*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / progspace.c
1 /* Program and address space management, for GDB, the GNU debugger.
2
3 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "objfiles.h"
23 #include "arch-utils.h"
24 #include "gdbcore.h"
25 #include "solib.h"
26 #include "gdbthread.h"
27
28 /* The last program space number assigned. */
29 int last_program_space_num = 0;
30
31 /* The head of the program spaces list. */
32 struct program_space *program_spaces;
33
34 /* Pointer to the current program space. */
35 struct program_space *current_program_space;
36
37 /* The last address space number assigned. */
38 static int highest_address_space_num;
39
40 /* Prototypes for local functions */
41
42 static void program_space_alloc_data (struct program_space *);
43 static void program_space_free_data (struct program_space *);
44 \f
45
46 /* An address space. Currently this is not used for much other than
47 for comparing if pspaces/inferior/threads see the same address
48 space. */
49
50 struct address_space
51 {
52 int num;
53 };
54
55 /* Create a new address space object, and add it to the list. */
56
57 struct address_space *
58 new_address_space (void)
59 {
60 struct address_space *aspace;
61
62 aspace = XZALLOC (struct address_space);
63 aspace->num = ++highest_address_space_num;
64
65 return aspace;
66 }
67
68 /* Maybe create a new address space object, and add it to the list, or
69 return a pointer to an existing address space, in case inferiors
70 share an address space on this target system. */
71
72 struct address_space *
73 maybe_new_address_space (void)
74 {
75 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch);
76
77 if (shared_aspace)
78 {
79 /* Just return the first in the list. */
80 return program_spaces->aspace;
81 }
82
83 return new_address_space ();
84 }
85
86 static void
87 free_address_space (struct address_space *aspace)
88 {
89 xfree (aspace);
90 }
91
92 int
93 address_space_num (struct address_space *aspace)
94 {
95 return aspace->num;
96 }
97
98 /* Start counting over from scratch. */
99
100 static void
101 init_address_spaces (void)
102 {
103 highest_address_space_num = 0;
104 }
105
106 \f
107
108 /* Adds a new empty program space to the program space list, and binds
109 it to ASPACE. Returns the pointer to the new object. */
110
111 struct program_space *
112 add_program_space (struct address_space *aspace)
113 {
114 struct program_space *pspace;
115
116 pspace = XZALLOC (struct program_space);
117
118 pspace->num = ++last_program_space_num;
119 pspace->aspace = aspace;
120
121 program_space_alloc_data (pspace);
122
123 pspace->next = program_spaces;
124 program_spaces = pspace;
125
126 return pspace;
127 }
128
129 /* Releases program space PSPACE, and all its contents (shared
130 libraries, objfiles, and any other references to the PSPACE in
131 other modules). It is an internal error to call this when PSPACE
132 is the current program space, since there should always be a
133 program space. */
134
135 static void
136 release_program_space (struct program_space *pspace)
137 {
138 struct cleanup *old_chain = save_current_program_space ();
139
140 gdb_assert (pspace != current_program_space);
141
142 set_current_program_space (pspace);
143
144 breakpoint_program_space_exit (pspace);
145 no_shared_libraries (NULL, 0);
146 exec_close ();
147 free_all_objfiles ();
148 if (!gdbarch_has_shared_address_space (target_gdbarch))
149 free_address_space (pspace->aspace);
150 resize_section_table (&pspace->target_sections,
151 -resize_section_table (&pspace->target_sections, 0));
152 /* Discard any data modules have associated with the PSPACE. */
153 program_space_free_data (pspace);
154 xfree (pspace);
155
156 do_cleanups (old_chain);
157 }
158
159 /* Unlinks PSPACE from the pspace list, and releases it. */
160
161 void
162 remove_program_space (struct program_space *pspace)
163 {
164 struct program_space *ss, **ss_link;
165
166 ss = program_spaces;
167 ss_link = &program_spaces;
168 while (ss)
169 {
170 if (ss != pspace)
171 {
172 ss_link = &ss->next;
173 ss = *ss_link;
174 continue;
175 }
176
177 *ss_link = ss->next;
178 release_program_space (ss);
179 ss = *ss_link;
180 }
181 }
182
183 /* Copies program space SRC to DEST. Copies the main executable file,
