2003-09-20 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "frame.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "value.h"
30 #include "language.h"
31 #include "expression.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "target.h"
35 #include "breakpoint.h"
36 #include "demangle.h"
37 #include "valprint.h"
38 #include "annotate.h"
39 #include "symfile.h" /* for overlay functions */
40 #include "objfiles.h" /* ditto */
41 #include "completer.h" /* for completion functions */
42 #include "ui-out.h"
43 #include "gdb_assert.h"
44 #include "block.h"
45 #include "disasm.h"
46
47 extern int asm_demangle; /* Whether to demangle syms in asm printouts */
48 extern int addressprint; /* Whether to print hex addresses in HLL " */
49
50 struct format_data
51 {
52 int count;
53 char format;
54 char size;
55 };
56
57 /* Last specified output format. */
58
59 static char last_format = 'x';
60
61 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
62
63 static char last_size = 'w';
64
65 /* Default address to examine next. */
66
67 static CORE_ADDR next_address;
68
69 /* Default section to examine next. */
70
71 static asection *next_section;
72
73 /* Last address examined. */
74
75 static CORE_ADDR last_examine_address;
76
77 /* Contents of last address examined.
78 This is not valid past the end of the `x' command! */
79
80 static struct value *last_examine_value;
81
82 /* Largest offset between a symbolic value and an address, that will be
83 printed as `0x1234 <symbol+offset>'. */
84
85 static unsigned int max_symbolic_offset = UINT_MAX;
86
87 /* Append the source filename and linenumber of the symbol when
88 printing a symbolic value as `<symbol at filename:linenum>' if set. */
89 static int print_symbol_filename = 0;
90
91 /* Number of auto-display expression currently being displayed.
92 So that we can disable it if we get an error or a signal within it.
93 -1 when not doing one. */
94
95 int current_display_number;
96
97 /* Flag to low-level print routines that this value is being printed
98 in an epoch window. We'd like to pass this as a parameter, but
99 every routine would need to take it. Perhaps we can encapsulate
100 this in the I/O stream once we have GNU stdio. */
101
102 int inspect_it = 0;
103
104 struct display
105 {
106 /* Chain link to next auto-display item. */
107 struct display *next;
108 /* Expression to be evaluated and displayed. */
109 struct expression *exp;
110 /* Item number of this auto-display item. */
111 int number;
112 /* Display format specified. */
113 struct format_data format;
114 /* Innermost block required by this expression when evaluated */
115 struct block *block;
116 /* Status of this display (enabled or disabled) */
117 int enabled_p;
118 };
119
120 /* Chain of expressions whose values should be displayed
121 automatically each time the program stops. */
122
123 static struct display *display_chain;
124
125 static int display_number;
126
127 /* Prototypes for exported functions. */
128
129 void output_command (char *, int);
130
131 void _initialize_printcmd (void);
132
133 /* Prototypes for local functions. */
134
135 static void delete_display (int);
136
137 static void enable_display (char *, int);
138
139 static void disable_display_command (char *, int);
140
141 static void printf_command (char *, int);
142
143 static void display_info (char *, int);
144
145 static void do_one_display (struct display *);
146
147 static void undisplay_command (char *, int);
148
149 static void free_display (struct display *);
150
151 static void display_command (char *, int);
152
153 void x_command (char *, int);
154
155 static void address_info (char *, int);
156
157 static void set_command (char *, int);
158
159 static void call_command (char *, int);
160
161 static void inspect_command (char *, int);
162
163 static void print_command (char *, int);
164
165 static void print_command_1 (char *, int, int);
166
167 static void validate_format (struct format_data, char *);
168
169 static void do_examine (struct format_data, CORE_ADDR addr,
170 asection * section);
171
172 static void print_formatted (struct value *, int, int, struct ui_file *);
173
174 static struct format_data decode_format (char **, int, int);
175
176 static void sym_info (char *, int);
177 \f
178
179 /* Decode a format specification. *STRING_PTR should point to it.
180 OFORMAT and OSIZE are used as defaults for the format and size
181 if none are given in the format specification.
182 If OSIZE is zero, then the size field of the returned value
183 should be set only if a size is explicitly specified by the
184 user.
185 The structure returned describes all the data
186 found in the specification. In addition, *STRING_PTR is advanced
187 past the specification and past all whitespace following it. */
188
189 static struct format_data
190 decode_format (char **string_ptr, int oformat, int osize)
191 {
192 struct format_data val;
193 char *p = *string_ptr;
194
195 val.format = '?';
196 val.size = '?';
197 val.count = 1;
198
199 if (*p >= '0' && *p <= '9')
200 val.count = atoi (p);
201 while (*p >= '0' && *p <= '9')
202 p++;
203
204 /* Now process size or format letters that follow. */
205
206 while (1)
207 {
208 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
209 val.size = *p++;
210 else if (*p >= 'a' && *p <= 'z')
211 val.format = *p++;
212 else
213 break;
214 }
215
216 while (*p == ' ' || *p == '\t')
217 p++;
218 *string_ptr = p;
219
220 /* Set defaults for format and size if not specified. */
221 if (val.format == '?')
222 {
223 if (val.size == '?')
224 {
225 /* Neither has been specified. */
226 val.format = oformat;
227 val.size = osize;
228 }
229 else
230 /* If a size is specified, any format makes a reasonable
231 default except 'i'. */
232 val.format = oformat == 'i' ? 'x' : oformat;
233 }
234 else if (val.size == '?')
235 switch (val.format)
236 {
237 case 'a':
238 case 's':
239 /* Pick the appropriate size for an address. */
240 if (TARGET_PTR_BIT == 64)
241 val.size = osize ? 'g' : osize;
242 else if (TARGET_PTR_BIT == 32)
243 val.size = osize ? 'w' : osize;
244 else if (TARGET_PTR_BIT == 16)
245 val.size = osize ? 'h' : osize;
246 else
247 /* Bad value for TARGET_PTR_BIT */
248 internal_error (__FILE__, __LINE__, "failed internal consistency check");
249 break;
250 case 'f':
251 /* Floating point has to be word or giantword. */
252 if (osize == 'w' || osize == 'g')
253 val.size = osize;
254 else
255 /* Default it to giantword if the last used size is not
256 appropriate. */
257 val.size = osize ? 'g' : osize;
258 break;
259 case 'c':
260 /* Characters default to one byte. */
261 val.size = osize ? 'b' : osize;
262 break;
263 default:
264 /* The default is the size most recently specified. */
265 val.size = osize;
266 }
267
268 return val;
269 }
270 \f
271 /* Print value VAL on stream according to FORMAT, a letter or 0.
272 Do not end with a newline.
273 0 means print VAL according to its own type.
274 SIZE is the letter for the size of datum being printed.
275 This is used to pad hex numbers so they line up. */
276
277 static void
278 print_formatted (struct value *val, int format, int size,
279 struct ui_file *stream)
280 {
281 struct type *type = check_typedef (VALUE_TYPE (val));
282 int len = TYPE_LENGTH (type);
283
284 if (VALUE_LVAL (val) == lval_memory)
285 {
286 next_address = VALUE_ADDRESS (val) + len;
287 next_section = VALUE_BFD_SECTION (val);
288 }
289
290 switch (format)
291 {
292 case 's':
293 /* FIXME: Need to handle wchar_t's here... */
294 next_address = VALUE_ADDRESS (val)
295 + val_print_string (VALUE_ADDRESS (val), -1, 1, stream);
296 next_section = VALUE_BFD_SECTION (val);
297 break;
298
299 case 'i':
300 /* The old comment says
301 "Force output out, print_insn not using _filtered".
302 I'm not completely sure what that means, I suspect most print_insn
303 now do use _filtered, so I guess it's obsolete.
304 --Yes, it does filter now, and so this is obsolete. -JB */
305
306 /* We often wrap here if there are long symbolic names. */
307 wrap_here (" ");
308 next_address = VALUE_ADDRESS (val)
309 + gdb_print_insn (VALUE_ADDRESS (val), stream);
310 next_section = VALUE_BFD_SECTION (val);
311 break;
312
313 default:
314 if (format == 0
315 || TYPE_CODE (type) == TYPE_CODE_ARRAY
316 || TYPE_CODE (type) == TYPE_CODE_STRING
317 || TYPE_CODE (type) == TYPE_CODE_STRUCT
318 || TYPE_CODE (type) == TYPE_CODE_UNION
319 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
320 /* If format is 0, use the 'natural' format for
321 * that type of value. If the type is non-scalar,
322 * we have to use language rules to print it as
323 * a series of scalars.
