Implement Ada operator overloading
[deliverable/binutils-gdb.git] / gdb / record-full.c
1 /* Process record and replay target for GDB, the GNU debugger.
2
3 Copyright (C) 2013-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "regcache.h"
23 #include "gdbthread.h"
24 #include "inferior.h"
25 #include "event-top.h"
26 #include "completer.h"
27 #include "arch-utils.h"
28 #include "gdbcore.h"
29 #include "exec.h"
30 #include "record.h"
31 #include "record-full.h"
32 #include "elf-bfd.h"
33 #include "gcore.h"
34 #include "gdbsupport/event-loop.h"
35 #include "inf-loop.h"
36 #include "gdb_bfd.h"
37 #include "observable.h"
38 #include "infrun.h"
39 #include "gdbsupport/gdb_unlinker.h"
40 #include "gdbsupport/byte-vector.h"
41 #include "async-event.h"
42
43 #include <signal.h>
44
45 /* This module implements "target record-full", also known as "process
46 record and replay". This target sits on top of a "normal" target
47 (a target that "has execution"), and provides a record and replay
48 functionality, including reverse debugging.
49
50 Target record has two modes: recording, and replaying.
51
52 In record mode, we intercept the resume and wait methods.
53 Whenever gdb resumes the target, we run the target in single step
54 mode, and we build up an execution log in which, for each executed
55 instruction, we record all changes in memory and register state.
56 This is invisible to the user, to whom it just looks like an
57 ordinary debugging session (except for performance degradation).
58
59 In replay mode, instead of actually letting the inferior run as a
60 process, we simulate its execution by playing back the recorded
61 execution log. For each instruction in the log, we simulate the
62 instruction's side effects by duplicating the changes that it would
63 have made on memory and registers. */
64
65 #define DEFAULT_RECORD_FULL_INSN_MAX_NUM 200000
66
67 #define RECORD_FULL_IS_REPLAY \
68 (record_full_list->next || ::execution_direction == EXEC_REVERSE)
69
70 #define RECORD_FULL_FILE_MAGIC netorder32(0x20091016)
71
72 /* These are the core structs of the process record functionality.
73
74 A record_full_entry is a record of the value change of a register
75 ("record_full_reg") or a part of memory ("record_full_mem"). And each
76 instruction must have a struct record_full_entry ("record_full_end")
77 that indicates that this is the last struct record_full_entry of this
78 instruction.
79
80 Each struct record_full_entry is linked to "record_full_list" by "prev"
81 and "next" pointers. */
82
83 struct record_full_mem_entry
84 {
85 CORE_ADDR addr;
86 int len;
87 /* Set this flag if target memory for this entry
88 can no longer be accessed. */
89 int mem_entry_not_accessible;
90 union
91 {
92 gdb_byte *ptr;
93 gdb_byte buf[sizeof (gdb_byte *)];
94 } u;
95 };
96
97 struct record_full_reg_entry
98 {
99 unsigned short num;
100 unsigned short len;
101 union
102 {
103 gdb_byte *ptr;
104 gdb_byte buf[2 * sizeof (gdb_byte *)];
105 } u;
106 };
107
108 struct record_full_end_entry
109 {
110 enum gdb_signal sigval;
111 ULONGEST insn_num;
112 };
113
114 enum record_full_type
115 {
116 record_full_end = 0,
117 record_full_reg,
118 record_full_mem
119 };
120
121 /* This is the data structure that makes up the execution log.
122
123 The execution log consists of a single linked list of entries
124 of type "struct record_full_entry". It is doubly linked so that it
125 can be traversed in either direction.
126
127 The start of the list is anchored by a struct called
128 "record_full_first". The pointer "record_full_list" either points
129 to the last entry that was added to the list (in record mode), or to
130 the next entry in the list that will be executed (in replay mode).
131
132 Each list element (struct record_full_entry), in addition to next
133 and prev pointers, consists of a union of three entry types: mem,
134 reg, and end. A field called "type" determines which entry type is
135 represented by a given list element.
136
137 Each instruction that is added to the execution log is represented
138 by a variable number of list elements ('entries'). The instruction
139 will have one "reg" entry for each register that is changed by
140 executing the instruction (including the PC in every case). It
141 will also have one "mem" entry for each memory change. Finally,
142 each instruction will have an "end" entry that separates it from
143 the changes associated with the next instruction. */
144
145 struct record_full_entry
146 {
147 struct record_full_entry *prev;
148 struct record_full_entry *next;
149 enum record_full_type type;
150 union
151 {
152 /* reg */
153 struct record_full_reg_entry reg;
154 /* mem */
155 struct record_full_mem_entry mem;
156 /* end */
157 struct record_full_end_entry end;
158 } u;
159 };
160
161 /* If true, query if PREC cannot record memory
162 change of next instruction. */
163 bool record_full_memory_query = false;
164
165 struct record_full_core_buf_entry
166 {
167 struct record_full_core_buf_entry *prev;
168 struct target_section *p;
169 bfd_byte *buf;
170 };
171
172 /* Record buf with core target. */
173 static detached_regcache *record_full_core_regbuf = NULL;
174 static target_section_table record_full_core_sections;
175 static struct record_full_core_buf_entry *record_full_core_buf_list = NULL;
176
177 /* The following variables are used for managing the linked list that
178 represents the execution log.
179
180 record_full_first is the anchor that holds down the beginning of
181 the list.
182
183 record_full_list serves two functions:
184 1) In record mode, it anchors the end of the list.
185 2) In replay mode, it traverses the list and points to
186 the next instruction that must be emulated.
187
188 record_full_arch_list_head and record_full_arch_list_tail are used
189 to manage a separate list, which is used to build up the change
190 elements of the currently executing instruction during record mode.
191 When this instruction has been completely annotated in the "arch
192 list", it will be appended to the main execution log. */
193
194 static struct record_full_entry record_full_first;
195 static struct record_full_entry *record_full_list = &record_full_first;
196 static struct record_full_entry *record_full_arch_list_head = NULL;
197 static struct record_full_entry *record_full_arch_list_tail = NULL;
198
199 /* true ask user. false auto delete the last struct record_full_entry. */
200 static bool record_full_stop_at_limit = true;
201 /* Maximum allowed number of insns in execution log. */
202 static unsigned int record_full_insn_max_num
203 = DEFAULT_RECORD_FULL_INSN_MAX_NUM;
204 /* Actual count of insns presently in execution log. */
205 static unsigned int record_full_insn_num = 0;
206 /* Count of insns logged so far (may be larger
207 than count of insns presently in execution log). */
208 static ULONGEST record_full_insn_count;
209
210 static const char record_longname[]
211 = N_("Process record and replay target");
212 static const char record_doc[]
213 = N_("Log program while executing and replay execution from log.");
214
215 /* Base class implementing functionality common to both the
216 "record-full" and "record-core" targets. */
217
218 class record_full_base_target : public target_ops
219 {
220 public:
221 const target_info &info () const override = 0;
222
223 strata stratum () const override { return record_stratum; }
224
225 void close () override;
226 void async (int) override;
227 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
228 bool stopped_by_watchpoint () override;
229 bool stopped_data_address (CORE_ADDR *) override;
230
231 bool stopped_by_sw_breakpoint () override;
232 bool supports_stopped_by_sw_breakpoint () override;
233
234 bool stopped_by_hw_breakpoint () override;
235 bool supports_stopped_by_hw_breakpoint () override;
236
237 bool can_execute_reverse () override;
238
239 /* Add bookmark target methods. */
240 gdb_byte *get_bookmark (const char *, int) override;
241 void goto_bookmark (const gdb_byte *, int) override;
242 enum exec_direction_kind execution_direction () override;
243 enum record_method record_method (ptid_t ptid) override;
244 void info_record () override;
245 void save_record (const char *filename) override;
246 bool supports_delete_record () override;
247 void delete_record () override;
248 bool record_is_replaying (ptid_t ptid) override;
249 bool record_will_replay (ptid_t ptid, int dir) override;
250 void record_stop_replaying () override;
251 void goto_record_begin () override;
252 void goto_record_end () override;
253 void goto_record (ULONGEST insn) override;
254 };
255
256 /* The "record-full" target. */
257
258 static const target_info record_full_target_info = {
259 "record-full",
260 record_longname,
261 record_doc,
262 };
263
264 class record_full_target final : public record_full_base_target
265 {
266 public:
267 const target_info &info () const override
268 { return record_full_target_info; }
269
270 void resume (ptid_t, int, enum gdb_signal) override;
271 void disconnect (const char *, int) override;
272 void detach (inferior *, int) override;
273 void mourn_inferior () override;
274 void kill () override;
275 void store_registers (struct regcache *, int) override;
276 enum target_xfer_status xfer_partial (enum target_object object,
277 const char *annex,
278 gdb_byte *readbuf,
279 const gdb_byte *writebuf,
280 ULONGEST offset, ULONGEST len,
281 ULONGEST *xfered_len) override;
282 int insert_breakpoint (struct gdbarch *,
283 struct bp_target_info *) override;
284 int remove_breakpoint (struct gdbarch *,
285 struct bp_target_info *,
286 enum remove_bp_reason) override;
287 };
288
289 /* The "record-core" target. */
290
291 static const target_info record_full_core_target_info = {
292 "record-core",
293 record_longname,
294 record_doc,
295 };
296
297 class record_full_core_target final : public record_full_base_target
298 {
299 public:
300 const target_info &info () const override
301 { return record_full_core_target_info; }
302
303 void resume (ptid_t, int, enum gdb_signal) override;
304 void disconnect (const char *, int) override;
305 void kill () override;
306 void fetch_registers (struct regcache *regcache, int regno) override;
307 void prepare_to_store (struct regcache *regcache) override;
308 void store_registers (struct regcache *, int) override;
309 enum target_xfer_status xfer_partial (enum target_object object,
310 const char *annex,
311 gdb_byte *readbuf,
312 const gdb_byte *writebuf,
313 ULONGEST offset, ULONGEST len,
314 ULONGEST *xfered_len) override;
315 int insert_breakpoint (struct gdbarch *,
316 struct bp_target_info *) override;
317 int remove_breakpoint (struct gdbarch *,
318 struct bp_target_info *,
319 enum remove_bp_reason) override;
320
321 bool has_execution (inferior *inf) override;
322 };
323
324 static record_full_target record_full_ops;
325 static record_full_core_target record_full_core_ops;
326
327 void
328 record_full_target::detach (inferior *inf, int from_tty)
329 {
330 record_detach (this, inf, from_tty);
331 }
332
333 void
334 record_full_target::disconnect (const char *args, int from_tty)
335 {
336 record_disconnect (this, args, from_tty);
337 }
338
339 void
340 record_full_core_target::disconnect (const char *args, int from_tty)
341 {
342 record_disconnect (this, args, from_tty);
343 }
344
345 void
346 record_full_target::mourn_inferior ()
347 {
348 record_mourn_inferior (this);
349 }
350
351 void
352 record_full_target::kill ()
353 {
354 record_kill (this);
355 }
356
357 /* See record-full.h. */
358
359 int
360 record_full_is_used (void)
361 {
362 struct target_ops *t;
363
364 t = find_record_target ();
365 return (t == &record_full_ops
366 || t == &record_full_core_ops);
367 }
368
369
370 /* Command lists for "set/show record full". */
371 static struct cmd_list_element *set_record_full_cmdlist;
372 static struct cmd_list_element *show_record_full_cmdlist;
373
374 /* Command list for "record full". */
375 static struct cmd_list_element *record_full_cmdlist;
376
377 static void record_full_goto_insn (struct record_full_entry *entry,
378 enum exec_direction_kind dir);
379
380 /* Alloc and free functions for record_full_reg, record_full_mem, and
381 record_full_end entries. */
382
383 /* Alloc a record_full_reg record entry. */
384
385 static inline struct record_full_entry *
386 record_full_reg_alloc (struct regcache *regcache, int regnum)
387 {
388 struct record_full_entry *rec;
389 struct gdbarch *gdbarch = regcache->arch ();
390
391 rec = XCNEW (struct record_full_entry);
392 rec->type = record_full_reg;
393 rec->u.reg.num = regnum;
394 rec->u.reg.len = register_size (gdbarch, regnum);
395 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
396 rec->u.reg.u.ptr = (gdb_byte *) xmalloc (rec->u.reg.len);
397
398 return rec;
399 }
400
401 /* Free a record_full_reg record entry. */
402
403 static inline void
404 record_full_reg_release (struct record_full_entry *rec)
405 {
406 gdb_assert (rec->type == record_full_reg);
407 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
408 xfree (rec->u.reg.u.ptr);
409 xfree (rec);
410 }
411
412 /* Alloc a record_full_mem record entry. */
413
414 static inline struct record_full_entry *
415 record_full_mem_alloc (CORE_ADDR addr, int len)
416 {
417 struct record_full_entry *rec;
418
419 rec = XCNEW (struct record_full_entry);
420 rec->type = record_full_mem;
421 rec->u.mem.addr = addr;
422 rec->u.mem.len = len;
423 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
424 rec->u.mem.u.ptr = (gdb_byte *) xmalloc (len);
425
426 return rec;
427 }
428
429 /* Free a record_full_mem record entry. */
430
431 static inline void
432 record_full_mem_release (struct record_full_entry *rec)
433 {
434 gdb_assert (rec->type == record_full_mem);
435 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
436 xfree (rec->u.mem.u.ptr);
437 xfree (rec);
438 }
439
440 /* Alloc a record_full_end record entry. */
441
442 static inline struct record_full_entry *
443 record_full_end_alloc (void)
444 {
445 struct record_full_entry *rec;
446
447 rec = XCNEW (struct record_full_entry);
448 rec->type = record_full_end;
449
450 return rec;
451 }
452
453 /* Free a record_full_end record entry. */
454
455 static inline void
456 record_full_end_release (struct record_full_entry *rec)
457 {
458 xfree (rec);
459 }
460
461 /* Free one record entry, any type.
