daily update
[deliverable/binutils-gdb.git] / gdb / progspace.c
1 /* Program and address space management, for GDB, the GNU debugger.
2
3 Copyright (C) 2009-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "objfiles.h"
23 #include "arch-utils.h"
24 #include "gdbcore.h"
25 #include "solib.h"
26 #include "gdbthread.h"
27
28 /* The last program space number assigned. */
29 int last_program_space_num = 0;
30
31 /* The head of the program spaces list. */
32 struct program_space *program_spaces;
33
34 /* Pointer to the current program space. */
35 struct program_space *current_program_space;
36
37 /* The last address space number assigned. */
38 static int highest_address_space_num;
39
40 \f
41
42 /* Keep a registry of per-program_space data-pointers required by other GDB
43 modules. */
44
45 DEFINE_REGISTRY (program_space, REGISTRY_ACCESS_FIELD)
46
47 /* An address space. It is used for comparing if pspaces/inferior/threads
48 see the same address space and for associating caches to each address
49 space. */
50
51 struct address_space
52 {
53 int num;
54
55 /* Per aspace data-pointers required by other GDB modules. */
56 REGISTRY_FIELDS;
57 };
58
59 /* Keep a registry of per-address_space data-pointers required by other GDB
60 modules. */
61
62 DEFINE_REGISTRY (address_space, REGISTRY_ACCESS_FIELD)
63
64 \f
65
66 /* Create a new address space object, and add it to the list. */
67
68 struct address_space *
69 new_address_space (void)
70 {
71 struct address_space *aspace;
72
73 aspace = XCNEW (struct address_space);
74 aspace->num = ++highest_address_space_num;
75 address_space_alloc_data (aspace);
76
77 return aspace;
78 }
79
80 /* Maybe create a new address space object, and add it to the list, or
81 return a pointer to an existing address space, in case inferiors
82 share an address space on this target system. */
83
84 struct address_space *
85 maybe_new_address_space (void)
86 {
87 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
88
89 if (shared_aspace)
90 {
91 /* Just return the first in the list. */
92 return program_spaces->aspace;
93 }
94
95 return new_address_space ();
96 }
97
98 static void
99 free_address_space (struct address_space *aspace)
100 {
101 address_space_free_data (aspace);
102 xfree (aspace);
103 }
104
105 int
106 address_space_num (struct address_space *aspace)
107 {
108 return aspace->num;
109 }
110
111 /* Start counting over from scratch. */
112
113 static void
114 init_address_spaces (void)
115 {
116 highest_address_space_num = 0;
117 }
118
119 \f
120
121 /* Adds a new empty program space to the program space list, and binds
122 it to ASPACE. Returns the pointer to the new object. */
123
124 struct program_space *
125 add_program_space (struct address_space *aspace)
126 {
127 struct program_space *pspace;
128
129 pspace = XCNEW (struct program_space);
130
131 pspace->num = ++last_program_space_num;
132 pspace->aspace = aspace;
133
134 program_space_alloc_data (pspace);
135
136 pspace->next = program_spaces;
137 program_spaces = pspace;
138
139 return pspace;
140 }
141
142 /* Releases program space PSPACE, and all its contents (shared
143 libraries, objfiles, and any other references to the PSPACE in
144 other modules). It is an internal error to call this when PSPACE
145 is the current program space, since there should always be a
146 program space. */
147
148 static void
149 release_program_space (struct program_space *pspace)
150 {
151 struct cleanup *old_chain = save_current_program_space ();
152
153 gdb_assert (pspace != current_program_space);
154
155 set_current_program_space (pspace);
156
157 breakpoint_program_space_exit (pspace);
158 no_shared_libraries (NULL, 0);
159 exec_close ();
160 free_all_objfiles ();
161 if (!gdbarch_has_shared_address_space (target_gdbarch ()))
162 free_address_space (pspace->aspace);
163 clear_section_table (&pspace->target_sections);
164 clear_program_space_solib_cache (pspace);
165 /* Discard any data modules have associated with the PSPACE. */
166 program_space_free_data (pspace);
167 xfree (pspace);
168
169 do_cleanups (old_chain);
170 }
171
172 /* Copies program space SRC to DEST. Copies the main executable file,
