gdb: make use of skip_to_space and skip_spaces
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "c-lang.h"
27 #include "expression.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "breakpoint.h"
32 #include "demangle.h"
33 #include "gdb-demangle.h"
34 #include "valprint.h"
35 #include "annotate.h"
36 #include "symfile.h" /* for overlay functions */
37 #include "objfiles.h" /* ditto */
38 #include "completer.h" /* for completion functions */
39 #include "ui-out.h"
40 #include "block.h"
41 #include "disasm.h"
42 #include "target-float.h"
43 #include "observable.h"
44 #include "solist.h"
45 #include "parser-defs.h"
46 #include "charset.h"
47 #include "arch-utils.h"
48 #include "cli/cli-utils.h"
49 #include "cli/cli-option.h"
50 #include "cli/cli-script.h"
51 #include "cli/cli-style.h"
52 #include "gdbsupport/format.h"
53 #include "source.h"
54 #include "gdbsupport/byte-vector.h"
55 #include "gdbsupport/gdb_optional.h"
56 #include "safe-ctype.h"
57
58 /* Last specified output format. */
59
60 static char last_format = 0;
61
62 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
63
64 static char last_size = 'w';
65
66 /* Last specified count for the 'x' command. */
67
68 static int last_count;
69
70 /* Default address to examine next, and associated architecture. */
71
72 static struct gdbarch *next_gdbarch;
73 static CORE_ADDR next_address;
74
75 /* Number of delay instructions following current disassembled insn. */
76
77 static int branch_delay_insns;
78
79 /* Last address examined. */
80
81 static CORE_ADDR last_examine_address;
82
83 /* Contents of last address examined.
84 This is not valid past the end of the `x' command! */
85
86 static value_ref_ptr last_examine_value;
87
88 /* Largest offset between a symbolic value and an address, that will be
89 printed as `0x1234 <symbol+offset>'. */
90
91 static unsigned int max_symbolic_offset = UINT_MAX;
92 static void
93 show_max_symbolic_offset (struct ui_file *file, int from_tty,
94 struct cmd_list_element *c, const char *value)
95 {
96 fprintf_filtered (file,
97 _("The largest offset that will be "
98 "printed in <symbol+1234> form is %s.\n"),
99 value);
100 }
101
102 /* Append the source filename and linenumber of the symbol when
103 printing a symbolic value as `<symbol at filename:linenum>' if set. */
104 static bool print_symbol_filename = false;
105 static void
106 show_print_symbol_filename (struct ui_file *file, int from_tty,
107 struct cmd_list_element *c, const char *value)
108 {
109 fprintf_filtered (file, _("Printing of source filename and "
110 "line number with <symbol> is %s.\n"),
111 value);
112 }
113
114 /* Number of auto-display expression currently being displayed.
115 So that we can disable it if we get a signal within it.
116 -1 when not doing one. */
117
118 static int current_display_number;
119
120 /* Last allocated display number. */
121
122 static int display_number;
123
124 struct display
125 {
126 display (const char *exp_string_, expression_up &&exp_,
127 const struct format_data &format_, struct program_space *pspace_,
128 const struct block *block_)
129 : exp_string (exp_string_),
130 exp (std::move (exp_)),
131 number (++display_number),
132 format (format_),
133 pspace (pspace_),
134 block (block_),
135 enabled_p (true)
136 {
137 }
138
139 /* The expression as the user typed it. */
140 std::string exp_string;
141
142 /* Expression to be evaluated and displayed. */
143 expression_up exp;
144
145 /* Item number of this auto-display item. */
146 int number;
147
148 /* Display format specified. */
149 struct format_data format;
150
151 /* Program space associated with `block'. */
152 struct program_space *pspace;
153
154 /* Innermost block required by this expression when evaluated. */
155 const struct block *block;
156
157 /* Status of this display (enabled or disabled). */
158 bool enabled_p;
159 };
160
161 /* Expressions whose values should be displayed automatically each
162 time the program stops. */
163
164 static std::vector<std::unique_ptr<struct display>> all_displays;
165
166 /* Prototypes for local functions. */
167
168 static void do_one_display (struct display *);
169 \f
170
171 /* Decode a format specification. *STRING_PTR should point to it.
172 OFORMAT and OSIZE are used as defaults for the format and size
173 if none are given in the format specification.
174 If OSIZE is zero, then the size field of the returned value
175 should be set only if a size is explicitly specified by the
176 user.
177 The structure returned describes all the data
178 found in the specification. In addition, *STRING_PTR is advanced
179 past the specification and past all whitespace following it. */
180
181 static struct format_data
182 decode_format (const char **string_ptr, int oformat, int osize)
183 {
184 struct format_data val;
185 const char *p = *string_ptr;
186
187 val.format = '?';
188 val.size = '?';
189 val.count = 1;
190 val.raw = 0;
191
192 if (*p == '-')
193 {
194 val.count = -1;
195 p++;
196 }
197 if (*p >= '0' && *p <= '9')
198 val.count *= atoi (p);
199 while (*p >= '0' && *p <= '9')
200 p++;
201
202 /* Now process size or format letters that follow. */
203
204 while (1)
205 {
206 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
207 val.size = *p++;
208 else if (*p == 'r')
209 {
210 val.raw = 1;
211 p++;
212 }
213 else if (*p >= 'a' && *p <= 'z')
214 val.format = *p++;
215 else
216 break;
217 }
218
219 *string_ptr = skip_spaces (p);
220
221 /* Set defaults for format and size if not specified. */
222 if (val.format == '?')
223 {
224 if (val.size == '?')
225 {
226 /* Neither has been specified. */
227 val.format = oformat;
228 val.size = osize;
229 }
230 else
231 /* If a size is specified, any format makes a reasonable
232 default except 'i'. */
233 val.format = oformat == 'i' ? 'x' : oformat;
234 }
235 else if (val.size == '?')
236 switch (val.format)
237 {
238 case 'a':
239 /* Pick the appropriate size for an address. This is deferred
240 until do_examine when we know the actual architecture to use.
241 A special size value of 'a' is used to indicate this case. */
242 val.size = osize ? 'a' : osize;
243 break;
244 case 'f':
245 /* Floating point has to be word or giantword. */
246 if (osize == 'w' || osize == 'g')
247 val.size = osize;
248 else
249 /* Default it to giantword if the last used size is not
250 appropriate. */
251 val.size = osize ? 'g' : osize;
252 break;
253 case 'c':
254 /* Characters default to one byte. */
255 val.size = osize ? 'b' : osize;
256 break;
257 case 's':
258 /* Display strings with byte size chars unless explicitly
259 specified. */
260 val.size = '\0';
261 break;
262
263 default:
264 /* The default is the size most recently specified. */
265 val.size = osize;
266 }
267
268 return val;
269 }
270 \f
271 /* Print value VAL on stream according to OPTIONS.
272 Do not end with a newline.
273 SIZE is the letter for the size of datum being printed.
274 This is used to pad hex numbers so they line up. SIZE is 0
275 for print / output and set for examine. */
276
277 static void
278 print_formatted (struct value *val, int size,
279 const struct value_print_options *options,
280 struct ui_file *stream)
281 {
282 struct type *type = check_typedef (value_type (val));
283 int len = TYPE_LENGTH (type);
284
285 if (VALUE_LVAL (val) == lval_memory)
286 next_address = value_address (val) + len;
287
288 if (size)
289 {
290 switch (options->format)
291 {
292 case 's':
293 {
294 struct type *elttype = value_type (val);
295
296 next_address = (value_address (val)
297 + val_print_string (elttype, NULL,
298 value_address (val), -1,
299 stream, options) * len);
300 }
301 return;
302
303 case 'i':
304 /* We often wrap here if there are long symbolic names. */
305 wrap_here (" ");
306 next_address = (value_address (val)
307 + gdb_print_insn (get_type_arch (type),
308 value_address (val), stream,
309 &branch_delay_insns));
310 return;
311 }
312 }
313
314 if (options->format == 0 || options->format == 's'
315 || type->code () == TYPE_CODE_VOID
316 || type->code () == TYPE_CODE_REF
317 || type->code () == TYPE_CODE_ARRAY
318 || type->code () == TYPE_CODE_STRING
319 || type->code () == TYPE_CODE_STRUCT
320 || type->code () == TYPE_CODE_UNION
321 || type->code () == TYPE_CODE_NAMESPACE)
322 value_print (val, stream, options);
323 else
324 /* User specified format, so don't look to the type to tell us
325 what to do. */
326 value_print_scalar_formatted (val, options, size, stream);
327 }
328
329 /* Return builtin floating point type of same length as TYPE.
330 If no such type is found, return TYPE itself. */
331 static struct type *
332 float_type_from_length (struct type *type)
333 {
334 struct gdbarch *gdbarch = get_type_arch (type);
335 const struct builtin_type *builtin = builtin_type (gdbarch);
336
337 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
338 type = builtin->builtin_float;
339 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
340 type = builtin->builtin_double;
341 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
342 type = builtin->builtin_long_double;
343
344 return type;
345 }
346
347 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
348 according to OPTIONS and SIZE on STREAM. Formats s and i are not
349 supported at this level. */
350
351 void
352 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
353 const struct value_print_options *options,
354 int size, struct ui_file *stream)
355 {
356 struct gdbarch *gdbarch = get_type_arch (type);
357 unsigned int len = TYPE_LENGTH (type);
358 enum bfd_endian byte_order = type_byte_order (type);
359
360 /* String printing should go through val_print_scalar_formatted. */
361 gdb_assert (options->format != 's');
362
363 /* If the value is a pointer, and pointers and addresses are not the
364 same, then at this point, the value's length (in target bytes) is
365 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
366 if (type->code () == TYPE_CODE_PTR)
367 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
368
369 /* If we are printing it as unsigned, truncate it in case it is actually
370 a negative signed value (e.g. "print/u (short)-1" should print 65535
371 (if shorts are 16 bits) instead of 4294967295). */
372 if (options->format != 'c'
373 && (options->format != 'd' || type->is_unsigned ()))
374 {
375 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
376 valaddr += TYPE_LENGTH (type) - len;
377 }
378
379 /* Allow LEN == 0, and in this case, don't assume that VALADDR is
380 valid. */
381 const gdb_byte zero = 0;
382 if (len == 0)
383 {
384 len = 1;
385 valaddr = &zero;
386 }
387
388 if (size != 0 && (options->format == 'x' || options->format == 't'))
389 {
390 /* Truncate to fit. */
391 unsigned newlen;
392 switch (size)
393 {
394 case 'b':
395 newlen = 1;
396 break;
397 case 'h':
398 newlen = 2;
399 break;
400 case 'w':
401 newlen = 4;
402 break;
403 case 'g':
404 newlen = 8;
405 break;
406 default:
407 error (_("Undefined output size \"%c\"."), size);
408 }
409 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
410 valaddr += len - newlen;
411 len = newlen;
412 }
413
414 /* Historically gdb has printed floats by first casting them to a
415 long, and then printing the long. PR cli/16242 suggests changing
416 this to using C-style hex float format.
