gdbserver/proc-service.c: Change CORE_ADDR cast to uintptr_t
[deliverable/binutils-gdb.git] / gdb / progspace.c
1 /* Program and address space management, for GDB, the GNU debugger.
2
3 Copyright (C) 2009-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "objfiles.h"
23 #include "arch-utils.h"
24 #include "gdbcore.h"
25 #include "solib.h"
26 #include "gdbthread.h"
27
28 /* The last program space number assigned. */
29 int last_program_space_num = 0;
30
31 /* The head of the program spaces list. */
32 struct program_space *program_spaces;
33
34 /* Pointer to the current program space. */
35 struct program_space *current_program_space;
36
37 /* The last address space number assigned. */
38 static int highest_address_space_num;
39
40 \f
41
42 /* Keep a registry of per-program_space data-pointers required by other GDB
43 modules. */
44
45 DEFINE_REGISTRY (program_space, REGISTRY_ACCESS_FIELD)
46
47 /* An address space. It is used for comparing if pspaces/inferior/threads
48 see the same address space and for associating caches to each address
49 space. */
50
51 struct address_space
52 {
53 int num;
54
55 /* Per aspace data-pointers required by other GDB modules. */
56 REGISTRY_FIELDS;
57 };
58
59 /* Keep a registry of per-address_space data-pointers required by other GDB
60 modules. */
61
62 DEFINE_REGISTRY (address_space, REGISTRY_ACCESS_FIELD)
63
64 \f
65
66 /* Create a new address space object, and add it to the list. */
67
68 struct address_space *
69 new_address_space (void)
70 {
71 struct address_space *aspace;
72
73 aspace = XCNEW (struct address_space);
74 aspace->num = ++highest_address_space_num;
75 address_space_alloc_data (aspace);
76
77 return aspace;
78 }
79
80 /* Maybe create a new address space object, and add it to the list, or
81 return a pointer to an existing address space, in case inferiors
82 share an address space on this target system. */
83
84 struct address_space *
85 maybe_new_address_space (void)
86 {
87 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
88
89 if (shared_aspace)
90 {
91 /* Just return the first in the list. */
92 return program_spaces->aspace;
93 }
94
95 return new_address_space ();
96 }
97
98 static void
99 free_address_space (struct address_space *aspace)
100 {
101 address_space_free_data (aspace);
102 xfree (aspace);
103 }
104
105 int
106 address_space_num (struct address_space *aspace)
107 {
108 return aspace->num;
109 }
110
111 /* Start counting over from scratch. */
112
113 static void
114 init_address_spaces (void)
115 {
116 highest_address_space_num = 0;
117 }
118
119 \f
120
121 /* Adds a new empty program space to the program space list, and binds
122 it to ASPACE. Returns the pointer to the new object. */
123
124 struct program_space *
125 add_program_space (struct address_space *aspace)
126 {
127 struct program_space *pspace;
128
129 pspace = XCNEW (struct program_space);
130
131 pspace->num = ++last_program_space_num;
132 pspace->aspace = aspace;
133
134 program_space_alloc_data (pspace);
135
136 pspace->next = program_spaces;
137 program_spaces = pspace;
138
139 return pspace;
140 }
141
142 /* Releases program space PSPACE, and all its contents (shared
143 libraries, objfiles, and any other references to the PSPACE in
144 other modules). It is an internal error to call this when PSPACE
145 is the current program space, since there should always be a
146 program space. */
147
148 static void
149 release_program_space (struct program_space *pspace)
150 {
151 struct cleanup *old_chain = save_current_program_space ();
152
153 gdb_assert (pspace != current_program_space);
154
155 set_current_program_space (pspace);
156
157 breakpoint_program_space_exit (pspace);
158 no_shared_libraries (NULL, 0);
159 exec_close ();
160 free_all_objfiles ();
161 if (!gdbarch_has_shared_address_space (target_gdbarch ()))
162 free_address_space (pspace->aspace);
163 clear_section_table (&pspace->target_sections);
164 clear_program_space_solib_cache (pspace);
165 /* Discard any data modules have associated with the PSPACE. */
166 program_space_free_data (pspace);
167 xfree (pspace);
168
169 do_cleanups (old_chain);
170 }
171
172 /* Copies program space SRC to DEST. Copies the main executable file,