462 Return entry->type, in case caller wants to know. */
463
464 static inline enum record_full_type
465 record_full_entry_release (struct record_full_entry *rec)
466 {
467 enum record_full_type type = rec->type;
468
469 switch (type) {
470 case record_full_reg:
471 record_full_reg_release (rec);
472 break;
473 case record_full_mem:
474 record_full_mem_release (rec);
475 break;
476 case record_full_end:
477 record_full_end_release (rec);
478 break;
479 }
480 return type;
481 }
482
483 /* Free all record entries in list pointed to by REC. */
484
485 static void
486 record_full_list_release (struct record_full_entry *rec)
487 {
488 if (!rec)
489 return;
490
491 while (rec->next)
492 rec = rec->next;
493
494 while (rec->prev)
495 {
496 rec = rec->prev;
497 record_full_entry_release (rec->next);
498 }
499
500 if (rec == &record_full_first)
501 {
502 record_full_insn_num = 0;
503 record_full_first.next = NULL;
504 }
505 else
506 record_full_entry_release (rec);
507 }
508
509 /* Free all record entries forward of the given list position. */
510
511 static void
512 record_full_list_release_following (struct record_full_entry *rec)
513 {
514 struct record_full_entry *tmp = rec->next;
515
516 rec->next = NULL;
517 while (tmp)
518 {
519 rec = tmp->next;
520 if (record_full_entry_release (tmp) == record_full_end)
521 {
522 record_full_insn_num--;
523 record_full_insn_count--;
524 }
525 tmp = rec;
526 }
527 }
528
529 /* Delete the first instruction from the beginning of the log, to make
530 room for adding a new instruction at the end of the log.
531
532 Note -- this function does not modify record_full_insn_num. */
533
534 static void
535 record_full_list_release_first (void)
536 {
537 struct record_full_entry *tmp;
538
539 if (!record_full_first.next)
540 return;
541
542 /* Loop until a record_full_end. */
543 while (1)
544 {
545 /* Cut record_full_first.next out of the linked list. */
546 tmp = record_full_first.next;
547 record_full_first.next = tmp->next;
548 tmp->next->prev = &record_full_first;
549
550 /* tmp is now isolated, and can be deleted. */
551 if (record_full_entry_release (tmp) == record_full_end)
552 break; /* End loop at first record_full_end. */
553
554 if (!record_full_first.next)
555 {
556 gdb_assert (record_full_insn_num == 1);
557 break; /* End loop when list is empty. */
558 }
559 }
560 }
561
562 /* Add a struct record_full_entry to record_full_arch_list. */
563
564 static void
565 record_full_arch_list_add (struct record_full_entry *rec)
566 {
567 if (record_debug > 1)
568 fprintf_unfiltered (gdb_stdlog,
569 "Process record: record_full_arch_list_add %s.\n",
570 host_address_to_string (rec));
571
572 if (record_full_arch_list_tail)
573 {
574 record_full_arch_list_tail->next = rec;
575 rec->prev = record_full_arch_list_tail;
576 record_full_arch_list_tail = rec;
577 }
578 else
579 {
580 record_full_arch_list_head = rec;
581 record_full_arch_list_tail = rec;
582 }
583 }
584
585 /* Return the value storage location of a record entry. */
586 static inline gdb_byte *
587 record_full_get_loc (struct record_full_entry *rec)
588 {
589 switch (rec->type) {
590 case record_full_mem:
591 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
592 return rec->u.mem.u.ptr;
593 else
594 return rec->u.mem.u.buf;
595 case record_full_reg:
596 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
597 return rec->u.reg.u.ptr;
598 else
599 return rec->u.reg.u.buf;
600 case record_full_end:
601 default:
602 gdb_assert_not_reached ("unexpected record_full_entry type");
603 return NULL;
604 }
605 }
606
607 /* Record the value of a register NUM to record_full_arch_list. */
608
609 int
610 record_full_arch_list_add_reg (struct regcache *regcache, int regnum)
611 {
612 struct record_full_entry *rec;
613
614 if (record_debug > 1)
615 fprintf_unfiltered (gdb_stdlog,
616 "Process record: add register num = %d to "
617 "record list.\n",
618 regnum);
619
620 rec = record_full_reg_alloc (regcache, regnum);
621
622 regcache->raw_read (regnum, record_full_get_loc (rec));
623
624 record_full_arch_list_add (rec);
625
626 return 0;
627 }
628
629 /* Record the value of a region of memory whose address is ADDR and
630 length is LEN to record_full_arch_list. */
631
632 int
633 record_full_arch_list_add_mem (CORE_ADDR addr, int len)
634 {
635 struct record_full_entry *rec;
636
637 if (record_debug > 1)
638 fprintf_unfiltered (gdb_stdlog,
639 "Process record: add mem addr = %s len = %d to "
640 "record list.\n",
641 paddress (target_gdbarch (), addr), len);
642
643 if (!addr) /* FIXME: Why? Some arch must permit it... */
644 return 0;
645
646 rec = record_full_mem_alloc (addr, len);
647
648 if (record_read_memory (target_gdbarch (), addr,
649 record_full_get_loc (rec), len))
650 {
651 record_full_mem_release (rec);
652 return -1;
653 }
654
655 record_full_arch_list_add (rec);
656
657 return 0;
658 }
659
660 /* Add a record_full_end type struct record_full_entry to
661 record_full_arch_list. */
662
663 int
664 record_full_arch_list_add_end (void)
665 {
666 struct record_full_entry *rec;
667
668 if (record_debug > 1)
669 fprintf_unfiltered (gdb_stdlog,
670 "Process record: add end to arch list.\n");
671
672 rec = record_full_end_alloc ();
673 rec->u.end.sigval = GDB_SIGNAL_0;
674 rec->u.end.insn_num = ++record_full_insn_count;
675
676 record_full_arch_list_add (rec);
677
678 return 0;
679 }
680
681 static void
682 record_full_check_insn_num (void)
683 {
684 if (record_full_insn_num == record_full_insn_max_num)
685 {
686 /* Ask user what to do. */
687 if (record_full_stop_at_limit)
688 {
689 if (!yquery (_("Do you want to auto delete previous execution "
690 "log entries when record/replay buffer becomes "
691 "full (record full stop-at-limit)?")))
692 error (_("Process record: stopped by user."));
693 record_full_stop_at_limit = 0;
694 }
695 }
696 }
697
698 /* Before inferior step (when GDB record the running message, inferior
699 only can step), GDB will call this function to record the values to
700 record_full_list. This function will call gdbarch_process_record to
701 record the running message of inferior and set them to
702 record_full_arch_list, and add it to record_full_list. */
703
704 static void
705 record_full_message (struct regcache *regcache, enum gdb_signal signal)
706 {
707 int ret;
708 struct gdbarch *gdbarch = regcache->arch ();
709
710 try
711 {
712 record_full_arch_list_head = NULL;
713 record_full_arch_list_tail = NULL;
714
715 /* Check record_full_insn_num. */
716 record_full_check_insn_num ();
717
718 /* If gdb sends a signal value to target_resume,
719 save it in the 'end' field of the previous instruction.
720
721 Maybe process record should record what really happened,
722 rather than what gdb pretends has happened.
723
724 So if Linux delivered the signal to the child process during
725 the record mode, we will record it and deliver it again in
726 the replay mode.
727
728 If user says "ignore this signal" during the record mode, then
729 it will be ignored again during the replay mode (no matter if
730 the user says something different, like "deliver this signal"
731 during the replay mode).
732
733 User should understand that nothing he does during the replay
734 mode will change the behavior of the child. If he tries,
735 then that is a user error.
