Update Copyright year range in all files maintained by GDB.
[deliverable/binutils-gdb.git] / gdb / progspace.c
1 /* Program and address space management, for GDB, the GNU debugger.
2
3 Copyright (C) 2009-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "objfiles.h"
23 #include "arch-utils.h"
24 #include "gdbcore.h"
25 #include "solib.h"
26 #include "gdbthread.h"
27
28 /* The last program space number assigned. */
29 int last_program_space_num = 0;
30
31 /* The head of the program spaces list. */
32 struct program_space *program_spaces;
33
34 /* Pointer to the current program space. */
35 struct program_space *current_program_space;
36
37 /* The last address space number assigned. */
38 static int highest_address_space_num;
39
40 \f
41
42 /* Keep a registry of per-program_space data-pointers required by other GDB
43 modules. */
44
45 DEFINE_REGISTRY (program_space, REGISTRY_ACCESS_FIELD)
46
47 /* An address space. It is used for comparing if pspaces/inferior/threads
48 see the same address space and for associating caches to each address
49 space. */
50
51 struct address_space
52 {
53 int num;
54
55 /* Per aspace data-pointers required by other GDB modules. */
56 REGISTRY_FIELDS;
57 };
58
59 /* Keep a registry of per-address_space data-pointers required by other GDB
60 modules. */
61
62 DEFINE_REGISTRY (address_space, REGISTRY_ACCESS_FIELD)
63
64 \f
65
66 /* Create a new address space object, and add it to the list. */
67
68 struct address_space *
69 new_address_space (void)
70 {
71 struct address_space *aspace;
72
73 aspace = XZALLOC (struct address_space);
74 aspace->num = ++highest_address_space_num;
75 address_space_alloc_data (aspace);
76
77 return aspace;
78 }
79
80 /* Maybe create a new address space object, and add it to the list, or
81 return a pointer to an existing address space, in case inferiors
82 share an address space on this target system. */
83
84 struct address_space *
85 maybe_new_address_space (void)
86 {
87 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
88
89 if (shared_aspace)
90 {
91 /* Just return the first in the list. */
92 return program_spaces->aspace;
93 }
94
95 return new_address_space ();
96 }
97
98 static void
99 free_address_space (struct address_space *aspace)
100 {
101 address_space_free_data (aspace);
102 xfree (aspace);
103 }
104
105 int
106 address_space_num (struct address_space *aspace)
107 {
108 return aspace->num;
109 }
110
111 /* Start counting over from scratch. */
112
113 static void
114 init_address_spaces (void)
115 {
116 highest_address_space_num = 0;
117 }
118
119 \f
120
121 /* Adds a new empty program space to the program space list, and binds
122 it to ASPACE. Returns the pointer to the new object. */
123
124 struct program_space *
125 add_program_space (struct address_space *aspace)
126 {
127 struct program_space *pspace;
128
129 pspace = XZALLOC (struct program_space);
130
131 pspace->num = ++last_program_space_num;
132 pspace->aspace = aspace;
133
134 program_space_alloc_data (pspace);
135
136 pspace->next = program_spaces;
137 program_spaces = pspace;
138
139 return pspace;
140 }
141
142 /* Releases program space PSPACE, and all its contents (shared
143 libraries, objfiles, and any other references to the PSPACE in
144 other modules). It is an internal error to call this when PSPACE
145 is the current program space, since there should always be a
146 program space. */
147
148 static void
149 release_program_space (struct program_space *pspace)
150 {
151 struct cleanup *old_chain = save_current_program_space ();
152
153 gdb_assert (pspace != current_program_space);
154
155 set_current_program_space (pspace);
156
157 breakpoint_program_space_exit (pspace);
158 no_shared_libraries (NULL, 0);
159 exec_close ();
160 free_all_objfiles ();
161 if (!gdbarch_has_shared_address_space (target_gdbarch ()))
162 free_address_space (pspace->aspace);
163 resize_section_table (&pspace->target_sections,
164 -resize_section_table (&pspace->target_sections, 0));
165 clear_program_space_solib_cache (pspace);
166 /* Discard any data modules have associated with the PSPACE. */
167 program_space_free_data (pspace);
168 xfree (pspace);
169
170 do_cleanups (old_chain);
171 }
172
173 /* Unlinks PSPACE from the pspace list, and releases it. */
174
175 void
176 remove_program_space (struct program_space *pspace)
177 {
178 struct program_space *ss, **ss_link;
179
180 ss = program_spaces;
181 ss_link = &program_spaces;
182 while (ss)
