50f235d072a5184422f83c12abdf1f602c0dd079
[deliverable/binutils-gdb.git] / gdb / record-full.c
1 /* Process record and replay target for GDB, the GNU debugger.
2
3 Copyright (C) 2013-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "regcache.h"
23 #include "gdbthread.h"
24 #include "event-top.h"
25 #include "completer.h"
26 #include "arch-utils.h"
27 #include "gdbcore.h"
28 #include "exec.h"
29 #include "record.h"
30 #include "record-full.h"
31 #include "elf-bfd.h"
32 #include "gcore.h"
33 #include "event-loop.h"
34 #include "inf-loop.h"
35 #include "gdb_bfd.h"
36 #include "observer.h"
37 #include "infrun.h"
38
39 #include <signal.h>
40
41 /* This module implements "target record-full", also known as "process
42 record and replay". This target sits on top of a "normal" target
43 (a target that "has execution"), and provides a record and replay
44 functionality, including reverse debugging.
45
46 Target record has two modes: recording, and replaying.
47
48 In record mode, we intercept the to_resume and to_wait methods.
49 Whenever gdb resumes the target, we run the target in single step
50 mode, and we build up an execution log in which, for each executed
51 instruction, we record all changes in memory and register state.
52 This is invisible to the user, to whom it just looks like an
53 ordinary debugging session (except for performance degredation).
54
55 In replay mode, instead of actually letting the inferior run as a
56 process, we simulate its execution by playing back the recorded
57 execution log. For each instruction in the log, we simulate the
58 instruction's side effects by duplicating the changes that it would
59 have made on memory and registers. */
60
61 #define DEFAULT_RECORD_FULL_INSN_MAX_NUM 200000
62
63 #define RECORD_FULL_IS_REPLAY \
64 (record_full_list->next || execution_direction == EXEC_REVERSE)
65
66 #define RECORD_FULL_FILE_MAGIC netorder32(0x20091016)
67
68 /* These are the core structs of the process record functionality.
69
70 A record_full_entry is a record of the value change of a register
71 ("record_full_reg") or a part of memory ("record_full_mem"). And each
72 instruction must have a struct record_full_entry ("record_full_end")
73 that indicates that this is the last struct record_full_entry of this
74 instruction.
75
76 Each struct record_full_entry is linked to "record_full_list" by "prev"
77 and "next" pointers. */
78
79 struct record_full_mem_entry
80 {
81 CORE_ADDR addr;
82 int len;
83 /* Set this flag if target memory for this entry
84 can no longer be accessed. */
85 int mem_entry_not_accessible;
86 union
87 {
88 gdb_byte *ptr;
89 gdb_byte buf[sizeof (gdb_byte *)];
90 } u;
91 };
92
93 struct record_full_reg_entry
94 {
95 unsigned short num;
96 unsigned short len;
97 union
98 {
99 gdb_byte *ptr;
100 gdb_byte buf[2 * sizeof (gdb_byte *)];
101 } u;
102 };
103
104 struct record_full_end_entry
105 {
106 enum gdb_signal sigval;
107 ULONGEST insn_num;
108 };
109
110 enum record_full_type
111 {
112 record_full_end = 0,
113 record_full_reg,
114 record_full_mem
115 };
116
117 /* This is the data structure that makes up the execution log.
118
119 The execution log consists of a single linked list of entries
120 of type "struct record_full_entry". It is doubly linked so that it
121 can be traversed in either direction.
122
123 The start of the list is anchored by a struct called
124 "record_full_first". The pointer "record_full_list" either points
125 to the last entry that was added to the list (in record mode), or to
126 the next entry in the list that will be executed (in replay mode).
127
128 Each list element (struct record_full_entry), in addition to next
129 and prev pointers, consists of a union of three entry types: mem,
130 reg, and end. A field called "type" determines which entry type is
131 represented by a given list element.
132
133 Each instruction that is added to the execution log is represented
134 by a variable number of list elements ('entries'). The instruction
135 will have one "reg" entry for each register that is changed by
136 executing the instruction (including the PC in every case). It
137 will also have one "mem" entry for each memory change. Finally,
138 each instruction will have an "end" entry that separates it from
139 the changes associated with the next instruction. */
140
141 struct record_full_entry
142 {
143 struct record_full_entry *prev;
144 struct record_full_entry *next;
145 enum record_full_type type;
146 union
147 {
148 /* reg */
149 struct record_full_reg_entry reg;
150 /* mem */
151 struct record_full_mem_entry mem;
152 /* end */
153 struct record_full_end_entry end;
154 } u;
155 };
156
157 /* If true, query if PREC cannot record memory
158 change of next instruction. */
159 int record_full_memory_query = 0;
160
161 struct record_full_core_buf_entry
162 {
163 struct record_full_core_buf_entry *prev;
164 struct target_section *p;
165 bfd_byte *buf;
166 };
167
168 /* Record buf with core target. */
169 static gdb_byte *record_full_core_regbuf = NULL;
170 static struct target_section *record_full_core_start;
171 static struct target_section *record_full_core_end;
172 static struct record_full_core_buf_entry *record_full_core_buf_list = NULL;
173
174 /* The following variables are used for managing the linked list that
175 represents the execution log.
176
177 record_full_first is the anchor that holds down the beginning of
178 the list.
179
180 record_full_list serves two functions:
181 1) In record mode, it anchors the end of the list.
182 2) In replay mode, it traverses the list and points to
183 the next instruction that must be emulated.
184
185 record_full_arch_list_head and record_full_arch_list_tail are used
186 to manage a separate list, which is used to build up the change
187 elements of the currently executing instruction during record mode.
188 When this instruction has been completely annotated in the "arch
189 list", it will be appended to the main execution log. */
190
191 static struct record_full_entry record_full_first;
192 static struct record_full_entry *record_full_list = &record_full_first;
193 static struct record_full_entry *record_full_arch_list_head = NULL;
194 static struct record_full_entry *record_full_arch_list_tail = NULL;
195
196 /* 1 ask user. 0 auto delete the last struct record_full_entry. */
197 static int record_full_stop_at_limit = 1;
198 /* Maximum allowed number of insns in execution log. */
199 static unsigned int record_full_insn_max_num
200 = DEFAULT_RECORD_FULL_INSN_MAX_NUM;
201 /* Actual count of insns presently in execution log. */
202 static unsigned int record_full_insn_num = 0;
203 /* Count of insns logged so far (may be larger
204 than count of insns presently in execution log). */
205 static ULONGEST record_full_insn_count;
206
207 /* The target_ops of process record. */
208 static struct target_ops record_full_ops;
209 static struct target_ops record_full_core_ops;
210
211 /* See record-full.h. */
212
213 int
214 record_full_is_used (void)
215 {
216 struct target_ops *t;
217
218 t = find_record_target ();
219 return (t == &record_full_ops
220 || t == &record_full_core_ops);
221 }
222
223
224 /* Command lists for "set/show record full". */
225 static struct cmd_list_element *set_record_full_cmdlist;
226 static struct cmd_list_element *show_record_full_cmdlist;
227
228 /* Command list for "record full". */
229 static struct cmd_list_element *record_full_cmdlist;
230
231 static void record_full_goto_insn (struct record_full_entry *entry,
232 enum exec_direction_kind dir);
233 static void record_full_save (struct target_ops *self,
234 const char *recfilename);
235
236 /* Alloc and free functions for record_full_reg, record_full_mem, and
237 record_full_end entries. */
238
239 /* Alloc a record_full_reg record entry. */
240
241 static inline struct record_full_entry *
242 record_full_reg_alloc (struct regcache *regcache, int regnum)
243 {
244 struct record_full_entry *rec;
245 struct gdbarch *gdbarch = get_regcache_arch (regcache);
246
247 rec = XCNEW (struct record_full_entry);
248 rec->type = record_full_reg;
249 rec->u.reg.num = regnum;
250 rec->u.reg.len = register_size (gdbarch, regnum);
251 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
252 rec->u.reg.u.ptr = (gdb_byte *) xmalloc (rec->u.reg.len);
253
254 return rec;
255 }
256
257 /* Free a record_full_reg record entry. */
258
259 static inline void
260 record_full_reg_release (struct record_full_entry *rec)
261 {
262 gdb_assert (rec->type == record_full_reg);
263 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
264 xfree (rec->u.reg.u.ptr);
265 xfree (rec);
266 }
267
268 /* Alloc a record_full_mem record entry. */
269
270 static inline struct record_full_entry *
271 record_full_mem_alloc (CORE_ADDR addr, int len)
272 {
273 struct record_full_entry *rec;
274
275 rec = XCNEW (struct record_full_entry);
276 rec->type = record_full_mem;
277 rec->u.mem.addr = addr;
278 rec->u.mem.len = len;
279 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
280 rec->u.mem.u.ptr = (gdb_byte *) xmalloc (len);
281
282 return rec;
283 }
284
285 /* Free a record_full_mem record entry. */
286
287 static inline void
288 record_full_mem_release (struct record_full_entry *rec)
289 {
290 gdb_assert (rec->type == record_full_mem);
291 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
292 xfree (rec->u.mem.u.ptr);
293 xfree (rec);
294 }
295
296 /* Alloc a record_full_end record entry. */
297
298 static inline struct record_full_entry *
299 record_full_end_alloc (void)
300 {
301 struct record_full_entry *rec;
302
303 rec = XCNEW (struct record_full_entry);
304 rec->type = record_full_end;
305
306 return rec;
307 }
308
309 /* Free a record_full_end record entry. */
310
311 static inline void
312 record_full_end_release (struct record_full_entry *rec)
313 {
314 xfree (rec);
315 }
316
317 /* Free one record entry, any type.
318 Return entry->type, in case caller wants to know. */
319
320 static inline enum record_full_type
321 record_full_entry_release (struct record_full_entry *rec)
322 {
323 enum record_full_type type = rec->type;
324
325 switch (type) {
326 case record_full_reg:
327 record_full_reg_release (rec);
328 break;
329 case record_full_mem:
330 record_full_mem_release (rec);
331 break;
332 case record_full_end:
333 record_full_end_release (rec);
334 break;
335 }
336 return type;
337 }
338
339 /* Free all record entries in list pointed to by REC. */
340
341 static void
342 record_full_list_release (struct record_full_entry *rec)
343 {
344 if (!rec)
345 return;
346
347 while (rec->next)
348 rec = rec->next;
349
350 while (rec->prev)
351 {
352 rec = rec->prev;
353 record_full_entry_release (rec->next);
354 }
355
356 if (rec == &record_full_first)
357 {
358 record_full_insn_num = 0;
359 record_full_first.next = NULL;
360 }
361 else
362 record_full_entry_release (rec);
363 }
364
365 /* Free all record entries forward of the given list position. */
366
367 static void
368 record_full_list_release_following (struct record_full_entry *rec)
369 {
370 struct record_full_entry *tmp = rec->next;
371
372 rec->next = NULL;
373 while (tmp)
374 {
375 rec = tmp->next;
376 if (record_full_entry_release (tmp) == record_full_end)
377 {
378 record_full_insn_num--;
379 record_full_insn_count--;
380 }
381 tmp = rec;
382 }
383 }
384
385 /* Delete the first instruction from the beginning of the log, to make
386 room for adding a new instruction at the end of the log.
