Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / record-full.c
1 /* Process record and replay target for GDB, the GNU debugger.
2
3 Copyright (C) 2013-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "regcache.h"
23 #include "gdbthread.h"
24 #include "inferior.h"
25 #include "event-top.h"
26 #include "completer.h"
27 #include "arch-utils.h"
28 #include "gdbcore.h"
29 #include "exec.h"
30 #include "record.h"
31 #include "record-full.h"
32 #include "elf-bfd.h"
33 #include "gcore.h"
34 #include "gdbsupport/event-loop.h"
35 #include "inf-loop.h"
36 #include "gdb_bfd.h"
37 #include "observable.h"
38 #include "infrun.h"
39 #include "gdbsupport/gdb_unlinker.h"
40 #include "gdbsupport/byte-vector.h"
41 #include "async-event.h"
42
43 #include <signal.h>
44
45 /* This module implements "target record-full", also known as "process
46 record and replay". This target sits on top of a "normal" target
47 (a target that "has execution"), and provides a record and replay
48 functionality, including reverse debugging.
49
50 Target record has two modes: recording, and replaying.
51
52 In record mode, we intercept the resume and wait methods.
53 Whenever gdb resumes the target, we run the target in single step
54 mode, and we build up an execution log in which, for each executed
55 instruction, we record all changes in memory and register state.
56 This is invisible to the user, to whom it just looks like an
57 ordinary debugging session (except for performance degradation).
58
59 In replay mode, instead of actually letting the inferior run as a
60 process, we simulate its execution by playing back the recorded
61 execution log. For each instruction in the log, we simulate the
62 instruction's side effects by duplicating the changes that it would
63 have made on memory and registers. */
64
65 #define DEFAULT_RECORD_FULL_INSN_MAX_NUM 200000
66
67 #define RECORD_FULL_IS_REPLAY \
68 (record_full_list->next || ::execution_direction == EXEC_REVERSE)
69
70 #define RECORD_FULL_FILE_MAGIC netorder32(0x20091016)
71
72 /* These are the core structs of the process record functionality.
73
74 A record_full_entry is a record of the value change of a register
75 ("record_full_reg") or a part of memory ("record_full_mem"). And each
76 instruction must have a struct record_full_entry ("record_full_end")
77 that indicates that this is the last struct record_full_entry of this
78 instruction.
79
80 Each struct record_full_entry is linked to "record_full_list" by "prev"
81 and "next" pointers. */
82
83 struct record_full_mem_entry
84 {
85 CORE_ADDR addr;
86 int len;
87 /* Set this flag if target memory for this entry
88 can no longer be accessed. */
89 int mem_entry_not_accessible;
90 union
91 {
92 gdb_byte *ptr;
93 gdb_byte buf[sizeof (gdb_byte *)];
94 } u;
95 };
96
97 struct record_full_reg_entry
98 {
99 unsigned short num;
100 unsigned short len;
101 union
102 {
103 gdb_byte *ptr;
104 gdb_byte buf[2 * sizeof (gdb_byte *)];
105 } u;
106 };
107
108 struct record_full_end_entry
109 {
110 enum gdb_signal sigval;
111 ULONGEST insn_num;
112 };
113
114 enum record_full_type
115 {
116 record_full_end = 0,
117 record_full_reg,
118 record_full_mem
119 };
120
121 /* This is the data structure that makes up the execution log.
122
123 The execution log consists of a single linked list of entries
124 of type "struct record_full_entry". It is doubly linked so that it
125 can be traversed in either direction.
126
127 The start of the list is anchored by a struct called
128 "record_full_first". The pointer "record_full_list" either points
129 to the last entry that was added to the list (in record mode), or to
130 the next entry in the list that will be executed (in replay mode).
131
132 Each list element (struct record_full_entry), in addition to next
133 and prev pointers, consists of a union of three entry types: mem,
134 reg, and end. A field called "type" determines which entry type is
135 represented by a given list element.
136
137 Each instruction that is added to the execution log is represented
138 by a variable number of list elements ('entries'). The instruction
139 will have one "reg" entry for each register that is changed by
140 executing the instruction (including the PC in every case). It
141 will also have one "mem" entry for each memory change. Finally,
142 each instruction will have an "end" entry that separates it from
143 the changes associated with the next instruction. */
144
145 struct record_full_entry
146 {
147 struct record_full_entry *prev;
148 struct record_full_entry *next;
149 enum record_full_type type;
150 union
151 {
152 /* reg */
153 struct record_full_reg_entry reg;
154 /* mem */
155 struct record_full_mem_entry mem;
156 /* end */
157 struct record_full_end_entry end;
158 } u;
159 };
160
161 /* If true, query if PREC cannot record memory
162 change of next instruction. */
163 bool record_full_memory_query = false;
164
165 struct record_full_core_buf_entry
166 {
167 struct record_full_core_buf_entry *prev;
168 struct target_section *p;
169 bfd_byte *buf;
170 };
171
172 /* Record buf with core target. */
173 static detached_regcache *record_full_core_regbuf = NULL;
174 static target_section_table record_full_core_sections;
175 static struct record_full_core_buf_entry *record_full_core_buf_list = NULL;
176
177 /* The following variables are used for managing the linked list that
178 represents the execution log.
179
180 record_full_first is the anchor that holds down the beginning of
181 the list.
182
183 record_full_list serves two functions:
184 1) In record mode, it anchors the end of the list.
185 2) In replay mode, it traverses the list and points to
186 the next instruction that must be emulated.
187
188 record_full_arch_list_head and record_full_arch_list_tail are used
189 to manage a separate list, which is used to build up the change
190 elements of the currently executing instruction during record mode.
191 When this instruction has been completely annotated in the "arch
192 list", it will be appended to the main execution log. */
193
194 static struct record_full_entry record_full_first;
195 static struct record_full_entry *record_full_list = &record_full_first;
196 static struct record_full_entry *record_full_arch_list_head = NULL;
197 static struct record_full_entry *record_full_arch_list_tail = NULL;
198
199 /* true ask user. false auto delete the last struct record_full_entry. */
200 static bool record_full_stop_at_limit = true;
201 /* Maximum allowed number of insns in execution log. */
202 static unsigned int record_full_insn_max_num
203 = DEFAULT_RECORD_FULL_INSN_MAX_NUM;
204 /* Actual count of insns presently in execution log. */
205 static unsigned int record_full_insn_num = 0;
206 /* Count of insns logged so far (may be larger
207 than count of insns presently in execution log). */
208 static ULONGEST record_full_insn_count;
209
210 static const char record_longname[]
211 = N_("Process record and replay target");
212 static const char record_doc[]
213 = N_("Log program while executing and replay execution from log.");
214
215 /* Base class implementing functionality common to both the
216 "record-full" and "record-core" targets. */
217
218 class record_full_base_target : public target_ops
219 {
220 public:
221 const target_info &info () const override = 0;
222
223 strata stratum () const override { return record_stratum; }
224
225 void close () override;
226 void async (int) override;
227 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
228 bool stopped_by_watchpoint () override;
229 bool stopped_data_address (CORE_ADDR *) override;
230
231 bool stopped_by_sw_breakpoint () override;
232 bool supports_stopped_by_sw_breakpoint () override;
233
234 bool stopped_by_hw_breakpoint () override;
235 bool supports_stopped_by_hw_breakpoint () override;
236
237 bool can_execute_reverse () override;
238
239 /* Add bookmark target methods. */
240 gdb_byte *get_bookmark (const char *, int) override;
241 void goto_bookmark (const gdb_byte *, int) override;
242 enum exec_direction_kind execution_direction () override;
243 enum record_method record_method (ptid_t ptid) override;
244 void info_record () override;
245 void save_record (const char *filename) override;
246 bool supports_delete_record () override;
247 void delete_record () override;
248 bool record_is_replaying (ptid_t ptid) override;
249 bool record_will_replay (ptid_t ptid, int dir) override;
250 void record_stop_replaying () override;
251 void goto_record_begin () override;
252 void goto_record_end () override;
253 void goto_record (ULONGEST insn) override;
254 };
255
256 /* The "record-full" target. */
257
258 static const target_info record_full_target_info = {
259 "record-full",
260 record_longname,
261 record_doc,
262 };
263
264 class record_full_target final : public record_full_base_target
265 {
266 public:
267 const target_info &info () const override
268 { return record_full_target_info; }
269
270 void commit_resume () override;
271 void resume (ptid_t, int, enum gdb_signal) override;
272 void disconnect (const char *, int) override;
273 void detach (inferior *, int) override;
274 void mourn_inferior () override;
275 void kill () override;
276 void store_registers (struct regcache *, int) override;
277 enum target_xfer_status xfer_partial (enum target_object object,
278 const char *annex,
279 gdb_byte *readbuf,
280 const gdb_byte *writebuf,
281 ULONGEST offset, ULONGEST len,
282 ULONGEST *xfered_len) override;
283 int insert_breakpoint (struct gdbarch *,
284 struct bp_target_info *) override;
285 int remove_breakpoint (struct gdbarch *,
286 struct bp_target_info *,
287 enum remove_bp_reason) override;
288 };
289
290 /* The "record-core" target. */
291
292 static const target_info record_full_core_target_info = {
293 "record-core",
294 record_longname,
295 record_doc,
296 };
297
298 class record_full_core_target final : public record_full_base_target
299 {
300 public:
301 const target_info &info () const override
302 { return record_full_core_target_info; }
303
304 void resume (ptid_t, int, enum gdb_signal) override;
305 void disconnect (const char *, int) override;
306 void kill () override;
307 void fetch_registers (struct regcache *regcache, int regno) override;
308 void prepare_to_store (struct regcache *regcache) override;
309 void store_registers (struct regcache *, int) override;
310 enum target_xfer_status xfer_partial (enum target_object object,
311 const char *annex,
312 gdb_byte *readbuf,
313 const gdb_byte *writebuf,
314 ULONGEST offset, ULONGEST len,
315 ULONGEST *xfered_len) override;
316 int insert_breakpoint (struct gdbarch *,
317 struct bp_target_info *) override;
318 int remove_breakpoint (struct gdbarch *,
319 struct bp_target_info *,
320 enum remove_bp_reason) override;
321
322 bool has_execution (inferior *inf) override;
323 };
324
325 static record_full_target record_full_ops;
326 static record_full_core_target record_full_core_ops;
327
328 void
329 record_full_target::detach (inferior *inf, int from_tty)
330 {
331 record_detach (this, inf, from_tty);
332 }
333
334 void
335 record_full_target::disconnect (const char *args, int from_tty)
336 {
337 record_disconnect (this, args, from_tty);
338 }
339
340 void
341 record_full_core_target::disconnect (const char *args, int from_tty)
342 {
343 record_disconnect (this, args, from_tty);
344 }
345
346 void
347 record_full_target::mourn_inferior ()
348 {
349 record_mourn_inferior (this);
350 }
351
352 void
353 record_full_target::kill ()
354 {
355 record_kill (this);
356 }
357
358 /* See record-full.h. */
359
360 int
361 record_full_is_used (void)
362 {
363 struct target_ops *t;
364
365 t = find_record_target ();
366 return (t == &record_full_ops
367 || t == &record_full_core_ops);
368 }
369
370
371 /* Command lists for "set/show record full". */
372 static struct cmd_list_element *set_record_full_cmdlist;
373 static struct cmd_list_element *show_record_full_cmdlist;
374
375 /* Command list for "record full". */
376 static struct cmd_list_element *record_full_cmdlist;
377
378 static void record_full_goto_insn (struct record_full_entry *entry,
379 enum exec_direction_kind dir);
380
381 /* Alloc and free functions for record_full_reg, record_full_mem, and
382 record_full_end entries. */
383
384 /* Alloc a record_full_reg record entry. */
385
386 static inline struct record_full_entry *
387 record_full_reg_alloc (struct regcache *regcache, int regnum)
388 {
389 struct record_full_entry *rec;
390 struct gdbarch *gdbarch = regcache->arch ();
391
392 rec = XCNEW (struct record_full_entry);
393 rec->type = record_full_reg;
394 rec->u.reg.num = regnum;
395 rec->u.reg.len = register_size (gdbarch, regnum);
396 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
397 rec->u.reg.u.ptr = (gdb_byte *) xmalloc (rec->u.reg.len);
398
399 return rec;
400 }
401
402 /* Free a record_full_reg record entry. */
403
404 static inline void
405 record_full_reg_release (struct record_full_entry *rec)
406 {
407 gdb_assert (rec->type == record_full_reg);
408 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
409 xfree (rec->u.reg.u.ptr);
410 xfree (rec);
411 }
412
413 /* Alloc a record_full_mem record entry. */
414
415 static inline struct record_full_entry *
416 record_full_mem_alloc (CORE_ADDR addr, int len)
417 {
418 struct record_full_entry *rec;
419
420 rec = XCNEW (struct record_full_entry);
421 rec->type = record_full_mem;
422 rec->u.mem.addr = addr;
423 rec->u.mem.len = len;
424 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
425 rec->u.mem.u.ptr = (gdb_byte *) xmalloc (len);
426
427 return rec;
428 }
429
430 /* Free a record_full_mem record entry. */
431
432 static inline void
433 record_full_mem_release (struct record_full_entry *rec)
434 {
435 gdb_assert (rec->type == record_full_mem);
436 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
437 xfree (rec->u.mem.u.ptr);
438 xfree (rec);
439 }
440
441 /* Alloc a record_full_end record entry. */
442
443 static inline struct record_full_entry *
444 record_full_end_alloc (void)
445 {
446 struct record_full_entry *rec;
447
448 rec = XCNEW (struct record_full_entry);
449 rec->type = record_full_end;
450
451 return rec;
452 }
453
454 /* Free a record_full_end record entry. */
455
456 static inline void
457 record_full_end_release (struct record_full_entry *rec)
458 {
459 xfree (rec);
460 }
461
462 /* Free one record entry, any type.