417
418 Biased range types and sub-word scalar types must also be handled
419 here; the value is correctly computed by unpack_long. */
420 gdb::byte_vector converted_bytes;
421 /* Some cases below will unpack the value again. In the biased
422 range case, we want to avoid this, so we store the unpacked value
423 here for possible use later. */
424 gdb::optional<LONGEST> val_long;
425 if (((type->code () == TYPE_CODE_FLT
426 || is_fixed_point_type (type))
427 && (options->format == 'o'
428 || options->format == 'x'
429 || options->format == 't'
430 || options->format == 'z'
431 || options->format == 'd'
432 || options->format == 'u'))
433 || (type->code () == TYPE_CODE_RANGE && type->bounds ()->bias != 0)
434 || type->bit_size_differs_p ())
435 {
436 val_long.emplace (unpack_long (type, valaddr));
437 converted_bytes.resize (TYPE_LENGTH (type));
438 store_signed_integer (converted_bytes.data (), TYPE_LENGTH (type),
439 byte_order, *val_long);
440 valaddr = converted_bytes.data ();
441 }
442
443 /* Printing a non-float type as 'f' will interpret the data as if it were
444 of a floating-point type of the same length, if that exists. Otherwise,
445 the data is printed as integer. */
446 char format = options->format;
447 if (format == 'f' && type->code () != TYPE_CODE_FLT)
448 {
449 type = float_type_from_length (type);
450 if (type->code () != TYPE_CODE_FLT)
451 format = 0;
452 }
453
454 switch (format)
455 {
456 case 'o':
457 print_octal_chars (stream, valaddr, len, byte_order);
458 break;
459 case 'd':
460 print_decimal_chars (stream, valaddr, len, true, byte_order);
461 break;
462 case 'u':
463 print_decimal_chars (stream, valaddr, len, false, byte_order);
464 break;
465 case 0:
466 if (type->code () != TYPE_CODE_FLT)
467 {
468 print_decimal_chars (stream, valaddr, len, !type->is_unsigned (),
469 byte_order);
470 break;
471 }
472 /* FALLTHROUGH */
473 case 'f':
474 print_floating (valaddr, type, stream);
475 break;
476
477 case 't':
478 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
479 break;
480 case 'x':
481 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
482 break;
483 case 'z':
484 print_hex_chars (stream, valaddr, len, byte_order, true);
485 break;
486 case 'c':
487 {
488 struct value_print_options opts = *options;
489
490 if (!val_long.has_value ())
491 val_long.emplace (unpack_long (type, valaddr));
492
493 opts.format = 0;
494 if (type->is_unsigned ())
495 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
496 else
497 type = builtin_type (gdbarch)->builtin_true_char;
498
499 value_print (value_from_longest (type, *val_long), stream, &opts);
500 }
501 break;
502
503 case 'a':
504 {
505 if (!val_long.has_value ())
506 val_long.emplace (unpack_long (type, valaddr));
507 print_address (gdbarch, *val_long, stream);
508 }
509 break;
510
511 default:
512 error (_("Undefined output format \"%c\"."), format);
513 }
514 }
515
516 /* Specify default address for `x' command.
517 The `info lines' command uses this. */
518
519 void
520 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
521 {
522 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
523
524 next_gdbarch = gdbarch;
525 next_address = addr;
526
527 /* Make address available to the user as $_. */
528 set_internalvar (lookup_internalvar ("_"),
529 value_from_pointer (ptr_type, addr));
530 }
531
532 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
533 after LEADIN. Print nothing if no symbolic name is found nearby.
534 Optionally also print source file and line number, if available.
535 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
536 or to interpret it as a possible C++ name and convert it back to source
537 form. However note that DO_DEMANGLE can be overridden by the specific
538 settings of the demangle and asm_demangle variables. Returns
539 non-zero if anything was printed; zero otherwise. */
540
541 int
542 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
543 struct ui_file *stream,
544 int do_demangle, const char *leadin)
545 {
546 std::string name, filename;
547 int unmapped = 0;
548 int offset = 0;
549 int line = 0;
550
551 if (build_address_symbolic (gdbarch, addr, do_demangle, false, &name,
552 &offset, &filename, &line, &unmapped))
553 return 0;
554
555 fputs_filtered (leadin, stream);
556 if (unmapped)
557 fputs_filtered ("<*", stream);
558 else
559 fputs_filtered ("<", stream);
560 fputs_styled (name.c_str (), function_name_style.style (), stream);
561 if (offset != 0)
562 fprintf_filtered (stream, "%+d", offset);
563
564 /* Append source filename and line number if desired. Give specific
565 line # of this addr, if we have it; else line # of the nearest symbol. */
566 if (print_symbol_filename && !filename.empty ())
567 {
568 fputs_filtered (line == -1 ? " in " : " at ", stream);
569 fputs_styled (filename.c_str (), file_name_style.style (), stream);
570 if (line != -1)
571 fprintf_filtered (stream, ":%d", line);
572 }
573 if (unmapped)
574 fputs_filtered ("*>", stream);
575 else
576 fputs_filtered (">", stream);
577
578 return 1;
579 }
580
581 /* See valprint.h. */
582
583 int
584 build_address_symbolic (struct gdbarch *gdbarch,
585 CORE_ADDR addr, /* IN */
586 bool do_demangle, /* IN */
587 bool prefer_sym_over_minsym, /* IN */
588 std::string *name, /* OUT */
589 int *offset, /* OUT */
590 std::string *filename, /* OUT */
591 int *line, /* OUT */
592 int *unmapped) /* OUT */
593 {
594 struct bound_minimal_symbol msymbol;
595 struct symbol *symbol;
596 CORE_ADDR name_location = 0;
597 struct obj_section *section = NULL;
598 const char *name_temp = "";
599
600 /* Let's say it is mapped (not unmapped). */
601 *unmapped = 0;
602
603 /* Determine if the address is in an overlay, and whether it is
604 mapped. */
605 if (overlay_debugging)
606 {
607 section = find_pc_overlay (addr);
608 if (pc_in_unmapped_range (addr, section))
609 {
610 *unmapped = 1;
611 addr = overlay_mapped_address (addr, section);
612 }
613 }
614
615 /* Try to find the address in both the symbol table and the minsyms.
616 In most cases, we'll prefer to use the symbol instead of the
617 minsym. However, there are cases (see below) where we'll choose
618 to use the minsym instead. */
619
620 /* This is defective in the sense that it only finds text symbols. So
621 really this is kind of pointless--we should make sure that the
622 minimal symbols have everything we need (by changing that we could
623 save some memory, but for many debug format--ELF/DWARF or
624 anything/stabs--it would be inconvenient to eliminate those minimal
625 symbols anyway). */
626 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
627 symbol = find_pc_sect_function (addr, section);
628
629 if (symbol)
630 {
631 /* If this is a function (i.e. a code address), strip out any
632 non-address bits. For instance, display a pointer to the
633 first instruction of a Thumb function as <function>; the
634 second instruction will be <function+2>, even though the
635 pointer is <function+3>. This matches the ISA behavior. */
636 addr = gdbarch_addr_bits_remove (gdbarch, addr);
637
638 name_location = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (symbol));
639 if (do_demangle || asm_demangle)
640 name_temp = symbol->print_name ();
641 else
642 name_temp = symbol->linkage_name ();
643 }
644
645 if (msymbol.minsym != NULL
646 && MSYMBOL_HAS_SIZE (msymbol.minsym)
647 && MSYMBOL_SIZE (msymbol.minsym) == 0
648 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
649 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
650 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
651 msymbol.minsym = NULL;
652
653 if (msymbol.minsym != NULL)
654 {
655 /* Use the minsym if no symbol is found.
656
657 Additionally, use the minsym instead of a (found) symbol if
658 the following conditions all hold:
659 1) The prefer_sym_over_minsym flag is false.
660 2) The minsym address is identical to that of the address under
661 consideration.
662 3) The symbol address is not identical to that of the address
663 under consideration. */
664 if (symbol == NULL ||
665 (!prefer_sym_over_minsym
666 && BMSYMBOL_VALUE_ADDRESS (msymbol) == addr
667 && name_location != addr))
668 {
669 /* If this is a function (i.e. a code address), strip out any
670 non-address bits. For instance, display a pointer to the
671 first instruction of a Thumb function as <function>; the
672 second instruction will be <function+2>, even though the
673 pointer is <function+3>. This matches the ISA behavior. */
674 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
675 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
676 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
677 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
678 addr = gdbarch_addr_bits_remove (gdbarch, addr);
679
680 symbol = 0;
681 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
682 if (do_demangle || asm_demangle)
683 name_temp = msymbol.minsym->print_name ();
684 else
685 name_temp = msymbol.minsym->linkage_name ();
686 }
687 }
688 if (symbol == NULL && msymbol.minsym == NULL)
689 return 1;
690
691 /* If the nearest symbol is too far away, don't print anything symbolic. */
692
693 /* For when CORE_ADDR is larger than unsigned int, we do math in
694 CORE_ADDR. But when we detect unsigned wraparound in the
695 CORE_ADDR math, we ignore this test and print the offset,
696 because addr+max_symbolic_offset has wrapped through the end
697 of the address space back to the beginning, giving bogus comparison. */
698 if (addr > name_location + max_symbolic_offset
699 && name_location + max_symbolic_offset > name_location)
700 return 1;
701
702 *offset = (LONGEST) addr - name_location;
703
704 *name = name_temp;
705
706 if (print_symbol_filename)
707 {
708 struct symtab_and_line sal;
709
710 sal = find_pc_sect_line (addr, section, 0);
711
712 if (sal.symtab)
713 {
714 *filename = symtab_to_filename_for_display (sal.symtab);
715 *line = sal.line;
716 }
717 }
718 return 0;
719 }
720
721
722 /* Print address ADDR symbolically on STREAM.
723 First print it as a number. Then perhaps print
724 <SYMBOL + OFFSET> after the number. */
725
726 void
727 print_address (struct gdbarch *gdbarch,
728 CORE_ADDR addr, struct ui_file *stream)
729 {
730 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
731 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
732 }
733
734 /* Return a prefix for instruction address:
735 "=> " for current instruction, else " ". */
736
737 const char *
738 pc_prefix (CORE_ADDR addr)
739 {
740 if (has_stack_frames ())
741 {
742 struct frame_info *frame;
743 CORE_ADDR pc;
744
745 frame = get_selected_frame (NULL);
746 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
747 return "=> ";
748 }
749 return " ";
750 }
751
752 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
753 controls whether to print the symbolic name "raw" or demangled.
754 Return non-zero if anything was printed; zero otherwise. */
755
756 int
757 print_address_demangle (const struct value_print_options *opts,
758 struct gdbarch *gdbarch, CORE_ADDR addr,
759 struct ui_file *stream, int do_demangle)
760 {
761 if (opts->addressprint)
762 {
763 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
764 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
765 }
766 else
767 {
768 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
769 }
770 return 1;
771 }
772 \f
773
774 /* Find the address of the instruction that is INST_COUNT instructions before
775 the instruction at ADDR.
776 Since some architectures have variable-length instructions, we can't just
777 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
778 number information to locate the nearest known instruction boundary,
779 and disassemble forward from there. If we go out of the symbol range
780 during disassembling, we return the lowest address we've got so far and
781 set the number of instructions read to INST_READ. */
782
783 static CORE_ADDR
784 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
785 int inst_count, int *inst_read)
786 {
787 /* The vector PCS is used to store instruction addresses within
788 a pc range. */
789 CORE_ADDR loop_start, loop_end, p;
790 std::vector<CORE_ADDR> pcs;
791 struct symtab_and_line sal;
792
793 *inst_read = 0;
794 loop_start = loop_end = addr;
795
796 /* In each iteration of the outer loop, we get a pc range that ends before
797 LOOP_START, then we count and store every instruction address of the range
798 iterated in the loop.
799 If the number of instructions counted reaches INST_COUNT, return the
800 stored address that is located INST_COUNT instructions back from ADDR.
