* minsyms.h (struct bound_minimal_symbol): New.
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "frame.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "language.h"
27 #include "expression.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "breakpoint.h"
32 #include "demangle.h"
33 #include "gdb-demangle.h"
34 #include "valprint.h"
35 #include "annotate.h"
36 #include "symfile.h" /* for overlay functions */
37 #include "objfiles.h" /* ditto */
38 #include "completer.h" /* for completion functions */
39 #include "ui-out.h"
40 #include "gdb_assert.h"
41 #include "block.h"
42 #include "disasm.h"
43 #include "dfp.h"
44 #include "valprint.h"
45 #include "exceptions.h"
46 #include "observer.h"
47 #include "solist.h"
48 #include "parser-defs.h"
49 #include "charset.h"
50 #include "arch-utils.h"
51 #include "cli/cli-utils.h"
52 #include "format.h"
53 #include "source.h"
54
55 #ifdef TUI
56 #include "tui/tui.h" /* For tui_active et al. */
57 #endif
58
59 struct format_data
60 {
61 int count;
62 char format;
63 char size;
64
65 /* True if the value should be printed raw -- that is, bypassing
66 python-based formatters. */
67 unsigned char raw;
68 };
69
70 /* Last specified output format. */
71
72 static char last_format = 0;
73
74 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
75
76 static char last_size = 'w';
77
78 /* Default address to examine next, and associated architecture. */
79
80 static struct gdbarch *next_gdbarch;
81 static CORE_ADDR next_address;
82
83 /* Number of delay instructions following current disassembled insn. */
84
85 static int branch_delay_insns;
86
87 /* Last address examined. */
88
89 static CORE_ADDR last_examine_address;
90
91 /* Contents of last address examined.
92 This is not valid past the end of the `x' command! */
93
94 static struct value *last_examine_value;
95
96 /* Largest offset between a symbolic value and an address, that will be
97 printed as `0x1234 <symbol+offset>'. */
98
99 static unsigned int max_symbolic_offset = UINT_MAX;
100 static void
101 show_max_symbolic_offset (struct ui_file *file, int from_tty,
102 struct cmd_list_element *c, const char *value)
103 {
104 fprintf_filtered (file,
105 _("The largest offset that will be "
106 "printed in <symbol+1234> form is %s.\n"),
107 value);
108 }
109
110 /* Append the source filename and linenumber of the symbol when
111 printing a symbolic value as `<symbol at filename:linenum>' if set. */
112 static int print_symbol_filename = 0;
113 static void
114 show_print_symbol_filename (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c, const char *value)
116 {
117 fprintf_filtered (file, _("Printing of source filename and "
118 "line number with <symbol> is %s.\n"),
119 value);
120 }
121
122 /* Number of auto-display expression currently being displayed.
123 So that we can disable it if we get a signal within it.
124 -1 when not doing one. */
125
126 static int current_display_number;
127
128 struct display
129 {
130 /* Chain link to next auto-display item. */
131 struct display *next;
132
133 /* The expression as the user typed it. */
134 char *exp_string;
135
136 /* Expression to be evaluated and displayed. */
137 struct expression *exp;
138
139 /* Item number of this auto-display item. */
140 int number;
141
142 /* Display format specified. */
143 struct format_data format;
144
145 /* Program space associated with `block'. */
146 struct program_space *pspace;
147
148 /* Innermost block required by this expression when evaluated. */
149 const struct block *block;
150
151 /* Status of this display (enabled or disabled). */
152 int enabled_p;
153 };
154
155 /* Chain of expressions whose values should be displayed
156 automatically each time the program stops. */
157
158 static struct display *display_chain;
159
160 static int display_number;
161
162 /* Walk the following statement or block through all displays.
163 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
164 display. */
165
166 #define ALL_DISPLAYS(B) \
167 for (B = display_chain; B; B = B->next)
168
169 #define ALL_DISPLAYS_SAFE(B,TMP) \
170 for (B = display_chain; \
171 B ? (TMP = B->next, 1): 0; \
172 B = TMP)
173
174 /* Prototypes for exported functions. */
175
176 void _initialize_printcmd (void);
177
178 /* Prototypes for local functions. */
179
180 static void do_one_display (struct display *);
181 \f
182
183 /* Decode a format specification. *STRING_PTR should point to it.
184 OFORMAT and OSIZE are used as defaults for the format and size
185 if none are given in the format specification.
186 If OSIZE is zero, then the size field of the returned value
187 should be set only if a size is explicitly specified by the
188 user.
189 The structure returned describes all the data
190 found in the specification. In addition, *STRING_PTR is advanced
191 past the specification and past all whitespace following it. */
192
193 static struct format_data
194 decode_format (const char **string_ptr, int oformat, int osize)
195 {
196 struct format_data val;
197 const char *p = *string_ptr;
198
199 val.format = '?';
200 val.size = '?';
201 val.count = 1;
202 val.raw = 0;
203
204 if (*p >= '0' && *p <= '9')
205 val.count = atoi (p);
206 while (*p >= '0' && *p <= '9')
207 p++;
208
209 /* Now process size or format letters that follow. */
210
211 while (1)
212 {
213 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
214 val.size = *p++;
215 else if (*p == 'r')
216 {
217 val.raw = 1;
218 p++;
219 }
220 else if (*p >= 'a' && *p <= 'z')
221 val.format = *p++;
222 else
223 break;
224 }
225
226 while (*p == ' ' || *p == '\t')
227 p++;
228 *string_ptr = p;
229
230 /* Set defaults for format and size if not specified. */
231 if (val.format == '?')
232 {
233 if (val.size == '?')
234 {
235 /* Neither has been specified. */
236 val.format = oformat;
237 val.size = osize;
238 }
239 else
240 /* If a size is specified, any format makes a reasonable
241 default except 'i'. */
242 val.format = oformat == 'i' ? 'x' : oformat;
243 }
244 else if (val.size == '?')
245 switch (val.format)
246 {
247 case 'a':
248 /* Pick the appropriate size for an address. This is deferred
249 until do_examine when we know the actual architecture to use.
250 A special size value of 'a' is used to indicate this case. */
251 val.size = osize ? 'a' : osize;
252 break;
253 case 'f':
254 /* Floating point has to be word or giantword. */
255 if (osize == 'w' || osize == 'g')
256 val.size = osize;
257 else
258 /* Default it to giantword if the last used size is not
259 appropriate. */
260 val.size = osize ? 'g' : osize;
261 break;
262 case 'c':
263 /* Characters default to one byte. */
264 val.size = osize ? 'b' : osize;
265 break;
266 case 's':
267 /* Display strings with byte size chars unless explicitly
268 specified. */
269 val.size = '\0';
270 break;
271
272 default:
273 /* The default is the size most recently specified. */
274 val.size = osize;
275 }
276
277 return val;
278 }
279 \f
280 /* Print value VAL on stream according to OPTIONS.
281 Do not end with a newline.
282 SIZE is the letter for the size of datum being printed.
283 This is used to pad hex numbers so they line up. SIZE is 0
284 for print / output and set for examine. */
285
286 static void
287 print_formatted (struct value *val, int size,
288 const struct value_print_options *options,
289 struct ui_file *stream)
290 {
291 struct type *type = check_typedef (value_type (val));
292 int len = TYPE_LENGTH (type);
293
294 if (VALUE_LVAL (val) == lval_memory)
295 next_address = value_address (val) + len;
296
297 if (size)
298 {
299 switch (options->format)
300 {
301 case 's':
302 {
303 struct type *elttype = value_type (val);
304
305 next_address = (value_address (val)
306 + val_print_string (elttype, NULL,
307 value_address (val), -1,
308 stream, options) * len);
309 }
310 return;
311
312 case 'i':
313 /* We often wrap here if there are long symbolic names. */
314 wrap_here (" ");
315 next_address = (value_address (val)
316 + gdb_print_insn (get_type_arch (type),
317 value_address (val), stream,
318 &branch_delay_insns));
319 return;
320 }
321 }
322
323 if (options->format == 0 || options->format == 's'
324 || TYPE_CODE (type) == TYPE_CODE_REF
325 || TYPE_CODE (type) == TYPE_CODE_ARRAY
326 || TYPE_CODE (type) == TYPE_CODE_STRING
327 || TYPE_CODE (type) == TYPE_CODE_STRUCT
328 || TYPE_CODE (type) == TYPE_CODE_UNION
329 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
330 value_print (val, stream, options);
331 else
332 /* User specified format, so don't look to the type to tell us
333 what to do. */
334 val_print_scalar_formatted (type,
335 value_contents_for_printing (val),
336 value_embedded_offset (val),
337 val,
338 options, size, stream);
339 }
340
341 /* Return builtin floating point type of same length as TYPE.
