Use previous count when 'x' command is repeated
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "expression.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "breakpoint.h"
31 #include "demangle.h"
32 #include "gdb-demangle.h"
33 #include "valprint.h"
34 #include "annotate.h"
35 #include "symfile.h" /* for overlay functions */
36 #include "objfiles.h" /* ditto */
37 #include "completer.h" /* for completion functions */
38 #include "ui-out.h"
39 #include "block.h"
40 #include "disasm.h"
41 #include "target-float.h"
42 #include "observable.h"
43 #include "solist.h"
44 #include "parser-defs.h"
45 #include "charset.h"
46 #include "arch-utils.h"
47 #include "cli/cli-utils.h"
48 #include "cli/cli-script.h"
49 #include "format.h"
50 #include "source.h"
51 #include "common/byte-vector.h"
52
53 #ifdef TUI
54 #include "tui/tui.h" /* For tui_active et al. */
55 #endif
56
57 /* Last specified output format. */
58
59 static char last_format = 0;
60
61 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
62
63 static char last_size = 'w';
64
65 /* Last specified count for the 'x' command. */
66
67 static int last_count;
68
69 /* Default address to examine next, and associated architecture. */
70
71 static struct gdbarch *next_gdbarch;
72 static CORE_ADDR next_address;
73
74 /* Number of delay instructions following current disassembled insn. */
75
76 static int branch_delay_insns;
77
78 /* Last address examined. */
79
80 static CORE_ADDR last_examine_address;
81
82 /* Contents of last address examined.
83 This is not valid past the end of the `x' command! */
84
85 static value_ref_ptr last_examine_value;
86
87 /* Largest offset between a symbolic value and an address, that will be
88 printed as `0x1234 <symbol+offset>'. */
89
90 static unsigned int max_symbolic_offset = UINT_MAX;
91 static void
92 show_max_symbolic_offset (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94 {
95 fprintf_filtered (file,
96 _("The largest offset that will be "
97 "printed in <symbol+1234> form is %s.\n"),
98 value);
99 }
100
101 /* Append the source filename and linenumber of the symbol when
102 printing a symbolic value as `<symbol at filename:linenum>' if set. */
103 static int print_symbol_filename = 0;
104 static void
105 show_print_symbol_filename (struct ui_file *file, int from_tty,
106 struct cmd_list_element *c, const char *value)
107 {
108 fprintf_filtered (file, _("Printing of source filename and "
109 "line number with <symbol> is %s.\n"),
110 value);
111 }
112
113 /* Number of auto-display expression currently being displayed.
114 So that we can disable it if we get a signal within it.
115 -1 when not doing one. */
116
117 static int current_display_number;
118
119 struct display
120 {
121 /* Chain link to next auto-display item. */
122 struct display *next;
123
124 /* The expression as the user typed it. */
125 char *exp_string;
126
127 /* Expression to be evaluated and displayed. */
128 expression_up exp;
129
130 /* Item number of this auto-display item. */
131 int number;
132
133 /* Display format specified. */
134 struct format_data format;
135
136 /* Program space associated with `block'. */
137 struct program_space *pspace;
138
139 /* Innermost block required by this expression when evaluated. */
140 const struct block *block;
141
142 /* Status of this display (enabled or disabled). */
143 int enabled_p;
144 };
145
146 /* Chain of expressions whose values should be displayed
147 automatically each time the program stops. */
148
149 static struct display *display_chain;
150
151 static int display_number;
152
153 /* Walk the following statement or block through all displays.
154 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
155 display. */
156
157 #define ALL_DISPLAYS(B) \
158 for (B = display_chain; B; B = B->next)
159
160 #define ALL_DISPLAYS_SAFE(B,TMP) \
161 for (B = display_chain; \
162 B ? (TMP = B->next, 1): 0; \
163 B = TMP)
164
165 /* Prototypes for local functions. */
166
167 static void do_one_display (struct display *);
168 \f
169
170 /* Decode a format specification. *STRING_PTR should point to it.
171 OFORMAT and OSIZE are used as defaults for the format and size
172 if none are given in the format specification.
173 If OSIZE is zero, then the size field of the returned value
174 should be set only if a size is explicitly specified by the
175 user.
176 The structure returned describes all the data
177 found in the specification. In addition, *STRING_PTR is advanced
178 past the specification and past all whitespace following it. */
179
180 static struct format_data
181 decode_format (const char **string_ptr, int oformat, int osize)
182 {
183 struct format_data val;
184 const char *p = *string_ptr;
185
186 val.format = '?';
187 val.size = '?';
188 val.count = 1;
189 val.raw = 0;
190
191 if (*p == '-')
192 {
193 val.count = -1;
194 p++;
195 }
196 if (*p >= '0' && *p <= '9')
197 val.count *= atoi (p);
198 while (*p >= '0' && *p <= '9')
199 p++;
200
201 /* Now process size or format letters that follow. */
202
203 while (1)
204 {
205 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
206 val.size = *p++;
207 else if (*p == 'r')
208 {
209 val.raw = 1;
210 p++;
211 }
212 else if (*p >= 'a' && *p <= 'z')
213 val.format = *p++;
214 else
215 break;
216 }
217
218 while (*p == ' ' || *p == '\t')
219 p++;
220 *string_ptr = p;
221
222 /* Set defaults for format and size if not specified. */
223 if (val.format == '?')
224 {
225 if (val.size == '?')
226 {
227 /* Neither has been specified. */
228 val.format = oformat;
229 val.size = osize;
230 }
231 else
232 /* If a size is specified, any format makes a reasonable
233 default except 'i'. */
234 val.format = oformat == 'i' ? 'x' : oformat;
235 }
236 else if (val.size == '?')
237 switch (val.format)
238 {
239 case 'a':
240 /* Pick the appropriate size for an address. This is deferred
241 until do_examine when we know the actual architecture to use.
242 A special size value of 'a' is used to indicate this case. */
243 val.size = osize ? 'a' : osize;
244 break;
245 case 'f':
246 /* Floating point has to be word or giantword. */
247 if (osize == 'w' || osize == 'g')
248 val.size = osize;
249 else
250 /* Default it to giantword if the last used size is not
251 appropriate. */
252 val.size = osize ? 'g' : osize;
253 break;
254 case 'c':
255 /* Characters default to one byte. */
256 val.size = osize ? 'b' : osize;
257 break;
258 case 's':
259 /* Display strings with byte size chars unless explicitly
260 specified. */
261 val.size = '\0';
262 break;
263
264 default:
265 /* The default is the size most recently specified. */
266 val.size = osize;
267 }
268
269 return val;
270 }
271 \f
272 /* Print value VAL on stream according to OPTIONS.
273 Do not end with a newline.
274 SIZE is the letter for the size of datum being printed.
275 This is used to pad hex numbers so they line up. SIZE is 0
276 for print / output and set for examine. */
277
278 static void
279 print_formatted (struct value *val, int size,
280 const struct value_print_options *options,
281 struct ui_file *stream)
282 {
283 struct type *type = check_typedef (value_type (val));
284 int len = TYPE_LENGTH (type);
285
286 if (VALUE_LVAL (val) == lval_memory)
287 next_address = value_address (val) + len;
288
289 if (size)
290 {
291 switch (options->format)
292 {
293 case 's':
294 {
295 struct type *elttype = value_type (val);
296
297 next_address = (value_address (val)
298 + val_print_string (elttype, NULL,
299 value_address (val), -1,
300 stream, options) * len);
301 }
302 return;
303
304 case 'i':
305 /* We often wrap here if there are long symbolic names. */
306 wrap_here (" ");
307 next_address = (value_address (val)
308 + gdb_print_insn (get_type_arch (type),
309 value_address (val), stream,
310 &branch_delay_insns));
311 return;
312 }
313 }
314
315 if (options->format == 0 || options->format == 's'
316 || TYPE_CODE (type) == TYPE_CODE_REF
317 || TYPE_CODE (type) == TYPE_CODE_ARRAY
318 || TYPE_CODE (type) == TYPE_CODE_STRING
319 || TYPE_CODE (type) == TYPE_CODE_STRUCT
320 || TYPE_CODE (type) == TYPE_CODE_UNION
321 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
322 value_print (val, stream, options);
323 else
324 /* User specified format, so don't look to the type to tell us
325 what to do. */
326 val_print_scalar_formatted (type,
327 value_embedded_offset (val),
328 val,
329 options, size, stream);
330 }
331
332 /* Return builtin floating point type of same length as TYPE.