801 If INST_COUNT is not reached, we subtract the number of counted
802 instructions from INST_COUNT, and go to the next iteration. */
803 do
804 {
805 pcs.clear ();
806 sal = find_pc_sect_line (loop_start, NULL, 1);
807 if (sal.line <= 0)
808 {
809 /* We reach here when line info is not available. In this case,
810 we print a message and just exit the loop. The return value
811 is calculated after the loop. */
812 printf_filtered (_("No line number information available "
813 "for address "));
814 wrap_here (" ");
815 print_address (gdbarch, loop_start - 1, gdb_stdout);
816 printf_filtered ("\n");
817 break;
818 }
819
820 loop_end = loop_start;
821 loop_start = sal.pc;
822
823 /* This loop pushes instruction addresses in the range from
824 LOOP_START to LOOP_END. */
825 for (p = loop_start; p < loop_end;)
826 {
827 pcs.push_back (p);
828 p += gdb_insn_length (gdbarch, p);
829 }
830
831 inst_count -= pcs.size ();
832 *inst_read += pcs.size ();
833 }
834 while (inst_count > 0);
835
836 /* After the loop, the vector PCS has instruction addresses of the last
837 source line we processed, and INST_COUNT has a negative value.
838 We return the address at the index of -INST_COUNT in the vector for
839 the reason below.
840 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
841 Line X of File
842 0x4000
843 0x4001
844 0x4005
845 Line Y of File
846 0x4009
847 0x400c
848 => 0x400e
849 0x4011
850 find_instruction_backward is called with INST_COUNT = 4 and expected to
851 return 0x4001. When we reach here, INST_COUNT is set to -1 because
852 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
853 4001 is located at the index 1 of the last iterated line (= Line X),
854 which is simply calculated by -INST_COUNT.
855 The case when the length of PCS is 0 means that we reached an area for
856 which line info is not available. In such case, we return LOOP_START,
857 which was the lowest instruction address that had line info. */
858 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
859
860 /* INST_READ includes all instruction addresses in a pc range. Need to
861 exclude the beginning part up to the address we're returning. That
862 is, exclude {0x4000} in the example above. */
863 if (inst_count < 0)
864 *inst_read += inst_count;
865
866 return p;
867 }
868
869 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
870 placing the results in GDB's memory from MYADDR + LEN. Returns
871 a count of the bytes actually read. */
872
873 static int
874 read_memory_backward (struct gdbarch *gdbarch,
875 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
876 {
877 int errcode;
878 int nread; /* Number of bytes actually read. */
879
880 /* First try a complete read. */
881 errcode = target_read_memory (memaddr, myaddr, len);
882 if (errcode == 0)
883 {
884 /* Got it all. */
885 nread = len;
886 }
887 else
888 {
889 /* Loop, reading one byte at a time until we get as much as we can. */
890 memaddr += len;
891 myaddr += len;
892 for (nread = 0; nread < len; ++nread)
893 {
894 errcode = target_read_memory (--memaddr, --myaddr, 1);
895 if (errcode != 0)
896 {
897 /* The read was unsuccessful, so exit the loop. */
898 printf_filtered (_("Cannot access memory at address %s\n"),
899 paddress (gdbarch, memaddr));
900 break;
901 }
902 }
903 }
904 return nread;
905 }
906
907 /* Returns true if X (which is LEN bytes wide) is the number zero. */
908
909 static int
910 integer_is_zero (const gdb_byte *x, int len)
911 {
912 int i = 0;
913
914 while (i < len && x[i] == 0)
915 ++i;
916 return (i == len);
917 }
918
919 /* Find the start address of a string in which ADDR is included.
920 Basically we search for '\0' and return the next address,
921 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
922 we stop searching and return the address to print characters as many as
923 PRINT_MAX from the string. */
924
925 static CORE_ADDR
926 find_string_backward (struct gdbarch *gdbarch,
927 CORE_ADDR addr, int count, int char_size,
928 const struct value_print_options *options,
929 int *strings_counted)
930 {
931 const int chunk_size = 0x20;
932 int read_error = 0;
933 int chars_read = 0;
934 int chars_to_read = chunk_size;
935 int chars_counted = 0;
936 int count_original = count;
937 CORE_ADDR string_start_addr = addr;
938
939 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
940 gdb::byte_vector buffer (chars_to_read * char_size);
941 while (count > 0 && read_error == 0)
942 {
943 int i;
944
945 addr -= chars_to_read * char_size;
946 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
947 chars_to_read * char_size);
948 chars_read /= char_size;
949 read_error = (chars_read == chars_to_read) ? 0 : 1;
950 /* Searching for '\0' from the end of buffer in backward direction. */
951 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
952 {
953 int offset = (chars_to_read - i - 1) * char_size;
954
955 if (integer_is_zero (&buffer[offset], char_size)
956 || chars_counted == options->print_max)
957 {
958 /* Found '\0' or reached print_max. As OFFSET is the offset to
959 '\0', we add CHAR_SIZE to return the start address of
960 a string. */
961 --count;
962 string_start_addr = addr + offset + char_size;
963 chars_counted = 0;
964 }
965 }
966 }
967
968 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
969 *strings_counted = count_original - count;
970
971 if (read_error != 0)
972 {
973 /* In error case, STRING_START_ADDR is pointing to the string that
974 was last successfully loaded. Rewind the partially loaded string. */
975 string_start_addr -= chars_counted * char_size;
976 }
977
978 return string_start_addr;
979 }
980
981 /* Examine data at address ADDR in format FMT.
982 Fetch it from memory and print on gdb_stdout. */
983
984 static void
985 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
986 {
987 char format = 0;
988 char size;
989 int count = 1;
990 struct type *val_type = NULL;
991 int i;
992 int maxelts;
993 struct value_print_options opts;
994 int need_to_update_next_address = 0;
995 CORE_ADDR addr_rewound = 0;
996
997 format = fmt.format;
998 size = fmt.size;
999 count = fmt.count;
1000 next_gdbarch = gdbarch;
1001 next_address = addr;
1002
1003 /* Instruction format implies fetch single bytes
1004 regardless of the specified size.
1005 The case of strings is handled in decode_format, only explicit
1006 size operator are not changed to 'b'. */
1007 if (format == 'i')
1008 size = 'b';
1009
1010 if (size == 'a')
1011 {
1012 /* Pick the appropriate size for an address. */
1013 if (gdbarch_ptr_bit (next_gdbarch) == 64)
1014 size = 'g';
1015 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
1016 size = 'w';
1017 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
1018 size = 'h';
1019 else
1020 /* Bad value for gdbarch_ptr_bit. */
1021 internal_error (__FILE__, __LINE__,
1022 _("failed internal consistency check"));
1023 }
1024
1025 if (size == 'b')
1026 val_type = builtin_type (next_gdbarch)->builtin_int8;
1027 else if (size == 'h')
1028 val_type = builtin_type (next_gdbarch)->builtin_int16;
1029 else if (size == 'w')
1030 val_type = builtin_type (next_gdbarch)->builtin_int32;
1031 else if (size == 'g')
1032 val_type = builtin_type (next_gdbarch)->builtin_int64;
1033
1034 if (format == 's')
1035 {
1036 struct type *char_type = NULL;
1037
1038 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1039 if type is not found. */
1040 if (size == 'h')
1041 char_type = builtin_type (next_gdbarch)->builtin_char16;
1042 else if (size == 'w')
1043 char_type = builtin_type (next_gdbarch)->builtin_char32;
1044 if (char_type)
1045 val_type = char_type;
1046 else
1047 {
1048 if (size != '\0' && size != 'b')
1049 warning (_("Unable to display strings with "
1050 "size '%c', using 'b' instead."), size);
1051 size = 'b';
1052 val_type = builtin_type (next_gdbarch)->builtin_int8;
1053 }
1054 }
1055
1056 maxelts = 8;
1057 if (size == 'w')
1058 maxelts = 4;
1059 if (size == 'g')
1060 maxelts = 2;
1061 if (format == 's' || format == 'i')
1062 maxelts = 1;
1063
1064 get_formatted_print_options (&opts, format);
1065
1066 if (count < 0)
1067 {
1068 /* This is the negative repeat count case.
1069 We rewind the address based on the given repeat count and format,
1070 then examine memory from there in forward direction. */
1071
1072 count = -count;
1073 if (format == 'i')
1074 {
1075 next_address = find_instruction_backward (gdbarch, addr, count,
1076 &count);
1077 }
1078 else if (format == 's')
1079 {
1080 next_address = find_string_backward (gdbarch, addr, count,
1081 TYPE_LENGTH (val_type),
1082 &opts, &count);
1083 }
1084 else
1085 {
1086 next_address = addr - count * TYPE_LENGTH (val_type);
1087 }
1088
1089 /* The following call to print_formatted updates next_address in every
1090 iteration. In backward case, we store the start address here
1091 and update next_address with it before exiting the function. */
1092 addr_rewound = (format == 's'
1093 ? next_address - TYPE_LENGTH (val_type)
1094 : next_address);
1095 need_to_update_next_address = 1;
1096 }
1097
1098 /* Print as many objects as specified in COUNT, at most maxelts per line,
1099 with the address of the next one at the start of each line. */
1100
1101 while (count > 0)
1102 {
1103 QUIT;
1104 if (format == 'i')
1105 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1106 print_address (next_gdbarch, next_address, gdb_stdout);
1107 printf_filtered (":");
1108 for (i = maxelts;
1109 i > 0 && count > 0;
1110 i--, count--)
1111 {
1112 printf_filtered ("\t");
1113 /* Note that print_formatted sets next_address for the next
1114 object. */
1115 last_examine_address = next_address;
1116
1117 /* The value to be displayed is not fetched greedily.
1118 Instead, to avoid the possibility of a fetched value not
1119 being used, its retrieval is delayed until the print code
1120 uses it. When examining an instruction stream, the
1121 disassembler will perform its own memory fetch using just
1122 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1123 the disassembler be modified so that LAST_EXAMINE_VALUE
1124 is left with the byte sequence from the last complete
1125 instruction fetched from memory? */
1126 last_examine_value
1127 = release_value (value_at_lazy (val_type, next_address));
1128
1129 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1130
1131 /* Display any branch delay slots following the final insn. */
1132 if (format == 'i' && count == 1)
1133 count += branch_delay_insns;
1134 }
1135 printf_filtered ("\n");
1136 }
1137
1138 if (need_to_update_next_address)
1139 next_address = addr_rewound;
1140 }
1141 \f
1142 static void
1143 validate_format (struct format_data fmt, const char *cmdname)
1144 {
1145 if (fmt.size != 0)
1146 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1147 if (fmt.count != 1)
1148 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1149 cmdname);
1150 if (fmt.format == 'i')
1151 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1152 fmt.format, cmdname);
1153 }
1154
1155 /* Parse print command format string into *OPTS and update *EXPP.
1156 CMDNAME should name the current command. */
1157
1158 void
1159 print_command_parse_format (const char **expp, const char *cmdname,
1160 value_print_options *opts)
1161 {
1162 const char *exp = *expp;
1163
1164 /* opts->raw value might already have been set by 'set print raw-values'
1165 or by using 'print -raw-values'.