342 If no such type is found, return TYPE itself. */
343 static struct type *
344 float_type_from_length (struct type *type)
345 {
346 struct gdbarch *gdbarch = get_type_arch (type);
347 const struct builtin_type *builtin = builtin_type (gdbarch);
348
349 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
350 type = builtin->builtin_float;
351 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
352 type = builtin->builtin_double;
353 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
354 type = builtin->builtin_long_double;
355
356 return type;
357 }
358
359 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
360 according to OPTIONS and SIZE on STREAM. Formats s and i are not
361 supported at this level. */
362
363 void
364 print_scalar_formatted (const void *valaddr, struct type *type,
365 const struct value_print_options *options,
366 int size, struct ui_file *stream)
367 {
368 struct gdbarch *gdbarch = get_type_arch (type);
369 LONGEST val_long = 0;
370 unsigned int len = TYPE_LENGTH (type);
371 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
372
373 /* String printing should go through val_print_scalar_formatted. */
374 gdb_assert (options->format != 's');
375
376 if (len > sizeof(LONGEST) &&
377 (TYPE_CODE (type) == TYPE_CODE_INT
378 || TYPE_CODE (type) == TYPE_CODE_ENUM))
379 {
380 switch (options->format)
381 {
382 case 'o':
383 print_octal_chars (stream, valaddr, len, byte_order);
384 return;
385 case 'u':
386 case 'd':
387 print_decimal_chars (stream, valaddr, len, byte_order);
388 return;
389 case 't':
390 print_binary_chars (stream, valaddr, len, byte_order);
391 return;
392 case 'x':
393 print_hex_chars (stream, valaddr, len, byte_order);
394 return;
395 case 'c':
396 print_char_chars (stream, type, valaddr, len, byte_order);
397 return;
398 default:
399 break;
400 };
401 }
402
403 if (options->format != 'f')
404 val_long = unpack_long (type, valaddr);
405
406 /* If the value is a pointer, and pointers and addresses are not the
407 same, then at this point, the value's length (in target bytes) is
408 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
409 if (TYPE_CODE (type) == TYPE_CODE_PTR)
410 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
411
412 /* If we are printing it as unsigned, truncate it in case it is actually
413 a negative signed value (e.g. "print/u (short)-1" should print 65535
414 (if shorts are 16 bits) instead of 4294967295). */
415 if (options->format != 'd' || TYPE_UNSIGNED (type))
416 {
417 if (len < sizeof (LONGEST))
418 val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
419 }
420
421 switch (options->format)
422 {
423 case 'x':
424 if (!size)
425 {
426 /* No size specified, like in print. Print varying # of digits. */
427 print_longest (stream, 'x', 1, val_long);
428 }
429 else
430 switch (size)
431 {
432 case 'b':
433 case 'h':
434 case 'w':
435 case 'g':
436 print_longest (stream, size, 1, val_long);
437 break;
438 default:
439 error (_("Undefined output size \"%c\"."), size);
440 }
441 break;
442
443 case 'd':
444 print_longest (stream, 'd', 1, val_long);
445 break;
446
447 case 'u':
448 print_longest (stream, 'u', 0, val_long);
449 break;
450
451 case 'o':
452 if (val_long)
453 print_longest (stream, 'o', 1, val_long);
454 else
455 fprintf_filtered (stream, "0");
456 break;
457
458 case 'a':
459 {
460 CORE_ADDR addr = unpack_pointer (type, valaddr);
461
462 print_address (gdbarch, addr, stream);
463 }
464 break;
465
466 case 'c':
467 {
468 struct value_print_options opts = *options;
469
470 opts.format = 0;
471 if (TYPE_UNSIGNED (type))
472 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
473 else
474 type = builtin_type (gdbarch)->builtin_true_char;
475
476 value_print (value_from_longest (type, val_long), stream, &opts);
477 }
478 break;
479
480 case 'f':
481 type = float_type_from_length (type);
482 print_floating (valaddr, type, stream);
483 break;
484
485 case 0:
486 internal_error (__FILE__, __LINE__,
487 _("failed internal consistency check"));
488
489 case 't':
490 /* Binary; 't' stands for "two". */
491 {
492 char bits[8 * (sizeof val_long) + 1];
493 char buf[8 * (sizeof val_long) + 32];
494 char *cp = bits;
495 int width;
496
497 if (!size)
498 width = 8 * (sizeof val_long);
499 else
500 switch (size)
501 {
502 case 'b':
503 width = 8;
504 break;
505 case 'h':
506 width = 16;
507 break;
508 case 'w':
509 width = 32;
510 break;
511 case 'g':
512 width = 64;
513 break;
514 default:
515 error (_("Undefined output size \"%c\"."), size);
516 }
517
518 bits[width] = '\0';
519 while (width-- > 0)
520 {
521 bits[width] = (val_long & 1) ? '1' : '0';
522 val_long >>= 1;
523 }
524 if (!size)
525 {
526 while (*cp && *cp == '0')
527 cp++;
528 if (*cp == '\0')
529 cp--;
530 }
531 strncpy (buf, cp, sizeof (bits));
532 fputs_filtered (buf, stream);
533 }
534 break;
535
536 default:
537 error (_("Undefined output format \"%c\"."), options->format);
538 }
539 }
540
541 /* Specify default address for `x' command.
542 The `info lines' command uses this. */
543
544 void
545 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
546 {
547 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
548
549 next_gdbarch = gdbarch;
550 next_address = addr;
551
552 /* Make address available to the user as $_. */
553 set_internalvar (lookup_internalvar ("_"),
554 value_from_pointer (ptr_type, addr));
555 }
556
557 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
558 after LEADIN. Print nothing if no symbolic name is found nearby.
559 Optionally also print source file and line number, if available.
560 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
561 or to interpret it as a possible C++ name and convert it back to source
562 form. However note that DO_DEMANGLE can be overridden by the specific
563 settings of the demangle and asm_demangle variables. Returns
564 non-zero if anything was printed; zero otherwise. */
565
566 int
567 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
568 struct ui_file *stream,
569 int do_demangle, char *leadin)
570 {
571 char *name = NULL;
572 char *filename = NULL;
573 int unmapped = 0;
574 int offset = 0;
575 int line = 0;
576
577 /* Throw away both name and filename. */
578 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
579 make_cleanup (free_current_contents, &filename);
580
581 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
582 &filename, &line, &unmapped))
583 {
584 do_cleanups (cleanup_chain);
585 return 0;
586 }
587
588 fputs_filtered (leadin, stream);
589 if (unmapped)
590 fputs_filtered ("<*", stream);
591 else
592 fputs_filtered ("<", stream);
593 fputs_filtered (name, stream);
594 if (offset != 0)
595 fprintf_filtered (stream, "+%u", (unsigned int) offset);
596
597 /* Append source filename and line number if desired. Give specific
598 line # of this addr, if we have it; else line # of the nearest symbol. */
599 if (print_symbol_filename && filename != NULL)
600 {
601 if (line != -1)
602 fprintf_filtered (stream, " at %s:%d", filename, line);
603 else
604 fprintf_filtered (stream, " in %s", filename);
605 }
606 if (unmapped)
607 fputs_filtered ("*>", stream);
608 else
609 fputs_filtered (">", stream);
610
611 do_cleanups (cleanup_chain);
612 return 1;
613 }
614
615 /* Given an address ADDR return all the elements needed to print the
616 address in a symbolic form. NAME can be mangled or not depending
617 on DO_DEMANGLE (and also on the asm_demangle global variable,
618 manipulated via ''set print asm-demangle''). Return 0 in case of
619 success, when all the info in the OUT paramters is valid. Return 1
620 otherwise. */
621 int
622 build_address_symbolic (struct gdbarch *gdbarch,
623 CORE_ADDR addr, /* IN */
624 int do_demangle, /* IN */
625 char **name, /* OUT */
626 int *offset, /* OUT */
627 char **filename, /* OUT */
628 int *line, /* OUT */
629 int *unmapped) /* OUT */
630 {
631 struct minimal_symbol *msymbol;
632 struct symbol *symbol;
633 CORE_ADDR name_location = 0;
634 struct obj_section *section = NULL;
635 const char *name_temp = "";
636
637 /* Let's say it is mapped (not unmapped). */
638 *unmapped = 0;
639
640 /* Determine if the address is in an overlay, and whether it is
641 mapped. */
642 if (overlay_debugging)
643 {
644 section = find_pc_overlay (addr);
645 if (pc_in_unmapped_range (addr, section))
646 {
647 *unmapped = 1;
648 addr = overlay_mapped_address (addr, section);
649 }
650 }
651
652 /* First try to find the address in the symbol table, then
653 in the minsyms. Take the closest one. */
654
655 /* This is defective in the sense that it only finds text symbols. So
656 really this is kind of pointless--we should make sure that the
657 minimal symbols have everything we need (by changing that we could
658 save some memory, but for many debug format--ELF/DWARF or
659 anything/stabs--it would be inconvenient to eliminate those minimal
660 symbols anyway). */
661 msymbol = lookup_minimal_symbol_by_pc_section (addr, section).minsym;
662 symbol = find_pc_sect_function (addr, section);
663
664 if (symbol)
665 {
666 /* If this is a function (i.e. a code address), strip out any
667 non-address bits. For instance, display a pointer to the
668 first instruction of a Thumb function as <function>; the
669 second instruction will be <function+2>, even though the
670 pointer is <function+3>. This matches the ISA behavior. */
671 addr = gdbarch_addr_bits_remove (gdbarch, addr);
672
673 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
674 if (do_demangle || asm_demangle)
675 name_temp = SYMBOL_PRINT_NAME (symbol);
676 else
677 name_temp = SYMBOL_LINKAGE_NAME (symbol);
678 }
679
680 if (msymbol != NULL
681 && MSYMBOL_HAS_SIZE (msymbol)
682 && MSYMBOL_SIZE (msymbol) == 0
683 && MSYMBOL_TYPE (msymbol) != mst_text
684 && MSYMBOL_TYPE (msymbol) != mst_text_gnu_ifunc
685 && MSYMBOL_TYPE (msymbol) != mst_file_text)
686 msymbol = NULL;
687
688 if (msymbol != NULL)
689 {
690 if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
691 {
692 /* The msymbol is closer to the address than the symbol;
693 use the msymbol instead. */
694 symbol = 0;
695 name_location = SYMBOL_VALUE_ADDRESS (msymbol);
696 if (do_demangle || asm_demangle)
697 name_temp = SYMBOL_PRINT_NAME (msymbol);
698 else
699 name_temp = SYMBOL_LINKAGE_NAME (msymbol);
700 }
701 }
702 if (symbol == NULL && msymbol == NULL)
703 return 1;
704
705 /* If the nearest symbol is too far away, don't print anything symbolic. */
706
707 /* For when CORE_ADDR is larger than unsigned int, we do math in
708 CORE_ADDR. But when we detect unsigned wraparound in the
709 CORE_ADDR math, we ignore this test and print the offset,
710 because addr+max_symbolic_offset has wrapped through the end
711 of the address space back to the beginning, giving bogus comparison. */
712 if (addr > name_location + max_symbolic_offset
713 && name_location + max_symbolic_offset > name_location)
714 return 1;
715
716 *offset = addr - name_location;
717
718 *name = xstrdup (name_temp);
719
720 if (print_symbol_filename)
721 {
722 struct symtab_and_line sal;
723
724 sal = find_pc_sect_line (addr, section, 0);
725
726 if (sal.symtab)
727 {
728 *filename = xstrdup (symtab_to_filename_for_display (sal.symtab));
729 *line = sal.line;
730 }
731 }
732 return 0;
733 }
734
735
736 /* Print address ADDR symbolically on STREAM.