387
388 Note -- this function does not modify record_full_insn_num. */
389
390 static void
391 record_full_list_release_first (void)
392 {
393 struct record_full_entry *tmp;
394
395 if (!record_full_first.next)
396 return;
397
398 /* Loop until a record_full_end. */
399 while (1)
400 {
401 /* Cut record_full_first.next out of the linked list. */
402 tmp = record_full_first.next;
403 record_full_first.next = tmp->next;
404 tmp->next->prev = &record_full_first;
405
406 /* tmp is now isolated, and can be deleted. */
407 if (record_full_entry_release (tmp) == record_full_end)
408 break; /* End loop at first record_full_end. */
409
410 if (!record_full_first.next)
411 {
412 gdb_assert (record_full_insn_num == 1);
413 break; /* End loop when list is empty. */
414 }
415 }
416 }
417
418 /* Add a struct record_full_entry to record_full_arch_list. */
419
420 static void
421 record_full_arch_list_add (struct record_full_entry *rec)
422 {
423 if (record_debug > 1)
424 fprintf_unfiltered (gdb_stdlog,
425 "Process record: record_full_arch_list_add %s.\n",
426 host_address_to_string (rec));
427
428 if (record_full_arch_list_tail)
429 {
430 record_full_arch_list_tail->next = rec;
431 rec->prev = record_full_arch_list_tail;
432 record_full_arch_list_tail = rec;
433 }
434 else
435 {
436 record_full_arch_list_head = rec;
437 record_full_arch_list_tail = rec;
438 }
439 }
440
441 /* Return the value storage location of a record entry. */
442 static inline gdb_byte *
443 record_full_get_loc (struct record_full_entry *rec)
444 {
445 switch (rec->type) {
446 case record_full_mem:
447 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
448 return rec->u.mem.u.ptr;
449 else
450 return rec->u.mem.u.buf;
451 case record_full_reg:
452 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
453 return rec->u.reg.u.ptr;
454 else
455 return rec->u.reg.u.buf;
456 case record_full_end:
457 default:
458 gdb_assert_not_reached ("unexpected record_full_entry type");
459 return NULL;
460 }
461 }
462
463 /* Record the value of a register NUM to record_full_arch_list. */
464
465 int
466 record_full_arch_list_add_reg (struct regcache *regcache, int regnum)
467 {
468 struct record_full_entry *rec;
469
470 if (record_debug > 1)
471 fprintf_unfiltered (gdb_stdlog,
472 "Process record: add register num = %d to "
473 "record list.\n",
474 regnum);
475
476 rec = record_full_reg_alloc (regcache, regnum);
477
478 regcache_raw_read (regcache, regnum, record_full_get_loc (rec));
479
480 record_full_arch_list_add (rec);
481
482 return 0;
483 }
484
485 /* Record the value of a region of memory whose address is ADDR and
486 length is LEN to record_full_arch_list. */
487
488 int
489 record_full_arch_list_add_mem (CORE_ADDR addr, int len)
490 {
491 struct record_full_entry *rec;
492
493 if (record_debug > 1)
494 fprintf_unfiltered (gdb_stdlog,
495 "Process record: add mem addr = %s len = %d to "
496 "record list.\n",
497 paddress (target_gdbarch (), addr), len);
498
499 if (!addr) /* FIXME: Why? Some arch must permit it... */
500 return 0;
501
502 rec = record_full_mem_alloc (addr, len);
503
504 if (record_read_memory (target_gdbarch (), addr,
505 record_full_get_loc (rec), len))
506 {
507 record_full_mem_release (rec);
508 return -1;
509 }
510
511 record_full_arch_list_add (rec);
512
513 return 0;
514 }
515
516 /* Add a record_full_end type struct record_full_entry to
517 record_full_arch_list. */
518
519 int
520 record_full_arch_list_add_end (void)
521 {
522 struct record_full_entry *rec;
523
524 if (record_debug > 1)
525 fprintf_unfiltered (gdb_stdlog,
526 "Process record: add end to arch list.\n");
527
528 rec = record_full_end_alloc ();
529 rec->u.end.sigval = GDB_SIGNAL_0;
530 rec->u.end.insn_num = ++record_full_insn_count;
531
532 record_full_arch_list_add (rec);
533
534 return 0;
535 }
536
537 static void
538 record_full_check_insn_num (void)
539 {
540 if (record_full_insn_num == record_full_insn_max_num)
541 {
542 /* Ask user what to do. */
543 if (record_full_stop_at_limit)
544 {
545 if (!yquery (_("Do you want to auto delete previous execution "
546 "log entries when record/replay buffer becomes "
547 "full (record full stop-at-limit)?")))
548 error (_("Process record: stopped by user."));
549 record_full_stop_at_limit = 0;
550 }
551 }
552 }
553
554 static void
555 record_full_arch_list_cleanups (void *ignore)
556 {
557 record_full_list_release (record_full_arch_list_tail);
558 }
559
560 /* Before inferior step (when GDB record the running message, inferior
561 only can step), GDB will call this function to record the values to
562 record_full_list. This function will call gdbarch_process_record to
563 record the running message of inferior and set them to
564 record_full_arch_list, and add it to record_full_list. */
565
566 static int
567 record_full_message (struct regcache *regcache, enum gdb_signal signal)
568 {
569 int ret;
570 struct gdbarch *gdbarch = get_regcache_arch (regcache);
571 struct cleanup *old_cleanups
572 = make_cleanup (record_full_arch_list_cleanups, 0);
573
574 record_full_arch_list_head = NULL;
575 record_full_arch_list_tail = NULL;
576
577 /* Check record_full_insn_num. */
578 record_full_check_insn_num ();
579
580 /* If gdb sends a signal value to target_resume,
581 save it in the 'end' field of the previous instruction.
582
583 Maybe process record should record what really happened,
584 rather than what gdb pretends has happened.
585
586 So if Linux delivered the signal to the child process during
587 the record mode, we will record it and deliver it again in
588 the replay mode.
589
590 If user says "ignore this signal" during the record mode, then
591 it will be ignored again during the replay mode (no matter if
592 the user says something different, like "deliver this signal"
593 during the replay mode).
594
595 User should understand that nothing he does during the replay
596 mode will change the behavior of the child. If he tries,
597 then that is a user error.
598
599 But we should still deliver the signal to gdb during the replay,
600 if we delivered it during the recording. Therefore we should
601 record the signal during record_full_wait, not
602 record_full_resume. */
603 if (record_full_list != &record_full_first) /* FIXME better way to check */
604 {
605 gdb_assert (record_full_list->type == record_full_end);
606 record_full_list->u.end.sigval = signal;
607 }
608
609 if (signal == GDB_SIGNAL_0
610 || !gdbarch_process_record_signal_p (gdbarch))
611 ret = gdbarch_process_record (gdbarch,
612 regcache,
613 regcache_read_pc (regcache));
614 else
615 ret = gdbarch_process_record_signal (gdbarch,
616 regcache,
617 signal);
618
619 if (ret > 0)
620 error (_("Process record: inferior program stopped."));
621 if (ret < 0)
622 error (_("Process record: failed to record execution log."));
623
624 discard_cleanups (old_cleanups);
625
626 record_full_list->next = record_full_arch_list_head;
627 record_full_arch_list_head->prev = record_full_list;
628 record_full_list = record_full_arch_list_tail;
629
630 if (record_full_insn_num == record_full_insn_max_num)
631 record_full_list_release_first ();
632 else
633 record_full_insn_num++;
634
635 return 1;
636 }
637
638 struct record_full_message_args {
639 struct regcache *regcache;
640 enum gdb_signal signal;
641 };
642
643 static int
644 record_full_message_wrapper (void *args)
645 {
646 struct record_full_message_args *record_full_args
647 = (struct record_full_message_args *) args;
648
649 return record_full_message (record_full_args->regcache,
650 record_full_args->signal);
651 }
652
653 static int
654 record_full_message_wrapper_safe (struct regcache *regcache,
655 enum gdb_signal signal)
656 {
657 struct record_full_message_args args;
658
659 args.regcache = regcache;
660 args.signal = signal;
661
662 return catch_errors (record_full_message_wrapper, &args, "",
663 RETURN_MASK_ALL);
664 }
665
666 /* Set to 1 if record_full_store_registers and record_full_xfer_partial
667 doesn't need record. */
668
669 static int record_full_gdb_operation_disable = 0;
670
671 struct cleanup *
672 record_full_gdb_operation_disable_set (void)
673 {
674 struct cleanup *old_cleanups = NULL;
675
676 old_cleanups =
677 make_cleanup_restore_integer (&record_full_gdb_operation_disable);
678 record_full_gdb_operation_disable = 1;
679
680 return old_cleanups;
681 }
682
683 /* Flag set to TRUE for target_stopped_by_watchpoint. */
684 static enum target_stop_reason record_full_stop_reason
685 = TARGET_STOPPED_BY_NO_REASON;
686
687 /* Execute one instruction from the record log. Each instruction in
688 the log will be represented by an arbitrary sequence of register
689 entries and memory entries, followed by an 'end' entry. */
690
691 static inline void
692 record_full_exec_insn (struct regcache *regcache,
693 struct gdbarch *gdbarch,
694 struct record_full_entry *entry)
695 {
696 switch (entry->type)
697 {
698 case record_full_reg: /* reg */
699 {
700 gdb_byte reg[MAX_REGISTER_SIZE];
701
702 if (record_debug > 1)
703 fprintf_unfiltered (gdb_stdlog,
704 "Process record: record_full_reg %s to "
705 "inferior num = %d.\n",
706 host_address_to_string (entry),
707 entry->u.reg.num);
708
709 regcache_cooked_read (regcache, entry->u.reg.num, reg);
710 regcache_cooked_write (regcache, entry->u.reg.num,
711 record_full_get_loc (entry));
712 memcpy (record_full_get_loc (entry), reg, entry->u.reg.len);
713 }
714 break;
715
716 case record_full_mem: /* mem */
717 {
718 /* Nothing to do if the entry is flagged not_accessible. */
719 if (!entry->u.mem.mem_entry_not_accessible)
720 {
721 gdb_byte *mem = (gdb_byte *) xmalloc (entry->u.mem.len);
722 struct cleanup *cleanup = make_cleanup (xfree, mem);
723
724 if (record_debug > 1)
725 fprintf_unfiltered (gdb_stdlog,
726 "Process record: record_full_mem %s to "
727 "inferior addr = %s len = %d.\n",
728 host_address_to_string (entry),
729 paddress (gdbarch, entry->u.mem.addr),
730 entry->u.mem.len);
731
732 if (record_read_memory (gdbarch,
733 entry->u.mem.addr, mem, entry->u.mem.len))
734 entry->u.mem.mem_entry_not_accessible = 1;
735 else
736 {
737 if (target_write_memory (entry->u.mem.addr,
738 record_full_get_loc (entry),
739 entry->u.mem.len))
740 {
741 entry->u.mem.mem_entry_not_accessible = 1;
742 if (record_debug)
743 warning (_("Process record: error writing memory at "
744 "addr = %s len = %d."),
745 paddress (gdbarch, entry->u.mem.addr),
746 entry->u.mem.len);
747 }
748 else
749 {
750 memcpy (record_full_get_loc (entry), mem,
751 entry->u.mem.len);
752
753 /* We've changed memory --- check if a hardware
754 watchpoint should trap. Note that this
755 presently assumes the target beneath supports
756 continuable watchpoints. On non-continuable
757 watchpoints target, we'll want to check this
758 _before_ actually doing the memory change, and
759 not doing the change at all if the watchpoint
760 traps. */
761 if (hardware_watchpoint_inserted_in_range
762 (get_regcache_aspace (regcache),
763 entry->u.mem.addr, entry->u.mem.len))
764 record_full_stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
765 }
766 }
767
768 do_cleanups (cleanup);
769 }
770 }
771 break;
772 }
773 }
774
775 static void record_full_restore (void);
776
777 /* Asynchronous signal handle registered as event loop source for when
