[Ada/ravenscar] error during "continue" after task/thread switch
[deliverable/binutils-gdb.git] / gdb / record-full.c
1 /* Process record and replay target for GDB, the GNU debugger.
2
3 Copyright (C) 2013-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "regcache.h"
23 #include "gdbthread.h"
24 #include "event-top.h"
25 #include "completer.h"
26 #include "arch-utils.h"
27 #include "gdbcore.h"
28 #include "exec.h"
29 #include "record.h"
30 #include "record-full.h"
31 #include "elf-bfd.h"
32 #include "gcore.h"
33 #include "event-loop.h"
34 #include "inf-loop.h"
35 #include "gdb_bfd.h"
36 #include "observable.h"
37 #include "infrun.h"
38 #include "common/gdb_unlinker.h"
39 #include "common/byte-vector.h"
40
41 #include <signal.h>
42
43 /* This module implements "target record-full", also known as "process
44 record and replay". This target sits on top of a "normal" target
45 (a target that "has execution"), and provides a record and replay
46 functionality, including reverse debugging.
47
48 Target record has two modes: recording, and replaying.
49
50 In record mode, we intercept the to_resume and to_wait methods.
51 Whenever gdb resumes the target, we run the target in single step
52 mode, and we build up an execution log in which, for each executed
53 instruction, we record all changes in memory and register state.
54 This is invisible to the user, to whom it just looks like an
55 ordinary debugging session (except for performance degredation).
56
57 In replay mode, instead of actually letting the inferior run as a
58 process, we simulate its execution by playing back the recorded
59 execution log. For each instruction in the log, we simulate the
60 instruction's side effects by duplicating the changes that it would
61 have made on memory and registers. */
62
63 #define DEFAULT_RECORD_FULL_INSN_MAX_NUM 200000
64
65 #define RECORD_FULL_IS_REPLAY \
66 (record_full_list->next || execution_direction == EXEC_REVERSE)
67
68 #define RECORD_FULL_FILE_MAGIC netorder32(0x20091016)
69
70 /* These are the core structs of the process record functionality.
71
72 A record_full_entry is a record of the value change of a register
73 ("record_full_reg") or a part of memory ("record_full_mem"). And each
74 instruction must have a struct record_full_entry ("record_full_end")
75 that indicates that this is the last struct record_full_entry of this
76 instruction.
77
78 Each struct record_full_entry is linked to "record_full_list" by "prev"
79 and "next" pointers. */
80
81 struct record_full_mem_entry
82 {
83 CORE_ADDR addr;
84 int len;
85 /* Set this flag if target memory for this entry
86 can no longer be accessed. */
87 int mem_entry_not_accessible;
88 union
89 {
90 gdb_byte *ptr;
91 gdb_byte buf[sizeof (gdb_byte *)];
92 } u;
93 };
94
95 struct record_full_reg_entry
96 {
97 unsigned short num;
98 unsigned short len;
99 union
100 {
101 gdb_byte *ptr;
102 gdb_byte buf[2 * sizeof (gdb_byte *)];
103 } u;
104 };
105
106 struct record_full_end_entry
107 {
108 enum gdb_signal sigval;
109 ULONGEST insn_num;
110 };
111
112 enum record_full_type
113 {
114 record_full_end = 0,
115 record_full_reg,
116 record_full_mem
117 };
118
119 /* This is the data structure that makes up the execution log.
120
121 The execution log consists of a single linked list of entries
122 of type "struct record_full_entry". It is doubly linked so that it
123 can be traversed in either direction.
124
125 The start of the list is anchored by a struct called
126 "record_full_first". The pointer "record_full_list" either points
127 to the last entry that was added to the list (in record mode), or to
128 the next entry in the list that will be executed (in replay mode).
129
130 Each list element (struct record_full_entry), in addition to next
131 and prev pointers, consists of a union of three entry types: mem,
132 reg, and end. A field called "type" determines which entry type is
133 represented by a given list element.
134
135 Each instruction that is added to the execution log is represented
136 by a variable number of list elements ('entries'). The instruction
137 will have one "reg" entry for each register that is changed by
138 executing the instruction (including the PC in every case). It
139 will also have one "mem" entry for each memory change. Finally,
140 each instruction will have an "end" entry that separates it from
141 the changes associated with the next instruction. */
142
143 struct record_full_entry
144 {
145 struct record_full_entry *prev;
146 struct record_full_entry *next;
147 enum record_full_type type;
148 union
149 {
150 /* reg */
151 struct record_full_reg_entry reg;
152 /* mem */
153 struct record_full_mem_entry mem;
154 /* end */
155 struct record_full_end_entry end;
156 } u;
157 };
158
159 /* If true, query if PREC cannot record memory
160 change of next instruction. */
161 int record_full_memory_query = 0;
162
163 struct record_full_core_buf_entry
164 {
165 struct record_full_core_buf_entry *prev;
166 struct target_section *p;
167 bfd_byte *buf;
168 };
169
170 /* Record buf with core target. */
171 static detached_regcache *record_full_core_regbuf = NULL;
172 static struct target_section *record_full_core_start;
173 static struct target_section *record_full_core_end;
174 static struct record_full_core_buf_entry *record_full_core_buf_list = NULL;
175
176 /* The following variables are used for managing the linked list that
177 represents the execution log.
178
179 record_full_first is the anchor that holds down the beginning of
180 the list.
181
182 record_full_list serves two functions:
183 1) In record mode, it anchors the end of the list.
184 2) In replay mode, it traverses the list and points to
185 the next instruction that must be emulated.
186
187 record_full_arch_list_head and record_full_arch_list_tail are used
188 to manage a separate list, which is used to build up the change
189 elements of the currently executing instruction during record mode.
190 When this instruction has been completely annotated in the "arch
191 list", it will be appended to the main execution log. */
192
193 static struct record_full_entry record_full_first;
194 static struct record_full_entry *record_full_list = &record_full_first;
195 static struct record_full_entry *record_full_arch_list_head = NULL;
196 static struct record_full_entry *record_full_arch_list_tail = NULL;
197
198 /* 1 ask user. 0 auto delete the last struct record_full_entry. */
199 static int record_full_stop_at_limit = 1;
200 /* Maximum allowed number of insns in execution log. */
201 static unsigned int record_full_insn_max_num
202 = DEFAULT_RECORD_FULL_INSN_MAX_NUM;
203 /* Actual count of insns presently in execution log. */
204 static unsigned int record_full_insn_num = 0;
205 /* Count of insns logged so far (may be larger
206 than count of insns presently in execution log). */
207 static ULONGEST record_full_insn_count;
208
209 /* The target_ops of process record. */
210 static struct target_ops record_full_ops;
211 static struct target_ops record_full_core_ops;
212
213 /* See record-full.h. */
214
215 int
216 record_full_is_used (void)
217 {
218 struct target_ops *t;
219
220 t = find_record_target ();
221 return (t == &record_full_ops
222 || t == &record_full_core_ops);
223 }
224
225
226 /* Command lists for "set/show record full". */
227 static struct cmd_list_element *set_record_full_cmdlist;
228 static struct cmd_list_element *show_record_full_cmdlist;
229
230 /* Command list for "record full". */
231 static struct cmd_list_element *record_full_cmdlist;
232
233 static void record_full_goto_insn (struct record_full_entry *entry,
234 enum exec_direction_kind dir);
235 static void record_full_save (struct target_ops *self,
236 const char *recfilename);
237
238 /* Alloc and free functions for record_full_reg, record_full_mem, and
239 record_full_end entries. */
240
241 /* Alloc a record_full_reg record entry. */
242
243 static inline struct record_full_entry *
244 record_full_reg_alloc (struct regcache *regcache, int regnum)
245 {
246 struct record_full_entry *rec;
247 struct gdbarch *gdbarch = regcache->arch ();
248
249 rec = XCNEW (struct record_full_entry);
250 rec->type = record_full_reg;
251 rec->u.reg.num = regnum;
252 rec->u.reg.len = register_size (gdbarch, regnum);
253 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
254 rec->u.reg.u.ptr = (gdb_byte *) xmalloc (rec->u.reg.len);
255
256 return rec;
257 }
258
259 /* Free a record_full_reg record entry. */
260
261 static inline void
262 record_full_reg_release (struct record_full_entry *rec)
263 {
264 gdb_assert (rec->type == record_full_reg);
265 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
266 xfree (rec->u.reg.u.ptr);
267 xfree (rec);
268 }
269
270 /* Alloc a record_full_mem record entry. */
271
272 static inline struct record_full_entry *
273 record_full_mem_alloc (CORE_ADDR addr, int len)
274 {
275 struct record_full_entry *rec;
276
277 rec = XCNEW (struct record_full_entry);
278 rec->type = record_full_mem;
279 rec->u.mem.addr = addr;
280 rec->u.mem.len = len;
281 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
282 rec->u.mem.u.ptr = (gdb_byte *) xmalloc (len);
283
284 return rec;
285 }
286
287 /* Free a record_full_mem record entry. */
288
289 static inline void
290 record_full_mem_release (struct record_full_entry *rec)
291 {
292 gdb_assert (rec->type == record_full_mem);
293 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
294 xfree (rec->u.mem.u.ptr);
295 xfree (rec);
296 }
297
298 /* Alloc a record_full_end record entry. */
299
300 static inline struct record_full_entry *
301 record_full_end_alloc (void)
302 {
303 struct record_full_entry *rec;
304
305 rec = XCNEW (struct record_full_entry);
306 rec->type = record_full_end;
307
308 return rec;
309 }
310
311 /* Free a record_full_end record entry. */
312
313 static inline void
314 record_full_end_release (struct record_full_entry *rec)
315 {
316 xfree (rec);
317 }
318
319 /* Free one record entry, any type.
320 Return entry->type, in case caller wants to know. */
321
322 static inline enum record_full_type
323 record_full_entry_release (struct record_full_entry *rec)
324 {
325 enum record_full_type type = rec->type;
326
327 switch (type) {
328 case record_full_reg:
329 record_full_reg_release (rec);
330 break;
331 case record_full_mem:
332 record_full_mem_release (rec);
333 break;
334 case record_full_end:
335 record_full_end_release (rec);
336 break;
337 }
338 return type;
339 }
340
341 /* Free all record entries in list pointed to by REC. */
342
343 static void
344 record_full_list_release (struct record_full_entry *rec)
345 {
346 if (!rec)
347 return;
348
349 while (rec->next)
350 rec = rec->next;
351
352 while (rec->prev)
353 {
354 rec = rec->prev;
355 record_full_entry_release (rec->next);
356 }
357
358 if (rec == &record_full_first)
359 {
360 record_full_insn_num = 0;
361 record_full_first.next = NULL;
362 }
363 else
364 record_full_entry_release (rec);
365 }
366
367 /* Free all record entries forward of the given list position. */
368
369 static void
370 record_full_list_release_following (struct record_full_entry *rec)
371 {
372 struct record_full_entry *tmp = rec->next;
373
374 rec->next = NULL;
375 while (tmp)
376 {
377 rec = tmp->next;
378 if (record_full_entry_release (tmp) == record_full_end)
379 {
380 record_full_insn_num--;
381 record_full_insn_count--;
382 }
383 tmp = rec;
384 }
385 }
386
387 /* Delete the first instruction from the beginning of the log, to make
388 room for adding a new instruction at the end of the log.