737 First print it as a number. Then perhaps print
738 <SYMBOL + OFFSET> after the number. */
739
740 void
741 print_address (struct gdbarch *gdbarch,
742 CORE_ADDR addr, struct ui_file *stream)
743 {
744 fputs_filtered (paddress (gdbarch, addr), stream);
745 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
746 }
747
748 /* Return a prefix for instruction address:
749 "=> " for current instruction, else " ". */
750
751 const char *
752 pc_prefix (CORE_ADDR addr)
753 {
754 if (has_stack_frames ())
755 {
756 struct frame_info *frame;
757 CORE_ADDR pc;
758
759 frame = get_selected_frame (NULL);
760 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
761 return "=> ";
762 }
763 return " ";
764 }
765
766 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
767 controls whether to print the symbolic name "raw" or demangled.
768 Return non-zero if anything was printed; zero otherwise. */
769
770 int
771 print_address_demangle (const struct value_print_options *opts,
772 struct gdbarch *gdbarch, CORE_ADDR addr,
773 struct ui_file *stream, int do_demangle)
774 {
775 if (opts->addressprint)
776 {
777 fputs_filtered (paddress (gdbarch, addr), stream);
778 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
779 }
780 else
781 {
782 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
783 }
784 return 1;
785 }
786 \f
787
788 /* Examine data at address ADDR in format FMT.
789 Fetch it from memory and print on gdb_stdout. */
790
791 static void
792 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
793 {
794 char format = 0;
795 char size;
796 int count = 1;
797 struct type *val_type = NULL;
798 int i;
799 int maxelts;
800 struct value_print_options opts;
801
802 format = fmt.format;
803 size = fmt.size;
804 count = fmt.count;
805 next_gdbarch = gdbarch;
806 next_address = addr;
807
808 /* Instruction format implies fetch single bytes
809 regardless of the specified size.
810 The case of strings is handled in decode_format, only explicit
811 size operator are not changed to 'b'. */
812 if (format == 'i')
813 size = 'b';
814
815 if (size == 'a')
816 {
817 /* Pick the appropriate size for an address. */
818 if (gdbarch_ptr_bit (next_gdbarch) == 64)
819 size = 'g';
820 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
821 size = 'w';
822 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
823 size = 'h';
824 else
825 /* Bad value for gdbarch_ptr_bit. */
826 internal_error (__FILE__, __LINE__,
827 _("failed internal consistency check"));
828 }
829
830 if (size == 'b')
831 val_type = builtin_type (next_gdbarch)->builtin_int8;
832 else if (size == 'h')
833 val_type = builtin_type (next_gdbarch)->builtin_int16;
834 else if (size == 'w')
835 val_type = builtin_type (next_gdbarch)->builtin_int32;
836 else if (size == 'g')
837 val_type = builtin_type (next_gdbarch)->builtin_int64;
838
839 if (format == 's')
840 {
841 struct type *char_type = NULL;
842
843 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
844 if type is not found. */
845 if (size == 'h')
846 char_type = builtin_type (next_gdbarch)->builtin_char16;
847 else if (size == 'w')
848 char_type = builtin_type (next_gdbarch)->builtin_char32;
849 if (char_type)
850 val_type = char_type;
851 else
852 {
853 if (size != '\0' && size != 'b')
854 warning (_("Unable to display strings with "
855 "size '%c', using 'b' instead."), size);
856 size = 'b';
857 val_type = builtin_type (next_gdbarch)->builtin_int8;
858 }
859 }
860
861 maxelts = 8;
862 if (size == 'w')
863 maxelts = 4;
864 if (size == 'g')
865 maxelts = 2;
866 if (format == 's' || format == 'i')
867 maxelts = 1;
868
869 get_formatted_print_options (&opts, format);
870
871 /* Print as many objects as specified in COUNT, at most maxelts per line,
872 with the address of the next one at the start of each line. */
873
874 while (count > 0)
875 {
876 QUIT;
877 if (format == 'i')
878 fputs_filtered (pc_prefix (next_address), gdb_stdout);
879 print_address (next_gdbarch, next_address, gdb_stdout);
880 printf_filtered (":");
881 for (i = maxelts;
882 i > 0 && count > 0;
883 i--, count--)
884 {
885 printf_filtered ("\t");
886 /* Note that print_formatted sets next_address for the next
887 object. */
888 last_examine_address = next_address;
889
890 if (last_examine_value)
891 value_free (last_examine_value);
892
893 /* The value to be displayed is not fetched greedily.
894 Instead, to avoid the possibility of a fetched value not
895 being used, its retrieval is delayed until the print code
896 uses it. When examining an instruction stream, the
897 disassembler will perform its own memory fetch using just
898 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
899 the disassembler be modified so that LAST_EXAMINE_VALUE
900 is left with the byte sequence from the last complete
901 instruction fetched from memory? */
902 last_examine_value = value_at_lazy (val_type, next_address);
903
904 if (last_examine_value)
905 release_value (last_examine_value);
906
907 print_formatted (last_examine_value, size, &opts, gdb_stdout);
908
909 /* Display any branch delay slots following the final insn. */
910 if (format == 'i' && count == 1)
911 count += branch_delay_insns;
912 }
913 printf_filtered ("\n");
914 gdb_flush (gdb_stdout);
915 }
916 }
917 \f
918 static void
919 validate_format (struct format_data fmt, char *cmdname)
920 {
921 if (fmt.size != 0)
922 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
923 if (fmt.count != 1)
924 error (_("Item count other than 1 is meaningless in \"%s\" command."),
925 cmdname);
926 if (fmt.format == 'i')
927 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
928 fmt.format, cmdname);
929 }
930
931 /* Evaluate string EXP as an expression in the current language and
932 print the resulting value. EXP may contain a format specifier as the
933 first argument ("/x myvar" for example, to print myvar in hex). */
934
935 static void
936 print_command_1 (const char *exp, int voidprint)
937 {
938 struct expression *expr;
939 struct cleanup *old_chain = 0;
940 char format = 0;
941 struct value *val;
942 struct format_data fmt;
943 int cleanup = 0;
944
945 if (exp && *exp == '/')
946 {
947 exp++;
948 fmt = decode_format (&exp, last_format, 0);
949 validate_format (fmt, "print");
950 last_format = format = fmt.format;
951 }
952 else
953 {
954 fmt.count = 1;
955 fmt.format = 0;
956 fmt.size = 0;
957 fmt.raw = 0;
958 }
959
960 if (exp && *exp)
961 {
962 expr = parse_expression (exp);
963 old_chain = make_cleanup (free_current_contents, &expr);
964 cleanup = 1;
965 val = evaluate_expression (expr);
966 }
967 else
968 val = access_value_history (0);
969
970 if (voidprint || (val && value_type (val) &&
971 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
972 {
973 struct value_print_options opts;
974 int histindex = record_latest_value (val);
975
976 if (histindex >= 0)
977 annotate_value_history_begin (histindex, value_type (val));
978 else
979 annotate_value_begin (value_type (val));
980
981 if (histindex >= 0)
982 printf_filtered ("$%d = ", histindex);
983
984 if (histindex >= 0)
985 annotate_value_history_value ();
986
987 get_formatted_print_options (&opts, format);
988 opts.raw = fmt.raw;
989
990 print_formatted (val, fmt.size, &opts, gdb_stdout);
991 printf_filtered ("\n");
992
993 if (histindex >= 0)
994 annotate_value_history_end ();
995 else
996 annotate_value_end ();
997 }
998
999 if (cleanup)
1000 do_cleanups (old_chain);
1001 }
1002
1003 static void
1004 print_command (char *exp, int from_tty)
1005 {
1006 print_command_1 (exp, 1);
1007 }
1008
1009 /* Same as print, except it doesn't print void results. */
1010 static void
1011 call_command (char *exp, int from_tty)
1012 {
1013 print_command_1 (exp, 0);
1014 }
1015
1016 /* Implementation of the "output" command. */
1017
1018 static void
1019 output_command (char *exp, int from_tty)
1020 {
1021 output_command_const (exp, from_tty);
1022 }
1023
1024 /* Like output_command, but takes a const string as argument. */
1025
1026 void
1027 output_command_const (const char *exp, int from_tty)
1028 {
1029 struct expression *expr;
1030 struct cleanup *old_chain;
1031 char format = 0;
1032 struct value *val;
1033 struct format_data fmt;
1034 struct value_print_options opts;
1035
1036 fmt.size = 0;
1037 fmt.raw = 0;
1038
1039 if (exp && *exp == '/')
1040 {
1041 exp++;
1042 fmt = decode_format (&exp, 0, 0);
1043 validate_format (fmt, "output");
1044 format = fmt.format;
1045 }
1046
1047 expr = parse_expression (exp);
1048 old_chain = make_cleanup (free_current_contents, &expr);
1049
1050 val = evaluate_expression (expr);
1051
1052 annotate_value_begin (value_type (val));
1053
1054 get_formatted_print_options (&opts, format);
1055 opts.raw = fmt.raw;
1056 print_formatted (val, fmt.size, &opts, gdb_stdout);
1057
1058 annotate_value_end ();
1059
1060 wrap_here ("");
1061 gdb_flush (gdb_stdout);
1062
1063 do_cleanups (old_chain);
1064 }
1065
1066 static void
1067 set_command (char *exp, int from_tty)
1068 {
1069 struct expression *expr = parse_expression (exp);
1070 struct cleanup *old_chain =
1071 make_cleanup (free_current_contents, &expr);
1072
1073 if (expr->nelts >= 1)
1074 switch (expr->elts[0].opcode)
1075 {
1076 case UNOP_PREINCREMENT:
1077 case UNOP_POSTINCREMENT:
1078 case UNOP_PREDECREMENT:
1079 case UNOP_POSTDECREMENT:
1080 case BINOP_ASSIGN:
1081 case BINOP_ASSIGN_MODIFY:
1082 case BINOP_COMMA:
1083 break;
1084 default:
1085 warning
1086 (_("Expression is not an assignment (and might have no effect)"));
1087 }
1088
1089 evaluate_expression (expr);
1090 do_cleanups (old_chain);
1091 }
1092
1093 static void
1094 sym_info (char *arg, int from_tty)
1095 {
1096 struct minimal_symbol *msymbol;
1097 struct objfile *objfile;
1098 struct obj_section *osect;
1099 CORE_ADDR addr, sect_addr;
1100 int matches = 0;
1101 unsigned int offset;
1102
1103 if (!arg)
1104 error_no_arg (_("address"));
1105
1106 addr = parse_and_eval_address (arg);
1107 ALL_OBJSECTIONS (objfile, osect)
1108 {
1109 /* Only process each object file once, even if there's a separate
1110 debug file. */
1111 if (objfile->separate_debug_objfile_backlink)
1112 continue;
1113
1114 sect_addr = overlay_mapped_address (addr, osect);
1115
1116 if (obj_section_addr (osect) <= sect_addr
1117 && sect_addr < obj_section_endaddr (osect)
1118 && (msymbol
1119 = lookup_minimal_symbol_by_pc_section (sect_addr, osect).minsym))
1120 {
1121 const char *obj_name, *mapped, *sec_name, *msym_name;
1122 char *loc_string;
1123 struct cleanup *old_chain;
1124
1125 matches = 1;
1126 offset = sect_addr - SYMBOL_VALUE_ADDRESS (msymbol);
1127 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1128 sec_name = osect->the_bfd_section->name;
1129 msym_name = SYMBOL_PRINT_NAME (msymbol);
1130
1131 /* Don't print the offset if it is zero.