778 we have pending events ready to be passed to the core. */
779
780 static struct async_event_handler *record_full_async_inferior_event_token;
781
782 static void
783 record_full_async_inferior_event_handler (gdb_client_data data)
784 {
785 inferior_event_handler (INF_REG_EVENT, NULL);
786 }
787
788 /* Open the process record target. */
789
790 static void
791 record_full_core_open_1 (const char *name, int from_tty)
792 {
793 struct regcache *regcache = get_current_regcache ();
794 int regnum = gdbarch_num_regs (get_regcache_arch (regcache));
795 int i;
796
797 /* Get record_full_core_regbuf. */
798 target_fetch_registers (regcache, -1);
799 record_full_core_regbuf = (gdb_byte *) xmalloc (MAX_REGISTER_SIZE * regnum);
800 for (i = 0; i < regnum; i ++)
801 regcache_raw_collect (regcache, i,
802 record_full_core_regbuf + MAX_REGISTER_SIZE * i);
803
804 /* Get record_full_core_start and record_full_core_end. */
805 if (build_section_table (core_bfd, &record_full_core_start,
806 &record_full_core_end))
807 {
808 xfree (record_full_core_regbuf);
809 record_full_core_regbuf = NULL;
810 error (_("\"%s\": Can't find sections: %s"),
811 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
812 }
813
814 push_target (&record_full_core_ops);
815 record_full_restore ();
816 }
817
818 /* "to_open" target method for 'live' processes. */
819
820 static void
821 record_full_open_1 (const char *name, int from_tty)
822 {
823 if (record_debug)
824 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n");
825
826 /* check exec */
827 if (!target_has_execution)
828 error (_("Process record: the program is not being run."));
829 if (non_stop)
830 error (_("Process record target can't debug inferior in non-stop mode "
831 "(non-stop)."));
832
833 if (!gdbarch_process_record_p (target_gdbarch ()))
834 error (_("Process record: the current architecture doesn't support "
835 "record function."));
836
837 push_target (&record_full_ops);
838 }
839
840 static void record_full_init_record_breakpoints (void);
841
842 /* "to_open" target method. Open the process record target. */
843
844 static void
845 record_full_open (const char *name, int from_tty)
846 {
847 struct target_ops *t;
848
849 if (record_debug)
850 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n");
851
852 record_preopen ();
853
854 /* Reset */
855 record_full_insn_num = 0;
856 record_full_insn_count = 0;
857 record_full_list = &record_full_first;
858 record_full_list->next = NULL;
859
860 if (core_bfd)
861 record_full_core_open_1 (name, from_tty);
862 else
863 record_full_open_1 (name, from_tty);
864
865 /* Register extra event sources in the event loop. */
866 record_full_async_inferior_event_token
867 = create_async_event_handler (record_full_async_inferior_event_handler,
868 NULL);
869
870 record_full_init_record_breakpoints ();
871
872 observer_notify_record_changed (current_inferior (), 1, "full", NULL);
873 }
874
875 /* "to_close" target method. Close the process record target. */
876
877 static void
878 record_full_close (struct target_ops *self)
879 {
880 struct record_full_core_buf_entry *entry;
881
882 if (record_debug)
883 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_close\n");
884
885 record_full_list_release (record_full_list);
886
887 /* Release record_full_core_regbuf. */
888 if (record_full_core_regbuf)
889 {
890 xfree (record_full_core_regbuf);
891 record_full_core_regbuf = NULL;
892 }
893
894 /* Release record_full_core_buf_list. */
895 if (record_full_core_buf_list)
896 {
897 for (entry = record_full_core_buf_list->prev; entry;
898 entry = entry->prev)
899 {
900 xfree (record_full_core_buf_list);
901 record_full_core_buf_list = entry;
902 }
903 record_full_core_buf_list = NULL;
904 }
905
906 if (record_full_async_inferior_event_token)
907 delete_async_event_handler (&record_full_async_inferior_event_token);
908 }
909
910 /* "to_async" target method. */
911
912 static void
913 record_full_async (struct target_ops *ops, int enable)
914 {
915 if (enable)
916 mark_async_event_handler (record_full_async_inferior_event_token);
917 else
918 clear_async_event_handler (record_full_async_inferior_event_token);
919
920 ops->beneath->to_async (ops->beneath, enable);
921 }
922
923 static int record_full_resume_step = 0;
924
925 /* True if we've been resumed, and so each record_full_wait call should
926 advance execution. If this is false, record_full_wait will return a
927 TARGET_WAITKIND_IGNORE. */
928 static int record_full_resumed = 0;
929
930 /* The execution direction of the last resume we got. This is
931 necessary for async mode. Vis (order is not strictly accurate):
932
933 1. user has the global execution direction set to forward
934 2. user does a reverse-step command
935 3. record_full_resume is called with global execution direction
936 temporarily switched to reverse
937 4. GDB's execution direction is reverted back to forward
938 5. target record notifies event loop there's an event to handle
939 6. infrun asks the target which direction was it going, and switches
940 the global execution direction accordingly (to reverse)
941 7. infrun polls an event out of the record target, and handles it
942 8. GDB goes back to the event loop, and goto #4.
943 */
944 static enum exec_direction_kind record_full_execution_dir = EXEC_FORWARD;
945
946 /* "to_resume" target method. Resume the process record target. */
947
948 static void
949 record_full_resume (struct target_ops *ops, ptid_t ptid, int step,
950 enum gdb_signal signal)
951 {
952 record_full_resume_step = step;
953 record_full_resumed = 1;
954 record_full_execution_dir = execution_direction;
955
956 if (!RECORD_FULL_IS_REPLAY)
957 {
958 struct gdbarch *gdbarch = target_thread_architecture (ptid);
959
960 record_full_message (get_current_regcache (), signal);
961
962 if (!step)
963 {
964 /* This is not hard single step. */
965 if (!gdbarch_software_single_step_p (gdbarch))
966 {
967 /* This is a normal continue. */
968 step = 1;
969 }
970 else
971 {
972 /* This arch support soft sigle step. */
973 if (thread_has_single_step_breakpoints_set (inferior_thread ()))
974 {
975 /* This is a soft single step. */
976 record_full_resume_step = 1;
977 }
978 else
979 {
980 /* This is a continue.
981 Try to insert a soft single step breakpoint. */
982 if (!gdbarch_software_single_step (gdbarch,
983 get_current_frame ()))
984 {
985 /* This system don't want use soft single step.
986 Use hard sigle step. */
987 step = 1;
988 }
989 }
990 }
991 }
992
993 /* Make sure the target beneath reports all signals. */
994 target_pass_signals (0, NULL);
995
996 ops->beneath->to_resume (ops->beneath, ptid, step, signal);
997 }
998
999 /* We are about to start executing the inferior (or simulate it),
1000 let's register it with the event loop. */
1001 if (target_can_async_p ())
1002 target_async (1);
1003 }
1004
1005 /* "to_commit_resume" method for process record target. */
1006
1007 static void
1008 record_full_commit_resume (struct target_ops *ops)
1009 {
1010 if (!RECORD_FULL_IS_REPLAY)
1011 ops->beneath->to_commit_resume (ops->beneath);
1012 }
1013
1014 static int record_full_get_sig = 0;
1015
1016 /* SIGINT signal handler, registered by "to_wait" method. */
1017
1018 static void
1019 record_full_sig_handler (int signo)
1020 {
1021 if (record_debug)
1022 fprintf_unfiltered (gdb_stdlog, "Process record: get a signal\n");
1023
1024 /* It will break the running inferior in replay mode. */
1025 record_full_resume_step = 1;
1026
1027 /* It will let record_full_wait set inferior status to get the signal
1028 SIGINT. */
1029 record_full_get_sig = 1;
1030 }
1031
1032 static void
1033 record_full_wait_cleanups (void *ignore)
1034 {
1035 if (execution_direction == EXEC_REVERSE)
1036 {
1037 if (record_full_list->next)
1038 record_full_list = record_full_list->next;
1039 }
1040 else
1041 record_full_list = record_full_list->prev;
1042 }
1043
1044 /* "to_wait" target method for process record target.
1045
1046 In record mode, the target is always run in singlestep mode
1047 (even when gdb says to continue). The to_wait method intercepts
1048 the stop events and determines which ones are to be passed on to
1049 gdb. Most stop events are just singlestep events that gdb is not
1050 to know about, so the to_wait method just records them and keeps
1051 singlestepping.
1052
1053 In replay mode, this function emulates the recorded execution log,
1054 one instruction at a time (forward or backward), and determines
1055 where to stop. */
1056
1057 static ptid_t
1058 record_full_wait_1 (struct target_ops *ops,
1059 ptid_t ptid, struct target_waitstatus *status,
1060 int options)
1061 {
1062 struct cleanup *set_cleanups = record_full_gdb_operation_disable_set ();
1063
1064 if (record_debug)
1065 fprintf_unfiltered (gdb_stdlog,
1066 "Process record: record_full_wait "
1067 "record_full_resume_step = %d, "
1068 "record_full_resumed = %d, direction=%s\n",
1069 record_full_resume_step, record_full_resumed,
1070 record_full_execution_dir == EXEC_FORWARD
1071 ? "forward" : "reverse");
1072
1073 if (!record_full_resumed)
1074 {
1075 gdb_assert ((options & TARGET_WNOHANG) != 0);
1076
1077 /* No interesting event. */
1078 status->kind = TARGET_WAITKIND_IGNORE;
1079 return minus_one_ptid;
1080 }
1081
1082 record_full_get_sig = 0;
1083 signal (SIGINT, record_full_sig_handler);
1084
1085 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1086
1087 if (!RECORD_FULL_IS_REPLAY && ops != &record_full_core_ops)
1088 {
1089 if (record_full_resume_step)
1090 {
1091 /* This is a single step. */
1092 return ops->beneath->to_wait (ops->beneath, ptid, status, options);
1093 }
1094 else
1095 {
1096 /* This is not a single step. */
1097 ptid_t ret;
1098 CORE_ADDR tmp_pc;
1099 struct gdbarch *gdbarch = target_thread_architecture (inferior_ptid);
1100
1101 while (1)
1102 {
1103 struct thread_info *tp;
1104
1105 ret = ops->beneath->to_wait (ops->beneath, ptid, status, options);
1106 if (status->kind == TARGET_WAITKIND_IGNORE)
1107 {
1108 if (record_debug)
1109 fprintf_unfiltered (gdb_stdlog,
1110 "Process record: record_full_wait "
1111 "target beneath not done yet\n");
1112 return ret;
1113 }
1114
1115 ALL_NON_EXITED_THREADS (tp)
1116 delete_single_step_breakpoints (tp);
1117
1118 if (record_full_resume_step)
1119 return ret;
1120
1121 /* Is this a SIGTRAP? */
1122 if (status->kind == TARGET_WAITKIND_STOPPED
1123 && status->value.sig == GDB_SIGNAL_TRAP)
1124 {
1125 struct regcache *regcache;
1126 struct address_space *aspace;
1127 enum target_stop_reason *stop_reason_p
1128 = &record_full_stop_reason;
1129
1130 /* Yes -- this is likely our single-step finishing,
1131 but check if there's any reason the core would be
1132 interested in the event. */
1133
1134 registers_changed ();
1135 regcache = get_current_regcache ();
1136 tmp_pc = regcache_read_pc (regcache);
1137 aspace = get_regcache_aspace (regcache);
1138
1139 if (target_stopped_by_watchpoint ())
1140 {
1141 /* Always interested in watchpoints. */
1142 }
1143 else if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1144 stop_reason_p))
1145 {
1146 /* There is a breakpoint here. Let the core
1147 handle it. */
1148 }
1149 else
1150 {
1151 /* This is a single-step trap. Record the
1152 insn and issue another step.