184 and the main symbol file. Returns DEST. */
185
186 struct program_space *
187 clone_program_space (struct program_space *dest, struct program_space *src)
188 {
189 struct program_space *new_pspace;
190 struct cleanup *old_chain;
191
192 old_chain = save_current_program_space ();
193
194 set_current_program_space (dest);
195
196 if (src->ebfd != NULL)
197 exec_file_attach (bfd_get_filename (src->ebfd), 0);
198
199 if (src->symfile_object_file != NULL)
200 symbol_file_add_main (src->symfile_object_file->name, 0);
201
202 do_cleanups (old_chain);
203 return dest;
204 }
205
206 /* Sets PSPACE as the current program space. It is the caller's
207 responsibility to make sure that the currently selected
208 inferior/thread matches the selected program space. */
209
210 void
211 set_current_program_space (struct program_space *pspace)
212 {
213 if (current_program_space == pspace)
214 return;
215
216 gdb_assert (pspace != NULL);
217
218 current_program_space = pspace;
219
220 /* Different symbols change our view of the frame chain. */
221 reinit_frame_cache ();
222 }
223
224 /* A cleanups callback, helper for save_current_program_space
225 below. */
226
227 static void
228 restore_program_space (void *arg)
229 {
230 struct program_space *saved_pspace = arg;
231 set_current_program_space (saved_pspace);
232 }
233
234 /* Save the current program space so that it may be restored by a later
235 call to do_cleanups. Returns the struct cleanup pointer needed for
236 later doing the cleanup. */
237
238 struct cleanup *
239 save_current_program_space (void)
240 {
241 struct cleanup *old_chain = make_cleanup (restore_program_space,
242 current_program_space);
243 return old_chain;
244 }
245
246 /* Returns true iff there's no inferior bound to PSPACE. */
247
248 static int
249 pspace_empty_p (struct program_space *pspace)
250 {
251 struct inferior *inf;
252
253 if (find_inferior_for_program_space (pspace) != NULL)
254 return 0;
255
256 return 1;
257 }
258
259 /* Prune away automatically added program spaces that aren't required
260 anymore. */
261
262 void
263 prune_program_spaces (void)
264 {
265 struct program_space *ss, **ss_link;
266 struct program_space *current = current_program_space;
267
268 ss = program_spaces;
269 ss_link = &program_spaces;
270 while (ss)
271 {
272 if (ss == current || !pspace_empty_p (ss))
273 {
274 ss_link = &ss->next;
275 ss = *ss_link;
276 continue;
277 }
278
279 *ss_link = ss->next;
280 release_program_space (ss);
281 ss = *ss_link;
282 }
283 }
284
285 /* Prints the list of program spaces and their details on UIOUT. If
286 REQUESTED is not -1, it's the ID of the pspace that should be
287 printed. Otherwise, all spaces are printed. */
288
289 static void
290 print_program_space (struct ui_out *uiout, int requested)
291 {
292 struct program_space *pspace;
293 int count = 0;
294 struct cleanup *old_chain;
295
296 /* Might as well prune away unneeded ones, so the user doesn't even
297 seem them. */
298 prune_program_spaces ();
299
300 /* Compute number of pspaces we will print. */
301 ALL_PSPACES (pspace)
302 {
303 if (requested != -1 && pspace->num != requested)
304 continue;
305
306 ++count;
307 }
308
309 /* There should always be at least one. */
310 gdb_assert (count > 0);
311
312 old_chain = make_cleanup_ui_out_table_begin_end (uiout, 3, count, "pspaces");
313 ui_out_table_header (uiout, 1, ui_left, "current", "");
314 ui_out_table_header (uiout, 4, ui_left, "id", "Id");
315 ui_out_table_header (uiout, 17, ui_left, "exec", "Executable");
316 ui_out_table_body (uiout);
317
318 ALL_PSPACES (pspace)
319 {
320 struct cleanup *chain2;
321 struct inferior *inf;
322 int printed_header;
323
324 if (requested != -1 && requested != pspace->num)
325 continue;
326
327 chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
328
329 if (pspace == current_program_space)
330 ui_out_field_string (uiout, "current", "*");
331 else
332 ui_out_field_skip (uiout, "current");
333
334 ui_out_field_int (uiout, "id", pspace->num);
335
336 if (pspace->ebfd)
337 ui_out_field_string (uiout, "exec",
338 bfd_get_filename (pspace->ebfd));
339 else
340 ui_out_field_skip (uiout, "exec");
341
342 /* Print extra info that doesn't really fit in tabular form.
