54531d9b1fb20b014dae90b95b7e1ed0a2448712
[deliverable/binutils-gdb.git] / gdb / progspace.c
1 /* Program and address space management, for GDB, the GNU debugger.
2
3 Copyright (C) 2009-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "objfiles.h"
23 #include "arch-utils.h"
24 #include "gdbcore.h"
25 #include "solib.h"
26 #include "gdbthread.h"
27
28 /* The last program space number assigned. */
29 int last_program_space_num = 0;
30
31 /* The head of the program spaces list. */
32 struct program_space *program_spaces;
33
34 /* Pointer to the current program space. */
35 struct program_space *current_program_space;
36
37 /* The last address space number assigned. */
38 static int highest_address_space_num;
39
40 /* Prototypes for local functions */
41
42 static void program_space_alloc_data (struct program_space *);
43 static void program_space_free_data (struct program_space *);
44 \f
45
46 /* An address space. Currently this is not used for much other than
47 for comparing if pspaces/inferior/threads see the same address
48 space. */
49
50 struct address_space
51 {
52 int num;
53 };
54
55 /* Create a new address space object, and add it to the list. */
56
57 struct address_space *
58 new_address_space (void)
59 {
60 struct address_space *aspace;
61
62 aspace = XZALLOC (struct address_space);
63 aspace->num = ++highest_address_space_num;
64
65 return aspace;
66 }
67
68 /* Maybe create a new address space object, and add it to the list, or
69 return a pointer to an existing address space, in case inferiors
70 share an address space on this target system. */
71
72 struct address_space *
73 maybe_new_address_space (void)
74 {
75 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch);
76
77 if (shared_aspace)
78 {
79 /* Just return the first in the list. */
80 return program_spaces->aspace;
81 }
82
83 return new_address_space ();
84 }
85
86 static void
87 free_address_space (struct address_space *aspace)
88 {
89 xfree (aspace);
90 }
91
92 int
93 address_space_num (struct address_space *aspace)
94 {
95 return aspace->num;
96 }
97
98 /* Start counting over from scratch. */
99
100 static void
101 init_address_spaces (void)
102 {
103 highest_address_space_num = 0;
104 }
105
106 \f
107
108 /* Adds a new empty program space to the program space list, and binds
109 it to ASPACE. Returns the pointer to the new object. */
110
111 struct program_space *
112 add_program_space (struct address_space *aspace)
113 {
114 struct program_space *pspace;
115
116 pspace = XZALLOC (struct program_space);
117
118 pspace->num = ++last_program_space_num;
119 pspace->aspace = aspace;
120
121 program_space_alloc_data (pspace);
122
123 pspace->next = program_spaces;
124 program_spaces = pspace;
125
126 return pspace;
127 }
128
129 /* Releases program space PSPACE, and all its contents (shared
130 libraries, objfiles, and any other references to the PSPACE in
131 other modules). It is an internal error to call this when PSPACE
132 is the current program space, since there should always be a
133 program space. */
134
135 static void
136 release_program_space (struct program_space *pspace)
137 {
138 struct cleanup *old_chain = save_current_program_space ();
139
140 gdb_assert (pspace != current_program_space);
141
142 set_current_program_space (pspace);
143
144 breakpoint_program_space_exit (pspace);
145 no_shared_libraries (NULL, 0);
146 exec_close ();
147 free_all_objfiles ();
148 if (!gdbarch_has_shared_address_space (target_gdbarch))
149 free_address_space (pspace->aspace);
150 resize_section_table (&pspace->target_sections,
151 -resize_section_table (&pspace->target_sections, 0));
152 clear_program_space_solib_cache (pspace);
153 /* Discard any data modules have associated with the PSPACE. */
154 program_space_free_data (pspace);
155 xfree (pspace);
156
157 do_cleanups (old_chain);
158 }
159
160 /* Unlinks PSPACE from the pspace list, and releases it. */
161
162 void
163 remove_program_space (struct program_space *pspace)
164 {
165 struct program_space *ss, **ss_link;
166
167 ss = program_spaces;
168 ss_link = &program_spaces;
169 while (ss)
170 {
171 if (ss != pspace)
172 {
173 ss_link = &ss->next;
174 ss = *ss_link;
175 continue;
176 }
177
178 *ss_link = ss->next;
179 release_program_space (ss);