463 Return entry->type, in case caller wants to know. */
464
465 static inline enum record_full_type
466 record_full_entry_release (struct record_full_entry *rec)
467 {
468 enum record_full_type type = rec->type;
469
470 switch (type) {
471 case record_full_reg:
472 record_full_reg_release (rec);
473 break;
474 case record_full_mem:
475 record_full_mem_release (rec);
476 break;
477 case record_full_end:
478 record_full_end_release (rec);
479 break;
480 }
481 return type;
482 }
483
484 /* Free all record entries in list pointed to by REC. */
485
486 static void
487 record_full_list_release (struct record_full_entry *rec)
488 {
489 if (!rec)
490 return;
491
492 while (rec->next)
493 rec = rec->next;
494
495 while (rec->prev)
496 {
497 rec = rec->prev;
498 record_full_entry_release (rec->next);
499 }
500
501 if (rec == &record_full_first)
502 {
503 record_full_insn_num = 0;
504 record_full_first.next = NULL;
505 }
506 else
507 record_full_entry_release (rec);
508 }
509
510 /* Free all record entries forward of the given list position. */
511
512 static void
513 record_full_list_release_following (struct record_full_entry *rec)
514 {
515 struct record_full_entry *tmp = rec->next;
516
517 rec->next = NULL;
518 while (tmp)
519 {
520 rec = tmp->next;
521 if (record_full_entry_release (tmp) == record_full_end)
522 {
523 record_full_insn_num--;
524 record_full_insn_count--;
525 }
526 tmp = rec;
527 }
528 }
529
530 /* Delete the first instruction from the beginning of the log, to make
531 room for adding a new instruction at the end of the log.
532
533 Note -- this function does not modify record_full_insn_num. */
534
535 static void
536 record_full_list_release_first (void)
537 {
538 struct record_full_entry *tmp;
539
540 if (!record_full_first.next)
541 return;
542
543 /* Loop until a record_full_end. */
544 while (1)
545 {
546 /* Cut record_full_first.next out of the linked list. */
547 tmp = record_full_first.next;
548 record_full_first.next = tmp->next;
549 tmp->next->prev = &record_full_first;
550
551 /* tmp is now isolated, and can be deleted. */
552 if (record_full_entry_release (tmp) == record_full_end)
553 break; /* End loop at first record_full_end. */
554
555 if (!record_full_first.next)
556 {
557 gdb_assert (record_full_insn_num == 1);
558 break; /* End loop when list is empty. */
559 }
560 }
561 }
562
563 /* Add a struct record_full_entry to record_full_arch_list. */
564
565 static void
566 record_full_arch_list_add (struct record_full_entry *rec)
567 {
568 if (record_debug > 1)
569 fprintf_unfiltered (gdb_stdlog,
570 "Process record: record_full_arch_list_add %s.\n",
571 host_address_to_string (rec));
572
573 if (record_full_arch_list_tail)
574 {
575 record_full_arch_list_tail->next = rec;
576 rec->prev = record_full_arch_list_tail;
577 record_full_arch_list_tail = rec;
578 }
579 else
580 {
581 record_full_arch_list_head = rec;
582 record_full_arch_list_tail = rec;
583 }
584 }
585
586 /* Return the value storage location of a record entry. */
587 static inline gdb_byte *
588 record_full_get_loc (struct record_full_entry *rec)
589 {
590 switch (rec->type) {
591 case record_full_mem:
592 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
593 return rec->u.mem.u.ptr;
594 else
595 return rec->u.mem.u.buf;
596 case record_full_reg:
597 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
598 return rec->u.reg.u.ptr;
599 else
600 return rec->u.reg.u.buf;
601 case record_full_end:
602 default:
603 gdb_assert_not_reached ("unexpected record_full_entry type");
604 return NULL;
605 }
606 }
607
608 /* Record the value of a register NUM to record_full_arch_list. */
609
610 int
611 record_full_arch_list_add_reg (struct regcache *regcache, int regnum)
612 {
613 struct record_full_entry *rec;
614
615 if (record_debug > 1)
616 fprintf_unfiltered (gdb_stdlog,
617 "Process record: add register num = %d to "
618 "record list.\n",
619 regnum);
620
621 rec = record_full_reg_alloc (regcache, regnum);
622
623 regcache->raw_read (regnum, record_full_get_loc (rec));
624
625 record_full_arch_list_add (rec);
626
627 return 0;
628 }
629
630 /* Record the value of a region of memory whose address is ADDR and
631 length is LEN to record_full_arch_list. */
632
633 int
634 record_full_arch_list_add_mem (CORE_ADDR addr, int len)
635 {
636 struct record_full_entry *rec;
637
638 if (record_debug > 1)
639 fprintf_unfiltered (gdb_stdlog,
640 "Process record: add mem addr = %s len = %d to "
641 "record list.\n",
642 paddress (target_gdbarch (), addr), len);
643
644 if (!addr) /* FIXME: Why? Some arch must permit it... */
645 return 0;
646
647 rec = record_full_mem_alloc (addr, len);
648
649 if (record_read_memory (target_gdbarch (), addr,
650 record_full_get_loc (rec), len))
651 {
652 record_full_mem_release (rec);
653 return -1;
654 }
655
656 record_full_arch_list_add (rec);
657
658 return 0;
659 }
660
661 /* Add a record_full_end type struct record_full_entry to
662 record_full_arch_list. */
663
664 int
665 record_full_arch_list_add_end (void)
666 {
667 struct record_full_entry *rec;
668
669 if (record_debug > 1)
670 fprintf_unfiltered (gdb_stdlog,
671 "Process record: add end to arch list.\n");
672
673 rec = record_full_end_alloc ();
674 rec->u.end.sigval = GDB_SIGNAL_0;
675 rec->u.end.insn_num = ++record_full_insn_count;
676
677 record_full_arch_list_add (rec);
678
679 return 0;
680 }
681
682 static void
683 record_full_check_insn_num (void)
684 {
685 if (record_full_insn_num == record_full_insn_max_num)
686 {
687 /* Ask user what to do. */
688 if (record_full_stop_at_limit)
689 {
690 if (!yquery (_("Do you want to auto delete previous execution "
691 "log entries when record/replay buffer becomes "
692 "full (record full stop-at-limit)?")))
693 error (_("Process record: stopped by user."));
694 record_full_stop_at_limit = 0;
695 }
696 }
697 }
698
699 /* Before inferior step (when GDB record the running message, inferior
700 only can step), GDB will call this function to record the values to
701 record_full_list. This function will call gdbarch_process_record to
702 record the running message of inferior and set them to
703 record_full_arch_list, and add it to record_full_list. */
704
705 static void
706 record_full_message (struct regcache *regcache, enum gdb_signal signal)
707 {
708 int ret;
709 struct gdbarch *gdbarch = regcache->arch ();
710
711 try
712 {
713 record_full_arch_list_head = NULL;
714 record_full_arch_list_tail = NULL;
715
716 /* Check record_full_insn_num. */
717 record_full_check_insn_num ();
718
719 /* If gdb sends a signal value to target_resume,
720 save it in the 'end' field of the previous instruction.
721
722 Maybe process record should record what really happened,
723 rather than what gdb pretends has happened.
724
725 So if Linux delivered the signal to the child process during
726 the record mode, we will record it and deliver it again in
727 the replay mode.
728
729 If user says "ignore this signal" during the record mode, then
730 it will be ignored again during the replay mode (no matter if
731 the user says something different, like "deliver this signal"
732 during the replay mode).
733
734 User should understand that nothing he does during the replay
735 mode will change the behavior of the child. If he tries,
736 then that is a user error.