1166 So, do not set opts->raw to 0, only set it to 1 if /r is given. */
1167 if (exp && *exp == '/')
1168 {
1169 format_data fmt;
1170
1171 exp++;
1172 fmt = decode_format (&exp, last_format, 0);
1173 validate_format (fmt, cmdname);
1174 last_format = fmt.format;
1175
1176 opts->format = fmt.format;
1177 opts->raw = opts->raw || fmt.raw;
1178 }
1179 else
1180 {
1181 opts->format = 0;
1182 }
1183
1184 *expp = exp;
1185 }
1186
1187 /* See valprint.h. */
1188
1189 void
1190 print_value (value *val, const value_print_options &opts)
1191 {
1192 int histindex = record_latest_value (val);
1193
1194 annotate_value_history_begin (histindex, value_type (val));
1195
1196 printf_filtered ("$%d = ", histindex);
1197
1198 annotate_value_history_value ();
1199
1200 print_formatted (val, 0, &opts, gdb_stdout);
1201 printf_filtered ("\n");
1202
1203 annotate_value_history_end ();
1204 }
1205
1206 /* Implementation of the "print" and "call" commands. */
1207
1208 static void
1209 print_command_1 (const char *args, int voidprint)
1210 {
1211 struct value *val;
1212 value_print_options print_opts;
1213
1214 get_user_print_options (&print_opts);
1215 /* Override global settings with explicit options, if any. */
1216 auto group = make_value_print_options_def_group (&print_opts);
1217 gdb::option::process_options
1218 (&args, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group);
1219
1220 print_command_parse_format (&args, "print", &print_opts);
1221
1222 const char *exp = args;
1223
1224 if (exp != nullptr && *exp)
1225 {
1226 expression_up expr = parse_expression (exp);
1227 val = evaluate_expression (expr.get ());
1228 }
1229 else
1230 val = access_value_history (0);
1231
1232 if (voidprint || (val && value_type (val) &&
1233 value_type (val)->code () != TYPE_CODE_VOID))
1234 print_value (val, print_opts);
1235 }
1236
1237 /* Called from command completion function to skip over /FMT
1238 specifications, allowing the rest of the line to be completed. Returns
1239 true if the /FMT is at the end of the current line and there is nothing
1240 left to complete, otherwise false is returned.
1241
1242 In either case *ARGS can be updated to point after any part of /FMT that
1243 is present.
1244
1245 This function is designed so that trying to complete '/' will offer no
1246 completions, the user needs to insert the format specification
1247 themselves. Trying to complete '/FMT' (where FMT is any non-empty set
1248 of alpha-numeric characters) will cause readline to insert a single
1249 space, setting the user up to enter the expression. */
1250
1251 static bool
1252 skip_over_slash_fmt (completion_tracker &tracker, const char **args)
1253 {
1254 const char *text = *args;
1255
1256 if (text[0] == '/')
1257 {
1258 bool in_fmt;
1259 tracker.set_use_custom_word_point (true);
1260
1261 if (ISALNUM (text[1]) || ISSPACE (text[1]))
1262 {
1263 /* Skip over the actual format specification. */
1264 text = skip_to_space (text);
1265
1266 if (*text == '\0')
1267 {
1268 in_fmt = true;
1269 tracker.add_completion (make_unique_xstrdup (text));
1270 }
1271 else
1272 {
1273 in_fmt = false;
1274 text = skip_spaces (text);
1275 }
1276 }
1277 else if (text[1] == '\0')
1278 {
1279 in_fmt = true;
1280 ++text;
1281 }
1282
1283 tracker.advance_custom_word_point_by (text - *args);
1284 *args = text;
1285 return in_fmt;
1286 }
1287
1288 return false;
1289 }
1290
1291 /* See valprint.h. */
1292
1293 void
1294 print_command_completer (struct cmd_list_element *ignore,
1295 completion_tracker &tracker,
1296 const char *text, const char * /*word*/)
1297 {
1298 const auto group = make_value_print_options_def_group (nullptr);
1299 if (gdb::option::complete_options
1300 (tracker, &text, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group))
1301 return;
1302
1303 if (skip_over_slash_fmt (tracker, &text))
1304 return;
1305
1306 const char *word = advance_to_expression_complete_word_point (tracker, text);
1307 expression_completer (ignore, tracker, text, word);
1308 }
1309
1310 static void
1311 print_command (const char *exp, int from_tty)
1312 {
1313 print_command_1 (exp, 1);
1314 }
1315
1316 /* Same as print, except it doesn't print void results. */
1317 static void
1318 call_command (const char *exp, int from_tty)
1319 {
1320 print_command_1 (exp, 0);
1321 }
1322
1323 /* Implementation of the "output" command. */
1324
1325 void
1326 output_command (const char *exp, int from_tty)
1327 {
1328 char format = 0;
1329 struct value *val;
1330 struct format_data fmt;
1331 struct value_print_options opts;
1332
1333 fmt.size = 0;
1334 fmt.raw = 0;
1335
1336 if (exp && *exp == '/')
1337 {
1338 exp++;
1339 fmt = decode_format (&exp, 0, 0);
1340 validate_format (fmt, "output");
1341 format = fmt.format;
1342 }
1343
1344 expression_up expr = parse_expression (exp);
1345
1346 val = evaluate_expression (expr.get ());
1347
1348 annotate_value_begin (value_type (val));
1349
1350 get_formatted_print_options (&opts, format);
1351 opts.raw = fmt.raw;
1352 print_formatted (val, fmt.size, &opts, gdb_stdout);
1353
1354 annotate_value_end ();
1355
1356 wrap_here ("");
1357 gdb_flush (gdb_stdout);
1358 }
1359
1360 static void
1361 set_command (const char *exp, int from_tty)
1362 {
1363 expression_up expr = parse_expression (exp);
1364
1365 if (expr->nelts >= 1)
1366 switch (expr->elts[0].opcode)
1367 {
1368 case UNOP_PREINCREMENT:
1369 case UNOP_POSTINCREMENT:
1370 case UNOP_PREDECREMENT:
1371 case UNOP_POSTDECREMENT:
1372 case BINOP_ASSIGN:
1373 case BINOP_ASSIGN_MODIFY:
1374 case BINOP_COMMA:
1375 break;
1376 default:
1377 warning
1378 (_("Expression is not an assignment (and might have no effect)"));
1379 }
1380
1381 evaluate_expression (expr.get ());
1382 }
1383
1384 static void
1385 info_symbol_command (const char *arg, int from_tty)
1386 {
1387 struct minimal_symbol *msymbol;
1388 struct obj_section *osect;
1389 CORE_ADDR addr, sect_addr;
1390 int matches = 0;
1391 unsigned int offset;
1392
1393 if (!arg)
1394 error_no_arg (_("address"));
1395
1396 addr = parse_and_eval_address (arg);
1397 for (objfile *objfile : current_program_space->objfiles ())
1398 ALL_OBJFILE_OSECTIONS (objfile, osect)
1399 {
1400 /* Only process each object file once, even if there's a separate
1401 debug file. */
1402 if (objfile->separate_debug_objfile_backlink)
1403 continue;
1404
1405 sect_addr = overlay_mapped_address (addr, osect);
1406
1407 if (obj_section_addr (osect) <= sect_addr
1408 && sect_addr < obj_section_endaddr (osect)
1409 && (msymbol
1410 = lookup_minimal_symbol_by_pc_section (sect_addr,
1411 osect).minsym))
1412 {
1413 const char *obj_name, *mapped, *sec_name, *msym_name;
1414 const char *loc_string;
1415
1416 matches = 1;
1417 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1418 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1419 sec_name = osect->the_bfd_section->name;
1420 msym_name = msymbol->print_name ();
1421
1422 /* Don't print the offset if it is zero.
1423 We assume there's no need to handle i18n of "sym + offset". */
1424 std::string string_holder;
1425 if (offset)
1426 {
1427 string_holder = string_printf ("%s + %u", msym_name, offset);
1428 loc_string = string_holder.c_str ();
1429 }
1430 else
1431 loc_string = msym_name;
1432
1433 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1434 obj_name = objfile_name (osect->objfile);
1435
1436 if (current_program_space->multi_objfile_p ())
1437 if (pc_in_unmapped_range (addr, osect))
1438 if (section_is_overlay (osect))
1439 printf_filtered (_("%s in load address range of "
1440 "%s overlay section %s of %s\n"),
1441 loc_string, mapped, sec_name, obj_name);
1442 else
1443 printf_filtered (_("%s in load address range of "
1444 "section %s of %s\n"),
1445 loc_string, sec_name, obj_name);
1446 else
1447 if (section_is_overlay (osect))
1448 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1449 loc_string, mapped, sec_name, obj_name);
1450 else
1451 printf_filtered (_("%s in section %s of %s\n"),
1452 loc_string, sec_name, obj_name);
1453 else
1454 if (pc_in_unmapped_range (addr, osect))
1455 if (section_is_overlay (osect))
1456 printf_filtered (_("%s in load address range of %s overlay "
1457 "section %s\n"),
1458 loc_string, mapped, sec_name);
1459 else
1460 printf_filtered
1461 (_("%s in load address range of section %s\n"),
1462 loc_string, sec_name);
1463 else
1464 if (section_is_overlay (osect))
1465 printf_filtered (_("%s in %s overlay section %s\n"),
1466 loc_string, mapped, sec_name);
1467 else
1468 printf_filtered (_("%s in section %s\n"),
1469 loc_string, sec_name);
1470 }
1471 }
1472 if (matches == 0)
1473 printf_filtered (_("No symbol matches %s.\n"), arg);
1474 }
1475
1476 static void
1477 info_address_command (const char *exp, int from_tty)
1478 {
1479 struct gdbarch *gdbarch;
1480 int regno;
1481 struct symbol *sym;
1482 struct bound_minimal_symbol msymbol;
1483 long val;
1484 struct obj_section *section;
1485 CORE_ADDR load_addr, context_pc = 0;
1486 struct field_of_this_result is_a_field_of_this;
1487
1488 if (exp == 0)
1489 error (_("Argument required."));
1490
1491 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1492 &is_a_field_of_this).symbol;
1493 if (sym == NULL)
1494 {
1495 if (is_a_field_of_this.type != NULL)
1496 {
1497 printf_filtered ("Symbol \"");
1498 fprintf_symbol_filtered (gdb_stdout, exp,
1499 current_language->la_language, DMGL_ANSI);
1500 printf_filtered ("\" is a field of the local class variable ");
1501 if (current_language->la_language == language_objc)
1502 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1503 else
1504 printf_filtered ("`this'\n");
1505 return;
1506 }
1507
1508 msymbol = lookup_bound_minimal_symbol (exp);
1509
1510 if (msymbol.minsym != NULL)
1511 {
1512 struct objfile *objfile = msymbol.objfile;
1513
1514 gdbarch = objfile->arch ();
1515 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1516
1517 printf_filtered ("Symbol \"");
1518 fprintf_symbol_filtered (gdb_stdout, exp,
1519 current_language->la_language, DMGL_ANSI);
1520 printf_filtered ("\" is at ");
1521 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1522 gdb_stdout);
1523 printf_filtered (" in a file compiled without debugging");
1524 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1525 if (section_is_overlay (section))
1526 {
1527 load_addr = overlay_unmapped_address (load_addr, section);
1528 printf_filtered (",\n -- loaded at ");
1529 fputs_styled (paddress (gdbarch, load_addr),
1530 address_style.style (),
1531 gdb_stdout);
1532 printf_filtered (" in overlay section %s",
1533 section->the_bfd_section->name);
1534 }
1535 printf_filtered (".\n");
1536 }
1537 else
1538 error (_("No symbol \"%s\" in current context."), exp);
1539 return;
1540 }
1541
1542 printf_filtered ("Symbol \"");
1543 fprintf_symbol_filtered (gdb_stdout, sym->print_name (),
1544 current_language->la_language, DMGL_ANSI);
1545 printf_filtered ("\" is ");
1546 val = SYMBOL_VALUE (sym);
1547 if (SYMBOL_OBJFILE_OWNED (sym))
1548 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1549 else
1550 section = NULL;
1551 gdbarch = symbol_arch (sym);
1552