180 ss = *ss_link;
181 }
182 }
183
184 /* Copies program space SRC to DEST. Copies the main executable file,
185 and the main symbol file. Returns DEST. */
186
187 struct program_space *
188 clone_program_space (struct program_space *dest, struct program_space *src)
189 {
190 struct cleanup *old_chain;
191
192 old_chain = save_current_program_space ();
193
194 set_current_program_space (dest);
195
196 if (src->ebfd != NULL)
197 exec_file_attach (bfd_get_filename (src->ebfd), 0);
198
199 if (src->symfile_object_file != NULL)
200 symbol_file_add_main (src->symfile_object_file->name, 0);
201
202 do_cleanups (old_chain);
203 return dest;
204 }
205
206 /* Sets PSPACE as the current program space. It is the caller's
207 responsibility to make sure that the currently selected
208 inferior/thread matches the selected program space. */
209
210 void
211 set_current_program_space (struct program_space *pspace)
212 {
213 if (current_program_space == pspace)
214 return;
215
216 gdb_assert (pspace != NULL);
217
218 current_program_space = pspace;
219
220 /* Different symbols change our view of the frame chain. */
221 reinit_frame_cache ();
222 }
223
224 /* A cleanups callback, helper for save_current_program_space
225 below. */
226
227 static void
228 restore_program_space (void *arg)
229 {
230 struct program_space *saved_pspace = arg;
231
232 set_current_program_space (saved_pspace);
233 }
234
235 /* Save the current program space so that it may be restored by a later
236 call to do_cleanups. Returns the struct cleanup pointer needed for
237 later doing the cleanup. */
238
239 struct cleanup *
240 save_current_program_space (void)
241 {
242 struct cleanup *old_chain = make_cleanup (restore_program_space,
243 current_program_space);
244
245 return old_chain;
246 }
247
248 /* Returns true iff there's no inferior bound to PSPACE. */
249
250 static int
251 pspace_empty_p (struct program_space *pspace)
252 {
253 if (find_inferior_for_program_space (pspace) != NULL)
254 return 0;
255
256 return 1;
257 }
258
259 /* Prune away automatically added program spaces that aren't required
260 anymore. */
261
262 void
263 prune_program_spaces (void)
264 {
265 struct program_space *ss, **ss_link;
266 struct program_space *current = current_program_space;
267
268 ss = program_spaces;
269 ss_link = &program_spaces;
270 while (ss)
271 {
272 if (ss == current || !pspace_empty_p (ss))
273 {
274 ss_link = &ss->next;
275 ss = *ss_link;
276 continue;
277 }
278
279 *ss_link = ss->next;
280 release_program_space (ss);
281 ss = *ss_link;
282 }
283 }
284
285 /* Prints the list of program spaces and their details on UIOUT. If
286 REQUESTED is not -1, it's the ID of the pspace that should be
287 printed. Otherwise, all spaces are printed. */
288
289 static void
290 print_program_space (struct ui_out *uiout, int requested)
291 {
292 struct program_space *pspace;
293 int count = 0;
294 struct cleanup *old_chain;
295
296 /* Might as well prune away unneeded ones, so the user doesn't even
297 seem them. */
298 prune_program_spaces ();
299
300 /* Compute number of pspaces we will print. */
301 ALL_PSPACES (pspace)
302 {
303 if (requested != -1 && pspace->num != requested)
304 continue;
305
306 ++count;
307 }
308
309 /* There should always be at least one. */
310 gdb_assert (count > 0);
311
312 old_chain = make_cleanup_ui_out_table_begin_end (uiout, 3, count, "pspaces");
313 ui_out_table_header (uiout, 1, ui_left, "current", "");
314 ui_out_table_header (uiout, 4, ui_left, "id", "Id");
315 ui_out_table_header (uiout, 17, ui_left, "exec", "Executable");
316 ui_out_table_body (uiout);
317
318 ALL_PSPACES (pspace)
319 {
320 struct cleanup *chain2;
321 struct inferior *inf;
322 int printed_header;
323
324 if (requested != -1 && requested != pspace->num)
325 continue;
326
327 chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
328
329 if (pspace == current_program_space)
330 ui_out_field_string (uiout, "current", "*");
331 else
332 ui_out_field_skip (uiout, "current");
333
334 ui_out_field_int (uiout, "id", pspace->num);
335
336 if (pspace->ebfd)
337 ui_out_field_string (uiout, "exec",
338 bfd_get_filename (pspace->ebfd));
339 else
340 ui_out_field_skip (uiout, "exec");
341
342 /* Print extra info that doesn't really fit in tabular form.