1153 FIXME: this part can be a random SIGTRAP too.
1154 But GDB cannot handle it. */
1155 int step = 1;
1156
1157 if (!record_full_message_wrapper_safe (regcache,
1158 GDB_SIGNAL_0))
1159 {
1160 status->kind = TARGET_WAITKIND_STOPPED;
1161 status->value.sig = GDB_SIGNAL_0;
1162 break;
1163 }
1164
1165 if (gdbarch_software_single_step_p (gdbarch))
1166 {
1167 /* Try to insert the software single step breakpoint.
1168 If insert success, set step to 0. */
1169 set_executing (inferior_ptid, 0);
1170 reinit_frame_cache ();
1171 if (gdbarch_software_single_step (gdbarch,
1172 get_current_frame ()))
1173 step = 0;
1174 set_executing (inferior_ptid, 1);
1175 }
1176
1177 if (record_debug)
1178 fprintf_unfiltered (gdb_stdlog,
1179 "Process record: record_full_wait "
1180 "issuing one more step in the "
1181 "target beneath\n");
1182 ops->beneath->to_resume (ops->beneath, ptid, step,
1183 GDB_SIGNAL_0);
1184 ops->beneath->to_commit_resume (ops->beneath);
1185 continue;
1186 }
1187 }
1188
1189 /* The inferior is broken by a breakpoint or a signal. */
1190 break;
1191 }
1192
1193 return ret;
1194 }
1195 }
1196 else
1197 {
1198 struct regcache *regcache = get_current_regcache ();
1199 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1200 struct address_space *aspace = get_regcache_aspace (regcache);
1201 int continue_flag = 1;
1202 int first_record_full_end = 1;
1203 struct cleanup *old_cleanups
1204 = make_cleanup (record_full_wait_cleanups, 0);
1205 CORE_ADDR tmp_pc;
1206
1207 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1208 status->kind = TARGET_WAITKIND_STOPPED;
1209
1210 /* Check breakpoint when forward execute. */
1211 if (execution_direction == EXEC_FORWARD)
1212 {
1213 tmp_pc = regcache_read_pc (regcache);
1214 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1215 &record_full_stop_reason))
1216 {
1217 if (record_debug)
1218 fprintf_unfiltered (gdb_stdlog,
1219 "Process record: break at %s.\n",
1220 paddress (gdbarch, tmp_pc));
1221 goto replay_out;
1222 }
1223 }
1224
1225 /* If GDB is in terminal_inferior mode, it will not get the signal.
1226 And in GDB replay mode, GDB doesn't need to be in terminal_inferior
1227 mode, because inferior will not executed.
1228 Then set it to terminal_ours to make GDB get the signal. */
1229 target_terminal_ours ();
1230
1231 /* In EXEC_FORWARD mode, record_full_list points to the tail of prev
1232 instruction. */
1233 if (execution_direction == EXEC_FORWARD && record_full_list->next)
1234 record_full_list = record_full_list->next;
1235
1236 /* Loop over the record_full_list, looking for the next place to
1237 stop. */
1238 do
1239 {
1240 /* Check for beginning and end of log. */
1241 if (execution_direction == EXEC_REVERSE
1242 && record_full_list == &record_full_first)
1243 {
1244 /* Hit beginning of record log in reverse. */
1245 status->kind = TARGET_WAITKIND_NO_HISTORY;
1246 break;
1247 }
1248 if (execution_direction != EXEC_REVERSE && !record_full_list->next)
1249 {
1250 /* Hit end of record log going forward. */
1251 status->kind = TARGET_WAITKIND_NO_HISTORY;
1252 break;
1253 }
1254
1255 record_full_exec_insn (regcache, gdbarch, record_full_list);
1256
1257 if (record_full_list->type == record_full_end)
1258 {
1259 if (record_debug > 1)
1260 fprintf_unfiltered (gdb_stdlog,
1261 "Process record: record_full_end %s to "
1262 "inferior.\n",
1263 host_address_to_string (record_full_list));
1264
1265 if (first_record_full_end && execution_direction == EXEC_REVERSE)
1266 {
1267 /* When reverse excute, the first record_full_end is the
1268 part of current instruction. */
1269 first_record_full_end = 0;
1270 }
1271 else
1272 {
1273 /* In EXEC_REVERSE mode, this is the record_full_end of prev
1274 instruction.
1275 In EXEC_FORWARD mode, this is the record_full_end of
1276 current instruction. */
1277 /* step */
1278 if (record_full_resume_step)
1279 {
1280 if (record_debug > 1)
1281 fprintf_unfiltered (gdb_stdlog,
1282 "Process record: step.\n");
1283 continue_flag = 0;
1284 }
1285
1286 /* check breakpoint */
1287 tmp_pc = regcache_read_pc (regcache);
1288 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1289 &record_full_stop_reason))
1290 {
1291 if (record_debug)
1292 fprintf_unfiltered (gdb_stdlog,
1293 "Process record: break "
1294 "at %s.\n",
1295 paddress (gdbarch, tmp_pc));
1296
1297 continue_flag = 0;
1298 }
1299
1300 if (record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
1301 {
1302 if (record_debug)
1303 fprintf_unfiltered (gdb_stdlog,
1304 "Process record: hit hw "
1305 "watchpoint.\n");
1306 continue_flag = 0;
1307 }
1308 /* Check target signal */
1309 if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1310 /* FIXME: better way to check */
1311 continue_flag = 0;
1312 }
1313 }
1314
1315 if (continue_flag)
1316 {
1317 if (execution_direction == EXEC_REVERSE)
1318 {
1319 if (record_full_list->prev)
1320 record_full_list = record_full_list->prev;
1321 }
1322 else
1323 {
1324 if (record_full_list->next)
1325 record_full_list = record_full_list->next;
1326 }
1327 }
1328 }
1329 while (continue_flag);
1330
1331 replay_out:
1332 if (record_full_get_sig)
1333 status->value.sig = GDB_SIGNAL_INT;
1334 else if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1335 /* FIXME: better way to check */
1336 status->value.sig = record_full_list->u.end.sigval;
1337 else
1338 status->value.sig = GDB_SIGNAL_TRAP;
1339
1340 discard_cleanups (old_cleanups);
1341 }
1342
1343 signal (SIGINT, handle_sigint);
1344
1345 do_cleanups (set_cleanups);
1346 return inferior_ptid;
1347 }
1348
1349 static ptid_t
1350 record_full_wait (struct target_ops *ops,
1351 ptid_t ptid, struct target_waitstatus *status,
1352 int options)
1353 {
1354 ptid_t return_ptid;
1355
1356 return_ptid = record_full_wait_1 (ops, ptid, status, options);
1357 if (status->kind != TARGET_WAITKIND_IGNORE)
1358 {
1359 /* We're reporting a stop. Make sure any spurious
1360 target_wait(WNOHANG) doesn't advance the target until the
1361 core wants us resumed again. */
1362 record_full_resumed = 0;
1363 }
1364 return return_ptid;
1365 }
1366
1367 static int
1368 record_full_stopped_by_watchpoint (struct target_ops *ops)
1369 {
1370 if (RECORD_FULL_IS_REPLAY)
1371 return record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
1372 else
1373 return ops->beneath->to_stopped_by_watchpoint (ops->beneath);
1374 }
1375
1376 static int
1377 record_full_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
1378 {
1379 if (RECORD_FULL_IS_REPLAY)
1380 return 0;
1381 else
1382 return ops->beneath->to_stopped_data_address (ops->beneath, addr_p);
1383 }
1384
1385 /* The to_stopped_by_sw_breakpoint method of target record-full. */
1386
1387 static int
1388 record_full_stopped_by_sw_breakpoint (struct target_ops *ops)
1389 {
1390 return record_full_stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
1391 }
1392
1393 /* The to_supports_stopped_by_sw_breakpoint method of target
1394 record-full. */
1395
1396 static int
1397 record_full_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
1398 {
1399 return 1;
1400 }
1401
1402 /* The to_stopped_by_hw_breakpoint method of target record-full. */
1403
1404 static int
1405 record_full_stopped_by_hw_breakpoint (struct target_ops *ops)
1406 {
1407 return record_full_stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
1408 }
1409
1410 /* The to_supports_stopped_by_sw_breakpoint method of target
1411 record-full. */
1412
1413 static int
1414 record_full_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
1415 {
1416 return 1;
1417 }
1418
1419 /* Record registers change (by user or by GDB) to list as an instruction. */
1420
1421 static void
1422 record_full_registers_change (struct regcache *regcache, int regnum)
1423 {
1424 /* Check record_full_insn_num. */
1425 record_full_check_insn_num ();
1426
1427 record_full_arch_list_head = NULL;
1428 record_full_arch_list_tail = NULL;
1429
1430 if (regnum < 0)
1431 {
1432 int i;
1433
1434 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
1435 {
1436 if (record_full_arch_list_add_reg (regcache, i))
1437 {
1438 record_full_list_release (record_full_arch_list_tail);
1439 error (_("Process record: failed to record execution log."));
1440 }
1441 }
1442 }
1443 else
1444 {
1445 if (record_full_arch_list_add_reg (regcache, regnum))
1446 {
1447 record_full_list_release (record_full_arch_list_tail);
1448 error (_("Process record: failed to record execution log."));
1449 }
1450 }
1451 if (record_full_arch_list_add_end ())
1452 {
1453 record_full_list_release (record_full_arch_list_tail);
1454 error (_("Process record: failed to record execution log."));
1455 }
1456 record_full_list->next = record_full_arch_list_head;
1457 record_full_arch_list_head->prev = record_full_list;
1458 record_full_list = record_full_arch_list_tail;
1459
1460 if (record_full_insn_num == record_full_insn_max_num)
1461 record_full_list_release_first ();
1462 else
1463 record_full_insn_num++;
1464 }
1465
1466 /* "to_store_registers" method for process record target. */
1467
1468 static void
1469 record_full_store_registers (struct target_ops *ops,
1470 struct regcache *regcache,
1471 int regno)
1472 {
1473 if (!record_full_gdb_operation_disable)
1474 {
1475 if (RECORD_FULL_IS_REPLAY)
1476 {
1477 int n;
1478
1479 /* Let user choose if he wants to write register or not. */
1480 if (regno < 0)
1481 n =
1482 query (_("Because GDB is in replay mode, changing the "
1483 "value of a register will make the execution "
1484 "log unusable from this point onward. "
1485 "Change all registers?"));
1486 else
1487 n =
1488 query (_("Because GDB is in replay mode, changing the value "
1489 "of a register will make the execution log unusable "
1490 "from this point onward. Change register %s?"),
1491 gdbarch_register_name (get_regcache_arch (regcache),
1492 regno));
1493
1494 if (!n)
1495 {
1496 /* Invalidate the value of regcache that was set in function
1497 "regcache_raw_write". */
1498 if (regno < 0)
1499 {
1500 int i;
1501
1502 for (i = 0;
1503 i < gdbarch_num_regs (get_regcache_arch (regcache));
1504 i++)
1505 regcache_invalidate (regcache, i);
1506 }
1507 else
1508 regcache_invalidate (regcache, regno);
1509
1510 error (_("Process record canceled the operation."));
1511 }
1512
1513 /* Destroy the record from here forward. */
1514 record_full_list_release_following (record_full_list);
1515 }
1516
1517 record_full_registers_change (regcache, regno);
1518 }
1519 ops->beneath->to_store_registers (ops->beneath, regcache, regno);