324 */
325 value_print (val, stream, format, Val_pretty_default);
326 else
327 /* User specified format, so don't look to the
328 * the type to tell us what to do.
329 */
330 print_scalar_formatted (VALUE_CONTENTS (val), type,
331 format, size, stream);
332 }
333 }
334
335 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
336 according to letters FORMAT and SIZE on STREAM.
337 FORMAT may not be zero. Formats s and i are not supported at this level.
338
339 This is how the elements of an array or structure are printed
340 with a format. */
341
342 void
343 print_scalar_formatted (void *valaddr, struct type *type, int format, int size,
344 struct ui_file *stream)
345 {
346 LONGEST val_long;
347 unsigned int len = TYPE_LENGTH (type);
348
349 if (len > sizeof (LONGEST)
350 && (format == 't'
351 || format == 'c'
352 || format == 'o'
353 || format == 'u'
354 || format == 'd'
355 || format == 'x'))
356 {
357 if (!TYPE_UNSIGNED (type)
358 || !extract_long_unsigned_integer (valaddr, len, &val_long))
359 {
360 /* We can't print it normally, but we can print it in hex.
361 Printing it in the wrong radix is more useful than saying
362 "use /x, you dummy". */
363 /* FIXME: we could also do octal or binary if that was the
364 desired format. */
365 /* FIXME: we should be using the size field to give us a
366 minimum field width to print. */
367
368 if (format == 'o')
369 print_octal_chars (stream, valaddr, len);
370 else if (format == 'd')
371 print_decimal_chars (stream, valaddr, len);
372 else if (format == 't')
373 print_binary_chars (stream, valaddr, len);
374 else
375 /* replace with call to print_hex_chars? Looks
376 like val_print_type_code_int is redoing
377 work. - edie */
378
379 val_print_type_code_int (type, valaddr, stream);
380
381 return;
382 }
383
384 /* If we get here, extract_long_unsigned_integer set val_long. */
385 }
386 else if (format != 'f')
387 val_long = unpack_long (type, valaddr);
388
389 /* If the value is a pointer, and pointers and addresses are not the
390 same, then at this point, the value's length (in target bytes) is
391 TARGET_ADDR_BIT/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
392 if (TYPE_CODE (type) == TYPE_CODE_PTR)
393 len = TARGET_ADDR_BIT / TARGET_CHAR_BIT;
394
395 /* If we are printing it as unsigned, truncate it in case it is actually
396 a negative signed value (e.g. "print/u (short)-1" should print 65535
397 (if shorts are 16 bits) instead of 4294967295). */
398 if (format != 'd')
399 {
400 if (len < sizeof (LONGEST))
401 val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
402 }
403
404 switch (format)
405 {
406 case 'x':
407 if (!size)
408 {
409 /* no size specified, like in print. Print varying # of digits. */
410 print_longest (stream, 'x', 1, val_long);
411 }
412 else
413 switch (size)
414 {
415 case 'b':
416 case 'h':
417 case 'w':
418 case 'g':
419 print_longest (stream, size, 1, val_long);
420 break;
421 default:
422 error ("Undefined output size \"%c\".", size);
423 }
424 break;
425
426 case 'd':
427 print_longest (stream, 'd', 1, val_long);
428 break;
429
430 case 'u':
431 print_longest (stream, 'u', 0, val_long);
432 break;
433
434 case 'o':
435 if (val_long)
436 print_longest (stream, 'o', 1, val_long);
437 else
438 fprintf_filtered (stream, "0");
439 break;
440
441 case 'a':
442 {
443 CORE_ADDR addr = unpack_pointer (type, valaddr);
444 print_address (addr, stream);
445 }
446 break;
447
448 case 'c':
449 value_print (value_from_longest (builtin_type_true_char, val_long),
450 stream, 0, Val_pretty_default);
451 break;
452
453 case 'f':
454 if (len == TYPE_LENGTH (builtin_type_float))
455 type = builtin_type_float;
456 else if (len == TYPE_LENGTH (builtin_type_double))
457 type = builtin_type_double;
458 else if (len == TYPE_LENGTH (builtin_type_long_double))
459 type = builtin_type_long_double;
460 print_floating (valaddr, type, stream);
461 break;
462
463 case 0:
464 internal_error (__FILE__, __LINE__, "failed internal consistency check");
465
466 case 't':
467 /* Binary; 't' stands for "two". */
468 {
469 char bits[8 * (sizeof val_long) + 1];
470 char buf[8 * (sizeof val_long) + 32];
471 char *cp = bits;
472 int width;
473
474 if (!size)
475 width = 8 * (sizeof val_long);
476 else
477 switch (size)
478 {
479 case 'b':
480 width = 8;
481 break;
482 case 'h':
483 width = 16;
484 break;
485 case 'w':
486 width = 32;
487 break;
488 case 'g':
489 width = 64;
490 break;
491 default:
492 error ("Undefined output size \"%c\".", size);
493 }
494
495 bits[width] = '\0';
496 while (width-- > 0)
497 {
498 bits[width] = (val_long & 1) ? '1' : '0';
499 val_long >>= 1;
500 }
501 if (!size)
502 {
503 while (*cp && *cp == '0')
504 cp++;
505 if (*cp == '\0')
506 cp--;
507 }
508 strcpy (buf, local_binary_format_prefix ());
509 strcat (buf, cp);
510 strcat (buf, local_binary_format_suffix ());
511 fputs_filtered (buf, stream);
512 }
513 break;
514
515 default:
516 error ("Undefined output format \"%c\".", format);
517 }
518 }
519
520 /* Specify default address for `x' command.
521 `info lines' uses this. */
522
523 void
524 set_next_address (CORE_ADDR addr)
525 {
526 next_address = addr;
527
528 /* Make address available to the user as $_. */
529 set_internalvar (lookup_internalvar ("_"),
530 value_from_pointer (lookup_pointer_type (builtin_type_void),
531 addr));
532 }
533
534 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
535 after LEADIN. Print nothing if no symbolic name is found nearby.
