PR ld/21334: Always call `_bfd_elf_link_renumber_dynsyms' if required
[deliverable/binutils-gdb.git] / gdb / progspace.c
1 /* Program and address space management, for GDB, the GNU debugger.
2
3 Copyright (C) 2009-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "objfiles.h"
23 #include "arch-utils.h"
24 #include "gdbcore.h"
25 #include "solib.h"
26 #include "gdbthread.h"
27
28 /* The last program space number assigned. */
29 int last_program_space_num = 0;
30
31 /* The head of the program spaces list. */
32 struct program_space *program_spaces;
33
34 /* Pointer to the current program space. */
35 struct program_space *current_program_space;
36
37 /* The last address space number assigned. */
38 static int highest_address_space_num;
39
40 \f
41
42 /* Keep a registry of per-program_space data-pointers required by other GDB
43 modules. */
44
45 DEFINE_REGISTRY (program_space, REGISTRY_ACCESS_FIELD)
46
47 /* An address space. It is used for comparing if pspaces/inferior/threads
48 see the same address space and for associating caches to each address
49 space. */
50
51 struct address_space
52 {
53 int num;
54
55 /* Per aspace data-pointers required by other GDB modules. */
56 REGISTRY_FIELDS;
57 };
58
59 /* Keep a registry of per-address_space data-pointers required by other GDB
60 modules. */
61
62 DEFINE_REGISTRY (address_space, REGISTRY_ACCESS_FIELD)
63
64 \f
65
66 /* Create a new address space object, and add it to the list. */
67
68 struct address_space *
69 new_address_space (void)
70 {
71 struct address_space *aspace;
72
73 aspace = XCNEW (struct address_space);
74 aspace->num = ++highest_address_space_num;
75 address_space_alloc_data (aspace);
76
77 return aspace;
78 }
79
80 /* Maybe create a new address space object, and add it to the list, or
81 return a pointer to an existing address space, in case inferiors
82 share an address space on this target system. */
83
84 struct address_space *
85 maybe_new_address_space (void)
86 {
87 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
88
89 if (shared_aspace)
90 {
91 /* Just return the first in the list. */
92 return program_spaces->aspace;
93 }
94
95 return new_address_space ();
96 }
97
98 static void
99 free_address_space (struct address_space *aspace)
100 {
101 address_space_free_data (aspace);
102 xfree (aspace);
103 }
104
105 int
106 address_space_num (struct address_space *aspace)
107 {
108 return aspace->num;
109 }
110
111 /* Start counting over from scratch. */
112
113 static void
114 init_address_spaces (void)
115 {
116 highest_address_space_num = 0;
117 }
118
119 \f
120
121 /* Adds a new empty program space to the program space list, and binds
122 it to ASPACE. Returns the pointer to the new object. */
123
124 struct program_space *
125 add_program_space (struct address_space *aspace)
126 {
127 struct program_space *pspace;
128
129 pspace = XCNEW (struct program_space);
130
131 pspace->num = ++last_program_space_num;
132 pspace->aspace = aspace;
133
134 program_space_alloc_data (pspace);
135
136 if (program_spaces == NULL)
137 program_spaces = pspace;
138 else
139 {
140 struct program_space *last;
141
142 for (last = program_spaces; last->next != NULL; last = last->next)
143 ;
144 last->next = pspace;
145 }
146
147 return pspace;
148 }
149
150 /* Releases program space PSPACE, and all its contents (shared
151 libraries, objfiles, and any other references to the PSPACE in
152 other modules). It is an internal error to call this when PSPACE
153 is the current program space, since there should always be a
154 program space. */
155
156 static void
157 release_program_space (struct program_space *pspace)
158 {
159 struct cleanup *old_chain = save_current_program_space ();
160
161 gdb_assert (pspace != current_program_space);
162
163 set_current_program_space (pspace);
164
165 breakpoint_program_space_exit (pspace);
166 no_shared_libraries (NULL, 0);
167 exec_close ();
168 free_all_objfiles ();
169 if (!gdbarch_has_shared_address_space (target_gdbarch ()))
170 free_address_space (pspace->aspace);
171 clear_section_table (&pspace->target_sections);
172 clear_program_space_solib_cache (pspace);
173 /* Discard any data modules have associated with the PSPACE. */
174 program_space_free_data (pspace);