183 {
184 if (ss != pspace)
185 {
186 ss_link = &ss->next;
187 ss = *ss_link;
188 continue;
189 }
190
191 *ss_link = ss->next;
192 release_program_space (ss);
193 ss = *ss_link;
194 }
195 }
196
197 /* Copies program space SRC to DEST. Copies the main executable file,
198 and the main symbol file. Returns DEST. */
199
200 struct program_space *
201 clone_program_space (struct program_space *dest, struct program_space *src)
202 {
203 struct cleanup *old_chain;
204
205 old_chain = save_current_program_space ();
206
207 set_current_program_space (dest);
208
209 if (src->pspace_exec_filename != NULL)
210 exec_file_attach (src->pspace_exec_filename, 0);
211
212 if (src->symfile_object_file != NULL)
213 symbol_file_add_main (objfile_name (src->symfile_object_file), 0);
214
215 do_cleanups (old_chain);
216 return dest;
217 }
218
219 /* Sets PSPACE as the current program space. It is the caller's
220 responsibility to make sure that the currently selected
221 inferior/thread matches the selected program space. */
222
223 void
224 set_current_program_space (struct program_space *pspace)
225 {
226 if (current_program_space == pspace)
227 return;
228
229 gdb_assert (pspace != NULL);
230
231 current_program_space = pspace;
232
233 /* Different symbols change our view of the frame chain. */
234 reinit_frame_cache ();
235 }
236
237 /* A cleanups callback, helper for save_current_program_space
238 below. */
239
240 static void
241 restore_program_space (void *arg)
242 {
243 struct program_space *saved_pspace = arg;
244
245 set_current_program_space (saved_pspace);
246 }
247
248 /* Save the current program space so that it may be restored by a later
249 call to do_cleanups. Returns the struct cleanup pointer needed for
250 later doing the cleanup. */
251
252 struct cleanup *
253 save_current_program_space (void)
254 {
255 struct cleanup *old_chain = make_cleanup (restore_program_space,
256 current_program_space);
257
258 return old_chain;
259 }
260
261 /* Returns true iff there's no inferior bound to PSPACE. */
262
263 static int
264 pspace_empty_p (struct program_space *pspace)
265 {
266 if (find_inferior_for_program_space (pspace) != NULL)
267 return 0;
268
269 return 1;
270 }
271
272 /* Prune away automatically added program spaces that aren't required
273 anymore. */
274
275 void
276 prune_program_spaces (void)
277 {
278 struct program_space *ss, **ss_link;
279 struct program_space *current = current_program_space;
280
281 ss = program_spaces;
282 ss_link = &program_spaces;
283 while (ss)
284 {
285 if (ss == current || !pspace_empty_p (ss))
286 {
287 ss_link = &ss->next;
288 ss = *ss_link;
289 continue;
290 }
291
292 *ss_link = ss->next;
293 release_program_space (ss);
294 ss = *ss_link;
295 }
296 }
297
298 /* Prints the list of program spaces and their details on UIOUT. If
299 REQUESTED is not -1, it's the ID of the pspace that should be
300 printed. Otherwise, all spaces are printed. */
301
302 static void
303 print_program_space (struct ui_out *uiout, int requested)
304 {
305 struct program_space *pspace;
306 int count = 0;
307 struct cleanup *old_chain;
308
309 /* Might as well prune away unneeded ones, so the user doesn't even
310 seem them. */
311 prune_program_spaces ();
312
313 /* Compute number of pspaces we will print. */
314 ALL_PSPACES (pspace)
315 {
316 if (requested != -1 && pspace->num != requested)
317 continue;
318
319 ++count;
320 }
321
322 /* There should always be at least one. */
323 gdb_assert (count > 0);
324
325 old_chain = make_cleanup_ui_out_table_begin_end (uiout, 3, count, "pspaces");
326 ui_out_table_header (uiout, 1, ui_left, "current", "");
327 ui_out_table_header (uiout, 4, ui_left, "id", "Id");
328 ui_out_table_header (uiout, 17, ui_left, "exec", "Executable");
329 ui_out_table_body (uiout);
330
331 ALL_PSPACES (pspace)
332 {
333 struct cleanup *chain2;
334 struct inferior *inf;
335 int printed_header;
336
337 if (requested != -1 && requested != pspace->num)
338 continue;
339
340 chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
341
342 if (pspace == current_program_space)
343 ui_out_field_string (uiout, "current", "*");
344 else
345 ui_out_field_skip (uiout, "current");
346
347 ui_out_field_int (uiout, "id", pspace->num);
348
349 if (pspace->pspace_exec_filename)
350 ui_out_field_string (uiout, "exec", pspace->pspace_exec_filename);
351 else
352 ui_out_field_skip (uiout, "exec");
353
354 /* Print extra info that doesn't really fit in tabular form.