536 Optionally also print source file and line number, if available.
537 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
538 or to interpret it as a possible C++ name and convert it back to source
539 form. However note that DO_DEMANGLE can be overridden by the specific
540 settings of the demangle and asm_demangle variables. */
541
542 void
543 print_address_symbolic (CORE_ADDR addr, struct ui_file *stream, int do_demangle,
544 char *leadin)
545 {
546 char *name = NULL;
547 char *filename = NULL;
548 int unmapped = 0;
549 int offset = 0;
550 int line = 0;
551
552 /* throw away both name and filename */
553 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
554 make_cleanup (free_current_contents, &filename);
555
556 if (build_address_symbolic (addr, do_demangle, &name, &offset, &filename, &line, &unmapped))
557 {
558 do_cleanups (cleanup_chain);
559 return;
560 }
561
562 fputs_filtered (leadin, stream);
563 if (unmapped)
564 fputs_filtered ("<*", stream);
565 else
566 fputs_filtered ("<", stream);
567 fputs_filtered (name, stream);
568 if (offset != 0)
569 fprintf_filtered (stream, "+%u", (unsigned int) offset);
570
571 /* Append source filename and line number if desired. Give specific
572 line # of this addr, if we have it; else line # of the nearest symbol. */
573 if (print_symbol_filename && filename != NULL)
574 {
575 if (line != -1)
576 fprintf_filtered (stream, " at %s:%d", filename, line);
577 else
578 fprintf_filtered (stream, " in %s", filename);
579 }
580 if (unmapped)
581 fputs_filtered ("*>", stream);
582 else
583 fputs_filtered (">", stream);
584
585 do_cleanups (cleanup_chain);
586 }
587
588 /* Given an address ADDR return all the elements needed to print the
589 address in a symbolic form. NAME can be mangled or not depending
590 on DO_DEMANGLE (and also on the asm_demangle global variable,
591 manipulated via ''set print asm-demangle''). Return 0 in case of
592 success, when all the info in the OUT paramters is valid. Return 1
593 otherwise. */
594 int
595 build_address_symbolic (CORE_ADDR addr, /* IN */
596 int do_demangle, /* IN */
597 char **name, /* OUT */
598 int *offset, /* OUT */
599 char **filename, /* OUT */
600 int *line, /* OUT */
601 int *unmapped) /* OUT */
602 {
603 struct minimal_symbol *msymbol;
604 struct symbol *symbol;
605 struct symtab *symtab = 0;
606 CORE_ADDR name_location = 0;
607 asection *section = 0;
608 char *name_temp = "";
609
610 /* Let's say it is unmapped. */
611 *unmapped = 0;
612
613 /* Determine if the address is in an overlay, and whether it is
614 mapped. */
615 if (overlay_debugging)
616 {
617 section = find_pc_overlay (addr);
618 if (pc_in_unmapped_range (addr, section))
619 {
620 *unmapped = 1;
621 addr = overlay_mapped_address (addr, section);
622 }
623 }
624
625 /* First try to find the address in the symbol table, then
626 in the minsyms. Take the closest one. */
627
628 /* This is defective in the sense that it only finds text symbols. So
629 really this is kind of pointless--we should make sure that the
630 minimal symbols have everything we need (by changing that we could
631 save some memory, but for many debug format--ELF/DWARF or
632 anything/stabs--it would be inconvenient to eliminate those minimal
633 symbols anyway). */
634 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
635 symbol = find_pc_sect_function (addr, section);
636
637 if (symbol)
638 {
639 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
640 if (do_demangle || asm_demangle)
641 name_temp = SYMBOL_PRINT_NAME (symbol);
642 else
643 name_temp = DEPRECATED_SYMBOL_NAME (symbol);
644 }
645
646 if (msymbol != NULL)
647 {
648 if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
649 {
650 /* The msymbol is closer to the address than the symbol;
651 use the msymbol instead. */
652 symbol = 0;
653 symtab = 0;
654 name_location = SYMBOL_VALUE_ADDRESS (msymbol);
655 if (do_demangle || asm_demangle)
656 name_temp = SYMBOL_PRINT_NAME (msymbol);
657 else
658 name_temp = DEPRECATED_SYMBOL_NAME (msymbol);
659 }
660 }
661 if (symbol == NULL && msymbol == NULL)
662 return 1;
663
664 /* If the nearest symbol is too far away, don't print anything symbolic. */
665
666 /* For when CORE_ADDR is larger than unsigned int, we do math in
667 CORE_ADDR. But when we detect unsigned wraparound in the
668 CORE_ADDR math, we ignore this test and print the offset,
669 because addr+max_symbolic_offset has wrapped through the end
670 of the address space back to the beginning, giving bogus comparison. */
671 if (addr > name_location + max_symbolic_offset
672 && name_location + max_symbolic_offset > name_location)
673 return 1;
674
675 *offset = addr - name_location;
676
677 *name = xstrdup (name_temp);
678
679 if (print_symbol_filename)
680 {
681 struct symtab_and_line sal;
682
683 sal = find_pc_sect_line (addr, section, 0);
684
685 if (sal.symtab)
686 {
687 *filename = xstrdup (sal.symtab->filename);
688 *line = sal.line;
689 }
690 else if (symtab && symbol && symbol->line)
691 {
692 *filename = xstrdup (symtab->filename);
693 *line = symbol->line;
694 }
695 else if (symtab)
696 {
697 *filename = xstrdup (symtab->filename);
698 *line = -1;
699 }
700 }
701 return 0;
702 }
703
704 /* Print address ADDR on STREAM. USE_LOCAL means the same thing as for
705 print_longest. */
706 void
707 print_address_numeric (CORE_ADDR addr, int use_local, struct ui_file *stream)
708 {
709 /* Truncate address to the size of a target address, avoiding shifts
710 larger or equal than the width of a CORE_ADDR. The local
711 variable ADDR_BIT stops the compiler reporting a shift overflow
712 when it won't occur. */
713 /* NOTE: This assumes that the significant address information is
714 kept in the least significant bits of ADDR - the upper bits were
715 either zero or sign extended. Should ADDRESS_TO_POINTER() or
716 some ADDRESS_TO_PRINTABLE() be used to do the conversion? */
717
718 int addr_bit = TARGET_ADDR_BIT;
719
720 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
721 addr &= ((CORE_ADDR) 1 << addr_bit) - 1;
722 print_longest (stream, 'x', use_local, (ULONGEST) addr);
723 }
724
725 /* Print address ADDR symbolically on STREAM.
726 First print it as a number. Then perhaps print
727 <SYMBOL + OFFSET> after the number. */
728
729 void
730 print_address (CORE_ADDR addr, struct ui_file *stream)
731 {
732 print_address_numeric (addr, 1, stream);
733 print_address_symbolic (addr, stream, asm_demangle, " ");
734 }
735
736 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
737 controls whether to print the symbolic name "raw" or demangled.
738 Global setting "addressprint" controls whether to print hex address
739 or not. */
740
741 void
742 print_address_demangle (CORE_ADDR addr, struct ui_file *stream, int do_demangle)
743 {
744 if (addr == 0)
745 {
746 fprintf_filtered (stream, "0");
747 }
748 else if (addressprint)
749 {
750 print_address_numeric (addr, 1, stream);
751 print_address_symbolic (addr, stream, do_demangle, " ");
752 }
753 else
754 {
755 print_address_symbolic (addr, stream, do_demangle, "");
756 }
757 }
758 \f
759
760 /* These are the types that $__ will get after an examine command of one
761 of these sizes. */
762
763 static struct type *examine_i_type;
764
765 static struct type *examine_b_type;
766 static struct type *examine_h_type;
767 static struct type *examine_w_type;
768 static struct type *examine_g_type;
769
770 /* Examine data at address ADDR in format FMT.
771 Fetch it from memory and print on gdb_stdout. */
772
773 static void
774 do_examine (struct format_data fmt, CORE_ADDR addr, asection *sect)
775 {
776 char format = 0;
777 char size;
778 int count = 1;
779 struct type *val_type = NULL;
780 int i;
781 int maxelts;
782
783 format = fmt.format;
784 size = fmt.size;
785 count = fmt.count;
786 next_address = addr;
787 next_section = sect;
788
789 /* String or instruction format implies fetch single bytes
790 regardless of the specified size. */
791 if (format == 's' || format == 'i')
792 size = 'b';
793
794 if (format == 'i')
795 val_type = examine_i_type;
796 else if (size == 'b')
797 val_type = examine_b_type;
798 else if (size == 'h')
799 val_type = examine_h_type;
800 else if (size == 'w')
801 val_type = examine_w_type;
802 else if (size == 'g')
803 val_type = examine_g_type;
804
805 maxelts = 8;
806 if (size == 'w')
807 maxelts = 4;
808 if (size == 'g')
809 maxelts = 2;
810 if (format == 's' || format == 'i')
811 maxelts = 1;
812
813 /* Print as many objects as specified in COUNT, at most maxelts per line,
814 with the address of the next one at the start of each line. */
815
816 while (count > 0)
817 {
818 QUIT;
819 print_address (next_address, gdb_stdout);
820 printf_filtered (":");
821 for (i = maxelts;
822 i > 0 && count > 0;
823 i--, count--)
824 {
825 printf_filtered ("\t");
826 /* Note that print_formatted sets next_address for the next
827 object. */
828 last_examine_address = next_address;
829
830 if (last_examine_value)
831 value_free (last_examine_value);
832
833 /* The value to be displayed is not fetched greedily.
834 Instead, to avoid the posibility of a fetched value not
835 being used, its retreval is delayed until the print code
836 uses it. When examining an instruction stream, the
837 disassembler will perform its own memory fetch using just
838 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
839 the disassembler be modified so that LAST_EXAMINE_VALUE
840 is left with the byte sequence from the last complete
841 instruction fetched from memory? */
842 last_examine_value = value_at_lazy (val_type, next_address, sect);
843
844 if (last_examine_value)
845 release_value (last_examine_value);
846
847 print_formatted (last_examine_value, format, size, gdb_stdout);
848 }
849 printf_filtered ("\n");
850 gdb_flush (gdb_stdout);
851 }
852 }
853 \f
854 static void
855 validate_format (struct format_data fmt, char *cmdname)
856 {
857 if (fmt.size != 0)
858 error ("Size letters are meaningless in \"%s\" command.", cmdname);
859 if (fmt.count != 1)
860 error ("Item count other than 1 is meaningless in \"%s\" command.",
861 cmdname);
862 if (fmt.format == 'i' || fmt.format == 's')
863 error ("Format letter \"%c\" is meaningless in \"%s\" command.",
864 fmt.format, cmdname);
865 }
866
867 /* Evaluate string EXP as an expression in the current language and
868 print the resulting value. EXP may contain a format specifier as the
869 first argument ("/x myvar" for example, to print myvar in hex).