1520 }
1521
1522 /* "to_xfer_partial" method. Behavior is conditional on
1523 RECORD_FULL_IS_REPLAY.
1524 In replay mode, we cannot write memory unles we are willing to
1525 invalidate the record/replay log from this point forward. */
1526
1527 static enum target_xfer_status
1528 record_full_xfer_partial (struct target_ops *ops, enum target_object object,
1529 const char *annex, gdb_byte *readbuf,
1530 const gdb_byte *writebuf, ULONGEST offset,
1531 ULONGEST len, ULONGEST *xfered_len)
1532 {
1533 if (!record_full_gdb_operation_disable
1534 && (object == TARGET_OBJECT_MEMORY
1535 || object == TARGET_OBJECT_RAW_MEMORY) && writebuf)
1536 {
1537 if (RECORD_FULL_IS_REPLAY)
1538 {
1539 /* Let user choose if he wants to write memory or not. */
1540 if (!query (_("Because GDB is in replay mode, writing to memory "
1541 "will make the execution log unusable from this "
1542 "point onward. Write memory at address %s?"),
1543 paddress (target_gdbarch (), offset)))
1544 error (_("Process record canceled the operation."));
1545
1546 /* Destroy the record from here forward. */
1547 record_full_list_release_following (record_full_list);
1548 }
1549
1550 /* Check record_full_insn_num */
1551 record_full_check_insn_num ();
1552
1553 /* Record registers change to list as an instruction. */
1554 record_full_arch_list_head = NULL;
1555 record_full_arch_list_tail = NULL;
1556 if (record_full_arch_list_add_mem (offset, len))
1557 {
1558 record_full_list_release (record_full_arch_list_tail);
1559 if (record_debug)
1560 fprintf_unfiltered (gdb_stdlog,
1561 "Process record: failed to record "
1562 "execution log.");
1563 return TARGET_XFER_E_IO;
1564 }
1565 if (record_full_arch_list_add_end ())
1566 {
1567 record_full_list_release (record_full_arch_list_tail);
1568 if (record_debug)
1569 fprintf_unfiltered (gdb_stdlog,
1570 "Process record: failed to record "
1571 "execution log.");
1572 return TARGET_XFER_E_IO;
1573 }
1574 record_full_list->next = record_full_arch_list_head;
1575 record_full_arch_list_head->prev = record_full_list;
1576 record_full_list = record_full_arch_list_tail;
1577
1578 if (record_full_insn_num == record_full_insn_max_num)
1579 record_full_list_release_first ();
1580 else
1581 record_full_insn_num++;
1582 }
1583
1584 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1585 readbuf, writebuf, offset,
1586 len, xfered_len);
1587 }
1588
1589 /* This structure represents a breakpoint inserted while the record
1590 target is active. We use this to know when to install/remove
1591 breakpoints in/from the target beneath. For example, a breakpoint
1592 may be inserted while recording, but removed when not replaying nor
1593 recording. In that case, the breakpoint had not been inserted on
1594 the target beneath, so we should not try to remove it there. */
1595
1596 struct record_full_breakpoint
1597 {
1598 /* The address and address space the breakpoint was set at. */
1599 struct address_space *address_space;
1600 CORE_ADDR addr;
1601
1602 /* True when the breakpoint has been also installed in the target
1603 beneath. This will be false for breakpoints set during replay or
1604 when recording. */
1605 int in_target_beneath;
1606 };
1607
1608 typedef struct record_full_breakpoint *record_full_breakpoint_p;
1609 DEF_VEC_P(record_full_breakpoint_p);
1610
1611 /* The list of breakpoints inserted while the record target is
1612 active. */
1613 VEC(record_full_breakpoint_p) *record_full_breakpoints = NULL;
1614
1615 static void
1616 record_full_sync_record_breakpoints (struct bp_location *loc, void *data)
1617 {
1618 if (loc->loc_type != bp_loc_software_breakpoint)
1619 return;
1620
1621 if (loc->inserted)
1622 {
1623 struct record_full_breakpoint *bp = XNEW (struct record_full_breakpoint);
1624
1625 bp->addr = loc->target_info.placed_address;
1626 bp->address_space = loc->target_info.placed_address_space;
1627
1628 bp->in_target_beneath = 1;
1629
1630 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp);
1631 }
1632 }
1633
1634 /* Sync existing breakpoints to record_full_breakpoints. */
1635
1636 static void
1637 record_full_init_record_breakpoints (void)
1638 {
1639 VEC_free (record_full_breakpoint_p, record_full_breakpoints);
1640
1641 iterate_over_bp_locations (record_full_sync_record_breakpoints);
1642 }
1643
1644 /* Behavior is conditional on RECORD_FULL_IS_REPLAY. We will not actually
1645 insert or remove breakpoints in the real target when replaying, nor
1646 when recording. */
1647
1648 static int
1649 record_full_insert_breakpoint (struct target_ops *ops,
1650 struct gdbarch *gdbarch,
1651 struct bp_target_info *bp_tgt)
1652 {
1653 struct record_full_breakpoint *bp;
1654 int in_target_beneath = 0;
1655 int ix;
1656
1657 if (!RECORD_FULL_IS_REPLAY)
1658 {
1659 /* When recording, we currently always single-step, so we don't
1660 really need to install regular breakpoints in the inferior.
1661 However, we do have to insert software single-step
1662 breakpoints, in case the target can't hardware step. To keep
1663 things simple, we always insert. */
1664 struct cleanup *old_cleanups;
1665 int ret;
1666
1667 old_cleanups = record_full_gdb_operation_disable_set ();
1668 ret = ops->beneath->to_insert_breakpoint (ops->beneath, gdbarch, bp_tgt);
1669 do_cleanups (old_cleanups);
1670
1671 if (ret != 0)
1672 return ret;
1673
1674 in_target_beneath = 1;
1675 }
1676 else
1677 {
1678 CORE_ADDR addr = bp_tgt->reqstd_address;
1679 int bplen;
1680
1681 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
1682
1683 bp_tgt->placed_address = addr;
1684 bp_tgt->placed_size = bplen;
1685 }
1686
1687 /* Use the existing entries if found in order to avoid duplication
1688 in record_full_breakpoints. */
1689
1690 for (ix = 0;
1691 VEC_iterate (record_full_breakpoint_p,
1692 record_full_breakpoints, ix, bp);
1693 ++ix)
1694 {
1695 if (bp->addr == bp_tgt->placed_address
1696 && bp->address_space == bp_tgt->placed_address_space)
1697 {
1698 gdb_assert (bp->in_target_beneath == in_target_beneath);
1699 return 0;
1700 }
1701 }
1702
1703 bp = XNEW (struct record_full_breakpoint);
1704 bp->addr = bp_tgt->placed_address;
1705 bp->address_space = bp_tgt->placed_address_space;
1706 bp->in_target_beneath = in_target_beneath;
1707 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp);
1708 return 0;
1709 }
1710
1711 /* "to_remove_breakpoint" method for process record target. */
1712
1713 static int
1714 record_full_remove_breakpoint (struct target_ops *ops,
1715 struct gdbarch *gdbarch,
1716 struct bp_target_info *bp_tgt,
1717 enum remove_bp_reason reason)
1718 {
1719 struct record_full_breakpoint *bp;
1720 int ix;
1721
1722 for (ix = 0;
1723 VEC_iterate (record_full_breakpoint_p,
1724 record_full_breakpoints, ix, bp);
1725 ++ix)
1726 {
1727 if (bp->addr == bp_tgt->placed_address
1728 && bp->address_space == bp_tgt->placed_address_space)
1729 {
1730 if (bp->in_target_beneath)
1731 {
1732 struct cleanup *old_cleanups;
1733 int ret;
1734
1735 old_cleanups = record_full_gdb_operation_disable_set ();
1736 ret = ops->beneath->to_remove_breakpoint (ops->beneath, gdbarch,
1737 bp_tgt, reason);
1738 do_cleanups (old_cleanups);
1739
1740 if (ret != 0)
1741 return ret;
1742 }
1743
1744 if (reason == REMOVE_BREAKPOINT)
1745 {
1746 VEC_unordered_remove (record_full_breakpoint_p,
1747 record_full_breakpoints, ix);
1748 }
1749 return 0;
1750 }
1751 }
1752
1753 gdb_assert_not_reached ("removing unknown breakpoint");
1754 }
1755
1756 /* "to_can_execute_reverse" method for process record target. */
1757
1758 static int
1759 record_full_can_execute_reverse (struct target_ops *self)
1760 {
1761 return 1;
1762 }
1763
1764 /* "to_get_bookmark" method for process record and prec over core. */
1765
1766 static gdb_byte *
1767 record_full_get_bookmark (struct target_ops *self, const char *args,
1768 int from_tty)
1769 {
1770 char *ret = NULL;
1771
1772 /* Return stringified form of instruction count. */
1773 if (record_full_list && record_full_list->type == record_full_end)
1774 ret = xstrdup (pulongest (record_full_list->u.end.insn_num));
1775
1776 if (record_debug)
1777 {
1778 if (ret)
1779 fprintf_unfiltered (gdb_stdlog,
1780 "record_full_get_bookmark returns %s\n", ret);
1781 else
1782 fprintf_unfiltered (gdb_stdlog,
1783 "record_full_get_bookmark returns NULL\n");
1784 }
1785 return (gdb_byte *) ret;
1786 }
1787
1788 /* "to_goto_bookmark" method for process record and prec over core. */
1789
1790 static void
1791 record_full_goto_bookmark (struct target_ops *self,
1792 const gdb_byte *raw_bookmark, int from_tty)
1793 {
1794 const char *bookmark = (const char *) raw_bookmark;
1795 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1796
