cli-style.h"
50 #include "format.h"
51 #include "source.h"
52 #include "common/byte-vector.h"
53 #include "cli/cli-style.h"
54
55 /* Last specified output format. */
56
57 static char last_format = 0;
58
59 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
60
61 static char last_size = 'w';
62
63 /* Last specified count for the 'x' command. */
64
65 static int last_count;
66
67 /* Default address to examine next, and associated architecture. */
68
69 static struct gdbarch *next_gdbarch;
70 static CORE_ADDR next_address;
71
72 /* Number of delay instructions following current disassembled insn. */
73
74 static int branch_delay_insns;
75
76 /* Last address examined. */
77
78 static CORE_ADDR last_examine_address;
79
80 /* Contents of last address examined.
81 This is not valid past the end of the `x' command! */
82
83 static value_ref_ptr last_examine_value;
84
85 /* Largest offset between a symbolic value and an address, that will be
86 printed as `0x1234 <symbol+offset>'. */
87
88 static unsigned int max_symbolic_offset = UINT_MAX;
89 static void
90 show_max_symbolic_offset (struct ui_file *file, int from_tty,
91 struct cmd_list_element *c, const char *value)
92 {
93 fprintf_filtered (file,
94 _("The largest offset that will be "
95 "printed in <symbol+1234> form is %s.\n"),
96 value);
97 }
98
99 /* Append the source filename and linenumber of the symbol when
100 printing a symbolic value as `<symbol at filename:linenum>' if set. */
101 static int print_symbol_filename = 0;
102 static void
103 show_print_symbol_filename (struct ui_file *file, int from_tty,
104 struct cmd_list_element *c, const char *value)
105 {
106 fprintf_filtered (file, _("Printing of source filename and "
107 "line number with <symbol> is %s.\n"),
108 value);
109 }
110
111 /* Number of auto-display expression currently being displayed.
112 So that we can disable it if we get a signal within it.
113 -1 when not doing one. */
114
115 static int current_display_number;
116
117 struct display
118 {
119 /* Chain link to next auto-display item. */
120 struct display *next;
121
122 /* The expression as the user typed it. */
123 char *exp_string;
124
125 /* Expression to be evaluated and displayed. */
126 expression_up exp;
127
128 /* Item number of this auto-display item. */
129 int number;
130
131 /* Display format specified. */
132 struct format_data format;
133
134 /* Program space associated with `block'. */
135 struct program_space *pspace;
136
137 /* Innermost block required by this expression when evaluated. */
138 const struct block *block;
139
140 /* Status of this display (enabled or disabled). */
141 int enabled_p;
142 };
143
144 /* Chain of expressions whose values should be displayed
145 automatically each time the program stops. */
146
147 static struct display *display_chain;
148
149 static int display_number;
150
151 /* Walk the following statement or block through all displays.
152 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
153 display. */
154
155 #define ALL_DISPLAYS(B) \
156 for (B = display_chain; B; B = B->next)
157
158 #define ALL_DISPLAYS_SAFE(B,TMP) \
159 for (B = display_chain; \
160 B ? (TMP = B->next, 1): 0; \
161 B = TMP)
162
163 /* Prototypes for local functions. */
164
165 static void do_one_display (struct display *);
166 \f
167
168 /* Decode a format specification. *STRING_PTR should point to it.
169 OFORMAT and OSIZE are used as defaults for the format and size
170 if none are given in the format specification.
171 If OSIZE is zero, then the size field of the returned value
172 should be set only if a size is explicitly specified by the
173 user.
174 The structure returned describes all the data
175 found in the specification. In addition, *STRING_PTR is advanced
176 past the specification and past all whitespace following it. */
177
178 static struct format_data
179 decode_format (const char **string_ptr, int oformat, int osize)
180 {
181 struct format_data val;
182 const char *p = *string_ptr;
183
184 val.format = '?';
185 val.size = '?';
186 val.count = 1;
187 val.raw = 0;
188
189 if (*p == '-')
190 {
191 val.count = -1;
192 p++;
193 }
194 if (*p >= '0' && *p <= '9')
195 val.count *= atoi (p);
196 while (*p >= '0' && *p <= '9')
197 p++;
198
199 /* Now process size or format letters that follow. */
200
201 while (1)
202 {
203 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
204 val.size = *p++;
205 else if (*p == 'r')
206 {
207 val.raw = 1;
208 p++;
209 }
210 else if (*p >= 'a' && *p <= 'z')
211 val.format = *p++;
212 else
213 break;
214 }
215
216 *string_ptr = skip_spaces (p);
217
218 /* Set defaults for format and size if not specified. */
219 if (val.format == '?')
220 {
221 if (val.size == '?')
222 {
223 /* Neither has been specified. */
224 val.format = oformat;
225 val.size = osize;
226 }
227 else
228 /* If a size is specified, any format makes a reasonable
229 default except 'i'. */
230 val.format = oformat == 'i' ? 'x' : oformat;
231 }
232 else if (val.size == '?')
233 switch (val.format)
234 {
235 case 'a':
236 /* Pick the appropriate size for an address. This is deferred
237 until do_examine when we know the actual architecture to use.
238 A special size value of 'a' is used to indicate this case. */
239 val.size = osize ? 'a' : osize;
240 break;
241 case 'f':
242 /* Floating point has to be word or giantword. */
243 if (osize == 'w' || osize == 'g')
244 val.size = osize;
245 else
246 /* Default it to giantword if the last used size is not
247 appropriate. */
248 val.size = osize ? 'g' : osize;
249 break;
250 case 'c':
251 /* Characters default to one byte. */
252 val.size = osize ? 'b' : osize;
253 break;
254 case 's':
255 /* Display strings with byte size chars unless explicitly
256 specified. */
257 val.size = '\0';
258 break;
259
260 default:
261 /* The default is the size most recently specified. */
262 val.size = osize;
263 }
264
265 return val;
266 }
267 \f
268 /* Print value VAL on stream according to OPTIONS.
269 Do not end with a newline.
270 SIZE is the letter for the size of datum being printed.
271 This is used to pad hex numbers so they line up. SIZE is 0
272 for print / output and set for examine. */
273
274 static void
275 print_formatted (struct value *val, int size,
276 const struct value_print_options *options,
277 struct ui_file *stream)
278 {
279 struct type *type = check_typedef (value_type (val));
280 int len = TYPE_LENGTH (type);
281
282 if (VALUE_LVAL (val) == lval_memory)
283 next_address = value_address (val) + len;
284
285 if (size)
286 {
287 switch (options->format)
288 {
289 case 's':
290 {
291 struct type *elttype = value_type (val);
292
293 next_address = (value_address (val)
294 + val_print_string (elttype, NULL,
295 value_address (val), -1,
296 stream, options) * len);
297 }
298 return;
299
300 case 'i':
301 /* We often wrap here if there are long symbolic names. */
302 wrap_here (" ");
303 next_address = (value_address (val)
304 + gdb_print_insn (get_type_arch (type),
305 value_address (val), stream,
306 &branch_delay_insns));
307 return;
308 }
309 }
310
311 if (options->format == 0 || options->format == 's'
312 || TYPE_CODE (type) == TYPE_CODE_REF
313 || TYPE_CODE (type) == TYPE_CODE_ARRAY
314 || TYPE_CODE (type) == TYPE_CODE_STRING
315 || TYPE_CODE (type) == TYPE_CODE_STRUCT
316 || TYPE_CODE (type) == TYPE_CODE_UNION
317 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
318 value_print (val, stream, options);
319 else
320 /* User specified format, so don't look to the type to tell us
321 what to do. */
322 val_print_scalar_formatted (type,
323 value_embedded_offset (val),
324 val,
325 options, size, stream);
326 }
327
328 /* Return builtin floating point type of same length as TYPE.
329 If no such type is found, return TYPE itself. */
330 static struct type *
331 float_type_from_length (struct type *type)
332 {
333 struct gdbarch *gdbarch = get_type_arch (type);
334 const struct builtin_type *builtin = builtin_type (gdbarch);
335
336 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
337 type = builtin->builtin_float;
338 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
339 type = builtin->builtin_double;
340 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
341 type = builtin->builtin_long_double;
342
343 return type;
344 }
345
346 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
347 according to OPTIONS and SIZE on STREAM. Formats s and i are not
348 supported at this level. */
349
350 void
351 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
352 const struct value_print_options *options,
353 int size, struct ui_file *stream)
354 {
355 struct gdbarch *gdbarch = get_type_arch (type);
356 unsigned int len = TYPE_LENGTH (type);
357 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
358
359 /* String printing should go through val_print_scalar_formatted. */
360 gdb_assert (options->format != 's');
361
362 /* If the value is a pointer, and pointers and addresses are not the
363 same, then at this point, the value's length (in target bytes) is
364 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
365 if (TYPE_CODE (type) == TYPE_CODE_PTR)
366 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
367
368 /* If we are printing it as unsigned, truncate it in case it is actually
369 a negative signed value (e.g. "print/u (short)-1" should print 65535
370 (if shorts are 16 bits) instead of 4294967295). */
371 if (options->format != 'c'
372 && (options->format != 'd' || TYPE_UNSIGNED (type)))
373 {
374 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
375 valaddr += TYPE_LENGTH (type) - len;
376 }
377
378 if (size != 0 && (options->format == 'x' || options->format == 't'))
379 {
380 /* Truncate to fit. */
381 unsigned newlen;
382 switch (size)
383 {
384 case 'b':
385 newlen = 1;
386 break;
387 case 'h':
388 newlen = 2;
389 break;
390 case 'w':
391 newlen = 4;
392 break;
393 case 'g':
394 newlen = 8;
395 break;
396 default:
397 error (_("Undefined output size \"%c\"."), size);
398 }
399 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
400 valaddr += len - newlen;
401 len = newlen;
402 }
403
404 /* Historically gdb has printed floats by first casting them to a
405 long, and then printing the long. PR cli/16242 suggests changing
406 this to using C-style hex float format. */
407 gdb::byte_vector converted_float_bytes;
408 if (TYPE_CODE (type) == TYPE_CODE_FLT
409 && (options->format == 'o'
410 || options->format == 'x'
411 || options->format == 't'
412 || options->format == 'z'
413 || options->format == 'd'
414 || options->format == 'u'))
415 {
416 LONGEST val_long = unpack_long (type, valaddr);
417 converted_float_bytes.resize (TYPE_LENGTH (type));
418 store_signed_integer (converted_float_bytes.data (), TYPE_LENGTH (type),
419 byte_order, val_long);
420 valaddr = converted_float_bytes.data ();
421 }
422
423 /* Printing a non-float type as 'f' will interpret the data as if it were
424 of a floating-point type of the same length, if that exists. Otherwise,
425 the data is printed as integer. */
426 char format = options->format;
427 if (format == 'f' && TYPE_CODE (type) != TYPE_CODE_FLT)
428 {
429 type = float_type_from_length (type);
430 if (TYPE_CODE (type) != TYPE_CODE_FLT)
431 format = 0;
432 }
433
434 switch (format)
435 {
436 case 'o':
437 print_octal_chars (stream, valaddr, len, byte_order);
438 break;
439 case 'd':
440 print_decimal_chars (stream, valaddr, len, true, byte_order);
441 break;
442 case 'u':
443 print_decimal_chars (stream, valaddr, len, false, byte_order);
444 break;
445 case 0:
446 if (TYPE_CODE (type) != TYPE_CODE_FLT)
447 {
448 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
449 byte_order);
450 break;
451 }
452 /* FALLTHROUGH */
453 case 'f':
454 print_floating (valaddr, type, stream);
455 break;
456
457 case 't':
458 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
459 break;
460 case 'x':
461 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
462 break;
463 case 'z':
464 print_hex_chars (stream, valaddr, len, byte_order, true);
465 break;
466 case 'c':
467 {
468 struct value_print_options opts = *options;
469
470 LONGEST val_long = unpack_long (type, valaddr);
471
472 opts.format = 0;
473 if (TYPE_UNSIGNED (type))
474 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
475 else
476 type = builtin_type (gdbarch)->builtin_true_char;
477
478 value_print (value_from_longest (type, val_long), stream, &opts);
479 }
480 break;
481
482 case 'a':
483 {
484 CORE_ADDR addr = unpack_pointer (type, valaddr);
485
486 print_address (gdbarch, addr, stream);
487 }
488 break;
489
490 default:
491 error (_("Undefined output format \"%c\"."), format);
492 }
493 }
494
495 /* Specify default address for `x' command.