333 If no such type is found, return TYPE itself. */
334 static struct type *
335 float_type_from_length (struct type *type)
336 {
337 struct gdbarch *gdbarch = get_type_arch (type);
338 const struct builtin_type *builtin = builtin_type (gdbarch);
339
340 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
341 type = builtin->builtin_float;
342 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
343 type = builtin->builtin_double;
344 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
345 type = builtin->builtin_long_double;
346
347 return type;
348 }
349
350 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
351 according to OPTIONS and SIZE on STREAM. Formats s and i are not
352 supported at this level. */
353
354 void
355 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
356 const struct value_print_options *options,
357 int size, struct ui_file *stream)
358 {
359 struct gdbarch *gdbarch = get_type_arch (type);
360 unsigned int len = TYPE_LENGTH (type);
361 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
362
363 /* String printing should go through val_print_scalar_formatted. */
364 gdb_assert (options->format != 's');
365
366 /* If the value is a pointer, and pointers and addresses are not the
367 same, then at this point, the value's length (in target bytes) is
368 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
369 if (TYPE_CODE (type) == TYPE_CODE_PTR)
370 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
371
372 /* If we are printing it as unsigned, truncate it in case it is actually
373 a negative signed value (e.g. "print/u (short)-1" should print 65535
374 (if shorts are 16 bits) instead of 4294967295). */
375 if (options->format != 'c'
376 && (options->format != 'd' || TYPE_UNSIGNED (type)))
377 {
378 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
379 valaddr += TYPE_LENGTH (type) - len;
380 }
381
382 if (size != 0 && (options->format == 'x' || options->format == 't'))
383 {
384 /* Truncate to fit. */
385 unsigned newlen;
386 switch (size)
387 {
388 case 'b':
389 newlen = 1;
390 break;
391 case 'h':
392 newlen = 2;
393 break;
394 case 'w':
395 newlen = 4;
396 break;
397 case 'g':
398 newlen = 8;
399 break;
400 default:
401 error (_("Undefined output size \"%c\"."), size);
402 }
403 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
404 valaddr += len - newlen;
405 len = newlen;
406 }
407
408 /* Historically gdb has printed floats by first casting them to a
409 long, and then printing the long. PR cli/16242 suggests changing
410 this to using C-style hex float format. */
411 gdb::byte_vector converted_float_bytes;
412 if (TYPE_CODE (type) == TYPE_CODE_FLT
413 && (options->format == 'o'
414 || options->format == 'x'
415 || options->format == 't'
416 || options->format == 'z'
417 || options->format == 'd'
418 || options->format == 'u'))
419 {
420 LONGEST val_long = unpack_long (type, valaddr);
421 converted_float_bytes.resize (TYPE_LENGTH (type));
422 store_signed_integer (converted_float_bytes.data (), TYPE_LENGTH (type),
423 byte_order, val_long);
424 valaddr = converted_float_bytes.data ();
425 }
426
427 /* Printing a non-float type as 'f' will interpret the data as if it were
428 of a floating-point type of the same length, if that exists. Otherwise,
429 the data is printed as integer. */
430 char format = options->format;
431 if (format == 'f' && TYPE_CODE (type) != TYPE_CODE_FLT)
432 {
433 type = float_type_from_length (type);
434 if (TYPE_CODE (type) != TYPE_CODE_FLT)
435 format = 0;
436 }
437
438 switch (format)
439 {
440 case 'o':
441 print_octal_chars (stream, valaddr, len, byte_order);
442 break;
443 case 'd':
444 print_decimal_chars (stream, valaddr, len, true, byte_order);
445 break;
446 case 'u':
447 print_decimal_chars (stream, valaddr, len, false, byte_order);
448 break;
449 case 0:
450 if (TYPE_CODE (type) != TYPE_CODE_FLT)
451 {
452 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
453 byte_order);
454 break;
455 }
456 /* FALLTHROUGH */
457 case 'f':
458 print_floating (valaddr, type, stream);
459 break;
460
461 case 't':
462 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
463 break;
464 case 'x':
465 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
466 break;
467 case 'z':
468 print_hex_chars (stream, valaddr, len, byte_order, true);
469 break;
470 case 'c':
471 {
472 struct value_print_options opts = *options;
473
474 LONGEST val_long = unpack_long (type, valaddr);
475
476 opts.format = 0;
477 if (TYPE_UNSIGNED (type))
478 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
479 else
480 type = builtin_type (gdbarch)->builtin_true_char;
481
482 value_print (value_from_longest (type, val_long), stream, &opts);
483 }
484 break;
485
486 case 'a':
487 {
488 CORE_ADDR addr = unpack_pointer (type, valaddr);
489
490 print_address (gdbarch, addr, stream);
491 }
492 break;
493
494 default:
495 error (_("Undefined output format \"%c\"."), format);
496 }
497 }
498
499 /* Specify default address for `x' command.
500 The `info lines' command uses this. */
501
502 void
503 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
504 {
505 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
506
507 next_gdbarch = gdbarch;
508 next_address = addr;
509
510 /* Make address available to the user as $_. */
511 set_internalvar (lookup_internalvar ("_"),
512 value_from_pointer (ptr_type, addr));
513 }
514
515 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
516 after LEADIN. Print nothing if no symbolic name is found nearby.
517 Optionally also print source file and line number, if available.
518 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
519 or to interpret it as a possible C++ name and convert it back to source
520 form. However note that DO_DEMANGLE can be overridden by the specific
521 settings of the demangle and asm_demangle variables. Returns
522 non-zero if anything was printed; zero otherwise. */
523
524 int
525 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
526 struct ui_file *stream,
527 int do_demangle, const char *leadin)
528 {
529 char *name = NULL;
530 char *filename = NULL;
531 int unmapped = 0;
532 int offset = 0;
533 int line = 0;
534
535 /* Throw away both name and filename. */
536 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
537 make_cleanup (free_current_contents, &filename);
538
539 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
540 &filename, &line, &unmapped))
541 {
542 do_cleanups (cleanup_chain);
543 return 0;
544 }
545
546 fputs_filtered (leadin, stream);
547 if (unmapped)
548 fputs_filtered ("<*", stream);
549 else
550 fputs_filtered ("<", stream);
551 fputs_filtered (name, stream);
552 if (offset != 0)
553 fprintf_filtered (stream, "+%u", (unsigned int) offset);
554
555 /* Append source filename and line number if desired. Give specific
556 line # of this addr, if we have it; else line # of the nearest symbol. */
557 if (print_symbol_filename && filename != NULL)
558 {
559 if (line != -1)
560 fprintf_filtered (stream, " at %s:%d", filename, line);
561 else
562 fprintf_filtered (stream, " in %s", filename);
563 }
564 if (unmapped)
565 fputs_filtered ("*>", stream);
566 else
567 fputs_filtered (">", stream);
568
569 do_cleanups (cleanup_chain);
570 return 1;
571 }
572
573 /* Given an address ADDR return all the elements needed to print the
574 address in a symbolic form. NAME can be mangled or not depending
575 on DO_DEMANGLE (and also on the asm_demangle global variable,
576 manipulated via ''set print asm-demangle''). Return 0 in case of
577 success, when all the info in the OUT paramters is valid. Return 1
578 otherwise. */
579 int
580 build_address_symbolic (struct gdbarch *gdbarch,
581 CORE_ADDR addr, /* IN */
582 int do_demangle, /* IN */
583 char **name, /* OUT */
584 int *offset, /* OUT */
585 char **filename, /* OUT */
586 int *line, /* OUT */
587 int *unmapped) /* OUT */
588 {
589 struct bound_minimal_symbol msymbol;
590 struct symbol *symbol;
591 CORE_ADDR name_location = 0;
592 struct obj_section *section = NULL;
593 const char *name_temp = "";
594
595 /* Let's say it is mapped (not unmapped). */
596 *unmapped = 0;
597
598 /* Determine if the address is in an overlay, and whether it is
599 mapped. */
600 if (overlay_debugging)
601 {
602 section = find_pc_overlay (addr);
603 if (pc_in_unmapped_range (addr, section))
604 {
605 *unmapped = 1;
606 addr = overlay_mapped_address (addr, section);
607 }
608 }
609
610 /* First try to find the address in the symbol table, then
611 in the minsyms. Take the closest one. */
612
613 /* This is defective in the sense that it only finds text symbols. So
614 really this is kind of pointless--we should make sure that the
615 minimal symbols have everything we need (by changing that we could
616 save some memory, but for many debug format--ELF/DWARF or
617 anything/stabs--it would be inconvenient to eliminate those minimal
618 symbols anyway). */
619 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
620 symbol = find_pc_sect_function (addr, section);
621
622 if (symbol)
623 {
624 /* If this is a function (i.e. a code address), strip out any
625 non-address bits. For instance, display a pointer to the
626 first instruction of a Thumb function as <function>; the
627 second instruction will be <function+2>, even though the
628 pointer is <function+3>. This matches the ISA behavior. */
629 addr = gdbarch_addr_bits_remove (gdbarch, addr);
630
631 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
632 if (do_demangle || asm_demangle)
633 name_temp = SYMBOL_PRINT_NAME (symbol);
634 else
635 name_temp = SYMBOL_LINKAGE_NAME (symbol);
636 }
637
638 if (msymbol.minsym != NULL
639 && MSYMBOL_HAS_SIZE (msymbol.minsym)
640 && MSYMBOL_SIZE (msymbol.minsym) == 0
641 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
642 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
643 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
644 msymbol.minsym = NULL;
645
646 if (msymbol.minsym != NULL)
647 {
648 if (BMSYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
649 {
650 /* If this is a function (i.e. a code address), strip out any
651 non-address bits. For instance, display a pointer to the
652 first instruction of a Thumb function as <function>; the
653 second instruction will be <function+2>, even though the
654 pointer is <function+3>. This matches the ISA behavior. */
655 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
656 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
657 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
658 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
659 addr = gdbarch_addr_bits_remove (gdbarch, addr);
660
661 /* The msymbol is closer to the address than the symbol;
662 use the msymbol instead. */
663 symbol = 0;
664 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
665 if (do_demangle || asm_demangle)
666 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
667 else
668 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
669 }
670 }
671 if (symbol == NULL && msymbol.minsym == NULL)
672 return 1;
673
674 /* If the nearest symbol is too far away, don't print anything symbolic. */
675
676 /* For when CORE_ADDR is larger than unsigned int, we do math in
677 CORE_ADDR. But when we detect unsigned wraparound in the
678 CORE_ADDR math, we ignore this test and print the offset,
679 because addr+max_symbolic_offset has wrapped through the end
680 of the address space back to the beginning, giving bogus comparison. */
681 if (addr > name_location + max_symbolic_offset
682 && name_location + max_symbolic_offset > name_location)
683 return 1;
684
685 *offset = addr - name_location;
686
687 *name = xstrdup (name_temp);
688
689 if (print_symbol_filename)
690 {
691 struct symtab_and_line sal;
692
693 sal = find_pc_sect_line (addr, section, 0);
694
695 if (sal.symtab)
696 {
697 *filename = xstrdup (symtab_to_filename_for_display (sal.symtab));
698 *line = sal.line;
699 }
700 }
701 return 0;
702 }
703
704
705 /* Print address ADDR symbolically on STREAM.
706 First print it as a number. Then perhaps print
707 <SYMBOL + OFFSET> after the number. */
708
709 void
710 print_address (struct gdbarch *gdbarch,
711 CORE_ADDR addr, struct ui_file *stream)
712 {
713 fputs_filtered (paddress (gdbarch, addr), stream);
714 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
715 }
716
717 /* Return a prefix for instruction address:
718 "=> " for current instruction, else " ". */
719
720 const char *
721 pc_prefix (CORE_ADDR addr)
722 {
723 if (has_stack_frames ())
724 {
725 struct frame_info *frame;
726 CORE_ADDR pc;
727
728 frame = get_selected_frame (NULL);
729 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
730 return "=> ";
731 }
732 return " ";
733 }
734
735 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
736 controls whether to print the symbolic name "raw" or demangled.
737 Return non-zero if anything was printed; zero otherwise. */
738
739 int
740 print_address_demangle (const struct value_print_options *opts,
741 struct gdbarch *gdbarch, CORE_ADDR addr,
742 struct ui_file *stream, int do_demangle)
743 {
744 if (opts->addressprint)
745 {
746 fputs_filtered (paddress (gdbarch, addr), stream);
747 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
748 }
749 else
750 {
751 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
752 }
753 return 1;
754 }
755 \f
756
757 /* Find the address of the instruction that is INST_COUNT instructions before
758 the instruction at ADDR.