173 and the main symbol file. Returns DEST. */
174
175 struct program_space *
176 clone_program_space (struct program_space *dest, struct program_space *src)
177 {
178 struct cleanup *old_chain;
179
180 old_chain = save_current_program_space ();
181
182 set_current_program_space (dest);
183
184 if (src->pspace_exec_filename != NULL)
185 exec_file_attach (src->pspace_exec_filename, 0);
186
187 if (src->symfile_object_file != NULL)
188 symbol_file_add_main (objfile_name (src->symfile_object_file), 0);
189
190 do_cleanups (old_chain);
191 return dest;
192 }
193
194 /* Sets PSPACE as the current program space. It is the caller's
195 responsibility to make sure that the currently selected
196 inferior/thread matches the selected program space. */
197
198 void
199 set_current_program_space (struct program_space *pspace)
200 {
201 if (current_program_space == pspace)
202 return;
203
204 gdb_assert (pspace != NULL);
205
206 current_program_space = pspace;
207
208 /* Different symbols change our view of the frame chain. */
209 reinit_frame_cache ();
210 }
211
212 /* A cleanups callback, helper for save_current_program_space
213 below. */
214
215 static void
216 restore_program_space (void *arg)
217 {
218 struct program_space *saved_pspace = arg;
219
220 set_current_program_space (saved_pspace);
221 }
222
223 /* Save the current program space so that it may be restored by a later
224 call to do_cleanups. Returns the struct cleanup pointer needed for
225 later doing the cleanup. */
226
227 struct cleanup *
228 save_current_program_space (void)
229 {
230 struct cleanup *old_chain = make_cleanup (restore_program_space,
231 current_program_space);
232
233 return old_chain;
234 }
235
236 /* Returns true iff there's no inferior bound to PSPACE. */
237
238 static int
239 pspace_empty_p (struct program_space *pspace)
240 {
241 if (find_inferior_for_program_space (pspace) != NULL)
242 return 0;
243
244 return 1;
245 }
246
247 /* Prune away automatically added program spaces that aren't required
248 anymore. */
249
250 void
251 prune_program_spaces (void)
252 {
253 struct program_space *ss, **ss_link;
254 struct program_space *current = current_program_space;
255
256 ss = program_spaces;
257 ss_link = &program_spaces;
258 while (ss)
259 {
260 if (ss == current || !pspace_empty_p (ss))
261 {
262 ss_link = &ss->next;
263 ss = *ss_link;
264 continue;
265 }
266
267 *ss_link = ss->next;
268 release_program_space (ss);
269 ss = *ss_link;
270 }
271 }
272
273 /* Prints the list of program spaces and their details on UIOUT. If
274 REQUESTED is not -1, it's the ID of the pspace that should be
275 printed. Otherwise, all spaces are printed. */
276
277 static void
278 print_program_space (struct ui_out *uiout, int requested)
279 {
280 struct program_space *pspace;
281 int count = 0;
282 struct cleanup *old_chain;
283
284 /* Might as well prune away unneeded ones, so the user doesn't even
285 seem them. */
286 prune_program_spaces ();
287
288 /* Compute number of pspaces we will print. */
289 ALL_PSPACES (pspace)
290 {
291 if (requested != -1 && pspace->num != requested)
292 continue;
293
294 ++count;
295 }
296
297 /* There should always be at least one. */
298 gdb_assert (count > 0);
299
300 old_chain = make_cleanup_ui_out_table_begin_end (uiout, 3, count, "pspaces");
301 ui_out_table_header (uiout, 1, ui_left, "current", "");
302 ui_out_table_header (uiout, 4, ui_left, "id", "Id");
303 ui_out_table_header (uiout, 17, ui_left, "exec", "Executable");
304 ui_out_table_body (uiout);
305
306 ALL_PSPACES (pspace)
307 {
308 struct cleanup *chain2;
309 struct inferior *inf;
310 int printed_header;
311
312 if (requested != -1 && requested != pspace->num)
313 continue;
314
315 chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
316
317 if (pspace == current_program_space)
318 ui_out_field_string (uiout, "current", "*");
319 else
320 ui_out_field_skip (uiout, "current");
321
322 ui_out_field_int (uiout, "id", pspace->num);
323
324 if (pspace->pspace_exec_filename)
325 ui_out_field_string (uiout, "exec", pspace->pspace_exec_filename);
326 else
327 ui_out_field_skip (uiout, "exec");
328
329 /* Print extra info that doesn't really fit in tabular form.