496 The `info lines' command uses this. */
497
498 void
499 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
500 {
501 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
502
503 next_gdbarch = gdbarch;
504 next_address = addr;
505
506 /* Make address available to the user as $_. */
507 set_internalvar (lookup_internalvar ("_"),
508 value_from_pointer (ptr_type, addr));
509 }
510
511 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
512 after LEADIN. Print nothing if no symbolic name is found nearby.
513 Optionally also print source file and line number, if available.
514 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
515 or to interpret it as a possible C++ name and convert it back to source
516 form. However note that DO_DEMANGLE can be overridden by the specific
517 settings of the demangle and asm_demangle variables. Returns
518 non-zero if anything was printed; zero otherwise. */
519
520 int
521 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
522 struct ui_file *stream,
523 int do_demangle, const char *leadin)
524 {
525 std::string name, filename;
526 int unmapped = 0;
527 int offset = 0;
528 int line = 0;
529
530 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
531 &filename, &line, &unmapped))
532 return 0;
533
534 fputs_filtered (leadin, stream);
535 if (unmapped)
536 fputs_filtered ("<*", stream);
537 else
538 fputs_filtered ("<", stream);
539 fputs_styled (name.c_str (), function_name_style.style (), stream);
540 if (offset != 0)
541 fprintf_filtered (stream, "+%u", (unsigned int) offset);
542
543 /* Append source filename and line number if desired. Give specific
544 line # of this addr, if we have it; else line # of the nearest symbol. */
545 if (print_symbol_filename && !filename.empty ())
546 {
547 fputs_filtered (line == -1 ? " in " : " at ", stream);
548 fputs_styled (filename.c_str (), file_name_style.style (), stream);
549 if (line != -1)
550 fprintf_filtered (stream, ":%d", line);
551 }
552 if (unmapped)
553 fputs_filtered ("*>", stream);
554 else
555 fputs_filtered (">", stream);
556
557 return 1;
558 }
559
560 /* See valprint.h. */
561
562 int
563 build_address_symbolic (struct gdbarch *gdbarch,
564 CORE_ADDR addr, /* IN */
565 int do_demangle, /* IN */
566 std::string *name, /* OUT */
567 int *offset, /* OUT */
568 std::string *filename, /* OUT */
569 int *line, /* OUT */
570 int *unmapped) /* OUT */
571 {
572 struct bound_minimal_symbol msymbol;
573 struct symbol *symbol;
574 CORE_ADDR name_location = 0;
575 struct obj_section *section = NULL;
576 const char *name_temp = "";
577
578 /* Let's say it is mapped (not unmapped). */
579 *unmapped = 0;
580
581 /* Determine if the address is in an overlay, and whether it is
582 mapped. */
583 if (overlay_debugging)
584 {
585 section = find_pc_overlay (addr);
586 if (pc_in_unmapped_range (addr, section))
587 {
588 *unmapped = 1;
589 addr = overlay_mapped_address (addr, section);
590 }
591 }
592
593 /* First try to find the address in the symbol table, then
594 in the minsyms. Take the closest one. */
595
596 /* This is defective in the sense that it only finds text symbols. So
597 really this is kind of pointless--we should make sure that the
598 minimal symbols have everything we need (by changing that we could
599 save some memory, but for many debug format--ELF/DWARF or
600 anything/stabs--it would be inconvenient to eliminate those minimal
601 symbols anyway). */
602 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
603 symbol = find_pc_sect_function (addr, section);
604
605 if (symbol)
606 {
607 /* If this is a function (i.e. a code address), strip out any
608 non-address bits. For instance, display a pointer to the
609 first instruction of a Thumb function as <function>; the
610 second instruction will be <function+2>, even though the
611 pointer is <function+3>. This matches the ISA behavior. */
612 addr = gdbarch_addr_bits_remove (gdbarch, addr);
613
614 name_location = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (symbol));
615 if (do_demangle || asm_demangle)
616 name_temp = SYMBOL_PRINT_NAME (symbol);
617 else
618 name_temp = SYMBOL_LINKAGE_NAME (symbol);
619 }
620
621 if (msymbol.minsym != NULL
622 && MSYMBOL_HAS_SIZE (msymbol.minsym)
623 && MSYMBOL_SIZE (msymbol.minsym) == 0
624 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
625 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
626 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
627 msymbol.minsym = NULL;
628
629 if (msymbol.minsym != NULL)
630 {
631 if (BMSYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
632 {
633 /* If this is a function (i.e. a code address), strip out any
634 non-address bits. For instance, display a pointer to the
635 first instruction of a Thumb function as <function>; the
636 second instruction will be <function+2>, even though the
637 pointer is <function+3>. This matches the ISA behavior. */
638 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
639 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
640 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
641 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
642 addr = gdbarch_addr_bits_remove (gdbarch, addr);
643
644 /* The msymbol is closer to the address than the symbol;
645 use the msymbol instead. */
646 symbol = 0;
647 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
648 if (do_demangle || asm_demangle)
649 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
650 else
651 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
652 }
653 }
654 if (symbol == NULL && msymbol.minsym == NULL)
655 return 1;
656
657 /* If the nearest symbol is too far away, don't print anything symbolic. */
658
659 /* For when CORE_ADDR is larger than unsigned int, we do math in
660 CORE_ADDR. But when we detect unsigned wraparound in the
661 CORE_ADDR math, we ignore this test and print the offset,
662 because addr+max_symbolic_offset has wrapped through the end
663 of the address space back to the beginning, giving bogus comparison. */
664 if (addr > name_location + max_symbolic_offset
665 && name_location + max_symbolic_offset > name_location)
666 return 1;
667
668 *offset = addr - name_location;
669
670 *name = name_temp;
671
672 if (print_symbol_filename)
673 {
674 struct symtab_and_line sal;
675
676 sal = find_pc_sect_line (addr, section, 0);
677
678 if (sal.symtab)
679 {
680 *filename = symtab_to_filename_for_display (sal.symtab);
681 *line = sal.line;
682 }
683 }
684 return 0;
685 }
686
687
688 /* Print address ADDR symbolically on STREAM.
689 First print it as a number. Then perhaps print
690 <SYMBOL + OFFSET> after the number. */
691
692 void
693 print_address (struct gdbarch *gdbarch,
694 CORE_ADDR addr, struct ui_file *stream)
695 {
696 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
697 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
698 }
699
700 /* Return a prefix for instruction address:
701 "=> " for current instruction, else " ". */
702
703 const char *
704 pc_prefix (CORE_ADDR addr)
705 {
706 if (has_stack_frames ())
707 {
708 struct frame_info *frame;
709 CORE_ADDR pc;
710
711 frame = get_selected_frame (NULL);
712 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
713 return "=> ";
714 }
715 return " ";
716 }
717
718 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
719 controls whether to print the symbolic name "raw" or demangled.
720 Return non-zero if anything was printed; zero otherwise. */
721
722 int
723 print_address_demangle (const struct value_print_options *opts,
724 struct gdbarch *gdbarch, CORE_ADDR addr,
725 struct ui_file *stream, int do_demangle)
726 {
727 if (opts->addressprint)
728 {
729 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
730 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
731 }
732 else
733 {
734 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
735 }
736 return 1;
737 }
738 \f
739
740 /* Find the address of the instruction that is INST_COUNT instructions before
741 the instruction at ADDR.
742 Since some architectures have variable-length instructions, we can't just
743 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
744 number information to locate the nearest known instruction boundary,
745 and disassemble forward from there. If we go out of the symbol range
746 during disassembling, we return the lowest address we've got so far and
747 set the number of instructions read to INST_READ. */
748
749 static CORE_ADDR
750 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
751 int inst_count, int *inst_read)
752 {
753 /* The vector PCS is used to store instruction addresses within
754 a pc range. */
755 CORE_ADDR loop_start, loop_end, p;
756 std::vector<CORE_ADDR> pcs;
757 struct symtab_and_line sal;
758
759 *inst_read = 0;
760 loop_start = loop_end = addr;
761
762 /* In each iteration of the outer loop, we get a pc range that ends before
763 LOOP_START, then we count and store every instruction address of the range
764 iterated in the loop.
765 If the number of instructions counted reaches INST_COUNT, return the
766 stored address that is located INST_COUNT instructions back from ADDR.