1797 if (record_debug)
1798 fprintf_unfiltered (gdb_stdlog,
1799 "record_full_goto_bookmark receives %s\n", bookmark);
1800
1801 if (bookmark[0] == '\'' || bookmark[0] == '\"')
1802 {
1803 char *copy;
1804
1805 if (bookmark[strlen (bookmark) - 1] != bookmark[0])
1806 error (_("Unbalanced quotes: %s"), bookmark);
1807
1808
1809 copy = savestring (bookmark + 1, strlen (bookmark) - 2);
1810 make_cleanup (xfree, copy);
1811 bookmark = copy;
1812 }
1813
1814 record_goto (bookmark);
1815
1816 do_cleanups (cleanup);
1817 }
1818
1819 static enum exec_direction_kind
1820 record_full_execution_direction (struct target_ops *self)
1821 {
1822 return record_full_execution_dir;
1823 }
1824
1825 static void
1826 record_full_info (struct target_ops *self)
1827 {
1828 struct record_full_entry *p;
1829
1830 if (RECORD_FULL_IS_REPLAY)
1831 printf_filtered (_("Replay mode:\n"));
1832 else
1833 printf_filtered (_("Record mode:\n"));
1834
1835 /* Find entry for first actual instruction in the log. */
1836 for (p = record_full_first.next;
1837 p != NULL && p->type != record_full_end;
1838 p = p->next)
1839 ;
1840
1841 /* Do we have a log at all? */
1842 if (p != NULL && p->type == record_full_end)
1843 {
1844 /* Display instruction number for first instruction in the log. */
1845 printf_filtered (_("Lowest recorded instruction number is %s.\n"),
1846 pulongest (p->u.end.insn_num));
1847
1848 /* If in replay mode, display where we are in the log. */
1849 if (RECORD_FULL_IS_REPLAY)
1850 printf_filtered (_("Current instruction number is %s.\n"),
1851 pulongest (record_full_list->u.end.insn_num));
1852
1853 /* Display instruction number for last instruction in the log. */
1854 printf_filtered (_("Highest recorded instruction number is %s.\n"),
1855 pulongest (record_full_insn_count));
1856
1857 /* Display log count. */
1858 printf_filtered (_("Log contains %u instructions.\n"),
1859 record_full_insn_num);
1860 }
1861 else
1862 printf_filtered (_("No instructions have been logged.\n"));
1863
1864 /* Display max log size. */
1865 printf_filtered (_("Max logged instructions is %u.\n"),
1866 record_full_insn_max_num);
1867 }
1868
1869 /* The "to_record_delete" target method. */
1870
1871 static void
1872 record_full_delete (struct target_ops *self)
1873 {
1874 record_full_list_release_following (record_full_list);
1875 }
1876
1877 /* The "to_record_is_replaying" target method. */
1878
1879 static int
1880 record_full_is_replaying (struct target_ops *self, ptid_t ptid)
1881 {
1882 return RECORD_FULL_IS_REPLAY;
1883 }
1884
1885 /* The "to_record_will_replay" target method. */
1886
1887 static int
1888 record_full_will_replay (struct target_ops *self, ptid_t ptid, int dir)
1889 {
1890 /* We can currently only record when executing forwards. Should we be able
1891 to record when executing backwards on targets that support reverse
1892 execution, this needs to be changed. */
1893
1894 return RECORD_FULL_IS_REPLAY || dir == EXEC_REVERSE;
1895 }
1896
1897 /* Go to a specific entry. */
1898
1899 static void
1900 record_full_goto_entry (struct record_full_entry *p)
1901 {
1902 if (p == NULL)
1903 error (_("Target insn not found."));
1904 else if (p == record_full_list)
1905 error (_("Already at target insn."));
1906 else if (p->u.end.insn_num > record_full_list->u.end.insn_num)
1907 {
1908 printf_filtered (_("Go forward to insn number %s\n"),
1909 pulongest (p->u.end.insn_num));
1910 record_full_goto_insn (p, EXEC_FORWARD);
1911 }
1912 else
1913 {
1914 printf_filtered (_("Go backward to insn number %s\n"),
1915 pulongest (p->u.end.insn_num));
1916 record_full_goto_insn (p, EXEC_REVERSE);
1917 }
1918
1919 registers_changed ();
1920 reinit_frame_cache ();
1921 stop_pc = regcache_read_pc (get_current_regcache ());
1922 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
1923 }
1924
1925 /* The "to_goto_record_begin" target method. */
1926
1927 static void
1928 record_full_goto_begin (struct target_ops *self)
1929 {
1930 struct record_full_entry *p = NULL;
1931
1932 for (p = &record_full_first; p != NULL; p = p->next)
1933 if (p->type == record_full_end)
1934 break;
1935
1936 record_full_goto_entry (p);
1937 }
1938
1939 /* The "to_goto_record_end" target method. */
1940
1941 static void
1942 record_full_goto_end (struct target_ops *self)
1943 {
1944 struct record_full_entry *p = NULL;
1945
1946 for (p = record_full_list; p->next != NULL; p = p->next)
1947 ;
1948 for (; p!= NULL; p = p->prev)
1949 if (p->type == record_full_end)
1950 break;
1951
1952 record_full_goto_entry (p);
1953 }
1954
1955 /* The "to_goto_record" target method. */
1956
1957 static void
1958 record_full_goto (struct target_ops *self, ULONGEST target_insn)
1959 {
1960 struct record_full_entry *p = NULL;
1961
1962 for (p = &record_full_first; p != NULL; p = p->next)
1963 if (p->type == record_full_end && p->u.end.insn_num == target_insn)
1964 break;
1965
1966 record_full_goto_entry (p);
1967 }
1968
1969 /* The "to_record_stop_replaying" target method. */
1970
1971 static void
1972 record_full_stop_replaying (struct target_ops *self)
1973 {
1974 record_full_goto_end (self);
1975 }
1976
1977 static void
1978 init_record_full_ops (void)
1979 {
1980 record_full_ops.to_shortname = "record-full";
1981 record_full_ops.to_longname = "Process record and replay target";
1982 record_full_ops.to_doc =
1983 "Log program while executing and replay execution from log.";
1984 record_full_ops.to_open = record_full_open;
1985 record_full_ops.to_close = record_full_close;
1986 record_full_ops.to_async = record_full_async;
1987 record_full_ops.to_resume = record_full_resume;
1988 record_full_ops.to_commit_resume = record_full_commit_resume;
1989 record_full_ops.to_wait = record_full_wait;
1990 record_full_ops.to_disconnect = record_disconnect;
1991 record_full_ops.to_detach = record_detach;
1992 record_full_ops.to_mourn_inferior = record_mourn_inferior;
1993 record_full_ops.to_kill = record_kill;
1994 record_full_ops.to_store_registers = record_full_store_registers;
1995 record_full_ops.to_xfer_partial = record_full_xfer_partial;
1996 record_full_ops.to_insert_breakpoint = record_full_insert_breakpoint;
1997 record_full_ops.to_remove_breakpoint = record_full_remove_breakpoint;
1998 record_full_ops.to_stopped_by_watchpoint = record_full_stopped_by_watchpoint;
1999 record_full_ops.to_stopped_data_address = record_full_stopped_data_address;
2000 record_full_ops.to_stopped_by_sw_breakpoint
2001 = record_full_stopped_by_sw_breakpoint;
2002 record_full_ops.to_supports_stopped_by_sw_breakpoint
2003 = record_full_supports_stopped_by_sw_breakpoint;
2004 record_full_ops.to_stopped_by_hw_breakpoint
2005 = record_full_stopped_by_hw_breakpoint;
2006 record_full_ops.to_supports_stopped_by_hw_breakpoint
2007 = record_full_supports_stopped_by_hw_breakpoint;
2008 record_full_ops.to_can_execute_reverse = record_full_can_execute_reverse;
2009 record_full_ops.to_stratum = record_stratum;
2010 /* Add bookmark target methods. */
2011 record_full_ops.to_get_bookmark = record_full_get_bookmark;
2012 record_full_ops.to_goto_bookmark = record_full_goto_bookmark;
2013 record_full_ops.to_execution_direction = record_full_execution_direction;
2014 record_full_ops.to_info_record = record_full_info;
2015 record_full_ops.to_save_record = record_full_save;
2016 record_full_ops.to_delete_record = record_full_delete;
2017 record_full_ops.to_record_is_replaying = record_full_is_replaying;
2018 record_full_ops.to_record_will_replay = record_full_will_replay;
2019 record_full_ops.to_record_stop_replaying = record_full_stop_replaying;
2020 record_full_ops.to_goto_record_begin = record_full_goto_begin;
2021 record_full_ops.to_goto_record_end = record_full_goto_end;
2022 record_full_ops.to_goto_record = record_full_goto;
2023 record_full_ops.to_magic = OPS_MAGIC;
2024 }
2025
2026 /* "to_resume" method for prec over corefile. */
2027
2028 static void
2029 record_full_core_resume (struct target_ops *ops, ptid_t ptid, int step,
2030 enum gdb_signal signal)
2031 {
2032 record_full_resume_step = step;
2033 record_full_resumed = 1;
2034 record_full_execution_dir = execution_direction;
2035
2036 /* We are about to start executing the inferior (or simulate it),
2037 let's register it with the event loop. */
2038 if (target_can_async_p ())
2039 target_async (1);
2040 }
2041
2042 /* "to_kill" method for prec over corefile. */
2043
2044 static void
2045 record_full_core_kill (struct target_ops *ops)
2046 {
2047 if (record_debug)
2048 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_core_kill\n");
2049
2050 unpush_target (&record_full_core_ops);
2051 }
2052