389
390 Note -- this function does not modify record_full_insn_num. */
391
392 static void
393 record_full_list_release_first (void)
394 {
395 struct record_full_entry *tmp;
396
397 if (!record_full_first.next)
398 return;
399
400 /* Loop until a record_full_end. */
401 while (1)
402 {
403 /* Cut record_full_first.next out of the linked list. */
404 tmp = record_full_first.next;
405 record_full_first.next = tmp->next;
406 tmp->next->prev = &record_full_first;
407
408 /* tmp is now isolated, and can be deleted. */
409 if (record_full_entry_release (tmp) == record_full_end)
410 break; /* End loop at first record_full_end. */
411
412 if (!record_full_first.next)
413 {
414 gdb_assert (record_full_insn_num == 1);
415 break; /* End loop when list is empty. */
416 }
417 }
418 }
419
420 /* Add a struct record_full_entry to record_full_arch_list. */
421
422 static void
423 record_full_arch_list_add (struct record_full_entry *rec)
424 {
425 if (record_debug > 1)
426 fprintf_unfiltered (gdb_stdlog,
427 "Process record: record_full_arch_list_add %s.\n",
428 host_address_to_string (rec));
429
430 if (record_full_arch_list_tail)
431 {
432 record_full_arch_list_tail->next = rec;
433 rec->prev = record_full_arch_list_tail;
434 record_full_arch_list_tail = rec;
435 }
436 else
437 {
438 record_full_arch_list_head = rec;
439 record_full_arch_list_tail = rec;
440 }
441 }
442
443 /* Return the value storage location of a record entry. */
444 static inline gdb_byte *
445 record_full_get_loc (struct record_full_entry *rec)
446 {
447 switch (rec->type) {
448 case record_full_mem:
449 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
450 return rec->u.mem.u.ptr;
451 else
452 return rec->u.mem.u.buf;
453 case record_full_reg:
454 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
455 return rec->u.reg.u.ptr;
456 else
457 return rec->u.reg.u.buf;
458 case record_full_end:
459 default:
460 gdb_assert_not_reached ("unexpected record_full_entry type");
461 return NULL;
462 }
463 }
464
465 /* Record the value of a register NUM to record_full_arch_list. */
466
467 int
468 record_full_arch_list_add_reg (struct regcache *regcache, int regnum)
469 {
470 struct record_full_entry *rec;
471
472 if (record_debug > 1)
473 fprintf_unfiltered (gdb_stdlog,
474 "Process record: add register num = %d to "
475 "record list.\n",
476 regnum);
477
478 rec = record_full_reg_alloc (regcache, regnum);
479
480 regcache_raw_read (regcache, regnum, record_full_get_loc (rec));
481
482 record_full_arch_list_add (rec);
483
484 return 0;
485 }
486
487 /* Record the value of a region of memory whose address is ADDR and
488 length is LEN to record_full_arch_list. */
489
490 int
491 record_full_arch_list_add_mem (CORE_ADDR addr, int len)
492 {
493 struct record_full_entry *rec;
494
495 if (record_debug > 1)
496 fprintf_unfiltered (gdb_stdlog,
497 "Process record: add mem addr = %s len = %d to "
498 "record list.\n",
499 paddress (target_gdbarch (), addr), len);
500
501 if (!addr) /* FIXME: Why? Some arch must permit it... */
502 return 0;
503
504 rec = record_full_mem_alloc (addr, len);
505
506 if (record_read_memory (target_gdbarch (), addr,
507 record_full_get_loc (rec), len))
508 {
509 record_full_mem_release (rec);
510 return -1;
511 }
512
513 record_full_arch_list_add (rec);
514
515 return 0;
516 }
517
518 /* Add a record_full_end type struct record_full_entry to
519 record_full_arch_list. */
520
521 int
522 record_full_arch_list_add_end (void)
523 {
524 struct record_full_entry *rec;
525
526 if (record_debug > 1)
527 fprintf_unfiltered (gdb_stdlog,
528 "Process record: add end to arch list.\n");
529
530 rec = record_full_end_alloc ();
531 rec->u.end.sigval = GDB_SIGNAL_0;
532 rec->u.end.insn_num = ++record_full_insn_count;
533
534 record_full_arch_list_add (rec);
535
536 return 0;
537 }
538
539 static void
540 record_full_check_insn_num (void)
541 {
542 if (record_full_insn_num == record_full_insn_max_num)
543 {
544 /* Ask user what to do. */
545 if (record_full_stop_at_limit)
546 {
547 if (!yquery (_("Do you want to auto delete previous execution "
548 "log entries when record/replay buffer becomes "
549 "full (record full stop-at-limit)?")))
550 error (_("Process record: stopped by user."));
551 record_full_stop_at_limit = 0;
552 }
553 }
554 }
555
556 static void
557 record_full_arch_list_cleanups (void *ignore)
558 {
559 record_full_list_release (record_full_arch_list_tail);
560 }
561
562 /* Before inferior step (when GDB record the running message, inferior
563 only can step), GDB will call this function to record the values to
564 record_full_list. This function will call gdbarch_process_record to
565 record the running message of inferior and set them to
566 record_full_arch_list, and add it to record_full_list. */
567
568 static void
569 record_full_message (struct regcache *regcache, enum gdb_signal signal)
570 {
571 int ret;
572 struct gdbarch *gdbarch = regcache->arch ();
573 struct cleanup *old_cleanups
574 = make_cleanup (record_full_arch_list_cleanups, 0);
575
576 record_full_arch_list_head = NULL;
577 record_full_arch_list_tail = NULL;
578
579 /* Check record_full_insn_num. */
580 record_full_check_insn_num ();
581
582 /* If gdb sends a signal value to target_resume,
583 save it in the 'end' field of the previous instruction.
584
585 Maybe process record should record what really happened,
586 rather than what gdb pretends has happened.
587
588 So if Linux delivered the signal to the child process during
589 the record mode, we will record it and deliver it again in
590 the replay mode.
591
592 If user says "ignore this signal" during the record mode, then
593 it will be ignored again during the replay mode (no matter if
594 the user says something different, like "deliver this signal"
595 during the replay mode).
596
597 User should understand that nothing he does during the replay
598 mode will change the behavior of the child. If he tries,
599 then that is a user error.
600
601 But we should still deliver the signal to gdb during the replay,
602 if we delivered it during the recording. Therefore we should
603 record the signal during record_full_wait, not
604 record_full_resume. */
605 if (record_full_list != &record_full_first) /* FIXME better way to check */
606 {
607 gdb_assert (record_full_list->type == record_full_end);
608 record_full_list->u.end.sigval = signal;
609 }
610
611 if (signal == GDB_SIGNAL_0
612 || !gdbarch_process_record_signal_p (gdbarch))
613 ret = gdbarch_process_record (gdbarch,
614 regcache,
615 regcache_read_pc (regcache));
616 else
617 ret = gdbarch_process_record_signal (gdbarch,
618 regcache,
619 signal);
620
621 if (ret > 0)
622 error (_("Process record: inferior program stopped."));
623 if (ret < 0)
624 error (_("Process record: failed to record execution log."));
625
626 discard_cleanups (old_cleanups);
627
628 record_full_list->next = record_full_arch_list_head;
629 record_full_arch_list_head->prev = record_full_list;
630 record_full_list = record_full_arch_list_tail;
631
632 if (record_full_insn_num == record_full_insn_max_num)
633 record_full_list_release_first ();
634 else
635 record_full_insn_num++;
636 }
637
638 static bool
639 record_full_message_wrapper_safe (struct regcache *regcache,
640 enum gdb_signal signal)
641 {
642 TRY
643 {
644 record_full_message (regcache, signal);
645 }
646 CATCH (ex, RETURN_MASK_ALL)
647 {
648 exception_print (gdb_stderr, ex);
649 return false;
650 }
651 END_CATCH
652
653 return true;
654 }
655
656 /* Set to 1 if record_full_store_registers and record_full_xfer_partial
657 doesn't need record. */
658
659 static int record_full_gdb_operation_disable = 0;
660
661 scoped_restore_tmpl<int>
662 record_full_gdb_operation_disable_set (void)
663 {
664 return make_scoped_restore (&record_full_gdb_operation_disable, 1);
665 }
666
667 /* Flag set to TRUE for target_stopped_by_watchpoint. */
668 static enum target_stop_reason record_full_stop_reason
669 = TARGET_STOPPED_BY_NO_REASON;
670
671 /* Execute one instruction from the record log. Each instruction in
672 the log will be represented by an arbitrary sequence of register
673 entries and memory entries, followed by an 'end' entry. */
674
675 static inline void
676 record_full_exec_insn (struct regcache *regcache,
677 struct gdbarch *gdbarch,
678 struct record_full_entry *entry)
679 {
680 switch (entry->type)
681 {
682 case record_full_reg: /* reg */
683 {
684 gdb::byte_vector reg (entry->u.reg.len);
685
686 if (record_debug > 1)
687 fprintf_unfiltered (gdb_stdlog,
688 "Process record: record_full_reg %s to "
689 "inferior num = %d.\n",
690 host_address_to_string (entry),
691 entry->u.reg.num);
692
693 regcache_cooked_read (regcache, entry->u.reg.num, reg.data ());
694 regcache_cooked_write (regcache, entry->u.reg.num,
695 record_full_get_loc (entry));
696 memcpy (record_full_get_loc (entry), reg.data (), entry->u.reg.len);
697 }
698 break;
699
700 case record_full_mem: /* mem */
701 {
702 /* Nothing to do if the entry is flagged not_accessible. */
703 if (!entry->u.mem.mem_entry_not_accessible)
704 {
705 gdb::byte_vector mem (entry->u.mem.len);
706
707 if (record_debug > 1)
708 fprintf_unfiltered (gdb_stdlog,
709 "Process record: record_full_mem %s to "
710 "inferior addr = %s len = %d.\n",
711 host_address_to_string (entry),
712 paddress (gdbarch, entry->u.mem.addr),
713 entry->u.mem.len);
714
715 if (record_read_memory (gdbarch,
716 entry->u.mem.addr, mem.data (),
717 entry->u.mem.len))
718 entry->u.mem.mem_entry_not_accessible = 1;
719 else
720 {
721 if (target_write_memory (entry->u.mem.addr,
722 record_full_get_loc (entry),
723 entry->u.mem.len))
724 {
725 entry->u.mem.mem_entry_not_accessible = 1;
726 if (record_debug)
727 warning (_("Process record: error writing memory at "
728 "addr = %s len = %d."),
729 paddress (gdbarch, entry->u.mem.addr),
730 entry->u.mem.len);
731 }
732 else
733 {
734 memcpy (record_full_get_loc (entry), mem.data (),
735 entry->u.mem.len);
736
737 /* We've changed memory --- check if a hardware
738 watchpoint should trap. Note that this
739 presently assumes the target beneath supports
740 continuable watchpoints. On non-continuable
741 watchpoints target, we'll want to check this
742 _before_ actually doing the memory change, and
743 not doing the change at all if the watchpoint
744 traps. */
745 if (hardware_watchpoint_inserted_in_range
746 (regcache->aspace (),
747 entry->u.mem.addr, entry->u.mem.len))
748 record_full_stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
749 }
750 }
751 }
752 }
753 break;
754 }
755 }
756
757 static void record_full_restore (void);
758
759 /* Asynchronous signal handle registered as event loop source for when
760 we have pending events ready to be passed to the core. */
761
762 static struct async_event_handler *record_full_async_inferior_event_token;
763
764 static void
765 record_full_async_inferior_event_handler (gdb_client_data data)
766 {
767 inferior_event_handler (INF_REG_EVENT, NULL);
768 }
769
770 /* Open the process record target. */
771
772 static void
773 record_full_core_open_1 (const char *name, int from_tty)
774 {
775 struct regcache *regcache = get_current_regcache ();
776 int regnum = gdbarch_num_regs (regcache->arch ());
777 int i;
778
779 /* Get record_full_core_regbuf. */
780 target_fetch_registers (regcache, -1);
781 record_full_core_regbuf = new detached_regcache (regcache->arch (), false);
782
783 for (i = 0; i < regnum; i ++)
784 record_full_core_regbuf->raw_supply (i, *regcache);
785
786 /* Get record_full_core_start and record_full_core_end. */
787 if (build_section_table (core_bfd, &record_full_core_start,
788 &record_full_core_end))
789 {
790 delete record_full_core_regbuf;
791 record_full_core_regbuf = NULL;
792 error (_("\"%s\": Can't find sections: %s"),
793 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
794 }
795
796 push_target (&record_full_core_ops);
797 record_full_restore ();
798 }
799
800 /* "to_open" target method for 'live' processes. */
801
802 static void
803 record_full_open_1 (const char *name, int from_tty)
804 {
805 if (record_debug)
806 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open_1\n");
807
808 /* check exec */
809 if (!target_has_execution)
810 error (_("Process record: the program is not being run."));
811 if (non_stop)
812 error (_("Process record target can't debug inferior in non-stop mode "
813 "(non-stop)."));
814
815 if (!gdbarch_process_record_p (target_gdbarch ()))
816 error (_("Process record: the current architecture doesn't support "
817 "record function."));
818
819 push_target (&record_full_ops);
820 }
821
822 static void record_full_init_record_breakpoints (void);
823
824 /* "to_open" target method. Open the process record target. */
825
826 static void
827 record_full_open (const char *name, int from_tty)
828 {
829 if (record_debug)
830 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n");
831
832 record_preopen ();
833
834 /* Reset */
835 record_full_insn_num = 0;
836 record_full_insn_count = 0;
837 record_full_list = &record_full_first;
838 record_full_list->next = NULL;
839
840 if (core_bfd)
841 record_full_core_open_1 (name, from_tty);
842 else
843 record_full_open_1 (name, from_tty);
844
845 /* Register extra event sources in the event loop. */
846 record_full_async_inferior_event_token
847 = create_async_event_handler (record_full_async_inferior_event_handler,
848 NULL);
849
850 record_full_init_record_breakpoints ();
851
852 gdb::observers::record_changed.notify (current_inferior (), 1, "full", NULL);
853 }
854
855 /* "to_close" target method. Close the process record target. */
856
857 static void
858 record_full_close (struct target_ops *self)
859 {
860 struct record_full_core_buf_entry *entry;
861
862 if (record_debug)
863 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_close\n");
864
865 record_full_list_release (record_full_list);
866
867 /* Release record_full_core_regbuf. */
868 if (record_full_core_regbuf)
869 {
870 delete record_full_core_regbuf;
871 record_full_core_regbuf = NULL;
872 }
873
874 /* Release record_full_core_buf_list. */
875 if (record_full_core_buf_list)
876 {
877 for (entry = record_full_core_buf_list->prev; entry;
878 entry = entry->prev)
879 {
880 xfree (record_full_core_buf_list);
881 record_full_core_buf_list = entry;
882 }
883 record_full_core_buf_list = NULL;
884 }
885
886 if (record_full_async_inferior_event_token)
887 delete_async_event_handler (&record_full_async_inferior_event_token);
888 }
889
890 /* "to_async" target method. */
891
892 static void
893 record_full_async (struct target_ops *ops, int enable)
894 {
895 if (enable)
896 mark_async_event_handler (record_full_async_inferior_event_token);
897 else
898 clear_async_event_handler (record_full_async_inferior_event_token);
899
900 ops->beneath->to_async (ops->beneath, enable);
901 }
902
903 static int record_full_resume_step = 0;
904
905 /* True if we've been resumed, and so each record_full_wait call should
906 advance execution. If this is false, record_full_wait will return a
907 TARGET_WAITKIND_IGNORE. */
908 static int record_full_resumed = 0;
909
910 /* The execution direction of the last resume we got. This is
911 necessary for async mode. Vis (order is not strictly accurate):
912
913 1. user has the global execution direction set to forward
914 2. user does a reverse-step command
915 3. record_full_resume is called with global execution direction
916 temporarily switched to reverse
917 4. GDB's execution direction is reverted back to forward
918 5. target record notifies event loop there's an event to handle
919 6. infrun asks the target which direction was it going, and switches
920 the global execution direction accordingly (to reverse)
921 7. infrun polls an event out of the record target, and handles it
922 8. GDB goes back to the event loop, and goto #4.