870 */
871
872 static void
873 print_command_1 (char *exp, int inspect, int voidprint)
874 {
875 struct expression *expr;
876 struct cleanup *old_chain = 0;
877 char format = 0;
878 struct value *val;
879 struct format_data fmt;
880 int cleanup = 0;
881
882 /* Pass inspect flag to the rest of the print routines in a global (sigh). */
883 inspect_it = inspect;
884
885 if (exp && *exp == '/')
886 {
887 exp++;
888 fmt = decode_format (&exp, last_format, 0);
889 validate_format (fmt, "print");
890 last_format = format = fmt.format;
891 }
892 else
893 {
894 fmt.count = 1;
895 fmt.format = 0;
896 fmt.size = 0;
897 }
898
899 if (exp && *exp)
900 {
901 struct type *type;
902 expr = parse_expression (exp);
903 old_chain = make_cleanup (free_current_contents, &expr);
904 cleanup = 1;
905 val = evaluate_expression (expr);
906 }
907 else
908 val = access_value_history (0);
909
910 if (voidprint || (val && VALUE_TYPE (val) &&
911 TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_VOID))
912 {
913 int histindex = record_latest_value (val);
914
915 if (histindex >= 0)
916 annotate_value_history_begin (histindex, VALUE_TYPE (val));
917 else
918 annotate_value_begin (VALUE_TYPE (val));
919
920 if (inspect)
921 printf_unfiltered ("\031(gdb-makebuffer \"%s\" %d '(\"", exp, histindex);
922 else if (histindex >= 0)
923 printf_filtered ("$%d = ", histindex);
924
925 if (histindex >= 0)
926 annotate_value_history_value ();
927
928 print_formatted (val, format, fmt.size, gdb_stdout);
929 printf_filtered ("\n");
930
931 if (histindex >= 0)
932 annotate_value_history_end ();
933 else
934 annotate_value_end ();
935
936 if (inspect)
937 printf_unfiltered ("\") )\030");
938 }
939
940 if (cleanup)
941 do_cleanups (old_chain);
942 inspect_it = 0; /* Reset print routines to normal */
943 }
944
945 static void
946 print_command (char *exp, int from_tty)
947 {
948 print_command_1 (exp, 0, 1);
949 }
950
951 /* Same as print, except in epoch, it gets its own window */
952 static void
953 inspect_command (char *exp, int from_tty)
954 {
955 extern int epoch_interface;
956
957 print_command_1 (exp, epoch_interface, 1);
958 }
959
960 /* Same as print, except it doesn't print void results. */
961 static void
962 call_command (char *exp, int from_tty)
963 {
964 print_command_1 (exp, 0, 0);
965 }
966
967 void
968 output_command (char *exp, int from_tty)
969 {
970 struct expression *expr;
971 struct cleanup *old_chain;
972 char format = 0;
973 struct value *val;
974 struct format_data fmt;
975
976 if (exp && *exp == '/')
977 {
978 exp++;
979 fmt = decode_format (&exp, 0, 0);
980 validate_format (fmt, "output");
981 format = fmt.format;
982 }
983
984 expr = parse_expression (exp);
985 old_chain = make_cleanup (free_current_contents, &expr);
986
987 val = evaluate_expression (expr);
988
989 annotate_value_begin (VALUE_TYPE (val));
990
991 print_formatted (val, format, fmt.size, gdb_stdout);
992
993 annotate_value_end ();
994
995 wrap_here ("");
996 gdb_flush (gdb_stdout);
997
998 do_cleanups (old_chain);
999 }
1000
1001 static void
1002 set_command (char *exp, int from_tty)
1003 {
1004 struct expression *expr = parse_expression (exp);
1005 struct cleanup *old_chain =
1006 make_cleanup (free_current_contents, &expr);
1007 evaluate_expression (expr);
1008 do_cleanups (old_chain);
1009 }
1010
1011 static void
1012 sym_info (char *arg, int from_tty)
1013 {
1014 struct minimal_symbol *msymbol;
1015 struct objfile *objfile;
1016 struct obj_section *osect;
1017 asection *sect;
1018 CORE_ADDR addr, sect_addr;
1019 int matches = 0;
1020 unsigned int offset;
1021
1022 if (!arg)
1023 error_no_arg ("address");
1024
1025 addr = parse_and_eval_address (arg);
1026 ALL_OBJSECTIONS (objfile, osect)
1027 {
1028 sect = osect->the_bfd_section;
1029 sect_addr = overlay_mapped_address (addr, sect);
1030
1031 if (osect->addr <= sect_addr && sect_addr < osect->endaddr &&
1032 (msymbol = lookup_minimal_symbol_by_pc_section (sect_addr, sect)))
1033 {
1034 matches = 1;
1035 offset = sect_addr - SYMBOL_VALUE_ADDRESS (msymbol);
1036 if (offset)
1037 printf_filtered ("%s + %u in ",
1038 SYMBOL_PRINT_NAME (msymbol), offset);
1039 else
1040 printf_filtered ("%s in ",
1041 SYMBOL_PRINT_NAME (msymbol));
1042 if (pc_in_unmapped_range (addr, sect))
1043 printf_filtered ("load address range of ");
1044 if (section_is_overlay (sect))
1045 printf_filtered ("%s overlay ",
1046 section_is_mapped (sect) ? "mapped" : "unmapped");
1047 printf_filtered ("section %s", sect->name);
1048 printf_filtered ("\n");
1049 }
1050 }
1051 if (matches == 0)
1052 printf_filtered ("No symbol matches %s.\n", arg);
1053 }
1054
1055 static void
1056 address_info (char *exp, int from_tty)
1057 {
1058 struct symbol *sym;
1059 struct minimal_symbol *msymbol;
1060 long val;
1061 long basereg;
1062 asection *section;
1063 CORE_ADDR load_addr;
1064 int is_a_field_of_this; /* C++: lookup_symbol sets this to nonzero
1065 if exp is a field of `this'. */
1066
1067 if (exp == 0)
1068 error ("Argument required.");
1069
1070 sym = lookup_symbol (exp, get_selected_block (0), VAR_DOMAIN,
1071 &is_a_field_of_this, (struct symtab **) NULL);
1072 if (sym == NULL)
1073 {
1074 if (is_a_field_of_this)
1075 {
1076 printf_filtered ("Symbol \"");
1077 fprintf_symbol_filtered (gdb_stdout, exp,
1078 current_language->la_language, DMGL_ANSI);
1079 printf_filtered ("\" is a field of the local class variable ");
1080 if (current_language->la_language == language_objc)
1081 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1082 else
1083 printf_filtered ("`this'\n");
1084 return;
1085 }
1086
1087 msymbol = lookup_minimal_symbol (exp, NULL, NULL);
1088
1089 if (msymbol != NULL)
1090 {
1091 load_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1092
1093 printf_filtered ("Symbol \"");
1094 fprintf_symbol_filtered (gdb_stdout, exp,
1095 current_language->la_language, DMGL_ANSI);
1096 printf_filtered ("\" is at ");
1097 print_address_numeric (load_addr, 1, gdb_stdout);
1098 printf_filtered (" in a file compiled without debugging");
1099 section = SYMBOL_BFD_SECTION (msymbol);
1100 if (section_is_overlay (section))
1101 {
1102 load_addr = overlay_unmapped_address (load_addr, section);
1103 printf_filtered (",\n -- loaded at ");
1104 print_address_numeric (load_addr, 1, gdb_stdout);
1105 printf_filtered (" in overlay section %s", section->name);
1106 }
1107 printf_filtered (".\n");
1108 }
1109 else
1110 error ("No symbol \"%s\" in current context.", exp);
1111 return;
1112 }
1113
1114 printf_filtered ("Symbol \"");
1115 fprintf_symbol_filtered (gdb_stdout, DEPRECATED_SYMBOL_NAME (sym),
1116 current_language->la_language, DMGL_ANSI);
1117 printf_filtered ("\" is ");
1118 val = SYMBOL_VALUE (sym);
1119 basereg = SYMBOL_BASEREG (sym);
1120 section = SYMBOL_BFD_SECTION (sym);
1121
1122 switch (SYMBOL_CLASS (sym))
1123 {
1124 case LOC_CONST:
1125 case LOC_CONST_BYTES:
1126 printf_filtered ("constant");
1127 break;
1128
1129 case LOC_LABEL:
1130 printf_filtered ("a label at address ");
1131 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1132 1, gdb_stdout);
1133 if (section_is_overlay (section))
1134 {
1135 load_addr = overlay_unmapped_address (load_addr, section);
1136 printf_filtered (",\n -- loaded at ");
1137 print_address_numeric (load_addr, 1, gdb_stdout);
1138 printf_filtered (" in overlay section %s", section->name);
1139 }
1140 break;
1141
1142 case LOC_COMPUTED:
1143 case LOC_COMPUTED_ARG:
1144 (SYMBOL_LOCATION_FUNCS (sym)->describe_location) (sym, gdb_stdout);
1145 break;
1146
1147 case LOC_REGISTER:
1148 printf_filtered ("a variable in register %s", REGISTER_NAME (val));
1149 break;
1150
1151 case LOC_STATIC:
1152 printf_filtered ("static storage at address ");
1153 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1154 1, gdb_stdout);
1155 if (section_is_overlay (section))
1156 {
1157 load_addr = overlay_unmapped_address (load_addr, section);
1158 printf_filtered (",\n -- loaded at ");
1159 print_address_numeric (load_addr, 1, gdb_stdout);
1160 printf_filtered (" in overlay section %s", section->name);
1161 }
1162 break;
1163
1164 case LOC_INDIRECT:
1165 printf_filtered ("external global (indirect addressing), at address *(");
1166 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1167 1, gdb_stdout);
1168 printf_filtered (")");
1169 if (section_is_overlay (section))
1170 {
1171 load_addr = overlay_unmapped_address (load_addr, section);
1172 printf_filtered (",\n -- loaded at ");
1173 print_address_numeric (load_addr, 1, gdb_stdout);
1174 printf_filtered (" in overlay section %s", section->name);
1175 }
1176 break;
1177
1178 case LOC_REGPARM:
1179 printf_filtered ("an argument in register %s", REGISTER_NAME (val));
1180 break;
1181
1182 case LOC_REGPARM_ADDR:
1183 printf_filtered ("address of an argument in register %s", REGISTER_NAME (val));
1184 break;
1185
1186 case LOC_ARG:
1187 printf_filtered ("an argument at offset %ld", val);
1188 break;
1189
1190 case LOC_LOCAL_ARG:
1191 printf_filtered ("an argument at frame offset %ld", val);
1192 break;
1193
1194 case LOC_LOCAL:
1195 printf_filtered ("a local variable at frame offset %ld", val);
1196 break;
1197
1198 case LOC_REF_ARG:
1199 printf_filtered ("a reference argument at offset %ld", val);
1200 break;
1201
1202 case LOC_BASEREG:
1203 printf_filtered ("a variable at offset %ld from register %s",
1204 val, REGISTER_NAME (basereg));
1205 break;
1206
1207 case LOC_BASEREG_ARG:
1208 printf_filtered ("an argument at offset %ld from register %s",
1209 val, REGISTER_NAME (basereg));
1210 break;
1211
1212 case LOC_TYPEDEF:
1213 printf_filtered ("a typedef");
1214 break;
1215
1216 case LOC_BLOCK:
1217 printf_filtered ("a function at address ");
1218 print_address_numeric (load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
1219 1, gdb_stdout);
1220 if (section_is_overlay (section))
1221 {
1222 load_addr = overlay_unmapped_address (load_addr, section);
1223 printf_filtered (",\n -- loaded at ");
1224 print_address_numeric (load_addr, 1, gdb_stdout);
1225 printf_filtered (" in overlay section %s", section->name);
1226 }
1227 break;
1228
1229 case LOC_UNRESOLVED:
1230 {
1231 struct minimal_symbol *msym;
1232
1233 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, NULL);
1234 if (msym == NULL)
1235 printf_filtered ("unresolved");
1236 else
1237 {
1238 section = SYMBOL_BFD_SECTION (msym);
1239 printf_filtered ("static storage at address ");
1240 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (msym),
1241 1, gdb_stdout);
1242 if (section_is_overlay (section))
1243 {
1244 load_addr = overlay_unmapped_address (load_addr, section);
1245 printf_filtered (",\n -- loaded at ");
1246 print_address_numeric (load_addr, 1, gdb_stdout);
1247 printf_filtered (" in overlay section %s", section->name);
1248 }
1249 }
1250 }
1251 break;
1252
1253 case LOC_HP_THREAD_LOCAL_STATIC:
1254 printf_filtered (
1255 "a thread-local variable at offset %ld from the thread base register %s",
1256 val, REGISTER_NAME (basereg));
1257 break;
1258
1259 case LOC_OPTIMIZED_OUT:
1260 printf_filtered ("optimized out");
1261 break;
1262
1263 default:
1264 printf_filtered ("of unknown (botched) type");
1265 break;
1266 }
1267 printf_filtered (".\n");
1268 }
1269 \f
1270 void
1271 x_command (char *exp, int from_tty)
1272 {
1273 struct expression *expr;
1274 struct format_data fmt;
1275 struct cleanup *old_chain;
1276 struct value *val;
1277
1278 fmt.format = last_format;
1279 fmt.size = last_size;
1280 fmt.count = 1;
1281
1282 if (exp && *exp == '/')
1283 {
1284 exp++;
1285 fmt = decode_format (&exp, last_format, last_size);
1286 }
1287
1288 /* If we have an expression, evaluate it and use it as the address. */
1289
1290 if (exp != 0 && *exp != 0)
1291 {
1292 expr = parse_expression (exp);
1293 /* Cause expression not to be there any more
1294 if this command is repeated with Newline.
1295 But don't clobber a user-defined command's definition. */
1296 if (from_tty)
1297 *exp = 0;
1298 old_chain = make_cleanup (free_current_contents, &expr);
1299 val = evaluate_expression (expr);
1300 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_REF)
1301 val = value_ind (val);
1302 /* In rvalue contexts, such as this, functions are coerced into
1303 pointers to functions. This makes "x/i main" work. */
1304 if (/* last_format == 'i' && */
1305 TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
1306 && VALUE_LVAL (val) == lval_memory)
1307 next_address = VALUE_ADDRESS (val);
1308 else
1309 next_address = value_as_address (val);
1310 if (VALUE_BFD_SECTION (val))
1311 next_section = VALUE_BFD_SECTION (val);
1312 do_cleanups (old_chain);
1313 }
1314
1315 do_examine (fmt, next_address, next_section);
1316
1317 /* If the examine succeeds, we remember its size and format for next time. */
1318 last_size = fmt.size;
1319 last_format = fmt.format;
1320
1321 /* Set a couple of internal variables if appropriate. */
1322 if (last_examine_value)
1323 {
1324 /* Make last address examined available to the user as $_. Use
1325 the correct pointer type. */
1326 struct type *pointer_type
1327 = lookup_pointer_type (VALUE_TYPE (last_examine_value));
1328 set_internalvar (lookup_internalvar ("_"),
1329 value_from_pointer (pointer_type,
1330 last_examine_address));
1331
1332 /* Make contents of last address examined available to the user as $__. */
1333 /* If the last value has not been fetched from memory then don't
1334 fetch it now - instead mark it by voiding the $__ variable. */
1335 if (VALUE_LAZY (last_examine_value))
1336 set_internalvar (lookup_internalvar ("__"),
1337 allocate_value (builtin_type_void));
1338 else
1339 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1340 }
1341 }
1342 \f
1343
1344 /* Add an expression to the auto-display chain.