759 Since some architectures have variable-length instructions, we can't just
760 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
761 number information to locate the nearest known instruction boundary,
762 and disassemble forward from there. If we go out of the symbol range
763 during disassembling, we return the lowest address we've got so far and
764 set the number of instructions read to INST_READ. */
765
766 static CORE_ADDR
767 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
768 int inst_count, int *inst_read)
769 {
770 /* The vector PCS is used to store instruction addresses within
771 a pc range. */
772 CORE_ADDR loop_start, loop_end, p;
773 std::vector<CORE_ADDR> pcs;
774 struct symtab_and_line sal;
775
776 *inst_read = 0;
777 loop_start = loop_end = addr;
778
779 /* In each iteration of the outer loop, we get a pc range that ends before
780 LOOP_START, then we count and store every instruction address of the range
781 iterated in the loop.
782 If the number of instructions counted reaches INST_COUNT, return the
783 stored address that is located INST_COUNT instructions back from ADDR.
784 If INST_COUNT is not reached, we subtract the number of counted
785 instructions from INST_COUNT, and go to the next iteration. */
786 do
787 {
788 pcs.clear ();
789 sal = find_pc_sect_line (loop_start, NULL, 1);
790 if (sal.line <= 0)
791 {
792 /* We reach here when line info is not available. In this case,
793 we print a message and just exit the loop. The return value
794 is calculated after the loop. */
795 printf_filtered (_("No line number information available "
796 "for address "));
797 wrap_here (" ");
798 print_address (gdbarch, loop_start - 1, gdb_stdout);
799 printf_filtered ("\n");
800 break;
801 }
802
803 loop_end = loop_start;
804 loop_start = sal.pc;
805
806 /* This loop pushes instruction addresses in the range from
807 LOOP_START to LOOP_END. */
808 for (p = loop_start; p < loop_end;)
809 {
810 pcs.push_back (p);
811 p += gdb_insn_length (gdbarch, p);
812 }
813
814 inst_count -= pcs.size ();
815 *inst_read += pcs.size ();
816 }
817 while (inst_count > 0);
818
819 /* After the loop, the vector PCS has instruction addresses of the last
820 source line we processed, and INST_COUNT has a negative value.
821 We return the address at the index of -INST_COUNT in the vector for
822 the reason below.
823 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
824 Line X of File
825 0x4000
826 0x4001
827 0x4005
828 Line Y of File
829 0x4009
830 0x400c
831 => 0x400e
832 0x4011
833 find_instruction_backward is called with INST_COUNT = 4 and expected to
834 return 0x4001. When we reach here, INST_COUNT is set to -1 because
835 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
836 4001 is located at the index 1 of the last iterated line (= Line X),
837 which is simply calculated by -INST_COUNT.
838 The case when the length of PCS is 0 means that we reached an area for
839 which line info is not available. In such case, we return LOOP_START,
840 which was the lowest instruction address that had line info. */
841 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
842
843 /* INST_READ includes all instruction addresses in a pc range. Need to
844 exclude the beginning part up to the address we're returning. That
845 is, exclude {0x4000} in the example above. */
846 if (inst_count < 0)
847 *inst_read += inst_count;
848
849 return p;
850 }
851
852 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
853 placing the results in GDB's memory from MYADDR + LEN. Returns
854 a count of the bytes actually read. */
855
856 static int
857 read_memory_backward (struct gdbarch *gdbarch,
858 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
859 {
860 int errcode;
861 int nread; /* Number of bytes actually read. */
862
863 /* First try a complete read. */
864 errcode = target_read_memory (memaddr, myaddr, len);
865 if (errcode == 0)
866 {
867 /* Got it all. */
868 nread = len;
869 }
870 else
871 {
872 /* Loop, reading one byte at a time until we get as much as we can. */
873 memaddr += len;
874 myaddr += len;
875 for (nread = 0; nread < len; ++nread)
876 {
877 errcode = target_read_memory (--memaddr, --myaddr, 1);
878 if (errcode != 0)
879 {
880 /* The read was unsuccessful, so exit the loop. */
881 printf_filtered (_("Cannot access memory at address %s\n"),
882 paddress (gdbarch, memaddr));
883 break;
884 }
885 }
886 }
887 return nread;
888 }
889
890 /* Returns true if X (which is LEN bytes wide) is the number zero. */
891
892 static int
893 integer_is_zero (const gdb_byte *x, int len)
894 {
895 int i = 0;
896
897 while (i < len && x[i] == 0)
898 ++i;
899 return (i == len);
900 }
901
902 /* Find the start address of a string in which ADDR is included.
903 Basically we search for '\0' and return the next address,
904 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
905 we stop searching and return the address to print characters as many as
906 PRINT_MAX from the string. */
907
908 static CORE_ADDR
909 find_string_backward (struct gdbarch *gdbarch,
910 CORE_ADDR addr, int count, int char_size,
911 const struct value_print_options *options,
912 int *strings_counted)
913 {
914 const int chunk_size = 0x20;
915 int read_error = 0;
916 int chars_read = 0;
917 int chars_to_read = chunk_size;
918 int chars_counted = 0;
919 int count_original = count;
920 CORE_ADDR string_start_addr = addr;
921
922 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
923 gdb::byte_vector buffer (chars_to_read * char_size);
924 while (count > 0 && read_error == 0)
925 {
926 int i;
927
928 addr -= chars_to_read * char_size;
929 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
930 chars_to_read * char_size);
931 chars_read /= char_size;
932 read_error = (chars_read == chars_to_read) ? 0 : 1;
933 /* Searching for '\0' from the end of buffer in backward direction. */
934 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
935 {
936 int offset = (chars_to_read - i - 1) * char_size;
937
938 if (integer_is_zero (&buffer[offset], char_size)
939 || chars_counted == options->print_max)
940 {
941 /* Found '\0' or reached print_max. As OFFSET is the offset to
942 '\0', we add CHAR_SIZE to return the start address of
943 a string. */
944 --count;
945 string_start_addr = addr + offset + char_size;
946 chars_counted = 0;
947 }
948 }
949 }
950
951 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
952 *strings_counted = count_original - count;
953
954 if (read_error != 0)
955 {
956 /* In error case, STRING_START_ADDR is pointing to the string that
957 was last successfully loaded. Rewind the partially loaded string. */
958 string_start_addr -= chars_counted * char_size;
959 }
960
961 return string_start_addr;
962 }
963
964 /* Examine data at address ADDR in format FMT.
965 Fetch it from memory and print on gdb_stdout. */
966
967 static void
968 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
969 {
970 char format = 0;
971 char size;
972 int count = 1;
973 struct type *val_type = NULL;
974 int i;
975 int maxelts;
976 struct value_print_options opts;
977 int need_to_update_next_address = 0;
978 CORE_ADDR addr_rewound = 0;
979
980 format = fmt.format;
981 size = fmt.size;
982 count = fmt.count;
983 next_gdbarch = gdbarch;
984 next_address = addr;
985
986 /* Instruction format implies fetch single bytes
987 regardless of the specified size.
988 The case of strings is handled in decode_format, only explicit
989 size operator are not changed to 'b'. */
990 if (format == 'i')
991 size = 'b';
992
993 if (size == 'a')
994 {
995 /* Pick the appropriate size for an address. */
996 if (gdbarch_ptr_bit (next_gdbarch) == 64)
997 size = 'g';
998 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
999 size = 'w';
1000 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
1001 size = 'h';
1002 else
1003 /* Bad value for gdbarch_ptr_bit. */
1004 internal_error (__FILE__, __LINE__,
1005 _("failed internal consistency check"));
1006 }
1007
1008 if (size == 'b')
1009 val_type = builtin_type (next_gdbarch)->builtin_int8;
1010 else if (size == 'h')
1011 val_type = builtin_type (next_gdbarch)->builtin_int16;
1012 else if (size == 'w')
1013 val_type = builtin_type (next_gdbarch)->builtin_int32;
1014 else if (size == 'g')
1015 val_type = builtin_type (next_gdbarch)->builtin_int64;
1016
1017 if (format == 's')
1018 {
1019 struct type *char_type = NULL;
1020
1021 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1022 if type is not found. */
1023 if (size == 'h')
1024 char_type = builtin_type (next_gdbarch)->builtin_char16;
1025 else if (size == 'w')
1026 char_type = builtin_type (next_gdbarch)->builtin_char32;
1027 if (char_type)
1028 val_type = char_type;
1029 else
1030 {
1031 if (size != '\0' && size != 'b')
1032 warning (_("Unable to display strings with "
1033 "size '%c', using 'b' instead."), size);
1034 size = 'b';
1035 val_type = builtin_type (next_gdbarch)->builtin_int8;
1036 }
1037 }
1038
1039 maxelts = 8;
1040 if (size == 'w')
1041 maxelts = 4;
1042 if (size == 'g')
1043 maxelts = 2;
1044 if (format == 's' || format == 'i')
1045 maxelts = 1;
1046
1047 get_formatted_print_options (&opts, format);
1048
1049 if (count < 0)
1050 {
1051 /* This is the negative repeat count case.
1052 We rewind the address based on the given repeat count and format,
1053 then examine memory from there in forward direction. */
1054
1055 count = -count;
1056 if (format == 'i')
1057 {
1058 next_address = find_instruction_backward (gdbarch, addr, count,
1059 &count);
1060 }
1061 else if (format == 's')
1062 {
1063 next_address = find_string_backward (gdbarch, addr, count,
1064 TYPE_LENGTH (val_type),
1065 &opts, &count);
1066 }
1067 else
1068 {
1069 next_address = addr - count * TYPE_LENGTH (val_type);
1070 }
1071
1072 /* The following call to print_formatted updates next_address in every
1073 iteration. In backward case, we store the start address here
1074 and update next_address with it before exiting the function. */
1075 addr_rewound = (format == 's'
1076 ? next_address - TYPE_LENGTH (val_type)
1077 : next_address);
1078 need_to_update_next_address = 1;
1079 }
1080
1081 /* Print as many objects as specified in COUNT, at most maxelts per line,
1082 with the address of the next one at the start of each line. */
1083
1084 while (count > 0)
1085 {
1086 QUIT;
1087 if (format == 'i')
1088 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1089 print_address (next_gdbarch, next_address, gdb_stdout);
1090 printf_filtered (":");
1091 for (i = maxelts;
1092 i > 0 && count > 0;
1093 i--, count--)
1094 {
1095 printf_filtered ("\t");
1096 /* Note that print_formatted sets next_address for the next
1097 object. */
1098 last_examine_address = next_address;
1099
1100 /* The value to be displayed is not fetched greedily.