737
738 But we should still deliver the signal to gdb during the replay,
739 if we delivered it during the recording. Therefore we should
740 record the signal during record_full_wait, not
741 record_full_resume. */
742 if (record_full_list != &record_full_first) /* FIXME better way
743 to check */
744 {
745 gdb_assert (record_full_list->type == record_full_end);
746 record_full_list->u.end.sigval = signal;
747 }
748
749 if (signal == GDB_SIGNAL_0
750 || !gdbarch_process_record_signal_p (gdbarch))
751 ret = gdbarch_process_record (gdbarch,
752 regcache,
753 regcache_read_pc (regcache));
754 else
755 ret = gdbarch_process_record_signal (gdbarch,
756 regcache,
757 signal);
758
759 if (ret > 0)
760 error (_("Process record: inferior program stopped."));
761 if (ret < 0)
762 error (_("Process record: failed to record execution log."));
763 }
764 catch (const gdb_exception &ex)
765 {
766 record_full_list_release (record_full_arch_list_tail);
767 throw;
768 }
769
770 record_full_list->next = record_full_arch_list_head;
771 record_full_arch_list_head->prev = record_full_list;
772 record_full_list = record_full_arch_list_tail;
773
774 if (record_full_insn_num == record_full_insn_max_num)
775 record_full_list_release_first ();
776 else
777 record_full_insn_num++;
778 }
779
780 static bool
781 record_full_message_wrapper_safe (struct regcache *regcache,
782 enum gdb_signal signal)
783 {
784 try
785 {
786 record_full_message (regcache, signal);
787 }
788 catch (const gdb_exception &ex)
789 {
790 exception_print (gdb_stderr, ex);
791 return false;
792 }
793
794 return true;
795 }
796
797 /* Set to 1 if record_full_store_registers and record_full_xfer_partial
798 doesn't need record. */
799
800 static int record_full_gdb_operation_disable = 0;
801
802 scoped_restore_tmpl<int>
803 record_full_gdb_operation_disable_set (void)
804 {
805 return make_scoped_restore (&record_full_gdb_operation_disable, 1);
806 }
807
808 /* Flag set to TRUE for target_stopped_by_watchpoint. */
809 static enum target_stop_reason record_full_stop_reason
810 = TARGET_STOPPED_BY_NO_REASON;
811
812 /* Execute one instruction from the record log. Each instruction in
813 the log will be represented by an arbitrary sequence of register
814 entries and memory entries, followed by an 'end' entry. */
815
816 static inline void
817 record_full_exec_insn (struct regcache *regcache,
818 struct gdbarch *gdbarch,
819 struct record_full_entry *entry)
820 {
821 switch (entry->type)
822 {
823 case record_full_reg: /* reg */
824 {
825 gdb::byte_vector reg (entry->u.reg.len);
826
827 if (record_debug > 1)
828 fprintf_unfiltered (gdb_stdlog,
829 "Process record: record_full_reg %s to "
830 "inferior num = %d.\n",
831 host_address_to_string (entry),
832 entry->u.reg.num);
833
834 regcache->cooked_read (entry->u.reg.num, reg.data ());
835 regcache->cooked_write (entry->u.reg.num, record_full_get_loc (entry));
836 memcpy (record_full_get_loc (entry), reg.data (), entry->u.reg.len);
837 }
838 break;
839
840 case record_full_mem: /* mem */
841 {
842 /* Nothing to do if the entry is flagged not_accessible. */
843 if (!entry->u.mem.mem_entry_not_accessible)
844 {
845 gdb::byte_vector mem (entry->u.mem.len);
846
847 if (record_debug > 1)
848 fprintf_unfiltered (gdb_stdlog,
849 "Process record: record_full_mem %s to "
850 "inferior addr = %s len = %d.\n",
851 host_address_to_string (entry),
852 paddress (gdbarch, entry->u.mem.addr),
853 entry->u.mem.len);
854
855 if (record_read_memory (gdbarch,
856 entry->u.mem.addr, mem.data (),
857 entry->u.mem.len))
858 entry->u.mem.mem_entry_not_accessible = 1;
859 else
860 {
861 if (target_write_memory (entry->u.mem.addr,
862 record_full_get_loc (entry),
863 entry->u.mem.len))
864 {
865 entry->u.mem.mem_entry_not_accessible = 1;
866 if (record_debug)
867 warning (_("Process record: error writing memory at "
868 "addr = %s len = %d."),
869 paddress (gdbarch, entry->u.mem.addr),
870 entry->u.mem.len);
871 }
872 else
873 {
874 memcpy (record_full_get_loc (entry), mem.data (),
875 entry->u.mem.len);
876
877 /* We've changed memory --- check if a hardware
878 watchpoint should trap. Note that this
879 presently assumes the target beneath supports
880 continuable watchpoints. On non-continuable
881 watchpoints target, we'll want to check this
882 _before_ actually doing the memory change, and
883 not doing the change at all if the watchpoint
884 traps. */
885 if (hardware_watchpoint_inserted_in_range
886 (regcache->aspace (),
887 entry->u.mem.addr, entry->u.mem.len))
888 record_full_stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
889 }
890 }
891 }
892 }
893 break;
894 }
895 }
896
897 static void record_full_restore (void);
898
899 /* Asynchronous signal handle registered as event loop source for when
900 we have pending events ready to be passed to the core. */
901
902 static struct async_event_handler *record_full_async_inferior_event_token;
903
904 static void
905 record_full_async_inferior_event_handler (gdb_client_data data)
906 {
907 inferior_event_handler (INF_REG_EVENT);
908 }
909
910 /* Open the process record target for 'core' files. */
911
912 static void
913 record_full_core_open_1 (const char *name, int from_tty)
914 {
915 struct regcache *regcache = get_current_regcache ();
916 int regnum = gdbarch_num_regs (regcache->arch ());
917 int i;
918
919 /* Get record_full_core_regbuf. */
920 target_fetch_registers (regcache, -1);
921 record_full_core_regbuf = new detached_regcache (regcache->arch (), false);
922
923 for (i = 0; i < regnum; i ++)
924 record_full_core_regbuf->raw_supply (i, *regcache);
925
926 record_full_core_sections = build_section_table (core_bfd);
927
928 push_target (&record_full_core_ops);
929 record_full_restore ();
930 }
931
932 /* Open the process record target for 'live' processes. */
933
934 static void
935 record_full_open_1 (const char *name, int from_tty)
936 {
937 if (record_debug)
938 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open_1\n");
939
940 /* check exec */
941 if (!target_has_execution ())
942 error (_("Process record: the program is not being run."));
943 if (non_stop)
944 error (_("Process record target can't debug inferior in non-stop mode "
945 "(non-stop)."));
946
947 if (!gdbarch_process_record_p (target_gdbarch ()))
948 error (_("Process record: the current architecture doesn't support "
949 "record function."));
950
951 push_target (&record_full_ops);
952 }
953
954 static void record_full_init_record_breakpoints (void);
955
956 /* Open the process record target. */
957
958 static void
959 record_full_open (const char *name, int from_tty)
960 {
961 if (record_debug)
962 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n");
963
964 record_preopen ();
965
966 /* Reset */
967 record_full_insn_num = 0;
968 record_full_insn_count = 0;
969 record_full_list = &record_full_first;
970 record_full_list->next = NULL;
971
972 if (core_bfd)
973 record_full_core_open_1 (name, from_tty);
974 else
975 record_full_open_1 (name, from_tty);
976
977 /* Register extra event sources in the event loop. */
978 record_full_async_inferior_event_token
979 = create_async_event_handler (record_full_async_inferior_event_handler,
980 NULL, "record-full");
981
982 record_full_init_record_breakpoints ();
983
984 gdb::observers::record_changed.notify (current_inferior (), 1, "full", NULL);
985 }
986
987 /* "close" target method. Close the process record target. */
988
989 void
990 record_full_base_target::close ()
991 {
992 struct record_full_core_buf_entry *entry;
993
994 if (record_debug)
995 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_close\n");
996
997 record_full_list_release (record_full_list);
998
999 /* Release record_full_core_regbuf. */
1000 if (record_full_core_regbuf)
1001 {
1002 delete record_full_core_regbuf;
1003 record_full_core_regbuf = NULL;
1004 }
1005
1006 /* Release record_full_core_buf_list. */
1007 while (record_full_core_buf_list)
1008 {
1009 entry = record_full_core_buf_list;
1010 record_full_core_buf_list = record_full_core_buf_list->prev;
1011 xfree (entry);
1012 }
1013
1014 if (record_full_async_inferior_event_token)
1015 delete_async_event_handler (&record_full_async_inferior_event_token);
1016 }
1017
1018 /* "async" target method. */
1019
1020 void
1021 record_full_base_target::async (int enable)
1022 {
1023 if (enable)
1024 mark_async_event_handler (record_full_async_inferior_event_token);
1025 else
1026 clear_async_event_handler (record_full_async_inferior_event_token);
1027
1028 beneath ()->async (enable);
1029 }
1030
1031 /* The PTID and STEP arguments last passed to
1032 record_full_target::resume. */
1033 static ptid_t record_full_resume_ptid = null_ptid;
1034 static int record_full_resume_step = 0;
1035
1036 /* True if we've been resumed, and so each record_full_wait call should
1037 advance execution. If this is false, record_full_wait will return a
1038 TARGET_WAITKIND_IGNORE. */
1039 static int record_full_resumed = 0;
1040
1041 /* The execution direction of the last resume we got. This is
1042 necessary for async mode. Vis (order is not strictly accurate):
1043
1044 1. user has the global execution direction set to forward
1045 2. user does a reverse-step command
1046 3. record_full_resume is called with global execution direction
1047 temporarily switched to reverse
1048 4. GDB's execution direction is reverted back to forward
1049 5. target record notifies event loop there's an event to handle
1050 6. infrun asks the target which direction was it going, and switches
1051 the global execution direction accordingly (to reverse)
1052 7. infrun polls an event out of the record target, and handles it
1053 8. GDB goes back to the event loop, and goto #4.
1054 */
1055 static enum exec_direction_kind record_full_execution_dir = EXEC_FORWARD;
1056
1057 /* "resume" target method. Resume the process record target. */
1058
1059 void
1060 record_full_target::resume (ptid_t ptid, int step, enum gdb_signal signal)
1061 {
1062 record_full_resume_ptid = inferior_ptid;
1063 record_full_resume_step = step;
1064 record_full_resumed = 1;
1065 record_full_execution_dir = ::execution_direction;
1066
1067 if (!RECORD_FULL_IS_REPLAY)
1068 {
1069 struct gdbarch *gdbarch = target_thread_architecture (ptid);
1070
1071 record_full_message (get_current_regcache (), signal);
1072
1073 if (!step)
1074 {
1075 /* This is not hard single step. */
1076 if (!gdbarch_software_single_step_p (gdbarch))
1077 {
1078 /* This is a normal continue. */
1079 step = 1;
1080 }
1081 else
1082 {
1083 /* This arch supports soft single step. */
1084 if (thread_has_single_step_breakpoints_set (inferior_thread ()))
1085 {
1086 /* This is a soft single step. */
1087 record_full_resume_step = 1;
1088 }
1089 else
1090 step = !insert_single_step_breakpoints (gdbarch);
1091 }
1092 }
1093
1094 /* Make sure the target beneath reports all signals. */
1095 target_pass_signals ({});
1096
1097 this->beneath ()->resume (ptid, step, signal);
1098 }
1099
1100 /* We are about to start executing the inferior (or simulate it),
1101 let's register it with the event loop. */
1102 if (target_can_async_p ())
1103 target_async (1);
1104 }
1105
1106 /* "commit_resume" method for process record target. */
1107
1108 void
1109 record_full_target::commit_resume ()
1110 {
1111 if (!RECORD_FULL_IS_REPLAY)
1112 beneath ()->commit_resume ();
1113 }
1114
1115 static int record_full_get_sig = 0;
1116
1117 /* SIGINT signal handler, registered by "wait" method. */
1118
1119 static void
1120 record_full_sig_handler (int signo)
1121 {
1122 if (record_debug)
1123 fprintf_unfiltered (gdb_stdlog, "Process record: get a signal\n");
1124
1125 /* It will break the running inferior in replay mode. */
1126 record_full_resume_step = 1;
1127
1128 /* It will let record_full_wait set inferior status to get the signal
1129 SIGINT. */
1130 record_full_get_sig = 1;
1131 }
1132
1133 /* "wait" target method for process record target.
1134
1135 In record mode, the target is always run in singlestep mode
1136 (even when gdb says to continue). The wait method intercepts
1137 the stop events and determines which ones are to be passed on to
1138 gdb. Most stop events are just singlestep events that gdb is not
1139 to know about, so the wait method just records them and keeps
1140 singlestepping.