1132 We assume there's no need to handle i18n of "sym + offset". */
1133 if (offset)
1134 loc_string = xstrprintf ("%s + %u", msym_name, offset);
1135 else
1136 loc_string = xstrprintf ("%s", msym_name);
1137
1138 /* Use a cleanup to free loc_string in case the user quits
1139 a pagination request inside printf_filtered. */
1140 old_chain = make_cleanup (xfree, loc_string);
1141
1142 gdb_assert (osect->objfile && osect->objfile->name);
1143 obj_name = osect->objfile->name;
1144
1145 if (MULTI_OBJFILE_P ())
1146 if (pc_in_unmapped_range (addr, osect))
1147 if (section_is_overlay (osect))
1148 printf_filtered (_("%s in load address range of "
1149 "%s overlay section %s of %s\n"),
1150 loc_string, mapped, sec_name, obj_name);
1151 else
1152 printf_filtered (_("%s in load address range of "
1153 "section %s of %s\n"),
1154 loc_string, sec_name, obj_name);
1155 else
1156 if (section_is_overlay (osect))
1157 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1158 loc_string, mapped, sec_name, obj_name);
1159 else
1160 printf_filtered (_("%s in section %s of %s\n"),
1161 loc_string, sec_name, obj_name);
1162 else
1163 if (pc_in_unmapped_range (addr, osect))
1164 if (section_is_overlay (osect))
1165 printf_filtered (_("%s in load address range of %s overlay "
1166 "section %s\n"),
1167 loc_string, mapped, sec_name);
1168 else
1169 printf_filtered (_("%s in load address range of section %s\n"),
1170 loc_string, sec_name);
1171 else
1172 if (section_is_overlay (osect))
1173 printf_filtered (_("%s in %s overlay section %s\n"),
1174 loc_string, mapped, sec_name);
1175 else
1176 printf_filtered (_("%s in section %s\n"),
1177 loc_string, sec_name);
1178
1179 do_cleanups (old_chain);
1180 }
1181 }
1182 if (matches == 0)
1183 printf_filtered (_("No symbol matches %s.\n"), arg);
1184 }
1185
1186 static void
1187 address_info (char *exp, int from_tty)
1188 {
1189 struct gdbarch *gdbarch;
1190 int regno;
1191 struct symbol *sym;
1192 struct minimal_symbol *msymbol;
1193 long val;
1194 struct obj_section *section;
1195 CORE_ADDR load_addr, context_pc = 0;
1196 struct field_of_this_result is_a_field_of_this;
1197
1198 if (exp == 0)
1199 error (_("Argument required."));
1200
1201 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1202 &is_a_field_of_this);
1203 if (sym == NULL)
1204 {
1205 if (is_a_field_of_this.type != NULL)
1206 {
1207 printf_filtered ("Symbol \"");
1208 fprintf_symbol_filtered (gdb_stdout, exp,
1209 current_language->la_language, DMGL_ANSI);
1210 printf_filtered ("\" is a field of the local class variable ");
1211 if (current_language->la_language == language_objc)
1212 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1213 else
1214 printf_filtered ("`this'\n");
1215 return;
1216 }
1217
1218 msymbol = lookup_minimal_symbol (exp, NULL, NULL);
1219
1220 if (msymbol != NULL)
1221 {
1222 gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
1223 load_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1224
1225 printf_filtered ("Symbol \"");
1226 fprintf_symbol_filtered (gdb_stdout, exp,
1227 current_language->la_language, DMGL_ANSI);
1228 printf_filtered ("\" is at ");
1229 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1230 printf_filtered (" in a file compiled without debugging");
1231 section = SYMBOL_OBJ_SECTION (msymbol);
1232 if (section_is_overlay (section))
1233 {
1234 load_addr = overlay_unmapped_address (load_addr, section);
1235 printf_filtered (",\n -- loaded at ");
1236 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1237 printf_filtered (" in overlay section %s",
1238 section->the_bfd_section->name);
1239 }
1240 printf_filtered (".\n");
1241 }
1242 else
1243 error (_("No symbol \"%s\" in current context."), exp);
1244 return;
1245 }
1246
1247 printf_filtered ("Symbol \"");
1248 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1249 current_language->la_language, DMGL_ANSI);
1250 printf_filtered ("\" is ");
1251 val = SYMBOL_VALUE (sym);
1252 section = SYMBOL_OBJ_SECTION (sym);
1253 gdbarch = get_objfile_arch (SYMBOL_SYMTAB (sym)->objfile);
1254
1255 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1256 {
1257 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1258 gdb_stdout);
1259 printf_filtered (".\n");
1260 return;
1261 }
1262
1263 switch (SYMBOL_CLASS (sym))
1264 {
1265 case LOC_CONST:
1266 case LOC_CONST_BYTES:
1267 printf_filtered ("constant");
1268 break;
1269
1270 case LOC_LABEL:
1271 printf_filtered ("a label at address ");
1272 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1273 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1274 if (section_is_overlay (section))
1275 {
1276 load_addr = overlay_unmapped_address (load_addr, section);
1277 printf_filtered (",\n -- loaded at ");
1278 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1279 printf_filtered (" in overlay section %s",
1280 section->the_bfd_section->name);
1281 }
1282 break;
1283
1284 case LOC_COMPUTED:
1285 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1286
1287 case LOC_REGISTER:
1288 /* GDBARCH is the architecture associated with the objfile the symbol
1289 is defined in; the target architecture may be different, and may
1290 provide additional registers. However, we do not know the target
1291 architecture at this point. We assume the objfile architecture
1292 will contain all the standard registers that occur in debug info
1293 in that objfile. */
1294 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1295
1296 if (SYMBOL_IS_ARGUMENT (sym))
1297 printf_filtered (_("an argument in register %s"),
1298 gdbarch_register_name (gdbarch, regno));
1299 else
1300 printf_filtered (_("a variable in register %s"),
1301 gdbarch_register_name (gdbarch, regno));
1302 break;
1303
1304 case LOC_STATIC:
1305 printf_filtered (_("static storage at address "));
1306 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1307 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1308 if (section_is_overlay (section))
1309 {
1310 load_addr = overlay_unmapped_address (load_addr, section);
1311 printf_filtered (_(",\n -- loaded at "));
1312 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1313 printf_filtered (_(" in overlay section %s"),
1314 section->the_bfd_section->name);
1315 }
1316 break;
1317
1318 case LOC_REGPARM_ADDR:
1319 /* Note comment at LOC_REGISTER. */
1320 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1321 printf_filtered (_("address of an argument in register %s"),
1322 gdbarch_register_name (gdbarch, regno));
1323 break;
1324
1325 case LOC_ARG:
1326 printf_filtered (_("an argument at offset %ld"), val);
1327 break;
1328
1329 case LOC_LOCAL:
1330 printf_filtered (_("a local variable at frame offset %ld"), val);
1331 break;
1332
1333 case LOC_REF_ARG:
1334 printf_filtered (_("a reference argument at offset %ld"), val);
1335 break;
1336
1337 case LOC_TYPEDEF:
1338 printf_filtered (_("a typedef"));
1339 break;
1340
1341 case LOC_BLOCK:
1342 printf_filtered (_("a function at address "));
1343 load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1344 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1345 if (section_is_overlay (section))
1346 {
1347 load_addr = overlay_unmapped_address (load_addr, section);
1348 printf_filtered (_(",\n -- loaded at "));
1349 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1350 printf_filtered (_(" in overlay section %s"),
1351 section->the_bfd_section->name);
1352 }
1353 break;
1354
1355 case LOC_UNRESOLVED:
1356 {
1357 struct minimal_symbol *msym;
1358
1359 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, NULL);
1360 if (msym == NULL)
1361 printf_filtered ("unresolved");
1362 else
1363 {
1364 section = SYMBOL_OBJ_SECTION (msym);
1365 load_addr = SYMBOL_VALUE_ADDRESS (msym);
1366
1367 if (section
1368 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1369 printf_filtered (_("a thread-local variable at offset %s "
1370 "in the thread-local storage for `%s'"),