1101 Instead, to avoid the possibility of a fetched value not
1102 being used, its retrieval is delayed until the print code
1103 uses it. When examining an instruction stream, the
1104 disassembler will perform its own memory fetch using just
1105 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1106 the disassembler be modified so that LAST_EXAMINE_VALUE
1107 is left with the byte sequence from the last complete
1108 instruction fetched from memory? */
1109 last_examine_value
1110 = release_value (value_at_lazy (val_type, next_address));
1111
1112 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1113
1114 /* Display any branch delay slots following the final insn. */
1115 if (format == 'i' && count == 1)
1116 count += branch_delay_insns;
1117 }
1118 printf_filtered ("\n");
1119 gdb_flush (gdb_stdout);
1120 }
1121
1122 if (need_to_update_next_address)
1123 next_address = addr_rewound;
1124 }
1125 \f
1126 static void
1127 validate_format (struct format_data fmt, const char *cmdname)
1128 {
1129 if (fmt.size != 0)
1130 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1131 if (fmt.count != 1)
1132 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1133 cmdname);
1134 if (fmt.format == 'i')
1135 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1136 fmt.format, cmdname);
1137 }
1138
1139 /* Parse print command format string into *FMTP and update *EXPP.
1140 CMDNAME should name the current command. */
1141
1142 void
1143 print_command_parse_format (const char **expp, const char *cmdname,
1144 struct format_data *fmtp)
1145 {
1146 const char *exp = *expp;
1147
1148 if (exp && *exp == '/')
1149 {
1150 exp++;
1151 *fmtp = decode_format (&exp, last_format, 0);
1152 validate_format (*fmtp, cmdname);
1153 last_format = fmtp->format;
1154 }
1155 else
1156 {
1157 fmtp->count = 1;
1158 fmtp->format = 0;
1159 fmtp->size = 0;
1160 fmtp->raw = 0;
1161 }
1162
1163 *expp = exp;
1164 }
1165
1166 /* Print VAL to console according to *FMTP, including recording it to
1167 the history. */
1168
1169 void
1170 print_value (struct value *val, const struct format_data *fmtp)
1171 {
1172 struct value_print_options opts;
1173 int histindex = record_latest_value (val);
1174
1175 annotate_value_history_begin (histindex, value_type (val));
1176
1177 printf_filtered ("$%d = ", histindex);
1178
1179 annotate_value_history_value ();
1180
1181 get_formatted_print_options (&opts, fmtp->format);
1182 opts.raw = fmtp->raw;
1183
1184 print_formatted (val, fmtp->size, &opts, gdb_stdout);
1185 printf_filtered ("\n");
1186
1187 annotate_value_history_end ();
1188 }
1189
1190 /* Evaluate string EXP as an expression in the current language and
1191 print the resulting value. EXP may contain a format specifier as the
1192 first argument ("/x myvar" for example, to print myvar in hex). */
1193
1194 static void
1195 print_command_1 (const char *exp, int voidprint)
1196 {
1197 struct value *val;
1198 struct format_data fmt;
1199
1200 print_command_parse_format (&exp, "print", &fmt);
1201
1202 if (exp && *exp)
1203 {
1204 expression_up expr = parse_expression (exp);
1205 val = evaluate_expression (expr.get ());
1206 }
1207 else
1208 val = access_value_history (0);
1209
1210 if (voidprint || (val && value_type (val) &&
1211 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1212 print_value (val, &fmt);
1213 }
1214
1215 static void
1216 print_command (const char *exp, int from_tty)
1217 {
1218 print_command_1 (exp, 1);
1219 }
1220
1221 /* Same as print, except it doesn't print void results. */
1222 static void
1223 call_command (const char *exp, int from_tty)
1224 {
1225 print_command_1 (exp, 0);
1226 }
1227
1228 /* Implementation of the "output" command. */
1229
1230 static void
1231 output_command (const char *exp, int from_tty)
1232 {
1233 output_command_const (exp, from_tty);
1234 }
1235
1236 /* Like output_command, but takes a const string as argument. */
1237
1238 void
1239 output_command_const (const char *exp, int from_tty)
1240 {
1241 char format = 0;
1242 struct value *val;
1243 struct format_data fmt;
1244 struct value_print_options opts;
1245
1246 fmt.size = 0;
1247 fmt.raw = 0;
1248
1249 if (exp && *exp == '/')
1250 {
1251 exp++;
1252 fmt = decode_format (&exp, 0, 0);
1253 validate_format (fmt, "output");
1254 format = fmt.format;
1255 }
1256
1257 expression_up expr = parse_expression (exp);
1258
1259 val = evaluate_expression (expr.get ());
1260
1261 annotate_value_begin (value_type (val));
1262
1263 get_formatted_print_options (&opts, format);
1264 opts.raw = fmt.raw;
1265 print_formatted (val, fmt.size, &opts, gdb_stdout);
1266
1267 annotate_value_end ();
1268
1269 wrap_here ("");
1270 gdb_flush (gdb_stdout);
1271 }
1272
1273 static void
1274 set_command (const char *exp, int from_tty)
1275 {
1276 expression_up expr = parse_expression (exp);
1277
1278 if (expr->nelts >= 1)
1279 switch (expr->elts[0].opcode)
1280 {
1281 case UNOP_PREINCREMENT:
1282 case UNOP_POSTINCREMENT:
1283 case UNOP_PREDECREMENT:
1284 case UNOP_POSTDECREMENT:
1285 case BINOP_ASSIGN:
1286 case BINOP_ASSIGN_MODIFY:
1287 case BINOP_COMMA:
1288 break;
1289 default:
1290 warning
1291 (_("Expression is not an assignment (and might have no effect)"));
1292 }
1293
1294 evaluate_expression (expr.get ());
1295 }
1296
1297 static void
1298 info_symbol_command (const char *arg, int from_tty)
1299 {
1300 struct minimal_symbol *msymbol;
1301 struct objfile *objfile;
1302 struct obj_section *osect;
1303 CORE_ADDR addr, sect_addr;
1304 int matches = 0;
1305 unsigned int offset;
1306
1307 if (!arg)
1308 error_no_arg (_("address"));
1309
1310 addr = parse_and_eval_address (arg);
1311 ALL_OBJSECTIONS (objfile, osect)
1312 {
1313 /* Only process each object file once, even if there's a separate
1314 debug file. */
1315 if (objfile->separate_debug_objfile_backlink)
1316 continue;
1317
1318 sect_addr = overlay_mapped_address (addr, osect);
1319
1320 if (obj_section_addr (osect) <= sect_addr
1321 && sect_addr < obj_section_endaddr (osect)
1322 && (msymbol
1323 = lookup_minimal_symbol_by_pc_section (sect_addr, osect).minsym))
1324 {
1325 const char *obj_name, *mapped, *sec_name, *msym_name;
1326 const char *loc_string;
1327 struct cleanup *old_chain;
1328
1329 matches = 1;
1330 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1331 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1332 sec_name = osect->the_bfd_section->name;
1333 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1334
1335 /* Don't print the offset if it is zero.
1336 We assume there's no need to handle i18n of "sym + offset". */
1337 std::string string_holder;
1338 if (offset)
1339 {
1340 string_holder = string_printf ("%s + %u", msym_name, offset);
1341 loc_string = string_holder.c_str ();
1342 }
1343 else
1344 loc_string = msym_name;
1345
1346 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1347 obj_name = objfile_name (osect->objfile);
1348
1349 if (MULTI_OBJFILE_P ())
1350 if (pc_in_unmapped_range (addr, osect))
1351 if (section_is_overlay (osect))
1352 printf_filtered (_("%s in load address range of "
1353 "%s overlay section %s of %s\n"),
1354 loc_string, mapped, sec_name, obj_name);
1355 else
1356 printf_filtered (_("%s in load address range of "
1357 "section %s of %s\n"),
1358 loc_string, sec_name, obj_name);
1359 else
1360 if (section_is_overlay (osect))
1361 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1362 loc_string, mapped, sec_name, obj_name);
1363 else
1364 printf_filtered (_("%s in section %s of %s\n"),
1365 loc_string, sec_name, obj_name);
1366 else
1367 if (pc_in_unmapped_range (addr, osect))
1368 if (section_is_overlay (osect))
1369 printf_filtered (_("%s in load address range of %s overlay "
1370 "section %s\n"),
1371 loc_string, mapped, sec_name);
1372 else
1373 printf_filtered (_("%s in load address range of section %s\n"),
1374 loc_string, sec_name);
1375 else
1376 if (section_is_overlay (osect))
1377 printf_filtered (_("%s in %s overlay section %s\n"),
1378 loc_string, mapped, sec_name);
1379 else
1380 printf_filtered (_("%s in section %s\n"),
1381 loc_string, sec_name);
1382 }
1383 }
1384 if (matches == 0)
1385 printf_filtered (_("No symbol matches %s.\n"), arg);
1386 }
1387
1388 static void
1389 info_address_command (const char *exp, int from_tty)
1390 {
1391 struct gdbarch *gdbarch;
1392 int regno;
1393 struct symbol *sym;
1394 struct bound_minimal_symbol msymbol;
1395 long val;
1396 struct obj_section *section;
1397 CORE_ADDR load_addr, context_pc = 0;
1398 struct field_of_this_result is_a_field_of_this;
1399
1400 if (exp == 0)
1401 error (_("Argument required."));
1402
1403 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1404 &is_a_field_of_this).symbol;
1405 if (sym == NULL)
1406 {
1407 if (is_a_field_of_this.type != NULL)
1408 {
1409 printf_filtered ("Symbol \"");
1410 fprintf_symbol_filtered (gdb_stdout, exp,
1411 current_language->la_language, DMGL_ANSI);
1412 printf_filtered ("\" is a field of the local class variable ");
1413 if (current_language->la_language == language_objc)
1414 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1415 else
1416 printf_filtered ("`this'\n");
1417 return;
1418 }
1419
1420 msymbol = lookup_bound_minimal_symbol (exp);
1421
1422 if (msymbol.minsym != NULL)
1423 {
1424 struct objfile *objfile = msymbol.objfile;
1425
1426 gdbarch = get_objfile_arch (objfile);
1427 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1428
1429 printf_filtered ("Symbol \"");
1430 fprintf_symbol_filtered (gdb_stdout, exp,
1431 current_language->la_language, DMGL_ANSI);
1432 printf_filtered ("\" is at ");
1433 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1434 printf_filtered (" in a file compiled without debugging");
1435 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1436 if (section_is_overlay (section))
1437 {
1438 load_addr = overlay_unmapped_address (load_addr, section);
1439 printf_filtered (",\n -- loaded at ");
1440 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1441 printf_filtered (" in overlay section %s",
1442 section->the_bfd_section->name);
1443 }
1444 printf_filtered (".\n");
1445 }
1446 else
1447 error (_("No symbol \"%s\" in current context."), exp);
1448 return;
1449 }
1450
1451 printf_filtered ("Symbol \"");
1452 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1453 current_language->la_language, DMGL_ANSI);
1454 printf_filtered ("\" is ");
1455 val = SYMBOL_VALUE (sym);
1456 if (SYMBOL_OBJFILE_OWNED (sym))
1457 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1458 else
1459 section = NULL;
1460 gdbarch = symbol_arch (sym);
1461
1462 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1463 {
1464 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1465 gdb_stdout);
1466 printf_filtered (".\n");
1467 return;
1468 }
1469
1470 switch (SYMBOL_CLASS (sym))
1471 {
1472 case LOC_CONST:
1473 case LOC_CONST_BYTES:
1474 printf_filtered ("constant");
1475 break;
1476