736
737 But we should still deliver the signal to gdb during the replay,
738 if we delivered it during the recording. Therefore we should
739 record the signal during record_full_wait, not
740 record_full_resume. */
741 if (record_full_list != &record_full_first) /* FIXME better way
742 to check */
743 {
744 gdb_assert (record_full_list->type == record_full_end);
745 record_full_list->u.end.sigval = signal;
746 }
747
748 if (signal == GDB_SIGNAL_0
749 || !gdbarch_process_record_signal_p (gdbarch))
750 ret = gdbarch_process_record (gdbarch,
751 regcache,
752 regcache_read_pc (regcache));
753 else
754 ret = gdbarch_process_record_signal (gdbarch,
755 regcache,
756 signal);
757
758 if (ret > 0)
759 error (_("Process record: inferior program stopped."));
760 if (ret < 0)
761 error (_("Process record: failed to record execution log."));
762 }
763 catch (const gdb_exception &ex)
764 {
765 record_full_list_release (record_full_arch_list_tail);
766 throw;
767 }
768
769 record_full_list->next = record_full_arch_list_head;
770 record_full_arch_list_head->prev = record_full_list;
771 record_full_list = record_full_arch_list_tail;
772
773 if (record_full_insn_num == record_full_insn_max_num)
774 record_full_list_release_first ();
775 else
776 record_full_insn_num++;
777 }
778
779 static bool
780 record_full_message_wrapper_safe (struct regcache *regcache,
781 enum gdb_signal signal)
782 {
783 try
784 {
785 record_full_message (regcache, signal);
786 }
787 catch (const gdb_exception &ex)
788 {
789 exception_print (gdb_stderr, ex);
790 return false;
791 }
792
793 return true;
794 }
795
796 /* Set to 1 if record_full_store_registers and record_full_xfer_partial
797 doesn't need record. */
798
799 static int record_full_gdb_operation_disable = 0;
800
801 scoped_restore_tmpl<int>
802 record_full_gdb_operation_disable_set (void)
803 {
804 return make_scoped_restore (&record_full_gdb_operation_disable, 1);
805 }
806
807 /* Flag set to TRUE for target_stopped_by_watchpoint. */
808 static enum target_stop_reason record_full_stop_reason
809 = TARGET_STOPPED_BY_NO_REASON;
810
811 /* Execute one instruction from the record log. Each instruction in
812 the log will be represented by an arbitrary sequence of register
813 entries and memory entries, followed by an 'end' entry. */
814
815 static inline void
816 record_full_exec_insn (struct regcache *regcache,
817 struct gdbarch *gdbarch,
818 struct record_full_entry *entry)
819 {
820 switch (entry->type)
821 {
822 case record_full_reg: /* reg */
823 {
824 gdb::byte_vector reg (entry->u.reg.len);
825
826 if (record_debug > 1)
827 fprintf_unfiltered (gdb_stdlog,
828 "Process record: record_full_reg %s to "
829 "inferior num = %d.\n",
830 host_address_to_string (entry),
831 entry->u.reg.num);
832
833 regcache->cooked_read (entry->u.reg.num, reg.data ());
834 regcache->cooked_write (entry->u.reg.num, record_full_get_loc (entry));
835 memcpy (record_full_get_loc (entry), reg.data (), entry->u.reg.len);
836 }
837 break;
838
839 case record_full_mem: /* mem */
840 {
841 /* Nothing to do if the entry is flagged not_accessible. */
842 if (!entry->u.mem.mem_entry_not_accessible)
843 {
844 gdb::byte_vector mem (entry->u.mem.len);
845
846 if (record_debug > 1)
847 fprintf_unfiltered (gdb_stdlog,
848 "Process record: record_full_mem %s to "
849 "inferior addr = %s len = %d.\n",
850 host_address_to_string (entry),
851 paddress (gdbarch, entry->u.mem.addr),
852 entry->u.mem.len);
853
854 if (record_read_memory (gdbarch,
855 entry->u.mem.addr, mem.data (),
856 entry->u.mem.len))
857 entry->u.mem.mem_entry_not_accessible = 1;
858 else
859 {
860 if (target_write_memory (entry->u.mem.addr,
861 record_full_get_loc (entry),
862 entry->u.mem.len))
863 {
864 entry->u.mem.mem_entry_not_accessible = 1;
865 if (record_debug)
866 warning (_("Process record: error writing memory at "
867 "addr = %s len = %d."),
868 paddress (gdbarch, entry->u.mem.addr),
869 entry->u.mem.len);
870 }
871 else
872 {
873 memcpy (record_full_get_loc (entry), mem.data (),
874 entry->u.mem.len);
875
876 /* We've changed memory --- check if a hardware
877 watchpoint should trap. Note that this
878 presently assumes the target beneath supports
879 continuable watchpoints. On non-continuable
880 watchpoints target, we'll want to check this
881 _before_ actually doing the memory change, and
882 not doing the change at all if the watchpoint
883 traps. */
884 if (hardware_watchpoint_inserted_in_range
885 (regcache->aspace (),
886 entry->u.mem.addr, entry->u.mem.len))
887 record_full_stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
888 }
889 }
890 }
891 }
892 break;
893 }
894 }
895
896 static void record_full_restore (void);
897
898 /* Asynchronous signal handle registered as event loop source for when
899 we have pending events ready to be passed to the core. */
900
901 static struct async_event_handler *record_full_async_inferior_event_token;
902
903 static void
904 record_full_async_inferior_event_handler (gdb_client_data data)
905 {
906 inferior_event_handler (INF_REG_EVENT);
907 }
908
909 /* Open the process record target for 'core' files. */
910
911 static void
912 record_full_core_open_1 (const char *name, int from_tty)
913 {
914 struct regcache *regcache = get_current_regcache ();
915 int regnum = gdbarch_num_regs (regcache->arch ());
916 int i;
917
918 /* Get record_full_core_regbuf. */
919 target_fetch_registers (regcache, -1);
920 record_full_core_regbuf = new detached_regcache (regcache->arch (), false);
921
922 for (i = 0; i < regnum; i ++)
923 record_full_core_regbuf->raw_supply (i, *regcache);
924
925 record_full_core_sections = build_section_table (core_bfd);
926
927 push_target (&record_full_core_ops);
928 record_full_restore ();
929 }
930
931 /* Open the process record target for 'live' processes. */
932
933 static void
934 record_full_open_1 (const char *name, int from_tty)
935 {
936 if (record_debug)
937 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open_1\n");
938
939 /* check exec */
940 if (!target_has_execution ())
941 error (_("Process record: the program is not being run."));
942 if (non_stop)
943 error (_("Process record target can't debug inferior in non-stop mode "
944 "(non-stop)."));
945
946 if (!gdbarch_process_record_p (target_gdbarch ()))
947 error (_("Process record: the current architecture doesn't support "
948 "record function."));
949
950 push_target (&record_full_ops);
951 }
952
953 static void record_full_init_record_breakpoints (void);
954
955 /* Open the process record target. */
956
957 static void
958 record_full_open (const char *name, int from_tty)
959 {
960 if (record_debug)
961 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n");
962
963 record_preopen ();
964
965 /* Reset */
966 record_full_insn_num = 0;
967 record_full_insn_count = 0;
968 record_full_list = &record_full_first;
969 record_full_list->next = NULL;
970
971 if (core_bfd)
972 record_full_core_open_1 (name, from_tty);
973 else
974 record_full_open_1 (name, from_tty);
975
976 /* Register extra event sources in the event loop. */
977 record_full_async_inferior_event_token
978 = create_async_event_handler (record_full_async_inferior_event_handler,
979 NULL, "record-full");
980
981 record_full_init_record_breakpoints ();
982
983 gdb::observers::record_changed.notify (current_inferior (), 1, "full", NULL);
984 }
985
986 /* "close" target method. Close the process record target. */
987
988 void
989 record_full_base_target::close ()
990 {
991 struct record_full_core_buf_entry *entry;
992
993 if (record_debug)
994 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_close\n");
995
996 record_full_list_release (record_full_list);
997
998 /* Release record_full_core_regbuf. */
999 if (record_full_core_regbuf)
1000 {
1001 delete record_full_core_regbuf;
1002 record_full_core_regbuf = NULL;
1003 }
1004
1005 /* Release record_full_core_buf_list. */
1006 while (record_full_core_buf_list)
1007 {
1008 entry = record_full_core_buf_list;
1009 record_full_core_buf_list = record_full_core_buf_list->prev;
1010 xfree (entry);
1011 }
1012
1013 if (record_full_async_inferior_event_token)
1014 delete_async_event_handler (&record_full_async_inferior_event_token);
1015 }
1016
1017 /* "async" target method. */
1018
1019 void
1020 record_full_base_target::async (int enable)
1021 {
1022 if (enable)
1023 mark_async_event_handler (record_full_async_inferior_event_token);
1024 else
1025 clear_async_event_handler (record_full_async_inferior_event_token);
1026
1027 beneath ()->async (enable);
1028 }
1029
1030 /* The PTID and STEP arguments last passed to
1031 record_full_target::resume. */
1032 static ptid_t record_full_resume_ptid = null_ptid;
1033 static int record_full_resume_step = 0;
1034
1035 /* True if we've been resumed, and so each record_full_wait call should
1036 advance execution. If this is false, record_full_wait will return a
1037 TARGET_WAITKIND_IGNORE. */
1038 static int record_full_resumed = 0;
1039
1040 /* The execution direction of the last resume we got. This is
1041 necessary for async mode. Vis (order is not strictly accurate):
1042
1043 1. user has the global execution direction set to forward
1044 2. user does a reverse-step command
1045 3. record_full_resume is called with global execution direction
1046 temporarily switched to reverse
1047 4. GDB's execution direction is reverted back to forward
1048 5. target record notifies event loop there's an event to handle
1049 6. infrun asks the target which direction was it going, and switches
1050 the global execution direction accordingly (to reverse)
1051 7. infrun polls an event out of the record target, and handles it
1052 8. GDB goes back to the event loop, and goto #4.
1053 */
1054 static enum exec_direction_kind record_full_execution_dir = EXEC_FORWARD;
1055
1056 /* "resume" target method. Resume the process record target. */
1057
1058 void
1059 record_full_target::resume (ptid_t ptid, int step, enum gdb_signal signal)
1060 {
1061 record_full_resume_ptid = inferior_ptid;
1062 record_full_resume_step = step;
1063 record_full_resumed = 1;
1064 record_full_execution_dir = ::execution_direction;
1065
1066 if (!RECORD_FULL_IS_REPLAY)
1067 {
1068 struct gdbarch *gdbarch = target_thread_architecture (ptid);
1069
1070 record_full_message (get_current_regcache (), signal);
1071
1072 if (!step)
1073 {
1074 /* This is not hard single step. */
1075 if (!gdbarch_software_single_step_p (gdbarch))
1076 {
1077 /* This is a normal continue. */
1078 step = 1;
1079 }
1080 else
1081 {
1082 /* This arch supports soft single step. */
1083 if (thread_has_single_step_breakpoints_set (inferior_thread ()))
1084 {
1085 /* This is a soft single step. */
1086 record_full_resume_step = 1;
1087 }
1088 else
1089 step = !insert_single_step_breakpoints (gdbarch);
1090 }
1091 }
1092
1093 /* Make sure the target beneath reports all signals. */
1094 target_pass_signals ({});
1095
1096 this->beneath ()->resume (ptid, step, signal);
1097 }
1098
1099 /* We are about to start executing the inferior (or simulate it),
1100 let's register it with the event loop. */
1101 if (target_can_async_p ())
1102 target_async (1);
1103 }
1104
1105 static int record_full_get_sig = 0;
1106
1107 /* SIGINT signal handler, registered by "wait" method. */
1108
1109 static void
1110 record_full_sig_handler (int signo)
1111 {
1112 if (record_debug)
1113 fprintf_unfiltered (gdb_stdlog, "Process record: get a signal\n");
1114
1115 /* It will break the running inferior in replay mode. */
1116 record_full_resume_step = 1;
1117
1118 /* It will let record_full_wait set inferior status to get the signal
1119 SIGINT. */
1120 record_full_get_sig = 1;
1121 }
1122
1123 /* "wait" target method for process record target.
1124
1125 In record mode, the target is always run in singlestep mode
1126 (even when gdb says to continue). The wait method intercepts
1127 the stop events and determines which ones are to be passed on to
1128 gdb. Most stop events are just singlestep events that gdb is not
1129 to know about, so the wait method just records them and keeps
1130 singlestepping.