343 Currently, we print the list of inferiors bound to a pspace.
344 There can be more than one inferior bound to the same pspace,
345 e.g., both parent/child inferiors in a vfork, or, on targets
346 that share pspaces between inferiors. */
347 printed_header = 0;
348 for (inf = inferior_list; inf; inf = inf->next)
349 if (inf->pspace == pspace)
350 {
351 if (!printed_header)
352 {
353 printed_header = 1;
354 printf_filtered ("\n\tBound inferiors: ID %d (%s)",
355 inf->num,
356 target_pid_to_str (pid_to_ptid (inf->pid)));
357 }
358 else
359 printf_filtered (", ID %d (%s)",
360 inf->num,
361 target_pid_to_str (pid_to_ptid (inf->pid)));
362 }
363
364 ui_out_text (uiout, "\n");
365 do_cleanups (chain2);
366 }
367
368 do_cleanups (old_chain);
369 }
370
371 /* Boolean test for an already-known program space id. */
372
373 static int
374 valid_program_space_id (int num)
375 {
376 struct program_space *pspace;
377
378 ALL_PSPACES (pspace)
379 if (pspace->num == num)
380 return 1;
381
382 return 0;
383 }
384
385 /* If ARGS is NULL or empty, print information about all program
386 spaces. Otherwise, ARGS is a text representation of a LONG
387 indicating which the program space to print information about. */
388
389 static void
390 maintenance_info_program_spaces_command (char *args, int from_tty)
391 {
392 int requested = -1;
393
394 if (args && *args)
395 {
396 requested = parse_and_eval_long (args);
397 if (!valid_program_space_id (requested))
398 error (_("program space ID %d not known."), requested);
399 }
400
401 print_program_space (current_uiout, requested);
402 }
403
404 /* Simply returns the count of program spaces. */
405
406 int
407 number_of_program_spaces (void)
408 {
409 struct program_space *pspace;
410 int count = 0;
411
412 ALL_PSPACES (pspace)
413 count++;
414
415 return count;
416 }
417
418 /* Update all program spaces matching to address spaces. The user may
419 have created several program spaces, and loaded executables into
420 them before connecting to the target interface that will create the
421 inferiors. All that happens before GDB has a chance to know if the
422 inferiors will share an address space or not. Call this after
423 having connected to the target interface and having fetched the
424 target description, to fixup the program/address spaces mappings.
425
426 It is assumed that there are no bound inferiors yet, otherwise,
427 they'd be left with stale referenced to released aspaces. */
428
429 void
430 update_address_spaces (void)
431 {
432 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch);
433 struct program_space *pspace;
434 struct inferior *inf;
435
436 init_address_spaces ();
437
438 if (shared_aspace)
439 {
440 struct address_space *aspace = new_address_space ();
441
442 free_address_space (current_program_space->aspace);
443 ALL_PSPACES (pspace)
444 pspace->aspace = aspace;
445 }
446 else
447 ALL_PSPACES (pspace)
448 {
449 free_address_space (pspace->aspace);
450 pspace->aspace = new_address_space ();
451 }
452
453 for (inf = inferior_list; inf; inf = inf->next)
454 if (gdbarch_has_global_solist (target_gdbarch))
455 inf->aspace = maybe_new_address_space ();
456 else
457 inf->aspace = inf->pspace->aspace;
458 }
459
460 /* Save the current program space so that it may be restored by a later
461 call to do_cleanups. Returns the struct cleanup pointer needed for
462 later doing the cleanup. */
463
464 struct cleanup *
465 save_current_space_and_thread (void)
466 {
467 struct cleanup *old_chain;
468
469 /* If restoring to null thread, we need to restore the pspace as
470 well, hence, we need to save the current program space first. */
471 old_chain = save_current_program_space ();
472 save_current_inferior ();
473 make_cleanup_restore_current_thread ();
474
475 return old_chain;
476 }
477
478 /* Switches full context to program space PSPACE. Switches to the
479 first thread found bound to PSPACE. */
480
481 void
482 switch_to_program_space_and_thread (struct program_space *pspace)
483 {
484 struct inferior *inf;
485
486 inf = find_inferior_for_program_space (pspace);
487 if (inf != NULL)
488 {
489 struct thread_info *tp;
490
491 tp = any_live_thread_of_process (inf->pid);
492 if (tp != NULL)
493 {
494 switch_to_thread (tp->ptid);