1477 case LOC_LABEL:
1478 printf_filtered ("a label at address ");
1479 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1480 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1481 if (section_is_overlay (section))
1482 {
1483 load_addr = overlay_unmapped_address (load_addr, section);
1484 printf_filtered (",\n -- loaded at ");
1485 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1486 printf_filtered (" in overlay section %s",
1487 section->the_bfd_section->name);
1488 }
1489 break;
1490
1491 case LOC_COMPUTED:
1492 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1493
1494 case LOC_REGISTER:
1495 /* GDBARCH is the architecture associated with the objfile the symbol
1496 is defined in; the target architecture may be different, and may
1497 provide additional registers. However, we do not know the target
1498 architecture at this point. We assume the objfile architecture
1499 will contain all the standard registers that occur in debug info
1500 in that objfile. */
1501 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1502
1503 if (SYMBOL_IS_ARGUMENT (sym))
1504 printf_filtered (_("an argument in register %s"),
1505 gdbarch_register_name (gdbarch, regno));
1506 else
1507 printf_filtered (_("a variable in register %s"),
1508 gdbarch_register_name (gdbarch, regno));
1509 break;
1510
1511 case LOC_STATIC:
1512 printf_filtered (_("static storage at address "));
1513 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1514 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1515 if (section_is_overlay (section))
1516 {
1517 load_addr = overlay_unmapped_address (load_addr, section);
1518 printf_filtered (_(",\n -- loaded at "));
1519 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1520 printf_filtered (_(" in overlay section %s"),
1521 section->the_bfd_section->name);
1522 }
1523 break;
1524
1525 case LOC_REGPARM_ADDR:
1526 /* Note comment at LOC_REGISTER. */
1527 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1528 printf_filtered (_("address of an argument in register %s"),
1529 gdbarch_register_name (gdbarch, regno));
1530 break;
1531
1532 case LOC_ARG:
1533 printf_filtered (_("an argument at offset %ld"), val);
1534 break;
1535
1536 case LOC_LOCAL:
1537 printf_filtered (_("a local variable at frame offset %ld"), val);
1538 break;
1539
1540 case LOC_REF_ARG:
1541 printf_filtered (_("a reference argument at offset %ld"), val);
1542 break;
1543
1544 case LOC_TYPEDEF:
1545 printf_filtered (_("a typedef"));
1546 break;
1547
1548 case LOC_BLOCK:
1549 printf_filtered (_("a function at address "));
1550 load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1551 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1552 if (section_is_overlay (section))
1553 {
1554 load_addr = overlay_unmapped_address (load_addr, section);
1555 printf_filtered (_(",\n -- loaded at "));
1556 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1557 printf_filtered (_(" in overlay section %s"),
1558 section->the_bfd_section->name);
1559 }
1560 break;
1561
1562 case LOC_UNRESOLVED:
1563 {
1564 struct bound_minimal_symbol msym;
1565
1566 msym = lookup_minimal_symbol_and_objfile (SYMBOL_LINKAGE_NAME (sym));
1567 if (msym.minsym == NULL)
1568 printf_filtered ("unresolved");
1569 else
1570 {
1571 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1572
1573 if (section
1574 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1575 {
1576 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1577 printf_filtered (_("a thread-local variable at offset %s "
1578 "in the thread-local storage for `%s'"),
1579 paddress (gdbarch, load_addr),
1580 objfile_name (section->objfile));
1581 }
1582 else
1583 {
1584 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1585 printf_filtered (_("static storage at address "));
1586 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1587 if (section_is_overlay (section))
1588 {
1589 load_addr = overlay_unmapped_address (load_addr, section);
1590 printf_filtered (_(",\n -- loaded at "));
1591 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1592 printf_filtered (_(" in overlay section %s"),
1593 section->the_bfd_section->name);
1594 }
1595 }
1596 }
1597 }
1598 break;
1599
1600 case LOC_OPTIMIZED_OUT:
1601 printf_filtered (_("optimized out"));
1602 break;
1603
1604 default:
1605 printf_filtered (_("of unknown (botched) type"));
1606 break;
1607 }
1608 printf_filtered (".\n");
1609 }
1610 \f
1611
1612 static void
1613 x_command (const char *exp, int from_tty)
1614 {
1615 struct format_data fmt;
1616 struct value *val;
1617
1618 fmt.format = last_format ? last_format : 'x';
1619 fmt.size = last_size;
1620 fmt.count = 1;
1621 fmt.raw = 0;
1622
1623 /* If there is no expression and no format, use the most recent
1624 count. */
1625 if (exp == nullptr && last_count > 0)
1626 fmt.count = last_count;
1627
1628 if (exp && *exp == '/')
1629 {
1630 const char *tmp = exp + 1;
1631
1632 fmt = decode_format (&tmp, last_format, last_size);
1633 exp = (char *) tmp;
1634 }
1635
1636 last_count = fmt.count;
1637
1638 /* If we have an expression, evaluate it and use it as the address. */
1639
1640 if (exp != 0 && *exp != 0)
1641 {
1642 expression_up expr = parse_expression (exp);
1643 /* Cause expression not to be there any more if this command is
1644 repeated with Newline. But don't clobber a user-defined
1645 command's definition. */
1646 if (from_tty)
1647 set_repeat_arguments ("");
1648 val = evaluate_expression (expr.get ());
1649 if (TYPE_IS_REFERENCE (value_type (val)))
1650 val = coerce_ref (val);
1651 /* In rvalue contexts, such as this, functions are coerced into
1652 pointers to functions. This makes "x/i main" work. */
1653 if (/* last_format == 'i' && */
1654 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1655 && VALUE_LVAL (val) == lval_memory)
1656 next_address = value_address (val);
1657 else
1658 next_address = value_as_address (val);
1659
1660 next_gdbarch = expr->gdbarch;
1661 }
1662
1663 if (!next_gdbarch)
1664 error_no_arg (_("starting display address"));
1665
1666 do_examine (fmt, next_gdbarch, next_address);
1667
1668 /* If the examine succeeds, we remember its size and format for next
1669 time. Set last_size to 'b' for strings. */
1670 if (fmt.format == 's')
1671 last_size = 'b';
1672 else
1673 last_size = fmt.size;
1674 last_format = fmt.format;
1675
1676 /* Set a couple of internal variables if appropriate. */
1677 if (last_examine_value != nullptr)
1678 {
1679 /* Make last address examined available to the user as $_. Use
1680 the correct pointer type. */
1681 struct type *pointer_type
1682 = lookup_pointer_type (value_type (last_examine_value.get ()));
1683 set_internalvar (lookup_internalvar ("_"),
1684 value_from_pointer (pointer_type,
1685 last_examine_address));
1686
1687 /* Make contents of last address examined available to the user
1688 as $__. If the last value has not been fetched from memory
1689 then don't fetch it now; instead mark it by voiding the $__
1690 variable. */
1691 if (value_lazy (last_examine_value.get ()))
1692 clear_internalvar (lookup_internalvar ("__"));
1693 else
1694 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1695 }
1696 }
1697 \f
1698
1699 /* Add an expression to the auto-display chain.
1700 Specify the expression. */
1701
1702 static void
1703 display_command (const char *arg, int from_tty)
1704 {
1705 struct format_data fmt;
1706 struct display *newobj;
1707 const char *exp = arg;
1708
1709 if (exp == 0)
1710 {
1711 do_displays ();
1712 return;
1713 }
1714
1715 if (*exp == '/')
1716 {
1717 exp++;
1718 fmt = decode_format (&exp, 0, 0);
1719 if (fmt.size && fmt.format == 0)
1720 fmt.format = 'x';
1721 if (fmt.format == 'i' || fmt.format == 's')
1722 fmt.size = 'b';
1723 }
1724 else
1725 {
1726 fmt.format = 0;
1727 fmt.size = 0;
1728 fmt.count = 0;
1729 fmt.raw = 0;
1730 }
1731
1732 innermost_block.reset ();
1733 expression_up expr = parse_expression (exp);
1734
1735 newobj = new display ();
1736
1737 newobj->exp_string = xstrdup (exp);
1738 newobj->exp = std::move (expr);
1739 newobj->block = innermost_block.block ();
1740 newobj->pspace = current_program_space;
1741 newobj->number = ++display_number;
1742 newobj->format = fmt;
1743 newobj->enabled_p = 1;
1744 newobj->next = NULL;
1745
1746 if (display_chain == NULL)
1747 display_chain = newobj;
1748 else
1749 {
1750 struct display *last;
1751
1752 for (last = display_chain; last->next != NULL; last = last->next)
1753 ;
1754 last->next = newobj;
1755 }
1756
1757 if (from_tty)
1758 do_one_display (newobj);
1759
1760 dont_repeat ();
1761 }
1762
1763 static void
1764 free_display (struct display *d)
1765 {
1766 xfree (d->exp_string);
1767 delete d;
1768 }
1769
1770 /* Clear out the display_chain. Done when new symtabs are loaded,
1771 since this invalidates the types stored in many expressions. */
1772
1773 void
1774 clear_displays (void)
1775 {
1776 struct display *d;
1777
1778 while ((d = display_chain) != NULL)
1779 {
1780 display_chain = d->next;
1781 free_display (d);
1782 }
1783 }
1784
1785 /* Delete the auto-display DISPLAY. */
1786
1787 static void
1788 delete_display (struct display *display)
1789 {
1790 struct display *d;
1791
1792 gdb_assert (display != NULL);
1793
1794 if (display_chain == display)
1795 display_chain = display->next;
1796
1797 ALL_DISPLAYS (d)
1798 if (d->next == display)
1799 {
1800 d->next = display->next;
1801 break;
1802 }
1803
1804 free_display (display);
1805 }
1806
1807 /* Call FUNCTION on each of the displays whose numbers are given in
1808 ARGS. DATA is passed unmodified to FUNCTION. */
1809
1810 static void
1811 map_display_numbers (const char *args,
1812 void (*function) (struct display *,
1813 void *),
1814 void *data)
1815 {
1816 int num;
1817
1818 if (args == NULL)
1819 error_no_arg (_("one or more display numbers"));
1820
1821 number_or_range_parser parser (args);
1822
1823 while (!parser.finished ())
1824 {
1825 const char *p = parser.cur_tok ();
1826
1827 num = parser.get_number ();
1828 if (num == 0)
1829 warning (_("bad display number at or near '%s'"), p);
1830 else
1831 {
1832 struct display *d, *tmp;
1833
1834 ALL_DISPLAYS_SAFE (d, tmp)
1835 if (d->number == num)
1836 break;
1837 if (d == NULL)
1838 printf_unfiltered (_("No display number %d.\n"), num);
1839 else
1840 function (d, data);
1841 }
1842 }
1843 }
1844
1845 /* Callback for map_display_numbers, that deletes a display. */
1846
1847 static void
1848 do_delete_display (struct display *d, void *data)
1849 {
1850 delete_display (d);
1851 }
1852
1853 /* "undisplay" command. */
1854
1855 static void
1856 undisplay_command (const char *args, int from_tty)
1857 {
1858 if (args == NULL)
1859 {
1860 if (query (_("Delete all auto-display expressions? ")))
1861 clear_displays ();
1862 dont_repeat ();
1863 return;
1864 }
1865
1866 map_display_numbers (args, do_delete_display, NULL);
1867 dont_repeat ();
1868 }
1869
1870 /* Display a single auto-display.