175 xfree (pspace);
176
177 do_cleanups (old_chain);
178 }
179
180 /* Copies program space SRC to DEST. Copies the main executable file,
181 and the main symbol file. Returns DEST. */
182
183 struct program_space *
184 clone_program_space (struct program_space *dest, struct program_space *src)
185 {
186 struct cleanup *old_chain;
187
188 old_chain = save_current_program_space ();
189
190 set_current_program_space (dest);
191
192 if (src->pspace_exec_filename != NULL)
193 exec_file_attach (src->pspace_exec_filename, 0);
194
195 if (src->symfile_object_file != NULL)
196 symbol_file_add_main (objfile_name (src->symfile_object_file), 0);
197
198 do_cleanups (old_chain);
199 return dest;
200 }
201
202 /* Sets PSPACE as the current program space. It is the caller's
203 responsibility to make sure that the currently selected
204 inferior/thread matches the selected program space. */
205
206 void
207 set_current_program_space (struct program_space *pspace)
208 {
209 if (current_program_space == pspace)
210 return;
211
212 gdb_assert (pspace != NULL);
213
214 current_program_space = pspace;
215
216 /* Different symbols change our view of the frame chain. */
217 reinit_frame_cache ();
218 }
219
220 /* A cleanups callback, helper for save_current_program_space
221 below. */
222
223 static void
224 restore_program_space (void *arg)
225 {
226 struct program_space *saved_pspace = (struct program_space *) arg;
227
228 set_current_program_space (saved_pspace);
229 }
230
231 /* Save the current program space so that it may be restored by a later
232 call to do_cleanups. Returns the struct cleanup pointer needed for
233 later doing the cleanup. */
234
235 struct cleanup *
236 save_current_program_space (void)
237 {
238 struct cleanup *old_chain = make_cleanup (restore_program_space,
239 current_program_space);
240
241 return old_chain;
242 }
243
244 /* Returns true iff there's no inferior bound to PSPACE. */
245
246 int
247 program_space_empty_p (struct program_space *pspace)
248 {
249 if (find_inferior_for_program_space (pspace) != NULL)
250 return 0;
251
252 return 1;
253 }
254
255 /* Remove a program space from the program spaces list and release it. It is
256 an error to call this function while PSPACE is the current program space. */
257
258 void
259 delete_program_space (struct program_space *pspace)
260 {
261 struct program_space *ss, **ss_link;
262 gdb_assert (pspace != NULL);
263 gdb_assert (pspace != current_program_space);
264
265 ss = program_spaces;
266 ss_link = &program_spaces;
267 while (ss != NULL)
268 {
269 if (ss == pspace)
270 {
271 *ss_link = ss->next;
272 break;
273 }
274
275 ss_link = &ss->next;
276 ss = *ss_link;
277 }
278
279 release_program_space (pspace);
280 }
281
282 /* Prints the list of program spaces and their details on UIOUT. If
283 REQUESTED is not -1, it's the ID of the pspace that should be
284 printed. Otherwise, all spaces are printed. */
285
286 static void
287 print_program_space (struct ui_out *uiout, int requested)
288 {
289 struct program_space *pspace;
290 int count = 0;
291 struct cleanup *old_chain;
292
293 /* Compute number of pspaces we will print. */
294 ALL_PSPACES (pspace)
295 {
296 if (requested != -1 && pspace->num != requested)
297 continue;
298
299 ++count;
300 }
301
302 /* There should always be at least one. */
303 gdb_assert (count > 0);
304
305 old_chain = make_cleanup_ui_out_table_begin_end (uiout, 3, count, "pspaces");
306 uiout->table_header (1, ui_left, "current", "");
307 uiout->table_header (4, ui_left, "id", "Id");
308 uiout->table_header (17, ui_left, "exec", "Executable");
309 uiout->table_body ();
310
311 ALL_PSPACES (pspace)
312 {
313 struct inferior *inf;
314 int printed_header;
315
316 if (requested != -1 && requested != pspace->num)
317 continue;
318
319 ui_out_emit_tuple tuple_emitter (uiout, NULL);
320
321 if (pspace == current_program_space)
322 uiout->field_string ("current", "*");
323 else
324 uiout->field_skip ("current");
325
326 uiout->field_int ("id", pspace->num);
327
328 if (pspace->pspace_exec_filename)
329 uiout->field_string ("exec", pspace->pspace_exec_filename);
330 else
331 uiout->field_skip ("exec");
332
333 /* Print extra info that doesn't really fit in tabular form.