355 Currently, we print the list of inferiors bound to a pspace.
356 There can be more than one inferior bound to the same pspace,
357 e.g., both parent/child inferiors in a vfork, or, on targets
358 that share pspaces between inferiors. */
359 printed_header = 0;
360 for (inf = inferior_list; inf; inf = inf->next)
361 if (inf->pspace == pspace)
362 {
363 if (!printed_header)
364 {
365 printed_header = 1;
366 printf_filtered ("\n\tBound inferiors: ID %d (%s)",
367 inf->num,
368 target_pid_to_str (pid_to_ptid (inf->pid)));
369 }
370 else
371 printf_filtered (", ID %d (%s)",
372 inf->num,
373 target_pid_to_str (pid_to_ptid (inf->pid)));
374 }
375
376 ui_out_text (uiout, "\n");
377 do_cleanups (chain2);
378 }
379
380 do_cleanups (old_chain);
381 }
382
383 /* Boolean test for an already-known program space id. */
384
385 static int
386 valid_program_space_id (int num)
387 {
388 struct program_space *pspace;
389
390 ALL_PSPACES (pspace)
391 if (pspace->num == num)
392 return 1;
393
394 return 0;
395 }
396
397 /* If ARGS is NULL or empty, print information about all program
398 spaces. Otherwise, ARGS is a text representation of a LONG
399 indicating which the program space to print information about. */
400
401 static void
402 maintenance_info_program_spaces_command (char *args, int from_tty)
403 {
404 int requested = -1;
405
406 if (args && *args)
407 {
408 requested = parse_and_eval_long (args);
409 if (!valid_program_space_id (requested))
410 error (_("program space ID %d not known."), requested);
411 }
412
413 print_program_space (current_uiout, requested);
414 }
415
416 /* Simply returns the count of program spaces. */
417
418 int
419 number_of_program_spaces (void)
420 {
421 struct program_space *pspace;
422 int count = 0;
423
424 ALL_PSPACES (pspace)
425 count++;
426
427 return count;
428 }
429
430 /* Update all program spaces matching to address spaces. The user may
431 have created several program spaces, and loaded executables into
432 them before connecting to the target interface that will create the
433 inferiors. All that happens before GDB has a chance to know if the
434 inferiors will share an address space or not. Call this after
435 having connected to the target interface and having fetched the
436 target description, to fixup the program/address spaces mappings.
437
438 It is assumed that there are no bound inferiors yet, otherwise,
439 they'd be left with stale referenced to released aspaces. */
440
441 void
442 update_address_spaces (void)
443 {
444 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
445 struct program_space *pspace;
446 struct inferior *inf;
447
448 init_address_spaces ();
449
450 if (shared_aspace)
451 {
452 struct address_space *aspace = new_address_space ();
453
454 free_address_space (current_program_space->aspace);
455 ALL_PSPACES (pspace)
456 pspace->aspace = aspace;
457 }
458 else
459 ALL_PSPACES (pspace)
460 {
461 free_address_space (pspace->aspace);
462 pspace->aspace = new_address_space ();
463 }
464
465 for (inf = inferior_list; inf; inf = inf->next)
466 if (gdbarch_has_global_solist (target_gdbarch ()))
467 inf->aspace = maybe_new_address_space ();
468 else
469 inf->aspace = inf->pspace->aspace;
470 }
471
472 /* Save the current program space so that it may be restored by a later
473 call to do_cleanups. Returns the struct cleanup pointer needed for
474 later doing the cleanup. */
475
476 struct cleanup *
477 save_current_space_and_thread (void)
478 {
479 struct cleanup *old_chain;
480
481 /* If restoring to null thread, we need to restore the pspace as
482 well, hence, we need to save the current program space first. */
483 old_chain = save_current_program_space ();
484 /* There's no need to save the current inferior here.
485 That is handled by make_cleanup_restore_current_thread. */
486 make_cleanup_restore_current_thread ();
487
488 return old_chain;
489 }
490
491 /* Switches full context to program space PSPACE. Switches to the
492 first thread found bound to PSPACE. */
493
494 void
495 switch_to_program_space_and_thread (struct program_space *pspace)
496 {
497 struct inferior *inf;
498
499 inf = find_inferior_for_program_space (pspace);
500 if (inf != NULL)
501 {
502 struct thread_info *tp;
503
504 tp = any_live_thread_of_process (inf->pid);
505 if (tp != NULL)
506 {
507 switch_to_thread (tp->ptid);
508 /* Switching thread switches pspace implicitly. We're
509 done. */
510 return;
511 }
512 }
513
514 switch_to_thread (null_ptid);
515 set_current_program_space (pspace);
516 }
517
518 \f
519
520 /* See progspace.h. */
521
522 void
523 clear_program_space_solib_cache (struct program_space *pspace)
524 {
525 VEC_free (so_list_ptr, pspace->added_solibs);
526
527 free_char_ptr_vec (pspace->deleted_solibs);
528 pspace->deleted_solibs = NULL;
529 }
530
531 \f
532
533 void
534 initialize_progspace (void)
535 {
536 add_cmd ("program-spaces", class_maintenance,
537 maintenance_info_program_spaces_command,
538 _("Info about currently known program spaces."),
539 &maintenanceinfolist);
540
541 /* There's always one program space. Note that this function isn't
542 an automatic _initialize_foo function, since other
543 _initialize_foo routines may need to install their per-pspace
544 data keys. We can only allocate a progspace when all those
545 modules have done that. Do this before
546 initialize_current_architecture, because that accesses exec_bfd,
547 which in turn dereferences current_program_space. */
548 current_program_space = add_program_space (new_address_space ());
549 }
This page took 0.041889 seconds and 5 git commands to generate.