1553 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1554 {
1555 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1556 gdb_stdout);
1557 printf_filtered (".\n");
1558 return;
1559 }
1560
1561 switch (SYMBOL_CLASS (sym))
1562 {
1563 case LOC_CONST:
1564 case LOC_CONST_BYTES:
1565 printf_filtered ("constant");
1566 break;
1567
1568 case LOC_LABEL:
1569 printf_filtered ("a label at address ");
1570 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1571 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1572 gdb_stdout);
1573 if (section_is_overlay (section))
1574 {
1575 load_addr = overlay_unmapped_address (load_addr, section);
1576 printf_filtered (",\n -- loaded at ");
1577 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1578 gdb_stdout);
1579 printf_filtered (" in overlay section %s",
1580 section->the_bfd_section->name);
1581 }
1582 break;
1583
1584 case LOC_COMPUTED:
1585 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1586
1587 case LOC_REGISTER:
1588 /* GDBARCH is the architecture associated with the objfile the symbol
1589 is defined in; the target architecture may be different, and may
1590 provide additional registers. However, we do not know the target
1591 architecture at this point. We assume the objfile architecture
1592 will contain all the standard registers that occur in debug info
1593 in that objfile. */
1594 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1595
1596 if (SYMBOL_IS_ARGUMENT (sym))
1597 printf_filtered (_("an argument in register %s"),
1598 gdbarch_register_name (gdbarch, regno));
1599 else
1600 printf_filtered (_("a variable in register %s"),
1601 gdbarch_register_name (gdbarch, regno));
1602 break;
1603
1604 case LOC_STATIC:
1605 printf_filtered (_("static storage at address "));
1606 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1607 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1608 gdb_stdout);
1609 if (section_is_overlay (section))
1610 {
1611 load_addr = overlay_unmapped_address (load_addr, section);
1612 printf_filtered (_(",\n -- loaded at "));
1613 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1614 gdb_stdout);
1615 printf_filtered (_(" in overlay section %s"),
1616 section->the_bfd_section->name);
1617 }
1618 break;
1619
1620 case LOC_REGPARM_ADDR:
1621 /* Note comment at LOC_REGISTER. */
1622 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1623 printf_filtered (_("address of an argument in register %s"),
1624 gdbarch_register_name (gdbarch, regno));
1625 break;
1626
1627 case LOC_ARG:
1628 printf_filtered (_("an argument at offset %ld"), val);
1629 break;
1630
1631 case LOC_LOCAL:
1632 printf_filtered (_("a local variable at frame offset %ld"), val);
1633 break;
1634
1635 case LOC_REF_ARG:
1636 printf_filtered (_("a reference argument at offset %ld"), val);
1637 break;
1638
1639 case LOC_TYPEDEF:
1640 printf_filtered (_("a typedef"));
1641 break;
1642
1643 case LOC_BLOCK:
1644 printf_filtered (_("a function at address "));
1645 load_addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1646 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1647 gdb_stdout);
1648 if (section_is_overlay (section))
1649 {
1650 load_addr = overlay_unmapped_address (load_addr, section);
1651 printf_filtered (_(",\n -- loaded at "));
1652 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1653 gdb_stdout);
1654 printf_filtered (_(" in overlay section %s"),
1655 section->the_bfd_section->name);
1656 }
1657 break;
1658
1659 case LOC_UNRESOLVED:
1660 {
1661 struct bound_minimal_symbol msym;
1662
1663 msym = lookup_bound_minimal_symbol (sym->linkage_name ());
1664 if (msym.minsym == NULL)
1665 printf_filtered ("unresolved");
1666 else
1667 {
1668 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1669
1670 if (section
1671 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1672 {
1673 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1674 printf_filtered (_("a thread-local variable at offset %s "
1675 "in the thread-local storage for `%s'"),
1676 paddress (gdbarch, load_addr),
1677 objfile_name (section->objfile));
1678 }
1679 else
1680 {
1681 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1682 printf_filtered (_("static storage at address "));
1683 fputs_styled (paddress (gdbarch, load_addr),
1684 address_style.style (), gdb_stdout);
1685 if (section_is_overlay (section))
1686 {
1687 load_addr = overlay_unmapped_address (load_addr, section);
1688 printf_filtered (_(",\n -- loaded at "));
1689 fputs_styled (paddress (gdbarch, load_addr),
1690 address_style.style (),
1691 gdb_stdout);
1692 printf_filtered (_(" in overlay section %s"),
1693 section->the_bfd_section->name);
1694 }
1695 }
1696 }
1697 }
1698 break;
1699
1700 case LOC_OPTIMIZED_OUT:
1701 printf_filtered (_("optimized out"));
1702 break;
1703
1704 default:
1705 printf_filtered (_("of unknown (botched) type"));
1706 break;
1707 }
1708 printf_filtered (".\n");
1709 }
1710 \f
1711
1712 static void
1713 x_command (const char *exp, int from_tty)
1714 {
1715 struct format_data fmt;
1716 struct value *val;
1717
1718 fmt.format = last_format ? last_format : 'x';
1719 fmt.size = last_size;
1720 fmt.count = 1;
1721 fmt.raw = 0;
1722
1723 /* If there is no expression and no format, use the most recent
1724 count. */
1725 if (exp == nullptr && last_count > 0)
1726 fmt.count = last_count;
1727
1728 if (exp && *exp == '/')
1729 {
1730 const char *tmp = exp + 1;
1731
1732 fmt = decode_format (&tmp, last_format, last_size);
1733 exp = (char *) tmp;
1734 }
1735
1736 last_count = fmt.count;
1737
1738 /* If we have an expression, evaluate it and use it as the address. */
1739
1740 if (exp != 0 && *exp != 0)
1741 {
1742 expression_up expr = parse_expression (exp);
1743 /* Cause expression not to be there any more if this command is
1744 repeated with Newline. But don't clobber a user-defined
1745 command's definition. */
1746 if (from_tty)
1747 set_repeat_arguments ("");
1748 val = evaluate_expression (expr.get ());
1749 if (TYPE_IS_REFERENCE (value_type (val)))
1750 val = coerce_ref (val);
1751 /* In rvalue contexts, such as this, functions are coerced into
1752 pointers to functions. This makes "x/i main" work. */
1753 if (value_type (val)->code () == TYPE_CODE_FUNC
1754 && VALUE_LVAL (val) == lval_memory)
1755 next_address = value_address (val);
1756 else
1757 next_address = value_as_address (val);
1758
1759 next_gdbarch = expr->gdbarch;
1760 }
1761
1762 if (!next_gdbarch)
1763 error_no_arg (_("starting display address"));
1764
1765 do_examine (fmt, next_gdbarch, next_address);
1766
1767 /* If the examine succeeds, we remember its size and format for next
1768 time. Set last_size to 'b' for strings. */
1769 if (fmt.format == 's')
1770 last_size = 'b';
1771 else
1772 last_size = fmt.size;
1773 last_format = fmt.format;
1774
1775 /* Set a couple of internal variables if appropriate. */
1776 if (last_examine_value != nullptr)
1777 {
1778 /* Make last address examined available to the user as $_. Use
1779 the correct pointer type. */
1780 struct type *pointer_type
1781 = lookup_pointer_type (value_type (last_examine_value.get ()));
1782 set_internalvar (lookup_internalvar ("_"),
1783 value_from_pointer (pointer_type,
1784 last_examine_address));
1785
1786 /* Make contents of last address examined available to the user
1787 as $__. If the last value has not been fetched from memory
1788 then don't fetch it now; instead mark it by voiding the $__
1789 variable. */
1790 if (value_lazy (last_examine_value.get ()))
1791 clear_internalvar (lookup_internalvar ("__"));
1792 else
1793 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1794 }
1795 }
1796
1797 /* Command completion for the 'display' and 'x' commands. */
1798
1799 static void
1800 display_and_x_command_completer (struct cmd_list_element *ignore,
1801 completion_tracker &tracker,
1802 const char *text, const char * /*word*/)
1803 {
1804 if (skip_over_slash_fmt (tracker, &text))
1805 return;
1806
1807 const char *word = advance_to_expression_complete_word_point (tracker, text);
1808 expression_completer (ignore, tracker, text, word);
1809 }
1810
1811 \f
1812
1813 /* Add an expression to the auto-display chain.
1814 Specify the expression. */
1815
1816 static void
1817 display_command (const char *arg, int from_tty)
1818 {
1819 struct format_data fmt;
1820 struct display *newobj;
1821 const char *exp = arg;
1822
1823 if (exp == 0)
1824 {
1825 do_displays ();
1826 return;
1827 }
1828
1829 if (*exp == '/')
1830 {
1831 exp++;
1832 fmt = decode_format (&exp, 0, 0);
1833 if (fmt.size && fmt.format == 0)
1834 fmt.format = 'x';
1835 if (fmt.format == 'i' || fmt.format == 's')
1836 fmt.size = 'b';
1837 }
1838 else
1839 {
1840 fmt.format = 0;
1841 fmt.size = 0;
1842 fmt.count = 0;
1843 fmt.raw = 0;
1844 }
1845
1846 innermost_block_tracker tracker;
1847 expression_up expr = parse_expression (exp, &tracker);
1848
1849 newobj = new display (exp, std::move (expr), fmt,
1850 current_program_space, tracker.block ());
1851 all_displays.emplace_back (newobj);
1852
1853 if (from_tty)
1854 do_one_display (newobj);
1855
1856 dont_repeat ();
1857 }
1858
1859 /* Clear out the display_chain. Done when new symtabs are loaded,
1860 since this invalidates the types stored in many expressions. */
1861
1862 void
1863 clear_displays ()
1864 {
1865 all_displays.clear ();
1866 }
1867
1868 /* Delete the auto-display DISPLAY. */
1869
1870 static void
1871 delete_display (struct display *display)
1872 {
1873 gdb_assert (display != NULL);
1874
1875 auto iter = std::find_if (all_displays.begin (),
1876 all_displays.end (),
1877 [=] (const std::unique_ptr<struct display> &item)
1878 {
1879 return item.get () == display;
1880 });
1881 gdb_assert (iter != all_displays.end ());
1882 all_displays.erase (iter);
1883 }
1884
1885 /* Call FUNCTION on each of the displays whose numbers are given in
1886 ARGS. DATA is passed unmodified to FUNCTION. */
1887
1888 static void
1889 map_display_numbers (const char *args,
1890 gdb::function_view<void (struct display *)> function)
1891 {
1892 int num;
1893
1894 if (args == NULL)
1895 error_no_arg (_("one or more display numbers"));
1896
1897 number_or_range_parser parser (args);
1898
1899 while (!parser.finished ())
1900 {
1901 const char *p = parser.cur_tok ();
1902
1903 num = parser.get_number ();
1904 if (num == 0)
1905 warning (_("bad display number at or near '%s'"), p);
1906 else
1907 {
1908 auto iter = std::find_if (all_displays.begin (),
1909 all_displays.end (),
1910 [=] (const std::unique_ptr<display> &item)
1911 {
1912 return item->number == num;
1913 });
1914 if (iter == all_displays.end ())
1915 printf_unfiltered (_("No display number %d.\n"), num);
1916 else
1917 function (iter->get ());
1918 }
1919 }
1920 }
1921
1922 /* "undisplay" command. */
1923
1924 static void
1925 undisplay_command (const char *args, int from_tty)
1926 {
1927 if (args == NULL)
1928 {
1929 if (query (_("Delete all auto-display expressions? ")))
1930 clear_displays ();
1931 dont_repeat ();
1932 return;
1933 }
1934
1935 map_display_numbers (args, delete_display);
1936 dont_repeat ();
1937 }
1938
1939 /* Display a single auto-display.