1131
1132 In replay mode, this function emulates the recorded execution log,
1133 one instruction at a time (forward or backward), and determines
1134 where to stop. */
1135
1136 static ptid_t
1137 record_full_wait_1 (struct target_ops *ops,
1138 ptid_t ptid, struct target_waitstatus *status,
1139 target_wait_flags options)
1140 {
1141 scoped_restore restore_operation_disable
1142 = record_full_gdb_operation_disable_set ();
1143
1144 if (record_debug)
1145 fprintf_unfiltered (gdb_stdlog,
1146 "Process record: record_full_wait "
1147 "record_full_resume_step = %d, "
1148 "record_full_resumed = %d, direction=%s\n",
1149 record_full_resume_step, record_full_resumed,
1150 record_full_execution_dir == EXEC_FORWARD
1151 ? "forward" : "reverse");
1152
1153 if (!record_full_resumed)
1154 {
1155 gdb_assert ((options & TARGET_WNOHANG) != 0);
1156
1157 /* No interesting event. */
1158 status->kind = TARGET_WAITKIND_IGNORE;
1159 return minus_one_ptid;
1160 }
1161
1162 record_full_get_sig = 0;
1163 signal (SIGINT, record_full_sig_handler);
1164
1165 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1166
1167 if (!RECORD_FULL_IS_REPLAY && ops != &record_full_core_ops)
1168 {
1169 if (record_full_resume_step)
1170 {
1171 /* This is a single step. */
1172 return ops->beneath ()->wait (ptid, status, options);
1173 }
1174 else
1175 {
1176 /* This is not a single step. */
1177 ptid_t ret;
1178 CORE_ADDR tmp_pc;
1179 struct gdbarch *gdbarch
1180 = target_thread_architecture (record_full_resume_ptid);
1181
1182 while (1)
1183 {
1184 ret = ops->beneath ()->wait (ptid, status, options);
1185 if (status->kind == TARGET_WAITKIND_IGNORE)
1186 {
1187 if (record_debug)
1188 fprintf_unfiltered (gdb_stdlog,
1189 "Process record: record_full_wait "
1190 "target beneath not done yet\n");
1191 return ret;
1192 }
1193
1194 for (thread_info *tp : all_non_exited_threads ())
1195 delete_single_step_breakpoints (tp);
1196
1197 if (record_full_resume_step)
1198 return ret;
1199
1200 /* Is this a SIGTRAP? */
1201 if (status->kind == TARGET_WAITKIND_STOPPED
1202 && status->value.sig == GDB_SIGNAL_TRAP)
1203 {
1204 struct regcache *regcache;
1205 enum target_stop_reason *stop_reason_p
1206 = &record_full_stop_reason;
1207
1208 /* Yes -- this is likely our single-step finishing,
1209 but check if there's any reason the core would be
1210 interested in the event. */
1211
1212 registers_changed ();
1213 switch_to_thread (current_inferior ()->process_target (),
1214 ret);
1215 regcache = get_current_regcache ();
1216 tmp_pc = regcache_read_pc (regcache);
1217 const struct address_space *aspace = regcache->aspace ();
1218
1219 if (target_stopped_by_watchpoint ())
1220 {
1221 /* Always interested in watchpoints. */
1222 }
1223 else if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1224 stop_reason_p))
1225 {
1226 /* There is a breakpoint here. Let the core
1227 handle it. */
1228 }
1229 else
1230 {
1231 /* This is a single-step trap. Record the
1232 insn and issue another step.
1233 FIXME: this part can be a random SIGTRAP too.
1234 But GDB cannot handle it. */
1235 int step = 1;
1236
1237 if (!record_full_message_wrapper_safe (regcache,
1238 GDB_SIGNAL_0))
1239 {
1240 status->kind = TARGET_WAITKIND_STOPPED;
1241 status->value.sig = GDB_SIGNAL_0;
1242 break;
1243 }
1244
1245 if (gdbarch_software_single_step_p (gdbarch))
1246 {
1247 process_stratum_target *proc_target
1248 = current_inferior ()->process_target ();
1249
1250 /* Try to insert the software single step breakpoint.
1251 If insert success, set step to 0. */
1252 set_executing (proc_target, inferior_ptid, false);
1253 reinit_frame_cache ();
1254
1255 step = !insert_single_step_breakpoints (gdbarch);
1256
1257 set_executing (proc_target, inferior_ptid, true);
1258 }
1259
1260 if (record_debug)
1261 fprintf_unfiltered (gdb_stdlog,
1262 "Process record: record_full_wait "
1263 "issuing one more step in the "
1264 "target beneath\n");
1265 ops->beneath ()->resume (ptid, step, GDB_SIGNAL_0);
1266 ops->beneath ()->commit_resume ();
1267 continue;
1268 }
1269 }
1270
1271 /* The inferior is broken by a breakpoint or a signal. */
1272 break;
1273 }
1274
1275 return ret;
1276 }
1277 }
1278 else
1279 {
1280 switch_to_thread (current_inferior ()->process_target (),
1281 record_full_resume_ptid);
1282 struct regcache *regcache = get_current_regcache ();
1283 struct gdbarch *gdbarch = regcache->arch ();
1284 const struct address_space *aspace = regcache->aspace ();
1285 int continue_flag = 1;
1286 int first_record_full_end = 1;
1287
1288 try
1289 {
1290 CORE_ADDR tmp_pc;
1291
1292 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1293 status->kind = TARGET_WAITKIND_STOPPED;
1294
1295 /* Check breakpoint when forward execute. */
1296 if (execution_direction == EXEC_FORWARD)
1297 {
1298 tmp_pc = regcache_read_pc (regcache);
1299 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1300 &record_full_stop_reason))
1301 {
1302 if (record_debug)
1303 fprintf_unfiltered (gdb_stdlog,
1304 "Process record: break at %s.\n",
1305 paddress (gdbarch, tmp_pc));
1306 goto replay_out;
1307 }
1308 }
1309
1310 /* If GDB is in terminal_inferior mode, it will not get the
1311 signal. And in GDB replay mode, GDB doesn't need to be
1312 in terminal_inferior mode, because inferior will not
1313 executed. Then set it to terminal_ours to make GDB get
1314 the signal. */
1315 target_terminal::ours ();
1316
1317 /* In EXEC_FORWARD mode, record_full_list points to the tail of prev
1318 instruction. */
1319 if (execution_direction == EXEC_FORWARD && record_full_list->next)
1320 record_full_list = record_full_list->next;
1321
1322 /* Loop over the record_full_list, looking for the next place to
1323 stop. */
1324 do
1325 {
1326 /* Check for beginning and end of log. */
1327 if (execution_direction == EXEC_REVERSE
1328 && record_full_list == &record_full_first)
1329 {
1330 /* Hit beginning of record log in reverse. */
1331 status->kind = TARGET_WAITKIND_NO_HISTORY;
1332 break;
1333 }
1334 if (execution_direction != EXEC_REVERSE
1335 && !record_full_list->next)
1336 {
1337 /* Hit end of record log going forward. */
1338 status->kind = TARGET_WAITKIND_NO_HISTORY;
1339 break;
1340 }
1341
1342 record_full_exec_insn (regcache, gdbarch, record_full_list);
1343
1344 if (record_full_list->type == record_full_end)
1345 {
1346 if (record_debug > 1)
1347 fprintf_unfiltered
1348 (gdb_stdlog,
1349 "Process record: record_full_end %s to "
1350 "inferior.\n",
1351 host_address_to_string (record_full_list));
1352
1353 if (first_record_full_end
1354 && execution_direction == EXEC_REVERSE)
1355 {
1356 /* When reverse execute, the first
1357 record_full_end is the part of current
1358 instruction. */
1359 first_record_full_end = 0;
1360 }
1361 else
1362 {
1363 /* In EXEC_REVERSE mode, this is the
1364 record_full_end of prev instruction. In
1365 EXEC_FORWARD mode, this is the
1366 record_full_end of current instruction. */
1367 /* step */
1368 if (record_full_resume_step)
1369 {
1370 if (record_debug > 1)
1371 fprintf_unfiltered (gdb_stdlog,
1372 "Process record: step.\n");
1373 continue_flag = 0;
1374 }
1375
1376 /* check breakpoint */
1377 tmp_pc = regcache_read_pc (regcache);
1378 if (record_check_stopped_by_breakpoint
1379 (aspace, tmp_pc, &record_full_stop_reason))
1380 {
1381 if (record_debug)
1382 fprintf_unfiltered (gdb_stdlog,
1383 "Process record: break "
1384 "at %s.\n",
1385 paddress (gdbarch, tmp_pc));
1386
1387 continue_flag = 0;
1388 }
1389
1390 if (record_full_stop_reason
1391 == TARGET_STOPPED_BY_WATCHPOINT)
1392 {
1393 if (record_debug)
1394 fprintf_unfiltered (gdb_stdlog,
1395 "Process record: hit hw "
1396 "watchpoint.\n");
1397 continue_flag = 0;
1398 }
1399 /* Check target signal */
1400 if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1401 /* FIXME: better way to check */
1402 continue_flag = 0;
1403 }
1404 }
1405
1406 if (continue_flag)
1407 {
1408 if (execution_direction == EXEC_REVERSE)
1409 {
1410 if (record_full_list->prev)
1411 record_full_list = record_full_list->prev;
1412 }
1413 else
1414 {
1415 if (record_full_list->next)
1416 record_full_list = record_full_list->next;
1417 }
1418 }
1419 }
1420 while (continue_flag);
1421
1422 replay_out:
1423 if (record_full_get_sig)
1424 status->value.sig = GDB_SIGNAL_INT;
1425 else if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1426 /* FIXME: better way to check */
1427 status->value.sig = record_full_list->u.end.sigval;
1428 else
1429 status->value.sig = GDB_SIGNAL_TRAP;
1430 }
1431 catch (const gdb_exception &ex)
1432 {
1433 if (execution_direction == EXEC_REVERSE)
1434 {
1435 if (record_full_list->next)
1436 record_full_list = record_full_list->next;
1437 }
1438 else
1439 record_full_list = record_full_list->prev;
1440
1441 throw;
1442 }
1443 }
1444
1445 signal (SIGINT, handle_sigint);
1446
1447 return inferior_ptid;
1448 }
1449
1450 ptid_t
1451 record_full_base_target::wait (ptid_t ptid, struct target_waitstatus *status,
1452 target_wait_flags options)
1453 {
1454 ptid_t return_ptid;
1455
1456 clear_async_event_handler (record_full_async_inferior_event_token);
1457
1458 return_ptid = record_full_wait_1 (this, ptid, status, options);
1459 if (status->kind != TARGET_WAITKIND_IGNORE)
1460 {
1461 /* We're reporting a stop. Make sure any spurious
1462 target_wait(WNOHANG) doesn't advance the target until the
1463 core wants us resumed again. */
1464 record_full_resumed = 0;
1465 }
1466 return return_ptid;
1467 }
1468
1469 bool
1470 record_full_base_target::stopped_by_watchpoint ()
1471 {
1472 if (RECORD_FULL_IS_REPLAY)
1473 return record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
1474 else
1475 return beneath ()->stopped_by_watchpoint ();
1476 }
1477
1478 bool
1479 record_full_base_target::stopped_data_address (CORE_ADDR *addr_p)
1480 {
1481 if (RECORD_FULL_IS_REPLAY)
1482 return false;
1483 else
1484 return this->beneath ()->stopped_data_address (addr_p);
1485 }
1486
1487 /* The stopped_by_sw_breakpoint method of target record-full. */
1488
1489 bool
1490 record_full_base_target::stopped_by_sw_breakpoint ()
1491 {
1492 return record_full_stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
1493 }
1494
1495 /* The supports_stopped_by_sw_breakpoint method of target
1496 record-full. */
1497
1498 bool
1499 record_full_base_target::supports_stopped_by_sw_breakpoint ()
1500 {
1501 return true;
1502 }
1503
1504 /* The stopped_by_hw_breakpoint method of target record-full. */
1505
1506 bool
1507 record_full_base_target::stopped_by_hw_breakpoint ()
1508 {
1509 return record_full_stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
1510 }
1511
1512 /* The supports_stopped_by_sw_breakpoint method of target
1513 record-full. */
1514
1515 bool
1516 record_full_base_target::supports_stopped_by_hw_breakpoint ()
1517 {
1518 return true;
1519 }
1520
1521 /* Record registers change (by user or by GDB) to list as an instruction. */
1522
1523 static void
1524 record_full_registers_change (struct regcache *regcache, int regnum)
1525 {
1526 /* Check record_full_insn_num. */
1527 record_full_check_insn_num ();
1528
1529 record_full_arch_list_head = NULL;
1530 record_full_arch_list_tail = NULL;
1531
1532 if (regnum < 0)
1533 {
1534 int i;
1535
1536 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
1537 {
1538 if (record_full_arch_list_add_reg (regcache, i))
1539 {
1540 record_full_list_release (record_full_arch_list_tail);
1541 error (_("Process record: failed to record execution log."));
1542 }
1543 }
1544 }
1545 else
1546 {
1547 if (record_full_arch_list_add_reg (regcache, regnum))
1548 {
1549 record_full_list_release (record_full_arch_list_tail);
1550 error (_("Process record: failed to record execution log."));
1551 }
1552 }
1553 if (record_full_arch_list_add_end ())
1554 {
1555 record_full_list_release (record_full_arch_list_tail);
1556 error (_("Process record: failed to record execution log."));
1557 }
1558 record_full_list->next = record_full_arch_list_head;
1559 record_full_arch_list_head->prev = record_full_list;
1560 record_full_list = record_full_arch_list_tail;
1561
1562 if (record_full_insn_num == record_full_insn_max_num)
1563 record_full_list_release_first ();
1564 else
1565 record_full_insn_num++;
1566 }
1567
1568 /* "store_registers" method for process record target. */
1569
1570 void
1571 record_full_target::store_registers (struct regcache *regcache, int regno)
1572 {
1573 if (!record_full_gdb_operation_disable)
1574 {
1575 if (RECORD_FULL_IS_REPLAY)
1576 {
1577 int n;
1578
1579 /* Let user choose if he wants to write register or not. */
1580 if (regno < 0)
1581 n =
1582 query (_("Because GDB is in replay mode, changing the "
1583 "value of a register will make the execution "
1584 "log unusable from this point onward. "
1585 "Change all registers?"));
1586 else
1587 n =
1588 query (_("Because GDB is in replay mode, changing the value "
1589 "of a register will make the execution log unusable "
1590 "from this point onward. Change register %s?"),
1591 gdbarch_register_name (regcache->arch (),
1592 regno));
1593
1594 if (!n)
1595 {
1596 /* Invalidate the value of regcache that was set in function
1597 "regcache_raw_write". */
1598 if (regno < 0)
1599 {
1600 int i;
1601
1602 for (i = 0;
1603 i < gdbarch_num_regs (regcache->arch ());
1604 i++)
1605 regcache->invalidate (i);
1606 }
1607 else
1608 regcache->invalidate (regno);
1609
1610 error (_("Process record canceled the operation."));
1611 }
1612
1613 /* Destroy the record from here forward. */
1614 record_full_list_release_following (record_full_list);
1615 }
1616
1617 record_full_registers_change (regcache, regno);
1618 }
1619 this->beneath ()->store_registers (regcache, regno);