767 If INST_COUNT is not reached, we subtract the number of counted
768 instructions from INST_COUNT, and go to the next iteration. */
769 do
770 {
771 pcs.clear ();
772 sal = find_pc_sect_line (loop_start, NULL, 1);
773 if (sal.line <= 0)
774 {
775 /* We reach here when line info is not available. In this case,
776 we print a message and just exit the loop. The return value
777 is calculated after the loop. */
778 printf_filtered (_("No line number information available "
779 "for address "));
780 wrap_here (" ");
781 print_address (gdbarch, loop_start - 1, gdb_stdout);
782 printf_filtered ("\n");
783 break;
784 }
785
786 loop_end = loop_start;
787 loop_start = sal.pc;
788
789 /* This loop pushes instruction addresses in the range from
790 LOOP_START to LOOP_END. */
791 for (p = loop_start; p < loop_end;)
792 {
793 pcs.push_back (p);
794 p += gdb_insn_length (gdbarch, p);
795 }
796
797 inst_count -= pcs.size ();
798 *inst_read += pcs.size ();
799 }
800 while (inst_count > 0);
801
802 /* After the loop, the vector PCS has instruction addresses of the last
803 source line we processed, and INST_COUNT has a negative value.
804 We return the address at the index of -INST_COUNT in the vector for
805 the reason below.
806 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
807 Line X of File
808 0x4000
809 0x4001
810 0x4005
811 Line Y of File
812 0x4009
813 0x400c
814 => 0x400e
815 0x4011
816 find_instruction_backward is called with INST_COUNT = 4 and expected to
817 return 0x4001. When we reach here, INST_COUNT is set to -1 because
818 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
819 4001 is located at the index 1 of the last iterated line (= Line X),
820 which is simply calculated by -INST_COUNT.
821 The case when the length of PCS is 0 means that we reached an area for
822 which line info is not available. In such case, we return LOOP_START,
823 which was the lowest instruction address that had line info. */
824 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
825
826 /* INST_READ includes all instruction addresses in a pc range. Need to
827 exclude the beginning part up to the address we're returning. That
828 is, exclude {0x4000} in the example above. */
829 if (inst_count < 0)
830 *inst_read += inst_count;
831
832 return p;
833 }
834
835 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
836 placing the results in GDB's memory from MYADDR + LEN. Returns
837 a count of the bytes actually read. */
838
839 static int
840 read_memory_backward (struct gdbarch *gdbarch,
841 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
842 {
843 int errcode;
844 int nread; /* Number of bytes actually read. */
845
846 /* First try a complete read. */
847 errcode = target_read_memory (memaddr, myaddr, len);
848 if (errcode == 0)
849 {
850 /* Got it all. */
851 nread = len;
852 }
853 else
854 {
855 /* Loop, reading one byte at a time until we get as much as we can. */
856 memaddr += len;
857 myaddr += len;
858 for (nread = 0; nread < len; ++nread)
859 {
860 errcode = target_read_memory (--memaddr, --myaddr, 1);
861 if (errcode != 0)
862 {
863 /* The read was unsuccessful, so exit the loop. */
864 printf_filtered (_("Cannot access memory at address %s\n"),
865 paddress (gdbarch, memaddr));
866 break;
867 }
868 }
869 }
870 return nread;
871 }
872
873 /* Returns true if X (which is LEN bytes wide) is the number zero. */
874
875 static int
876 integer_is_zero (const gdb_byte *x, int len)
877 {
878 int i = 0;
879
880 while (i < len && x[i] == 0)
881 ++i;
882 return (i == len);
883 }
884
885 /* Find the start address of a string in which ADDR is included.
886 Basically we search for '\0' and return the next address,
887 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
888 we stop searching and return the address to print characters as many as
889 PRINT_MAX from the string. */
890
891 static CORE_ADDR
892 find_string_backward (struct gdbarch *gdbarch,
893 CORE_ADDR addr, int count, int char_size,
894 const struct value_print_options *options,
895 int *strings_counted)
896 {
897 const int chunk_size = 0x20;
898 int read_error = 0;
899 int chars_read = 0;
900 int chars_to_read = chunk_size;
901 int chars_counted = 0;
902 int count_original = count;
903 CORE_ADDR string_start_addr = addr;
904
905 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
906 gdb::byte_vector buffer (chars_to_read * char_size);
907 while (count > 0 && read_error == 0)
908 {
909 int i;
910
911 addr -= chars_to_read * char_size;
912 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
913 chars_to_read * char_size);
914 chars_read /= char_size;
915 read_error = (chars_read == chars_to_read) ? 0 : 1;
916 /* Searching for '\0' from the end of buffer in backward direction. */
917 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
918 {
919 int offset = (chars_to_read - i - 1) * char_size;
920
921 if (integer_is_zero (&buffer[offset], char_size)
922 || chars_counted == options->print_max)
923 {
924 /* Found '\0' or reached print_max. As OFFSET is the offset to
925 '\0', we add CHAR_SIZE to return the start address of
926 a string. */
927 --count;
928 string_start_addr = addr + offset + char_size;
929 chars_counted = 0;
930 }
931 }
932 }
933
934 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
935 *strings_counted = count_original - count;
936
937 if (read_error != 0)
938 {
939 /* In error case, STRING_START_ADDR is pointing to the string that
940 was last successfully loaded. Rewind the partially loaded string. */
941 string_start_addr -= chars_counted * char_size;
942 }
943
944 return string_start_addr;
945 }
946
947 /* Examine data at address ADDR in format FMT.
948 Fetch it from memory and print on gdb_stdout. */
949
950 static void
951 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
952 {
953 char format = 0;
954 char size;
955 int count = 1;
956 struct type *val_type = NULL;
957 int i;
958 int maxelts;
959 struct value_print_options opts;
960 int need_to_update_next_address = 0;
961 CORE_ADDR addr_rewound = 0;
962
963 format = fmt.format;
964 size = fmt.size;
965 count = fmt.count;
966 next_gdbarch = gdbarch;
967 next_address = addr;
968
969 /* Instruction format implies fetch single bytes
970 regardless of the specified size.
971 The case of strings is handled in decode_format, only explicit
972 size operator are not changed to 'b'. */
973 if (format == 'i')
974 size = 'b';
975
976 if (size == 'a')
977 {
978 /* Pick the appropriate size for an address. */
979 if (gdbarch_ptr_bit (next_gdbarch) == 64)
980 size = 'g';
981 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
982 size = 'w';
983 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
984 size = 'h';
985 else
986 /* Bad value for gdbarch_ptr_bit. */
987 internal_error (__FILE__, __LINE__,
988 _("failed internal consistency check"));
989 }
990
991 if (size == 'b')
992 val_type = builtin_type (next_gdbarch)->builtin_int8;
993 else if (size == 'h')
994 val_type = builtin_type (next_gdbarch)->builtin_int16;
995 else if (size == 'w')
996 val_type = builtin_type (next_gdbarch)->builtin_int32;
997 else if (size == 'g')
998 val_type = builtin_type (next_gdbarch)->builtin_int64;
999
1000 if (format == 's')
1001 {
1002 struct type *char_type = NULL;
1003
1004 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1005 if type is not found. */
1006 if (size == 'h')
1007 char_type = builtin_type (next_gdbarch)->builtin_char16;
1008 else if (size == 'w')
1009 char_type = builtin_type (next_gdbarch)->builtin_char32;
1010 if (char_type)
1011 val_type = char_type;
1012 else
1013 {
1014 if (size != '\0' && size != 'b')
1015 warning (_("Unable to display strings with "
1016 "size '%c', using 'b' instead."), size);
1017 size = 'b';
1018 val_type = builtin_type (next_gdbarch)->builtin_int8;
1019 }
1020 }
1021
1022 maxelts = 8;
1023 if (size == 'w')
1024 maxelts = 4;
1025 if (size == 'g')
1026 maxelts = 2;
1027 if (format == 's' || format == 'i')
1028 maxelts = 1;
1029
1030 get_formatted_print_options (&opts, format);
1031
1032 if (count < 0)
1033 {
1034 /* This is the negative repeat count case.
1035 We rewind the address based on the given repeat count and format,
1036 then examine memory from there in forward direction. */
1037
1038 count = -count;
1039 if (format == 'i')
1040 {
1041 next_address = find_instruction_backward (gdbarch, addr, count,
1042 &count);
1043 }
1044 else if (format == 's')
1045 {
1046 next_address = find_string_backward (gdbarch, addr, count,
1047 TYPE_LENGTH (val_type),
1048 &opts, &count);
1049 }
1050 else
1051 {
1052 next_address = addr - count * TYPE_LENGTH (val_type);
1053 }
1054
1055 /* The following call to print_formatted updates next_address in every
1056 iteration. In backward case, we store the start address here
1057 and update next_address with it before exiting the function. */
1058 addr_rewound = (format == 's'
1059 ? next_address - TYPE_LENGTH (val_type)
1060 : next_address);
1061 need_to_update_next_address = 1;
1062 }
1063
1064 /* Print as many objects as specified in COUNT, at most maxelts per line,
1065 with the address of the next one at the start of each line. */
1066
1067 while (count > 0)
1068 {
1069 QUIT;
1070 if (format == 'i')
1071 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1072 print_address (next_gdbarch, next_address, gdb_stdout);
1073 printf_filtered (":");
1074 for (i = maxelts;
1075 i > 0 && count > 0;
1076 i--, count--)
1077 {
1078 printf_filtered ("\t");
1079 /* Note that print_formatted sets next_address for the next
1080 object. */
1081 last_examine_address = next_address;
1082
1083 /* The value to be displayed is not fetched greedily.
1084 Instead, to avoid the possibility of a fetched value not
1085 being used, its retrieval is delayed until the print code
1086 uses it. When examining an instruction stream, the
1087 disassembler will perform its own memory fetch using just
1088 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1089 the disassembler be modified so that LAST_EXAMINE_VALUE
1090 is left with the byte sequence from the last complete
1091 instruction fetched from memory? */
1092 last_examine_value
1093 = release_value (value_at_lazy (val_type, next_address));
1094
1095 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1096
1097 /* Display any branch delay slots following the final insn. */
1098 if (format == 'i' && count == 1)
1099 count += branch_delay_insns;
1100 }
1101 printf_filtered ("\n");
1102 gdb_flush (gdb_stdout);
1103 }
1104
1105 if (need_to_update_next_address)
1106 next_address = addr_rewound;
1107 }
1108 \f
1109 static void
1110 validate_format (struct format_data fmt, const char *cmdname)
1111 {
1112 if (fmt.size != 0)
1113 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1114 if (fmt.count != 1)
1115 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1116 cmdname);
1117 if (fmt.format == 'i')
1118 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1119 fmt.format, cmdname);
1120 }
1121
1122 /* Parse print command format string into *FMTP and update *EXPP.