1141
1142 In replay mode, this function emulates the recorded execution log,
1143 one instruction at a time (forward or backward), and determines
1144 where to stop. */
1145
1146 static ptid_t
1147 record_full_wait_1 (struct target_ops *ops,
1148 ptid_t ptid, struct target_waitstatus *status,
1149 target_wait_flags options)
1150 {
1151 scoped_restore restore_operation_disable
1152 = record_full_gdb_operation_disable_set ();
1153
1154 if (record_debug)
1155 fprintf_unfiltered (gdb_stdlog,
1156 "Process record: record_full_wait "
1157 "record_full_resume_step = %d, "
1158 "record_full_resumed = %d, direction=%s\n",
1159 record_full_resume_step, record_full_resumed,
1160 record_full_execution_dir == EXEC_FORWARD
1161 ? "forward" : "reverse");
1162
1163 if (!record_full_resumed)
1164 {
1165 gdb_assert ((options & TARGET_WNOHANG) != 0);
1166
1167 /* No interesting event. */
1168 status->kind = TARGET_WAITKIND_IGNORE;
1169 return minus_one_ptid;
1170 }
1171
1172 record_full_get_sig = 0;
1173 signal (SIGINT, record_full_sig_handler);
1174
1175 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1176
1177 if (!RECORD_FULL_IS_REPLAY && ops != &record_full_core_ops)
1178 {
1179 if (record_full_resume_step)
1180 {
1181 /* This is a single step. */
1182 return ops->beneath ()->wait (ptid, status, options);
1183 }
1184 else
1185 {
1186 /* This is not a single step. */
1187 ptid_t ret;
1188 CORE_ADDR tmp_pc;
1189 struct gdbarch *gdbarch
1190 = target_thread_architecture (record_full_resume_ptid);
1191
1192 while (1)
1193 {
1194 ret = ops->beneath ()->wait (ptid, status, options);
1195 if (status->kind == TARGET_WAITKIND_IGNORE)
1196 {
1197 if (record_debug)
1198 fprintf_unfiltered (gdb_stdlog,
1199 "Process record: record_full_wait "
1200 "target beneath not done yet\n");
1201 return ret;
1202 }
1203
1204 for (thread_info *tp : all_non_exited_threads ())
1205 delete_single_step_breakpoints (tp);
1206
1207 if (record_full_resume_step)
1208 return ret;
1209
1210 /* Is this a SIGTRAP? */
1211 if (status->kind == TARGET_WAITKIND_STOPPED
1212 && status->value.sig == GDB_SIGNAL_TRAP)
1213 {
1214 struct regcache *regcache;
1215 enum target_stop_reason *stop_reason_p
1216 = &record_full_stop_reason;
1217
1218 /* Yes -- this is likely our single-step finishing,
1219 but check if there's any reason the core would be
1220 interested in the event. */
1221
1222 registers_changed ();
1223 switch_to_thread (current_inferior ()->process_target (),
1224 ret);
1225 regcache = get_current_regcache ();
1226 tmp_pc = regcache_read_pc (regcache);
1227 const struct address_space *aspace = regcache->aspace ();
1228
1229 if (target_stopped_by_watchpoint ())
1230 {
1231 /* Always interested in watchpoints. */
1232 }
1233 else if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1234 stop_reason_p))
1235 {
1236 /* There is a breakpoint here. Let the core
1237 handle it. */
1238 }
1239 else
1240 {
1241 /* This is a single-step trap. Record the
1242 insn and issue another step.
1243 FIXME: this part can be a random SIGTRAP too.
1244 But GDB cannot handle it. */
1245 int step = 1;
1246
1247 if (!record_full_message_wrapper_safe (regcache,
1248 GDB_SIGNAL_0))
1249 {
1250 status->kind = TARGET_WAITKIND_STOPPED;
1251 status->value.sig = GDB_SIGNAL_0;
1252 break;
1253 }
1254
1255 if (gdbarch_software_single_step_p (gdbarch))
1256 {
1257 process_stratum_target *proc_target
1258 = current_inferior ()->process_target ();
1259
1260 /* Try to insert the software single step breakpoint.
1261 If insert success, set step to 0. */
1262 set_executing (proc_target, inferior_ptid, false);
1263 reinit_frame_cache ();
1264
1265 step = !insert_single_step_breakpoints (gdbarch);
1266
1267 set_executing (proc_target, inferior_ptid, true);
1268 }
1269
1270 if (record_debug)
1271 fprintf_unfiltered (gdb_stdlog,
1272 "Process record: record_full_wait "
1273 "issuing one more step in the "
1274 "target beneath\n");
1275 ops->beneath ()->resume (ptid, step, GDB_SIGNAL_0);
1276 ops->beneath ()->commit_resume ();
1277 continue;
1278 }
1279 }
1280
1281 /* The inferior is broken by a breakpoint or a signal. */
1282 break;
1283 }
1284
1285 return ret;
1286 }
1287 }
1288 else
1289 {
1290 switch_to_thread (current_inferior ()->process_target (),
1291 record_full_resume_ptid);
1292 struct regcache *regcache = get_current_regcache ();
1293 struct gdbarch *gdbarch = regcache->arch ();
1294 const struct address_space *aspace = regcache->aspace ();
1295 int continue_flag = 1;
1296 int first_record_full_end = 1;
1297
1298 try
1299 {
1300 CORE_ADDR tmp_pc;
1301
1302 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1303 status->kind = TARGET_WAITKIND_STOPPED;
1304
1305 /* Check breakpoint when forward execute. */
1306 if (execution_direction == EXEC_FORWARD)
1307 {
1308 tmp_pc = regcache_read_pc (regcache);
1309 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1310 &record_full_stop_reason))
1311 {
1312 if (record_debug)
1313 fprintf_unfiltered (gdb_stdlog,
1314 "Process record: break at %s.\n",
1315 paddress (gdbarch, tmp_pc));
1316 goto replay_out;
1317 }
1318 }
1319
1320 /* If GDB is in terminal_inferior mode, it will not get the
1321 signal. And in GDB replay mode, GDB doesn't need to be
1322 in terminal_inferior mode, because inferior will not
1323 executed. Then set it to terminal_ours to make GDB get
1324 the signal. */
1325 target_terminal::ours ();
1326
1327 /* In EXEC_FORWARD mode, record_full_list points to the tail of prev
1328 instruction. */
1329 if (execution_direction == EXEC_FORWARD && record_full_list->next)
1330 record_full_list = record_full_list->next;
1331
1332 /* Loop over the record_full_list, looking for the next place to
1333 stop. */
1334 do
1335 {
1336 /* Check for beginning and end of log. */
1337 if (execution_direction == EXEC_REVERSE
1338 && record_full_list == &record_full_first)
1339 {
1340 /* Hit beginning of record log in reverse. */
1341 status->kind = TARGET_WAITKIND_NO_HISTORY;
1342 break;
1343 }
1344 if (execution_direction != EXEC_REVERSE
1345 && !record_full_list->next)
1346 {
1347 /* Hit end of record log going forward. */
1348 status->kind = TARGET_WAITKIND_NO_HISTORY;
1349 break;
1350 }
1351
1352 record_full_exec_insn (regcache, gdbarch, record_full_list);
1353
1354 if (record_full_list->type == record_full_end)
1355 {
1356 if (record_debug > 1)
1357 fprintf_unfiltered
1358 (gdb_stdlog,
1359 "Process record: record_full_end %s to "
1360 "inferior.\n",
1361 host_address_to_string (record_full_list));
1362
1363 if (first_record_full_end
1364 && execution_direction == EXEC_REVERSE)
1365 {
1366 /* When reverse execute, the first
1367 record_full_end is the part of current
1368 instruction. */
1369 first_record_full_end = 0;
1370 }
1371 else
1372 {
1373 /* In EXEC_REVERSE mode, this is the
1374 record_full_end of prev instruction. In
1375 EXEC_FORWARD mode, this is the
1376 record_full_end of current instruction. */
1377 /* step */
1378 if (record_full_resume_step)
1379 {
1380 if (record_debug > 1)
1381 fprintf_unfiltered (gdb_stdlog,
1382 "Process record: step.\n");
1383 continue_flag = 0;
1384 }
1385
1386 /* check breakpoint */
1387 tmp_pc = regcache_read_pc (regcache);
1388 if (record_check_stopped_by_breakpoint
1389 (aspace, tmp_pc, &record_full_stop_reason))
1390 {
1391 if (record_debug)
1392 fprintf_unfiltered (gdb_stdlog,
1393 "Process record: break "
1394 "at %s.\n",
1395 paddress (gdbarch, tmp_pc));
1396
1397 continue_flag = 0;
1398 }
1399
1400 if (record_full_stop_reason
1401 == TARGET_STOPPED_BY_WATCHPOINT)
1402 {
1403 if (record_debug)
1404 fprintf_unfiltered (gdb_stdlog,
1405 "Process record: hit hw "
1406 "watchpoint.\n");
1407 continue_flag = 0;
1408 }
1409 /* Check target signal */
1410 if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1411 /* FIXME: better way to check */
1412 continue_flag = 0;
1413 }
1414 }
1415
1416 if (continue_flag)
1417 {
1418 if (execution_direction == EXEC_REVERSE)
1419 {
1420 if (record_full_list->prev)
1421 record_full_list = record_full_list->prev;
1422 }
1423 else
1424 {
1425 if (record_full_list->next)
1426 record_full_list = record_full_list->next;
1427 }
1428 }
1429 }
1430 while (continue_flag);
1431
1432 replay_out:
1433 if (record_full_get_sig)
1434 status->value.sig = GDB_SIGNAL_INT;
1435 else if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1436 /* FIXME: better way to check */
1437 status->value.sig = record_full_list->u.end.sigval;
1438 else
1439 status->value.sig = GDB_SIGNAL_TRAP;
1440 }
1441 catch (const gdb_exception &ex)
1442 {
1443 if (execution_direction == EXEC_REVERSE)
1444 {
1445 if (record_full_list->next)
1446 record_full_list = record_full_list->next;
1447 }
1448 else
1449 record_full_list = record_full_list->prev;
1450
1451 throw;
1452 }
1453 }
1454
1455 signal (SIGINT, handle_sigint);
1456
1457 return inferior_ptid;
1458 }
1459
1460 ptid_t
1461 record_full_base_target::wait (ptid_t ptid, struct target_waitstatus *status,
1462 target_wait_flags options)
1463 {
1464 ptid_t return_ptid;
1465
1466 return_ptid = record_full_wait_1 (this, ptid, status, options);
1467 if (status->kind != TARGET_WAITKIND_IGNORE)
1468 {
1469 /* We're reporting a stop. Make sure any spurious
1470 target_wait(WNOHANG) doesn't advance the target until the
1471 core wants us resumed again. */
1472 record_full_resumed = 0;
1473 }
1474 return return_ptid;
1475 }
1476
1477 bool
1478 record_full_base_target::stopped_by_watchpoint ()
1479 {
1480 if (RECORD_FULL_IS_REPLAY)
1481 return record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
1482 else
1483 return beneath ()->stopped_by_watchpoint ();
1484 }
1485
1486 bool
1487 record_full_base_target::stopped_data_address (CORE_ADDR *addr_p)
1488 {
1489 if (RECORD_FULL_IS_REPLAY)
1490 return false;
1491 else
1492 return this->beneath ()->stopped_data_address (addr_p);
1493 }
1494
1495 /* The stopped_by_sw_breakpoint method of target record-full. */
1496
1497 bool
1498 record_full_base_target::stopped_by_sw_breakpoint ()
1499 {
1500 return record_full_stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
1501 }
1502
1503 /* The supports_stopped_by_sw_breakpoint method of target
1504 record-full. */
1505
1506 bool
1507 record_full_base_target::supports_stopped_by_sw_breakpoint ()
1508 {
1509 return true;
1510 }
1511
1512 /* The stopped_by_hw_breakpoint method of target record-full. */
1513
1514 bool
1515 record_full_base_target::stopped_by_hw_breakpoint ()
1516 {
1517 return record_full_stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
1518 }
1519
1520 /* The supports_stopped_by_sw_breakpoint method of target
1521 record-full. */
1522
1523 bool
1524 record_full_base_target::supports_stopped_by_hw_breakpoint ()
1525 {
1526 return true;
1527 }
1528
1529 /* Record registers change (by user or by GDB) to list as an instruction. */
1530
1531 static void
1532 record_full_registers_change (struct regcache *regcache, int regnum)
1533 {
1534 /* Check record_full_insn_num. */
1535 record_full_check_insn_num ();
1536
1537 record_full_arch_list_head = NULL;
1538 record_full_arch_list_tail = NULL;
1539
1540 if (regnum < 0)
1541 {
1542 int i;
1543
1544 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
1545 {
1546 if (record_full_arch_list_add_reg (regcache, i))
1547 {
1548 record_full_list_release (record_full_arch_list_tail);
1549 error (_("Process record: failed to record execution log."));
1550 }
1551 }
1552 }
1553 else
1554 {
1555 if (record_full_arch_list_add_reg (regcache, regnum))
1556 {
1557 record_full_list_release (record_full_arch_list_tail);
1558 error (_("Process record: failed to record execution log."));
1559 }
1560 }
1561 if (record_full_arch_list_add_end ())
1562 {
1563 record_full_list_release (record_full_arch_list_tail);
1564 error (_("Process record: failed to record execution log."));
1565 }
1566 record_full_list->next = record_full_arch_list_head;
1567 record_full_arch_list_head->prev = record_full_list;
1568 record_full_list = record_full_arch_list_tail;
1569
1570 if (record_full_insn_num == record_full_insn_max_num)
1571 record_full_list_release_first ();
1572 else
1573 record_full_insn_num++;
1574 }
1575
1576 /* "store_registers" method for process record target. */
1577
1578 void
1579 record_full_target::store_registers (struct regcache *regcache, int regno)
1580 {
1581 if (!record_full_gdb_operation_disable)
1582 {
1583 if (RECORD_FULL_IS_REPLAY)
1584 {
1585 int n;
1586
1587 /* Let user choose if he wants to write register or not. */
1588 if (regno < 0)
1589 n =
1590 query (_("Because GDB is in replay mode, changing the "
1591 "value of a register will make the execution "
1592 "log unusable from this point onward. "
1593 "Change all registers?"));
1594 else
1595 n =
1596 query (_("Because GDB is in replay mode, changing the value "
1597 "of a register will make the execution log unusable "
1598 "from this point onward. Change register %s?"),
1599 gdbarch_register_name (regcache->arch (),
1600 regno));
1601
1602 if (!n)
1603 {
1604 /* Invalidate the value of regcache that was set in function
1605 "regcache_raw_write". */
1606 if (regno < 0)
1607 {
1608 int i;
1609
1610 for (i = 0;
1611 i < gdbarch_num_regs (regcache->arch ());
1612 i++)
1613 regcache->invalidate (i);
1614 }
1615 else
1616 regcache->invalidate (regno);
1617
1618 error (_("Process record canceled the operation."));
1619 }
1620
1621 /* Destroy the record from here forward. */
1622 record_full_list_release_following (record_full_list);
1623 }
1624
1625 record_full_registers_change (regcache, regno);
1626 }
1627 this->beneath ()->store_registers (regcache, regno);