330 Currently, we print the list of inferiors bound to a pspace.
331 There can be more than one inferior bound to the same pspace,
332 e.g., both parent/child inferiors in a vfork, or, on targets
333 that share pspaces between inferiors. */
334 printed_header = 0;
335 for (inf = inferior_list; inf; inf = inf->next)
336 if (inf->pspace == pspace)
337 {
338 if (!printed_header)
339 {
340 printed_header = 1;
341 printf_filtered ("\n\tBound inferiors: ID %d (%s)",
342 inf->num,
343 target_pid_to_str (pid_to_ptid (inf->pid)));
344 }
345 else
346 printf_filtered (", ID %d (%s)",
347 inf->num,
348 target_pid_to_str (pid_to_ptid (inf->pid)));
349 }
350
351 ui_out_text (uiout, "\n");
352 do_cleanups (chain2);
353 }
354
355 do_cleanups (old_chain);
356 }
357
358 /* Boolean test for an already-known program space id. */
359
360 static int
361 valid_program_space_id (int num)
362 {
363 struct program_space *pspace;
364
365 ALL_PSPACES (pspace)
366 if (pspace->num == num)
367 return 1;
368
369 return 0;
370 }
371
372 /* If ARGS is NULL or empty, print information about all program
373 spaces. Otherwise, ARGS is a text representation of a LONG
374 indicating which the program space to print information about. */
375
376 static void
377 maintenance_info_program_spaces_command (char *args, int from_tty)
378 {
379 int requested = -1;
380
381 if (args && *args)
382 {
383 requested = parse_and_eval_long (args);
384 if (!valid_program_space_id (requested))
385 error (_("program space ID %d not known."), requested);
386 }
387
388 print_program_space (current_uiout, requested);
389 }
390
391 /* Simply returns the count of program spaces. */
392
393 int
394 number_of_program_spaces (void)
395 {
396 struct program_space *pspace;
397 int count = 0;
398
399 ALL_PSPACES (pspace)
400 count++;
401
402 return count;
403 }
404
405 /* Update all program spaces matching to address spaces. The user may
406 have created several program spaces, and loaded executables into
407 them before connecting to the target interface that will create the
408 inferiors. All that happens before GDB has a chance to know if the
409 inferiors will share an address space or not. Call this after
410 having connected to the target interface and having fetched the
411 target description, to fixup the program/address spaces mappings.
412
413 It is assumed that there are no bound inferiors yet, otherwise,
414 they'd be left with stale referenced to released aspaces. */
415
416 void
417 update_address_spaces (void)
418 {
419 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
420 struct program_space *pspace;
421 struct inferior *inf;
422
423 init_address_spaces ();
424
425 if (shared_aspace)
426 {
427 struct address_space *aspace = new_address_space ();
428
429 free_address_space (current_program_space->aspace);
430 ALL_PSPACES (pspace)
431 pspace->aspace = aspace;
432 }
433 else
434 ALL_PSPACES (pspace)
435 {
436 free_address_space (pspace->aspace);
437 pspace->aspace = new_address_space ();
438 }
439
440 for (inf = inferior_list; inf; inf = inf->next)
441 if (gdbarch_has_global_solist (target_gdbarch ()))
442 inf->aspace = maybe_new_address_space ();
443 else
444 inf->aspace = inf->pspace->aspace;
445 }
446
447 /* Save the current program space so that it may be restored by a later
448 call to do_cleanups. Returns the struct cleanup pointer needed for
449 later doing the cleanup. */
450
451 struct cleanup *
452 save_current_space_and_thread (void)
453 {
454 struct cleanup *old_chain;
455
456 /* If restoring to null thread, we need to restore the pspace as
457 well, hence, we need to save the current program space first. */
458 old_chain = save_current_program_space ();
459 /* There's no need to save the current inferior here.
460 That is handled by make_cleanup_restore_current_thread. */
461 make_cleanup_restore_current_thread ();
462
463 return old_chain;
464 }
465
466 /* Switches full context to program space PSPACE. Switches to the
467 first thread found bound to PSPACE. */
468
469 void
470 switch_to_program_space_and_thread (struct program_space *pspace)
471 {
472 struct inferior *inf;
473
474 inf = find_inferior_for_program_space (pspace);
475 if (inf != NULL)
476 {
477 struct thread_info *tp;
478
479 tp = any_live_thread_of_process (inf->pid);
480 if (tp != NULL)
481 {
482 switch_to_thread (tp->ptid);
483 /* Switching thread switches pspace implicitly. We're
484 done. */
485 return;
486 }
487 }
488
489 switch_to_thread (null_ptid);
490 set_current_program_space (pspace);
491 }
492
493 \f
494
495 /* See progspace.h. */
496
497 void
498 clear_program_space_solib_cache (struct program_space *pspace)
499 {
500 VEC_free (so_list_ptr, pspace->added_solibs);
501
502 free_char_ptr_vec (pspace->deleted_solibs);
503 pspace->deleted_solibs = NULL;
504 }
505
506 \f
507
508 void
509 initialize_progspace (void)
510 {
511 add_cmd ("program-spaces", class_maintenance,
512 maintenance_info_program_spaces_command,
513 _("Info about currently known program spaces."),
514 &maintenanceinfolist);
515
516 /* There's always one program space. Note that this function isn't
517 an automatic _initialize_foo function, since other
518 _initialize_foo routines may need to install their per-pspace
519 data keys. We can only allocate a progspace when all those
520 modules have done that. Do this before
521 initialize_current_architecture, because that accesses exec_bfd,
522 which in turn dereferences current_program_space. */
523 current_program_space = add_program_space (new_address_space ());
524 }
This page took 0.047051 seconds and 4 git commands to generate.