1940 Do nothing if the display cannot be printed in the current context,
1941 or if the display is disabled. */
1942
1943 static void
1944 do_one_display (struct display *d)
1945 {
1946 int within_current_scope;
1947
1948 if (!d->enabled_p)
1949 return;
1950
1951 /* The expression carries the architecture that was used at parse time.
1952 This is a problem if the expression depends on architecture features
1953 (e.g. register numbers), and the current architecture is now different.
1954 For example, a display statement like "display/i $pc" is expected to
1955 display the PC register of the current architecture, not the arch at
1956 the time the display command was given. Therefore, we re-parse the
1957 expression if the current architecture has changed. */
1958 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1959 {
1960 d->exp.reset ();
1961 d->block = NULL;
1962 }
1963
1964 if (d->exp == NULL)
1965 {
1966
1967 try
1968 {
1969 innermost_block_tracker tracker;
1970 d->exp = parse_expression (d->exp_string.c_str (), &tracker);
1971 d->block = tracker.block ();
1972 }
1973 catch (const gdb_exception &ex)
1974 {
1975 /* Can't re-parse the expression. Disable this display item. */
1976 d->enabled_p = false;
1977 warning (_("Unable to display \"%s\": %s"),
1978 d->exp_string.c_str (), ex.what ());
1979 return;
1980 }
1981 }
1982
1983 if (d->block)
1984 {
1985 if (d->pspace == current_program_space)
1986 within_current_scope = contained_in (get_selected_block (0), d->block,
1987 true);
1988 else
1989 within_current_scope = 0;
1990 }
1991 else
1992 within_current_scope = 1;
1993 if (!within_current_scope)
1994 return;
1995
1996 scoped_restore save_display_number
1997 = make_scoped_restore (&current_display_number, d->number);
1998
1999 annotate_display_begin ();
2000 printf_filtered ("%d", d->number);
2001 annotate_display_number_end ();
2002 printf_filtered (": ");
2003 if (d->format.size)
2004 {
2005
2006 annotate_display_format ();
2007
2008 printf_filtered ("x/");
2009 if (d->format.count != 1)
2010 printf_filtered ("%d", d->format.count);
2011 printf_filtered ("%c", d->format.format);
2012 if (d->format.format != 'i' && d->format.format != 's')
2013 printf_filtered ("%c", d->format.size);
2014 printf_filtered (" ");
2015
2016 annotate_display_expression ();
2017
2018 puts_filtered (d->exp_string.c_str ());
2019 annotate_display_expression_end ();
2020
2021 if (d->format.count != 1 || d->format.format == 'i')
2022 printf_filtered ("\n");
2023 else
2024 printf_filtered (" ");
2025
2026 annotate_display_value ();
2027
2028 try
2029 {
2030 struct value *val;
2031 CORE_ADDR addr;
2032
2033 val = evaluate_expression (d->exp.get ());
2034 addr = value_as_address (val);
2035 if (d->format.format == 'i')
2036 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
2037 do_examine (d->format, d->exp->gdbarch, addr);
2038 }
2039 catch (const gdb_exception_error &ex)
2040 {
2041 fprintf_filtered (gdb_stdout, _("%p[<error: %s>%p]\n"),
2042 metadata_style.style ().ptr (), ex.what (),
2043 nullptr);
2044 }
2045 }
2046 else
2047 {
2048 struct value_print_options opts;
2049
2050 annotate_display_format ();
2051
2052 if (d->format.format)
2053 printf_filtered ("/%c ", d->format.format);
2054
2055 annotate_display_expression ();
2056
2057 puts_filtered (d->exp_string.c_str ());
2058 annotate_display_expression_end ();
2059
2060 printf_filtered (" = ");
2061
2062 annotate_display_expression ();
2063
2064 get_formatted_print_options (&opts, d->format.format);
2065 opts.raw = d->format.raw;
2066
2067 try
2068 {
2069 struct value *val;
2070
2071 val = evaluate_expression (d->exp.get ());
2072 print_formatted (val, d->format.size, &opts, gdb_stdout);
2073 }
2074 catch (const gdb_exception_error &ex)
2075 {
2076 fprintf_styled (gdb_stdout, metadata_style.style (),
2077 _("<error: %s>"), ex.what ());
2078 }
2079
2080 printf_filtered ("\n");
2081 }
2082
2083 annotate_display_end ();
2084
2085 gdb_flush (gdb_stdout);
2086 }
2087
2088 /* Display all of the values on the auto-display chain which can be
2089 evaluated in the current scope. */
2090
2091 void
2092 do_displays (void)
2093 {
2094 for (auto &d : all_displays)
2095 do_one_display (d.get ());
2096 }
2097
2098 /* Delete the auto-display which we were in the process of displaying.
2099 This is done when there is an error or a signal. */
2100
2101 void
2102 disable_display (int num)
2103 {
2104 for (auto &d : all_displays)
2105 if (d->number == num)
2106 {
2107 d->enabled_p = false;
2108 return;
2109 }
2110 printf_unfiltered (_("No display number %d.\n"), num);
2111 }
2112
2113 void
2114 disable_current_display (void)
2115 {
2116 if (current_display_number >= 0)
2117 {
2118 disable_display (current_display_number);
2119 fprintf_unfiltered (gdb_stderr,
2120 _("Disabling display %d to "
2121 "avoid infinite recursion.\n"),
2122 current_display_number);
2123 }
2124 current_display_number = -1;
2125 }
2126
2127 static void
2128 info_display_command (const char *ignore, int from_tty)
2129 {
2130 if (all_displays.empty ())
2131 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2132 else
2133 printf_filtered (_("Auto-display expressions now in effect:\n\
2134 Num Enb Expression\n"));
2135
2136 for (auto &d : all_displays)
2137 {
2138 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2139 if (d->format.size)
2140 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2141 d->format.format);
2142 else if (d->format.format)
2143 printf_filtered ("/%c ", d->format.format);
2144 puts_filtered (d->exp_string.c_str ());
2145 if (d->block && !contained_in (get_selected_block (0), d->block, true))
2146 printf_filtered (_(" (cannot be evaluated in the current context)"));
2147 printf_filtered ("\n");
2148 }
2149 }
2150
2151 /* Implementation of both the "disable display" and "enable display"
2152 commands. ENABLE decides what to do. */
2153
2154 static void
2155 enable_disable_display_command (const char *args, int from_tty, bool enable)
2156 {
2157 if (args == NULL)
2158 {
2159 for (auto &d : all_displays)
2160 d->enabled_p = enable;
2161 return;
2162 }
2163
2164 map_display_numbers (args,
2165 [=] (struct display *d)
2166 {
2167 d->enabled_p = enable;
2168 });
2169 }
2170
2171 /* The "enable display" command. */
2172
2173 static void
2174 enable_display_command (const char *args, int from_tty)
2175 {
2176 enable_disable_display_command (args, from_tty, true);
2177 }
2178
2179 /* The "disable display" command. */
2180
2181 static void
2182 disable_display_command (const char *args, int from_tty)
2183 {
2184 enable_disable_display_command (args, from_tty, false);
2185 }
2186
2187 /* display_chain items point to blocks and expressions. Some expressions in
2188 turn may point to symbols.
2189 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2190 obstack_free'd when a shared library is unloaded.
2191 Clear pointers that are about to become dangling.
2192 Both .exp and .block fields will be restored next time we need to display
2193 an item by re-parsing .exp_string field in the new execution context. */
2194
2195 static void
2196 clear_dangling_display_expressions (struct objfile *objfile)
2197 {
2198 struct program_space *pspace;
2199
2200 /* With no symbol file we cannot have a block or expression from it. */
2201 if (objfile == NULL)
2202 return;
2203 pspace = objfile->pspace;
2204 if (objfile->separate_debug_objfile_backlink)
2205 {
2206 objfile = objfile->separate_debug_objfile_backlink;
2207 gdb_assert (objfile->pspace == pspace);
2208 }
2209
2210 for (auto &d : all_displays)
2211 {
2212 if (d->pspace != pspace)
2213 continue;
2214
2215 struct objfile *bl_objf = nullptr;
2216 if (d->block != nullptr)
2217 {
2218 bl_objf = block_objfile (d->block);
2219 if (bl_objf->separate_debug_objfile_backlink != nullptr)
2220 bl_objf = bl_objf->separate_debug_objfile_backlink;
2221 }
2222
2223 if (bl_objf == objfile
2224 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2225 {
2226 d->exp.reset ();
2227 d->block = NULL;
2228 }
2229 }
2230 }
2231 \f
2232
2233 /* Print the value in stack frame FRAME of a variable specified by a
2234 struct symbol. NAME is the name to print; if NULL then VAR's print
2235 name will be used. STREAM is the ui_file on which to print the
2236 value. INDENT specifies the number of indent levels to print
2237 before printing the variable name.
2238
2239 This function invalidates FRAME. */
2240
2241 void
2242 print_variable_and_value (const char *name, struct symbol *var,
2243 struct frame_info *frame,
2244 struct ui_file *stream, int indent)
2245 {
2246
2247 if (!name)
2248 name = var->print_name ();
2249
2250 fprintf_filtered (stream, "%s%ps = ", n_spaces (2 * indent),
2251 styled_string (variable_name_style.style (), name));
2252
2253 try
2254 {
2255 struct value *val;
2256 struct value_print_options opts;
2257
2258 /* READ_VAR_VALUE needs a block in order to deal with non-local
2259 references (i.e. to handle nested functions). In this context, we
2260 print variables that are local to this frame, so we can avoid passing
2261 a block to it. */
2262 val = read_var_value (var, NULL, frame);
2263 get_user_print_options (&opts);
2264 opts.deref_ref = 1;
2265 common_val_print (val, stream, indent, &opts, current_language);
2266
2267 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2268 function. */
2269 frame = NULL;
2270 }
2271 catch (const gdb_exception_error &except)
2272 {
2273 fprintf_styled (stream, metadata_style.style (),
2274 "<error reading variable %s (%s)>", name,
2275 except.what ());
2276 }
2277
2278 fprintf_filtered (stream, "\n");
2279 }
2280
2281 /* Subroutine of ui_printf to simplify it.
2282 Print VALUE to STREAM using FORMAT.
2283 VALUE is a C-style string either on the target or
2284 in a GDB internal variable. */
2285
2286 static void
2287 printf_c_string (struct ui_file *stream, const char *format,
2288 struct value *value)
2289 {
2290 const gdb_byte *str;
2291
2292 if (value_type (value)->code () != TYPE_CODE_PTR
2293 && VALUE_LVAL (value) == lval_internalvar
2294 && c_is_string_type_p (value_type (value)))
2295 {
2296 size_t len = TYPE_LENGTH (value_type (value));
2297
2298 /* Copy the internal var value to TEM_STR and append a terminating null
2299 character. This protects against corrupted C-style strings that lack
2300 the terminating null char. It also allows Ada-style strings (not
2301 null terminated) to be printed without problems. */
2302 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2303
2304 memcpy (tem_str, value_contents (value), len);
2305 tem_str [len] = 0;
2306 str = tem_str;
2307 }
2308 else
2309 {
2310 CORE_ADDR tem = value_as_address (value);;
2311
2312 if (tem == 0)
2313 {
2314 DIAGNOSTIC_PUSH
2315 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2316 fprintf_filtered (stream, format, "(null)");
2317 DIAGNOSTIC_POP
2318 return;
2319 }
2320
2321 /* This is a %s argument. Find the length of the string. */
2322 size_t len;
2323
2324 for (len = 0;; len++)
2325 {
2326 gdb_byte c;
2327
2328 QUIT;
2329 read_memory (tem + len, &c, 1);
2330 if (c == 0)
2331 break;
2332 }
2333
2334 /* Copy the string contents into a string inside GDB. */
2335 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2336
2337 if (len != 0)
2338 read_memory (tem, tem_str, len);
2339 tem_str[len] = 0;
2340 str = tem_str;
2341 }
2342
2343 DIAGNOSTIC_PUSH
2344 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2345 fprintf_filtered (stream, format, (char *) str);
2346 DIAGNOSTIC_POP
2347 }
2348
2349 /* Subroutine of ui_printf to simplify it.