1345 Specify the expression. */
1346
1347 static void
1348 display_command (char *exp, int from_tty)
1349 {
1350 struct format_data fmt;
1351 struct expression *expr;
1352 struct display *new;
1353 int display_it = 1;
1354
1355 #if defined(TUI)
1356 /* NOTE: cagney/2003-02-13 The `tui_active' was previously
1357 `tui_version'. */
1358 if (tui_active && *exp == '$')
1359 display_it = (tui_set_layout (exp) == TUI_FAILURE);
1360 #endif
1361
1362 if (display_it)
1363 {
1364 if (exp == 0)
1365 {
1366 do_displays ();
1367 return;
1368 }
1369
1370 if (*exp == '/')
1371 {
1372 exp++;
1373 fmt = decode_format (&exp, 0, 0);
1374 if (fmt.size && fmt.format == 0)
1375 fmt.format = 'x';
1376 if (fmt.format == 'i' || fmt.format == 's')
1377 fmt.size = 'b';
1378 }
1379 else
1380 {
1381 fmt.format = 0;
1382 fmt.size = 0;
1383 fmt.count = 0;
1384 }
1385
1386 innermost_block = 0;
1387 expr = parse_expression (exp);
1388
1389 new = (struct display *) xmalloc (sizeof (struct display));
1390
1391 new->exp = expr;
1392 new->block = innermost_block;
1393 new->next = display_chain;
1394 new->number = ++display_number;
1395 new->format = fmt;
1396 new->enabled_p = 1;
1397 display_chain = new;
1398
1399 if (from_tty && target_has_execution)
1400 do_one_display (new);
1401
1402 dont_repeat ();
1403 }
1404 }
1405
1406 static void
1407 free_display (struct display *d)
1408 {
1409 xfree (d->exp);
1410 xfree (d);
1411 }
1412
1413 /* Clear out the display_chain.
1414 Done when new symtabs are loaded, since this invalidates
1415 the types stored in many expressions. */
1416
1417 void
1418 clear_displays (void)
1419 {
1420 struct display *d;
1421
1422 while ((d = display_chain) != NULL)
1423 {
1424 xfree (d->exp);
1425 display_chain = d->next;
1426 xfree (d);
1427 }
1428 }
1429
1430 /* Delete the auto-display number NUM. */
1431
1432 static void
1433 delete_display (int num)
1434 {
1435 struct display *d1, *d;
1436
1437 if (!display_chain)
1438 error ("No display number %d.", num);
1439
1440 if (display_chain->number == num)
1441 {
1442 d1 = display_chain;
1443 display_chain = d1->next;
1444 free_display (d1);
1445 }
1446 else
1447 for (d = display_chain;; d = d->next)
1448 {
1449 if (d->next == 0)
1450 error ("No display number %d.", num);
1451 if (d->next->number == num)
1452 {
1453 d1 = d->next;
1454 d->next = d1->next;
1455 free_display (d1);
1456 break;
1457 }
1458 }
1459 }
1460
1461 /* Delete some values from the auto-display chain.
1462 Specify the element numbers. */
1463
1464 static void
1465 undisplay_command (char *args, int from_tty)
1466 {
1467 char *p = args;
1468 char *p1;
1469 int num;
1470
1471 if (args == 0)
1472 {
1473 if (query ("Delete all auto-display expressions? "))
1474 clear_displays ();
1475 dont_repeat ();
1476 return;
1477 }
1478
1479 while (*p)
1480 {
1481 p1 = p;
1482 while (*p1 >= '0' && *p1 <= '9')
1483 p1++;
1484 if (*p1 && *p1 != ' ' && *p1 != '\t')
1485 error ("Arguments must be display numbers.");
1486
1487 num = atoi (p);
1488
1489 delete_display (num);
1490
1491 p = p1;
1492 while (*p == ' ' || *p == '\t')
1493 p++;
1494 }
1495 dont_repeat ();
1496 }
1497
1498 /* Display a single auto-display.
1499 Do nothing if the display cannot be printed in the current context,
1500 or if the display is disabled. */
1501
1502 static void
1503 do_one_display (struct display *d)
1504 {
1505 int within_current_scope;
1506
1507 if (d->enabled_p == 0)
1508 return;
1509
1510 if (d->block)
1511 within_current_scope = contained_in (get_selected_block (0), d->block);
1512 else
1513 within_current_scope = 1;
1514 if (!within_current_scope)
1515 return;
1516
1517 current_display_number = d->number;
1518
1519 annotate_display_begin ();
1520 printf_filtered ("%d", d->number);
1521 annotate_display_number_end ();
1522 printf_filtered (": ");
1523 if (d->format.size)
1524 {
1525 CORE_ADDR addr;
1526 struct value *val;
1527
1528 annotate_display_format ();
1529
1530 printf_filtered ("x/");
1531 if (d->format.count != 1)
1532 printf_filtered ("%d", d->format.count);
1533 printf_filtered ("%c", d->format.format);
1534 if (d->format.format != 'i' && d->format.format != 's')
1535 printf_filtered ("%c", d->format.size);
1536 printf_filtered (" ");
1537
1538 annotate_display_expression ();
1539
1540 print_expression (d->exp, gdb_stdout);
1541 annotate_display_expression_end ();
1542
1543 if (d->format.count != 1)
1544 printf_filtered ("\n");
1545 else
1546 printf_filtered (" ");
1547
1548 val = evaluate_expression (d->exp);
1549 addr = value_as_address (val);
1550 if (d->format.format == 'i')
1551 addr = ADDR_BITS_REMOVE (addr);
1552
1553 annotate_display_value ();
1554
1555 do_examine (d->format, addr, VALUE_BFD_SECTION (val));
1556 }
1557 else
1558 {
1559 annotate_display_format ();
1560
1561 if (d->format.format)
1562 printf_filtered ("/%c ", d->format.format);
1563
1564 annotate_display_expression ();
1565
1566 print_expression (d->exp, gdb_stdout);
1567 annotate_display_expression_end ();
1568
1569 printf_filtered (" = ");
1570
1571 annotate_display_expression ();
1572
1573 print_formatted (evaluate_expression (d->exp),
1574 d->format.format, d->format.size, gdb_stdout);
1575 printf_filtered ("\n");
1576 }
1577
1578 annotate_display_end ();
1579
1580 gdb_flush (gdb_stdout);
1581 current_display_number = -1;
1582 }
1583
1584 /* Display all of the values on the auto-display chain which can be
1585 evaluated in the current scope. */
1586
1587 void
1588 do_displays (void)
1589 {
1590 struct display *d;
1591
1592 for (d = display_chain; d; d = d->next)
1593 do_one_display (d);
1594 }
1595
1596 /* Delete the auto-display which we were in the process of displaying.
1597 This is done when there is an error or a signal. */
1598
1599 void
1600 disable_display (int num)
1601 {
1602 struct display *d;
1603
1604 for (d = display_chain; d; d = d->next)
1605 if (d->number == num)
1606 {
1607 d->enabled_p = 0;
1608 return;
1609 }
1610 printf_unfiltered ("No display number %d.\n", num);
1611 }
1612
1613 void
1614 disable_current_display (void)
1615 {
1616 if (current_display_number >= 0)
1617 {
1618 disable_display (current_display_number);
1619 fprintf_unfiltered (gdb_stderr, "Disabling display %d to avoid infinite recursion.\n",
1620 current_display_number);
1621 }
1622 current_display_number = -1;
1623 }
1624
1625 static void
1626 display_info (char *ignore, int from_tty)