1628 }
1629
1630 /* "xfer_partial" method. Behavior is conditional on
1631 RECORD_FULL_IS_REPLAY.
1632 In replay mode, we cannot write memory unles we are willing to
1633 invalidate the record/replay log from this point forward. */
1634
1635 enum target_xfer_status
1636 record_full_target::xfer_partial (enum target_object object,
1637 const char *annex, gdb_byte *readbuf,
1638 const gdb_byte *writebuf, ULONGEST offset,
1639 ULONGEST len, ULONGEST *xfered_len)
1640 {
1641 if (!record_full_gdb_operation_disable
1642 && (object == TARGET_OBJECT_MEMORY
1643 || object == TARGET_OBJECT_RAW_MEMORY) && writebuf)
1644 {
1645 if (RECORD_FULL_IS_REPLAY)
1646 {
1647 /* Let user choose if he wants to write memory or not. */
1648 if (!query (_("Because GDB is in replay mode, writing to memory "
1649 "will make the execution log unusable from this "
1650 "point onward. Write memory at address %s?"),
1651 paddress (target_gdbarch (), offset)))
1652 error (_("Process record canceled the operation."));
1653
1654 /* Destroy the record from here forward. */
1655 record_full_list_release_following (record_full_list);
1656 }
1657
1658 /* Check record_full_insn_num */
1659 record_full_check_insn_num ();
1660
1661 /* Record registers change to list as an instruction. */
1662 record_full_arch_list_head = NULL;
1663 record_full_arch_list_tail = NULL;
1664 if (record_full_arch_list_add_mem (offset, len))
1665 {
1666 record_full_list_release (record_full_arch_list_tail);
1667 if (record_debug)
1668 fprintf_unfiltered (gdb_stdlog,
1669 "Process record: failed to record "
1670 "execution log.");
1671 return TARGET_XFER_E_IO;
1672 }
1673 if (record_full_arch_list_add_end ())
1674 {
1675 record_full_list_release (record_full_arch_list_tail);
1676 if (record_debug)
1677 fprintf_unfiltered (gdb_stdlog,
1678 "Process record: failed to record "
1679 "execution log.");
1680 return TARGET_XFER_E_IO;
1681 }
1682 record_full_list->next = record_full_arch_list_head;
1683 record_full_arch_list_head->prev = record_full_list;
1684 record_full_list = record_full_arch_list_tail;
1685
1686 if (record_full_insn_num == record_full_insn_max_num)
1687 record_full_list_release_first ();
1688 else
1689 record_full_insn_num++;
1690 }
1691
1692 return this->beneath ()->xfer_partial (object, annex, readbuf, writebuf,
1693 offset, len, xfered_len);
1694 }
1695
1696 /* This structure represents a breakpoint inserted while the record
1697 target is active. We use this to know when to install/remove
1698 breakpoints in/from the target beneath. For example, a breakpoint
1699 may be inserted while recording, but removed when not replaying nor
1700 recording. In that case, the breakpoint had not been inserted on
1701 the target beneath, so we should not try to remove it there. */
1702
1703 struct record_full_breakpoint
1704 {
1705 record_full_breakpoint (struct address_space *address_space_,
1706 CORE_ADDR addr_,
1707 bool in_target_beneath_)
1708 : address_space (address_space_),
1709 addr (addr_),
1710 in_target_beneath (in_target_beneath_)
1711 {
1712 }
1713
1714 /* The address and address space the breakpoint was set at. */
1715 struct address_space *address_space;
1716 CORE_ADDR addr;
1717
1718 /* True when the breakpoint has been also installed in the target
1719 beneath. This will be false for breakpoints set during replay or
1720 when recording. */
1721 bool in_target_beneath;
1722 };
1723
1724 /* The list of breakpoints inserted while the record target is
1725 active. */
1726 static std::vector<record_full_breakpoint> record_full_breakpoints;
1727
1728 static void
1729 record_full_sync_record_breakpoints (struct bp_location *loc, void *data)
1730 {
1731 if (loc->loc_type != bp_loc_software_breakpoint)
1732 return;
1733
1734 if (loc->inserted)
1735 {
1736 record_full_breakpoints.emplace_back
1737 (loc->target_info.placed_address_space,
1738 loc->target_info.placed_address,
1739 1);
1740 }
1741 }
1742
1743 /* Sync existing breakpoints to record_full_breakpoints. */
1744
1745 static void
1746 record_full_init_record_breakpoints (void)
1747 {
1748 record_full_breakpoints.clear ();
1749
1750 iterate_over_bp_locations (record_full_sync_record_breakpoints);
1751 }
1752
1753 /* Behavior is conditional on RECORD_FULL_IS_REPLAY. We will not actually
1754 insert or remove breakpoints in the real target when replaying, nor
1755 when recording. */
1756
1757 int
1758 record_full_target::insert_breakpoint (struct gdbarch *gdbarch,
1759 struct bp_target_info *bp_tgt)
1760 {
1761 bool in_target_beneath = false;
1762
1763 if (!RECORD_FULL_IS_REPLAY)
1764 {
1765 /* When recording, we currently always single-step, so we don't
1766 really need to install regular breakpoints in the inferior.