923 */
924 static enum exec_direction_kind record_full_execution_dir = EXEC_FORWARD;
925
926 /* "to_resume" target method. Resume the process record target. */
927
928 static void
929 record_full_resume (struct target_ops *ops, ptid_t ptid, int step,
930 enum gdb_signal signal)
931 {
932 record_full_resume_step = step;
933 record_full_resumed = 1;
934 record_full_execution_dir = execution_direction;
935
936 if (!RECORD_FULL_IS_REPLAY)
937 {
938 struct gdbarch *gdbarch = target_thread_architecture (ptid);
939
940 record_full_message (get_current_regcache (), signal);
941
942 if (!step)
943 {
944 /* This is not hard single step. */
945 if (!gdbarch_software_single_step_p (gdbarch))
946 {
947 /* This is a normal continue. */
948 step = 1;
949 }
950 else
951 {
952 /* This arch supports soft single step. */
953 if (thread_has_single_step_breakpoints_set (inferior_thread ()))
954 {
955 /* This is a soft single step. */
956 record_full_resume_step = 1;
957 }
958 else
959 step = !insert_single_step_breakpoints (gdbarch);
960 }
961 }
962
963 /* Make sure the target beneath reports all signals. */
964 target_pass_signals (0, NULL);
965
966 ops->beneath->to_resume (ops->beneath, ptid, step, signal);
967 }
968
969 /* We are about to start executing the inferior (or simulate it),
970 let's register it with the event loop. */
971 if (target_can_async_p ())
972 target_async (1);
973 }
974
975 /* "to_commit_resume" method for process record target. */
976
977 static void
978 record_full_commit_resume (struct target_ops *ops)
979 {
980 if (!RECORD_FULL_IS_REPLAY)
981 ops->beneath->to_commit_resume (ops->beneath);
982 }
983
984 static int record_full_get_sig = 0;
985
986 /* SIGINT signal handler, registered by "to_wait" method. */
987
988 static void
989 record_full_sig_handler (int signo)
990 {
991 if (record_debug)
992 fprintf_unfiltered (gdb_stdlog, "Process record: get a signal\n");
993
994 /* It will break the running inferior in replay mode. */
995 record_full_resume_step = 1;
996
997 /* It will let record_full_wait set inferior status to get the signal
998 SIGINT. */
999 record_full_get_sig = 1;
1000 }
1001
1002 static void
1003 record_full_wait_cleanups (void *ignore)
1004 {
1005 if (execution_direction == EXEC_REVERSE)
1006 {
1007 if (record_full_list->next)
1008 record_full_list = record_full_list->next;
1009 }
1010 else
1011 record_full_list = record_full_list->prev;
1012 }
1013
1014 /* "to_wait" target method for process record target.
1015
1016 In record mode, the target is always run in singlestep mode
1017 (even when gdb says to continue). The to_wait method intercepts
1018 the stop events and determines which ones are to be passed on to
1019 gdb. Most stop events are just singlestep events that gdb is not
1020 to know about, so the to_wait method just records them and keeps
1021 singlestepping.
1022
1023 In replay mode, this function emulates the recorded execution log,
1024 one instruction at a time (forward or backward), and determines
1025 where to stop. */
1026
1027 static ptid_t
1028 record_full_wait_1 (struct target_ops *ops,
1029 ptid_t ptid, struct target_waitstatus *status,
1030 int options)
1031 {
1032 scoped_restore restore_operation_disable
1033 = record_full_gdb_operation_disable_set ();
1034
1035 if (record_debug)
1036 fprintf_unfiltered (gdb_stdlog,
1037 "Process record: record_full_wait "
1038 "record_full_resume_step = %d, "
1039 "record_full_resumed = %d, direction=%s\n",
1040 record_full_resume_step, record_full_resumed,
1041 record_full_execution_dir == EXEC_FORWARD
1042 ? "forward" : "reverse");
1043
1044 if (!record_full_resumed)
1045 {
1046 gdb_assert ((options & TARGET_WNOHANG) != 0);
1047
1048 /* No interesting event. */
1049 status->kind = TARGET_WAITKIND_IGNORE;
1050 return minus_one_ptid;
1051 }
1052
1053 record_full_get_sig = 0;
1054 signal (SIGINT, record_full_sig_handler);
1055
1056 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1057
1058 if (!RECORD_FULL_IS_REPLAY && ops != &record_full_core_ops)
1059 {
1060 if (record_full_resume_step)
1061 {
1062 /* This is a single step. */
1063 return ops->beneath->to_wait (ops->beneath, ptid, status, options);
1064 }
1065 else
1066 {
1067 /* This is not a single step. */
1068 ptid_t ret;
1069 CORE_ADDR tmp_pc;
1070 struct gdbarch *gdbarch = target_thread_architecture (inferior_ptid);
1071
1072 while (1)
1073 {
1074 struct thread_info *tp;
1075
1076 ret = ops->beneath->to_wait (ops->beneath, ptid, status, options);
1077 if (status->kind == TARGET_WAITKIND_IGNORE)
1078 {
1079 if (record_debug)
1080 fprintf_unfiltered (gdb_stdlog,
1081 "Process record: record_full_wait "
1082 "target beneath not done yet\n");
1083 return ret;
1084 }
1085
1086 ALL_NON_EXITED_THREADS (tp)
1087 delete_single_step_breakpoints (tp);
1088
1089 if (record_full_resume_step)
1090 return ret;
1091
1092 /* Is this a SIGTRAP? */
1093 if (status->kind == TARGET_WAITKIND_STOPPED
1094 && status->value.sig == GDB_SIGNAL_TRAP)
1095 {
1096 struct regcache *regcache;
1097 enum target_stop_reason *stop_reason_p
1098 = &record_full_stop_reason;
1099
1100 /* Yes -- this is likely our single-step finishing,
1101 but check if there's any reason the core would be
1102 interested in the event. */
1103
1104 registers_changed ();
1105 regcache = get_current_regcache ();
1106 tmp_pc = regcache_read_pc (regcache);
1107 const struct address_space *aspace = regcache->aspace ();
1108
1109 if (target_stopped_by_watchpoint ())
1110 {
1111 /* Always interested in watchpoints. */
1112 }
1113 else if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1114 stop_reason_p))
1115 {
1116 /* There is a breakpoint here. Let the core
1117 handle it. */
1118 }
1119 else
1120 {
1121 /* This is a single-step trap. Record the
1122 insn and issue another step.
1123 FIXME: this part can be a random SIGTRAP too.
1124 But GDB cannot handle it. */
1125 int step = 1;
1126
1127 if (!record_full_message_wrapper_safe (regcache,
1128 GDB_SIGNAL_0))
1129 {
1130 status->kind = TARGET_WAITKIND_STOPPED;
1131 status->value.sig = GDB_SIGNAL_0;
1132 break;
1133 }
1134
1135 if (gdbarch_software_single_step_p (gdbarch))
1136 {
1137 /* Try to insert the software single step breakpoint.
1138 If insert success, set step to 0. */
1139 set_executing (inferior_ptid, 0);
1140 reinit_frame_cache ();
1141
1142 step = !insert_single_step_breakpoints (gdbarch);
1143
1144 set_executing (inferior_ptid, 1);
1145 }
1146
1147 if (record_debug)
1148 fprintf_unfiltered (gdb_stdlog,
1149 "Process record: record_full_wait "
1150 "issuing one more step in the "
1151 "target beneath\n");
1152 ops->beneath->to_resume (ops->beneath, ptid, step,
1153 GDB_SIGNAL_0);
1154 ops->beneath->to_commit_resume (ops->beneath);
1155 continue;
1156 }
1157 }
1158
1159 /* The inferior is broken by a breakpoint or a signal. */
1160 break;
1161 }
1162
1163 return ret;
1164 }
1165 }
1166 else
1167 {
1168 struct regcache *regcache = get_current_regcache ();
1169 struct gdbarch *gdbarch = regcache->arch ();
1170 const struct address_space *aspace = regcache->aspace ();
1171 int continue_flag = 1;
1172 int first_record_full_end = 1;
1173 struct cleanup *old_cleanups
1174 = make_cleanup (record_full_wait_cleanups, 0);
1175 CORE_ADDR tmp_pc;
1176
1177 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1178 status->kind = TARGET_WAITKIND_STOPPED;
1179
1180 /* Check breakpoint when forward execute. */
1181 if (execution_direction == EXEC_FORWARD)
1182 {
1183 tmp_pc = regcache_read_pc (regcache);
1184 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1185 &record_full_stop_reason))
1186 {
1187 if (record_debug)
1188 fprintf_unfiltered (gdb_stdlog,
1189 "Process record: break at %s.\n",
1190 paddress (gdbarch, tmp_pc));
1191 goto replay_out;
1192 }
1193 }
1194
1195 /* If GDB is in terminal_inferior mode, it will not get the signal.