1620 }
1621
1622 /* "xfer_partial" method. Behavior is conditional on
1623 RECORD_FULL_IS_REPLAY.
1624 In replay mode, we cannot write memory unles we are willing to
1625 invalidate the record/replay log from this point forward. */
1626
1627 enum target_xfer_status
1628 record_full_target::xfer_partial (enum target_object object,
1629 const char *annex, gdb_byte *readbuf,
1630 const gdb_byte *writebuf, ULONGEST offset,
1631 ULONGEST len, ULONGEST *xfered_len)
1632 {
1633 if (!record_full_gdb_operation_disable
1634 && (object == TARGET_OBJECT_MEMORY
1635 || object == TARGET_OBJECT_RAW_MEMORY) && writebuf)
1636 {
1637 if (RECORD_FULL_IS_REPLAY)
1638 {
1639 /* Let user choose if he wants to write memory or not. */
1640 if (!query (_("Because GDB is in replay mode, writing to memory "
1641 "will make the execution log unusable from this "
1642 "point onward. Write memory at address %s?"),
1643 paddress (target_gdbarch (), offset)))
1644 error (_("Process record canceled the operation."));
1645
1646 /* Destroy the record from here forward. */
1647 record_full_list_release_following (record_full_list);
1648 }
1649
1650 /* Check record_full_insn_num */
1651 record_full_check_insn_num ();
1652
1653 /* Record registers change to list as an instruction. */
1654 record_full_arch_list_head = NULL;
1655 record_full_arch_list_tail = NULL;
1656 if (record_full_arch_list_add_mem (offset, len))
1657 {
1658 record_full_list_release (record_full_arch_list_tail);
1659 if (record_debug)
1660 fprintf_unfiltered (gdb_stdlog,
1661 "Process record: failed to record "
1662 "execution log.");
1663 return TARGET_XFER_E_IO;
1664 }
1665 if (record_full_arch_list_add_end ())
1666 {
1667 record_full_list_release (record_full_arch_list_tail);
1668 if (record_debug)
1669 fprintf_unfiltered (gdb_stdlog,
1670 "Process record: failed to record "
1671 "execution log.");
1672 return TARGET_XFER_E_IO;
1673 }
1674 record_full_list->next = record_full_arch_list_head;
1675 record_full_arch_list_head->prev = record_full_list;
1676 record_full_list = record_full_arch_list_tail;
1677
1678 if (record_full_insn_num == record_full_insn_max_num)
1679 record_full_list_release_first ();
1680 else
1681 record_full_insn_num++;
1682 }
1683
1684 return this->beneath ()->xfer_partial (object, annex, readbuf, writebuf,
1685 offset, len, xfered_len);
1686 }
1687
1688 /* This structure represents a breakpoint inserted while the record
1689 target is active. We use this to know when to install/remove
1690 breakpoints in/from the target beneath. For example, a breakpoint
1691 may be inserted while recording, but removed when not replaying nor
1692 recording. In that case, the breakpoint had not been inserted on
1693 the target beneath, so we should not try to remove it there. */
1694
1695 struct record_full_breakpoint
1696 {
1697 record_full_breakpoint (struct address_space *address_space_,
1698 CORE_ADDR addr_,
1699 bool in_target_beneath_)
1700 : address_space (address_space_),
1701 addr (addr_),
1702 in_target_beneath (in_target_beneath_)
1703 {
1704 }
1705
1706 /* The address and address space the breakpoint was set at. */
1707 struct address_space *address_space;
1708 CORE_ADDR addr;
1709
1710 /* True when the breakpoint has been also installed in the target
1711 beneath. This will be false for breakpoints set during replay or
1712 when recording. */
1713 bool in_target_beneath;
1714 };
1715
1716 /* The list of breakpoints inserted while the record target is
1717 active. */
1718 static std::vector<record_full_breakpoint> record_full_breakpoints;
1719
1720 static void
1721 record_full_sync_record_breakpoints (struct bp_location *loc, void *data)
1722 {
1723 if (loc->loc_type != bp_loc_software_breakpoint)
1724 return;
1725
1726 if (loc->inserted)
1727 {
1728 record_full_breakpoints.emplace_back
1729 (loc->target_info.placed_address_space,
1730 loc->target_info.placed_address,
1731 1);
1732 }
1733 }
1734
1735 /* Sync existing breakpoints to record_full_breakpoints. */
1736
1737 static void
1738 record_full_init_record_breakpoints (void)
1739 {
1740 record_full_breakpoints.clear ();
1741
1742 iterate_over_bp_locations (record_full_sync_record_breakpoints);
1743 }
1744
1745 /* Behavior is conditional on RECORD_FULL_IS_REPLAY. We will not actually
1746 insert or remove breakpoints in the real target when replaying, nor
1747 when recording. */
1748
1749 int
1750 record_full_target::insert_breakpoint (struct gdbarch *gdbarch,
1751 struct bp_target_info *bp_tgt)
1752 {
1753 bool in_target_beneath = false;
1754
1755 if (!RECORD_FULL_IS_REPLAY)
1756 {
1757 /* When recording, we currently always single-step, so we don't
1758 really need to install regular breakpoints in the inferior.