173 and the main symbol file. Returns DEST. */
174
175 struct program_space *
176 clone_program_space (struct program_space *dest, struct program_space *src)
177 {
178 struct cleanup *old_chain;
179
180 old_chain = save_current_program_space ();
181
182 set_current_program_space (dest);
183
184 if (src->pspace_exec_filename != NULL)
185 exec_file_attach (src->pspace_exec_filename, 0);
186
187 if (src->symfile_object_file != NULL)
188 symbol_file_add_main (objfile_name (src->symfile_object_file), 0);
189
190 do_cleanups (old_chain);
191 return dest;
192 }
193
194 /* Sets PSPACE as the current program space. It is the caller's
195 responsibility to make sure that the currently selected
196 inferior/thread matches the selected program space. */
197
198 void
199 set_current_program_space (struct program_space *pspace)
200 {
201 if (current_program_space == pspace)
202 return;
203
204 gdb_assert (pspace != NULL);
205
206 current_program_space = pspace;
207
208 /* Different symbols change our view of the frame chain. */
209 reinit_frame_cache ();
210 }
211
212 /* A cleanups callback, helper for save_current_program_space
213 below. */
214
215 static void
216 restore_program_space (void *arg)
217 {
218 struct program_space *saved_pspace = (struct program_space *) arg;
219
220 set_current_program_space (saved_pspace);
221 }
222
223 /* Save the current program space so that it may be restored by a later
224 call to do_cleanups. Returns the struct cleanup pointer needed for
225 later doing the cleanup. */
226
227 struct cleanup *
228 save_current_program_space (void)
229 {
230 struct cleanup *old_chain = make_cleanup (restore_program_space,
231 current_program_space);
232
233 return old_chain;
234 }
235
236 /* Returns true iff there's no inferior bound to PSPACE. */
237
238 int
239 program_space_empty_p (struct program_space *pspace)
240 {
241 if (find_inferior_for_program_space (pspace) != NULL)
242 return 0;
243
244 return 1;
245 }
246
247 /* Remove a program space from the program spaces list and release it. It is
248 an error to call this function while PSPACE is the current program space. */
249
250 void
251 delete_program_space (struct program_space *pspace)
252 {
253 struct program_space *ss, **ss_link;
254 gdb_assert (pspace != NULL);
255 gdb_assert (pspace != current_program_space);
256
257 ss = program_spaces;
258 ss_link = &program_spaces;
259 while (ss != NULL)
260 {
261 if (ss == pspace)
262 {
263 *ss_link = ss->next;
264 break;
265 }
266
267 ss_link = &ss->next;
268 ss = *ss_link;
269 }
270
271 release_program_space (pspace);
272 }
273
274 /* Prints the list of program spaces and their details on UIOUT. If
275 REQUESTED is not -1, it's the ID of the pspace that should be
276 printed. Otherwise, all spaces are printed. */
277
278 static void
279 print_program_space (struct ui_out *uiout, int requested)
280 {
281 struct program_space *pspace;
282 int count = 0;
283 struct cleanup *old_chain;
284
285 /* Compute number of pspaces we will print. */
286 ALL_PSPACES (pspace)
287 {
288 if (requested != -1 && pspace->num != requested)
289 continue;
290
291 ++count;
292 }
293
294 /* There should always be at least one. */
295 gdb_assert (count > 0);
296
297 old_chain = make_cleanup_ui_out_table_begin_end (uiout, 3, count, "pspaces");
298 ui_out_table_header (uiout, 1, ui_left, "current", "");
299 ui_out_table_header (uiout, 4, ui_left, "id", "Id");
300 ui_out_table_header (uiout, 17, ui_left, "exec", "Executable");
301 ui_out_table_body (uiout);
302
303 ALL_PSPACES (pspace)
304 {
305 struct cleanup *chain2;
306 struct inferior *inf;
307 int printed_header;
308
309 if (requested != -1 && requested != pspace->num)
310 continue;
311
312 chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
313
314 if (pspace == current_program_space)
315 ui_out_field_string (uiout, "current", "*");
316 else
317 ui_out_field_skip (uiout, "current");
318
319 ui_out_field_int (uiout, "id", pspace->num);
320
321 if (pspace->pspace_exec_filename)
322 ui_out_field_string (uiout, "exec", pspace->pspace_exec_filename);
323 else
324 ui_out_field_skip (uiout, "exec");
325
326 /* Print extra info that doesn't really fit in tabular form.