1196 And in GDB replay mode, GDB doesn't need to be in terminal_inferior
1197 mode, because inferior will not executed.
1198 Then set it to terminal_ours to make GDB get the signal. */
1199 target_terminal::ours ();
1200
1201 /* In EXEC_FORWARD mode, record_full_list points to the tail of prev
1202 instruction. */
1203 if (execution_direction == EXEC_FORWARD && record_full_list->next)
1204 record_full_list = record_full_list->next;
1205
1206 /* Loop over the record_full_list, looking for the next place to
1207 stop. */
1208 do
1209 {
1210 /* Check for beginning and end of log. */
1211 if (execution_direction == EXEC_REVERSE
1212 && record_full_list == &record_full_first)
1213 {
1214 /* Hit beginning of record log in reverse. */
1215 status->kind = TARGET_WAITKIND_NO_HISTORY;
1216 break;
1217 }
1218 if (execution_direction != EXEC_REVERSE && !record_full_list->next)
1219 {
1220 /* Hit end of record log going forward. */
1221 status->kind = TARGET_WAITKIND_NO_HISTORY;
1222 break;
1223 }
1224
1225 record_full_exec_insn (regcache, gdbarch, record_full_list);
1226
1227 if (record_full_list->type == record_full_end)
1228 {
1229 if (record_debug > 1)
1230 fprintf_unfiltered (gdb_stdlog,
1231 "Process record: record_full_end %s to "
1232 "inferior.\n",
1233 host_address_to_string (record_full_list));
1234
1235 if (first_record_full_end && execution_direction == EXEC_REVERSE)
1236 {
1237 /* When reverse excute, the first record_full_end is the
1238 part of current instruction. */
1239 first_record_full_end = 0;
1240 }
1241 else
1242 {
1243 /* In EXEC_REVERSE mode, this is the record_full_end of prev
1244 instruction.
1245 In EXEC_FORWARD mode, this is the record_full_end of
1246 current instruction. */
1247 /* step */
1248 if (record_full_resume_step)
1249 {
1250 if (record_debug > 1)
1251 fprintf_unfiltered (gdb_stdlog,
1252 "Process record: step.\n");
1253 continue_flag = 0;
1254 }
1255
1256 /* check breakpoint */
1257 tmp_pc = regcache_read_pc (regcache);
1258 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1259 &record_full_stop_reason))
1260 {
1261 if (record_debug)
1262 fprintf_unfiltered (gdb_stdlog,
1263 "Process record: break "
1264 "at %s.\n",
1265 paddress (gdbarch, tmp_pc));
1266
1267 continue_flag = 0;
1268 }
1269
1270 if (record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
1271 {
1272 if (record_debug)
1273 fprintf_unfiltered (gdb_stdlog,
1274 "Process record: hit hw "
1275 "watchpoint.\n");
1276 continue_flag = 0;
1277 }
1278 /* Check target signal */
1279 if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1280 /* FIXME: better way to check */
1281 continue_flag = 0;
1282 }
1283 }
1284
1285 if (continue_flag)
1286 {
1287 if (execution_direction == EXEC_REVERSE)
1288 {
1289 if (record_full_list->prev)
1290 record_full_list = record_full_list->prev;
1291 }
1292 else
1293 {
1294 if (record_full_list->next)
1295 record_full_list = record_full_list->next;
1296 }
1297 }
1298 }
1299 while (continue_flag);
1300
1301 replay_out:
1302 if (record_full_get_sig)
1303 status->value.sig = GDB_SIGNAL_INT;
1304 else if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1305 /* FIXME: better way to check */
1306 status->value.sig = record_full_list->u.end.sigval;
1307 else
1308 status->value.sig = GDB_SIGNAL_TRAP;
1309
1310 discard_cleanups (old_cleanups);
1311 }
1312
1313 signal (SIGINT, handle_sigint);
1314
1315 return inferior_ptid;
1316 }
1317
1318 static ptid_t
1319 record_full_wait (struct target_ops *ops,
1320 ptid_t ptid, struct target_waitstatus *status,
1321 int options)
1322 {
1323 ptid_t return_ptid;
1324
1325 return_ptid = record_full_wait_1 (ops, ptid, status, options);
1326 if (status->kind != TARGET_WAITKIND_IGNORE)
1327 {
1328 /* We're reporting a stop. Make sure any spurious
1329 target_wait(WNOHANG) doesn't advance the target until the
1330 core wants us resumed again. */
1331 record_full_resumed = 0;
1332 }
1333 return return_ptid;
1334 }
1335
1336 static int
1337 record_full_stopped_by_watchpoint (struct target_ops *ops)
1338 {
1339 if (RECORD_FULL_IS_REPLAY)
1340 return record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
1341 else
1342 return ops->beneath->to_stopped_by_watchpoint (ops->beneath);
1343 }
1344
1345 static int
1346 record_full_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
1347 {
1348 if (RECORD_FULL_IS_REPLAY)
1349 return 0;
1350 else
1351 return ops->beneath->to_stopped_data_address (ops->beneath, addr_p);
1352 }
1353
1354 /* The to_stopped_by_sw_breakpoint method of target record-full. */
1355
1356 static int
1357 record_full_stopped_by_sw_breakpoint (struct target_ops *ops)
1358 {
1359 return record_full_stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
1360 }
1361
1362 /* The to_supports_stopped_by_sw_breakpoint method of target
1363 record-full. */
1364
1365 static int
1366 record_full_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
1367 {
1368 return 1;
1369 }
1370
1371 /* The to_stopped_by_hw_breakpoint method of target record-full. */
1372
1373 static int
1374 record_full_stopped_by_hw_breakpoint (struct target_ops *ops)
1375 {
1376 return record_full_stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
1377 }
1378
1379 /* The to_supports_stopped_by_sw_breakpoint method of target
1380 record-full. */
1381
1382 static int
1383 record_full_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
1384 {
1385 return 1;
1386 }
1387
1388 /* Record registers change (by user or by GDB) to list as an instruction. */
1389
1390 static void
1391 record_full_registers_change (struct regcache *regcache, int regnum)
1392 {
1393 /* Check record_full_insn_num. */
1394 record_full_check_insn_num ();
1395
1396 record_full_arch_list_head = NULL;
1397 record_full_arch_list_tail = NULL;
1398
1399 if (regnum < 0)
1400 {
1401 int i;
1402
1403 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
1404 {
1405 if (record_full_arch_list_add_reg (regcache, i))
1406 {
1407 record_full_list_release (record_full_arch_list_tail);
1408 error (_("Process record: failed to record execution log."));
1409 }
1410 }
1411 }
1412 else
1413 {
1414 if (record_full_arch_list_add_reg (regcache, regnum))
1415 {
1416 record_full_list_release (record_full_arch_list_tail);
1417 error (_("Process record: failed to record execution log."));
1418 }
1419 }
1420 if (record_full_arch_list_add_end ())
1421 {
1422 record_full_list_release (record_full_arch_list_tail);
1423 error (_("Process record: failed to record execution log."));
1424 }
1425 record_full_list->next = record_full_arch_list_head;
1426 record_full_arch_list_head->prev = record_full_list;
1427 record_full_list = record_full_arch_list_tail;
1428
1429 if (record_full_insn_num == record_full_insn_max_num)
1430 record_full_list_release_first ();
1431 else
1432 record_full_insn_num++;
1433 }
1434
1435 /* "to_store_registers" method for process record target. */
1436
1437 static void
1438 record_full_store_registers (struct target_ops *ops,
1439 struct regcache *regcache,
1440 int regno)
1441 {
1442 if (!record_full_gdb_operation_disable)
1443 {
1444 if (RECORD_FULL_IS_REPLAY)
1445 {
1446 int n;
1447
1448 /* Let user choose if he wants to write register or not. */
1449 if (regno < 0)
1450 n =
1451 query (_("Because GDB is in replay mode, changing the "
1452 "value of a register will make the execution "
1453 "log unusable from this point onward. "
1454 "Change all registers?"));
1455 else
1456 n =
1457 query (_("Because GDB is in replay mode, changing the value "
1458 "of a register will make the execution log unusable "
1459 "from this point onward. Change register %s?"),
1460 gdbarch_register_name (regcache->arch (),
1461 regno));
1462
1463 if (!n)
1464 {
1465 /* Invalidate the value of regcache that was set in function
1466 "regcache_raw_write". */
1467 if (regno < 0)
1468 {
1469 int i;
1470
1471 for (i = 0;
1472 i < gdbarch_num_regs (regcache->arch ());
1473 i++)
1474 regcache_invalidate (regcache, i);
1475 }
1476 else
1477 regcache_invalidate (regcache, regno);
1478
1479 error (_("Process record canceled the operation."));
1480 }
1481
1482 /* Destroy the record from here forward. */
1483 record_full_list_release_following (record_full_list);
1484 }
1485
1486 record_full_registers_change (regcache, regno);
1487 }
1488 ops->beneath->to_store_registers (ops->beneath, regcache, regno);
1489 }
1490
1491 /* "to_xfer_partial" method. Behavior is conditional on
1492 RECORD_FULL_IS_REPLAY.
1493 In replay mode, we cannot write memory unles we are willing to
1494 invalidate the record/replay log from this point forward. */
1495
1496 static enum target_xfer_status
1497 record_full_xfer_partial (struct target_ops *ops, enum target_object object,
1498 const char *annex, gdb_byte *readbuf,
1499 const gdb_byte *writebuf, ULONGEST offset,
1500 ULONGEST len, ULONGEST *xfered_len)
1501 {
1502 if (!record_full_gdb_operation_disable
1503 && (object == TARGET_OBJECT_MEMORY
1504 || object == TARGET_OBJECT_RAW_MEMORY) && writebuf)
1505 {
1506 if (RECORD_FULL_IS_REPLAY)
1507 {
1508 /* Let user choose if he wants to write memory or not. */
1509 if (!query (_("Because GDB is in replay mode, writing to memory "
1510 "will make the execution log unusable from this "
1511 "point onward. Write memory at address %s?"),
1512 paddress (target_gdbarch (), offset)))
1513 error (_("Process record canceled the operation."));
1514
1515 /* Destroy the record from here forward. */
1516 record_full_list_release_following (record_full_list);
1517 }
1518
1519 /* Check record_full_insn_num */
1520 record_full_check_insn_num ();
1521
1522 /* Record registers change to list as an instruction. */
1523 record_full_arch_list_head = NULL;
1524 record_full_arch_list_tail = NULL;
1525 if (record_full_arch_list_add_mem (offset, len))
1526 {
1527 record_full_list_release (record_full_arch_list_tail);
1528 if (record_debug)
1529 fprintf_unfiltered (gdb_stdlog,
1530 "Process record: failed to record "
1531 "execution log.");
1532 return TARGET_XFER_E_IO;
1533 }
1534 if (record_full_arch_list_add_end ())
1535 {
1536 record_full_list_release (record_full_arch_list_tail);
1537 if (record_debug)
1538 fprintf_unfiltered (gdb_stdlog,
1539 "Process record: failed to record "
1540 "execution log.");
1541 return TARGET_XFER_E_IO;
1542 }
1543 record_full_list->next = record_full_arch_list_head;
1544 record_full_arch_list_head->prev = record_full_list;
1545 record_full_list = record_full_arch_list_tail;
1546
1547 if (record_full_insn_num == record_full_insn_max_num)
1548 record_full_list_release_first ();
1549 else
1550 record_full_insn_num++;
1551 }
1552
1553 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1554 readbuf, writebuf, offset,
1555 len, xfered_len);
1556 }
1557
1558 /* This structure represents a breakpoint inserted while the record
1559 target is active. We use this to know when to install/remove
1560 breakpoints in/from the target beneath. For example, a breakpoint
1561 may be inserted while recording, but removed when not replaying nor
1562 recording. In that case, the breakpoint had not been inserted on
1563 the target beneath, so we should not try to remove it there. */
1564
1565 struct record_full_breakpoint
1566 {
1567 /* The address and address space the breakpoint was set at. */
1568 struct address_space *address_space;
1569 CORE_ADDR addr;
1570
1571 /* True when the breakpoint has been also installed in the target
1572 beneath. This will be false for breakpoints set during replay or
1573 when recording. */
1574 int in_target_beneath;
1575 };
1576
1577 typedef struct record_full_breakpoint *record_full_breakpoint_p;
1578 DEF_VEC_P(record_full_breakpoint_p);
1579
1580 /* The list of breakpoints inserted while the record target is
1581 active. */
1582 VEC(record_full_breakpoint_p) *record_full_breakpoints = NULL;
1583
1584 static void
1585 record_full_sync_record_breakpoints (struct bp_location *loc, void *data)
1586 {
1587 if (loc->loc_type != bp_loc_software_breakpoint)
1588 return;
1589
1590 if (loc->inserted)
1591 {
1592 struct record_full_breakpoint *bp = XNEW (struct record_full_breakpoint);
1593
1594 bp->addr = loc->target_info.placed_address;
1595 bp->address_space = loc->target_info.placed_address_space;
1596
1597 bp->in_target_beneath = 1;
1598
1599 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp);
1600 }
1601 }
1602
1603 /* Sync existing breakpoints to record_full_breakpoints. */
1604
1605 static void
1606 record_full_init_record_breakpoints (void)
1607 {
1608 VEC_free (record_full_breakpoint_p, record_full_breakpoints);
1609
1610 iterate_over_bp_locations (record_full_sync_record_breakpoints);
1611 }
1612
1613 /* Behavior is conditional on RECORD_FULL_IS_REPLAY. We will not actually
1614 insert or remove breakpoints in the real target when replaying, nor
1615 when recording. */
1616
1617 static int
1618 record_full_insert_breakpoint (struct target_ops *ops,
1619 struct gdbarch *gdbarch,
1620 struct bp_target_info *bp_tgt)
1621 {
1622 struct record_full_breakpoint *bp;
1623 int in_target_beneath = 0;
1624 int ix;
1625
1626 if (!RECORD_FULL_IS_REPLAY)
1627 {
1628 /* When recording, we currently always single-step, so we don't
1629 really need to install regular breakpoints in the inferior.