1627 {
1628 struct display *d;
1629
1630 if (!display_chain)
1631 printf_unfiltered ("There are no auto-display expressions now.\n");
1632 else
1633 printf_filtered ("Auto-display expressions now in effect:\n\
1634 Num Enb Expression\n");
1635
1636 for (d = display_chain; d; d = d->next)
1637 {
1638 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
1639 if (d->format.size)
1640 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
1641 d->format.format);
1642 else if (d->format.format)
1643 printf_filtered ("/%c ", d->format.format);
1644 print_expression (d->exp, gdb_stdout);
1645 if (d->block && !contained_in (get_selected_block (0), d->block))
1646 printf_filtered (" (cannot be evaluated in the current context)");
1647 printf_filtered ("\n");
1648 gdb_flush (gdb_stdout);
1649 }
1650 }
1651
1652 static void
1653 enable_display (char *args, int from_tty)
1654 {
1655 char *p = args;
1656 char *p1;
1657 int num;
1658 struct display *d;
1659
1660 if (p == 0)
1661 {
1662 for (d = display_chain; d; d = d->next)
1663 d->enabled_p = 1;
1664 }
1665 else
1666 while (*p)
1667 {
1668 p1 = p;
1669 while (*p1 >= '0' && *p1 <= '9')
1670 p1++;
1671 if (*p1 && *p1 != ' ' && *p1 != '\t')
1672 error ("Arguments must be display numbers.");
1673
1674 num = atoi (p);
1675
1676 for (d = display_chain; d; d = d->next)
1677 if (d->number == num)
1678 {
1679 d->enabled_p = 1;
1680 goto win;
1681 }
1682 printf_unfiltered ("No display number %d.\n", num);
1683 win:
1684 p = p1;
1685 while (*p == ' ' || *p == '\t')
1686 p++;
1687 }
1688 }
1689
1690 static void
1691 disable_display_command (char *args, int from_tty)
1692 {
1693 char *p = args;
1694 char *p1;
1695 struct display *d;
1696
1697 if (p == 0)
1698 {
1699 for (d = display_chain; d; d = d->next)
1700 d->enabled_p = 0;
1701 }
1702 else
1703 while (*p)
1704 {
1705 p1 = p;
1706 while (*p1 >= '0' && *p1 <= '9')
1707 p1++;
1708 if (*p1 && *p1 != ' ' && *p1 != '\t')
1709 error ("Arguments must be display numbers.");
1710
1711 disable_display (atoi (p));
1712
1713 p = p1;
1714 while (*p == ' ' || *p == '\t')
1715 p++;
1716 }
1717 }
1718 \f
1719
1720 /* Print the value in stack frame FRAME of a variable
1721 specified by a struct symbol. */
1722
1723 void
1724 print_variable_value (struct symbol *var, struct frame_info *frame,
1725 struct ui_file *stream)
1726 {
1727 struct value *val = read_var_value (var, frame);
1728
1729 value_print (val, stream, 0, Val_pretty_default);
1730 }
1731
1732 static void
1733 printf_command (char *arg, int from_tty)
1734 {
1735 char *f = NULL;
1736 char *s = arg;
1737 char *string = NULL;
1738 struct value **val_args;
1739 char *substrings;
1740 char *current_substring;
1741 int nargs = 0;
1742 int allocated_args = 20;
1743 struct cleanup *old_cleanups;
1744
1745 val_args = (struct value **) xmalloc (allocated_args
1746 * sizeof (struct value *));
1747 old_cleanups = make_cleanup (free_current_contents, &val_args);
1748
1749 if (s == 0)
1750 error_no_arg ("format-control string and values to print");
1751
1752 /* Skip white space before format string */
1753 while (*s == ' ' || *s == '\t')
1754 s++;
1755
1756 /* A format string should follow, enveloped in double quotes */
1757 if (*s++ != '"')
1758 error ("Bad format string, missing '\"'.");
1759
1760 /* Parse the format-control string and copy it into the string STRING,
1761 processing some kinds of escape sequence. */
1762
1763 f = string = (char *) alloca (strlen (s) + 1);
1764
1765 while (*s != '"')
1766 {
1767 int c = *s++;
1768 switch (c)
1769 {
1770 case '\0':
1771 error ("Bad format string, non-terminated '\"'.");
1772
1773 case '\\':
1774 switch (c = *s++)
1775 {
1776 case '\\':
1777 *f++ = '\\';
1778 break;
1779 case 'a':
1780 *f++ = '\a';
1781 break;
1782 case 'b':
1783 *f++ = '\b';
1784 break;
1785 case 'f':
1786 *f++ = '\f';
1787 break;
1788 case 'n':
1789 *f++ = '\n';
1790 break;
1791 case 'r':
1792 *f++ = '\r';
1793 break;
1794 case 't':
1795 *f++ = '\t';
1796 break;
1797 case 'v':
1798 *f++ = '\v';
1799 break;
1800 case '"':
1801 *f++ = '"';
1802 break;
1803 default:
1804 /* ??? TODO: handle other escape sequences */
1805 error ("Unrecognized escape character \\%c in format string.",
1806 c);
1807 }
1808 break;
1809
1810 default:
1811 *f++ = c;
1812 }
1813 }
1814
1815 /* Skip over " and following space and comma. */
1816 s++;
1817 *f++ = '\0';
1818 while (*s == ' ' || *s == '\t')
1819 s++;
1820
1821 if (*s != ',' && *s != 0)
1822 error ("Invalid argument syntax");
1823
1824 if (*s == ',')
1825 s++;
1826 while (*s == ' ' || *s == '\t')
1827 s++;
1828
1829 /* Need extra space for the '\0's. Doubling the size is sufficient. */
1830 substrings = alloca (strlen (string) * 2);
1831 current_substring = substrings;
1832
1833 {
1834 /* Now scan the string for %-specs and see what kinds of args they want.
1835 argclass[I] classifies the %-specs so we can give printf_filtered
1836 something of the right size. */
1837
1838 enum argclass
1839 {
1840 no_arg, int_arg, string_arg, double_arg, long_long_arg
1841 };
1842 enum argclass *argclass;
1843 enum argclass this_argclass;
1844 char *last_arg;
1845 int nargs_wanted;
1846 int lcount;
1847 int i;
1848
1849 argclass = (enum argclass *) alloca (strlen (s) * sizeof *argclass);
1850 nargs_wanted = 0;
1851 f = string;
1852 last_arg = string;
1853 while (*f)
1854 if (*f++ == '%')
1855 {
1856 lcount = 0;
1857 while (strchr ("0123456789.hlL-+ #", *f))
1858 {
1859 if (*f == 'l' || *f == 'L')
1860 lcount++;
1861 f++;
1862 }
1863 switch (*f)
1864 {
1865 case 's':
1866 this_argclass = string_arg;
1867 break;
1868
1869 case 'e':
1870 case 'f':
1871 case 'g':
1872 this_argclass = double_arg;
1873 break;
1874
1875 case '*':
1876 error ("`*' not supported for precision or width in printf");
1877
1878 case 'n':
1879 error ("Format specifier `n' not supported in printf");
1880
1881 case '%':
1882 this_argclass = no_arg;
1883 break;
1884
1885 default:
1886 if (lcount > 1)
1887 this_argclass = long_long_arg;
1888 else
1889 this_argclass = int_arg;
1890 break;
1891 }
1892 f++;
1893 if (this_argclass != no_arg)
1894 {
1895 strncpy (current_substring, last_arg, f - last_arg);
1896 current_substring += f - last_arg;
1897 *current_substring++ = '\0';
1898 last_arg = f;
1899 argclass[nargs_wanted++] = this_argclass;
1900 }
1901 }
1902
1903 /* Now, parse all arguments and evaluate them.