2350 Print VALUE to STREAM using FORMAT.
2351 VALUE is a wide C-style string on the target or
2352 in a GDB internal variable. */
2353
2354 static void
2355 printf_wide_c_string (struct ui_file *stream, const char *format,
2356 struct value *value)
2357 {
2358 const gdb_byte *str;
2359 size_t len;
2360 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2361 struct type *wctype = lookup_typename (current_language,
2362 "wchar_t", NULL, 0);
2363 int wcwidth = TYPE_LENGTH (wctype);
2364
2365 if (VALUE_LVAL (value) == lval_internalvar
2366 && c_is_string_type_p (value_type (value)))
2367 {
2368 str = value_contents (value);
2369 len = TYPE_LENGTH (value_type (value));
2370 }
2371 else
2372 {
2373 CORE_ADDR tem = value_as_address (value);
2374
2375 if (tem == 0)
2376 {
2377 DIAGNOSTIC_PUSH
2378 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2379 fprintf_filtered (stream, format, "(null)");
2380 DIAGNOSTIC_POP
2381 return;
2382 }
2383
2384 /* This is a %s argument. Find the length of the string. */
2385 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2386 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2387
2388 for (len = 0;; len += wcwidth)
2389 {
2390 QUIT;
2391 read_memory (tem + len, buf, wcwidth);
2392 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2393 break;
2394 }
2395
2396 /* Copy the string contents into a string inside GDB. */
2397 gdb_byte *tem_str = (gdb_byte *) alloca (len + wcwidth);
2398
2399 if (len != 0)
2400 read_memory (tem, tem_str, len);
2401 memset (&tem_str[len], 0, wcwidth);
2402 str = tem_str;
2403 }
2404
2405 auto_obstack output;
2406
2407 convert_between_encodings (target_wide_charset (gdbarch),
2408 host_charset (),
2409 str, len, wcwidth,
2410 &output, translit_char);
2411 obstack_grow_str0 (&output, "");
2412
2413 DIAGNOSTIC_PUSH
2414 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2415 fprintf_filtered (stream, format, obstack_base (&output));
2416 DIAGNOSTIC_POP
2417 }
2418
2419 /* Subroutine of ui_printf to simplify it.
2420 Print VALUE, a floating point value, to STREAM using FORMAT. */
2421
2422 static void
2423 printf_floating (struct ui_file *stream, const char *format,
2424 struct value *value, enum argclass argclass)
2425 {
2426 /* Parameter data. */
2427 struct type *param_type = value_type (value);
2428 struct gdbarch *gdbarch = get_type_arch (param_type);
2429
2430 /* Determine target type corresponding to the format string. */
2431 struct type *fmt_type;
2432 switch (argclass)
2433 {
2434 case double_arg:
2435 fmt_type = builtin_type (gdbarch)->builtin_double;
2436 break;
2437 case long_double_arg:
2438 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2439 break;
2440 case dec32float_arg:
2441 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2442 break;
2443 case dec64float_arg:
2444 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2445 break;
2446 case dec128float_arg:
2447 fmt_type = builtin_type (gdbarch)->builtin_declong;
2448 break;
2449 default:
2450 gdb_assert_not_reached ("unexpected argument class");
2451 }
2452
2453 /* To match the traditional GDB behavior, the conversion is
2454 done differently depending on the type of the parameter:
2455
2456 - if the parameter has floating-point type, it's value
2457 is converted to the target type;
2458
2459 - otherwise, if the parameter has a type that is of the
2460 same size as a built-in floating-point type, the value
2461 bytes are interpreted as if they were of that type, and
2462 then converted to the target type (this is not done for
2463 decimal floating-point argument classes);
2464
2465 - otherwise, if the source value has an integer value,
2466 it's value is converted to the target type;
2467
2468 - otherwise, an error is raised.
2469
2470 In either case, the result of the conversion is a byte buffer
2471 formatted in the target format for the target type. */
2472
2473 if (fmt_type->code () == TYPE_CODE_FLT)
2474 {
2475 param_type = float_type_from_length (param_type);
2476 if (param_type != value_type (value))
2477 value = value_from_contents (param_type, value_contents (value));
2478 }
2479
2480 value = value_cast (fmt_type, value);
2481
2482 /* Convert the value to a string and print it. */
2483 std::string str
2484 = target_float_to_string (value_contents (value), fmt_type, format);
2485 fputs_filtered (str.c_str (), stream);
2486 }
2487
2488 /* Subroutine of ui_printf to simplify it.
2489 Print VALUE, a target pointer, to STREAM using FORMAT. */
2490
2491 static void
2492 printf_pointer (struct ui_file *stream, const char *format,
2493 struct value *value)
2494 {
2495 /* We avoid the host's %p because pointers are too
2496 likely to be the wrong size. The only interesting
2497 modifier for %p is a width; extract that, and then
2498 handle %p as glibc would: %#x or a literal "(nil)". */
2499
2500 const char *p;
2501 char *fmt, *fmt_p;
2502 #ifdef PRINTF_HAS_LONG_LONG
2503 long long val = value_as_long (value);
2504 #else
2505 long val = value_as_long (value);
2506 #endif
2507
2508 fmt = (char *) alloca (strlen (format) + 5);
2509
2510 /* Copy up to the leading %. */
2511 p = format;
2512 fmt_p = fmt;
2513 while (*p)
2514 {
2515 int is_percent = (*p == '%');
2516
2517 *fmt_p++ = *p++;
2518 if (is_percent)
2519 {
2520 if (*p == '%')
2521 *fmt_p++ = *p++;
2522 else
2523 break;
2524 }
2525 }
2526
2527 if (val != 0)
2528 *fmt_p++ = '#';
2529
2530 /* Copy any width or flags. Only the "-" flag is valid for pointers
2531 -- see the format_pieces constructor. */
2532 while (*p == '-' || (*p >= '0' && *p < '9'))
2533 *fmt_p++ = *p++;
2534
2535 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2536 if (val != 0)
2537 {
2538 #ifdef PRINTF_HAS_LONG_LONG
2539 *fmt_p++ = 'l';
2540 #endif
2541 *fmt_p++ = 'l';
2542 *fmt_p++ = 'x';
2543 *fmt_p++ = '\0';
2544 DIAGNOSTIC_PUSH
2545 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2546 fprintf_filtered (stream, fmt, val);
2547 DIAGNOSTIC_POP
2548 }
2549 else
2550 {
2551 *fmt_p++ = 's';
2552 *fmt_p++ = '\0';
2553 DIAGNOSTIC_PUSH
2554 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2555 fprintf_filtered (stream, fmt, "(nil)");
2556 DIAGNOSTIC_POP
2557 }
2558 }
2559
2560 /* printf "printf format string" ARG to STREAM. */
2561
2562 static void
2563 ui_printf (const char *arg, struct ui_file *stream)
2564 {
2565 const char *s = arg;
2566 std::vector<struct value *> val_args;
2567
2568 if (s == 0)
2569 error_no_arg (_("format-control string and values to print"));
2570
2571 s = skip_spaces (s);
2572
2573 /* A format string should follow, enveloped in double quotes. */
2574 if (*s++ != '"')
2575 error (_("Bad format string, missing '\"'."));
2576
2577 format_pieces fpieces (&s);
2578
2579 if (*s++ != '"')
2580 error (_("Bad format string, non-terminated '\"'."));
2581
2582 s = skip_spaces (s);
2583
2584 if (*s != ',' && *s != 0)
2585 error (_("Invalid argument syntax"));
2586
2587 if (*s == ',')
2588 s++;
2589 s = skip_spaces (s);
2590
2591 {
2592 int nargs_wanted;
2593 int i;
2594 const char *current_substring;
2595
2596 nargs_wanted = 0;
2597 for (auto &&piece : fpieces)
2598 if (piece.argclass != literal_piece)
2599 ++nargs_wanted;
2600
2601 /* Now, parse all arguments and evaluate them.
2602 Store the VALUEs in VAL_ARGS. */
2603
2604 while (*s != '\0')
2605 {
2606 const char *s1;
2607
2608 s1 = s;
2609 val_args.push_back (parse_to_comma_and_eval (&s1));
2610
2611 s = s1;
2612 if (*s == ',')
2613 s++;
2614 }
2615
2616 if (val_args.size () != nargs_wanted)
2617 error (_("Wrong number of arguments for specified format-string"));
2618
2619 /* Now actually print them. */
2620 i = 0;
2621 for (auto &&piece : fpieces)
2622 {
2623 current_substring = piece.string;
2624 switch (piece.argclass)
2625 {
2626 case string_arg:
2627 printf_c_string (stream, current_substring, val_args[i]);
2628 break;
2629 case wide_string_arg:
2630 printf_wide_c_string (stream, current_substring, val_args[i]);
2631 break;
2632 case wide_char_arg:
2633 {
2634 struct gdbarch *gdbarch
2635 = get_type_arch (value_type (val_args[i]));
2636 struct type *wctype = lookup_typename (current_language,
2637 "wchar_t", NULL, 0);
2638 struct type *valtype;
2639 const gdb_byte *bytes;
2640
2641 valtype = value_type (val_args[i]);
2642 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2643 || valtype->code () != TYPE_CODE_INT)
2644 error (_("expected wchar_t argument for %%lc"));
2645
2646 bytes = value_contents (val_args[i]);
2647
2648 auto_obstack output;
2649
2650 convert_between_encodings (target_wide_charset (gdbarch),
2651 host_charset (),
2652 bytes, TYPE_LENGTH (valtype),
2653 TYPE_LENGTH (valtype),
2654 &output, translit_char);
2655 obstack_grow_str0 (&output, "");
2656
2657 DIAGNOSTIC_PUSH
2658 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2659 fprintf_filtered (stream, current_substring,
2660 obstack_base (&output));
2661 DIAGNOSTIC_POP
2662 }
2663 break;
2664 case long_long_arg:
2665 #ifdef PRINTF_HAS_LONG_LONG
2666 {
2667 long long val = value_as_long (val_args[i]);
2668
2669 DIAGNOSTIC_PUSH
2670 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2671 fprintf_filtered (stream, current_substring, val);
2672 DIAGNOSTIC_POP
2673 break;
2674 }
2675 #else
2676 error (_("long long not supported in printf"));
2677 #endif
2678 case int_arg:
2679 {
2680 int val = value_as_long (val_args[i]);
2681
2682 DIAGNOSTIC_PUSH
2683 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2684 fprintf_filtered (stream, current_substring, val);
2685 DIAGNOSTIC_POP
2686 break;
2687 }
2688 case long_arg:
2689 {
2690 long val = value_as_long (val_args[i]);
2691
2692 DIAGNOSTIC_PUSH
2693 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2694 fprintf_filtered (stream, current_substring, val);
2695 DIAGNOSTIC_POP
2696 break;
2697 }
2698 case size_t_arg:
2699 {
2700 size_t val = value_as_long (val_args[i]);
2701
2702 DIAGNOSTIC_PUSH
2703 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2704 fprintf_filtered (stream, current_substring, val);
2705 DIAGNOSTIC_POP
2706 break;
2707 }
2708 /* Handles floating-point values. */
2709 case double_arg:
2710 case long_double_arg:
2711 case dec32float_arg:
2712 case dec64float_arg:
2713 case dec128float_arg:
2714 printf_floating (stream, current_substring, val_args[i],
2715 piece.argclass);
2716 break;
2717 case ptr_arg:
2718 printf_pointer (stream, current_substring, val_args[i]);
2719 break;
2720 case literal_piece:
2721 /* Print a portion of the format string that has no
2722 directives. Note that this will not include any
2723 ordinary %-specs, but it might include "%%". That is
2724 why we use printf_filtered and not puts_filtered here.