2053 /* "to_fetch_registers" method for prec over corefile. */
2054
2055 static void
2056 record_full_core_fetch_registers (struct target_ops *ops,
2057 struct regcache *regcache,
2058 int regno)
2059 {
2060 if (regno < 0)
2061 {
2062 int num = gdbarch_num_regs (get_regcache_arch (regcache));
2063 int i;
2064
2065 for (i = 0; i < num; i ++)
2066 regcache_raw_supply (regcache, i,
2067 record_full_core_regbuf + MAX_REGISTER_SIZE * i);
2068 }
2069 else
2070 regcache_raw_supply (regcache, regno,
2071 record_full_core_regbuf + MAX_REGISTER_SIZE * regno);
2072 }
2073
2074 /* "to_prepare_to_store" method for prec over corefile. */
2075
2076 static void
2077 record_full_core_prepare_to_store (struct target_ops *self,
2078 struct regcache *regcache)
2079 {
2080 }
2081
2082 /* "to_store_registers" method for prec over corefile. */
2083
2084 static void
2085 record_full_core_store_registers (struct target_ops *ops,
2086 struct regcache *regcache,
2087 int regno)
2088 {
2089 if (record_full_gdb_operation_disable)
2090 regcache_raw_collect (regcache, regno,
2091 record_full_core_regbuf + MAX_REGISTER_SIZE * regno);
2092 else
2093 error (_("You can't do that without a process to debug."));
2094 }
2095
2096 /* "to_xfer_partial" method for prec over corefile. */
2097
2098 static enum target_xfer_status
2099 record_full_core_xfer_partial (struct target_ops *ops,
2100 enum target_object object,
2101 const char *annex, gdb_byte *readbuf,
2102 const gdb_byte *writebuf, ULONGEST offset,
2103 ULONGEST len, ULONGEST *xfered_len)
2104 {
2105 if (object == TARGET_OBJECT_MEMORY)
2106 {
2107 if (record_full_gdb_operation_disable || !writebuf)
2108 {
2109 struct target_section *p;
2110
2111 for (p = record_full_core_start; p < record_full_core_end; p++)
2112 {
2113 if (offset >= p->addr)
2114 {
2115 struct record_full_core_buf_entry *entry;
2116 ULONGEST sec_offset;
2117
2118 if (offset >= p->endaddr)
2119 continue;
2120
2121 if (offset + len > p->endaddr)
2122 len = p->endaddr - offset;
2123
2124 sec_offset = offset - p->addr;
2125
2126 /* Read readbuf or write writebuf p, offset, len. */
2127 /* Check flags. */
2128 if (p->the_bfd_section->flags & SEC_CONSTRUCTOR
2129 || (p->the_bfd_section->flags & SEC_HAS_CONTENTS) == 0)
2130 {
2131 if (readbuf)
2132 memset (readbuf, 0, len);
2133
2134 *xfered_len = len;
2135 return TARGET_XFER_OK;
2136 }
2137 /* Get record_full_core_buf_entry. */
2138 for (entry = record_full_core_buf_list; entry;
2139 entry = entry->prev)
2140 if (entry->p == p)
2141 break;
2142 if (writebuf)
2143 {
2144 if (!entry)
2145 {
2146 /* Add a new entry. */
2147 entry = XNEW (struct record_full_core_buf_entry);
2148 entry->p = p;
2149 if (!bfd_malloc_and_get_section
2150 (p->the_bfd_section->owner,
2151 p->the_bfd_section,
2152 &entry->buf))
2153 {
2154 xfree (entry);
2155 return TARGET_XFER_EOF;
2156 }
2157 entry->prev = record_full_core_buf_list;
2158 record_full_core_buf_list = entry;
2159 }
2160
2161 memcpy (entry->buf + sec_offset, writebuf,
2162 (size_t) len);
2163 }
2164 else
2165 {
2166 if (!entry)
2167 return ops->beneath->to_xfer_partial (ops->beneath,
2168 object, annex,
2169 readbuf, writebuf,
2170 offset, len,
2171 xfered_len);
2172
2173 memcpy (readbuf, entry->buf + sec_offset,
2174 (size_t) len);
2175 }
2176
2177 *xfered_len = len;
2178 return TARGET_XFER_OK;
2179 }
2180 }
2181
2182 return TARGET_XFER_E_IO;
2183 }
2184 else
2185 error (_("You can't do that without a process to debug."));
2186 }
2187
2188 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
2189 readbuf, writebuf, offset, len,
2190 xfered_len);
2191 }
2192
2193 /* "to_insert_breakpoint" method for prec over corefile. */
2194
2195 static int
2196 record_full_core_insert_breakpoint (struct target_ops *ops,
2197 struct gdbarch *gdbarch,
2198 struct bp_target_info *bp_tgt)
2199 {
2200 return 0;
2201 }
2202
2203 /* "to_remove_breakpoint" method for prec over corefile. */
2204
2205 static int
2206 record_full_core_remove_breakpoint (struct target_ops *ops,
2207 struct gdbarch *gdbarch,
2208 struct bp_target_info *bp_tgt,
2209 enum remove_bp_reason reason)
2210 {
2211 return 0;
2212 }
2213
2214 /* "to_has_execution" method for prec over corefile. */
2215
2216 static int
2217 record_full_core_has_execution (struct target_ops *ops, ptid_t the_ptid)
2218 {
2219 return 1;
2220 }
2221
2222 static void
2223 init_record_full_core_ops (void)
2224 {
2225 record_full_core_ops.to_shortname = "record-core";
2226 record_full_core_ops.to_longname = "Process record and replay target";
2227 record_full_core_ops.to_doc =
2228 "Log program while executing and replay execution from log.";
2229 record_full_core_ops.to_open = record_full_open;
2230 record_full_core_ops.to_close = record_full_close;
2231 record_full_core_ops.to_async = record_full_async;
2232 record_full_core_ops.to_resume = record_full_core_resume;
2233 record_full_core_ops.to_wait = record_full_wait;
2234 record_full_core_ops.to_kill = record_full_core_kill;
2235 record_full_core_ops.to_fetch_registers = record_full_core_fetch_registers;
2236 record_full_core_ops.to_prepare_to_store = record_full_core_prepare_to_store;
2237 record_full_core_ops.to_store_registers = record_full_core_store_registers;
2238 record_full_core_ops.to_xfer_partial = record_full_core_xfer_partial;
2239 record_full_core_ops.to_insert_breakpoint
2240 = record_full_core_insert_breakpoint;
2241 record_full_core_ops.to_remove_breakpoint
2242 = record_full_core_remove_breakpoint;
2243 record_full_core_ops.to_stopped_by_watchpoint
2244 = record_full_stopped_by_watchpoint;
2245 record_full_core_ops.to_stopped_data_address
2246 = record_full_stopped_data_address;
2247 record_full_core_ops.to_stopped_by_sw_breakpoint
2248 = record_full_stopped_by_sw_breakpoint;
2249 record_full_core_ops.to_supports_stopped_by_sw_breakpoint
2250 = record_full_supports_stopped_by_sw_breakpoint;
2251 record_full_core_ops.to_stopped_by_hw_breakpoint
2252 = record_full_stopped_by_hw_breakpoint;
2253 record_full_core_ops.to_supports_stopped_by_hw_breakpoint
2254 = record_full_supports_stopped_by_hw_breakpoint;
2255 record_full_core_ops.to_can_execute_reverse
2256 = record_full_can_execute_reverse;
2257 record_full_core_ops.to_has_execution = record_full_core_has_execution;
2258 record_full_core_ops.to_stratum = record_stratum;
2259 /* Add bookmark target methods. */
2260 record_full_core_ops.to_get_bookmark = record_full_get_bookmark;
2261 record_full_core_ops.to_goto_bookmark = record_full_goto_bookmark;
2262 record_full_core_ops.to_execution_direction
2263 = record_full_execution_direction;
2264 record_full_core_ops.to_info_record = record_full_info;
2265 record_full_core_ops.to_delete_record = record_full_delete;
2266 record_full_core_ops.to_record_is_replaying = record_full_is_replaying;
2267 record_full_core_ops.to_record_will_replay = record_full_will_replay;
2268 record_full_core_ops.to_goto_record_begin = record_full_goto_begin;
2269 record_full_core_ops.to_goto_record_end = record_full_goto_end;
2270 record_full_core_ops.to_goto_record = record_full_goto;
2271 record_full_core_ops.to_magic = OPS_MAGIC;
2272 }
2273
2274 /* Record log save-file format
2275 Version 1 (never released)
2276
2277 Header:
2278 4 bytes: magic number htonl(0x20090829).
2279 NOTE: be sure to change whenever this file format changes!
2280
2281 Records:
2282 record_full_end:
2283 1 byte: record type (record_full_end, see enum record_full_type).
2284 record_full_reg:
2285 1 byte: record type (record_full_reg, see enum record_full_type).
2286 8 bytes: register id (network byte order).
2287 MAX_REGISTER_SIZE bytes: register value.
2288 record_full_mem:
2289 1 byte: record type (record_full_mem, see enum record_full_type).
2290 8 bytes: memory length (network byte order).
2291 8 bytes: memory address (network byte order).
2292 n bytes: memory value (n == memory length).
2293
2294 Version 2
2295 4 bytes: magic number netorder32(0x20091016).
2296 NOTE: be sure to change whenever this file format changes!
2297
2298 Records:
2299 record_full_end:
2300 1 byte: record type (record_full_end, see enum record_full_type).
2301 4 bytes: signal
2302 4 bytes: instruction count
2303 record_full_reg:
2304 1 byte: record type (record_full_reg, see enum record_full_type).
2305 4 bytes: register id (network byte order).
2306 n bytes: register value (n == actual register size).
2307 (eg. 4 bytes for x86 general registers).
2308 record_full_mem:
2309 1 byte: record type (record_full_mem, see enum record_full_type).
2310 4 bytes: memory length (network byte order).
2311 8 bytes: memory address (network byte order).
2312 n bytes: memory value (n == memory length).