343 Currently, we print the list of inferiors bound to a pspace.
344 There can be more than one inferior bound to the same pspace,
345 e.g., both parent/child inferiors in a vfork, or, on targets
346 that share pspaces between inferiors. */
347 printed_header = 0;
348 for (inf = inferior_list; inf; inf = inf->next)
349 if (inf->pspace == pspace)
350 {
351 if (!printed_header)
352 {
353 printed_header = 1;
354 printf_filtered ("\n\tBound inferiors: ID %d (%s)",
355 inf->num,
356 target_pid_to_str (pid_to_ptid (inf->pid)));
357 }
358 else
359 printf_filtered (", ID %d (%s)",
360 inf->num,
361 target_pid_to_str (pid_to_ptid (inf->pid)));
362 }
363
364 ui_out_text (uiout, "\n");
365 do_cleanups (chain2);
366 }
367
368 do_cleanups (old_chain);
369 }
370
371 /* Boolean test for an already-known program space id. */
372
373 static int
374 valid_program_space_id (int num)
375 {
376 struct program_space *pspace;
377
378 ALL_PSPACES (pspace)
379 if (pspace->num == num)
380 return 1;
381
382 return 0;
383 }
384
385 /* If ARGS is NULL or empty, print information about all program
386 spaces. Otherwise, ARGS is a text representation of a LONG
387 indicating which the program space to print information about. */
388
389 static void
390 maintenance_info_program_spaces_command (char *args, int from_tty)
391 {
392 int requested = -1;
393
394 if (args && *args)
395 {
396 requested = parse_and_eval_long (args);
397 if (!valid_program_space_id (requested))
398 error (_("program space ID %d not known."), requested);
399 }
400
401 print_program_space (uiout, requested);
402 }
403
404 /* Simply returns the count of program spaces. */
405
406 int
407 number_of_program_spaces (void)
408 {
409 struct program_space *pspace;
410 int count = 0;
411
412 ALL_PSPACES (pspace)
413 count++;
414
415 return count;
416 }
417
418 /* Update all program spaces matching to address spaces. The user may
419 have created several program spaces, and loaded executables into
420 them before connecting to the target interface that will create the
421 inferiors. All that happens before GDB has a chance to know if the
422 inferiors will share an address space or not. Call this after
423 having connected to the target interface and having fetched the
424 target description, to fixup the program/address spaces mappings.
425
426 It is assumed that there are no bound inferiors yet, otherwise,
427 they'd be left with stale referenced to released aspaces. */
428
429 void
430 update_address_spaces (void)
431 {
432 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch);
433 struct program_space *pspace;
434 struct inferior *inf;
435
436 init_address_spaces ();
437
438 if (shared_aspace)
439 {
440 struct address_space *aspace = new_address_space ();
441 free_address_space (current_program_space->aspace);
442 ALL_PSPACES (pspace)
443 pspace->aspace = aspace;
444 }
445 else
446 ALL_PSPACES (pspace)
447 {
448 free_address_space (pspace->aspace);
449 pspace->aspace = new_address_space ();
450 }
451
452 for (inf = inferior_list; inf; inf = inf->next)
453 if (gdbarch_has_global_solist (target_gdbarch))
454 inf->aspace = maybe_new_address_space ();
455 else
456 inf->aspace = inf->pspace->aspace;
457 }
458
459 /* Save the current program space so that it may be restored by a later
460 call to do_cleanups. Returns the struct cleanup pointer needed for
461 later doing the cleanup. */
462
463 struct cleanup *
464 save_current_space_and_thread (void)
465 {
466 struct cleanup *old_chain;
467
468 /* If restoring to null thread, we need to restore the pspace as
469 well, hence, we need to save the current program space first. */
470 old_chain = save_current_program_space ();
471 save_current_inferior ();
472 make_cleanup_restore_current_thread ();
473
474 return old_chain;
475 }
476
477 /* Switches full context to program space PSPACE. Switches to the
478 first thread found bound to PSPACE. */
479
480 void
481 switch_to_program_space_and_thread (struct program_space *pspace)
482 {
483 struct inferior *inf;
484
485 inf = find_inferior_for_program_space (pspace);