1630 However, we do have to insert software single-step
1631 breakpoints, in case the target can't hardware step. To keep
1632 things simple, we always insert. */
1633 int ret;
1634
1635 scoped_restore restore_operation_disable
1636 = record_full_gdb_operation_disable_set ();
1637 ret = ops->beneath->to_insert_breakpoint (ops->beneath, gdbarch, bp_tgt);
1638
1639 if (ret != 0)
1640 return ret;
1641
1642 in_target_beneath = 1;
1643 }
1644
1645 /* Use the existing entries if found in order to avoid duplication
1646 in record_full_breakpoints. */
1647
1648 for (ix = 0;
1649 VEC_iterate (record_full_breakpoint_p,
1650 record_full_breakpoints, ix, bp);
1651 ++ix)
1652 {
1653 if (bp->addr == bp_tgt->placed_address
1654 && bp->address_space == bp_tgt->placed_address_space)
1655 {
1656 gdb_assert (bp->in_target_beneath == in_target_beneath);
1657 return 0;
1658 }
1659 }
1660
1661 bp = XNEW (struct record_full_breakpoint);
1662 bp->addr = bp_tgt->placed_address;
1663 bp->address_space = bp_tgt->placed_address_space;
1664 bp->in_target_beneath = in_target_beneath;
1665 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp);
1666 return 0;
1667 }
1668
1669 /* "to_remove_breakpoint" method for process record target. */
1670
1671 static int
1672 record_full_remove_breakpoint (struct target_ops *ops,
1673 struct gdbarch *gdbarch,
1674 struct bp_target_info *bp_tgt,
1675 enum remove_bp_reason reason)
1676 {
1677 struct record_full_breakpoint *bp;
1678 int ix;
1679
1680 for (ix = 0;
1681 VEC_iterate (record_full_breakpoint_p,
1682 record_full_breakpoints, ix, bp);
1683 ++ix)
1684 {
1685 if (bp->addr == bp_tgt->placed_address
1686 && bp->address_space == bp_tgt->placed_address_space)
1687 {
1688 if (bp->in_target_beneath)
1689 {
1690 int ret;
1691
1692 scoped_restore restore_operation_disable
1693 = record_full_gdb_operation_disable_set ();
1694 ret = ops->beneath->to_remove_breakpoint (ops->beneath, gdbarch,
1695 bp_tgt, reason);
1696 if (ret != 0)
1697 return ret;
1698 }
1699
1700 if (reason == REMOVE_BREAKPOINT)
1701 {
1702 VEC_unordered_remove (record_full_breakpoint_p,
1703 record_full_breakpoints, ix);
1704 }
1705 return 0;
1706 }
1707 }
1708
1709 gdb_assert_not_reached ("removing unknown breakpoint");
1710 }
1711
1712 /* "to_can_execute_reverse" method for process record target. */
1713
1714 static int
1715 record_full_can_execute_reverse (struct target_ops *self)
1716 {
1717 return 1;
1718 }
1719
1720 /* "to_get_bookmark" method for process record and prec over core. */
1721
1722 static gdb_byte *
1723 record_full_get_bookmark (struct target_ops *self, const char *args,
1724 int from_tty)
1725 {
1726 char *ret = NULL;
1727
1728 /* Return stringified form of instruction count. */
1729 if (record_full_list && record_full_list->type == record_full_end)
1730 ret = xstrdup (pulongest (record_full_list->u.end.insn_num));
1731
1732 if (record_debug)
1733 {
1734 if (ret)
1735 fprintf_unfiltered (gdb_stdlog,
1736 "record_full_get_bookmark returns %s\n", ret);
1737 else
1738 fprintf_unfiltered (gdb_stdlog,
1739 "record_full_get_bookmark returns NULL\n");
1740 }
1741 return (gdb_byte *) ret;
1742 }
1743
1744 /* "to_goto_bookmark" method for process record and prec over core. */
1745
1746 static void
1747 record_full_goto_bookmark (struct target_ops *self,
1748 const gdb_byte *raw_bookmark, int from_tty)
1749 {
1750 const char *bookmark = (const char *) raw_bookmark;
1751
1752 if (record_debug)
1753 fprintf_unfiltered (gdb_stdlog,
1754 "record_full_goto_bookmark receives %s\n", bookmark);
1755
1756 std::string name_holder;
1757 if (bookmark[0] == '\'' || bookmark[0] == '\"')
1758 {
1759 if (bookmark[strlen (bookmark) - 1] != bookmark[0])
1760 error (_("Unbalanced quotes: %s"), bookmark);
1761
1762 name_holder = std::string (bookmark + 1, strlen (bookmark) - 2);
1763 bookmark = name_holder.c_str ();
1764 }
1765
1766 record_goto (bookmark);
1767 }
1768
1769 static enum exec_direction_kind
1770 record_full_execution_direction (struct target_ops *self)
1771 {
1772 return record_full_execution_dir;
1773 }
1774
1775 /* The to_record_method method of target record-full. */
1776
1777 enum record_method
1778 record_full_record_method (struct target_ops *self, ptid_t ptid)
1779 {
1780 return RECORD_METHOD_FULL;
1781 }
1782
1783 static void
1784 record_full_info (struct target_ops *self)
1785 {
1786 struct record_full_entry *p;
1787
1788 if (RECORD_FULL_IS_REPLAY)
1789 printf_filtered (_("Replay mode:\n"));
1790 else
1791 printf_filtered (_("Record mode:\n"));
1792
1793 /* Find entry for first actual instruction in the log. */
1794 for (p = record_full_first.next;
1795 p != NULL && p->type != record_full_end;
1796 p = p->next)
1797 ;
1798
1799 /* Do we have a log at all? */
1800 if (p != NULL && p->type == record_full_end)
1801 {
1802 /* Display instruction number for first instruction in the log. */
1803 printf_filtered (_("Lowest recorded instruction number is %s.\n"),
1804 pulongest (p->u.end.insn_num));
1805
1806 /* If in replay mode, display where we are in the log. */
1807 if (RECORD_FULL_IS_REPLAY)
1808 printf_filtered (_("Current instruction number is %s.\n"),
1809 pulongest (record_full_list->u.end.insn_num));
1810
1811 /* Display instruction number for last instruction in the log. */
1812 printf_filtered (_("Highest recorded instruction number is %s.\n"),
1813 pulongest (record_full_insn_count));
1814
1815 /* Display log count. */
1816 printf_filtered (_("Log contains %u instructions.\n"),
1817 record_full_insn_num);
1818 }
1819 else
1820 printf_filtered (_("No instructions have been logged.\n"));
1821
1822 /* Display max log size. */
1823 printf_filtered (_("Max logged instructions is %u.\n"),
1824 record_full_insn_max_num);
1825 }
1826
1827 /* The "to_record_delete" target method. */
1828
1829 static void
1830 record_full_delete (struct target_ops *self)
1831 {
1832 record_full_list_release_following (record_full_list);
1833 }
1834
1835 /* The "to_record_is_replaying" target method. */
1836
1837 static int
1838 record_full_is_replaying (struct target_ops *self, ptid_t ptid)
1839 {
1840 return RECORD_FULL_IS_REPLAY;
1841 }
1842
1843 /* The "to_record_will_replay" target method. */
1844
1845 static int
1846 record_full_will_replay (struct target_ops *self, ptid_t ptid, int dir)
1847 {
1848 /* We can currently only record when executing forwards. Should we be able
1849 to record when executing backwards on targets that support reverse
1850 execution, this needs to be changed. */
1851
1852 return RECORD_FULL_IS_REPLAY || dir == EXEC_REVERSE;
1853 }
1854
1855 /* Go to a specific entry. */
1856
1857 static void
1858 record_full_goto_entry (struct record_full_entry *p)
1859 {
1860 if (p == NULL)
1861 error (_("Target insn not found."));
1862 else if (p == record_full_list)
1863 error (_("Already at target insn."));
1864 else if (p->u.end.insn_num > record_full_list->u.end.insn_num)
1865 {
1866 printf_filtered (_("Go forward to insn number %s\n"),
1867 pulongest (p->u.end.insn_num));
1868 record_full_goto_insn (p, EXEC_FORWARD);
1869 }
1870 else
1871 {
1872 printf_filtered (_("Go backward to insn number %s\n"),
1873 pulongest (p->u.end.insn_num));
1874 record_full_goto_insn (p, EXEC_REVERSE);
1875 }
1876
1877 registers_changed ();
1878 reinit_frame_cache ();
1879 stop_pc = regcache_read_pc (get_current_regcache ());
1880 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
1881 }
1882
1883 /* The "to_goto_record_begin" target method. */
1884
1885 static void
1886 record_full_goto_begin (struct target_ops *self)
1887 {
1888 struct record_full_entry *p = NULL;
1889
1890 for (p = &record_full_first; p != NULL; p = p->next)
1891 if (p->type == record_full_end)
1892 break;
1893
1894 record_full_goto_entry (p);
1895 }
1896
1897 /* The "to_goto_record_end" target method. */
1898
1899 static void
1900 record_full_goto_end (struct target_ops *self)
1901 {
1902 struct record_full_entry *p = NULL;
1903
1904 for (p = record_full_list; p->next != NULL; p = p->next)
1905 ;
1906 for (; p!= NULL; p = p->prev)
1907 if (p->type == record_full_end)
1908 break;
1909
1910 record_full_goto_entry (p);
1911 }
1912
1913 /* The "to_goto_record" target method. */
1914
1915 static void
1916 record_full_goto (struct target_ops *self, ULONGEST target_insn)
1917 {
1918 struct record_full_entry *p = NULL;
1919
1920 for (p = &record_full_first; p != NULL; p = p->next)
1921 if (p->type == record_full_end && p->u.end.insn_num == target_insn)
1922 break;
1923
1924 record_full_goto_entry (p);
1925 }
1926
1927 /* The "to_record_stop_replaying" target method. */
1928
1929 static void
1930 record_full_stop_replaying (struct target_ops *self)
1931 {
1932 record_full_goto_end (self);
1933 }
1934
1935 static void
1936 init_record_full_ops (void)
1937 {
1938 record_full_ops.to_shortname = "record-full";
1939 record_full_ops.to_longname = "Process record and replay target";
1940 record_full_ops.to_doc =
1941 "Log program while executing and replay execution from log.";
1942 record_full_ops.to_open = record_full_open;
1943 record_full_ops.to_close = record_full_close;
1944 record_full_ops.to_async = record_full_async;
1945 record_full_ops.to_resume = record_full_resume;
1946 record_full_ops.to_commit_resume = record_full_commit_resume;
1947 record_full_ops.to_wait = record_full_wait;
1948 record_full_ops.to_disconnect = record_disconnect;
1949 record_full_ops.to_detach = record_detach;
1950 record_full_ops.to_mourn_inferior = record_mourn_inferior;
1951 record_full_ops.to_kill = record_kill;
1952 record_full_ops.to_store_registers = record_full_store_registers;
1953 record_full_ops.to_xfer_partial = record_full_xfer_partial;
1954 record_full_ops.to_insert_breakpoint = record_full_insert_breakpoint;