1123 CMDNAME should name the current command. */
1124
1125 void
1126 print_command_parse_format (const char **expp, const char *cmdname,
1127 struct format_data *fmtp)
1128 {
1129 const char *exp = *expp;
1130
1131 if (exp && *exp == '/')
1132 {
1133 exp++;
1134 *fmtp = decode_format (&exp, last_format, 0);
1135 validate_format (*fmtp, cmdname);
1136 last_format = fmtp->format;
1137 }
1138 else
1139 {
1140 fmtp->count = 1;
1141 fmtp->format = 0;
1142 fmtp->size = 0;
1143 fmtp->raw = 0;
1144 }
1145
1146 *expp = exp;
1147 }
1148
1149 /* Print VAL to console according to *FMTP, including recording it to
1150 the history. */
1151
1152 void
1153 print_value (struct value *val, const struct format_data *fmtp)
1154 {
1155 struct value_print_options opts;
1156 int histindex = record_latest_value (val);
1157
1158 annotate_value_history_begin (histindex, value_type (val));
1159
1160 printf_filtered ("$%d = ", histindex);
1161
1162 annotate_value_history_value ();
1163
1164 get_formatted_print_options (&opts, fmtp->format);
1165 opts.raw = fmtp->raw;
1166
1167 print_formatted (val, fmtp->size, &opts, gdb_stdout);
1168 printf_filtered ("\n");
1169
1170 annotate_value_history_end ();
1171 }
1172
1173 /* Evaluate string EXP as an expression in the current language and
1174 print the resulting value. EXP may contain a format specifier as the
1175 first argument ("/x myvar" for example, to print myvar in hex). */
1176
1177 static void
1178 print_command_1 (const char *exp, int voidprint)
1179 {
1180 struct value *val;
1181 struct format_data fmt;
1182
1183 print_command_parse_format (&exp, "print", &fmt);
1184
1185 if (exp && *exp)
1186 {
1187 expression_up expr = parse_expression (exp);
1188 val = evaluate_expression (expr.get ());
1189 }
1190 else
1191 val = access_value_history (0);
1192
1193 if (voidprint || (val && value_type (val) &&
1194 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1195 print_value (val, &fmt);
1196 }
1197
1198 static void
1199 print_command (const char *exp, int from_tty)
1200 {
1201 print_command_1 (exp, 1);
1202 }
1203
1204 /* Same as print, except it doesn't print void results. */
1205 static void
1206 call_command (const char *exp, int from_tty)
1207 {
1208 print_command_1 (exp, 0);
1209 }
1210
1211 /* Implementation of the "output" command. */
1212
1213 void
1214 output_command (const char *exp, int from_tty)
1215 {
1216 char format = 0;
1217 struct value *val;
1218 struct format_data fmt;
1219 struct value_print_options opts;
1220
1221 fmt.size = 0;
1222 fmt.raw = 0;
1223
1224 if (exp && *exp == '/')
1225 {
1226 exp++;
1227 fmt = decode_format (&exp, 0, 0);
1228 validate_format (fmt, "output");
1229 format = fmt.format;
1230 }
1231
1232 expression_up expr = parse_expression (exp);
1233
1234 val = evaluate_expression (expr.get ());
1235
1236 annotate_value_begin (value_type (val));
1237
1238 get_formatted_print_options (&opts, format);
1239 opts.raw = fmt.raw;
1240 print_formatted (val, fmt.size, &opts, gdb_stdout);
1241
1242 annotate_value_end ();
1243
1244 wrap_here ("");
1245 gdb_flush (gdb_stdout);
1246 }
1247
1248 static void
1249 set_command (const char *exp, int from_tty)
1250 {
1251 expression_up expr = parse_expression (exp);
1252
1253 if (expr->nelts >= 1)
1254 switch (expr->elts[0].opcode)
1255 {
1256 case UNOP_PREINCREMENT:
1257 case UNOP_POSTINCREMENT:
1258 case UNOP_PREDECREMENT:
1259 case UNOP_POSTDECREMENT:
1260 case BINOP_ASSIGN:
1261 case BINOP_ASSIGN_MODIFY:
1262 case BINOP_COMMA:
1263 break;
1264 default:
1265 warning
1266 (_("Expression is not an assignment (and might have no effect)"));
1267 }
1268
1269 evaluate_expression (expr.get ());
1270 }
1271
1272 static void
1273 info_symbol_command (const char *arg, int from_tty)
1274 {
1275 struct minimal_symbol *msymbol;
1276 struct objfile *objfile;
1277 struct obj_section *osect;
1278 CORE_ADDR addr, sect_addr;
1279 int matches = 0;
1280 unsigned int offset;
1281
1282 if (!arg)
1283 error_no_arg (_("address"));
1284
1285 addr = parse_and_eval_address (arg);
1286 ALL_OBJSECTIONS (objfile, osect)
1287 {
1288 /* Only process each object file once, even if there's a separate
1289 debug file. */
1290 if (objfile->separate_debug_objfile_backlink)
1291 continue;
1292
1293 sect_addr = overlay_mapped_address (addr, osect);
1294
1295 if (obj_section_addr (osect) <= sect_addr
1296 && sect_addr < obj_section_endaddr (osect)
1297 && (msymbol
1298 = lookup_minimal_symbol_by_pc_section (sect_addr, osect).minsym))
1299 {
1300 const char *obj_name, *mapped, *sec_name, *msym_name;
1301 const char *loc_string;
1302
1303 matches = 1;
1304 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1305 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1306 sec_name = osect->the_bfd_section->name;
1307 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1308
1309 /* Don't print the offset if it is zero.
1310 We assume there's no need to handle i18n of "sym + offset". */
1311 std::string string_holder;
1312 if (offset)
1313 {
1314 string_holder = string_printf ("%s + %u", msym_name, offset);
1315 loc_string = string_holder.c_str ();
1316 }
1317 else
1318 loc_string = msym_name;
1319
1320 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1321 obj_name = objfile_name (osect->objfile);
1322
1323 if (MULTI_OBJFILE_P ())
1324 if (pc_in_unmapped_range (addr, osect))
1325 if (section_is_overlay (osect))
1326 printf_filtered (_("%s in load address range of "
1327 "%s overlay section %s of %s\n"),
1328 loc_string, mapped, sec_name, obj_name);
1329 else
1330 printf_filtered (_("%s in load address range of "
1331 "section %s of %s\n"),
1332 loc_string, sec_name, obj_name);
1333 else
1334 if (section_is_overlay (osect))
1335 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1336 loc_string, mapped, sec_name, obj_name);
1337 else
1338 printf_filtered (_("%s in section %s of %s\n"),
1339 loc_string, sec_name, obj_name);
1340 else
1341 if (pc_in_unmapped_range (addr, osect))
1342 if (section_is_overlay (osect))
1343 printf_filtered (_("%s in load address range of %s overlay "
1344 "section %s\n"),
1345 loc_string, mapped, sec_name);
1346 else
1347 printf_filtered (_("%s in load address range of section %s\n"),
1348 loc_string, sec_name);
1349 else
1350 if (section_is_overlay (osect))
1351 printf_filtered (_("%s in %s overlay section %s\n"),
1352 loc_string, mapped, sec_name);
1353 else
1354 printf_filtered (_("%s in section %s\n"),
1355 loc_string, sec_name);
1356 }
1357 }
1358 if (matches == 0)
1359 printf_filtered (_("No symbol matches %s.\n"), arg);
1360 }
1361
1362 static void
1363 info_address_command (const char *exp, int from_tty)
1364 {
1365 struct gdbarch *gdbarch;
1366 int regno;
1367 struct symbol *sym;
1368 struct bound_minimal_symbol msymbol;
1369 long val;
1370 struct obj_section *section;
1371 CORE_ADDR load_addr, context_pc = 0;
1372 struct field_of_this_result is_a_field_of_this;
1373
1374 if (exp == 0)
1375 error (_("Argument required."));
1376
1377 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1378 &is_a_field_of_this).symbol;
1379 if (sym == NULL)
1380 {
1381 if (is_a_field_of_this.type != NULL)
1382 {
1383 printf_filtered ("Symbol \"");
1384 fprintf_symbol_filtered (gdb_stdout, exp,
1385 current_language->la_language, DMGL_ANSI);
1386 printf_filtered ("\" is a field of the local class variable ");
1387 if (current_language->la_language == language_objc)
1388 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1389 else
1390 printf_filtered ("`this'\n");
1391 return;
1392 }
1393
1394 msymbol = lookup_bound_minimal_symbol (exp);
1395
1396 if (msymbol.minsym != NULL)
1397 {
1398 struct objfile *objfile = msymbol.objfile;
1399
1400 gdbarch = get_objfile_arch (objfile);
1401 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1402
1403 printf_filtered ("Symbol \"");
1404 fprintf_symbol_filtered (gdb_stdout, exp,
1405 current_language->la_language, DMGL_ANSI);
1406 printf_filtered ("\" is at ");
1407 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1408 gdb_stdout);
1409 printf_filtered (" in a file compiled without debugging");
1410 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1411 if (section_is_overlay (section))
1412 {
1413 load_addr = overlay_unmapped_address (load_addr, section);
1414 printf_filtered (",\n -- loaded at ");
1415 fputs_styled (paddress (gdbarch, load_addr),
1416 address_style.style (),
1417 gdb_stdout);
1418 printf_filtered (" in overlay section %s",
1419 section->the_bfd_section->name);
1420 }
1421 printf_filtered (".\n");
1422 }
1423 else
1424 error (_("No symbol \"%s\" in current context."), exp);
1425 return;
1426 }
1427
1428 printf_filtered ("Symbol \"");
1429 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1430 current_language->la_language, DMGL_ANSI);
1431 printf_filtered ("\" is ");
1432 val = SYMBOL_VALUE (sym);
1433 if (SYMBOL_OBJFILE_OWNED (sym))
1434 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1435 else
1436 section = NULL;
1437 gdbarch = symbol_arch (sym);
1438
1439 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1440 {
1441 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1442 gdb_stdout);
1443 printf_filtered (".\n");
1444 return;
1445 }
1446
1447 switch (SYMBOL_CLASS (sym))
1448 {
1449 case LOC_CONST:
1450 case LOC_CONST_BYTES:
1451 printf_filtered ("constant");
1452 break;
1453
1454 case LOC_LABEL:
1455 printf_filtered ("a label at address ");
1456 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1457 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1458 gdb_stdout);
1459 if (section_is_overlay (section))
1460 {
1461 load_addr = overlay_unmapped_address (load_addr, section);
1462 printf_filtered (",\n -- loaded at ");
1463 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1464 gdb_stdout);
1465 printf_filtered (" in overlay section %s",
1466 section->the_bfd_section->name);
1467 }
1468 break;
1469
1470 case LOC_COMPUTED:
1471 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1472
1473 case LOC_REGISTER:
1474 /* GDBARCH is the architecture associated with the objfile the symbol
1475 is defined in; the target architecture may be different, and may
1476 provide additional registers. However, we do not know the target