1904 Store the VALUEs in VAL_ARGS. */
1905
1906 while (*s != '\0')
1907 {
1908 char *s1;
1909 if (nargs == allocated_args)
1910 val_args = (struct value **) xrealloc ((char *) val_args,
1911 (allocated_args *= 2)
1912 * sizeof (struct value *));
1913 s1 = s;
1914 val_args[nargs] = parse_to_comma_and_eval (&s1);
1915
1916 /* If format string wants a float, unchecked-convert the value to
1917 floating point of the same size */
1918
1919 if (argclass[nargs] == double_arg)
1920 {
1921 struct type *type = VALUE_TYPE (val_args[nargs]);
1922 if (TYPE_LENGTH (type) == sizeof (float))
1923 VALUE_TYPE (val_args[nargs]) = builtin_type_float;
1924 if (TYPE_LENGTH (type) == sizeof (double))
1925 VALUE_TYPE (val_args[nargs]) = builtin_type_double;
1926 }
1927 nargs++;
1928 s = s1;
1929 if (*s == ',')
1930 s++;
1931 }
1932
1933 if (nargs != nargs_wanted)
1934 error ("Wrong number of arguments for specified format-string");
1935
1936 /* Now actually print them. */
1937 current_substring = substrings;
1938 for (i = 0; i < nargs; i++)
1939 {
1940 switch (argclass[i])
1941 {
1942 case string_arg:
1943 {
1944 char *str;
1945 CORE_ADDR tem;
1946 int j;
1947 tem = value_as_address (val_args[i]);
1948
1949 /* This is a %s argument. Find the length of the string. */
1950 for (j = 0;; j++)
1951 {
1952 char c;
1953 QUIT;
1954 read_memory (tem + j, &c, 1);
1955 if (c == 0)
1956 break;
1957 }
1958
1959 /* Copy the string contents into a string inside GDB. */
1960 str = (char *) alloca (j + 1);
1961 if (j != 0)
1962 read_memory (tem, str, j);
1963 str[j] = 0;
1964
1965 printf_filtered (current_substring, str);
1966 }
1967 break;
1968 case double_arg:
1969 {
1970 double val = value_as_double (val_args[i]);
1971 printf_filtered (current_substring, val);
1972 break;
1973 }
1974 case long_long_arg:
1975 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
1976 {
1977 long long val = value_as_long (val_args[i]);
1978 printf_filtered (current_substring, val);
1979 break;
1980 }
1981 #else
1982 error ("long long not supported in printf");
1983 #endif
1984 case int_arg:
1985 {
1986 /* FIXME: there should be separate int_arg and long_arg. */
1987 long val = value_as_long (val_args[i]);
1988 printf_filtered (current_substring, val);
1989 break;
1990 }
1991 default: /* purecov: deadcode */
1992 error ("internal error in printf_command"); /* purecov: deadcode */
1993 }
1994 /* Skip to the next substring. */
1995 current_substring += strlen (current_substring) + 1;
1996 }
1997 /* Print the portion of the format string after the last argument. */
1998 puts_filtered (last_arg);
1999 }
2000 do_cleanups (old_cleanups);
2001 }
2002
2003 void
2004 _initialize_printcmd (void)
2005 {
2006 struct cmd_list_element *c;
2007
2008 current_display_number = -1;
2009
2010 add_info ("address", address_info,
2011 "Describe where symbol SYM is stored.");
2012
2013 add_info ("symbol", sym_info,
2014 "Describe what symbol is at location ADDR.\n\
2015 Only for symbols with fixed locations (global or static scope).");
2016
2017 add_com ("x", class_vars, x_command,
2018 concat ("Examine memory: x/FMT ADDRESS.\n\
2019 ADDRESS is an expression for the memory address to examine.\n\
2020 FMT is a repeat count followed by a format letter and a size letter.\n\
2021 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2022 t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n",
2023 "Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2024 The specified number of objects of the specified size are printed\n\
2025 according to the format.\n\n\
2026 Defaults for format and size letters are those previously used.\n\
2027 Default count is 1. Default address is following last thing printed\n\
2028 with this command or \"print\".", NULL));
2029
2030 #if 0
2031 add_com ("whereis", class_vars, whereis_command,
2032 "Print line number and file of definition of variable.");
2033 #endif
2034
2035 add_info ("display", display_info,
2036 "Expressions to display when program stops, with code numbers.");
2037
2038 add_cmd ("undisplay", class_vars, undisplay_command,
2039 "Cancel some expressions to be displayed when program stops.\n\
2040 Arguments are the code numbers of the expressions to stop displaying.\n\
2041 No argument means cancel all automatic-display expressions.\n\
2042 \"delete display\" has the same effect as this command.\n\
2043 Do \"info display\" to see current list of code numbers.",
2044 &cmdlist);
2045
2046 add_com ("display", class_vars, display_command,
2047 "Print value of expression EXP each time the program stops.\n\
2048 /FMT may be used before EXP as in the \"print\" command.\n\
2049 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2050 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2051 and examining is done as in the \"x\" command.\n\n\
2052 With no argument, display all currently requested auto-display expressions.\n\
2053 Use \"undisplay\" to cancel display requests previously made."
2054 );
2055
2056 add_cmd ("display", class_vars, enable_display,
2057 "Enable some expressions to be displayed when program stops.\n\
2058 Arguments are the code numbers of the expressions to resume displaying.\n\
2059 No argument means enable all automatic-display expressions.\n\
2060 Do \"info display\" to see current list of code numbers.", &enablelist);
2061
2062 add_cmd ("display", class_vars, disable_display_command,
2063 "Disable some expressions to be displayed when program stops.\n\
2064 Arguments are the code numbers of the expressions to stop displaying.\n\
2065 No argument means disable all automatic-display expressions.\n\
2066 Do \"info display\" to see current list of code numbers.", &disablelist);
2067
2068 add_cmd ("display", class_vars, undisplay_command,
2069 "Cancel some expressions to be displayed when program stops.\n\
2070 Arguments are the code numbers of the expressions to stop displaying.\n\
2071 No argument means cancel all automatic-display expressions.\n\
2072 Do \"info display\" to see current list of code numbers.", &deletelist);
2073
2074 add_com ("printf", class_vars, printf_command,
2075 "printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2076 This is useful for formatted output in user-defined commands.");
2077
2078 add_com ("output", class_vars, output_command,
2079 "Like \"print\" but don't put in value history and don't print newline.\n\
2080 This is useful in user-defined commands.");
2081
2082 add_prefix_cmd ("set", class_vars, set_command,
2083 concat ("Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2084 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2085 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2086 with $), a register (a few standard names starting with $), or an actual\n\
2087 variable in the program being debugged. EXP is any valid expression.\n",
2088 "Use \"set variable\" for variables with names identical to set subcommands.\n\
2089 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2090 You can see these environment settings with the \"show\" command.", NULL),
2091 &setlist, "set ", 1, &cmdlist);
2092 if (dbx_commands)
2093 add_com ("assign", class_vars, set_command, concat ("Evaluate expression \
2094 EXP and assign result to variable VAR, using assignment\n\
2095 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2096 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2097 with $), a register (a few standard names starting with $), or an actual\n\
2098 variable in the program being debugged. EXP is any valid expression.\n",
2099 "Use \"set variable\" for variables with names identical to set subcommands.\n\
2100 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2101 You can see these environment settings with the \"show\" command.", NULL));
2102
2103 /* "call" is the same as "set", but handy for dbx users to call fns. */
2104 c = add_com ("call", class_vars, call_command,
2105 "Call a function in the program.\n\
2106 The argument is the function name and arguments, in the notation of the\n\
2107 current working language. The result is printed and saved in the value\n\
2108 history, if it is not void.");
2109 set_cmd_completer (c, location_completer);
2110
2111 add_cmd ("variable", class_vars, set_command,
2112 "Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2113 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2114 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2115 with $), a register (a few standard names starting with $), or an actual\n\
2116 variable in the program being debugged. EXP is any valid expression.\n\
2117 This may usually be abbreviated to simply \"set\".",
2118 &setlist);
2119
2120 c = add_com ("print", class_vars, print_command,
2121 concat ("Print value of expression EXP.\n\
2122 Variables accessible are those of the lexical environment of the selected\n\
2123 stack frame, plus all those whose scope is global or an entire file.\n\
2124 \n\
2125 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2126 $$NUM refers to NUM'th value back from the last one.\n\
2127 Names starting with $ refer to registers (with the values they would have\n",
2128 "if the program were to return to the stack frame now selected, restoring\n\
2129 all registers saved by frames farther in) or else to debugger\n\
2130 \"convenience\" variables (any such name not a known register).\n\
2131 Use assignment expressions to give values to convenience variables.\n",
2132 "\n\
2133 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2134 @ is a binary operator for treating consecutive data objects\n\
2135 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2136 element is FOO, whose second element is stored in the space following\n\
2137 where FOO is stored, etc. FOO must be an expression whose value\n\
2138 resides in memory.\n",
2139 "\n\
2140 EXP may be preceded with /FMT, where FMT is a format letter\n\
2141 but no count or size letter (see \"x\" command).", NULL));
2142 set_cmd_completer (c, location_completer);
2143 add_com_alias ("p", "print", class_vars, 1);
2144
2145 c = add_com ("inspect", class_vars, inspect_command,
2146 "Same as \"print\" command, except that if you are running in the epoch\n\
2147 environment, the value is printed in its own window.");
2148 set_cmd_completer (c, location_completer);
2149
2150 add_show_from_set (
2151 add_set_cmd ("max-symbolic-offset", no_class, var_uinteger,
2152 (char *) &max_symbolic_offset,
2153 "Set the largest offset that will be printed in <symbol+1234> form.",
2154 &setprintlist),
2155 &showprintlist);
2156 add_show_from_set (
2157 add_set_cmd ("symbol-filename", no_class, var_boolean,
2158 (char *) &print_symbol_filename,
2159 "Set printing of source filename and line number with <symbol>.",
2160 &setprintlist),
2161 &showprintlist);
2162
2163 /* For examine/instruction a single byte quantity is specified as
2164 the data. This avoids problems with value_at_lazy() requiring a
2165 valid data type (and rejecting VOID). */
2166 examine_i_type = init_type (TYPE_CODE_INT, 1, 0, "examine_i_type", NULL);
2167
2168 examine_b_type = init_type (TYPE_CODE_INT, 1, 0, "examine_b_type", NULL);
2169 examine_h_type = init_type (TYPE_CODE_INT, 2, 0, "examine_h_type", NULL);
2170 examine_w_type = init_type (TYPE_CODE_INT, 4, 0, "examine_w_type", NULL);
2171 examine_g_type = init_type (TYPE_CODE_INT, 8, 0, "examine_g_type", NULL);
2172
2173 }
This page took 0.086554 seconds and 5 git commands to generate.