1767 However, we do have to insert software single-step
1768 breakpoints, in case the target can't hardware step. To keep
1769 things simple, we always insert. */
1770
1771 scoped_restore restore_operation_disable
1772 = record_full_gdb_operation_disable_set ();
1773
1774 int ret = this->beneath ()->insert_breakpoint (gdbarch, bp_tgt);
1775 if (ret != 0)
1776 return ret;
1777
1778 in_target_beneath = true;
1779 }
1780
1781 /* Use the existing entries if found in order to avoid duplication
1782 in record_full_breakpoints. */
1783
1784 for (const record_full_breakpoint &bp : record_full_breakpoints)
1785 {
1786 if (bp.addr == bp_tgt->placed_address
1787 && bp.address_space == bp_tgt->placed_address_space)
1788 {
1789 gdb_assert (bp.in_target_beneath == in_target_beneath);
1790 return 0;
1791 }
1792 }
1793
1794 record_full_breakpoints.emplace_back (bp_tgt->placed_address_space,
1795 bp_tgt->placed_address,
1796 in_target_beneath);
1797 return 0;
1798 }
1799
1800 /* "remove_breakpoint" method for process record target. */
1801
1802 int
1803 record_full_target::remove_breakpoint (struct gdbarch *gdbarch,
1804 struct bp_target_info *bp_tgt,
1805 enum remove_bp_reason reason)
1806 {
1807 for (auto iter = record_full_breakpoints.begin ();
1808 iter != record_full_breakpoints.end ();
1809 ++iter)
1810 {
1811 struct record_full_breakpoint &bp = *iter;
1812
1813 if (bp.addr == bp_tgt->placed_address
1814 && bp.address_space == bp_tgt->placed_address_space)
1815 {
1816 if (bp.in_target_beneath)
1817 {
1818 scoped_restore restore_operation_disable
1819 = record_full_gdb_operation_disable_set ();
1820
1821 int ret = this->beneath ()->remove_breakpoint (gdbarch, bp_tgt,
1822 reason);
1823 if (ret != 0)
1824 return ret;
1825 }
1826
1827 if (reason == REMOVE_BREAKPOINT)
1828 unordered_remove (record_full_breakpoints, iter);
1829 return 0;
1830 }
1831 }
1832
1833 gdb_assert_not_reached ("removing unknown breakpoint");
1834 }
1835
1836 /* "can_execute_reverse" method for process record target. */
1837
1838 bool
1839 record_full_base_target::can_execute_reverse ()
1840 {
1841 return true;
1842 }
1843
1844 /* "get_bookmark" method for process record and prec over core. */
1845
1846 gdb_byte *
1847 record_full_base_target::get_bookmark (const char *args, int from_tty)
1848 {
1849 char *ret = NULL;
1850
1851 /* Return stringified form of instruction count. */
1852 if (record_full_list && record_full_list->type == record_full_end)
1853 ret = xstrdup (pulongest (record_full_list->u.end.insn_num));
1854
1855 if (record_debug)
1856 {
1857 if (ret)
1858 fprintf_unfiltered (gdb_stdlog,
1859 "record_full_get_bookmark returns %s\n", ret);
1860 else
1861 fprintf_unfiltered (gdb_stdlog,
1862 "record_full_get_bookmark returns NULL\n");
1863 }
1864 return (gdb_byte *) ret;
1865 }
1866
1867 /* "goto_bookmark" method for process record and prec over core. */
1868
1869 void
1870 record_full_base_target::goto_bookmark (const gdb_byte *raw_bookmark,
1871 int from_tty)
1872 {
1873 const char *bookmark = (const char *) raw_bookmark;
1874
1875 if (record_debug)
1876 fprintf_unfiltered (gdb_stdlog,
1877 "record_full_goto_bookmark receives %s\n", bookmark);
1878
1879 std::string name_holder;
1880 if (bookmark[0] == '\'' || bookmark[0] == '\"')
1881 {
1882 if (bookmark[strlen (bookmark) - 1] != bookmark[0])
1883 error (_("Unbalanced quotes: %s"), bookmark);
1884
1885 name_holder = std::string (bookmark + 1, strlen (bookmark) - 2);
1886 bookmark = name_holder.c_str ();
1887 }
1888
1889 record_goto (bookmark);
1890 }
1891
1892 enum exec_direction_kind
1893 record_full_base_target::execution_direction ()
1894 {
1895 return record_full_execution_dir;
1896 }
1897
1898 /* The record_method method of target record-full. */
1899
1900 enum record_method
1901 record_full_base_target::record_method (ptid_t ptid)
1902 {
1903 return RECORD_METHOD_FULL;
1904 }
1905
1906 void
1907 record_full_base_target::info_record ()
1908 {
1909 struct record_full_entry *p;
1910
1911 if (RECORD_FULL_IS_REPLAY)
1912 printf_filtered (_("Replay mode:\n"));
1913 else
1914 printf_filtered (_("Record mode:\n"));
1915
1916 /* Find entry for first actual instruction in the log. */
1917 for (p = record_full_first.next;
1918 p != NULL && p->type != record_full_end;
1919 p = p->next)
1920 ;
1921
1922 /* Do we have a log at all? */
1923 if (p != NULL && p->type == record_full_end)
1924 {
1925 /* Display instruction number for first instruction in the log. */
1926 printf_filtered (_("Lowest recorded instruction number is %s.\n"),
1927 pulongest (p->u.end.insn_num));
1928
1929 /* If in replay mode, display where we are in the log. */
1930 if (RECORD_FULL_IS_REPLAY)
1931 printf_filtered (_("Current instruction number is %s.\n"),
1932 pulongest (record_full_list->u.end.insn_num));
1933
1934 /* Display instruction number for last instruction in the log. */
1935 printf_filtered (_("Highest recorded instruction number is %s.\n"),
1936 pulongest (record_full_insn_count));
1937
1938 /* Display log count. */
1939 printf_filtered (_("Log contains %u instructions.\n"),
1940 record_full_insn_num);
1941 }
1942 else
1943 printf_filtered (_("No instructions have been logged.\n"));
1944
1945 /* Display max log size. */
1946 printf_filtered (_("Max logged instructions is %u.\n"),
1947 record_full_insn_max_num);
1948 }
1949
1950 bool
1951 record_full_base_target::supports_delete_record ()
1952 {
1953 return true;
1954 }
1955
1956 /* The "delete_record" target method. */
1957
1958 void
1959 record_full_base_target::delete_record ()
1960 {
1961 record_full_list_release_following (record_full_list);
1962 }
1963
1964 /* The "record_is_replaying" target method. */
1965
1966 bool
1967 record_full_base_target::record_is_replaying (ptid_t ptid)
1968 {
1969 return RECORD_FULL_IS_REPLAY;
1970 }
1971
1972 /* The "record_will_replay" target method. */
1973
1974 bool
1975 record_full_base_target::record_will_replay (ptid_t ptid, int dir)
1976 {
1977 /* We can currently only record when executing forwards. Should we be able
1978 to record when executing backwards on targets that support reverse
1979 execution, this needs to be changed. */
1980
1981 return RECORD_FULL_IS_REPLAY || dir == EXEC_REVERSE;
1982 }
1983
1984 /* Go to a specific entry. */
1985
1986 static void
1987 record_full_goto_entry (struct record_full_entry *p)
1988 {
1989 if (p == NULL)
1990 error (_("Target insn not found."));
1991 else if (p == record_full_list)
1992 error (_("Already at target insn."));
1993 else if (p->u.end.insn_num > record_full_list->u.end.insn_num)
1994 {
1995 printf_filtered (_("Go forward to insn number %s\n"),
1996 pulongest (p->u.end.insn_num));
1997 record_full_goto_insn (p, EXEC_FORWARD);
1998 }
1999 else
2000 {
2001 printf_filtered (_("Go backward to insn number %s\n"),
2002 pulongest (p->u.end.insn_num));
2003 record_full_goto_insn (p, EXEC_REVERSE);
2004 }
2005
2006 registers_changed ();
2007 reinit_frame_cache ();
2008 inferior_thread ()->suspend.stop_pc
2009 = regcache_read_pc (get_current_regcache ());
2010 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2011 }
2012
2013 /* The "goto_record_begin" target method. */
2014
2015 void
2016 record_full_base_target::goto_record_begin ()
2017 {
2018 struct record_full_entry *p = NULL;
2019
2020 for (p = &record_full_first; p != NULL; p = p->next)
2021 if (p->type == record_full_end)
2022 break;
2023
2024 record_full_goto_entry (p);
2025 }
2026
2027 /* The "goto_record_end" target method. */
2028
2029 void
2030 record_full_base_target::goto_record_end ()
2031 {
2032 struct record_full_entry *p = NULL;
2033
2034 for (p = record_full_list; p->next != NULL; p = p->next)
2035 ;
2036 for (; p!= NULL; p = p->prev)
2037 if (p->type == record_full_end)
2038 break;
2039
2040 record_full_goto_entry (p);
2041 }
2042
2043 /* The "goto_record" target method. */
2044
2045 void
2046 record_full_base_target::goto_record (ULONGEST target_insn)
2047 {
2048 struct record_full_entry *p = NULL;
2049
2050 for (p = &record_full_first; p != NULL; p = p->next)
2051 if (p->type == record_full_end && p->u.end.insn_num == target_insn)
2052 break;
2053
2054 record_full_goto_entry (p);
2055 }
2056
2057 /* The "record_stop_replaying" target method. */
2058
2059 void
2060 record_full_base_target::record_stop_replaying ()
2061 {
2062 goto_record_end ();
2063 }
2064
2065 /* "resume" method for prec over corefile. */
2066
2067 void
2068 record_full_core_target::resume (ptid_t ptid, int step,
2069 enum gdb_signal signal)
2070 {
2071 record_full_resume_step = step;
2072 record_full_resumed = 1;
2073 record_full_execution_dir = ::execution_direction;
2074
2075 /* We are about to start executing the inferior (or simulate it),
2076 let's register it with the event loop. */
2077 if (target_can_async_p ())
2078 target_async (1);
2079 }
2080
2081 /* "kill" method for prec over corefile. */
2082
2083 void
2084 record_full_core_target::kill ()
2085 {
2086 if (record_debug)
2087 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_core_kill\n");
2088
2089 unpush_target (this);
2090 }
2091
2092 /* "fetch_registers" method for prec over corefile. */
2093
2094 void
2095 record_full_core_target::fetch_registers (struct regcache *regcache,
2096 int regno)
2097 {
2098 if (regno < 0)
2099 {
2100 int num = gdbarch_num_regs (regcache->arch ());
2101 int i;
2102
2103 for (i = 0; i < num; i ++)
2104 regcache->raw_supply (i, *record_full_core_regbuf);
2105 }
2106 else
2107 regcache->raw_supply (regno, *record_full_core_regbuf);
2108 }
2109
2110 /* "prepare_to_store" method for prec over corefile. */
2111
2112 void
2113 record_full_core_target::prepare_to_store (struct regcache *regcache)
2114 {
2115 }
2116
2117 /* "store_registers" method for prec over corefile. */
2118
2119 void
2120 record_full_core_target::store_registers (struct regcache *regcache,
2121 int regno)
2122 {
2123 if (record_full_gdb_operation_disable)
2124 record_full_core_regbuf->raw_supply (regno, *regcache);
2125 else
2126 error (_("You can't do that without a process to debug."));
2127 }
2128
2129 /* "xfer_partial" method for prec over corefile. */
2130
2131 enum target_xfer_status
2132 record_full_core_target::xfer_partial (enum target_object object,
2133 const char *annex, gdb_byte *readbuf,
2134 const gdb_byte *writebuf, ULONGEST offset,
2135 ULONGEST len, ULONGEST *xfered_len)
2136 {
2137 if (object == TARGET_OBJECT_MEMORY)
2138 {
2139 if (record_full_gdb_operation_disable || !writebuf)
2140 {
2141 for (target_section &p : record_full_core_sections)
2142 {
2143 if (offset >= p.addr)
2144 {
2145 struct record_full_core_buf_entry *entry;
2146 ULONGEST sec_offset;
2147
2148 if (offset >= p.endaddr)
2149 continue;
2150
2151 if (offset + len > p.endaddr)
2152 len = p.endaddr - offset;
2153
2154 sec_offset = offset - p.addr;
2155
2156 /* Read readbuf or write writebuf p, offset, len. */
2157 /* Check flags. */
2158 if (p.the_bfd_section->flags & SEC_CONSTRUCTOR
2159 || (p.the_bfd_section->flags & SEC_HAS_CONTENTS) == 0)
2160 {
2161 if (readbuf)
2162 memset (readbuf, 0, len);
2163
2164 *xfered_len = len;
2165 return TARGET_XFER_OK;
2166 }
2167 /* Get record_full_core_buf_entry. */
2168 for (entry = record_full_core_buf_list; entry;
2169 entry = entry->prev)
2170 if (entry->p == &p)
2171 break;
2172 if (writebuf)
2173 {
2174 if (!entry)
2175 {
2176 /* Add a new entry. */
2177 entry = XNEW (struct record_full_core_buf_entry);
2178 entry->p = &p;
2179 if (!bfd_malloc_and_get_section
2180 (p.the_bfd_section->owner,
2181 p.the_bfd_section,
2182 &entry->buf))
2183 {
2184 xfree (entry);
2185 return TARGET_XFER_EOF;
2186 }
2187 entry->prev = record_full_core_buf_list;
2188 record_full_core_buf_list = entry;
2189 }
2190
2191 memcpy (entry->buf + sec_offset, writebuf,
2192 (size_t) len);
2193 }
2194 else
2195 {
2196 if (!entry)
2197 return this->beneath ()->xfer_partial (object, annex,
2198 readbuf, writebuf,
2199 offset, len,
2200 xfered_len);
2201
2202 memcpy (readbuf, entry->buf + sec_offset,
2203 (size_t) len);
2204 }
2205
2206 *xfered_len = len;
2207 return TARGET_XFER_OK;
2208 }
2209 }
2210
2211 return TARGET_XFER_E_IO;
2212 }
2213 else
2214 error (_("You can't do that without a process to debug."));
2215 }
2216
2217 return this->beneath ()->xfer_partial (object, annex,
2218 readbuf, writebuf, offset, len,
2219 xfered_len);
2220 }
2221
2222 /* "insert_breakpoint" method for prec over corefile. */
2223
2224 int
2225 record_full_core_target::insert_breakpoint (struct gdbarch *gdbarch,
2226 struct bp_target_info *bp_tgt)
2227 {
2228 return 0;
2229 }
2230
2231 /* "remove_breakpoint" method for prec over corefile. */
2232
2233 int
2234 record_full_core_target::remove_breakpoint (struct gdbarch *gdbarch,
2235 struct bp_target_info *bp_tgt,
2236 enum remove_bp_reason reason)
2237 {
2238 return 0;
2239 }
2240
2241 /* "has_execution" method for prec over corefile. */
2242
2243 bool
2244 record_full_core_target::has_execution (inferior *inf)
2245 {
2246 return true;
2247 }
2248
2249 /* Record log save-file format
2250 Version 1 (never released)
2251
2252 Header:
2253 4 bytes: magic number htonl(0x20090829).