1477 architecture at this point. We assume the objfile architecture
1478 will contain all the standard registers that occur in debug info
1479 in that objfile. */
1480 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1481
1482 if (SYMBOL_IS_ARGUMENT (sym))
1483 printf_filtered (_("an argument in register %s"),
1484 gdbarch_register_name (gdbarch, regno));
1485 else
1486 printf_filtered (_("a variable in register %s"),
1487 gdbarch_register_name (gdbarch, regno));
1488 break;
1489
1490 case LOC_STATIC:
1491 printf_filtered (_("static storage at address "));
1492 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1493 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1494 gdb_stdout);
1495 if (section_is_overlay (section))
1496 {
1497 load_addr = overlay_unmapped_address (load_addr, section);
1498 printf_filtered (_(",\n -- loaded at "));
1499 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1500 gdb_stdout);
1501 printf_filtered (_(" in overlay section %s"),
1502 section->the_bfd_section->name);
1503 }
1504 break;
1505
1506 case LOC_REGPARM_ADDR:
1507 /* Note comment at LOC_REGISTER. */
1508 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1509 printf_filtered (_("address of an argument in register %s"),
1510 gdbarch_register_name (gdbarch, regno));
1511 break;
1512
1513 case LOC_ARG:
1514 printf_filtered (_("an argument at offset %ld"), val);
1515 break;
1516
1517 case LOC_LOCAL:
1518 printf_filtered (_("a local variable at frame offset %ld"), val);
1519 break;
1520
1521 case LOC_REF_ARG:
1522 printf_filtered (_("a reference argument at offset %ld"), val);
1523 break;
1524
1525 case LOC_TYPEDEF:
1526 printf_filtered (_("a typedef"));
1527 break;
1528
1529 case LOC_BLOCK:
1530 printf_filtered (_("a function at address "));
1531 load_addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1532 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1533 gdb_stdout);
1534 if (section_is_overlay (section))
1535 {
1536 load_addr = overlay_unmapped_address (load_addr, section);
1537 printf_filtered (_(",\n -- loaded at "));
1538 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1539 gdb_stdout);
1540 printf_filtered (_(" in overlay section %s"),
1541 section->the_bfd_section->name);
1542 }
1543 break;
1544
1545 case LOC_UNRESOLVED:
1546 {
1547 struct bound_minimal_symbol msym;
1548
1549 msym = lookup_bound_minimal_symbol (SYMBOL_LINKAGE_NAME (sym));
1550 if (msym.minsym == NULL)
1551 printf_filtered ("unresolved");
1552 else
1553 {
1554 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1555
1556 if (section
1557 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1558 {
1559 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1560 printf_filtered (_("a thread-local variable at offset %s "
1561 "in the thread-local storage for `%s'"),
1562 paddress (gdbarch, load_addr),
1563 objfile_name (section->objfile));
1564 }
1565 else
1566 {
1567 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1568 printf_filtered (_("static storage at address "));
1569 fputs_styled (paddress (gdbarch, load_addr),
1570 address_style.style (), gdb_stdout);
1571 if (section_is_overlay (section))
1572 {
1573 load_addr = overlay_unmapped_address (load_addr, section);
1574 printf_filtered (_(",\n -- loaded at "));
1575 fputs_styled (paddress (gdbarch, load_addr),
1576 address_style.style (),
1577 gdb_stdout);
1578 printf_filtered (_(" in overlay section %s"),
1579 section->the_bfd_section->name);
1580 }
1581 }
1582 }
1583 }
1584 break;
1585
1586 case LOC_OPTIMIZED_OUT:
1587 printf_filtered (_("optimized out"));
1588 break;
1589
1590 default:
1591 printf_filtered (_("of unknown (botched) type"));
1592 break;
1593 }
1594 printf_filtered (".\n");
1595 }
1596 \f
1597
1598 static void
1599 x_command (const char *exp, int from_tty)
1600 {
1601 struct format_data fmt;
1602 struct value *val;
1603
1604 fmt.format = last_format ? last_format : 'x';
1605 fmt.size = last_size;
1606 fmt.count = 1;
1607 fmt.raw = 0;
1608
1609 /* If there is no expression and no format, use the most recent
1610 count. */
1611 if (exp == nullptr && last_count > 0)
1612 fmt.count = last_count;
1613
1614 if (exp && *exp == '/')
1615 {
1616 const char *tmp = exp + 1;
1617
1618 fmt = decode_format (&tmp, last_format, last_size);
1619 exp = (char *) tmp;
1620 }
1621
1622 last_count = fmt.count;
1623
1624 /* If we have an expression, evaluate it and use it as the address. */
1625
1626 if (exp != 0 && *exp != 0)
1627 {
1628 expression_up expr = parse_expression (exp);
1629 /* Cause expression not to be there any more if this command is
1630 repeated with Newline. But don't clobber a user-defined
1631 command's definition. */
1632 if (from_tty)
1633 set_repeat_arguments ("");
1634 val = evaluate_expression (expr.get ());
1635 if (TYPE_IS_REFERENCE (value_type (val)))
1636 val = coerce_ref (val);
1637 /* In rvalue contexts, such as this, functions are coerced into
1638 pointers to functions. This makes "x/i main" work. */
1639 if (/* last_format == 'i' && */
1640 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1641 && VALUE_LVAL (val) == lval_memory)
1642 next_address = value_address (val);
1643 else
1644 next_address = value_as_address (val);
1645
1646 next_gdbarch = expr->gdbarch;
1647 }
1648
1649 if (!next_gdbarch)
1650 error_no_arg (_("starting display address"));
1651
1652 do_examine (fmt, next_gdbarch, next_address);
1653
1654 /* If the examine succeeds, we remember its size and format for next
1655 time. Set last_size to 'b' for strings. */
1656 if (fmt.format == 's')
1657 last_size = 'b';
1658 else
1659 last_size = fmt.size;
1660 last_format = fmt.format;
1661
1662 /* Set a couple of internal variables if appropriate. */
1663 if (last_examine_value != nullptr)
1664 {
1665 /* Make last address examined available to the user as $_. Use
1666 the correct pointer type. */
1667 struct type *pointer_type
1668 = lookup_pointer_type (value_type (last_examine_value.get ()));
1669 set_internalvar (lookup_internalvar ("_"),
1670 value_from_pointer (pointer_type,
1671 last_examine_address));
1672
1673 /* Make contents of last address examined available to the user
1674 as $__. If the last value has not been fetched from memory
1675 then don't fetch it now; instead mark it by voiding the $__
1676 variable. */
1677 if (value_lazy (last_examine_value.get ()))
1678 clear_internalvar (lookup_internalvar ("__"));
1679 else
1680 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1681 }
1682 }
1683 \f
1684
1685 /* Add an expression to the auto-display chain.
1686 Specify the expression. */
1687
1688 static void
1689 display_command (const char *arg, int from_tty)
1690 {
1691 struct format_data fmt;
1692 struct display *newobj;
1693 const char *exp = arg;
1694
1695 if (exp == 0)
1696 {
1697 do_displays ();
1698 return;
1699 }
1700
1701 if (*exp == '/')
1702 {
1703 exp++;
1704 fmt = decode_format (&exp, 0, 0);
1705 if (fmt.size && fmt.format == 0)
1706 fmt.format = 'x';
1707 if (fmt.format == 'i' || fmt.format == 's')
1708 fmt.size = 'b';
1709 }
1710 else
1711 {
1712 fmt.format = 0;
1713 fmt.size = 0;
1714 fmt.count = 0;
1715 fmt.raw = 0;
1716 }
1717
1718 innermost_block.reset ();
1719 expression_up expr = parse_expression (exp);
1720
1721 newobj = new display ();
1722
1723 newobj->exp_string = xstrdup (exp);
1724 newobj->exp = std::move (expr);
1725 newobj->block = innermost_block.block ();
1726 newobj->pspace = current_program_space;
1727 newobj->number = ++display_number;
1728 newobj->format = fmt;
1729 newobj->enabled_p = 1;
1730 newobj->next = NULL;
1731
1732 if (display_chain == NULL)
1733 display_chain = newobj;
1734 else
1735 {
1736 struct display *last;
1737
1738 for (last = display_chain; last->next != NULL; last = last->next)
1739 ;
1740 last->next = newobj;
1741 }
1742
1743 if (from_tty)
1744 do_one_display (newobj);
1745
1746 dont_repeat ();
1747 }
1748
1749 static void
1750 free_display (struct display *d)
1751 {
1752 xfree (d->exp_string);
1753 delete d;
1754 }
1755
1756 /* Clear out the display_chain. Done when new symtabs are loaded,
1757 since this invalidates the types stored in many expressions. */
1758
1759 void
1760 clear_displays (void)
1761 {
1762 struct display *d;
1763
1764 while ((d = display_chain) != NULL)
1765 {
1766 display_chain = d->next;
1767 free_display (d);
1768 }
1769 }
1770
1771 /* Delete the auto-display DISPLAY. */
1772
1773 static void
1774 delete_display (struct display *display)
1775 {
1776 struct display *d;
1777
1778 gdb_assert (display != NULL);
1779
1780 if (display_chain == display)
1781 display_chain = display->next;
1782
1783 ALL_DISPLAYS (d)
1784 if (d->next == display)
1785 {
1786 d->next = display->next;
1787 break;
1788 }
1789
1790 free_display (display);
1791 }
1792
1793 /* Call FUNCTION on each of the displays whose numbers are given in
1794 ARGS. DATA is passed unmodified to FUNCTION. */
1795
1796 static void
1797 map_display_numbers (const char *args,
1798 void (*function) (struct display *,
1799 void *),
1800 void *data)
1801 {
1802 int num;
1803
1804 if (args == NULL)
1805 error_no_arg (_("one or more display numbers"));
1806
1807 number_or_range_parser parser (args);
1808
1809 while (!parser.finished ())
1810 {
1811 const char *p = parser.cur_tok ();
1812
1813 num = parser.get_number ();
1814 if (num == 0)
1815 warning (_("bad display number at or near '%s'"), p);
1816 else
1817 {
1818 struct display *d, *tmp;
1819
1820 ALL_DISPLAYS_SAFE (d, tmp)
1821 if (d->number == num)
1822 break;
1823 if (d == NULL)
1824 printf_unfiltered (_("No display number %d.\n"), num);
1825 else
1826 function (d, data);
1827 }
1828 }
1829 }
1830
1831 /* Callback for map_display_numbers, that deletes a display. */
1832
1833 static void
1834 do_delete_display (struct display *d, void *data)
1835 {
1836 delete_display (d);
1837 }
1838
1839 /* "undisplay" command. */
1840
1841 static void
1842 undisplay_command (const char *args, int from_tty)
1843 {
1844 if (args == NULL)
1845 {
1846 if (query (_("Delete all auto-display expressions? ")))
1847 clear_displays ();
1848 dont_repeat ();
1849 return;
1850 }
1851
1852 map_display_numbers (args, do_delete_display, NULL);
1853 dont_repeat ();
1854 }
1855
1856 /* Display a single auto-display.