1759 However, we do have to insert software single-step
1760 breakpoints, in case the target can't hardware step. To keep
1761 things simple, we always insert. */
1762
1763 scoped_restore restore_operation_disable
1764 = record_full_gdb_operation_disable_set ();
1765
1766 int ret = this->beneath ()->insert_breakpoint (gdbarch, bp_tgt);
1767 if (ret != 0)
1768 return ret;
1769
1770 in_target_beneath = true;
1771 }
1772
1773 /* Use the existing entries if found in order to avoid duplication
1774 in record_full_breakpoints. */
1775
1776 for (const record_full_breakpoint &bp : record_full_breakpoints)
1777 {
1778 if (bp.addr == bp_tgt->placed_address
1779 && bp.address_space == bp_tgt->placed_address_space)
1780 {
1781 gdb_assert (bp.in_target_beneath == in_target_beneath);
1782 return 0;
1783 }
1784 }
1785
1786 record_full_breakpoints.emplace_back (bp_tgt->placed_address_space,
1787 bp_tgt->placed_address,
1788 in_target_beneath);
1789 return 0;
1790 }
1791
1792 /* "remove_breakpoint" method for process record target. */
1793
1794 int
1795 record_full_target::remove_breakpoint (struct gdbarch *gdbarch,
1796 struct bp_target_info *bp_tgt,
1797 enum remove_bp_reason reason)
1798 {
1799 for (auto iter = record_full_breakpoints.begin ();
1800 iter != record_full_breakpoints.end ();
1801 ++iter)
1802 {
1803 struct record_full_breakpoint &bp = *iter;
1804
1805 if (bp.addr == bp_tgt->placed_address
1806 && bp.address_space == bp_tgt->placed_address_space)
1807 {
1808 if (bp.in_target_beneath)
1809 {
1810 scoped_restore restore_operation_disable
1811 = record_full_gdb_operation_disable_set ();
1812
1813 int ret = this->beneath ()->remove_breakpoint (gdbarch, bp_tgt,
1814 reason);
1815 if (ret != 0)
1816 return ret;
1817 }
1818
1819 if (reason == REMOVE_BREAKPOINT)
1820 unordered_remove (record_full_breakpoints, iter);
1821 return 0;
1822 }
1823 }
1824
1825 gdb_assert_not_reached ("removing unknown breakpoint");
1826 }
1827
1828 /* "can_execute_reverse" method for process record target. */
1829
1830 bool
1831 record_full_base_target::can_execute_reverse ()
1832 {
1833 return true;
1834 }
1835
1836 /* "get_bookmark" method for process record and prec over core. */
1837
1838 gdb_byte *
1839 record_full_base_target::get_bookmark (const char *args, int from_tty)
1840 {
1841 char *ret = NULL;
1842
1843 /* Return stringified form of instruction count. */
1844 if (record_full_list && record_full_list->type == record_full_end)
1845 ret = xstrdup (pulongest (record_full_list->u.end.insn_num));
1846
1847 if (record_debug)
1848 {
1849 if (ret)
1850 fprintf_unfiltered (gdb_stdlog,
1851 "record_full_get_bookmark returns %s\n", ret);
1852 else
1853 fprintf_unfiltered (gdb_stdlog,
1854 "record_full_get_bookmark returns NULL\n");
1855 }
1856 return (gdb_byte *) ret;
1857 }
1858
1859 /* "goto_bookmark" method for process record and prec over core. */
1860
1861 void
1862 record_full_base_target::goto_bookmark (const gdb_byte *raw_bookmark,
1863 int from_tty)
1864 {
1865 const char *bookmark = (const char *) raw_bookmark;
1866
1867 if (record_debug)
1868 fprintf_unfiltered (gdb_stdlog,
1869 "record_full_goto_bookmark receives %s\n", bookmark);
1870
1871 std::string name_holder;
1872 if (bookmark[0] == '\'' || bookmark[0] == '\"')
1873 {
1874 if (bookmark[strlen (bookmark) - 1] != bookmark[0])
1875 error (_("Unbalanced quotes: %s"), bookmark);
1876
1877 name_holder = std::string (bookmark + 1, strlen (bookmark) - 2);
1878 bookmark = name_holder.c_str ();
1879 }
1880
1881 record_goto (bookmark);
1882 }
1883
1884 enum exec_direction_kind
1885 record_full_base_target::execution_direction ()
1886 {
1887 return record_full_execution_dir;
1888 }
1889
1890 /* The record_method method of target record-full. */
1891
1892 enum record_method
1893 record_full_base_target::record_method (ptid_t ptid)
1894 {
1895 return RECORD_METHOD_FULL;
1896 }
1897
1898 void
1899 record_full_base_target::info_record ()
1900 {
1901 struct record_full_entry *p;
1902
1903 if (RECORD_FULL_IS_REPLAY)
1904 printf_filtered (_("Replay mode:\n"));
1905 else
1906 printf_filtered (_("Record mode:\n"));
1907
1908 /* Find entry for first actual instruction in the log. */
1909 for (p = record_full_first.next;
1910 p != NULL && p->type != record_full_end;
1911 p = p->next)
1912 ;
1913
1914 /* Do we have a log at all? */
1915 if (p != NULL && p->type == record_full_end)
1916 {
1917 /* Display instruction number for first instruction in the log. */
1918 printf_filtered (_("Lowest recorded instruction number is %s.\n"),
1919 pulongest (p->u.end.insn_num));
1920
1921 /* If in replay mode, display where we are in the log. */
1922 if (RECORD_FULL_IS_REPLAY)
1923 printf_filtered (_("Current instruction number is %s.\n"),
1924 pulongest (record_full_list->u.end.insn_num));
1925
1926 /* Display instruction number for last instruction in the log. */
1927 printf_filtered (_("Highest recorded instruction number is %s.\n"),
1928 pulongest (record_full_insn_count));
1929
1930 /* Display log count. */
1931 printf_filtered (_("Log contains %u instructions.\n"),
1932 record_full_insn_num);
1933 }
1934 else
1935 printf_filtered (_("No instructions have been logged.\n"));
1936
1937 /* Display max log size. */
1938 printf_filtered (_("Max logged instructions is %u.\n"),
1939 record_full_insn_max_num);
1940 }
1941
1942 bool
1943 record_full_base_target::supports_delete_record ()
1944 {
1945 return true;
1946 }
1947
1948 /* The "delete_record" target method. */
1949
1950 void
1951 record_full_base_target::delete_record ()
1952 {
1953 record_full_list_release_following (record_full_list);
1954 }
1955
1956 /* The "record_is_replaying" target method. */
1957
1958 bool
1959 record_full_base_target::record_is_replaying (ptid_t ptid)
1960 {
1961 return RECORD_FULL_IS_REPLAY;
1962 }
1963
1964 /* The "record_will_replay" target method. */
1965
1966 bool
1967 record_full_base_target::record_will_replay (ptid_t ptid, int dir)
1968 {
1969 /* We can currently only record when executing forwards. Should we be able
1970 to record when executing backwards on targets that support reverse
1971 execution, this needs to be changed. */
1972
1973 return RECORD_FULL_IS_REPLAY || dir == EXEC_REVERSE;
1974 }
1975
1976 /* Go to a specific entry. */
1977
1978 static void
1979 record_full_goto_entry (struct record_full_entry *p)
1980 {
1981 if (p == NULL)
1982 error (_("Target insn not found."));
1983 else if (p == record_full_list)
1984 error (_("Already at target insn."));
1985 else if (p->u.end.insn_num > record_full_list->u.end.insn_num)
1986 {
1987 printf_filtered (_("Go forward to insn number %s\n"),
1988 pulongest (p->u.end.insn_num));
1989 record_full_goto_insn (p, EXEC_FORWARD);
1990 }
1991 else
1992 {
1993 printf_filtered (_("Go backward to insn number %s\n"),
1994 pulongest (p->u.end.insn_num));
1995 record_full_goto_insn (p, EXEC_REVERSE);
1996 }
1997
1998 registers_changed ();
1999 reinit_frame_cache ();
2000 inferior_thread ()->suspend.stop_pc
2001 = regcache_read_pc (get_current_regcache ());
2002 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2003 }
2004
2005 /* The "goto_record_begin" target method. */
2006
2007 void
2008 record_full_base_target::goto_record_begin ()
2009 {
2010 struct record_full_entry *p = NULL;
2011
2012 for (p = &record_full_first; p != NULL; p = p->next)
2013 if (p->type == record_full_end)
2014 break;
2015
2016 record_full_goto_entry (p);
2017 }
2018
2019 /* The "goto_record_end" target method. */
2020
2021 void
2022 record_full_base_target::goto_record_end ()
2023 {
2024 struct record_full_entry *p = NULL;
2025
2026 for (p = record_full_list; p->next != NULL; p = p->next)
2027 ;
2028 for (; p!= NULL; p = p->prev)
2029 if (p->type == record_full_end)
2030 break;
2031
2032 record_full_goto_entry (p);
2033 }
2034
2035 /* The "goto_record" target method. */
2036
2037 void
2038 record_full_base_target::goto_record (ULONGEST target_insn)
2039 {
2040 struct record_full_entry *p = NULL;
2041
2042 for (p = &record_full_first; p != NULL; p = p->next)
2043 if (p->type == record_full_end && p->u.end.insn_num == target_insn)
2044 break;
2045
2046 record_full_goto_entry (p);
2047 }
2048
2049 /* The "record_stop_replaying" target method. */
2050
2051 void
2052 record_full_base_target::record_stop_replaying ()
2053 {
2054 goto_record_end ();
2055 }
2056
2057 /* "resume" method for prec over corefile. */
2058
2059 void
2060 record_full_core_target::resume (ptid_t ptid, int step,
2061 enum gdb_signal signal)
2062 {
2063 record_full_resume_step = step;
2064 record_full_resumed = 1;
2065 record_full_execution_dir = ::execution_direction;
2066
2067 /* We are about to start executing the inferior (or simulate it),
2068 let's register it with the event loop. */
2069 if (target_can_async_p ())
2070 target_async (1);
2071 }
2072
2073 /* "kill" method for prec over corefile. */
2074
2075 void
2076 record_full_core_target::kill ()
2077 {
2078 if (record_debug)
2079 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_core_kill\n");
2080
2081 unpush_target (this);
2082 }
2083
2084 /* "fetch_registers" method for prec over corefile. */
2085
2086 void
2087 record_full_core_target::fetch_registers (struct regcache *regcache,
2088 int regno)
2089 {
2090 if (regno < 0)
2091 {
2092 int num = gdbarch_num_regs (regcache->arch ());
2093 int i;
2094
2095 for (i = 0; i < num; i ++)
2096 regcache->raw_supply (i, *record_full_core_regbuf);
2097 }
2098 else
2099 regcache->raw_supply (regno, *record_full_core_regbuf);
2100 }
2101
2102 /* "prepare_to_store" method for prec over corefile. */
2103
2104 void
2105 record_full_core_target::prepare_to_store (struct regcache *regcache)
2106 {
2107 }
2108
2109 /* "store_registers" method for prec over corefile. */
2110
2111 void
2112 record_full_core_target::store_registers (struct regcache *regcache,
2113 int regno)
2114 {
2115 if (record_full_gdb_operation_disable)
2116 record_full_core_regbuf->raw_supply (regno, *regcache);
2117 else
2118 error (_("You can't do that without a process to debug."));
2119 }
2120
2121 /* "xfer_partial" method for prec over corefile. */
2122
2123 enum target_xfer_status
2124 record_full_core_target::xfer_partial (enum target_object object,
2125 const char *annex, gdb_byte *readbuf,
2126 const gdb_byte *writebuf, ULONGEST offset,
2127 ULONGEST len, ULONGEST *xfered_len)
2128 {
2129 if (object == TARGET_OBJECT_MEMORY)
2130 {
2131 if (record_full_gdb_operation_disable || !writebuf)
2132 {
2133 for (target_section &p : record_full_core_sections)
2134 {
2135 if (offset >= p.addr)
2136 {
2137 struct record_full_core_buf_entry *entry;
2138 ULONGEST sec_offset;
2139
2140 if (offset >= p.endaddr)
2141 continue;
2142
2143 if (offset + len > p.endaddr)
2144 len = p.endaddr - offset;
2145
2146 sec_offset = offset - p.addr;
2147
2148 /* Read readbuf or write writebuf p, offset, len. */
2149 /* Check flags. */
2150 if (p.the_bfd_section->flags & SEC_CONSTRUCTOR
2151 || (p.the_bfd_section->flags & SEC_HAS_CONTENTS) == 0)
2152 {
2153 if (readbuf)
2154 memset (readbuf, 0, len);
2155
2156 *xfered_len = len;
2157 return TARGET_XFER_OK;
2158 }
2159 /* Get record_full_core_buf_entry. */
2160 for (entry = record_full_core_buf_list; entry;
2161 entry = entry->prev)
2162 if (entry->p == &p)
2163 break;
2164 if (writebuf)
2165 {
2166 if (!entry)
2167 {
2168 /* Add a new entry. */
2169 entry = XNEW (struct record_full_core_buf_entry);
2170 entry->p = &p;
2171 if (!bfd_malloc_and_get_section
2172 (p.the_bfd_section->owner,
2173 p.the_bfd_section,
2174 &entry->buf))
2175 {
2176 xfree (entry);
2177 return TARGET_XFER_EOF;
2178 }
2179 entry->prev = record_full_core_buf_list;
2180 record_full_core_buf_list = entry;
2181 }
2182
2183 memcpy (entry->buf + sec_offset, writebuf,
2184 (size_t) len);
2185 }
2186 else
2187 {
2188 if (!entry)
2189 return this->beneath ()->xfer_partial (object, annex,
2190 readbuf, writebuf,
2191 offset, len,
2192 xfered_len);
2193
2194 memcpy (readbuf, entry->buf + sec_offset,
2195 (size_t) len);
2196 }
2197
2198 *xfered_len = len;
2199 return TARGET_XFER_OK;
2200 }
2201 }
2202
2203 return TARGET_XFER_E_IO;
2204 }
2205 else
2206 error (_("You can't do that without a process to debug."));
2207 }
2208
2209 return this->beneath ()->xfer_partial (object, annex,
2210 readbuf, writebuf, offset, len,
2211 xfered_len);
2212 }
2213
2214 /* "insert_breakpoint" method for prec over corefile. */
2215
2216 int
2217 record_full_core_target::insert_breakpoint (struct gdbarch *gdbarch,
2218 struct bp_target_info *bp_tgt)
2219 {
2220 return 0;
2221 }
2222
2223 /* "remove_breakpoint" method for prec over corefile. */
2224
2225 int
2226 record_full_core_target::remove_breakpoint (struct gdbarch *gdbarch,
2227 struct bp_target_info *bp_tgt,
2228 enum remove_bp_reason reason)
2229 {
2230 return 0;
2231 }
2232
2233 /* "has_execution" method for prec over corefile. */
2234
2235 bool
2236 record_full_core_target::has_execution (inferior *inf)
2237 {
2238 return true;
2239 }
2240
2241 /* Record log save-file format
2242 Version 1 (never released)
2243
2244 Header:
2245 4 bytes: magic number htonl(0x20090829).