2725 Also, we pass a dummy argument because some platforms
2726 have modified GCC to include -Wformat-security by
2727 default, which will warn here if there is no
2728 argument. */
2729 DIAGNOSTIC_PUSH
2730 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2731 fprintf_filtered (stream, current_substring, 0);
2732 DIAGNOSTIC_POP
2733 break;
2734 default:
2735 internal_error (__FILE__, __LINE__,
2736 _("failed internal consistency check"));
2737 }
2738 /* Maybe advance to the next argument. */
2739 if (piece.argclass != literal_piece)
2740 ++i;
2741 }
2742 }
2743 }
2744
2745 /* Implement the "printf" command. */
2746
2747 static void
2748 printf_command (const char *arg, int from_tty)
2749 {
2750 ui_printf (arg, gdb_stdout);
2751 reset_terminal_style (gdb_stdout);
2752 wrap_here ("");
2753 gdb_stdout->flush ();
2754 }
2755
2756 /* Implement the "eval" command. */
2757
2758 static void
2759 eval_command (const char *arg, int from_tty)
2760 {
2761 string_file stb;
2762
2763 ui_printf (arg, &stb);
2764
2765 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2766
2767 execute_command (expanded.c_str (), from_tty);
2768 }
2769
2770 void _initialize_printcmd ();
2771 void
2772 _initialize_printcmd ()
2773 {
2774 struct cmd_list_element *c;
2775
2776 current_display_number = -1;
2777
2778 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2779
2780 add_info ("address", info_address_command,
2781 _("Describe where symbol SYM is stored.\n\
2782 Usage: info address SYM"));
2783
2784 add_info ("symbol", info_symbol_command, _("\
2785 Describe what symbol is at location ADDR.\n\
2786 Usage: info symbol ADDR\n\
2787 Only for symbols with fixed locations (global or static scope)."));
2788
2789 c = add_com ("x", class_vars, x_command, _("\
2790 Examine memory: x/FMT ADDRESS.\n\
2791 ADDRESS is an expression for the memory address to examine.\n\
2792 FMT is a repeat count followed by a format letter and a size letter.\n\
2793 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2794 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2795 and z(hex, zero padded on the left).\n\
2796 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2797 The specified number of objects of the specified size are printed\n\
2798 according to the format. If a negative number is specified, memory is\n\
2799 examined backward from the address.\n\n\
2800 Defaults for format and size letters are those previously used.\n\
2801 Default count is 1. Default address is following last thing printed\n\
2802 with this command or \"print\"."));
2803 set_cmd_completer_handle_brkchars (c, display_and_x_command_completer);
2804
2805 add_info ("display", info_display_command, _("\
2806 Expressions to display when program stops, with code numbers.\n\
2807 Usage: info display"));
2808
2809 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2810 Cancel some expressions to be displayed when program stops.\n\
2811 Usage: undisplay [NUM]...\n\
2812 Arguments are the code numbers of the expressions to stop displaying.\n\
2813 No argument means cancel all automatic-display expressions.\n\
2814 \"delete display\" has the same effect as this command.\n\
2815 Do \"info display\" to see current list of code numbers."),
2816 &cmdlist);
2817
2818 c = add_com ("display", class_vars, display_command, _("\
2819 Print value of expression EXP each time the program stops.\n\
2820 Usage: display[/FMT] EXP\n\
2821 /FMT may be used before EXP as in the \"print\" command.\n\
2822 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2823 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2824 and examining is done as in the \"x\" command.\n\n\
2825 With no argument, display all currently requested auto-display expressions.\n\
2826 Use \"undisplay\" to cancel display requests previously made."));
2827 set_cmd_completer_handle_brkchars (c, display_and_x_command_completer);
2828
2829 add_cmd ("display", class_vars, enable_display_command, _("\
2830 Enable some expressions to be displayed when program stops.\n\
2831 Usage: enable display [NUM]...\n\
2832 Arguments are the code numbers of the expressions to resume displaying.\n\
2833 No argument means enable all automatic-display expressions.\n\
2834 Do \"info display\" to see current list of code numbers."), &enablelist);
2835
2836 add_cmd ("display", class_vars, disable_display_command, _("\
2837 Disable some expressions to be displayed when program stops.\n\
2838 Usage: disable display [NUM]...\n\
2839 Arguments are the code numbers of the expressions to stop displaying.\n\
2840 No argument means disable all automatic-display expressions.\n\
2841 Do \"info display\" to see current list of code numbers."), &disablelist);
2842
2843 add_cmd ("display", class_vars, undisplay_command, _("\
2844 Cancel some expressions to be displayed when program stops.\n\
2845 Usage: delete display [NUM]...\n\
2846 Arguments are the code numbers of the expressions to stop displaying.\n\
2847 No argument means cancel all automatic-display expressions.\n\
2848 Do \"info display\" to see current list of code numbers."), &deletelist);
2849
2850 add_com ("printf", class_vars, printf_command, _("\
2851 Formatted printing, like the C \"printf\" function.\n\
2852 Usage: printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2853 This supports most C printf format specifications, like %s, %d, etc."));
2854
2855 add_com ("output", class_vars, output_command, _("\
2856 Like \"print\" but don't put in value history and don't print newline.\n\
2857 Usage: output EXP\n\
2858 This is useful in user-defined commands."));
2859
2860 add_prefix_cmd ("set", class_vars, set_command, _("\
2861 Evaluate expression EXP and assign result to variable VAR.\n\
2862 Usage: set VAR = EXP\n\
2863 This uses assignment syntax appropriate for the current language\n\
2864 (VAR = EXP or VAR := EXP for example).\n\
2865 VAR may be a debugger \"convenience\" variable (names starting\n\
2866 with $), a register (a few standard names starting with $), or an actual\n\
2867 variable in the program being debugged. EXP is any valid expression.\n\
2868 Use \"set variable\" for variables with names identical to set subcommands.\n\
2869 \n\
2870 With a subcommand, this command modifies parts of the gdb environment.\n\
2871 You can see these environment settings with the \"show\" command."),
2872 &setlist, "set ", 1, &cmdlist);
2873 if (dbx_commands)
2874 add_com ("assign", class_vars, set_command, _("\
2875 Evaluate expression EXP and assign result to variable VAR.\n\
2876 Usage: assign VAR = EXP\n\
2877 This uses assignment syntax appropriate for the current language\n\
2878 (VAR = EXP or VAR := EXP for example).\n\
2879 VAR may be a debugger \"convenience\" variable (names starting\n\
2880 with $), a register (a few standard names starting with $), or an actual\n\
2881 variable in the program being debugged. EXP is any valid expression.\n\
2882 Use \"set variable\" for variables with names identical to set subcommands.\n\
2883 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2884 You can see these environment settings with the \"show\" command."));
2885
2886 /* "call" is the same as "set", but handy for dbx users to call fns. */
2887 c = add_com ("call", class_vars, call_command, _("\
2888 Call a function in the program.\n\
2889 Usage: call EXP\n\
2890 The argument is the function name and arguments, in the notation of the\n\
2891 current working language. The result is printed and saved in the value\n\
2892 history, if it is not void."));
2893 set_cmd_completer_handle_brkchars (c, print_command_completer);
2894
2895 add_cmd ("variable", class_vars, set_command, _("\
2896 Evaluate expression EXP and assign result to variable VAR.\n\
2897 Usage: set variable VAR = EXP\n\
2898 This uses assignment syntax appropriate for the current language\n\
2899 (VAR = EXP or VAR := EXP for example).\n\
2900 VAR may be a debugger \"convenience\" variable (names starting\n\
2901 with $), a register (a few standard names starting with $), or an actual\n\
2902 variable in the program being debugged. EXP is any valid expression.\n\
2903 This may usually be abbreviated to simply \"set\"."),
2904 &setlist);
2905 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2906
2907 const auto print_opts = make_value_print_options_def_group (nullptr);
2908
2909 static const std::string print_help = gdb::option::build_help (_("\
2910 Print value of expression EXP.\n\
2911 Usage: print [[OPTION]... --] [/FMT] [EXP]\n\
2912 \n\
2913 Options:\n\
2914 %OPTIONS%\n\
2915 \n\
2916 Note: because this command accepts arbitrary expressions, if you\n\
2917 specify any command option, you must use a double dash (\"--\")\n\
2918 to mark the end of option processing. E.g.: \"print -o -- myobj\".\n\
2919 \n\
2920 Variables accessible are those of the lexical environment of the selected\n\
2921 stack frame, plus all those whose scope is global or an entire file.\n\
2922 \n\
2923 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2924 $$NUM refers to NUM'th value back from the last one.\n\
2925 Names starting with $ refer to registers (with the values they would have\n\
2926 if the program were to return to the stack frame now selected, restoring\n\
2927 all registers saved by frames farther in) or else to debugger\n\
2928 \"convenience\" variables (any such name not a known register).\n\
2929 Use assignment expressions to give values to convenience variables.\n\
2930 \n\
2931 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2932 @ is a binary operator for treating consecutive data objects\n\
2933 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2934 element is FOO, whose second element is stored in the space following\n\
2935 where FOO is stored, etc. FOO must be an expression whose value\n\
2936 resides in memory.\n\
2937 \n\
2938 EXP may be preceded with /FMT, where FMT is a format letter\n\
2939 but no count or size letter (see \"x\" command)."),
2940 print_opts);
2941
2942 c = add_com ("print", class_vars, print_command, print_help.c_str ());
2943 set_cmd_completer_handle_brkchars (c, print_command_completer);
2944 add_com_alias ("p", "print", class_vars, 1);
2945 add_com_alias ("inspect", "print", class_vars, 1);
2946
2947 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2948 &max_symbolic_offset, _("\
2949 Set the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2950 Show the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2951 Tell GDB to only display the symbolic form of an address if the\n\
2952 offset between the closest earlier symbol and the address is less than\n\
2953 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2954 to always print the symbolic form of an address if any symbol precedes\n\
2955 it. Zero is equivalent to \"unlimited\"."),
2956 NULL,
2957 show_max_symbolic_offset,
2958 &setprintlist, &showprintlist);
2959 add_setshow_boolean_cmd ("symbol-filename", no_class,
2960 &print_symbol_filename, _("\
2961 Set printing of source filename and line number with <SYMBOL>."), _("\
2962 Show printing of source filename and line number with <SYMBOL>."), NULL,
2963 NULL,
2964 show_print_symbol_filename,
2965 &setprintlist, &showprintlist);
2966
2967 add_com ("eval", no_class, eval_command, _("\
2968 Construct a GDB command and then evaluate it.\n\
2969 Usage: eval \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2970 Convert the arguments to a string as \"printf\" would, but then\n\
2971 treat this string as a command line, and evaluate it."));
2972 }
This page took 0.084854 seconds and 5 git commands to generate.