495 /* Switching thread switches pspace implicitly. We're
496 done. */
497 return;
498 }
499 }
500
501 switch_to_thread (null_ptid);
502 set_current_program_space (pspace);
503 }
504
505 \f
506
507 /* See progspace.h. */
508
509 void
510 clear_program_space_solib_cache (struct program_space *pspace)
511 {
512 int ix;
513 char *name;
514
515 VEC_free (so_list_ptr, pspace->added_solibs);
516 for (ix = 0; VEC_iterate (char_ptr, pspace->deleted_solibs, ix, name); ++ix)
517 xfree (name);
518 VEC_free (char_ptr, pspace->deleted_solibs);
519 }
520
521 \f
522
523 /* Keep a registry of per-program_space data-pointers required by other GDB
524 modules. */
525
526 struct program_space_data
527 {
528 unsigned index;
529 void (*cleanup) (struct program_space *, void *);
530 };
531
532 struct program_space_data_registration
533 {
534 struct program_space_data *data;
535 struct program_space_data_registration *next;
536 };
537
538 struct program_space_data_registry
539 {
540 struct program_space_data_registration *registrations;
541 unsigned num_registrations;
542 };
543
544 static struct program_space_data_registry program_space_data_registry
545 = { NULL, 0 };
546
547 const struct program_space_data *
548 register_program_space_data_with_cleanup
549 (void (*cleanup) (struct program_space *, void *))
550 {
551 struct program_space_data_registration **curr;
552
553 /* Append new registration. */
554 for (curr = &program_space_data_registry.registrations;
555 *curr != NULL; curr = &(*curr)->next);
556
557 *curr = XMALLOC (struct program_space_data_registration);
558 (*curr)->next = NULL;
559 (*curr)->data = XMALLOC (struct program_space_data);
560 (*curr)->data->index = program_space_data_registry.num_registrations++;
561 (*curr)->data->cleanup = cleanup;
562
563 return (*curr)->data;
564 }
565
566 const struct program_space_data *
567 register_program_space_data (void)
568 {
569 return register_program_space_data_with_cleanup (NULL);
570 }
571
572 static void
573 program_space_alloc_data (struct program_space *pspace)
574 {
575 gdb_assert (pspace->data == NULL);
576 pspace->num_data = program_space_data_registry.num_registrations;
577 pspace->data = XCALLOC (pspace->num_data, void *);
578 }
579
580 static void
581 program_space_free_data (struct program_space *pspace)
582 {
583 gdb_assert (pspace->data != NULL);
584 clear_program_space_data (pspace);
585 xfree (pspace->data);
586 pspace->data = NULL;
587 }
588
589 void
590 clear_program_space_data (struct program_space *pspace)
591 {
592 struct program_space_data_registration *registration;
593 int i;
594
595 gdb_assert (pspace->data != NULL);
596
597 for (registration = program_space_data_registry.registrations, i = 0;
598 i < pspace->num_data;
599 registration = registration->next, i++)
600 if (pspace->data[i] != NULL && registration->data->cleanup)
601 registration->data->cleanup (pspace, pspace->data[i]);
602
603 memset (pspace->data, 0, pspace->num_data * sizeof (void *));
604 }
605
606 void
607 set_program_space_data (struct program_space *pspace,
608 const struct program_space_data *data,
609 void *value)
610 {
611 gdb_assert (data->index < pspace->num_data);
612 pspace->data[data->index] = value;
613 }
614
615 void *
616 program_space_data (struct program_space *pspace,
617 const struct program_space_data *data)
618 {
619 gdb_assert (data->index < pspace->num_data);
620 return pspace->data[data->index];
621 }
622
623 \f
624
625 void
626 initialize_progspace (void)
627 {
628 add_cmd ("program-spaces", class_maintenance,
629 maintenance_info_program_spaces_command,
630 _("Info about currently known program spaces."),
631 &maintenanceinfolist);
632
633 /* There's always one program space. Note that this function isn't
634 an automatic _initialize_foo function, since other
635 _initialize_foo routines may need to install their per-pspace
636 data keys. We can only allocate a progspace when all those
637 modules have done that. Do this before
638 initialize_current_architecture, because that accesses exec_bfd,
639 which in turn dereferences current_program_space. */
640 current_program_space = add_program_space (new_address_space ());
641 }
This page took 0.04298 seconds and 4 git commands to generate.