2246 NOTE: be sure to change whenever this file format changes!
2247
2248 Records:
2249 record_full_end:
2250 1 byte: record type (record_full_end, see enum record_full_type).
2251 record_full_reg:
2252 1 byte: record type (record_full_reg, see enum record_full_type).
2253 8 bytes: register id (network byte order).
2254 MAX_REGISTER_SIZE bytes: register value.
2255 record_full_mem:
2256 1 byte: record type (record_full_mem, see enum record_full_type).
2257 8 bytes: memory length (network byte order).
2258 8 bytes: memory address (network byte order).
2259 n bytes: memory value (n == memory length).
2260
2261 Version 2
2262 4 bytes: magic number netorder32(0x20091016).
2263 NOTE: be sure to change whenever this file format changes!
2264
2265 Records:
2266 record_full_end:
2267 1 byte: record type (record_full_end, see enum record_full_type).
2268 4 bytes: signal
2269 4 bytes: instruction count
2270 record_full_reg:
2271 1 byte: record type (record_full_reg, see enum record_full_type).
2272 4 bytes: register id (network byte order).
2273 n bytes: register value (n == actual register size).
2274 (eg. 4 bytes for x86 general registers).
2275 record_full_mem:
2276 1 byte: record type (record_full_mem, see enum record_full_type).
2277 4 bytes: memory length (network byte order).
2278 8 bytes: memory address (network byte order).
2279 n bytes: memory value (n == memory length).
2280
2281 */
2282
2283 /* bfdcore_read -- read bytes from a core file section. */
2284
2285 static inline void
2286 bfdcore_read (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2287 {
2288 int ret = bfd_get_section_contents (obfd, osec, buf, *offset, len);
2289
2290 if (ret)
2291 *offset += len;
2292 else
2293 error (_("Failed to read %d bytes from core file %s ('%s')."),
2294 len, bfd_get_filename (obfd),
2295 bfd_errmsg (bfd_get_error ()));
2296 }
2297
2298 static inline uint64_t
2299 netorder64 (uint64_t input)
2300 {
2301 uint64_t ret;
2302
2303 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2304 BFD_ENDIAN_BIG, input);
2305 return ret;
2306 }
2307
2308 static inline uint32_t
2309 netorder32 (uint32_t input)
2310 {
2311 uint32_t ret;
2312
2313 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2314 BFD_ENDIAN_BIG, input);
2315 return ret;
2316 }
2317
2318 /* Restore the execution log from a core_bfd file. */
2319 static void
2320 record_full_restore (void)
2321 {
2322 uint32_t magic;
2323 struct record_full_entry *rec;
2324 asection *osec;
2325 uint32_t osec_size;
2326 int bfd_offset = 0;
2327 struct regcache *regcache;
2328
2329 /* We restore the execution log from the open core bfd,
2330 if there is one. */
2331 if (core_bfd == NULL)
2332 return;
2333
2334 /* "record_full_restore" can only be called when record list is empty. */
2335 gdb_assert (record_full_first.next == NULL);
2336
2337 if (record_debug)
2338 fprintf_unfiltered (gdb_stdlog, "Restoring recording from core file.\n");
2339
2340 /* Now need to find our special note section. */
2341 osec = bfd_get_section_by_name (core_bfd, "null0");
2342 if (record_debug)
2343 fprintf_unfiltered (gdb_stdlog, "Find precord section %s.\n",
2344 osec ? "succeeded" : "failed");
2345 if (osec == NULL)
2346 return;
2347 osec_size = bfd_section_size (osec);
2348 if (record_debug)
2349 fprintf_unfiltered (gdb_stdlog, "%s", bfd_section_name (osec));
2350
2351 /* Check the magic code. */
2352 bfdcore_read (core_bfd, osec, &magic, sizeof (magic), &bfd_offset);
2353 if (magic != RECORD_FULL_FILE_MAGIC)
2354 error (_("Version mis-match or file format error in core file %s."),
2355 bfd_get_filename (core_bfd));
2356 if (record_debug)
2357 fprintf_unfiltered (gdb_stdlog,
2358 " Reading 4-byte magic cookie "
2359 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2360 phex_nz (netorder32 (magic), 4));
2361
2362 /* Restore the entries in recfd into record_full_arch_list_head and
2363 record_full_arch_list_tail. */
2364 record_full_arch_list_head = NULL;
2365 record_full_arch_list_tail = NULL;
2366 record_full_insn_num = 0;
2367
2368 try
2369 {
2370 regcache = get_current_regcache ();
2371
2372 while (1)
2373 {
2374 uint8_t rectype;
2375 uint32_t regnum, len, signal, count;
2376 uint64_t addr;
2377
2378 /* We are finished when offset reaches osec_size. */
2379 if (bfd_offset >= osec_size)
2380 break;
2381 bfdcore_read (core_bfd, osec, &rectype, sizeof (rectype), &bfd_offset);
2382
2383 switch (rectype)
2384 {
2385 case record_full_reg: /* reg */
2386 /* Get register number to regnum. */
2387 bfdcore_read (core_bfd, osec, &regnum,
2388 sizeof (regnum), &bfd_offset);
2389 regnum = netorder32 (regnum);
2390
2391 rec = record_full_reg_alloc (regcache, regnum);
2392
2393 /* Get val. */
2394 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2395 rec->u.reg.len, &bfd_offset);
2396
2397 if (record_debug)
2398 fprintf_unfiltered (gdb_stdlog,
2399 " Reading register %d (1 "
2400 "plus %lu plus %d bytes)\n",
2401 rec->u.reg.num,
2402 (unsigned long) sizeof (regnum),
2403 rec->u.reg.len);
2404 break;
2405
2406 case record_full_mem: /* mem */
2407 /* Get len. */
2408 bfdcore_read (core_bfd, osec, &len,
2409 sizeof (len), &bfd_offset);
2410 len = netorder32 (len);
2411
2412 /* Get addr. */
2413 bfdcore_read (core_bfd, osec, &addr,
2414 sizeof (addr), &bfd_offset);
2415 addr = netorder64 (addr);
2416
2417 rec = record_full_mem_alloc (addr, len);
2418
2419 /* Get val. */
2420 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2421 rec->u.mem.len, &bfd_offset);
2422
2423 if (record_debug)
2424 fprintf_unfiltered (gdb_stdlog,
2425 " Reading memory %s (1 plus "
2426 "%lu plus %lu plus %d bytes)\n",
2427 paddress (get_current_arch (),
2428 rec->u.mem.addr),
2429 (unsigned long) sizeof (addr),
2430 (unsigned long) sizeof (len),
2431 rec->u.mem.len);
2432 break;
2433
2434 case record_full_end: /* end */
2435 rec = record_full_end_alloc ();
2436 record_full_insn_num ++;
2437
2438 /* Get signal value. */
2439 bfdcore_read (core_bfd, osec, &signal,
2440 sizeof (signal), &bfd_offset);
2441 signal = netorder32 (signal);
2442 rec->u.end.sigval = (enum gdb_signal) signal;
2443
2444 /* Get insn count. */
2445 bfdcore_read (core_bfd, osec, &count,
2446 sizeof (count), &bfd_offset);
2447 count = netorder32 (count);
2448 rec->u.end.insn_num = count;
2449 record_full_insn_count = count + 1;
2450 if (record_debug)
2451 fprintf_unfiltered (gdb_stdlog,
2452 " Reading record_full_end (1 + "
2453 "%lu + %lu bytes), offset == %s\n",
2454 (unsigned long) sizeof (signal),
2455 (unsigned long) sizeof (count),
2456 paddress (get_current_arch (),
2457 bfd_offset));
2458 break;
2459
2460 default:
2461 error (_("Bad entry type in core file %s."),
2462 bfd_get_filename (core_bfd));
2463 break;
2464 }
2465
2466 /* Add rec to record arch list. */
2467 record_full_arch_list_add (rec);
2468 }
2469 }
2470 catch (const gdb_exception &ex)
2471 {
2472 record_full_list_release (record_full_arch_list_tail);
2473 throw;
2474 }
2475
2476 /* Add record_full_arch_list_head to the end of record list. */
2477 record_full_first.next = record_full_arch_list_head;
2478 record_full_arch_list_head->prev = &record_full_first;
2479 record_full_arch_list_tail->next = NULL;
2480 record_full_list = &record_full_first;
2481
2482 /* Update record_full_insn_max_num. */
2483 if (record_full_insn_num > record_full_insn_max_num)
2484 {
2485 record_full_insn_max_num = record_full_insn_num;
2486 warning (_("Auto increase record/replay buffer limit to %u."),
2487 record_full_insn_max_num);
2488 }
2489
2490 /* Succeeded. */
2491 printf_filtered (_("Restored records from core file %s.\n"),
2492 bfd_get_filename (core_bfd));
2493
2494 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2495 }
2496
2497 /* bfdcore_write -- write bytes into a core file section. */
2498
2499 static inline void
2500 bfdcore_write (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2501 {
2502 int ret = bfd_set_section_contents (obfd, osec, buf, *offset, len);
2503
2504 if (ret)
2505 *offset += len;
2506 else
2507 error (_("Failed to write %d bytes to core file %s ('%s')."),
2508 len, bfd_get_filename (obfd),
2509 bfd_errmsg (bfd_get_error ()));
2510 }
2511
2512 /* Restore the execution log from a file. We use a modified elf
2513 corefile format, with an extra section for our data. */
2514
2515 static void
2516 cmd_record_full_restore (const char *args, int from_tty)
2517 {
2518 core_file_command (args, from_tty);
2519 record_full_open (args, from_tty);
2520 }
2521
2522 /* Save the execution log to a file. We use a modified elf corefile
2523 format, with an extra section for our data. */
2524
2525 void
2526 record_full_base_target::save_record (const char *recfilename)
2527 {
2528 struct record_full_entry *cur_record_full_list;
2529 uint32_t magic;
2530 struct regcache *regcache;
2531 struct gdbarch *gdbarch;
2532 int save_size = 0;
2533 asection *osec = NULL;
2534 int bfd_offset = 0;
2535
2536 /* Open the save file. */
2537 if (record_debug)
2538 fprintf_unfiltered (gdb_stdlog, "Saving execution log to core file '%s'\n",
2539 recfilename);
2540
2541 /* Open the output file. */
2542 gdb_bfd_ref_ptr obfd (create_gcore_bfd (recfilename));
2543
2544 /* Arrange to remove the output file on failure. */
2545 gdb::unlinker unlink_file (recfilename);
2546
2547 /* Save the current record entry to "cur_record_full_list". */
2548 cur_record_full_list = record_full_list;
2549
2550 /* Get the values of regcache and gdbarch. */
2551 regcache = get_current_regcache ();
2552 gdbarch = regcache->arch ();
2553
2554 /* Disable the GDB operation record. */
2555 scoped_restore restore_operation_disable
2556 = record_full_gdb_operation_disable_set ();
2557
2558 /* Reverse execute to the begin of record list. */
2559 while (1)
2560 {
2561 /* Check for beginning and end of log. */
2562 if (record_full_list == &record_full_first)
2563 break;
2564
2565 record_full_exec_insn (regcache, gdbarch, record_full_list);
2566
2567 if (record_full_list->prev)
2568 record_full_list = record_full_list->prev;
2569 }
2570
2571 /* Compute the size needed for the extra bfd section. */
2572 save_size = 4; /* magic cookie */
2573 for (record_full_list = record_full_first.next; record_full_list;