327 Currently, we print the list of inferiors bound to a pspace.
328 There can be more than one inferior bound to the same pspace,
329 e.g., both parent/child inferiors in a vfork, or, on targets
330 that share pspaces between inferiors. */
331 printed_header = 0;
332 for (inf = inferior_list; inf; inf = inf->next)
333 if (inf->pspace == pspace)
334 {
335 if (!printed_header)
336 {
337 printed_header = 1;
338 printf_filtered ("\n\tBound inferiors: ID %d (%s)",
339 inf->num,
340 target_pid_to_str (pid_to_ptid (inf->pid)));
341 }
342 else
343 printf_filtered (", ID %d (%s)",
344 inf->num,
345 target_pid_to_str (pid_to_ptid (inf->pid)));
346 }
347
348 ui_out_text (uiout, "\n");
349 do_cleanups (chain2);
350 }
351
352 do_cleanups (old_chain);
353 }
354
355 /* Boolean test for an already-known program space id. */
356
357 static int
358 valid_program_space_id (int num)
359 {
360 struct program_space *pspace;
361
362 ALL_PSPACES (pspace)
363 if (pspace->num == num)
364 return 1;
365
366 return 0;
367 }
368
369 /* If ARGS is NULL or empty, print information about all program
370 spaces. Otherwise, ARGS is a text representation of a LONG
371 indicating which the program space to print information about. */
372
373 static void
374 maintenance_info_program_spaces_command (char *args, int from_tty)
375 {
376 int requested = -1;
377
378 if (args && *args)
379 {
380 requested = parse_and_eval_long (args);
381 if (!valid_program_space_id (requested))
382 error (_("program space ID %d not known."), requested);
383 }
384
385 print_program_space (current_uiout, requested);
386 }
387
388 /* Simply returns the count of program spaces. */
389
390 int
391 number_of_program_spaces (void)
392 {
393 struct program_space *pspace;
394 int count = 0;
395
396 ALL_PSPACES (pspace)
397 count++;
398
399 return count;
400 }
401
402 /* Update all program spaces matching to address spaces. The user may
403 have created several program spaces, and loaded executables into
404 them before connecting to the target interface that will create the
405 inferiors. All that happens before GDB has a chance to know if the
406 inferiors will share an address space or not. Call this after
407 having connected to the target interface and having fetched the
408 target description, to fixup the program/address spaces mappings.
409
410 It is assumed that there are no bound inferiors yet, otherwise,
411 they'd be left with stale referenced to released aspaces. */
412
413 void
414 update_address_spaces (void)
415 {
416 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
417 struct program_space *pspace;
418 struct inferior *inf;
419
420 init_address_spaces ();
421
422 if (shared_aspace)
423 {
424 struct address_space *aspace = new_address_space ();
425
426 free_address_space (current_program_space->aspace);
427 ALL_PSPACES (pspace)
428 pspace->aspace = aspace;
429 }
430 else
431 ALL_PSPACES (pspace)
432 {
433 free_address_space (pspace->aspace);
434 pspace->aspace = new_address_space ();
435 }
436
437 for (inf = inferior_list; inf; inf = inf->next)
438 if (gdbarch_has_global_solist (target_gdbarch ()))
439 inf->aspace = maybe_new_address_space ();
440 else
441 inf->aspace = inf->pspace->aspace;
442 }
443
444 /* Save the current program space so that it may be restored by a later
445 call to do_cleanups. Returns the struct cleanup pointer needed for
446 later doing the cleanup. */
447
448 struct cleanup *
449 save_current_space_and_thread (void)
450 {
451 struct cleanup *old_chain;
452
453 /* If restoring to null thread, we need to restore the pspace as
454 well, hence, we need to save the current program space first. */
455 old_chain = save_current_program_space ();
456 /* There's no need to save the current inferior here.
457 That is handled by make_cleanup_restore_current_thread. */
458 make_cleanup_restore_current_thread ();
459
460 return old_chain;
461 }
462
463 /* See progspace.h */
464
465 void
466 switch_to_program_space_and_thread (struct program_space *pspace)
467 {
468 struct inferior *inf;
469
470 inf = find_inferior_for_program_space (pspace);
471 if (inf != NULL && inf->pid != 0)
472 {
473 struct thread_info *tp;
474
475 tp = any_live_thread_of_process (inf->pid);
476 if (tp != NULL)
477 {
478 switch_to_thread (tp->ptid);
479 /* Switching thread switches pspace implicitly. We're
480 done. */
481 return;
482 }
483 }
484
485 switch_to_thread (null_ptid);
486 set_current_program_space (pspace);
487 }
488
489 \f
490
491 /* See progspace.h. */
492
493 void
494 clear_program_space_solib_cache (struct program_space *pspace)
495 {
496 VEC_free (so_list_ptr, pspace->added_solibs);
497
498 free_char_ptr_vec (pspace->deleted_solibs);
499 pspace->deleted_solibs = NULL;
500 }
501
502 \f
503
504 void
505 initialize_progspace (void)
506 {
507 add_cmd ("program-spaces", class_maintenance,
508 maintenance_info_program_spaces_command,
509 _("Info about currently known program spaces."),
510 &maintenanceinfolist);
511
512 /* There's always one program space. Note that this function isn't
513 an automatic _initialize_foo function, since other
514 _initialize_foo routines may need to install their per-pspace
515 data keys. We can only allocate a progspace when all those
516 modules have done that. Do this before
517 initialize_current_architecture, because that accesses exec_bfd,
518 which in turn dereferences current_program_space. */
519 current_program_space = add_program_space (new_address_space ());
520 }
This page took 0.039756 seconds and 4 git commands to generate.