1371 paddress (gdbarch, load_addr),
1372 section->objfile->name);
1373 else
1374 {
1375 printf_filtered (_("static storage at address "));
1376 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1377 if (section_is_overlay (section))
1378 {
1379 load_addr = overlay_unmapped_address (load_addr, section);
1380 printf_filtered (_(",\n -- loaded at "));
1381 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1382 printf_filtered (_(" in overlay section %s"),
1383 section->the_bfd_section->name);
1384 }
1385 }
1386 }
1387 }
1388 break;
1389
1390 case LOC_OPTIMIZED_OUT:
1391 printf_filtered (_("optimized out"));
1392 break;
1393
1394 default:
1395 printf_filtered (_("of unknown (botched) type"));
1396 break;
1397 }
1398 printf_filtered (".\n");
1399 }
1400 \f
1401
1402 static void
1403 x_command (char *exp, int from_tty)
1404 {
1405 struct expression *expr;
1406 struct format_data fmt;
1407 struct cleanup *old_chain;
1408 struct value *val;
1409
1410 fmt.format = last_format ? last_format : 'x';
1411 fmt.size = last_size;
1412 fmt.count = 1;
1413 fmt.raw = 0;
1414
1415 if (exp && *exp == '/')
1416 {
1417 const char *tmp = exp + 1;
1418
1419 fmt = decode_format (&tmp, last_format, last_size);
1420 exp = (char *) tmp;
1421 }
1422
1423 /* If we have an expression, evaluate it and use it as the address. */
1424
1425 if (exp != 0 && *exp != 0)
1426 {
1427 expr = parse_expression (exp);
1428 /* Cause expression not to be there any more if this command is
1429 repeated with Newline. But don't clobber a user-defined
1430 command's definition. */
1431 if (from_tty)
1432 *exp = 0;
1433 old_chain = make_cleanup (free_current_contents, &expr);
1434 val = evaluate_expression (expr);
1435 if (TYPE_CODE (value_type (val)) == TYPE_CODE_REF)
1436 val = coerce_ref (val);
1437 /* In rvalue contexts, such as this, functions are coerced into
1438 pointers to functions. This makes "x/i main" work. */
1439 if (/* last_format == 'i' && */
1440 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1441 && VALUE_LVAL (val) == lval_memory)
1442 next_address = value_address (val);
1443 else
1444 next_address = value_as_address (val);
1445
1446 next_gdbarch = expr->gdbarch;
1447 do_cleanups (old_chain);
1448 }
1449
1450 if (!next_gdbarch)
1451 error_no_arg (_("starting display address"));
1452
1453 do_examine (fmt, next_gdbarch, next_address);
1454
1455 /* If the examine succeeds, we remember its size and format for next
1456 time. Set last_size to 'b' for strings. */
1457 if (fmt.format == 's')
1458 last_size = 'b';
1459 else
1460 last_size = fmt.size;
1461 last_format = fmt.format;
1462
1463 /* Set a couple of internal variables if appropriate. */
1464 if (last_examine_value)
1465 {
1466 /* Make last address examined available to the user as $_. Use
1467 the correct pointer type. */
1468 struct type *pointer_type
1469 = lookup_pointer_type (value_type (last_examine_value));
1470 set_internalvar (lookup_internalvar ("_"),
1471 value_from_pointer (pointer_type,
1472 last_examine_address));
1473
1474 /* Make contents of last address examined available to the user
1475 as $__. If the last value has not been fetched from memory
1476 then don't fetch it now; instead mark it by voiding the $__
1477 variable. */
1478 if (value_lazy (last_examine_value))
1479 clear_internalvar (lookup_internalvar ("__"));
1480 else
1481 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1482 }
1483 }
1484 \f
1485
1486 /* Add an expression to the auto-display chain.
1487 Specify the expression. */
1488
1489 static void
1490 display_command (char *arg, int from_tty)
1491 {
1492 struct format_data fmt;
1493 struct expression *expr;
1494 struct display *new;
1495 int display_it = 1;
1496 const char *exp = arg;
1497
1498 #if defined(TUI)
1499 /* NOTE: cagney/2003-02-13 The `tui_active' was previously
1500 `tui_version'. */
1501 if (tui_active && exp != NULL && *exp == '$')
1502 display_it = (tui_set_layout_for_display_command (exp) == TUI_FAILURE);
1503 #endif
1504
1505 if (display_it)
1506 {
1507 if (exp == 0)
1508 {
1509 do_displays ();
1510 return;
1511 }
1512
1513 if (*exp == '/')
1514 {
1515 exp++;
1516 fmt = decode_format (&exp, 0, 0);
1517 if (fmt.size && fmt.format == 0)
1518 fmt.format = 'x';
1519 if (fmt.format == 'i' || fmt.format == 's')
1520 fmt.size = 'b';
1521 }
1522 else
1523 {
1524 fmt.format = 0;
1525 fmt.size = 0;
1526 fmt.count = 0;
1527 fmt.raw = 0;
1528 }
1529
1530 innermost_block = NULL;
1531 expr = parse_expression (exp);
1532
1533 new = (struct display *) xmalloc (sizeof (struct display));
1534
1535 new->exp_string = xstrdup (exp);
1536 new->exp = expr;
1537 new->block = innermost_block;
1538 new->pspace = current_program_space;
1539 new->next = display_chain;
1540 new->number = ++display_number;
1541 new->format = fmt;
1542 new->enabled_p = 1;
1543 display_chain = new;
1544
1545 if (from_tty && target_has_execution)
1546 do_one_display (new);
1547
1548 dont_repeat ();
1549 }
1550 }
1551
1552 static void
1553 free_display (struct display *d)
1554 {
1555 xfree (d->exp_string);
1556 xfree (d->exp);
1557 xfree (d);
1558 }
1559
1560 /* Clear out the display_chain. Done when new symtabs are loaded,
1561 since this invalidates the types stored in many expressions. */
1562
1563 void
1564 clear_displays (void)
1565 {
1566 struct display *d;
1567
1568 while ((d = display_chain) != NULL)
1569 {
1570 display_chain = d->next;
1571 free_display (d);
1572 }
1573 }
1574
1575 /* Delete the auto-display DISPLAY. */
1576
1577 static void
1578 delete_display (struct display *display)
1579 {
1580 struct display *d;
1581
1582 gdb_assert (display != NULL);
1583
1584 if (display_chain == display)
1585 display_chain = display->next;
1586
1587 ALL_DISPLAYS (d)
1588 if (d->next == display)
1589 {
1590 d->next = display->next;
1591 break;
1592 }
1593
1594 free_display (display);
1595 }
1596
1597 /* Call FUNCTION on each of the displays whose numbers are given in
1598 ARGS. DATA is passed unmodified to FUNCTION. */
1599
1600 static void
1601 map_display_numbers (char *args,
1602 void (*function) (struct display *,
1603 void *),
1604 void *data)
1605 {
1606 struct get_number_or_range_state state;
1607 int num;
1608
1609 if (args == NULL)
1610 error_no_arg (_("one or more display numbers"));
1611
1612 init_number_or_range (&state, args);
1613
1614 while (!state.finished)
1615 {
1616 char *p = state.string;
1617
1618 num = get_number_or_range (&state);
1619 if (num == 0)
1620 warning (_("bad display number at or near '%s'"), p);
1621 else
1622 {
1623 struct display *d, *tmp;
1624
1625 ALL_DISPLAYS_SAFE (d, tmp)
1626 if (d->number == num)
1627 break;
1628 if (d == NULL)
1629 printf_unfiltered (_("No display number %d.\n"), num);
1630 else
1631 function (d, data);
1632 }
1633 }
1634 }
1635
1636 /* Callback for map_display_numbers, that deletes a display. */
1637
1638 static void
1639 do_delete_display (struct display *d, void *data)
1640 {
1641 delete_display (d);
1642 }
1643
1644 /* "undisplay" command. */
1645
1646 static void
1647 undisplay_command (char *args, int from_tty)
1648 {
1649 if (args == NULL)
1650 {
1651 if (query (_("Delete all auto-display expressions? ")))
1652 clear_displays ();
1653 dont_repeat ();
1654 return;
1655 }
1656
1657 map_display_numbers (args, do_delete_display, NULL);
1658 dont_repeat ();
1659 }
1660
1661 /* Display a single auto-display.
1662 Do nothing if the display cannot be printed in the current context,
1663 or if the display is disabled. */
1664
1665 static void
1666 do_one_display (struct display *d)
1667 {
1668 struct cleanup *old_chain;
1669 int within_current_scope;
1670
1671 if (d->enabled_p == 0)
1672 return;
1673
1674 /* The expression carries the architecture that was used at parse time.
1675 This is a problem if the expression depends on architecture features
1676 (e.g. register numbers), and the current architecture is now different.