2254 NOTE: be sure to change whenever this file format changes!
2255
2256 Records:
2257 record_full_end:
2258 1 byte: record type (record_full_end, see enum record_full_type).
2259 record_full_reg:
2260 1 byte: record type (record_full_reg, see enum record_full_type).
2261 8 bytes: register id (network byte order).
2262 MAX_REGISTER_SIZE bytes: register value.
2263 record_full_mem:
2264 1 byte: record type (record_full_mem, see enum record_full_type).
2265 8 bytes: memory length (network byte order).
2266 8 bytes: memory address (network byte order).
2267 n bytes: memory value (n == memory length).
2268
2269 Version 2
2270 4 bytes: magic number netorder32(0x20091016).
2271 NOTE: be sure to change whenever this file format changes!
2272
2273 Records:
2274 record_full_end:
2275 1 byte: record type (record_full_end, see enum record_full_type).
2276 4 bytes: signal
2277 4 bytes: instruction count
2278 record_full_reg:
2279 1 byte: record type (record_full_reg, see enum record_full_type).
2280 4 bytes: register id (network byte order).
2281 n bytes: register value (n == actual register size).
2282 (eg. 4 bytes for x86 general registers).
2283 record_full_mem:
2284 1 byte: record type (record_full_mem, see enum record_full_type).
2285 4 bytes: memory length (network byte order).
2286 8 bytes: memory address (network byte order).
2287 n bytes: memory value (n == memory length).
2288
2289 */
2290
2291 /* bfdcore_read -- read bytes from a core file section. */
2292
2293 static inline void
2294 bfdcore_read (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2295 {
2296 int ret = bfd_get_section_contents (obfd, osec, buf, *offset, len);
2297
2298 if (ret)
2299 *offset += len;
2300 else
2301 error (_("Failed to read %d bytes from core file %s ('%s')."),
2302 len, bfd_get_filename (obfd),
2303 bfd_errmsg (bfd_get_error ()));
2304 }
2305
2306 static inline uint64_t
2307 netorder64 (uint64_t input)
2308 {
2309 uint64_t ret;
2310
2311 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2312 BFD_ENDIAN_BIG, input);
2313 return ret;
2314 }
2315
2316 static inline uint32_t
2317 netorder32 (uint32_t input)
2318 {
2319 uint32_t ret;
2320
2321 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2322 BFD_ENDIAN_BIG, input);
2323 return ret;
2324 }
2325
2326 /* Restore the execution log from a core_bfd file. */
2327 static void
2328 record_full_restore (void)
2329 {
2330 uint32_t magic;
2331 struct record_full_entry *rec;
2332 asection *osec;
2333 uint32_t osec_size;
2334 int bfd_offset = 0;
2335 struct regcache *regcache;
2336
2337 /* We restore the execution log from the open core bfd,
2338 if there is one. */
2339 if (core_bfd == NULL)
2340 return;
2341
2342 /* "record_full_restore" can only be called when record list is empty. */
2343 gdb_assert (record_full_first.next == NULL);
2344
2345 if (record_debug)
2346 fprintf_unfiltered (gdb_stdlog, "Restoring recording from core file.\n");
2347
2348 /* Now need to find our special note section. */
2349 osec = bfd_get_section_by_name (core_bfd, "null0");
2350 if (record_debug)
2351 fprintf_unfiltered (gdb_stdlog, "Find precord section %s.\n",
2352 osec ? "succeeded" : "failed");
2353 if (osec == NULL)
2354 return;
2355 osec_size = bfd_section_size (osec);
2356 if (record_debug)
2357 fprintf_unfiltered (gdb_stdlog, "%s", bfd_section_name (osec));
2358
2359 /* Check the magic code. */
2360 bfdcore_read (core_bfd, osec, &magic, sizeof (magic), &bfd_offset);
2361 if (magic != RECORD_FULL_FILE_MAGIC)
2362 error (_("Version mis-match or file format error in core file %s."),
2363 bfd_get_filename (core_bfd));
2364 if (record_debug)
2365 fprintf_unfiltered (gdb_stdlog,
2366 " Reading 4-byte magic cookie "
2367 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2368 phex_nz (netorder32 (magic), 4));
2369
2370 /* Restore the entries in recfd into record_full_arch_list_head and
2371 record_full_arch_list_tail. */
2372 record_full_arch_list_head = NULL;
2373 record_full_arch_list_tail = NULL;
2374 record_full_insn_num = 0;
2375
2376 try
2377 {
2378 regcache = get_current_regcache ();
2379
2380 while (1)
2381 {
2382 uint8_t rectype;
2383 uint32_t regnum, len, signal, count;
2384 uint64_t addr;
2385
2386 /* We are finished when offset reaches osec_size. */
2387 if (bfd_offset >= osec_size)
2388 break;
2389 bfdcore_read (core_bfd, osec, &rectype, sizeof (rectype), &bfd_offset);
2390
2391 switch (rectype)
2392 {
2393 case record_full_reg: /* reg */
2394 /* Get register number to regnum. */
2395 bfdcore_read (core_bfd, osec, &regnum,
2396 sizeof (regnum), &bfd_offset);
2397 regnum = netorder32 (regnum);
2398
2399 rec = record_full_reg_alloc (regcache, regnum);
2400
2401 /* Get val. */
2402 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2403 rec->u.reg.len, &bfd_offset);
2404
2405 if (record_debug)
2406 fprintf_unfiltered (gdb_stdlog,
2407 " Reading register %d (1 "
2408 "plus %lu plus %d bytes)\n",
2409 rec->u.reg.num,
2410 (unsigned long) sizeof (regnum),
2411 rec->u.reg.len);
2412 break;
2413
2414 case record_full_mem: /* mem */
2415 /* Get len. */
2416 bfdcore_read (core_bfd, osec, &len,
2417 sizeof (len), &bfd_offset);
2418 len = netorder32 (len);
2419
2420 /* Get addr. */
2421 bfdcore_read (core_bfd, osec, &addr,
2422 sizeof (addr), &bfd_offset);
2423 addr = netorder64 (addr);
2424
2425 rec = record_full_mem_alloc (addr, len);
2426
2427 /* Get val. */
2428 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2429 rec->u.mem.len, &bfd_offset);
2430
2431 if (record_debug)
2432 fprintf_unfiltered (gdb_stdlog,
2433 " Reading memory %s (1 plus "
2434 "%lu plus %lu plus %d bytes)\n",
2435 paddress (get_current_arch (),
2436 rec->u.mem.addr),
2437 (unsigned long) sizeof (addr),
2438 (unsigned long) sizeof (len),
2439 rec->u.mem.len);
2440 break;
2441
2442 case record_full_end: /* end */
2443 rec = record_full_end_alloc ();
2444 record_full_insn_num ++;
2445
2446 /* Get signal value. */
2447 bfdcore_read (core_bfd, osec, &signal,
2448 sizeof (signal), &bfd_offset);
2449 signal = netorder32 (signal);
2450 rec->u.end.sigval = (enum gdb_signal) signal;
2451
2452 /* Get insn count. */
2453 bfdcore_read (core_bfd, osec, &count,
2454 sizeof (count), &bfd_offset);
2455 count = netorder32 (count);
2456 rec->u.end.insn_num = count;
2457 record_full_insn_count = count + 1;
2458 if (record_debug)
2459 fprintf_unfiltered (gdb_stdlog,
2460 " Reading record_full_end (1 + "
2461 "%lu + %lu bytes), offset == %s\n",
2462 (unsigned long) sizeof (signal),
2463 (unsigned long) sizeof (count),
2464 paddress (get_current_arch (),
2465 bfd_offset));
2466 break;
2467
2468 default:
2469 error (_("Bad entry type in core file %s."),
2470 bfd_get_filename (core_bfd));
2471 break;
2472 }
2473
2474 /* Add rec to record arch list. */
2475 record_full_arch_list_add (rec);
2476 }
2477 }
2478 catch (const gdb_exception &ex)
2479 {
2480 record_full_list_release (record_full_arch_list_tail);
2481 throw;
2482 }
2483
2484 /* Add record_full_arch_list_head to the end of record list. */
2485 record_full_first.next = record_full_arch_list_head;
2486 record_full_arch_list_head->prev = &record_full_first;
2487 record_full_arch_list_tail->next = NULL;
2488 record_full_list = &record_full_first;
2489
2490 /* Update record_full_insn_max_num. */
2491 if (record_full_insn_num > record_full_insn_max_num)
2492 {
2493 record_full_insn_max_num = record_full_insn_num;
2494 warning (_("Auto increase record/replay buffer limit to %u."),
2495 record_full_insn_max_num);
2496 }
2497
2498 /* Succeeded. */
2499 printf_filtered (_("Restored records from core file %s.\n"),
2500 bfd_get_filename (core_bfd));
2501
2502 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2503 }
2504
2505 /* bfdcore_write -- write bytes into a core file section. */
2506
2507 static inline void
2508 bfdcore_write (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2509 {
2510 int ret = bfd_set_section_contents (obfd, osec, buf, *offset, len);
2511
2512 if (ret)
2513 *offset += len;
2514 else
2515 error (_("Failed to write %d bytes to core file %s ('%s')."),
2516 len, bfd_get_filename (obfd),
2517 bfd_errmsg (bfd_get_error ()));
2518 }
2519
2520 /* Restore the execution log from a file. We use a modified elf
2521 corefile format, with an extra section for our data. */
2522
2523 static void
2524 cmd_record_full_restore (const char *args, int from_tty)
2525 {
2526 core_file_command (args, from_tty);
2527 record_full_open (args, from_tty);
2528 }
2529
2530 /* Save the execution log to a file. We use a modified elf corefile
2531 format, with an extra section for our data. */
2532
2533 void
2534 record_full_base_target::save_record (const char *recfilename)
2535 {
2536 struct record_full_entry *cur_record_full_list;
2537 uint32_t magic;
2538 struct regcache *regcache;
2539 struct gdbarch *gdbarch;
2540 int save_size = 0;
2541 asection *osec = NULL;
2542 int bfd_offset = 0;
2543
2544 /* Open the save file. */
2545 if (record_debug)
2546 fprintf_unfiltered (gdb_stdlog, "Saving execution log to core file '%s'\n",
2547 recfilename);
2548
2549 /* Open the output file. */
2550 gdb_bfd_ref_ptr obfd (create_gcore_bfd (recfilename));
2551
2552 /* Arrange to remove the output file on failure. */
2553 gdb::unlinker unlink_file (recfilename);
2554
2555 /* Save the current record entry to "cur_record_full_list". */
2556 cur_record_full_list = record_full_list;
2557
2558 /* Get the values of regcache and gdbarch. */
2559 regcache = get_current_regcache ();
2560 gdbarch = regcache->arch ();
2561
2562 /* Disable the GDB operation record. */
2563 scoped_restore restore_operation_disable
2564 = record_full_gdb_operation_disable_set ();
2565
2566 /* Reverse execute to the begin of record list. */
2567 while (1)
2568 {
2569 /* Check for beginning and end of log. */
2570 if (record_full_list == &record_full_first)
2571 break;
2572
2573 record_full_exec_insn (regcache, gdbarch, record_full_list);
2574
2575 if (record_full_list->prev)
2576 record_full_list = record_full_list->prev;
2577 }
2578
2579 /* Compute the size needed for the extra bfd section. */
2580 save_size = 4; /* magic cookie */
2581 for (record_full_list = record_full_first.next; record_full_list;