1871 Do nothing if the display cannot be printed in the current context,
1872 or if the display is disabled. */
1873
1874 static void
1875 do_one_display (struct display *d)
1876 {
1877 int within_current_scope;
1878
1879 if (d->enabled_p == 0)
1880 return;
1881
1882 /* The expression carries the architecture that was used at parse time.
1883 This is a problem if the expression depends on architecture features
1884 (e.g. register numbers), and the current architecture is now different.
1885 For example, a display statement like "display/i $pc" is expected to
1886 display the PC register of the current architecture, not the arch at
1887 the time the display command was given. Therefore, we re-parse the
1888 expression if the current architecture has changed. */
1889 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1890 {
1891 d->exp.reset ();
1892 d->block = NULL;
1893 }
1894
1895 if (d->exp == NULL)
1896 {
1897
1898 TRY
1899 {
1900 innermost_block.reset ();
1901 d->exp = parse_expression (d->exp_string);
1902 d->block = innermost_block.block ();
1903 }
1904 CATCH (ex, RETURN_MASK_ALL)
1905 {
1906 /* Can't re-parse the expression. Disable this display item. */
1907 d->enabled_p = 0;
1908 warning (_("Unable to display \"%s\": %s"),
1909 d->exp_string, ex.message);
1910 return;
1911 }
1912 END_CATCH
1913 }
1914
1915 if (d->block)
1916 {
1917 if (d->pspace == current_program_space)
1918 within_current_scope = contained_in (get_selected_block (0), d->block);
1919 else
1920 within_current_scope = 0;
1921 }
1922 else
1923 within_current_scope = 1;
1924 if (!within_current_scope)
1925 return;
1926
1927 scoped_restore save_display_number
1928 = make_scoped_restore (&current_display_number, d->number);
1929
1930 annotate_display_begin ();
1931 printf_filtered ("%d", d->number);
1932 annotate_display_number_end ();
1933 printf_filtered (": ");
1934 if (d->format.size)
1935 {
1936
1937 annotate_display_format ();
1938
1939 printf_filtered ("x/");
1940 if (d->format.count != 1)
1941 printf_filtered ("%d", d->format.count);
1942 printf_filtered ("%c", d->format.format);
1943 if (d->format.format != 'i' && d->format.format != 's')
1944 printf_filtered ("%c", d->format.size);
1945 printf_filtered (" ");
1946
1947 annotate_display_expression ();
1948
1949 puts_filtered (d->exp_string);
1950 annotate_display_expression_end ();
1951
1952 if (d->format.count != 1 || d->format.format == 'i')
1953 printf_filtered ("\n");
1954 else
1955 printf_filtered (" ");
1956
1957 annotate_display_value ();
1958
1959 TRY
1960 {
1961 struct value *val;
1962 CORE_ADDR addr;
1963
1964 val = evaluate_expression (d->exp.get ());
1965 addr = value_as_address (val);
1966 if (d->format.format == 'i')
1967 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1968 do_examine (d->format, d->exp->gdbarch, addr);
1969 }
1970 CATCH (ex, RETURN_MASK_ERROR)
1971 {
1972 fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
1973 }
1974 END_CATCH
1975 }
1976 else
1977 {
1978 struct value_print_options opts;
1979
1980 annotate_display_format ();
1981
1982 if (d->format.format)
1983 printf_filtered ("/%c ", d->format.format);
1984
1985 annotate_display_expression ();
1986
1987 puts_filtered (d->exp_string);
1988 annotate_display_expression_end ();
1989
1990 printf_filtered (" = ");
1991
1992 annotate_display_expression ();
1993
1994 get_formatted_print_options (&opts, d->format.format);
1995 opts.raw = d->format.raw;
1996
1997 TRY
1998 {
1999 struct value *val;
2000
2001 val = evaluate_expression (d->exp.get ());
2002 print_formatted (val, d->format.size, &opts, gdb_stdout);
2003 }
2004 CATCH (ex, RETURN_MASK_ERROR)
2005 {
2006 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2007 }
2008 END_CATCH
2009
2010 printf_filtered ("\n");
2011 }
2012
2013 annotate_display_end ();
2014
2015 gdb_flush (gdb_stdout);
2016 }
2017
2018 /* Display all of the values on the auto-display chain which can be
2019 evaluated in the current scope. */
2020
2021 void
2022 do_displays (void)
2023 {
2024 struct display *d;
2025
2026 for (d = display_chain; d; d = d->next)
2027 do_one_display (d);
2028 }
2029
2030 /* Delete the auto-display which we were in the process of displaying.
2031 This is done when there is an error or a signal. */
2032
2033 void
2034 disable_display (int num)
2035 {
2036 struct display *d;
2037
2038 for (d = display_chain; d; d = d->next)
2039 if (d->number == num)
2040 {
2041 d->enabled_p = 0;
2042 return;
2043 }
2044 printf_unfiltered (_("No display number %d.\n"), num);
2045 }
2046
2047 void
2048 disable_current_display (void)
2049 {
2050 if (current_display_number >= 0)
2051 {
2052 disable_display (current_display_number);
2053 fprintf_unfiltered (gdb_stderr,
2054 _("Disabling display %d to "
2055 "avoid infinite recursion.\n"),
2056 current_display_number);
2057 }
2058 current_display_number = -1;
2059 }
2060
2061 static void
2062 info_display_command (const char *ignore, int from_tty)
2063 {
2064 struct display *d;
2065
2066 if (!display_chain)
2067 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2068 else
2069 printf_filtered (_("Auto-display expressions now in effect:\n\
2070 Num Enb Expression\n"));
2071
2072 for (d = display_chain; d; d = d->next)
2073 {
2074 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2075 if (d->format.size)
2076 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2077 d->format.format);
2078 else if (d->format.format)
2079 printf_filtered ("/%c ", d->format.format);
2080 puts_filtered (d->exp_string);
2081 if (d->block && !contained_in (get_selected_block (0), d->block))
2082 printf_filtered (_(" (cannot be evaluated in the current context)"));
2083 printf_filtered ("\n");
2084 gdb_flush (gdb_stdout);
2085 }
2086 }
2087
2088 /* Callback fo map_display_numbers, that enables or disables the
2089 passed in display D. */
2090
2091 static void
2092 do_enable_disable_display (struct display *d, void *data)
2093 {
2094 d->enabled_p = *(int *) data;
2095 }
2096
2097 /* Implamentation of both the "disable display" and "enable display"
2098 commands. ENABLE decides what to do. */
2099
2100 static void
2101 enable_disable_display_command (const char *args, int from_tty, int enable)
2102 {
2103 if (args == NULL)
2104 {
2105 struct display *d;
2106
2107 ALL_DISPLAYS (d)
2108 d->enabled_p = enable;
2109 return;
2110 }
2111
2112 map_display_numbers (args, do_enable_disable_display, &enable);
2113 }
2114
2115 /* The "enable display" command. */
2116
2117 static void
2118 enable_display_command (const char *args, int from_tty)
2119 {
2120 enable_disable_display_command (args, from_tty, 1);
2121 }
2122
2123 /* The "disable display" command. */
2124
2125 static void
2126 disable_display_command (const char *args, int from_tty)
2127 {
2128 enable_disable_display_command (args, from_tty, 0);
2129 }
2130
2131 /* display_chain items point to blocks and expressions. Some expressions in
2132 turn may point to symbols.
2133 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2134 obstack_free'd when a shared library is unloaded.
2135 Clear pointers that are about to become dangling.
2136 Both .exp and .block fields will be restored next time we need to display
2137 an item by re-parsing .exp_string field in the new execution context. */
2138
2139 static void
2140 clear_dangling_display_expressions (struct objfile *objfile)
2141 {
2142 struct display *d;
2143 struct program_space *pspace;
2144
2145 /* With no symbol file we cannot have a block or expression from it. */
2146 if (objfile == NULL)
2147 return;
2148 pspace = objfile->pspace;
2149 if (objfile->separate_debug_objfile_backlink)
2150 {
2151 objfile = objfile->separate_debug_objfile_backlink;
2152 gdb_assert (objfile->pspace == pspace);
2153 }
2154
2155 for (d = display_chain; d != NULL; d = d->next)
2156 {
2157 if (d->pspace != pspace)
2158 continue;
2159
2160 if (lookup_objfile_from_block (d->block) == objfile
2161 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2162 {
2163 d->exp.reset ();
2164 d->block = NULL;
2165 }
2166 }
2167 }
2168 \f
2169
2170 /* Print the value in stack frame FRAME of a variable specified by a
2171 struct symbol. NAME is the name to print; if NULL then VAR's print
2172 name will be used. STREAM is the ui_file on which to print the
2173 value. INDENT specifies the number of indent levels to print
2174 before printing the variable name.