1677 For example, a display statement like "display/i $pc" is expected to
1678 display the PC register of the current architecture, not the arch at
1679 the time the display command was given. Therefore, we re-parse the
1680 expression if the current architecture has changed. */
1681 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1682 {
1683 xfree (d->exp);
1684 d->exp = NULL;
1685 d->block = NULL;
1686 }
1687
1688 if (d->exp == NULL)
1689 {
1690 volatile struct gdb_exception ex;
1691
1692 TRY_CATCH (ex, RETURN_MASK_ALL)
1693 {
1694 innermost_block = NULL;
1695 d->exp = parse_expression (d->exp_string);
1696 d->block = innermost_block;
1697 }
1698 if (ex.reason < 0)
1699 {
1700 /* Can't re-parse the expression. Disable this display item. */
1701 d->enabled_p = 0;
1702 warning (_("Unable to display \"%s\": %s"),
1703 d->exp_string, ex.message);
1704 return;
1705 }
1706 }
1707
1708 if (d->block)
1709 {
1710 if (d->pspace == current_program_space)
1711 within_current_scope = contained_in (get_selected_block (0), d->block);
1712 else
1713 within_current_scope = 0;
1714 }
1715 else
1716 within_current_scope = 1;
1717 if (!within_current_scope)
1718 return;
1719
1720 old_chain = make_cleanup_restore_integer (&current_display_number);
1721 current_display_number = d->number;
1722
1723 annotate_display_begin ();
1724 printf_filtered ("%d", d->number);
1725 annotate_display_number_end ();
1726 printf_filtered (": ");
1727 if (d->format.size)
1728 {
1729 volatile struct gdb_exception ex;
1730
1731 annotate_display_format ();
1732
1733 printf_filtered ("x/");
1734 if (d->format.count != 1)
1735 printf_filtered ("%d", d->format.count);
1736 printf_filtered ("%c", d->format.format);
1737 if (d->format.format != 'i' && d->format.format != 's')
1738 printf_filtered ("%c", d->format.size);
1739 printf_filtered (" ");
1740
1741 annotate_display_expression ();
1742
1743 puts_filtered (d->exp_string);
1744 annotate_display_expression_end ();
1745
1746 if (d->format.count != 1 || d->format.format == 'i')
1747 printf_filtered ("\n");
1748 else
1749 printf_filtered (" ");
1750
1751 annotate_display_value ();
1752
1753 TRY_CATCH (ex, RETURN_MASK_ERROR)
1754 {
1755 struct value *val;
1756 CORE_ADDR addr;
1757
1758 val = evaluate_expression (d->exp);
1759 addr = value_as_address (val);
1760 if (d->format.format == 'i')
1761 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1762 do_examine (d->format, d->exp->gdbarch, addr);
1763 }
1764 if (ex.reason < 0)
1765 fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
1766 }
1767 else
1768 {
1769 struct value_print_options opts;
1770 volatile struct gdb_exception ex;
1771
1772 annotate_display_format ();
1773
1774 if (d->format.format)
1775 printf_filtered ("/%c ", d->format.format);
1776
1777 annotate_display_expression ();
1778
1779 puts_filtered (d->exp_string);
1780 annotate_display_expression_end ();
1781
1782 printf_filtered (" = ");
1783
1784 annotate_display_expression ();
1785
1786 get_formatted_print_options (&opts, d->format.format);
1787 opts.raw = d->format.raw;
1788
1789 TRY_CATCH (ex, RETURN_MASK_ERROR)
1790 {
1791 struct value *val;
1792
1793 val = evaluate_expression (d->exp);
1794 print_formatted (val, d->format.size, &opts, gdb_stdout);
1795 }
1796 if (ex.reason < 0)
1797 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
1798 printf_filtered ("\n");
1799 }
1800
1801 annotate_display_end ();
1802
1803 gdb_flush (gdb_stdout);
1804 do_cleanups (old_chain);
1805 }
1806
1807 /* Display all of the values on the auto-display chain which can be
1808 evaluated in the current scope. */
1809
1810 void
1811 do_displays (void)
1812 {
1813 struct display *d;
1814
1815 for (d = display_chain; d; d = d->next)
1816 do_one_display (d);
1817 }
1818
1819 /* Delete the auto-display which we were in the process of displaying.
1820 This is done when there is an error or a signal. */
1821
1822 void
1823 disable_display (int num)
1824 {
1825 struct display *d;
1826
1827 for (d = display_chain; d; d = d->next)
1828 if (d->number == num)
1829 {
1830 d->enabled_p = 0;
1831 return;
1832 }
1833 printf_unfiltered (_("No display number %d.\n"), num);
1834 }
1835
1836 void
1837 disable_current_display (void)
1838 {
1839 if (current_display_number >= 0)
1840 {
1841 disable_display (current_display_number);
1842 fprintf_unfiltered (gdb_stderr,
1843 _("Disabling display %d to "
1844 "avoid infinite recursion.\n"),
1845 current_display_number);
1846 }
1847 current_display_number = -1;
1848 }
1849
1850 static void
1851 display_info (char *ignore, int from_tty)
1852 {
1853 struct display *d;
1854
1855 if (!display_chain)
1856 printf_unfiltered (_("There are no auto-display expressions now.\n"));
1857 else
1858 printf_filtered (_("Auto-display expressions now in effect:\n\
1859 Num Enb Expression\n"));
1860
1861 for (d = display_chain; d; d = d->next)
1862 {
1863 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
1864 if (d->format.size)
1865 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
1866 d->format.format);
1867 else if (d->format.format)
1868 printf_filtered ("/%c ", d->format.format);
1869 puts_filtered (d->exp_string);
1870 if (d->block && !contained_in (get_selected_block (0), d->block))
1871 printf_filtered (_(" (cannot be evaluated in the current context)"));
1872 printf_filtered ("\n");
1873 gdb_flush (gdb_stdout);
1874 }
1875 }
1876
1877 /* Callback fo map_display_numbers, that enables or disables the
1878 passed in display D. */
1879
1880 static void
1881 do_enable_disable_display (struct display *d, void *data)
1882 {
1883 d->enabled_p = *(int *) data;
1884 }
1885
1886 /* Implamentation of both the "disable display" and "enable display"
1887 commands. ENABLE decides what to do. */
1888
1889 static void
1890 enable_disable_display_command (char *args, int from_tty, int enable)
1891 {
1892 if (args == NULL)
1893 {
1894 struct display *d;
1895
1896 ALL_DISPLAYS (d)
1897 d->enabled_p = enable;
1898 return;
1899 }
1900
1901 map_display_numbers (args, do_enable_disable_display, &enable);
1902 }
1903
1904 /* The "enable display" command. */
1905
1906 static void
1907 enable_display_command (char *args, int from_tty)
1908 {
1909 enable_disable_display_command (args, from_tty, 1);
1910 }
1911
1912 /* The "disable display" command. */
1913
1914 static void
1915 disable_display_command (char *args, int from_tty)
1916 {
1917 enable_disable_display_command (args, from_tty, 0);
1918 }
1919
1920 /* display_chain items point to blocks and expressions. Some expressions in
1921 turn may point to symbols.
1922 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
1923 obstack_free'd when a shared library is unloaded.
1924 Clear pointers that are about to become dangling.
1925 Both .exp and .block fields will be restored next time we need to display
1926 an item by re-parsing .exp_string field in the new execution context. */
1927
1928 static void
1929 clear_dangling_display_expressions (struct so_list *solib)
1930 {
1931 struct objfile *objfile = solib->objfile;
1932 struct display *d;
1933
1934 /* With no symbol file we cannot have a block or expression from it. */
1935 if (objfile == NULL)
1936 return;
1937 if (objfile->separate_debug_objfile_backlink)
1938 objfile = objfile->separate_debug_objfile_backlink;
1939 gdb_assert (objfile->pspace == solib->pspace);
1940
1941 for (d = display_chain; d != NULL; d = d->next)
1942 {
1943 if (d->pspace != solib->pspace)
1944 continue;
1945
1946 if (lookup_objfile_from_block (d->block) == objfile
1947 || (d->exp && exp_uses_objfile (d->exp, objfile)))
1948 {
1949 xfree (d->exp);
1950 d->exp = NULL;
1951 d->block = NULL;
1952 }
1953 }
1954 }
1955 \f
1956
1957 /* Print the value in stack frame FRAME of a variable specified by a
1958 struct symbol. NAME is the name to print; if NULL then VAR's print
1959 name will be used. STREAM is the ui_file on which to print the
1960 value. INDENT specifies the number of indent levels to print
1961 before printing the variable name.
1962
1963 This function invalidates FRAME. */
1964
1965 void
1966 print_variable_and_value (const char *name, struct symbol *var,
1967 struct frame_info *frame,
1968 struct ui_file *stream, int indent)
1969 {
1970 volatile struct gdb_exception except;
1971
1972 if (!name)
1973 name = SYMBOL_PRINT_NAME (var);
1974
1975 fprintf_filtered (stream, "%s%s = ", n_spaces (2 * indent), name);
1976 TRY_CATCH (except, RETURN_MASK_ERROR)
1977 {
1978 struct value *val;
1979 struct value_print_options opts;
1980
1981 val = read_var_value (var, frame);
1982 get_user_print_options (&opts);
1983 opts.deref_ref = 1;
1984 common_val_print (val, stream, indent, &opts, current_language);
1985
1986 /* common_val_print invalidates FRAME when a pretty printer calls inferior
1987 function. */
1988 frame = NULL;
1989 }
1990 if (except.reason < 0)
1991 fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
1992 except.message);
1993 fprintf_filtered (stream, "\n");
1994 }
1995
1996 /* Subroutine of ui_printf to simplify it.
1997 Print VALUE to STREAM using FORMAT.
1998 VALUE is a C-style string on the target. */
1999
2000 static void
2001 printf_c_string (struct ui_file *stream, const char *format,
2002 struct value *value)
2003 {
2004 gdb_byte *str;
2005 CORE_ADDR tem;
2006 int j;
2007
2008 tem = value_as_address (value);
2009
2010 /* This is a %s argument. Find the length of the string. */
2011 for (j = 0;; j++)
2012 {
2013 gdb_byte c;
2014
2015 QUIT;
2016 read_memory (tem + j, &c, 1);
2017 if (c == 0)
2018 break;
2019 }
2020
2021 /* Copy the string contents into a string inside GDB. */
2022 str = (gdb_byte *) alloca (j + 1);
2023 if (j != 0)
2024 read_memory (tem, str, j);
2025 str[j] = 0;
2026
2027 fprintf_filtered (stream, format, (char *) str);
2028 }
2029
2030 /* Subroutine of ui_printf to simplify it.
2031 Print VALUE to STREAM using FORMAT.
2032 VALUE is a wide C-style string on the target. */
2033
2034 static void
2035 printf_wide_c_string (struct ui_file *stream, const char *format,
2036 struct value *value)
2037 {
2038 gdb_byte *str;
2039 CORE_ADDR tem;
2040 int j;
2041 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2042 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2043 struct type *wctype = lookup_typename (current_language, gdbarch,
2044 "wchar_t", NULL, 0);
2045 int wcwidth = TYPE_LENGTH (wctype);
2046 gdb_byte *buf = alloca (wcwidth);
2047 struct obstack output;
2048 struct cleanup *inner_cleanup;
2049
2050 tem = value_as_address (value);
2051
2052 /* This is a %s argument. Find the length of the string. */
2053 for (j = 0;; j += wcwidth)
2054 {
2055 QUIT;
2056 read_memory (tem + j, buf, wcwidth);
2057 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2058 break;
2059 }
2060
2061 /* Copy the string contents into a string inside GDB. */
2062 str = (gdb_byte *) alloca (j + wcwidth);
2063 if (j != 0)
2064 read_memory (tem, str, j);
2065 memset (&str[j], 0, wcwidth);
2066
2067 obstack_init (&output);
2068 inner_cleanup = make_cleanup_obstack_free (&output);
2069
2070 convert_between_encodings (target_wide_charset (gdbarch),
2071 host_charset (),
2072 str, j, wcwidth,
2073 &output, translit_char);
2074 obstack_grow_str0 (&output, "");
2075
2076 fprintf_filtered (stream, format, obstack_base (&output));
2077 do_cleanups (inner_cleanup);
2078 }
2079
2080 /* Subroutine of ui_printf to simplify it.