2582 record_full_list = record_full_list->next)
2583 switch (record_full_list->type)
2584 {
2585 case record_full_end:
2586 save_size += 1 + 4 + 4;
2587 break;
2588 case record_full_reg:
2589 save_size += 1 + 4 + record_full_list->u.reg.len;
2590 break;
2591 case record_full_mem:
2592 save_size += 1 + 4 + 8 + record_full_list->u.mem.len;
2593 break;
2594 }
2595
2596 /* Make the new bfd section. */
2597 osec = bfd_make_section_anyway_with_flags (obfd.get (), "precord",
2598 SEC_HAS_CONTENTS
2599 | SEC_READONLY);
2600 if (osec == NULL)
2601 error (_("Failed to create 'precord' section for corefile %s: %s"),
2602 recfilename,
2603 bfd_errmsg (bfd_get_error ()));
2604 bfd_set_section_size (osec, save_size);
2605 bfd_set_section_vma (osec, 0);
2606 bfd_set_section_alignment (osec, 0);
2607
2608 /* Save corefile state. */
2609 write_gcore_file (obfd.get ());
2610
2611 /* Write out the record log. */
2612 /* Write the magic code. */
2613 magic = RECORD_FULL_FILE_MAGIC;
2614 if (record_debug)
2615 fprintf_unfiltered (gdb_stdlog,
2616 " Writing 4-byte magic cookie "
2617 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2618 phex_nz (magic, 4));
2619 bfdcore_write (obfd.get (), osec, &magic, sizeof (magic), &bfd_offset);
2620
2621 /* Save the entries to recfd and forward execute to the end of
2622 record list. */
2623 record_full_list = &record_full_first;
2624 while (1)
2625 {
2626 /* Save entry. */
2627 if (record_full_list != &record_full_first)
2628 {
2629 uint8_t type;
2630 uint32_t regnum, len, signal, count;
2631 uint64_t addr;
2632
2633 type = record_full_list->type;
2634 bfdcore_write (obfd.get (), osec, &type, sizeof (type), &bfd_offset);
2635
2636 switch (record_full_list->type)
2637 {
2638 case record_full_reg: /* reg */
2639 if (record_debug)
2640 fprintf_unfiltered (gdb_stdlog,
2641 " Writing register %d (1 "
2642 "plus %lu plus %d bytes)\n",
2643 record_full_list->u.reg.num,
2644 (unsigned long) sizeof (regnum),
2645 record_full_list->u.reg.len);
2646
2647 /* Write regnum. */
2648 regnum = netorder32 (record_full_list->u.reg.num);
2649 bfdcore_write (obfd.get (), osec, &regnum,
2650 sizeof (regnum), &bfd_offset);
2651
2652 /* Write regval. */
2653 bfdcore_write (obfd.get (), osec,
2654 record_full_get_loc (record_full_list),
2655 record_full_list->u.reg.len, &bfd_offset);
2656 break;
2657
2658 case record_full_mem: /* mem */
2659 if (record_debug)
2660 fprintf_unfiltered (gdb_stdlog,
2661 " Writing memory %s (1 plus "
2662 "%lu plus %lu plus %d bytes)\n",
2663 paddress (gdbarch,
2664 record_full_list->u.mem.addr),
2665 (unsigned long) sizeof (addr),
2666 (unsigned long) sizeof (len),
2667 record_full_list->u.mem.len);
2668
2669 /* Write memlen. */
2670 len = netorder32 (record_full_list->u.mem.len);
2671 bfdcore_write (obfd.get (), osec, &len, sizeof (len),
2672 &bfd_offset);
2673
2674 /* Write memaddr. */
2675 addr = netorder64 (record_full_list->u.mem.addr);
2676 bfdcore_write (obfd.get (), osec, &addr,
2677 sizeof (addr), &bfd_offset);
2678
2679 /* Write memval. */
2680 bfdcore_write (obfd.get (), osec,
2681 record_full_get_loc (record_full_list),
2682 record_full_list->u.mem.len, &bfd_offset);
2683 break;
2684
2685 case record_full_end:
2686 if (record_debug)
2687 fprintf_unfiltered (gdb_stdlog,
2688 " Writing record_full_end (1 + "
2689 "%lu + %lu bytes)\n",
2690 (unsigned long) sizeof (signal),
2691 (unsigned long) sizeof (count));
2692 /* Write signal value. */
2693 signal = netorder32 (record_full_list->u.end.sigval);
2694 bfdcore_write (obfd.get (), osec, &signal,
2695 sizeof (signal), &bfd_offset);
2696
2697 /* Write insn count. */
2698 count = netorder32 (record_full_list->u.end.insn_num);
2699 bfdcore_write (obfd.get (), osec, &count,
2700 sizeof (count), &bfd_offset);
2701 break;
2702 }
2703 }
2704
2705 /* Execute entry. */
2706 record_full_exec_insn (regcache, gdbarch, record_full_list);
2707
2708 if (record_full_list->next)
2709 record_full_list = record_full_list->next;
2710 else
2711 break;
2712 }
2713
2714 /* Reverse execute to cur_record_full_list. */
2715 while (1)
2716 {
2717 /* Check for beginning and end of log. */
2718 if (record_full_list == cur_record_full_list)
2719 break;
2720
2721 record_full_exec_insn (regcache, gdbarch, record_full_list);
2722
2723 if (record_full_list->prev)
2724 record_full_list = record_full_list->prev;
2725 }
2726
2727 unlink_file.keep ();
2728
2729 /* Succeeded. */
2730 printf_filtered (_("Saved core file %s with execution log.\n"),
2731 recfilename);
2732 }
2733
2734 /* record_full_goto_insn -- rewind the record log (forward or backward,
2735 depending on DIR) to the given entry, changing the program state
2736 correspondingly. */
2737
2738 static void
2739 record_full_goto_insn (struct record_full_entry *entry,
2740 enum exec_direction_kind dir)
2741 {
2742 scoped_restore restore_operation_disable
2743 = record_full_gdb_operation_disable_set ();
2744 struct regcache *regcache = get_current_regcache ();
2745 struct gdbarch *gdbarch = regcache->arch ();
2746
2747 /* Assume everything is valid: we will hit the entry,
2748 and we will not hit the end of the recording. */
2749
2750 if (dir == EXEC_FORWARD)
2751 record_full_list = record_full_list->next;
2752
2753 do
2754 {
2755 record_full_exec_insn (regcache, gdbarch, record_full_list);
2756 if (dir == EXEC_REVERSE)
2757 record_full_list = record_full_list->prev;
2758 else
2759 record_full_list = record_full_list->next;
2760 } while (record_full_list != entry);
2761 }
2762
2763 /* Alias for "target record-full". */
2764
2765 static void
2766 cmd_record_full_start (const char *args, int from_tty)
2767 {
2768 execute_command ("target record-full", from_tty);
2769 }
2770
2771 static void
2772 set_record_full_insn_max_num (const char *args, int from_tty,
2773 struct cmd_list_element *c)
2774 {
2775 if (record_full_insn_num > record_full_insn_max_num)
2776 {
2777 /* Count down record_full_insn_num while releasing records from list. */
2778 while (record_full_insn_num > record_full_insn_max_num)
2779 {
2780 record_full_list_release_first ();
2781 record_full_insn_num--;
2782 }
2783 }
2784 }
2785
2786 void _initialize_record_full ();
2787 void
2788 _initialize_record_full ()
2789 {
2790 struct cmd_list_element *c;
2791
2792 /* Init record_full_first. */
2793 record_full_first.prev = NULL;
2794 record_full_first.next = NULL;
2795 record_full_first.type = record_full_end;
2796
2797 add_target (record_full_target_info, record_full_open);
2798 add_deprecated_target_alias (record_full_target_info, "record");
2799 add_target (record_full_core_target_info, record_full_open);
2800
2801 add_prefix_cmd ("full", class_obscure, cmd_record_full_start,
2802 _("Start full execution recording."), &record_full_cmdlist,
2803 "record full ", 0, &record_cmdlist);
2804
2805 c = add_cmd ("restore", class_obscure, cmd_record_full_restore,
2806 _("Restore the execution log from a file.\n\
2807 Argument is filename. File must be created with 'record save'."),
2808 &record_full_cmdlist);
2809 set_cmd_completer (c, filename_completer);
2810
2811 /* Deprecate the old version without "full" prefix. */
2812 c = add_alias_cmd ("restore", "full restore", class_obscure, 1,
2813 &record_cmdlist);
2814 set_cmd_completer (c, filename_completer);
2815 deprecate_cmd (c, "record full restore");
2816
2817 add_basic_prefix_cmd ("full", class_support,
2818 _("Set record options."), &set_record_full_cmdlist,
2819 "set record full ", 0, &set_record_cmdlist);
2820
2821 add_show_prefix_cmd ("full", class_support,
2822 _("Show record options."), &show_record_full_cmdlist,
2823 "show record full ", 0, &show_record_cmdlist);
2824
2825 /* Record instructions number limit command. */
2826 add_setshow_boolean_cmd ("stop-at-limit", no_class,
2827 &record_full_stop_at_limit, _("\
2828 Set whether record/replay stops when record/replay buffer becomes full."), _("\
2829 Show whether record/replay stops when record/replay buffer becomes full."),
2830 _("Default is ON.\n\
2831 When ON, if the record/replay buffer becomes full, ask user what to do.\n\
2832 When OFF, if the record/replay buffer becomes full,\n\
2833 delete the oldest recorded instruction to make room for each new one."),
2834 NULL, NULL,
2835 &set_record_full_cmdlist, &show_record_full_cmdlist);
2836
2837 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2838 &set_record_cmdlist);
2839 deprecate_cmd (c, "set record full stop-at-limit");
2840
2841 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2842 &show_record_cmdlist);
2843 deprecate_cmd (c, "show record full stop-at-limit");
2844
2845 add_setshow_uinteger_cmd ("insn-number-max", no_class,
2846 &record_full_insn_max_num,
2847 _("Set record/replay buffer limit."),
2848 _("Show record/replay buffer limit."), _("\
2849 Set the maximum number of instructions to be stored in the\n\
2850 record/replay buffer. A value of either \"unlimited\" or zero means no\n\
2851 limit. Default is 200000."),
2852 set_record_full_insn_max_num,
2853 NULL, &set_record_full_cmdlist,
2854 &show_record_full_cmdlist);
2855
2856 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2857 &set_record_cmdlist);
2858 deprecate_cmd (c, "set record full insn-number-max");
2859
2860 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2861 &show_record_cmdlist);
2862 deprecate_cmd (c, "show record full insn-number-max");
2863
2864 add_setshow_boolean_cmd ("memory-query", no_class,
2865 &record_full_memory_query, _("\
2866 Set whether query if PREC cannot record memory change of next instruction."),
2867 _("\
2868 Show whether query if PREC cannot record memory change of next instruction."),
2869 _("\
2870 Default is OFF.\n\
2871 When ON, query if PREC cannot record memory change of next instruction."),
2872 NULL, NULL,
2873 &set_record_full_cmdlist,
2874 &show_record_full_cmdlist);
2875
2876 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2877 &set_record_cmdlist);
2878 deprecate_cmd (c, "set record full memory-query");
2879
2880 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2881 &show_record_cmdlist);
2882 deprecate_cmd (c, "show record full memory-query");
2883 }
This page took 0.146778 seconds and 4 git commands to generate.