2175
2176 This function invalidates FRAME. */
2177
2178 void
2179 print_variable_and_value (const char *name, struct symbol *var,
2180 struct frame_info *frame,
2181 struct ui_file *stream, int indent)
2182 {
2183
2184 if (!name)
2185 name = SYMBOL_PRINT_NAME (var);
2186
2187 fprintf_filtered (stream, "%s%s = ", n_spaces (2 * indent), name);
2188 TRY
2189 {
2190 struct value *val;
2191 struct value_print_options opts;
2192
2193 /* READ_VAR_VALUE needs a block in order to deal with non-local
2194 references (i.e. to handle nested functions). In this context, we
2195 print variables that are local to this frame, so we can avoid passing
2196 a block to it. */
2197 val = read_var_value (var, NULL, frame);
2198 get_user_print_options (&opts);
2199 opts.deref_ref = 1;
2200 common_val_print (val, stream, indent, &opts, current_language);
2201
2202 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2203 function. */
2204 frame = NULL;
2205 }
2206 CATCH (except, RETURN_MASK_ERROR)
2207 {
2208 fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
2209 except.message);
2210 }
2211 END_CATCH
2212
2213 fprintf_filtered (stream, "\n");
2214 }
2215
2216 /* Subroutine of ui_printf to simplify it.
2217 Print VALUE to STREAM using FORMAT.
2218 VALUE is a C-style string on the target. */
2219
2220 static void
2221 printf_c_string (struct ui_file *stream, const char *format,
2222 struct value *value)
2223 {
2224 gdb_byte *str;
2225 CORE_ADDR tem;
2226 int j;
2227
2228 tem = value_as_address (value);
2229 if (tem == 0)
2230 {
2231 fprintf_filtered (stream, format, "(null)");
2232 return;
2233 }
2234
2235 /* This is a %s argument. Find the length of the string. */
2236 for (j = 0;; j++)
2237 {
2238 gdb_byte c;
2239
2240 QUIT;
2241 read_memory (tem + j, &c, 1);
2242 if (c == 0)
2243 break;
2244 }
2245
2246 /* Copy the string contents into a string inside GDB. */
2247 str = (gdb_byte *) alloca (j + 1);
2248 if (j != 0)
2249 read_memory (tem, str, j);
2250 str[j] = 0;
2251
2252 fprintf_filtered (stream, format, (char *) str);
2253 }
2254
2255 /* Subroutine of ui_printf to simplify it.
2256 Print VALUE to STREAM using FORMAT.
2257 VALUE is a wide C-style string on the target. */
2258
2259 static void
2260 printf_wide_c_string (struct ui_file *stream, const char *format,
2261 struct value *value)
2262 {
2263 gdb_byte *str;
2264 CORE_ADDR tem;
2265 int j;
2266 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2267 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2268 struct type *wctype = lookup_typename (current_language, gdbarch,
2269 "wchar_t", NULL, 0);
2270 int wcwidth = TYPE_LENGTH (wctype);
2271 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2272
2273 tem = value_as_address (value);
2274 if (tem == 0)
2275 {
2276 fprintf_filtered (stream, format, "(null)");
2277 return;
2278 }
2279
2280 /* This is a %s argument. Find the length of the string. */
2281 for (j = 0;; j += wcwidth)
2282 {
2283 QUIT;
2284 read_memory (tem + j, buf, wcwidth);
2285 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2286 break;
2287 }
2288
2289 /* Copy the string contents into a string inside GDB. */
2290 str = (gdb_byte *) alloca (j + wcwidth);
2291 if (j != 0)
2292 read_memory (tem, str, j);
2293 memset (&str[j], 0, wcwidth);
2294
2295 auto_obstack output;
2296
2297 convert_between_encodings (target_wide_charset (gdbarch),
2298 host_charset (),
2299 str, j, wcwidth,
2300 &output, translit_char);
2301 obstack_grow_str0 (&output, "");
2302
2303 fprintf_filtered (stream, format, obstack_base (&output));
2304 }
2305
2306 /* Subroutine of ui_printf to simplify it.
2307 Print VALUE, a floating point value, to STREAM using FORMAT. */
2308
2309 static void
2310 printf_floating (struct ui_file *stream, const char *format,
2311 struct value *value, enum argclass argclass)
2312 {
2313 /* Parameter data. */
2314 struct type *param_type = value_type (value);
2315 struct gdbarch *gdbarch = get_type_arch (param_type);
2316 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2317
2318 /* Determine target type corresponding to the format string. */
2319 struct type *fmt_type;
2320 switch (argclass)
2321 {
2322 case double_arg:
2323 fmt_type = builtin_type (gdbarch)->builtin_double;
2324 break;
2325 case long_double_arg:
2326 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2327 break;
2328 case dec32float_arg:
2329 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2330 break;
2331 case dec64float_arg:
2332 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2333 break;
2334 case dec128float_arg:
2335 fmt_type = builtin_type (gdbarch)->builtin_declong;
2336 break;
2337 default:
2338 gdb_assert_not_reached ("unexpected argument class");
2339 }
2340
2341 /* To match the traditional GDB behavior, the conversion is
2342 done differently depending on the type of the parameter:
2343
2344 - if the parameter has floating-point type, it's value
2345 is converted to the target type;
2346
2347 - otherwise, if the parameter has a type that is of the
2348 same size as a built-in floating-point type, the value
2349 bytes are interpreted as if they were of that type, and
2350 then converted to the target type (this is not done for
2351 decimal floating-point argument classes);
2352
2353 - otherwise, if the source value has an integer value,
2354 it's value is converted to the target type;
2355
2356 - otherwise, an error is raised.
2357
2358 In either case, the result of the conversion is a byte buffer
2359 formatted in the target format for the target type. */
2360
2361 if (TYPE_CODE (fmt_type) == TYPE_CODE_FLT)
2362 {
2363 param_type = float_type_from_length (param_type);
2364 if (param_type != value_type (value))
2365 value = value_from_contents (param_type, value_contents (value));
2366 }
2367
2368 value = value_cast (fmt_type, value);
2369
2370 /* Convert the value to a string and print it. */
2371 std::string str
2372 = target_float_to_string (value_contents (value), fmt_type, format);
2373 fputs_filtered (str.c_str (), stream);
2374 }
2375
2376 /* Subroutine of ui_printf to simplify it.
2377 Print VALUE, a target pointer, to STREAM using FORMAT. */
2378
2379 static void
2380 printf_pointer (struct ui_file *stream, const char *format,
2381 struct value *value)
2382 {
2383 /* We avoid the host's %p because pointers are too
2384 likely to be the wrong size. The only interesting
2385 modifier for %p is a width; extract that, and then
2386 handle %p as glibc would: %#x or a literal "(nil)". */
2387
2388 const char *p;
2389 char *fmt, *fmt_p;
2390 #ifdef PRINTF_HAS_LONG_LONG
2391 long long val = value_as_long (value);
2392 #else
2393 long val = value_as_long (value);
2394 #endif
2395
2396 fmt = (char *) alloca (strlen (format) + 5);
2397
2398 /* Copy up to the leading %. */
2399 p = format;
2400 fmt_p = fmt;
2401 while (*p)
2402 {
2403 int is_percent = (*p == '%');
2404
2405 *fmt_p++ = *p++;
2406 if (is_percent)
2407 {
2408 if (*p == '%')
2409 *fmt_p++ = *p++;
2410 else
2411 break;
2412 }
2413 }
2414
2415 if (val != 0)
2416 *fmt_p++ = '#';
2417
2418 /* Copy any width or flags. Only the "-" flag is valid for pointers
2419 -- see the format_pieces constructor. */
2420 while (*p == '-' || (*p >= '0' && *p < '9'))
2421 *fmt_p++ = *p++;
2422
2423 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2424 if (val != 0)
2425 {
2426 #ifdef PRINTF_HAS_LONG_LONG
2427 *fmt_p++ = 'l';
2428 #endif
2429 *fmt_p++ = 'l';
2430 *fmt_p++ = 'x';
2431 *fmt_p++ = '\0';
2432 fprintf_filtered (stream, fmt, val);
2433 }
2434 else
2435 {
2436 *fmt_p++ = 's';
2437 *fmt_p++ = '\0';
2438 fprintf_filtered (stream, fmt, "(nil)");
2439 }
2440 }
2441
2442 /* printf "printf format string" ARG to STREAM. */
2443
2444 static void
2445 ui_printf (const char *arg, struct ui_file *stream)
2446 {
2447 const char *s = arg;
2448 std::vector<struct value *> val_args;
2449
2450 if (s == 0)
2451 error_no_arg (_("format-control string and values to print"));
2452
2453 s = skip_spaces (s);
2454
2455 /* A format string should follow, enveloped in double quotes. */
2456 if (*s++ != '"')
2457 error (_("Bad format string, missing '\"'."));
2458
2459 format_pieces fpieces (&s);
2460
2461 if (*s++ != '"')
2462 error (_("Bad format string, non-terminated '\"'."));
2463
2464 s = skip_spaces (s);
2465
2466 if (*s != ',' && *s != 0)
2467 error (_("Invalid argument syntax"));
2468
2469 if (*s == ',')
2470 s++;
2471 s = skip_spaces (s);
2472
2473 {
2474 int nargs_wanted;
2475 int i;
2476 const char *current_substring;
2477
2478 nargs_wanted = 0;
2479 for (auto &&piece : fpieces)
2480 if (piece.argclass != literal_piece)
2481 ++nargs_wanted;
2482
2483 /* Now, parse all arguments and evaluate them.