2081 Print VALUE, a decimal floating point value, to STREAM using FORMAT. */
2082
2083 static void
2084 printf_decfloat (struct ui_file *stream, const char *format,
2085 struct value *value)
2086 {
2087 const gdb_byte *param_ptr = value_contents (value);
2088
2089 #if defined (PRINTF_HAS_DECFLOAT)
2090 /* If we have native support for Decimal floating
2091 printing, handle it here. */
2092 fprintf_filtered (stream, format, param_ptr);
2093 #else
2094 /* As a workaround until vasprintf has native support for DFP
2095 we convert the DFP values to string and print them using
2096 the %s format specifier. */
2097 const char *p;
2098
2099 /* Parameter data. */
2100 struct type *param_type = value_type (value);
2101 struct gdbarch *gdbarch = get_type_arch (param_type);
2102 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2103
2104 /* DFP output data. */
2105 struct value *dfp_value = NULL;
2106 gdb_byte *dfp_ptr;
2107 int dfp_len = 16;
2108 gdb_byte dec[16];
2109 struct type *dfp_type = NULL;
2110 char decstr[MAX_DECIMAL_STRING];
2111
2112 /* Points to the end of the string so that we can go back
2113 and check for DFP length modifiers. */
2114 p = format + strlen (format);
2115
2116 /* Look for the float/double format specifier. */
2117 while (*p != 'f' && *p != 'e' && *p != 'E'
2118 && *p != 'g' && *p != 'G')
2119 p--;
2120
2121 /* Search for the '%' char and extract the size and type of
2122 the output decimal value based on its modifiers
2123 (%Hf, %Df, %DDf). */
2124 while (*--p != '%')
2125 {
2126 if (*p == 'H')
2127 {
2128 dfp_len = 4;
2129 dfp_type = builtin_type (gdbarch)->builtin_decfloat;
2130 }
2131 else if (*p == 'D' && *(p - 1) == 'D')
2132 {
2133 dfp_len = 16;
2134 dfp_type = builtin_type (gdbarch)->builtin_declong;
2135 p--;
2136 }
2137 else
2138 {
2139 dfp_len = 8;
2140 dfp_type = builtin_type (gdbarch)->builtin_decdouble;
2141 }
2142 }
2143
2144 /* Conversion between different DFP types. */
2145 if (TYPE_CODE (param_type) == TYPE_CODE_DECFLOAT)
2146 decimal_convert (param_ptr, TYPE_LENGTH (param_type),
2147 byte_order, dec, dfp_len, byte_order);
2148 else
2149 /* If this is a non-trivial conversion, just output 0.
2150 A correct converted value can be displayed by explicitly
2151 casting to a DFP type. */
2152 decimal_from_string (dec, dfp_len, byte_order, "0");
2153
2154 dfp_value = value_from_decfloat (dfp_type, dec);
2155
2156 dfp_ptr = (gdb_byte *) value_contents (dfp_value);
2157
2158 decimal_to_string (dfp_ptr, dfp_len, byte_order, decstr);
2159
2160 /* Print the DFP value. */
2161 fprintf_filtered (stream, "%s", decstr);
2162 #endif
2163 }
2164
2165 /* Subroutine of ui_printf to simplify it.
2166 Print VALUE, a target pointer, to STREAM using FORMAT. */
2167
2168 static void
2169 printf_pointer (struct ui_file *stream, const char *format,
2170 struct value *value)
2171 {
2172 /* We avoid the host's %p because pointers are too
2173 likely to be the wrong size. The only interesting
2174 modifier for %p is a width; extract that, and then
2175 handle %p as glibc would: %#x or a literal "(nil)". */
2176
2177 const char *p;
2178 char *fmt, *fmt_p;
2179 #ifdef PRINTF_HAS_LONG_LONG
2180 long long val = value_as_long (value);
2181 #else
2182 long val = value_as_long (value);
2183 #endif
2184
2185 fmt = alloca (strlen (format) + 5);
2186
2187 /* Copy up to the leading %. */
2188 p = format;
2189 fmt_p = fmt;
2190 while (*p)
2191 {
2192 int is_percent = (*p == '%');
2193
2194 *fmt_p++ = *p++;
2195 if (is_percent)
2196 {
2197 if (*p == '%')
2198 *fmt_p++ = *p++;
2199 else
2200 break;
2201 }
2202 }
2203
2204 if (val != 0)
2205 *fmt_p++ = '#';
2206
2207 /* Copy any width. */
2208 while (*p >= '0' && *p < '9')
2209 *fmt_p++ = *p++;
2210
2211 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2212 if (val != 0)
2213 {
2214 #ifdef PRINTF_HAS_LONG_LONG
2215 *fmt_p++ = 'l';
2216 #endif
2217 *fmt_p++ = 'l';
2218 *fmt_p++ = 'x';
2219 *fmt_p++ = '\0';
2220 fprintf_filtered (stream, fmt, val);
2221 }
2222 else
2223 {
2224 *fmt_p++ = 's';
2225 *fmt_p++ = '\0';
2226 fprintf_filtered (stream, fmt, "(nil)");
2227 }
2228 }
2229
2230 /* printf "printf format string" ARG to STREAM. */
2231
2232 static void
2233 ui_printf (const char *arg, struct ui_file *stream)
2234 {
2235 struct format_piece *fpieces;
2236 const char *s = arg;
2237 struct value **val_args;
2238 int allocated_args = 20;
2239 struct cleanup *old_cleanups;
2240
2241 val_args = xmalloc (allocated_args * sizeof (struct value *));
2242 old_cleanups = make_cleanup (free_current_contents, &val_args);
2243
2244 if (s == 0)
2245 error_no_arg (_("format-control string and values to print"));
2246
2247 s = skip_spaces_const (s);
2248
2249 /* A format string should follow, enveloped in double quotes. */
2250 if (*s++ != '"')
2251 error (_("Bad format string, missing '\"'."));
2252
2253 fpieces = parse_format_string (&s);
2254
2255 make_cleanup (free_format_pieces_cleanup, &fpieces);
2256
2257 if (*s++ != '"')
2258 error (_("Bad format string, non-terminated '\"'."));
2259
2260 s = skip_spaces_const (s);
2261
2262 if (*s != ',' && *s != 0)
2263 error (_("Invalid argument syntax"));
2264
2265 if (*s == ',')
2266 s++;
2267 s = skip_spaces_const (s);
2268
2269 {
2270 int nargs = 0;
2271 int nargs_wanted;
2272 int i, fr;
2273 char *current_substring;
2274
2275 nargs_wanted = 0;
2276 for (fr = 0; fpieces[fr].string != NULL; fr++)
2277 if (fpieces[fr].argclass != literal_piece)
2278 ++nargs_wanted;
2279
2280 /* Now, parse all arguments and evaluate them.
2281 Store the VALUEs in VAL_ARGS. */
2282
2283 while (*s != '\0')
2284 {
2285 const char *s1;
2286
2287 if (nargs == allocated_args)
2288 val_args = (struct value **) xrealloc ((char *) val_args,
2289 (allocated_args *= 2)
2290 * sizeof (struct value *));
2291 s1 = s;
2292 val_args[nargs] = parse_to_comma_and_eval (&s1);
2293
2294 nargs++;
2295 s = s1;
2296 if (*s == ',')
2297 s++;
2298 }
2299
2300 if (nargs != nargs_wanted)
2301 error (_("Wrong number of arguments for specified format-string"));
2302
2303 /* Now actually print them. */
2304 i = 0;
2305 for (fr = 0; fpieces[fr].string != NULL; fr++)
2306 {
2307 current_substring = fpieces[fr].string;
2308 switch (fpieces[fr].argclass)
2309 {
2310 case string_arg:
2311 printf_c_string (stream, current_substring, val_args[i]);
2312 break;
2313 case wide_string_arg:
2314 printf_wide_c_string (stream, current_substring, val_args[i]);
2315 break;
2316 case wide_char_arg:
2317 {
2318 struct gdbarch *gdbarch
2319 = get_type_arch (value_type (val_args[i]));
2320 struct type *wctype = lookup_typename (current_language, gdbarch,
2321 "wchar_t", NULL, 0);
2322 struct type *valtype;
2323 struct obstack output;
2324 struct cleanup *inner_cleanup;
2325 const gdb_byte *bytes;
2326
2327 valtype = value_type (val_args[i]);
2328 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2329 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2330 error (_("expected wchar_t argument for %%lc"));
2331
2332 bytes = value_contents (val_args[i]);
2333
2334 obstack_init (&output);
2335 inner_cleanup = make_cleanup_obstack_free (&output);
2336
2337 convert_between_encodings (target_wide_charset (gdbarch),
2338 host_charset (),
2339 bytes, TYPE_LENGTH (valtype),
2340 TYPE_LENGTH (valtype),
2341 &output, translit_char);
2342 obstack_grow_str0 (&output, "");
2343
2344 fprintf_filtered (stream, current_substring,
2345 obstack_base (&output));
2346 do_cleanups (inner_cleanup);
2347 }
2348 break;
2349 case double_arg:
2350 {
2351 struct type *type = value_type (val_args[i]);
2352 DOUBLEST val;
2353 int inv;
2354
2355 /* If format string wants a float, unchecked-convert the value
2356 to floating point of the same size. */
2357 type = float_type_from_length (type);
2358 val = unpack_double (type, value_contents (val_args[i]), &inv);
2359 if (inv)
2360 error (_("Invalid floating value found in program."));
2361
2362 fprintf_filtered (stream, current_substring, (double) val);
2363 break;
2364 }
2365 case long_double_arg:
2366 #ifdef HAVE_LONG_DOUBLE
2367 {
2368 struct type *type = value_type (val_args[i]);
2369 DOUBLEST val;
2370 int inv;
2371
2372 /* If format string wants a float, unchecked-convert the value
2373 to floating point of the same size. */
2374 type = float_type_from_length (type);
2375 val = unpack_double (type, value_contents (val_args[i]), &inv);
2376 if (inv)
2377 error (_("Invalid floating value found in program."));
2378
2379 fprintf_filtered (stream, current_substring,
2380 (long double) val);
2381 break;
2382 }
2383 #else
2384 error (_("long double not supported in printf"));
2385 #endif
2386 case long_long_arg:
2387 #ifdef PRINTF_HAS_LONG_LONG
2388 {
2389 long long val = value_as_long (val_args[i]);
2390
2391 fprintf_filtered (stream, current_substring, val);
2392 break;
2393 }
2394 #else
2395 error (_("long long not supported in printf"));
2396 #endif
2397 case int_arg:
2398 {
2399 int val = value_as_long (val_args[i]);
2400
2401 fprintf_filtered (stream, current_substring, val);
2402 break;
2403 }
2404 case long_arg:
2405 {
2406 long val = value_as_long (val_args[i]);
2407
2408 fprintf_filtered (stream, current_substring, val);
2409 break;
2410 }
2411 /* Handles decimal floating values. */
2412 case decfloat_arg:
2413 printf_decfloat (stream, current_substring, val_args[i]);
2414 break;
2415 case ptr_arg:
2416 printf_pointer (stream, current_substring, val_args[i]);
2417 break;
2418 case literal_piece:
2419 /* Print a portion of the format string that has no
2420 directives. Note that this will not include any
2421 ordinary %-specs, but it might include "%%". That is
2422 why we use printf_filtered and not puts_filtered here.