2574 record_full_list = record_full_list->next)
2575 switch (record_full_list->type)
2576 {
2577 case record_full_end:
2578 save_size += 1 + 4 + 4;
2579 break;
2580 case record_full_reg:
2581 save_size += 1 + 4 + record_full_list->u.reg.len;
2582 break;
2583 case record_full_mem:
2584 save_size += 1 + 4 + 8 + record_full_list->u.mem.len;
2585 break;
2586 }
2587
2588 /* Make the new bfd section. */
2589 osec = bfd_make_section_anyway_with_flags (obfd.get (), "precord",
2590 SEC_HAS_CONTENTS
2591 | SEC_READONLY);
2592 if (osec == NULL)
2593 error (_("Failed to create 'precord' section for corefile %s: %s"),
2594 recfilename,
2595 bfd_errmsg (bfd_get_error ()));
2596 bfd_set_section_size (osec, save_size);
2597 bfd_set_section_vma (osec, 0);
2598 bfd_set_section_alignment (osec, 0);
2599
2600 /* Save corefile state. */
2601 write_gcore_file (obfd.get ());
2602
2603 /* Write out the record log. */
2604 /* Write the magic code. */
2605 magic = RECORD_FULL_FILE_MAGIC;
2606 if (record_debug)
2607 fprintf_unfiltered (gdb_stdlog,
2608 " Writing 4-byte magic cookie "
2609 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2610 phex_nz (magic, 4));
2611 bfdcore_write (obfd.get (), osec, &magic, sizeof (magic), &bfd_offset);
2612
2613 /* Save the entries to recfd and forward execute to the end of
2614 record list. */
2615 record_full_list = &record_full_first;
2616 while (1)
2617 {
2618 /* Save entry. */
2619 if (record_full_list != &record_full_first)
2620 {
2621 uint8_t type;
2622 uint32_t regnum, len, signal, count;
2623 uint64_t addr;
2624
2625 type = record_full_list->type;
2626 bfdcore_write (obfd.get (), osec, &type, sizeof (type), &bfd_offset);
2627
2628 switch (record_full_list->type)
2629 {
2630 case record_full_reg: /* reg */
2631 if (record_debug)
2632 fprintf_unfiltered (gdb_stdlog,
2633 " Writing register %d (1 "
2634 "plus %lu plus %d bytes)\n",
2635 record_full_list->u.reg.num,
2636 (unsigned long) sizeof (regnum),
2637 record_full_list->u.reg.len);
2638
2639 /* Write regnum. */
2640 regnum = netorder32 (record_full_list->u.reg.num);
2641 bfdcore_write (obfd.get (), osec, &regnum,
2642 sizeof (regnum), &bfd_offset);
2643
2644 /* Write regval. */
2645 bfdcore_write (obfd.get (), osec,
2646 record_full_get_loc (record_full_list),
2647 record_full_list->u.reg.len, &bfd_offset);
2648 break;
2649
2650 case record_full_mem: /* mem */
2651 if (record_debug)
2652 fprintf_unfiltered (gdb_stdlog,
2653 " Writing memory %s (1 plus "
2654 "%lu plus %lu plus %d bytes)\n",
2655 paddress (gdbarch,
2656 record_full_list->u.mem.addr),
2657 (unsigned long) sizeof (addr),
2658 (unsigned long) sizeof (len),
2659 record_full_list->u.mem.len);
2660
2661 /* Write memlen. */
2662 len = netorder32 (record_full_list->u.mem.len);
2663 bfdcore_write (obfd.get (), osec, &len, sizeof (len),
2664 &bfd_offset);
2665
2666 /* Write memaddr. */
2667 addr = netorder64 (record_full_list->u.mem.addr);
2668 bfdcore_write (obfd.get (), osec, &addr,
2669 sizeof (addr), &bfd_offset);
2670
2671 /* Write memval. */
2672 bfdcore_write (obfd.get (), osec,
2673 record_full_get_loc (record_full_list),
2674 record_full_list->u.mem.len, &bfd_offset);
2675 break;
2676
2677 case record_full_end:
2678 if (record_debug)
2679 fprintf_unfiltered (gdb_stdlog,
2680 " Writing record_full_end (1 + "
2681 "%lu + %lu bytes)\n",
2682 (unsigned long) sizeof (signal),
2683 (unsigned long) sizeof (count));
2684 /* Write signal value. */
2685 signal = netorder32 (record_full_list->u.end.sigval);
2686 bfdcore_write (obfd.get (), osec, &signal,
2687 sizeof (signal), &bfd_offset);
2688
2689 /* Write insn count. */
2690 count = netorder32 (record_full_list->u.end.insn_num);
2691 bfdcore_write (obfd.get (), osec, &count,
2692 sizeof (count), &bfd_offset);
2693 break;
2694 }
2695 }
2696
2697 /* Execute entry. */
2698 record_full_exec_insn (regcache, gdbarch, record_full_list);
2699
2700 if (record_full_list->next)
2701 record_full_list = record_full_list->next;
2702 else
2703 break;
2704 }
2705
2706 /* Reverse execute to cur_record_full_list. */
2707 while (1)
2708 {
2709 /* Check for beginning and end of log. */
2710 if (record_full_list == cur_record_full_list)
2711 break;
2712
2713 record_full_exec_insn (regcache, gdbarch, record_full_list);
2714
2715 if (record_full_list->prev)
2716 record_full_list = record_full_list->prev;
2717 }
2718
2719 unlink_file.keep ();
2720
2721 /* Succeeded. */
2722 printf_filtered (_("Saved core file %s with execution log.\n"),
2723 recfilename);
2724 }
2725
2726 /* record_full_goto_insn -- rewind the record log (forward or backward,
2727 depending on DIR) to the given entry, changing the program state
2728 correspondingly. */
2729
2730 static void
2731 record_full_goto_insn (struct record_full_entry *entry,
2732 enum exec_direction_kind dir)
2733 {
2734 scoped_restore restore_operation_disable
2735 = record_full_gdb_operation_disable_set ();
2736 struct regcache *regcache = get_current_regcache ();
2737 struct gdbarch *gdbarch = regcache->arch ();
2738
2739 /* Assume everything is valid: we will hit the entry,
2740 and we will not hit the end of the recording. */
2741
2742 if (dir == EXEC_FORWARD)
2743 record_full_list = record_full_list->next;
2744
2745 do
2746 {
2747 record_full_exec_insn (regcache, gdbarch, record_full_list);
2748 if (dir == EXEC_REVERSE)
2749 record_full_list = record_full_list->prev;
2750 else
2751 record_full_list = record_full_list->next;
2752 } while (record_full_list != entry);
2753 }
2754
2755 /* Alias for "target record-full". */
2756
2757 static void
2758 cmd_record_full_start (const char *args, int from_tty)
2759 {
2760 execute_command ("target record-full", from_tty);
2761 }
2762
2763 static void
2764 set_record_full_insn_max_num (const char *args, int from_tty,
2765 struct cmd_list_element *c)
2766 {
2767 if (record_full_insn_num > record_full_insn_max_num)
2768 {
2769 /* Count down record_full_insn_num while releasing records from list. */
2770 while (record_full_insn_num > record_full_insn_max_num)
2771 {
2772 record_full_list_release_first ();
2773 record_full_insn_num--;
2774 }
2775 }
2776 }
2777
2778 void _initialize_record_full ();
2779 void
2780 _initialize_record_full ()
2781 {
2782 struct cmd_list_element *c;
2783
2784 /* Init record_full_first. */
2785 record_full_first.prev = NULL;
2786 record_full_first.next = NULL;
2787 record_full_first.type = record_full_end;
2788
2789 add_target (record_full_target_info, record_full_open);
2790 add_deprecated_target_alias (record_full_target_info, "record");
2791 add_target (record_full_core_target_info, record_full_open);
2792
2793 add_prefix_cmd ("full", class_obscure, cmd_record_full_start,
2794 _("Start full execution recording."), &record_full_cmdlist,
2795 "record full ", 0, &record_cmdlist);
2796
2797 c = add_cmd ("restore", class_obscure, cmd_record_full_restore,
2798 _("Restore the execution log from a file.\n\
2799 Argument is filename. File must be created with 'record save'."),
2800 &record_full_cmdlist);
2801 set_cmd_completer (c, filename_completer);
2802
2803 /* Deprecate the old version without "full" prefix. */
2804 c = add_alias_cmd ("restore", "full restore", class_obscure, 1,
2805 &record_cmdlist);
2806 set_cmd_completer (c, filename_completer);
2807 deprecate_cmd (c, "record full restore");
2808
2809 add_basic_prefix_cmd ("full", class_support,
2810 _("Set record options."), &set_record_full_cmdlist,
2811 "set record full ", 0, &set_record_cmdlist);
2812
2813 add_show_prefix_cmd ("full", class_support,
2814 _("Show record options."), &show_record_full_cmdlist,
2815 "show record full ", 0, &show_record_cmdlist);
2816
2817 /* Record instructions number limit command. */
2818 add_setshow_boolean_cmd ("stop-at-limit", no_class,
2819 &record_full_stop_at_limit, _("\
2820 Set whether record/replay stops when record/replay buffer becomes full."), _("\
2821 Show whether record/replay stops when record/replay buffer becomes full."),
2822 _("Default is ON.\n\
2823 When ON, if the record/replay buffer becomes full, ask user what to do.\n\
2824 When OFF, if the record/replay buffer becomes full,\n\
2825 delete the oldest recorded instruction to make room for each new one."),
2826 NULL, NULL,
2827 &set_record_full_cmdlist, &show_record_full_cmdlist);
2828
2829 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2830 &set_record_cmdlist);
2831 deprecate_cmd (c, "set record full stop-at-limit");
2832
2833 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2834 &show_record_cmdlist);
2835 deprecate_cmd (c, "show record full stop-at-limit");
2836
2837 add_setshow_uinteger_cmd ("insn-number-max", no_class,
2838 &record_full_insn_max_num,
2839 _("Set record/replay buffer limit."),
2840 _("Show record/replay buffer limit."), _("\
2841 Set the maximum number of instructions to be stored in the\n\
2842 record/replay buffer. A value of either \"unlimited\" or zero means no\n\
2843 limit. Default is 200000."),
2844 set_record_full_insn_max_num,
2845 NULL, &set_record_full_cmdlist,
2846 &show_record_full_cmdlist);
2847
2848 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2849 &set_record_cmdlist);
2850 deprecate_cmd (c, "set record full insn-number-max");
2851
2852 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2853 &show_record_cmdlist);
2854 deprecate_cmd (c, "show record full insn-number-max");
2855
2856 add_setshow_boolean_cmd ("memory-query", no_class,
2857 &record_full_memory_query, _("\
2858 Set whether query if PREC cannot record memory change of next instruction."),
2859 _("\
2860 Show whether query if PREC cannot record memory change of next instruction."),
2861 _("\
2862 Default is OFF.\n\
2863 When ON, query if PREC cannot record memory change of next instruction."),
2864 NULL, NULL,
2865 &set_record_full_cmdlist,
2866 &show_record_full_cmdlist);
2867
2868 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2869 &set_record_cmdlist);
2870 deprecate_cmd (c, "set record full memory-query");
2871
2872 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2873 &show_record_cmdlist);
2874 deprecate_cmd (c, "show record full memory-query");
2875 }
This page took 0.088676 seconds and 4 git commands to generate.