2484 Store the VALUEs in VAL_ARGS. */
2485
2486 while (*s != '\0')
2487 {
2488 const char *s1;
2489
2490 s1 = s;
2491 val_args.push_back (parse_to_comma_and_eval (&s1));
2492
2493 s = s1;
2494 if (*s == ',')
2495 s++;
2496 }
2497
2498 if (val_args.size () != nargs_wanted)
2499 error (_("Wrong number of arguments for specified format-string"));
2500
2501 /* Now actually print them. */
2502 i = 0;
2503 for (auto &&piece : fpieces)
2504 {
2505 current_substring = piece.string;
2506 switch (piece.argclass)
2507 {
2508 case string_arg:
2509 printf_c_string (stream, current_substring, val_args[i]);
2510 break;
2511 case wide_string_arg:
2512 printf_wide_c_string (stream, current_substring, val_args[i]);
2513 break;
2514 case wide_char_arg:
2515 {
2516 struct gdbarch *gdbarch
2517 = get_type_arch (value_type (val_args[i]));
2518 struct type *wctype = lookup_typename (current_language, gdbarch,
2519 "wchar_t", NULL, 0);
2520 struct type *valtype;
2521 const gdb_byte *bytes;
2522
2523 valtype = value_type (val_args[i]);
2524 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2525 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2526 error (_("expected wchar_t argument for %%lc"));
2527
2528 bytes = value_contents (val_args[i]);
2529
2530 auto_obstack output;
2531
2532 convert_between_encodings (target_wide_charset (gdbarch),
2533 host_charset (),
2534 bytes, TYPE_LENGTH (valtype),
2535 TYPE_LENGTH (valtype),
2536 &output, translit_char);
2537 obstack_grow_str0 (&output, "");
2538
2539 fprintf_filtered (stream, current_substring,
2540 obstack_base (&output));
2541 }
2542 break;
2543 case long_long_arg:
2544 #ifdef PRINTF_HAS_LONG_LONG
2545 {
2546 long long val = value_as_long (val_args[i]);
2547
2548 fprintf_filtered (stream, current_substring, val);
2549 break;
2550 }
2551 #else
2552 error (_("long long not supported in printf"));
2553 #endif
2554 case int_arg:
2555 {
2556 int val = value_as_long (val_args[i]);
2557
2558 fprintf_filtered (stream, current_substring, val);
2559 break;
2560 }
2561 case long_arg:
2562 {
2563 long val = value_as_long (val_args[i]);
2564
2565 fprintf_filtered (stream, current_substring, val);
2566 break;
2567 }
2568 /* Handles floating-point values. */
2569 case double_arg:
2570 case long_double_arg:
2571 case dec32float_arg:
2572 case dec64float_arg:
2573 case dec128float_arg:
2574 printf_floating (stream, current_substring, val_args[i],
2575 piece.argclass);
2576 break;
2577 case ptr_arg:
2578 printf_pointer (stream, current_substring, val_args[i]);
2579 break;
2580 case literal_piece:
2581 /* Print a portion of the format string that has no
2582 directives. Note that this will not include any
2583 ordinary %-specs, but it might include "%%". That is
2584 why we use printf_filtered and not puts_filtered here.
2585 Also, we pass a dummy argument because some platforms
2586 have modified GCC to include -Wformat-security by
2587 default, which will warn here if there is no
2588 argument. */
2589 fprintf_filtered (stream, current_substring, 0);
2590 break;
2591 default:
2592 internal_error (__FILE__, __LINE__,
2593 _("failed internal consistency check"));
2594 }
2595 /* Maybe advance to the next argument. */
2596 if (piece.argclass != literal_piece)
2597 ++i;
2598 }
2599 }
2600 }
2601
2602 /* Implement the "printf" command. */
2603
2604 static void
2605 printf_command (const char *arg, int from_tty)
2606 {
2607 ui_printf (arg, gdb_stdout);
2608 gdb_flush (gdb_stdout);
2609 }
2610
2611 /* Implement the "eval" command. */
2612
2613 static void
2614 eval_command (const char *arg, int from_tty)
2615 {
2616 string_file stb;
2617
2618 ui_printf (arg, &stb);
2619
2620 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2621
2622 execute_command (expanded.c_str (), from_tty);
2623 }
2624
2625 void
2626 _initialize_printcmd (void)
2627 {
2628 struct cmd_list_element *c;
2629
2630 current_display_number = -1;
2631
2632 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2633
2634 add_info ("address", info_address_command,
2635 _("Describe where symbol SYM is stored."));
2636
2637 add_info ("symbol", info_symbol_command, _("\
2638 Describe what symbol is at location ADDR.\n\
2639 Only for symbols with fixed locations (global or static scope)."));
2640
2641 add_com ("x", class_vars, x_command, _("\
2642 Examine memory: x/FMT ADDRESS.\n\
2643 ADDRESS is an expression for the memory address to examine.\n\
2644 FMT is a repeat count followed by a format letter and a size letter.\n\
2645 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2646 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2647 and z(hex, zero padded on the left).\n\
2648 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2649 The specified number of objects of the specified size are printed\n\
2650 according to the format. If a negative number is specified, memory is\n\
2651 examined backward from the address.\n\n\
2652 Defaults for format and size letters are those previously used.\n\
2653 Default count is 1. Default address is following last thing printed\n\
2654 with this command or \"print\"."));
2655
2656 #if 0
2657 add_com ("whereis", class_vars, whereis_command,
2658 _("Print line number and file of definition of variable."));
2659 #endif
2660
2661 add_info ("display", info_display_command, _("\
2662 Expressions to display when program stops, with code numbers."));
2663
2664 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2665 Cancel some expressions to be displayed when program stops.\n\
2666 Arguments are the code numbers of the expressions to stop displaying.\n\
2667 No argument means cancel all automatic-display expressions.\n\
2668 \"delete display\" has the same effect as this command.\n\
2669 Do \"info display\" to see current list of code numbers."),
2670 &cmdlist);
2671
2672 add_com ("display", class_vars, display_command, _("\
2673 Print value of expression EXP each time the program stops.\n\
2674 /FMT may be used before EXP as in the \"print\" command.\n\
2675 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2676 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2677 and examining is done as in the \"x\" command.\n\n\
2678 With no argument, display all currently requested auto-display expressions.\n\
2679 Use \"undisplay\" to cancel display requests previously made."));
2680
2681 add_cmd ("display", class_vars, enable_display_command, _("\
2682 Enable some expressions to be displayed when program stops.\n\
2683 Arguments are the code numbers of the expressions to resume displaying.\n\
2684 No argument means enable all automatic-display expressions.\n\
2685 Do \"info display\" to see current list of code numbers."), &enablelist);
2686
2687 add_cmd ("display", class_vars, disable_display_command, _("\
2688 Disable some expressions to be displayed when program stops.\n\
2689 Arguments are the code numbers of the expressions to stop displaying.\n\
2690 No argument means disable all automatic-display expressions.\n\
2691 Do \"info display\" to see current list of code numbers."), &disablelist);
2692
2693 add_cmd ("display", class_vars, undisplay_command, _("\
2694 Cancel some expressions to be displayed when program stops.\n\
2695 Arguments are the code numbers of the expressions to stop displaying.\n\
2696 No argument means cancel all automatic-display expressions.\n\
2697 Do \"info display\" to see current list of code numbers."), &deletelist);
2698
2699 add_com ("printf", class_vars, printf_command, _("\
2700 Formatted printing, like the C \"printf\" function.\n\
2701 Usage: printf \"format string\", arg1, arg2, arg3, ..., argn\n\
2702 This supports most C printf format specifications, like %s, %d, etc."));
2703
2704 add_com ("output", class_vars, output_command, _("\
2705 Like \"print\" but don't put in value history and don't print newline.\n\
2706 This is useful in user-defined commands."));
2707
2708 add_prefix_cmd ("set", class_vars, set_command, _("\
2709 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2710 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2711 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2712 with $), a register (a few standard names starting with $), or an actual\n\
2713 variable in the program being debugged. EXP is any valid expression.\n\
2714 Use \"set variable\" for variables with names identical to set subcommands.\n\
2715 \n\
2716 With a subcommand, this command modifies parts of the gdb environment.\n\
2717 You can see these environment settings with the \"show\" command."),
2718 &setlist, "set ", 1, &cmdlist);
2719 if (dbx_commands)
2720 add_com ("assign", class_vars, set_command, _("\
2721 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2722 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2723 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2724 with $), a register (a few standard names starting with $), or an actual\n\
2725 variable in the program being debugged. EXP is any valid expression.\n\
2726 Use \"set variable\" for variables with names identical to set subcommands.\n\
2727 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2728 You can see these environment settings with the \"show\" command."));
2729
2730 /* "call" is the same as "set", but handy for dbx users to call fns. */
2731 c = add_com ("call", class_vars, call_command, _("\
2732 Call a function in the program.\n\
2733 The argument is the function name and arguments, in the notation of the\n\
2734 current working language. The result is printed and saved in the value\n\
2735 history, if it is not void."));
2736 set_cmd_completer (c, expression_completer);
2737
2738 add_cmd ("variable", class_vars, set_command, _("\
2739 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2740 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2741 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2742 with $), a register (a few standard names starting with $), or an actual\n\
2743 variable in the program being debugged. EXP is any valid expression.\n\
2744 This may usually be abbreviated to simply \"set\"."),
2745 &setlist);
2746 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2747
2748 c = add_com ("print", class_vars, print_command, _("\
2749 Print value of expression EXP.\n\
2750 Variables accessible are those of the lexical environment of the selected\n\
2751 stack frame, plus all those whose scope is global or an entire file.\n\
2752 \n\
2753 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2754 $$NUM refers to NUM'th value back from the last one.\n\
2755 Names starting with $ refer to registers (with the values they would have\n\
2756 if the program were to return to the stack frame now selected, restoring\n\
2757 all registers saved by frames farther in) or else to debugger\n\
2758 \"convenience\" variables (any such name not a known register).\n\
2759 Use assignment expressions to give values to convenience variables.\n\
2760 \n\
2761 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2762 @ is a binary operator for treating consecutive data objects\n\
2763 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2764 element is FOO, whose second element is stored in the space following\n\
2765 where FOO is stored, etc. FOO must be an expression whose value\n\
2766 resides in memory.\n\
2767 \n\
2768 EXP may be preceded with /FMT, where FMT is a format letter\n\
2769 but no count or size letter (see \"x\" command)."));
2770 set_cmd_completer (c, expression_completer);
2771 add_com_alias ("p", "print", class_vars, 1);
2772 add_com_alias ("inspect", "print", class_vars, 1);
2773
2774 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2775 &max_symbolic_offset, _("\
2776 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2777 Show the largest offset that will be printed in <symbol+1234> form."), _("\
2778 Tell GDB to only display the symbolic form of an address if the\n\
2779 offset between the closest earlier symbol and the address is less than\n\
2780 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2781 to always print the symbolic form of an address if any symbol precedes\n\
2782 it. Zero is equivalent to \"unlimited\"."),
2783 NULL,
2784 show_max_symbolic_offset,
2785 &setprintlist, &showprintlist);
2786 add_setshow_boolean_cmd ("symbol-filename", no_class,
2787 &print_symbol_filename, _("\
2788 Set printing of source filename and line number with <symbol>."), _("\
2789 Show printing of source filename and line number with <symbol>."), NULL,
2790 NULL,
2791 show_print_symbol_filename,
2792 &setprintlist, &showprintlist);
2793
2794 add_com ("eval", no_class, eval_command, _("\
2795 Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\
2796 a command line, and call it."));
2797 }
This page took 0.137579 seconds and 5 git commands to generate.