1857 Do nothing if the display cannot be printed in the current context,
1858 or if the display is disabled. */
1859
1860 static void
1861 do_one_display (struct display *d)
1862 {
1863 int within_current_scope;
1864
1865 if (d->enabled_p == 0)
1866 return;
1867
1868 /* The expression carries the architecture that was used at parse time.
1869 This is a problem if the expression depends on architecture features
1870 (e.g. register numbers), and the current architecture is now different.
1871 For example, a display statement like "display/i $pc" is expected to
1872 display the PC register of the current architecture, not the arch at
1873 the time the display command was given. Therefore, we re-parse the
1874 expression if the current architecture has changed. */
1875 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1876 {
1877 d->exp.reset ();
1878 d->block = NULL;
1879 }
1880
1881 if (d->exp == NULL)
1882 {
1883
1884 TRY
1885 {
1886 innermost_block.reset ();
1887 d->exp = parse_expression (d->exp_string);
1888 d->block = innermost_block.block ();
1889 }
1890 CATCH (ex, RETURN_MASK_ALL)
1891 {
1892 /* Can't re-parse the expression. Disable this display item. */
1893 d->enabled_p = 0;
1894 warning (_("Unable to display \"%s\": %s"),
1895 d->exp_string, ex.message);
1896 return;
1897 }
1898 END_CATCH
1899 }
1900
1901 if (d->block)
1902 {
1903 if (d->pspace == current_program_space)
1904 within_current_scope = contained_in (get_selected_block (0), d->block);
1905 else
1906 within_current_scope = 0;
1907 }
1908 else
1909 within_current_scope = 1;
1910 if (!within_current_scope)
1911 return;
1912
1913 scoped_restore save_display_number
1914 = make_scoped_restore (&current_display_number, d->number);
1915
1916 annotate_display_begin ();
1917 printf_filtered ("%d", d->number);
1918 annotate_display_number_end ();
1919 printf_filtered (": ");
1920 if (d->format.size)
1921 {
1922
1923 annotate_display_format ();
1924
1925 printf_filtered ("x/");
1926 if (d->format.count != 1)
1927 printf_filtered ("%d", d->format.count);
1928 printf_filtered ("%c", d->format.format);
1929 if (d->format.format != 'i' && d->format.format != 's')
1930 printf_filtered ("%c", d->format.size);
1931 printf_filtered (" ");
1932
1933 annotate_display_expression ();
1934
1935 puts_filtered (d->exp_string);
1936 annotate_display_expression_end ();
1937
1938 if (d->format.count != 1 || d->format.format == 'i')
1939 printf_filtered ("\n");
1940 else
1941 printf_filtered (" ");
1942
1943 annotate_display_value ();
1944
1945 TRY
1946 {
1947 struct value *val;
1948 CORE_ADDR addr;
1949
1950 val = evaluate_expression (d->exp.get ());
1951 addr = value_as_address (val);
1952 if (d->format.format == 'i')
1953 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1954 do_examine (d->format, d->exp->gdbarch, addr);
1955 }
1956 CATCH (ex, RETURN_MASK_ERROR)
1957 {
1958 fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
1959 }
1960 END_CATCH
1961 }
1962 else
1963 {
1964 struct value_print_options opts;
1965
1966 annotate_display_format ();
1967
1968 if (d->format.format)
1969 printf_filtered ("/%c ", d->format.format);
1970
1971 annotate_display_expression ();
1972
1973 puts_filtered (d->exp_string);
1974 annotate_display_expression_end ();
1975
1976 printf_filtered (" = ");
1977
1978 annotate_display_expression ();
1979
1980 get_formatted_print_options (&opts, d->format.format);
1981 opts.raw = d->format.raw;
1982
1983 TRY
1984 {
1985 struct value *val;
1986
1987 val = evaluate_expression (d->exp.get ());
1988 print_formatted (val, d->format.size, &opts, gdb_stdout);
1989 }
1990 CATCH (ex, RETURN_MASK_ERROR)
1991 {
1992 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
1993 }
1994 END_CATCH
1995
1996 printf_filtered ("\n");
1997 }
1998
1999 annotate_display_end ();
2000
2001 gdb_flush (gdb_stdout);
2002 }
2003
2004 /* Display all of the values on the auto-display chain which can be
2005 evaluated in the current scope. */
2006
2007 void
2008 do_displays (void)
2009 {
2010 struct display *d;
2011
2012 for (d = display_chain; d; d = d->next)
2013 do_one_display (d);
2014 }
2015
2016 /* Delete the auto-display which we were in the process of displaying.
2017 This is done when there is an error or a signal. */
2018
2019 void
2020 disable_display (int num)
2021 {
2022 struct display *d;
2023
2024 for (d = display_chain; d; d = d->next)
2025 if (d->number == num)
2026 {
2027 d->enabled_p = 0;
2028 return;
2029 }
2030 printf_unfiltered (_("No display number %d.\n"), num);
2031 }
2032
2033 void
2034 disable_current_display (void)
2035 {
2036 if (current_display_number >= 0)
2037 {
2038 disable_display (current_display_number);
2039 fprintf_unfiltered (gdb_stderr,
2040 _("Disabling display %d to "
2041 "avoid infinite recursion.\n"),
2042 current_display_number);
2043 }
2044 current_display_number = -1;
2045 }
2046
2047 static void
2048 info_display_command (const char *ignore, int from_tty)
2049 {
2050 struct display *d;
2051
2052 if (!display_chain)
2053 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2054 else
2055 printf_filtered (_("Auto-display expressions now in effect:\n\
2056 Num Enb Expression\n"));
2057
2058 for (d = display_chain; d; d = d->next)
2059 {
2060 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2061 if (d->format.size)
2062 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2063 d->format.format);
2064 else if (d->format.format)
2065 printf_filtered ("/%c ", d->format.format);
2066 puts_filtered (d->exp_string);
2067 if (d->block && !contained_in (get_selected_block (0), d->block))
2068 printf_filtered (_(" (cannot be evaluated in the current context)"));
2069 printf_filtered ("\n");
2070 gdb_flush (gdb_stdout);
2071 }
2072 }
2073
2074 /* Callback fo map_display_numbers, that enables or disables the
2075 passed in display D. */
2076
2077 static void
2078 do_enable_disable_display (struct display *d, void *data)
2079 {
2080 d->enabled_p = *(int *) data;
2081 }
2082
2083 /* Implamentation of both the "disable display" and "enable display"
2084 commands. ENABLE decides what to do. */
2085
2086 static void
2087 enable_disable_display_command (const char *args, int from_tty, int enable)
2088 {
2089 if (args == NULL)
2090 {
2091 struct display *d;
2092
2093 ALL_DISPLAYS (d)
2094 d->enabled_p = enable;
2095 return;
2096 }
2097
2098 map_display_numbers (args, do_enable_disable_display, &enable);
2099 }
2100
2101 /* The "enable display" command. */
2102
2103 static void
2104 enable_display_command (const char *args, int from_tty)
2105 {
2106 enable_disable_display_command (args, from_tty, 1);
2107 }
2108
2109 /* The "disable display" command. */
2110
2111 static void
2112 disable_display_command (const char *args, int from_tty)
2113 {
2114 enable_disable_display_command (args, from_tty, 0);
2115 }
2116
2117 /* display_chain items point to blocks and expressions. Some expressions in
2118 turn may point to symbols.
2119 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2120 obstack_free'd when a shared library is unloaded.
2121 Clear pointers that are about to become dangling.
2122 Both .exp and .block fields will be restored next time we need to display
2123 an item by re-parsing .exp_string field in the new execution context. */
2124
2125 static void
2126 clear_dangling_display_expressions (struct objfile *objfile)
2127 {
2128 struct display *d;
2129 struct program_space *pspace;
2130
2131 /* With no symbol file we cannot have a block or expression from it. */
2132 if (objfile == NULL)
2133 return;
2134 pspace = objfile->pspace;
2135 if (objfile->separate_debug_objfile_backlink)
2136 {
2137 objfile = objfile->separate_debug_objfile_backlink;
2138 gdb_assert (objfile->pspace == pspace);
2139 }
2140
2141 for (d = display_chain; d != NULL; d = d->next)
2142 {
2143 if (d->pspace != pspace)
2144 continue;
2145
2146 if (lookup_objfile_from_block (d->block) == objfile
2147 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2148 {
2149 d->exp.reset ();
2150 d->block = NULL;
2151 }
2152 }
2153 }
2154 \f
2155
2156 /* Print the value in stack frame FRAME of a variable specified by a
2157 struct symbol. NAME is the name to print; if NULL then VAR's print
2158 name will be used. STREAM is the ui_file on which to print the
2159 value. INDENT specifies the number of indent levels to print
2160 before printing the variable name.
2161
2162 This function invalidates FRAME. */
2163
2164 void
2165 print_variable_and_value (const char *name, struct symbol *var,
2166 struct frame_info *frame,
2167 struct ui_file *stream, int indent)
2168 {
2169
2170 if (!name)
2171 name = SYMBOL_PRINT_NAME (var);
2172
2173 fputs_filtered (n_spaces (2 * indent), stream);
2174 fputs_styled (name, variable_name_style.style (), stream);
2175 fputs_filtered (" = ", stream);
2176
2177 TRY
2178 {
2179 struct value *val;
2180 struct value_print_options opts;
2181
2182 /* READ_VAR_VALUE needs a block in order to deal with non-local
2183 references (i.e. to handle nested functions). In this context, we
2184 print variables that are local to this frame, so we can avoid passing
2185 a block to it. */
2186 val = read_var_value (var, NULL, frame);
2187 get_user_print_options (&opts);
2188 opts.deref_ref = 1;
2189 common_val_print (val, stream, indent, &opts, current_language);
2190
2191 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2192 function. */
2193 frame = NULL;
2194 }
2195 CATCH (except, RETURN_MASK_ERROR)
2196 {
2197 fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
2198 except.message);
2199 }
2200 END_CATCH
2201
2202 fprintf_filtered (stream, "\n");
2203 }
2204
2205 /* Subroutine of ui_printf to simplify it.