2423 Also, we pass a dummy argument because some platforms
2424 have modified GCC to include -Wformat-security by
2425 default, which will warn here if there is no
2426 argument. */
2427 fprintf_filtered (stream, current_substring, 0);
2428 break;
2429 default:
2430 internal_error (__FILE__, __LINE__,
2431 _("failed internal consistency check"));
2432 }
2433 /* Maybe advance to the next argument. */
2434 if (fpieces[fr].argclass != literal_piece)
2435 ++i;
2436 }
2437 }
2438 do_cleanups (old_cleanups);
2439 }
2440
2441 /* Implement the "printf" command. */
2442
2443 static void
2444 printf_command (char *arg, int from_tty)
2445 {
2446 ui_printf (arg, gdb_stdout);
2447 }
2448
2449 /* Implement the "eval" command. */
2450
2451 static void
2452 eval_command (char *arg, int from_tty)
2453 {
2454 struct ui_file *ui_out = mem_fileopen ();
2455 struct cleanup *cleanups = make_cleanup_ui_file_delete (ui_out);
2456 char *expanded;
2457
2458 ui_printf (arg, ui_out);
2459
2460 expanded = ui_file_xstrdup (ui_out, NULL);
2461 make_cleanup (xfree, expanded);
2462
2463 execute_command (expanded, from_tty);
2464
2465 do_cleanups (cleanups);
2466 }
2467
2468 void
2469 _initialize_printcmd (void)
2470 {
2471 struct cmd_list_element *c;
2472
2473 current_display_number = -1;
2474
2475 observer_attach_solib_unloaded (clear_dangling_display_expressions);
2476
2477 add_info ("address", address_info,
2478 _("Describe where symbol SYM is stored."));
2479
2480 add_info ("symbol", sym_info, _("\
2481 Describe what symbol is at location ADDR.\n\
2482 Only for symbols with fixed locations (global or static scope)."));
2483
2484 add_com ("x", class_vars, x_command, _("\
2485 Examine memory: x/FMT ADDRESS.\n\
2486 ADDRESS is an expression for the memory address to examine.\n\
2487 FMT is a repeat count followed by a format letter and a size letter.\n\
2488 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2489 t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n\
2490 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2491 The specified number of objects of the specified size are printed\n\
2492 according to the format.\n\n\
2493 Defaults for format and size letters are those previously used.\n\
2494 Default count is 1. Default address is following last thing printed\n\
2495 with this command or \"print\"."));
2496
2497 #if 0
2498 add_com ("whereis", class_vars, whereis_command,
2499 _("Print line number and file of definition of variable."));
2500 #endif
2501
2502 add_info ("display", display_info, _("\
2503 Expressions to display when program stops, with code numbers."));
2504
2505 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2506 Cancel some expressions to be displayed when program stops.\n\
2507 Arguments are the code numbers of the expressions to stop displaying.\n\
2508 No argument means cancel all automatic-display expressions.\n\
2509 \"delete display\" has the same effect as this command.\n\
2510 Do \"info display\" to see current list of code numbers."),
2511 &cmdlist);
2512
2513 add_com ("display", class_vars, display_command, _("\
2514 Print value of expression EXP each time the program stops.\n\
2515 /FMT may be used before EXP as in the \"print\" command.\n\
2516 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2517 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2518 and examining is done as in the \"x\" command.\n\n\
2519 With no argument, display all currently requested auto-display expressions.\n\
2520 Use \"undisplay\" to cancel display requests previously made."));
2521
2522 add_cmd ("display", class_vars, enable_display_command, _("\
2523 Enable some expressions to be displayed when program stops.\n\
2524 Arguments are the code numbers of the expressions to resume displaying.\n\
2525 No argument means enable all automatic-display expressions.\n\
2526 Do \"info display\" to see current list of code numbers."), &enablelist);
2527
2528 add_cmd ("display", class_vars, disable_display_command, _("\
2529 Disable some expressions to be displayed when program stops.\n\
2530 Arguments are the code numbers of the expressions to stop displaying.\n\
2531 No argument means disable all automatic-display expressions.\n\
2532 Do \"info display\" to see current list of code numbers."), &disablelist);
2533
2534 add_cmd ("display", class_vars, undisplay_command, _("\
2535 Cancel some expressions to be displayed when program stops.\n\
2536 Arguments are the code numbers of the expressions to stop displaying.\n\
2537 No argument means cancel all automatic-display expressions.\n\
2538 Do \"info display\" to see current list of code numbers."), &deletelist);
2539
2540 add_com ("printf", class_vars, printf_command, _("\
2541 printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2542 This is useful for formatted output in user-defined commands."));
2543
2544 add_com ("output", class_vars, output_command, _("\
2545 Like \"print\" but don't put in value history and don't print newline.\n\
2546 This is useful in user-defined commands."));
2547
2548 add_prefix_cmd ("set", class_vars, set_command, _("\
2549 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2550 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2551 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2552 with $), a register (a few standard names starting with $), or an actual\n\
2553 variable in the program being debugged. EXP is any valid expression.\n\
2554 Use \"set variable\" for variables with names identical to set subcommands.\n\
2555 \n\
2556 With a subcommand, this command modifies parts of the gdb environment.\n\
2557 You can see these environment settings with the \"show\" command."),
2558 &setlist, "set ", 1, &cmdlist);
2559 if (dbx_commands)
2560 add_com ("assign", class_vars, set_command, _("\
2561 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2562 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2563 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2564 with $), a register (a few standard names starting with $), or an actual\n\
2565 variable in the program being debugged. EXP is any valid expression.\n\
2566 Use \"set variable\" for variables with names identical to set subcommands.\n\
2567 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2568 You can see these environment settings with the \"show\" command."));
2569
2570 /* "call" is the same as "set", but handy for dbx users to call fns. */
2571 c = add_com ("call", class_vars, call_command, _("\
2572 Call a function in the program.\n\
2573 The argument is the function name and arguments, in the notation of the\n\
2574 current working language. The result is printed and saved in the value\n\
2575 history, if it is not void."));
2576 set_cmd_completer (c, expression_completer);
2577
2578 add_cmd ("variable", class_vars, set_command, _("\
2579 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2580 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2581 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2582 with $), a register (a few standard names starting with $), or an actual\n\
2583 variable in the program being debugged. EXP is any valid expression.\n\
2584 This may usually be abbreviated to simply \"set\"."),
2585 &setlist);
2586
2587 c = add_com ("print", class_vars, print_command, _("\
2588 Print value of expression EXP.\n\
2589 Variables accessible are those of the lexical environment of the selected\n\
2590 stack frame, plus all those whose scope is global or an entire file.\n\
2591 \n\
2592 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2593 $$NUM refers to NUM'th value back from the last one.\n\
2594 Names starting with $ refer to registers (with the values they would have\n\
2595 if the program were to return to the stack frame now selected, restoring\n\
2596 all registers saved by frames farther in) or else to debugger\n\
2597 \"convenience\" variables (any such name not a known register).\n\
2598 Use assignment expressions to give values to convenience variables.\n\
2599 \n\
2600 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2601 @ is a binary operator for treating consecutive data objects\n\
2602 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2603 element is FOO, whose second element is stored in the space following\n\
2604 where FOO is stored, etc. FOO must be an expression whose value\n\
2605 resides in memory.\n\
2606 \n\
2607 EXP may be preceded with /FMT, where FMT is a format letter\n\
2608 but no count or size letter (see \"x\" command)."));
2609 set_cmd_completer (c, expression_completer);
2610 add_com_alias ("p", "print", class_vars, 1);
2611 add_com_alias ("inspect", "print", class_vars, 1);
2612
2613 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2614 &max_symbolic_offset, _("\
2615 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2616 Show the largest offset that will be printed in <symbol+1234> form."), NULL,
2617 NULL,
2618 show_max_symbolic_offset,
2619 &setprintlist, &showprintlist);
2620 add_setshow_boolean_cmd ("symbol-filename", no_class,
2621 &print_symbol_filename, _("\
2622 Set printing of source filename and line number with <symbol>."), _("\
2623 Show printing of source filename and line number with <symbol>."), NULL,
2624 NULL,
2625 show_print_symbol_filename,
2626 &setprintlist, &showprintlist);
2627
2628 add_com ("eval", no_class, eval_command, _("\
2629 Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\
2630 a command line, and call it."));
2631 }
This page took 0.081587 seconds and 5 git commands to generate.