334 Currently, we print the list of inferiors bound to a pspace.
335 There can be more than one inferior bound to the same pspace,
336 e.g., both parent/child inferiors in a vfork, or, on targets
337 that share pspaces between inferiors. */
338 printed_header = 0;
339 for (inf = inferior_list; inf; inf = inf->next)
340 if (inf->pspace == pspace)
341 {
342 if (!printed_header)
343 {
344 printed_header = 1;
345 printf_filtered ("\n\tBound inferiors: ID %d (%s)",
346 inf->num,
347 target_pid_to_str (pid_to_ptid (inf->pid)));
348 }
349 else
350 printf_filtered (", ID %d (%s)",
351 inf->num,
352 target_pid_to_str (pid_to_ptid (inf->pid)));
353 }
354
355 uiout->text ("\n");
356 }
357
358 do_cleanups (old_chain);
359 }
360
361 /* Boolean test for an already-known program space id. */
362
363 static int
364 valid_program_space_id (int num)
365 {
366 struct program_space *pspace;
367
368 ALL_PSPACES (pspace)
369 if (pspace->num == num)
370 return 1;
371
372 return 0;
373 }
374
375 /* If ARGS is NULL or empty, print information about all program
376 spaces. Otherwise, ARGS is a text representation of a LONG
377 indicating which the program space to print information about. */
378
379 static void
380 maintenance_info_program_spaces_command (char *args, int from_tty)
381 {
382 int requested = -1;
383
384 if (args && *args)
385 {
386 requested = parse_and_eval_long (args);
387 if (!valid_program_space_id (requested))
388 error (_("program space ID %d not known."), requested);
389 }
390
391 print_program_space (current_uiout, requested);
392 }
393
394 /* Simply returns the count of program spaces. */
395
396 int
397 number_of_program_spaces (void)
398 {
399 struct program_space *pspace;
400 int count = 0;
401
402 ALL_PSPACES (pspace)
403 count++;
404
405 return count;
406 }
407
408 /* Update all program spaces matching to address spaces. The user may
409 have created several program spaces, and loaded executables into
410 them before connecting to the target interface that will create the
411 inferiors. All that happens before GDB has a chance to know if the
412 inferiors will share an address space or not. Call this after
413 having connected to the target interface and having fetched the
414 target description, to fixup the program/address spaces mappings.
415
416 It is assumed that there are no bound inferiors yet, otherwise,
417 they'd be left with stale referenced to released aspaces. */
418
419 void
420 update_address_spaces (void)
421 {
422 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
423 struct program_space *pspace;
424 struct inferior *inf;
425
426 init_address_spaces ();
427
428 if (shared_aspace)
429 {
430 struct address_space *aspace = new_address_space ();
431
432 free_address_space (current_program_space->aspace);
433 ALL_PSPACES (pspace)
434 pspace->aspace = aspace;
435 }
436 else
437 ALL_PSPACES (pspace)
438 {
439 free_address_space (pspace->aspace);
440 pspace->aspace = new_address_space ();
441 }
442
443 for (inf = inferior_list; inf; inf = inf->next)
444 if (gdbarch_has_global_solist (target_gdbarch ()))
445 inf->aspace = maybe_new_address_space ();
446 else
447 inf->aspace = inf->pspace->aspace;
448 }
449
450 /* Save the current program space so that it may be restored by a later
451 call to do_cleanups. Returns the struct cleanup pointer needed for
452 later doing the cleanup. */
453
454 struct cleanup *
455 save_current_space_and_thread (void)
456 {
457 struct cleanup *old_chain;
458
459 /* If restoring to null thread, we need to restore the pspace as
460 well, hence, we need to save the current program space first. */
461 old_chain = save_current_program_space ();
462 /* There's no need to save the current inferior here.
463 That is handled by make_cleanup_restore_current_thread. */
464 make_cleanup_restore_current_thread ();
465
466 return old_chain;
467 }
468
469 /* See progspace.h */
470
471 void
472 switch_to_program_space_and_thread (struct program_space *pspace)
473 {
474 struct inferior *inf;
475
476 inf = find_inferior_for_program_space (pspace);
477 if (inf != NULL && inf->pid != 0)
478 {
479 struct thread_info *tp;
480
481 tp = any_live_thread_of_process (inf->pid);
482 if (tp != NULL)
483 {
484 switch_to_thread (tp->ptid);
485 /* Switching thread switches pspace implicitly. We're
486 done. */
487 return;
488 }
489 }
490
491 switch_to_thread (null_ptid);
492 set_current_program_space (pspace);
493 }
494
495 \f
496
497 /* See progspace.h. */
498
499 void
500 clear_program_space_solib_cache (struct program_space *pspace)
501 {
502 VEC_free (so_list_ptr, pspace->added_solibs);
503
504 free_char_ptr_vec (pspace->deleted_solibs);
505 pspace->deleted_solibs = NULL;
506 }
507
508 \f
509
510 void
511 initialize_progspace (void)
512 {
513 add_cmd ("program-spaces", class_maintenance,
514 maintenance_info_program_spaces_command,
515 _("Info about currently known program spaces."),
516 &maintenanceinfolist);
517
518 /* There's always one program space. Note that this function isn't
519 an automatic _initialize_foo function, since other
520 _initialize_foo routines may need to install their per-pspace
521 data keys. We can only allocate a progspace when all those
522 modules have done that. Do this before
523 initialize_current_architecture, because that accesses exec_bfd,
524 which in turn dereferences current_program_space. */
525 current_program_space = add_program_space (new_address_space ());
526 }
This page took 0.040349 seconds and 4 git commands to generate.