2206 Print VALUE to STREAM using FORMAT.
2207 VALUE is a C-style string on the target. */
2208
2209 static void
2210 printf_c_string (struct ui_file *stream, const char *format,
2211 struct value *value)
2212 {
2213 gdb_byte *str;
2214 CORE_ADDR tem;
2215 int j;
2216
2217 tem = value_as_address (value);
2218 if (tem == 0)
2219 {
2220 DIAGNOSTIC_PUSH
2221 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2222 fprintf_filtered (stream, format, "(null)");
2223 DIAGNOSTIC_POP
2224 return;
2225 }
2226
2227 /* This is a %s argument. Find the length of the string. */
2228 for (j = 0;; j++)
2229 {
2230 gdb_byte c;
2231
2232 QUIT;
2233 read_memory (tem + j, &c, 1);
2234 if (c == 0)
2235 break;
2236 }
2237
2238 /* Copy the string contents into a string inside GDB. */
2239 str = (gdb_byte *) alloca (j + 1);
2240 if (j != 0)
2241 read_memory (tem, str, j);
2242 str[j] = 0;
2243
2244 DIAGNOSTIC_PUSH
2245 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2246 fprintf_filtered (stream, format, (char *) str);
2247 DIAGNOSTIC_POP
2248 }
2249
2250 /* Subroutine of ui_printf to simplify it.
2251 Print VALUE to STREAM using FORMAT.
2252 VALUE is a wide C-style string on the target. */
2253
2254 static void
2255 printf_wide_c_string (struct ui_file *stream, const char *format,
2256 struct value *value)
2257 {
2258 gdb_byte *str;
2259 CORE_ADDR tem;
2260 int j;
2261 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2262 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2263 struct type *wctype = lookup_typename (current_language, gdbarch,
2264 "wchar_t", NULL, 0);
2265 int wcwidth = TYPE_LENGTH (wctype);
2266 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2267
2268 tem = value_as_address (value);
2269 if (tem == 0)
2270 {
2271 DIAGNOSTIC_PUSH
2272 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2273 fprintf_filtered (stream, format, "(null)");
2274 DIAGNOSTIC_POP
2275 return;
2276 }
2277
2278 /* This is a %s argument. Find the length of the string. */
2279 for (j = 0;; j += wcwidth)
2280 {
2281 QUIT;
2282 read_memory (tem + j, buf, wcwidth);
2283 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2284 break;
2285 }
2286
2287 /* Copy the string contents into a string inside GDB. */
2288 str = (gdb_byte *) alloca (j + wcwidth);
2289 if (j != 0)
2290 read_memory (tem, str, j);
2291 memset (&str[j], 0, wcwidth);
2292
2293 auto_obstack output;
2294
2295 convert_between_encodings (target_wide_charset (gdbarch),
2296 host_charset (),
2297 str, j, wcwidth,
2298 &output, translit_char);
2299 obstack_grow_str0 (&output, "");
2300
2301 DIAGNOSTIC_PUSH
2302 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2303 fprintf_filtered (stream, format, obstack_base (&output));
2304 DIAGNOSTIC_POP
2305 }
2306
2307 /* Subroutine of ui_printf to simplify it.
2308 Print VALUE, a floating point value, to STREAM using FORMAT. */
2309
2310 static void
2311 printf_floating (struct ui_file *stream, const char *format,
2312 struct value *value, enum argclass argclass)
2313 {
2314 /* Parameter data. */
2315 struct type *param_type = value_type (value);
2316 struct gdbarch *gdbarch = get_type_arch (param_type);
2317
2318 /* Determine target type corresponding to the format string. */
2319 struct type *fmt_type;
2320 switch (argclass)
2321 {
2322 case double_arg:
2323 fmt_type = builtin_type (gdbarch)->builtin_double;
2324 break;
2325 case long_double_arg:
2326 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2327 break;
2328 case dec32float_arg:
2329 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2330 break;
2331 case dec64float_arg:
2332 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2333 break;
2334 case dec128float_arg:
2335 fmt_type = builtin_type (gdbarch)->builtin_declong;
2336 break;
2337 default:
2338 gdb_assert_not_reached ("unexpected argument class");
2339 }
2340
2341 /* To match the traditional GDB behavior, the conversion is
2342 done differently depending on the type of the parameter:
2343
2344 - if the parameter has floating-point type, it's value
2345 is converted to the target type;
2346
2347 - otherwise, if the parameter has a type that is of the
2348 same size as a built-in floating-point type, the value
2349 bytes are interpreted as if they were of that type, and
2350 then converted to the target type (this is not done for
2351 decimal floating-point argument classes);
2352
2353 - otherwise, if the source value has an integer value,
2354 it's value is converted to the target type;
2355
2356 - otherwise, an error is raised.
2357
2358 In either case, the result of the conversion is a byte buffer
2359 formatted in the target format for the target type. */
2360
2361 if (TYPE_CODE (fmt_type) == TYPE_CODE_FLT)
2362 {
2363 param_type = float_type_from_length (param_type);
2364 if (param_type != value_type (value))
2365 value = value_from_contents (param_type, value_contents (value));
2366 }
2367
2368 value = value_cast (fmt_type, value);
2369
2370 /* Convert the value to a string and print it. */
2371 std::string str
2372 = target_float_to_string (value_contents (value), fmt_type, format);
2373 fputs_filtered (str.c_str (), stream);
2374 }
2375
2376 /* Subroutine of ui_printf to simplify it.
2377 Print VALUE, a target pointer, to STREAM using FORMAT. */
2378
2379 static void
2380 printf_pointer (struct ui_file *stream, const char *format,
2381 struct value *value)
2382 {
2383 /* We avoid the host's %p because pointers are too
2384 likely to be the wrong size. The only interesting
2385 modifier for %p is a width; extract that, and then
2386 handle %p as glibc would: %#x or a literal "(nil)". */
2387
2388 const char *p;
2389 char *fmt, *fmt_p;
2390 #ifdef PRINTF_HAS_LONG_LONG
2391 long long val = value_as_long (value);
2392 #else
2393 long val = value_as_long (value);
2394 #endif
2395
2396 fmt = (char *) alloca (strlen (format) + 5);
2397
2398 /* Copy up to the leading %. */
2399 p = format;
2400 fmt_p = fmt;
2401 while (*p)
2402 {
2403 int is_percent = (*p == '%');
2404
2405 *fmt_p++ = *p++;
2406 if (is_percent)
2407 {
2408 if (*p == '%')
2409 *fmt_p++ = *p++;
2410 else
2411 break;
2412 }
2413 }
2414
2415 if (val != 0)
2416 *fmt_p++ = '#';
2417
2418 /* Copy any width or flags. Only the "-" flag is valid for pointers
2419 -- see the format_pieces constructor. */
2420 while (*p == '-' || (*p >= '0' && *p < '9'))
2421 *fmt_p++ = *p++;
2422
2423 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2424 if (val != 0)
2425 {
2426 #ifdef PRINTF_HAS_LONG_LONG
2427 *fmt_p++ = 'l';
2428 #endif
2429 *fmt_p++ = 'l';
2430 *fmt_p++ = 'x';
2431 *fmt_p++ = '\0';
2432 DIAGNOSTIC_PUSH
2433 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2434 fprintf_filtered (stream, fmt, val);
2435 DIAGNOSTIC_POP
2436 }
2437 else
2438 {
2439 *fmt_p++ = 's';
2440 *fmt_p++ = '\0';
2441 DIAGNOSTIC_PUSH
2442 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2443 fprintf_filtered (stream, fmt, "(nil)");
2444 DIAGNOSTIC_POP
2445 }
2446 }
2447
2448 /* printf "printf format string" ARG to STREAM. */
2449
2450 static void
2451 ui_printf (const char *arg, struct ui_file *stream)
2452 {
2453 const char *s = arg;
2454 std::vector<struct value *> val_args;
2455
2456 if (s == 0)
2457 error_no_arg (_("format-control string and values to print"));
2458
2459 s = skip_spaces (s);
2460
2461 /* A format string should follow, enveloped in double quotes. */
2462 if (*s++ != '"')
2463 error (_("Bad format string, missing '\"'."));
2464
2465 format_pieces fpieces (&s);
2466
2467 if (*s++ != '"')
2468 error (_("Bad format string, non-terminated '\"'."));
2469
2470 s = skip_spaces (s);
2471
2472 if (*s != ',' && *s != 0)
2473 error (_("Invalid argument syntax"));
2474
2475 if (*s == ',')
2476 s++;
2477 s = skip_spaces (s);
2478
2479 {
2480 int nargs_wanted;
2481 int i;
2482 const char *current_substring;
2483
2484 nargs_wanted = 0;
2485 for (auto &&piece : fpieces)
2486 if (piece.argclass != literal_piece)
2487 ++nargs_wanted;
2488
2489 /* Now, parse all arguments and evaluate them.