1955 record_full_ops.to_remove_breakpoint = record_full_remove_breakpoint;
1956 record_full_ops.to_stopped_by_watchpoint = record_full_stopped_by_watchpoint;
1957 record_full_ops.to_stopped_data_address = record_full_stopped_data_address;
1958 record_full_ops.to_stopped_by_sw_breakpoint
1959 = record_full_stopped_by_sw_breakpoint;
1960 record_full_ops.to_supports_stopped_by_sw_breakpoint
1961 = record_full_supports_stopped_by_sw_breakpoint;
1962 record_full_ops.to_stopped_by_hw_breakpoint
1963 = record_full_stopped_by_hw_breakpoint;
1964 record_full_ops.to_supports_stopped_by_hw_breakpoint
1965 = record_full_supports_stopped_by_hw_breakpoint;
1966 record_full_ops.to_can_execute_reverse = record_full_can_execute_reverse;
1967 record_full_ops.to_stratum = record_stratum;
1968 /* Add bookmark target methods. */
1969 record_full_ops.to_get_bookmark = record_full_get_bookmark;
1970 record_full_ops.to_goto_bookmark = record_full_goto_bookmark;
1971 record_full_ops.to_execution_direction = record_full_execution_direction;
1972 record_full_ops.to_record_method = record_full_record_method;
1973 record_full_ops.to_info_record = record_full_info;
1974 record_full_ops.to_save_record = record_full_save;
1975 record_full_ops.to_delete_record = record_full_delete;
1976 record_full_ops.to_record_is_replaying = record_full_is_replaying;
1977 record_full_ops.to_record_will_replay = record_full_will_replay;
1978 record_full_ops.to_record_stop_replaying = record_full_stop_replaying;
1979 record_full_ops.to_goto_record_begin = record_full_goto_begin;
1980 record_full_ops.to_goto_record_end = record_full_goto_end;
1981 record_full_ops.to_goto_record = record_full_goto;
1982 record_full_ops.to_magic = OPS_MAGIC;
1983 }
1984
1985 /* "to_resume" method for prec over corefile. */
1986
1987 static void
1988 record_full_core_resume (struct target_ops *ops, ptid_t ptid, int step,
1989 enum gdb_signal signal)
1990 {
1991 record_full_resume_step = step;
1992 record_full_resumed = 1;
1993 record_full_execution_dir = execution_direction;
1994
1995 /* We are about to start executing the inferior (or simulate it),
1996 let's register it with the event loop. */
1997 if (target_can_async_p ())
1998 target_async (1);
1999 }
2000
2001 /* "to_kill" method for prec over corefile. */
2002
2003 static void
2004 record_full_core_kill (struct target_ops *ops)
2005 {
2006 if (record_debug)
2007 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_core_kill\n");
2008
2009 unpush_target (&record_full_core_ops);
2010 }
2011
2012 /* "to_fetch_registers" method for prec over corefile. */
2013
2014 static void
2015 record_full_core_fetch_registers (struct target_ops *ops,
2016 struct regcache *regcache,
2017 int regno)
2018 {
2019 if (regno < 0)
2020 {
2021 int num = gdbarch_num_regs (regcache->arch ());
2022 int i;
2023
2024 for (i = 0; i < num; i ++)
2025 regcache->raw_supply (i, *record_full_core_regbuf);
2026 }
2027 else
2028 regcache->raw_supply (regno, *record_full_core_regbuf);
2029 }
2030
2031 /* "to_prepare_to_store" method for prec over corefile. */
2032
2033 static void
2034 record_full_core_prepare_to_store (struct target_ops *self,
2035 struct regcache *regcache)
2036 {
2037 }
2038
2039 /* "to_store_registers" method for prec over corefile. */
2040
2041 static void
2042 record_full_core_store_registers (struct target_ops *ops,
2043 struct regcache *regcache,
2044 int regno)
2045 {
2046 if (record_full_gdb_operation_disable)
2047 record_full_core_regbuf->raw_supply (regno, *regcache);
2048 else
2049 error (_("You can't do that without a process to debug."));
2050 }
2051
2052 /* "to_xfer_partial" method for prec over corefile. */
2053
2054 static enum target_xfer_status
2055 record_full_core_xfer_partial (struct target_ops *ops,
2056 enum target_object object,
2057 const char *annex, gdb_byte *readbuf,
2058 const gdb_byte *writebuf, ULONGEST offset,
2059 ULONGEST len, ULONGEST *xfered_len)
2060 {
2061 if (object == TARGET_OBJECT_MEMORY)
2062 {
2063 if (record_full_gdb_operation_disable || !writebuf)
2064 {
2065 struct target_section *p;
2066
2067 for (p = record_full_core_start; p < record_full_core_end; p++)
2068 {
2069 if (offset >= p->addr)
2070 {
2071 struct record_full_core_buf_entry *entry;
2072 ULONGEST sec_offset;
2073
2074 if (offset >= p->endaddr)
2075 continue;
2076
2077 if (offset + len > p->endaddr)
2078 len = p->endaddr - offset;
2079
2080 sec_offset = offset - p->addr;
2081
2082 /* Read readbuf or write writebuf p, offset, len. */
2083 /* Check flags. */
2084 if (p->the_bfd_section->flags & SEC_CONSTRUCTOR
2085 || (p->the_bfd_section->flags & SEC_HAS_CONTENTS) == 0)
2086 {
2087 if (readbuf)
2088 memset (readbuf, 0, len);
2089
2090 *xfered_len = len;
2091 return TARGET_XFER_OK;
2092 }
2093 /* Get record_full_core_buf_entry. */
2094 for (entry = record_full_core_buf_list; entry;
2095 entry = entry->prev)
2096 if (entry->p == p)
2097 break;
2098 if (writebuf)
2099 {
2100 if (!entry)
2101 {
2102 /* Add a new entry. */
2103 entry = XNEW (struct record_full_core_buf_entry);
2104 entry->p = p;
2105 if (!bfd_malloc_and_get_section
2106 (p->the_bfd_section->owner,
2107 p->the_bfd_section,
2108 &entry->buf))
2109 {
2110 xfree (entry);
2111 return TARGET_XFER_EOF;
2112 }
2113 entry->prev = record_full_core_buf_list;
2114 record_full_core_buf_list = entry;
2115 }
2116
2117 memcpy (entry->buf + sec_offset, writebuf,
2118 (size_t) len);
2119 }
2120 else
2121 {
2122 if (!entry)
2123 return ops->beneath->to_xfer_partial (ops->beneath,
2124 object, annex,
2125 readbuf, writebuf,
2126 offset, len,
2127 xfered_len);
2128
2129 memcpy (readbuf, entry->buf + sec_offset,
2130 (size_t) len);
2131 }
2132
2133 *xfered_len = len;
2134 return TARGET_XFER_OK;
2135 }
2136 }
2137
2138 return TARGET_XFER_E_IO;
2139 }
2140 else
2141 error (_("You can't do that without a process to debug."));
2142 }
2143
2144 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
2145 readbuf, writebuf, offset, len,
2146 xfered_len);
2147 }
2148
2149 /* "to_insert_breakpoint" method for prec over corefile. */
2150
2151 static int
2152 record_full_core_insert_breakpoint (struct target_ops *ops,
2153 struct gdbarch *gdbarch,
2154 struct bp_target_info *bp_tgt)
2155 {
2156 return 0;
2157 }
2158
2159 /* "to_remove_breakpoint" method for prec over corefile. */
2160
2161 static int
2162 record_full_core_remove_breakpoint (struct target_ops *ops,
2163 struct gdbarch *gdbarch,
2164 struct bp_target_info *bp_tgt,
2165 enum remove_bp_reason reason)
2166 {
2167 return 0;
2168 }
2169
2170 /* "to_has_execution" method for prec over corefile. */
2171
2172 static int
2173 record_full_core_has_execution (struct target_ops *ops, ptid_t the_ptid)
2174 {
2175 return 1;
2176 }
2177
2178 static void
2179 init_record_full_core_ops (void)
2180 {
2181 record_full_core_ops.to_shortname = "record-core";
2182 record_full_core_ops.to_longname = "Process record and replay target";
2183 record_full_core_ops.to_doc =
2184 "Log program while executing and replay execution from log.";
2185 record_full_core_ops.to_open = record_full_open;
2186 record_full_core_ops.to_close = record_full_close;
2187 record_full_core_ops.to_async = record_full_async;
2188 record_full_core_ops.to_resume = record_full_core_resume;
2189 record_full_core_ops.to_wait = record_full_wait;
2190 record_full_core_ops.to_kill = record_full_core_kill;
2191 record_full_core_ops.to_fetch_registers = record_full_core_fetch_registers;
2192 record_full_core_ops.to_prepare_to_store = record_full_core_prepare_to_store;
2193 record_full_core_ops.to_store_registers = record_full_core_store_registers;
2194 record_full_core_ops.to_xfer_partial = record_full_core_xfer_partial;
2195 record_full_core_ops.to_insert_breakpoint
2196 = record_full_core_insert_breakpoint;
2197 record_full_core_ops.to_remove_breakpoint
2198 = record_full_core_remove_breakpoint;
2199 record_full_core_ops.to_stopped_by_watchpoint
2200 = record_full_stopped_by_watchpoint;
2201 record_full_core_ops.to_stopped_data_address
2202 = record_full_stopped_data_address;
2203 record_full_core_ops.to_stopped_by_sw_breakpoint
2204 = record_full_stopped_by_sw_breakpoint;
2205 record_full_core_ops.to_supports_stopped_by_sw_breakpoint
2206 = record_full_supports_stopped_by_sw_breakpoint;
2207 record_full_core_ops.to_stopped_by_hw_breakpoint
2208 = record_full_stopped_by_hw_breakpoint;
2209 record_full_core_ops.to_supports_stopped_by_hw_breakpoint
2210 = record_full_supports_stopped_by_hw_breakpoint;
2211 record_full_core_ops.to_can_execute_reverse
2212 = record_full_can_execute_reverse;
2213 record_full_core_ops.to_has_execution = record_full_core_has_execution;
2214 record_full_core_ops.to_stratum = record_stratum;
2215 /* Add bookmark target methods. */
2216 record_full_core_ops.to_get_bookmark = record_full_get_bookmark;
2217 record_full_core_ops.to_goto_bookmark = record_full_goto_bookmark;
2218 record_full_core_ops.to_execution_direction
2219 = record_full_execution_direction;
2220 record_full_core_ops.to_record_method = record_full_record_method;
2221 record_full_core_ops.to_info_record = record_full_info;
2222 record_full_core_ops.to_delete_record = record_full_delete;
2223 record_full_core_ops.to_record_is_replaying = record_full_is_replaying;
2224 record_full_core_ops.to_record_will_replay = record_full_will_replay;
2225 record_full_core_ops.to_goto_record_begin = record_full_goto_begin;
2226 record_full_core_ops.to_goto_record_end = record_full_goto_end;
2227 record_full_core_ops.to_goto_record = record_full_goto;
2228 record_full_core_ops.to_magic = OPS_MAGIC;
2229 }
2230
2231 /* Record log save-file format
2232 Version 1 (never released)
2233
2234 Header:
2235 4 bytes: magic number htonl(0x20090829).