486 if (inf != NULL)
487 {
488 struct thread_info *tp;
489
490 tp = any_live_thread_of_process (inf->pid);
491 if (tp != NULL)
492 {
493 switch_to_thread (tp->ptid);
494 /* Switching thread switches pspace implicitly. We're
495 done. */
496 return;
497 }
498 }
499
500 switch_to_thread (null_ptid);
501 set_current_program_space (pspace);
502 }
503
504 \f
505
506 /* Keep a registry of per-program_space data-pointers required by other GDB
507 modules. */
508
509 struct program_space_data
510 {
511 unsigned index;
512 void (*cleanup) (struct program_space *, void *);
513 };
514
515 struct program_space_data_registration
516 {
517 struct program_space_data *data;
518 struct program_space_data_registration *next;
519 };
520
521 struct program_space_data_registry
522 {
523 struct program_space_data_registration *registrations;
524 unsigned num_registrations;
525 };
526
527 static struct program_space_data_registry program_space_data_registry
528 = { NULL, 0 };
529
530 const struct program_space_data *
531 register_program_space_data_with_cleanup
532 (void (*cleanup) (struct program_space *, void *))
533 {
534 struct program_space_data_registration **curr;
535
536 /* Append new registration. */
537 for (curr = &program_space_data_registry.registrations;
538 *curr != NULL; curr = &(*curr)->next);
539
540 *curr = XMALLOC (struct program_space_data_registration);
541 (*curr)->next = NULL;
542 (*curr)->data = XMALLOC (struct program_space_data);
543 (*curr)->data->index = program_space_data_registry.num_registrations++;
544 (*curr)->data->cleanup = cleanup;
545
546 return (*curr)->data;
547 }
548
549 const struct program_space_data *
550 register_program_space_data (void)
551 {
552 return register_program_space_data_with_cleanup (NULL);
553 }
554
555 static void
556 program_space_alloc_data (struct program_space *pspace)
557 {
558 gdb_assert (pspace->data == NULL);
559 pspace->num_data = program_space_data_registry.num_registrations;
560 pspace->data = XCALLOC (pspace->num_data, void *);
561 }
562
563 static void
564 program_space_free_data (struct program_space *pspace)
565 {
566 gdb_assert (pspace->data != NULL);
567 clear_program_space_data (pspace);
568 xfree (pspace->data);
569 pspace->data = NULL;
570 }
571
572 void
573 clear_program_space_data (struct program_space *pspace)
574 {
575 struct program_space_data_registration *registration;
576 int i;
577
578 gdb_assert (pspace->data != NULL);
579
580 for (registration = program_space_data_registry.registrations, i = 0;
581 i < pspace->num_data;
582 registration = registration->next, i++)
583 if (pspace->data[i] != NULL && registration->data->cleanup)
584 registration->data->cleanup (pspace, pspace->data[i]);
585
586 memset (pspace->data, 0, pspace->num_data * sizeof (void *));
587 }
588
589 void
590 set_program_space_data (struct program_space *pspace,
591 const struct program_space_data *data,
592 void *value)
593 {
594 gdb_assert (data->index < pspace->num_data);
595 pspace->data[data->index] = value;
596 }
597
598 void *
599 program_space_data (struct program_space *pspace, const struct program_space_data *data)
600 {
601 gdb_assert (data->index < pspace->num_data);
602 return pspace->data[data->index];
603 }
604
605 \f
606
607 void
608 initialize_progspace (void)
609 {
610 add_cmd ("program-spaces", class_maintenance,
611 maintenance_info_program_spaces_command, _("\
612 Info about currently known program spaces."),
613 &maintenanceinfolist);
614
615 /* There's always one program space. Note that this function isn't
616 an automatic _initialize_foo function, since other
617 _initialize_foo routines may need to install their per-pspace
618 data keys. We can only allocate a progspace when all those
619 modules have done that. Do this before
620 initialize_current_architecture, because that accesses exec_bfd,
621 which in turn dereferences current_program_space. */
622 current_program_space = add_program_space (new_address_space ());
623 }
This page took 0.043166 seconds and 4 git commands to generate.