2490 Store the VALUEs in VAL_ARGS. */
2491
2492 while (*s != '\0')
2493 {
2494 const char *s1;
2495
2496 s1 = s;
2497 val_args.push_back (parse_to_comma_and_eval (&s1));
2498
2499 s = s1;
2500 if (*s == ',')
2501 s++;
2502 }
2503
2504 if (val_args.size () != nargs_wanted)
2505 error (_("Wrong number of arguments for specified format-string"));
2506
2507 /* Now actually print them. */
2508 i = 0;
2509 for (auto &&piece : fpieces)
2510 {
2511 current_substring = piece.string;
2512 switch (piece.argclass)
2513 {
2514 case string_arg:
2515 printf_c_string (stream, current_substring, val_args[i]);
2516 break;
2517 case wide_string_arg:
2518 printf_wide_c_string (stream, current_substring, val_args[i]);
2519 break;
2520 case wide_char_arg:
2521 {
2522 struct gdbarch *gdbarch
2523 = get_type_arch (value_type (val_args[i]));
2524 struct type *wctype = lookup_typename (current_language, gdbarch,
2525 "wchar_t", NULL, 0);
2526 struct type *valtype;
2527 const gdb_byte *bytes;
2528
2529 valtype = value_type (val_args[i]);
2530 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2531 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2532 error (_("expected wchar_t argument for %%lc"));
2533
2534 bytes = value_contents (val_args[i]);
2535
2536 auto_obstack output;
2537
2538 convert_between_encodings (target_wide_charset (gdbarch),
2539 host_charset (),
2540 bytes, TYPE_LENGTH (valtype),
2541 TYPE_LENGTH (valtype),
2542 &output, translit_char);
2543 obstack_grow_str0 (&output, "");
2544
2545 DIAGNOSTIC_PUSH
2546 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2547 fprintf_filtered (stream, current_substring,
2548 obstack_base (&output));
2549 DIAGNOSTIC_POP
2550 }
2551 break;
2552 case long_long_arg:
2553 #ifdef PRINTF_HAS_LONG_LONG
2554 {
2555 long long val = value_as_long (val_args[i]);
2556
2557 DIAGNOSTIC_PUSH
2558 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2559 fprintf_filtered (stream, current_substring, val);
2560 DIAGNOSTIC_POP
2561 break;
2562 }
2563 #else
2564 error (_("long long not supported in printf"));
2565 #endif
2566 case int_arg:
2567 {
2568 int val = value_as_long (val_args[i]);
2569
2570 DIAGNOSTIC_PUSH
2571 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2572 fprintf_filtered (stream, current_substring, val);
2573 DIAGNOSTIC_POP
2574 break;
2575 }
2576 case long_arg:
2577 {
2578 long val = value_as_long (val_args[i]);
2579
2580 DIAGNOSTIC_PUSH
2581 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2582 fprintf_filtered (stream, current_substring, val);
2583 DIAGNOSTIC_POP
2584 break;
2585 }
2586 /* Handles floating-point values. */
2587 case double_arg:
2588 case long_double_arg:
2589 case dec32float_arg:
2590 case dec64float_arg:
2591 case dec128float_arg:
2592 printf_floating (stream, current_substring, val_args[i],
2593 piece.argclass);
2594 break;
2595 case ptr_arg:
2596 printf_pointer (stream, current_substring, val_args[i]);
2597 break;
2598 case literal_piece:
2599 /* Print a portion of the format string that has no
2600 directives. Note that this will not include any
2601 ordinary %-specs, but it might include "%%". That is
2602 why we use printf_filtered and not puts_filtered here.
2603 Also, we pass a dummy argument because some platforms
2604 have modified GCC to include -Wformat-security by
2605 default, which will warn here if there is no
2606 argument. */
2607 DIAGNOSTIC_PUSH
2608 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2609 fprintf_filtered (stream, current_substring, 0);
2610 DIAGNOSTIC_POP
2611 break;
2612 default:
2613 internal_error (__FILE__, __LINE__,
2614 _("failed internal consistency check"));
2615 }
2616 /* Maybe advance to the next argument. */
2617 if (piece.argclass != literal_piece)
2618 ++i;
2619 }
2620 }
2621 }
2622
2623 /* Implement the "printf" command. */
2624
2625 static void
2626 printf_command (const char *arg, int from_tty)
2627 {
2628 ui_printf (arg, gdb_stdout);
2629 reset_terminal_style (gdb_stdout);
2630 wrap_here ("");
2631 gdb_flush (gdb_stdout);
2632 }
2633
2634 /* Implement the "eval" command. */
2635
2636 static void
2637 eval_command (const char *arg, int from_tty)
2638 {
2639 string_file stb;
2640
2641 ui_printf (arg, &stb);
2642
2643 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2644
2645 execute_command (expanded.c_str (), from_tty);
2646 }
2647
2648 void
2649 _initialize_printcmd (void)
2650 {
2651 struct cmd_list_element *c;
2652
2653 current_display_number = -1;
2654
2655 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2656
2657 add_info ("address", info_address_command,
2658 _("Describe where symbol SYM is stored."));
2659
2660 add_info ("symbol", info_symbol_command, _("\
2661 Describe what symbol is at location ADDR.\n\
2662 Only for symbols with fixed locations (global or static scope)."));
2663
2664 add_com ("x", class_vars, x_command, _("\
2665 Examine memory: x/FMT ADDRESS.\n\
2666 ADDRESS is an expression for the memory address to examine.\n\
2667 FMT is a repeat count followed by a format letter and a size letter.\n\
2668 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2669 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2670 and z(hex, zero padded on the left).\n\
2671 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2672 The specified number of objects of the specified size are printed\n\
2673 according to the format. If a negative number is specified, memory is\n\
2674 examined backward from the address.\n\n\
2675 Defaults for format and size letters are those previously used.\n\
2676 Default count is 1. Default address is following last thing printed\n\
2677 with this command or \"print\"."));
2678
2679 #if 0
2680 add_com ("whereis", class_vars, whereis_command,
2681 _("Print line number and file of definition of variable."));
2682 #endif
2683
2684 add_info ("display", info_display_command, _("\
2685 Expressions to display when program stops, with code numbers."));
2686
2687 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2688 Cancel some expressions to be displayed when program stops.\n\
2689 Arguments are the code numbers of the expressions to stop displaying.\n\
2690 No argument means cancel all automatic-display expressions.\n\
2691 \"delete display\" has the same effect as this command.\n\
2692 Do \"info display\" to see current list of code numbers."),
2693 &cmdlist);
2694
2695 add_com ("display", class_vars, display_command, _("\
2696 Print value of expression EXP each time the program stops.\n\
2697 /FMT may be used before EXP as in the \"print\" command.\n\
2698 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2699 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2700 and examining is done as in the \"x\" command.\n\n\
2701 With no argument, display all currently requested auto-display expressions.\n\
2702 Use \"undisplay\" to cancel display requests previously made."));
2703
2704 add_cmd ("display", class_vars, enable_display_command, _("\
2705 Enable some expressions to be displayed when program stops.\n\
2706 Arguments are the code numbers of the expressions to resume displaying.\n\
2707 No argument means enable all automatic-display expressions.\n\
2708 Do \"info display\" to see current list of code numbers."), &enablelist);
2709
2710 add_cmd ("display", class_vars, disable_display_command, _("\
2711 Disable some expressions to be displayed when program stops.\n\
2712 Arguments are the code numbers of the expressions to stop displaying.\n\
2713 No argument means disable all automatic-display expressions.\n\
2714 Do \"info display\" to see current list of code numbers."), &disablelist);
2715
2716 add_cmd ("display", class_vars, undisplay_command, _("\
2717 Cancel some expressions to be displayed when program stops.\n\
2718 Arguments are the code numbers of the expressions to stop displaying.\n\
2719 No argument means cancel all automatic-display expressions.\n\
2720 Do \"info display\" to see current list of code numbers."), &deletelist);
2721
2722 add_com ("printf", class_vars, printf_command, _("\
2723 Formatted printing, like the C \"printf\" function.\n\
2724 Usage: printf \"format string\", arg1, arg2, arg3, ..., argn\n\
2725 This supports most C printf format specifications, like %s, %d, etc."));
2726
2727 add_com ("output", class_vars, output_command, _("\
2728 Like \"print\" but don't put in value history and don't print newline.\n\
2729 This is useful in user-defined commands."));
2730
2731 add_prefix_cmd ("set", class_vars, set_command, _("\
2732 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2733 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2734 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2735 with $), a register (a few standard names starting with $), or an actual\n\
2736 variable in the program being debugged. EXP is any valid expression.\n\
2737 Use \"set variable\" for variables with names identical to set subcommands.\n\
2738 \n\
2739 With a subcommand, this command modifies parts of the gdb environment.\n\
2740 You can see these environment settings with the \"show\" command."),
2741 &setlist, "set ", 1, &cmdlist);
2742 if (dbx_commands)
2743 add_com ("assign", class_vars, set_command, _("\
2744 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2745 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2746 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2747 with $), a register (a few standard names starting with $), or an actual\n\
2748 variable in the program being debugged. EXP is any valid expression.\n\
2749 Use \"set variable\" for variables with names identical to set subcommands.\n\
2750 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2751 You can see these environment settings with the \"show\" command."));
2752
2753 /* "call" is the same as "set", but handy for dbx users to call fns. */
2754 c = add_com ("call", class_vars, call_command, _("\
2755 Call a function in the program.\n\
2756 The argument is the function name and arguments, in the notation of the\n\
2757 current working language. The result is printed and saved in the value\n\
2758 history, if it is not void."));
2759 set_cmd_completer (c, expression_completer);
2760
2761 add_cmd ("variable", class_vars, set_command, _("\
2762 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2763 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2764 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2765 with $), a register (a few standard names starting with $), or an actual\n\
2766 variable in the program being debugged. EXP is any valid expression.\n\
2767 This may usually be abbreviated to simply \"set\"."),
2768 &setlist);
2769 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2770
2771 c = add_com ("print", class_vars, print_command, _("\
2772 Print value of expression EXP.\n\
2773 Variables accessible are those of the lexical environment of the selected\n\
2774 stack frame, plus all those whose scope is global or an entire file.\n\
2775 \n\
2776 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2777 $$NUM refers to NUM'th value back from the last one.\n\
2778 Names starting with $ refer to registers (with the values they would have\n\
2779 if the program were to return to the stack frame now selected, restoring\n\
2780 all registers saved by frames farther in) or else to debugger\n\
2781 \"convenience\" variables (any such name not a known register).\n\
2782 Use assignment expressions to give values to convenience variables.\n\
2783 \n\
2784 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2785 @ is a binary operator for treating consecutive data objects\n\
2786 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2787 element is FOO, whose second element is stored in the space following\n\
2788 where FOO is stored, etc. FOO must be an expression whose value\n\
2789 resides in memory.\n\
2790 \n\
2791 EXP may be preceded with /FMT, where FMT is a format letter\n\
2792 but no count or size letter (see \"x\" command)."));
2793 set_cmd_completer (c, expression_completer);
2794 add_com_alias ("p", "print", class_vars, 1);
2795 add_com_alias ("inspect", "print", class_vars, 1);
2796
2797 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2798 &max_symbolic_offset, _("\
2799 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2800 Show the largest offset that will be printed in <symbol+1234> form."), _("\
2801 Tell GDB to only display the symbolic form of an address if the\n\
2802 offset between the closest earlier symbol and the address is less than\n\
2803 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2804 to always print the symbolic form of an address if any symbol precedes\n\
2805 it. Zero is equivalent to \"unlimited\"."),
2806 NULL,
2807 show_max_symbolic_offset,
2808 &setprintlist, &showprintlist);
2809 add_setshow_boolean_cmd ("symbol-filename", no_class,
2810 &print_symbol_filename, _("\
2811 Set printing of source filename and line number with <symbol>."), _("\
2812 Show printing of source filename and line number with <symbol>."), NULL,
2813 NULL,
2814 show_print_symbol_filename,
2815 &setprintlist, &showprintlist);
2816
2817 add_com ("eval", no_class, eval_command, _("\
2818 Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\
2819 a command line, and call it."));
2820 }
This page took 0.16285 seconds and 5 git commands to generate.