2236 NOTE: be sure to change whenever this file format changes!
2237
2238 Records:
2239 record_full_end:
2240 1 byte: record type (record_full_end, see enum record_full_type).
2241 record_full_reg:
2242 1 byte: record type (record_full_reg, see enum record_full_type).
2243 8 bytes: register id (network byte order).
2244 MAX_REGISTER_SIZE bytes: register value.
2245 record_full_mem:
2246 1 byte: record type (record_full_mem, see enum record_full_type).
2247 8 bytes: memory length (network byte order).
2248 8 bytes: memory address (network byte order).
2249 n bytes: memory value (n == memory length).
2250
2251 Version 2
2252 4 bytes: magic number netorder32(0x20091016).
2253 NOTE: be sure to change whenever this file format changes!
2254
2255 Records:
2256 record_full_end:
2257 1 byte: record type (record_full_end, see enum record_full_type).
2258 4 bytes: signal
2259 4 bytes: instruction count
2260 record_full_reg:
2261 1 byte: record type (record_full_reg, see enum record_full_type).
2262 4 bytes: register id (network byte order).
2263 n bytes: register value (n == actual register size).
2264 (eg. 4 bytes for x86 general registers).
2265 record_full_mem:
2266 1 byte: record type (record_full_mem, see enum record_full_type).
2267 4 bytes: memory length (network byte order).
2268 8 bytes: memory address (network byte order).
2269 n bytes: memory value (n == memory length).
2270
2271 */
2272
2273 /* bfdcore_read -- read bytes from a core file section. */
2274
2275 static inline void
2276 bfdcore_read (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2277 {
2278 int ret = bfd_get_section_contents (obfd, osec, buf, *offset, len);
2279
2280 if (ret)
2281 *offset += len;
2282 else
2283 error (_("Failed to read %d bytes from core file %s ('%s')."),
2284 len, bfd_get_filename (obfd),
2285 bfd_errmsg (bfd_get_error ()));
2286 }
2287
2288 static inline uint64_t
2289 netorder64 (uint64_t input)
2290 {
2291 uint64_t ret;
2292
2293 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2294 BFD_ENDIAN_BIG, input);
2295 return ret;
2296 }
2297
2298 static inline uint32_t
2299 netorder32 (uint32_t input)
2300 {
2301 uint32_t ret;
2302
2303 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2304 BFD_ENDIAN_BIG, input);
2305 return ret;
2306 }
2307
2308 /* Restore the execution log from a core_bfd file. */
2309 static void
2310 record_full_restore (void)
2311 {
2312 uint32_t magic;
2313 struct cleanup *old_cleanups;
2314 struct record_full_entry *rec;
2315 asection *osec;
2316 uint32_t osec_size;
2317 int bfd_offset = 0;
2318 struct regcache *regcache;
2319
2320 /* We restore the execution log from the open core bfd,
2321 if there is one. */
2322 if (core_bfd == NULL)
2323 return;
2324
2325 /* "record_full_restore" can only be called when record list is empty. */
2326 gdb_assert (record_full_first.next == NULL);
2327
2328 if (record_debug)
2329 fprintf_unfiltered (gdb_stdlog, "Restoring recording from core file.\n");
2330
2331 /* Now need to find our special note section. */
2332 osec = bfd_get_section_by_name (core_bfd, "null0");
2333 if (record_debug)
2334 fprintf_unfiltered (gdb_stdlog, "Find precord section %s.\n",
2335 osec ? "succeeded" : "failed");
2336 if (osec == NULL)
2337 return;
2338 osec_size = bfd_section_size (core_bfd, osec);
2339 if (record_debug)
2340 fprintf_unfiltered (gdb_stdlog, "%s", bfd_section_name (core_bfd, osec));
2341
2342 /* Check the magic code. */
2343 bfdcore_read (core_bfd, osec, &magic, sizeof (magic), &bfd_offset);
2344 if (magic != RECORD_FULL_FILE_MAGIC)
2345 error (_("Version mis-match or file format error in core file %s."),
2346 bfd_get_filename (core_bfd));
2347 if (record_debug)
2348 fprintf_unfiltered (gdb_stdlog,
2349 " Reading 4-byte magic cookie "
2350 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2351 phex_nz (netorder32 (magic), 4));
2352
2353 /* Restore the entries in recfd into record_full_arch_list_head and
2354 record_full_arch_list_tail. */
2355 record_full_arch_list_head = NULL;
2356 record_full_arch_list_tail = NULL;
2357 record_full_insn_num = 0;
2358 old_cleanups = make_cleanup (record_full_arch_list_cleanups, 0);
2359 regcache = get_current_regcache ();
2360
2361 while (1)
2362 {
2363 uint8_t rectype;
2364 uint32_t regnum, len, signal, count;
2365 uint64_t addr;
2366
2367 /* We are finished when offset reaches osec_size. */
2368 if (bfd_offset >= osec_size)
2369 break;
2370 bfdcore_read (core_bfd, osec, &rectype, sizeof (rectype), &bfd_offset);
2371
2372 switch (rectype)
2373 {
2374 case record_full_reg: /* reg */
2375 /* Get register number to regnum. */
2376 bfdcore_read (core_bfd, osec, &regnum,
2377 sizeof (regnum), &bfd_offset);
2378 regnum = netorder32 (regnum);
2379
2380 rec = record_full_reg_alloc (regcache, regnum);
2381
2382 /* Get val. */
2383 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2384 rec->u.reg.len, &bfd_offset);
2385
2386 if (record_debug)
2387 fprintf_unfiltered (gdb_stdlog,
2388 " Reading register %d (1 "
2389 "plus %lu plus %d bytes)\n",
2390 rec->u.reg.num,
2391 (unsigned long) sizeof (regnum),
2392 rec->u.reg.len);
2393 break;
2394
2395 case record_full_mem: /* mem */
2396 /* Get len. */
2397 bfdcore_read (core_bfd, osec, &len,
2398 sizeof (len), &bfd_offset);
2399 len = netorder32 (len);
2400
2401 /* Get addr. */
2402 bfdcore_read (core_bfd, osec, &addr,
2403 sizeof (addr), &bfd_offset);
2404 addr = netorder64 (addr);
2405
2406 rec = record_full_mem_alloc (addr, len);
2407
2408 /* Get val. */
2409 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2410 rec->u.mem.len, &bfd_offset);
2411
2412 if (record_debug)
2413 fprintf_unfiltered (gdb_stdlog,
2414 " Reading memory %s (1 plus "
2415 "%lu plus %lu plus %d bytes)\n",
2416 paddress (get_current_arch (),
2417 rec->u.mem.addr),
2418 (unsigned long) sizeof (addr),
2419 (unsigned long) sizeof (len),
2420 rec->u.mem.len);
2421 break;
2422
2423 case record_full_end: /* end */
2424 rec = record_full_end_alloc ();
2425 record_full_insn_num ++;
2426
2427 /* Get signal value. */
2428 bfdcore_read (core_bfd, osec, &signal,
2429 sizeof (signal), &bfd_offset);
2430 signal = netorder32 (signal);
2431 rec->u.end.sigval = (enum gdb_signal) signal;
2432
2433 /* Get insn count. */
2434 bfdcore_read (core_bfd, osec, &count,
2435 sizeof (count), &bfd_offset);
2436 count = netorder32 (count);
2437 rec->u.end.insn_num = count;
2438 record_full_insn_count = count + 1;
2439 if (record_debug)
2440 fprintf_unfiltered (gdb_stdlog,
2441 " Reading record_full_end (1 + "
2442 "%lu + %lu bytes), offset == %s\n",
2443 (unsigned long) sizeof (signal),
2444 (unsigned long) sizeof (count),
2445 paddress (get_current_arch (),
2446 bfd_offset));
2447 break;
2448
2449 default:
2450 error (_("Bad entry type in core file %s."),
2451 bfd_get_filename (core_bfd));
2452 break;
2453 }
2454
2455 /* Add rec to record arch list. */
2456 record_full_arch_list_add (rec);
2457 }
2458
2459 discard_cleanups (old_cleanups);
2460
2461 /* Add record_full_arch_list_head to the end of record list. */
2462 record_full_first.next = record_full_arch_list_head;
2463 record_full_arch_list_head->prev = &record_full_first;
2464 record_full_arch_list_tail->next = NULL;
2465 record_full_list = &record_full_first;
2466
2467 /* Update record_full_insn_max_num. */
2468 if (record_full_insn_num > record_full_insn_max_num)
2469 {
2470 record_full_insn_max_num = record_full_insn_num;
2471 warning (_("Auto increase record/replay buffer limit to %u."),
2472 record_full_insn_max_num);
2473 }
2474
2475 /* Succeeded. */
2476 printf_filtered (_("Restored records from core file %s.\n"),
2477 bfd_get_filename (core_bfd));
2478
2479 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2480 }
2481
2482 /* bfdcore_write -- write bytes into a core file section. */
2483
2484 static inline void
2485 bfdcore_write (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2486 {
2487 int ret = bfd_set_section_contents (obfd, osec, buf, *offset, len);
2488
2489 if (ret)
2490 *offset += len;
2491 else
2492 error (_("Failed to write %d bytes to core file %s ('%s')."),
2493 len, bfd_get_filename (obfd),
2494 bfd_errmsg (bfd_get_error ()));
2495 }
2496
2497 /* Restore the execution log from a file. We use a modified elf
2498 corefile format, with an extra section for our data. */
2499
2500 static void
2501 cmd_record_full_restore (const char *args, int from_tty)
2502 {
2503 core_file_command (args, from_tty);
2504 record_full_open (args, from_tty);
2505 }
2506
2507 /* Save the execution log to a file. We use a modified elf corefile
2508 format, with an extra section for our data. */
2509
2510 static void
2511 record_full_save (struct target_ops *self, const char *recfilename)
2512 {
2513 struct record_full_entry *cur_record_full_list;
2514 uint32_t magic;
2515 struct regcache *regcache;
2516 struct gdbarch *gdbarch;
2517 int save_size = 0;
2518 asection *osec = NULL;
2519 int bfd_offset = 0;
2520
2521 /* Open the save file. */
2522 if (record_debug)
2523 fprintf_unfiltered (gdb_stdlog, "Saving execution log to core file '%s'\n",
2524 recfilename);
2525
2526 /* Open the output file. */
2527 gdb_bfd_ref_ptr obfd (create_gcore_bfd (recfilename));
2528
2529 /* Arrange to remove the output file on failure. */
2530 gdb::unlinker unlink_file (recfilename);
2531
2532 /* Save the current record entry to "cur_record_full_list". */
2533 cur_record_full_list = record_full_list;
2534
2535 /* Get the values of regcache and gdbarch. */
2536 regcache = get_current_regcache ();
2537 gdbarch = regcache->arch ();
2538
2539 /* Disable the GDB operation record. */
2540 scoped_restore restore_operation_disable
2541 = record_full_gdb_operation_disable_set ();
2542
2543 /* Reverse execute to the begin of record list. */
2544 while (1)
2545 {
2546 /* Check for beginning and end of log. */
2547 if (record_full_list == &record_full_first)
2548 break;
2549
2550 record_full_exec_insn (regcache, gdbarch, record_full_list);
2551
2552 if (record_full_list->prev)
2553 record_full_list = record_full_list->prev;
2554 }
2555
2556 /* Compute the size needed for the extra bfd section. */
2557 save_size = 4; /* magic cookie */
2558 for (record_full_list = record_full_first.next; record_full_list;
2559 record_full_list = record_full_list->next)
2560 switch (record_full_list->type)
2561 {
2562 case record_full_end:
2563 save_size += 1 + 4 + 4;
2564 break;
2565 case record_full_reg:
2566 save_size += 1 + 4 + record_full_list->u.reg.len;
2567 break;
2568 case record_full_mem:
2569 save_size += 1 + 4 + 8 + record_full_list->u.mem.len;
2570 break;
2571 }
2572
2573 /* Make the new bfd section. */
2574 osec = bfd_make_section_anyway_with_flags (obfd.get (), "precord",
2575 SEC_HAS_CONTENTS
2576 | SEC_READONLY);
2577 if (osec == NULL)
2578 error (_("Failed to create 'precord' section for corefile %s: %s"),
2579 recfilename,
2580 bfd_errmsg (bfd_get_error ()));
2581 bfd_set_section_size (obfd.get (), osec, save_size);
2582 bfd_set_section_vma (obfd.get (), osec, 0);
2583 bfd_set_section_alignment (obfd.get (), osec, 0);
2584 bfd_section_lma (obfd.get (), osec) = 0;
2585
2586 /* Save corefile state. */
2587 write_gcore_file (obfd.get ());
2588
2589 /* Write out the record log. */
2590 /* Write the magic code. */
2591 magic = RECORD_FULL_FILE_MAGIC;
2592 if (record_debug)
2593 fprintf_unfiltered (gdb_stdlog,
2594 " Writing 4-byte magic cookie "
2595 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2596 phex_nz (magic, 4));
2597 bfdcore_write (obfd.get (), osec, &magic, sizeof (magic), &bfd_offset);
2598
2599 /* Save the entries to recfd and forward execute to the end of
2600 record list. */
2601 record_full_list = &record_full_first;
2602 while (1)
2603 {
2604 /* Save entry. */
2605 if (record_full_list != &record_full_first)
2606 {
2607 uint8_t type;
2608 uint32_t regnum, len, signal, count;
2609 uint64_t addr;
2610
2611 type = record_full_list->type;
2612 bfdcore_write (obfd.get (), osec, &type, sizeof (type), &bfd_offset);
2613
2614 switch (record_full_list->type)
2615 {
2616 case record_full_reg: /* reg */
2617 if (record_debug)
2618 fprintf_unfiltered (gdb_stdlog,
2619 " Writing register %d (1 "
2620 "plus %lu plus %d bytes)\n",
2621 record_full_list->u.reg.num,
2622 (unsigned long) sizeof (regnum),
2623 record_full_list->u.reg.len);
2624
2625 /* Write regnum. */
2626 regnum = netorder32 (record_full_list->u.reg.num);
2627 bfdcore_write (obfd.get (), osec, &regnum,
2628 sizeof (regnum), &bfd_offset);
2629
2630 /* Write regval. */
2631 bfdcore_write (obfd.get (), osec,
2632 record_full_get_loc (record_full_list),
2633 record_full_list->u.reg.len, &bfd_offset);
2634 break;
2635
2636 case record_full_mem: /* mem */
2637 if (record_debug)
2638 fprintf_unfiltered (gdb_stdlog,
2639 " Writing memory %s (1 plus "
2640 "%lu plus %lu plus %d bytes)\n",
2641 paddress (gdbarch,
2642 record_full_list->u.mem.addr),
2643 (unsigned long) sizeof (addr),
2644 (unsigned long) sizeof (len),
2645 record_full_list->u.mem.len);
2646
2647 /* Write memlen. */
2648 len = netorder32 (record_full_list->u.mem.len);
2649 bfdcore_write (obfd.get (), osec, &len, sizeof (len),
2650 &bfd_offset);
2651
2652 /* Write memaddr. */
2653 addr = netorder64 (record_full_list->u.mem.addr);
2654 bfdcore_write (obfd.get (), osec, &addr,
2655 sizeof (addr), &bfd_offset);
2656
2657 /* Write memval. */
2658 bfdcore_write (obfd.get (), osec,
2659 record_full_get_loc (record_full_list),
2660 record_full_list->u.mem.len, &bfd_offset);
2661 break;
2662
2663 case record_full_end:
2664 if (record_debug)
2665 fprintf_unfiltered (gdb_stdlog,
2666 " Writing record_full_end (1 + "
2667 "%lu + %lu bytes)\n",
2668 (unsigned long) sizeof (signal),
2669 (unsigned long) sizeof (count));
2670 /* Write signal value. */
2671 signal = netorder32 (record_full_list->u.end.sigval);
2672 bfdcore_write (obfd.get (), osec, &signal,
2673 sizeof (signal), &bfd_offset);
2674
2675 /* Write insn count. */
2676 count = netorder32 (record_full_list->u.end.insn_num);
2677 bfdcore_write (obfd.get (), osec, &count,
2678 sizeof (count), &bfd_offset);
2679 break;
2680 }
2681 }
2682
2683 /* Execute entry. */
2684 record_full_exec_insn (regcache, gdbarch, record_full_list);
2685
2686 if (record_full_list->next)
2687 record_full_list = record_full_list->next;
2688 else
2689 break;
2690 }
2691
2692 /* Reverse execute to cur_record_full_list. */
2693 while (1)
2694 {
2695 /* Check for beginning and end of log. */
2696 if (record_full_list == cur_record_full_list)
2697 break;
2698
2699 record_full_exec_insn (regcache, gdbarch, record_full_list);
2700
2701 if (record_full_list->prev)
2702 record_full_list = record_full_list->prev;
2703 }
2704
2705 unlink_file.keep ();
2706
2707 /* Succeeded. */
2708 printf_filtered (_("Saved core file %s with execution log.\n"),
2709 recfilename);
2710 }
2711
2712 /* record_full_goto_insn -- rewind the record log (forward or backward,
2713 depending on DIR) to the given entry, changing the program state
2714 correspondingly. */
2715
2716 static void
2717 record_full_goto_insn (struct record_full_entry *entry,
2718 enum exec_direction_kind dir)
2719 {
2720 scoped_restore restore_operation_disable
2721 = record_full_gdb_operation_disable_set ();
2722 struct regcache *regcache = get_current_regcache ();
2723 struct gdbarch *gdbarch = regcache->arch ();
2724
2725 /* Assume everything is valid: we will hit the entry,
2726 and we will not hit the end of the recording. */
2727
2728 if (dir == EXEC_FORWARD)
2729 record_full_list = record_full_list->next;
2730
2731 do
2732 {
2733 record_full_exec_insn (regcache, gdbarch, record_full_list);
2734 if (dir == EXEC_REVERSE)
2735 record_full_list = record_full_list->prev;
2736 else
2737 record_full_list = record_full_list->next;
2738 } while (record_full_list != entry);
2739 }
2740
2741 /* Alias for "target record-full". */
2742
2743 static void
2744 cmd_record_full_start (const char *args, int from_tty)
2745 {
2746 execute_command ("target record-full", from_tty);
2747 }
2748
2749 static void
2750 set_record_full_insn_max_num (const char *args, int from_tty,
2751 struct cmd_list_element *c)
2752 {
2753 if (record_full_insn_num > record_full_insn_max_num)
2754 {
2755 /* Count down record_full_insn_num while releasing records from list. */
2756 while (record_full_insn_num > record_full_insn_max_num)
2757 {
2758 record_full_list_release_first ();
2759 record_full_insn_num--;
2760 }
2761 }
2762 }
2763
2764 /* The "set record full" command. */
2765
2766 static void
2767 set_record_full_command (const char *args, int from_tty)
2768 {
2769 printf_unfiltered (_("\"set record full\" must be followed "
2770 "by an appropriate subcommand.\n"));
2771 help_list (set_record_full_cmdlist, "set record full ", all_commands,
2772 gdb_stdout);
2773 }
2774
2775 /* The "show record full" command. */
2776
2777 static void
2778 show_record_full_command (const char *args, int from_tty)
2779 {
2780 cmd_show_list (show_record_full_cmdlist, from_tty, "");
2781 }
2782
2783 void
2784 _initialize_record_full (void)
2785 {
2786 struct cmd_list_element *c;
2787
2788 /* Init record_full_first. */
2789 record_full_first.prev = NULL;
2790 record_full_first.next = NULL;
2791 record_full_first.type = record_full_end;
2792
2793 init_record_full_ops ();
2794 add_target (&record_full_ops);
2795 add_deprecated_target_alias (&record_full_ops, "record");
2796 init_record_full_core_ops ();
2797 add_target (&record_full_core_ops);
2798
2799 add_prefix_cmd ("full", class_obscure, cmd_record_full_start,
2800 _("Start full execution recording."), &record_full_cmdlist,
2801 "record full ", 0, &record_cmdlist);
2802
2803 c = add_cmd ("restore", class_obscure, cmd_record_full_restore,
2804 _("Restore the execution log from a file.\n\
2805 Argument is filename. File must be created with 'record save'."),
2806 &record_full_cmdlist);
2807 set_cmd_completer (c, filename_completer);
2808
2809 /* Deprecate the old version without "full" prefix. */
2810 c = add_alias_cmd ("restore", "full restore", class_obscure, 1,
2811 &record_cmdlist);
2812 set_cmd_completer (c, filename_completer);
2813 deprecate_cmd (c, "record full restore");
2814
2815 add_prefix_cmd ("full", class_support, set_record_full_command,
2816 _("Set record options"), &set_record_full_cmdlist,
2817 "set record full ", 0, &set_record_cmdlist);
2818
2819 add_prefix_cmd ("full", class_support, show_record_full_command,
2820 _("Show record options"), &show_record_full_cmdlist,
2821 "show record full ", 0, &show_record_cmdlist);
2822
2823 /* Record instructions number limit command. */
2824 add_setshow_boolean_cmd ("stop-at-limit", no_class,
2825 &record_full_stop_at_limit, _("\
2826 Set whether record/replay stops when record/replay buffer becomes full."), _("\
2827 Show whether record/replay stops when record/replay buffer becomes full."),
2828 _("Default is ON.\n\
2829 When ON, if the record/replay buffer becomes full, ask user what to do.\n\
2830 When OFF, if the record/replay buffer becomes full,\n\
2831 delete the oldest recorded instruction to make room for each new one."),
2832 NULL, NULL,
2833 &set_record_full_cmdlist, &show_record_full_cmdlist);
2834
2835 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2836 &set_record_cmdlist);
2837 deprecate_cmd (c, "set record full stop-at-limit");
2838
2839 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2840 &show_record_cmdlist);
2841 deprecate_cmd (c, "show record full stop-at-limit");
2842
2843 add_setshow_uinteger_cmd ("insn-number-max", no_class,
2844 &record_full_insn_max_num,
2845 _("Set record/replay buffer limit."),
2846 _("Show record/replay buffer limit."), _("\
2847 Set the maximum number of instructions to be stored in the\n\
2848 record/replay buffer. A value of either \"unlimited\" or zero means no\n\
2849 limit. Default is 200000."),
2850 set_record_full_insn_max_num,
2851 NULL, &set_record_full_cmdlist,
2852 &show_record_full_cmdlist);
2853
2854 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2855 &set_record_cmdlist);
2856 deprecate_cmd (c, "set record full insn-number-max");
2857
2858 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2859 &show_record_cmdlist);
2860 deprecate_cmd (c, "show record full insn-number-max");
2861
2862 add_setshow_boolean_cmd ("memory-query", no_class,
2863 &record_full_memory_query, _("\
2864 Set whether query if PREC cannot record memory change of next instruction."),
2865 _("\
2866 Show whether query if PREC cannot record memory change of next instruction."),
2867 _("\
2868 Default is OFF.\n\
2869 When ON, query if PREC cannot record memory change of next instruction."),
2870 NULL, NULL,
2871 &set_record_full_cmdlist,
2872 &show_record_full_cmdlist);
2873
2874 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2875 &set_record_cmdlist);
2876 deprecate_cmd (c, "set record full memory-query");
2877
2878 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2879 &show_record_cmdlist);
2880 deprecate_cmd (c, "show record full memory-query");
2881 }
This page took 0.089748 seconds and 4 git commands to generate.