2313
2314 */
2315
2316 /* bfdcore_read -- read bytes from a core file section. */
2317
2318 static inline void
2319 bfdcore_read (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2320 {
2321 int ret = bfd_get_section_contents (obfd, osec, buf, *offset, len);
2322
2323 if (ret)
2324 *offset += len;
2325 else
2326 error (_("Failed to read %d bytes from core file %s ('%s')."),
2327 len, bfd_get_filename (obfd),
2328 bfd_errmsg (bfd_get_error ()));
2329 }
2330
2331 static inline uint64_t
2332 netorder64 (uint64_t input)
2333 {
2334 uint64_t ret;
2335
2336 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2337 BFD_ENDIAN_BIG, input);
2338 return ret;
2339 }
2340
2341 static inline uint32_t
2342 netorder32 (uint32_t input)
2343 {
2344 uint32_t ret;
2345
2346 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2347 BFD_ENDIAN_BIG, input);
2348 return ret;
2349 }
2350
2351 static inline uint16_t
2352 netorder16 (uint16_t input)
2353 {
2354 uint16_t ret;
2355
2356 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2357 BFD_ENDIAN_BIG, input);
2358 return ret;
2359 }
2360
2361 /* Restore the execution log from a core_bfd file. */
2362 static void
2363 record_full_restore (void)
2364 {
2365 uint32_t magic;
2366 struct cleanup *old_cleanups;
2367 struct record_full_entry *rec;
2368 asection *osec;
2369 uint32_t osec_size;
2370 int bfd_offset = 0;
2371 struct regcache *regcache;
2372
2373 /* We restore the execution log from the open core bfd,
2374 if there is one. */
2375 if (core_bfd == NULL)
2376 return;
2377
2378 /* "record_full_restore" can only be called when record list is empty. */
2379 gdb_assert (record_full_first.next == NULL);
2380
2381 if (record_debug)
2382 fprintf_unfiltered (gdb_stdlog, "Restoring recording from core file.\n");
2383
2384 /* Now need to find our special note section. */
2385 osec = bfd_get_section_by_name (core_bfd, "null0");
2386 if (record_debug)
2387 fprintf_unfiltered (gdb_stdlog, "Find precord section %s.\n",
2388 osec ? "succeeded" : "failed");
2389 if (osec == NULL)
2390 return;
2391 osec_size = bfd_section_size (core_bfd, osec);
2392 if (record_debug)
2393 fprintf_unfiltered (gdb_stdlog, "%s", bfd_section_name (core_bfd, osec));
2394
2395 /* Check the magic code. */
2396 bfdcore_read (core_bfd, osec, &magic, sizeof (magic), &bfd_offset);
2397 if (magic != RECORD_FULL_FILE_MAGIC)
2398 error (_("Version mis-match or file format error in core file %s."),
2399 bfd_get_filename (core_bfd));
2400 if (record_debug)
2401 fprintf_unfiltered (gdb_stdlog,
2402 " Reading 4-byte magic cookie "
2403 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2404 phex_nz (netorder32 (magic), 4));
2405
2406 /* Restore the entries in recfd into record_full_arch_list_head and
2407 record_full_arch_list_tail. */
2408 record_full_arch_list_head = NULL;
2409 record_full_arch_list_tail = NULL;
2410 record_full_insn_num = 0;
2411 old_cleanups = make_cleanup (record_full_arch_list_cleanups, 0);
2412 regcache = get_current_regcache ();
2413
2414 while (1)
2415 {
2416 uint8_t rectype;
2417 uint32_t regnum, len, signal, count;
2418 uint64_t addr;
2419
2420 /* We are finished when offset reaches osec_size. */
2421 if (bfd_offset >= osec_size)
2422 break;
2423 bfdcore_read (core_bfd, osec, &rectype, sizeof (rectype), &bfd_offset);
2424
2425 switch (rectype)
2426 {
2427 case record_full_reg: /* reg */
2428 /* Get register number to regnum. */
2429 bfdcore_read (core_bfd, osec, &regnum,
2430 sizeof (regnum), &bfd_offset);
2431 regnum = netorder32 (regnum);
2432
2433 rec = record_full_reg_alloc (regcache, regnum);
2434
2435 /* Get val. */
2436 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2437 rec->u.reg.len, &bfd_offset);
2438
2439 if (record_debug)
2440 fprintf_unfiltered (gdb_stdlog,
2441 " Reading register %d (1 "
2442 "plus %lu plus %d bytes)\n",
2443 rec->u.reg.num,
2444 (unsigned long) sizeof (regnum),
2445 rec->u.reg.len);
2446 break;
2447
2448 case record_full_mem: /* mem */
2449 /* Get len. */
2450 bfdcore_read (core_bfd, osec, &len,
2451 sizeof (len), &bfd_offset);
2452 len = netorder32 (len);
2453
2454 /* Get addr. */
2455 bfdcore_read (core_bfd, osec, &addr,
2456 sizeof (addr), &bfd_offset);
2457 addr = netorder64 (addr);
2458
2459 rec = record_full_mem_alloc (addr, len);
2460
2461 /* Get val. */
2462 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2463 rec->u.mem.len, &bfd_offset);
2464
2465 if (record_debug)
2466 fprintf_unfiltered (gdb_stdlog,
2467 " Reading memory %s (1 plus "
2468 "%lu plus %lu plus %d bytes)\n",
2469 paddress (get_current_arch (),
2470 rec->u.mem.addr),
2471 (unsigned long) sizeof (addr),
2472 (unsigned long) sizeof (len),
2473 rec->u.mem.len);
2474 break;
2475
2476 case record_full_end: /* end */
2477 rec = record_full_end_alloc ();
2478 record_full_insn_num ++;
2479
2480 /* Get signal value. */
2481 bfdcore_read (core_bfd, osec, &signal,
2482 sizeof (signal), &bfd_offset);
2483 signal = netorder32 (signal);
2484 rec->u.end.sigval = (enum gdb_signal) signal;
2485
2486 /* Get insn count. */
2487 bfdcore_read (core_bfd, osec, &count,
2488 sizeof (count), &bfd_offset);
2489 count = netorder32 (count);
2490 rec->u.end.insn_num = count;
2491 record_full_insn_count = count + 1;
2492 if (record_debug)
2493 fprintf_unfiltered (gdb_stdlog,
2494 " Reading record_full_end (1 + "
2495 "%lu + %lu bytes), offset == %s\n",
2496 (unsigned long) sizeof (signal),
2497 (unsigned long) sizeof (count),
2498 paddress (get_current_arch (),
2499 bfd_offset));
2500 break;
2501
2502 default:
2503 error (_("Bad entry type in core file %s."),
2504 bfd_get_filename (core_bfd));
2505 break;
2506 }
2507
2508 /* Add rec to record arch list. */
2509 record_full_arch_list_add (rec);
2510 }
2511
2512 discard_cleanups (old_cleanups);
2513
2514 /* Add record_full_arch_list_head to the end of record list. */
2515 record_full_first.next = record_full_arch_list_head;
2516 record_full_arch_list_head->prev = &record_full_first;
2517 record_full_arch_list_tail->next = NULL;
2518 record_full_list = &record_full_first;
2519
2520 /* Update record_full_insn_max_num. */
2521 if (record_full_insn_num > record_full_insn_max_num)
2522 {
2523 record_full_insn_max_num = record_full_insn_num;
2524 warning (_("Auto increase record/replay buffer limit to %u."),
2525 record_full_insn_max_num);
2526 }
2527
2528 /* Succeeded. */
2529 printf_filtered (_("Restored records from core file %s.\n"),
2530 bfd_get_filename (core_bfd));
2531
2532 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2533 }
2534
2535 /* bfdcore_write -- write bytes into a core file section. */
2536
2537 static inline void
2538 bfdcore_write (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2539 {
2540 int ret = bfd_set_section_contents (obfd, osec, buf, *offset, len);
2541
2542 if (ret)
2543 *offset += len;
2544 else
2545 error (_("Failed to write %d bytes to core file %s ('%s')."),
2546 len, bfd_get_filename (obfd),
2547 bfd_errmsg (bfd_get_error ()));
2548 }
2549
2550 /* Restore the execution log from a file. We use a modified elf
2551 corefile format, with an extra section for our data. */
2552
2553 static void
2554 cmd_record_full_restore (char *args, int from_tty)
2555 {
2556 core_file_command (args, from_tty);
2557 record_full_open (args, from_tty);
2558 }
2559
2560 static void
2561 record_full_save_cleanups (void *data)
2562 {
2563 bfd *obfd = (bfd *) data;
2564 char *pathname = xstrdup (bfd_get_filename (obfd));
2565
2566 gdb_bfd_unref (obfd);
2567 unlink (pathname);
2568 xfree (pathname);
2569 }
2570
2571 /* Save the execution log to a file. We use a modified elf corefile
2572 format, with an extra section for our data. */
2573
2574 static void
2575 record_full_save (struct target_ops *self, const char *recfilename)
2576 {
2577 struct record_full_entry *cur_record_full_list;
2578 uint32_t magic;
2579 struct regcache *regcache;
2580 struct gdbarch *gdbarch;
2581 struct cleanup *old_cleanups;
2582 struct cleanup *set_cleanups;
2583 bfd *obfd;
2584 int save_size = 0;
2585 asection *osec = NULL;
2586 int bfd_offset = 0;
2587
2588 /* Open the save file. */
2589 if (record_debug)
2590 fprintf_unfiltered (gdb_stdlog, "Saving execution log to core file '%s'\n",
2591 recfilename);
2592
2593 /* Open the output file. */
2594 obfd = create_gcore_bfd (recfilename);
2595 old_cleanups = make_cleanup (record_full_save_cleanups, obfd);
2596
2597 /* Save the current record entry to "cur_record_full_list". */
2598 cur_record_full_list = record_full_list;
2599
2600 /* Get the values of regcache and gdbarch. */
2601 regcache = get_current_regcache ();
2602 gdbarch = get_regcache_arch (regcache);
2603
2604 /* Disable the GDB operation record. */
2605 set_cleanups = record_full_gdb_operation_disable_set ();
2606
2607 /* Reverse execute to the begin of record list. */
2608 while (1)
2609 {
2610 /* Check for beginning and end of log. */
2611 if (record_full_list == &record_full_first)
2612 break;
2613
2614 record_full_exec_insn (regcache, gdbarch, record_full_list);
2615
2616 if (record_full_list->prev)
2617 record_full_list = record_full_list->prev;
2618 }
2619
2620 /* Compute the size needed for the extra bfd section. */
2621 save_size = 4; /* magic cookie */
2622 for (record_full_list = record_full_first.next; record_full_list;
2623 record_full_list = record_full_list->next)
2624 switch (record_full_list->type)
2625 {
2626 case record_full_end:
2627 save_size += 1 + 4 + 4;
2628 break;
2629 case record_full_reg:
2630 save_size += 1 + 4 + record_full_list->u.reg.len;
2631 break;
2632 case record_full_mem:
2633 save_size += 1 + 4 + 8 + record_full_list->u.mem.len;
2634 break;
2635 }
2636
2637 /* Make the new bfd section. */
2638 osec = bfd_make_section_anyway_with_flags (obfd, "precord",
2639 SEC_HAS_CONTENTS
2640 | SEC_READONLY);
2641 if (osec == NULL)
2642 error (_("Failed to create 'precord' section for corefile %s: %s"),
2643 recfilename,
2644 bfd_errmsg (bfd_get_error ()));
2645 bfd_set_section_size (obfd, osec, save_size);
2646 bfd_set_section_vma (obfd, osec, 0);
2647 bfd_set_section_alignment (obfd, osec, 0);
2648 bfd_section_lma (obfd, osec) = 0;
2649
2650 /* Save corefile state. */
2651 write_gcore_file (obfd);
2652
2653 /* Write out the record log. */
2654 /* Write the magic code. */
2655 magic = RECORD_FULL_FILE_MAGIC;
2656 if (record_debug)
2657 fprintf_unfiltered (gdb_stdlog,
2658 " Writing 4-byte magic cookie "
2659 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2660 phex_nz (magic, 4));
2661 bfdcore_write (obfd, osec, &magic, sizeof (magic), &bfd_offset);
2662
2663 /* Save the entries to recfd and forward execute to the end of
2664 record list. */
2665 record_full_list = &record_full_first;
2666 while (1)
2667 {
2668 /* Save entry. */
2669 if (record_full_list != &record_full_first)
2670 {
2671 uint8_t type;
2672 uint32_t regnum, len, signal, count;
2673 uint64_t addr;
2674
2675 type = record_full_list->type;
2676 bfdcore_write (obfd, osec, &type, sizeof (type), &bfd_offset);
2677
2678 switch (record_full_list->type)
2679 {
2680 case record_full_reg: /* reg */
2681 if (record_debug)
2682 fprintf_unfiltered (gdb_stdlog,
2683 " Writing register %d (1 "
2684 "plus %lu plus %d bytes)\n",
2685 record_full_list->u.reg.num,
2686 (unsigned long) sizeof (regnum),
2687 record_full_list->u.reg.len);
2688
2689 /* Write regnum. */
2690 regnum = netorder32 (record_full_list->u.reg.num);
2691 bfdcore_write (obfd, osec, &regnum,
2692 sizeof (regnum), &bfd_offset);
2693
2694 /* Write regval. */
2695 bfdcore_write (obfd, osec,
2696 record_full_get_loc (record_full_list),
2697 record_full_list->u.reg.len, &bfd_offset);
2698 break;
2699
2700 case record_full_mem: /* mem */
2701 if (record_debug)
2702 fprintf_unfiltered (gdb_stdlog,
2703 " Writing memory %s (1 plus "
2704 "%lu plus %lu plus %d bytes)\n",
2705 paddress (gdbarch,
2706 record_full_list->u.mem.addr),
2707 (unsigned long) sizeof (addr),
2708 (unsigned long) sizeof (len),
2709 record_full_list->u.mem.len);
2710
2711 /* Write memlen. */
2712 len = netorder32 (record_full_list->u.mem.len);
2713 bfdcore_write (obfd, osec, &len, sizeof (len), &bfd_offset);
2714
2715 /* Write memaddr. */
2716 addr = netorder64 (record_full_list->u.mem.addr);
2717 bfdcore_write (obfd, osec, &addr,
2718 sizeof (addr), &bfd_offset);
2719
2720 /* Write memval. */
2721 bfdcore_write (obfd, osec,
2722 record_full_get_loc (record_full_list),
2723 record_full_list->u.mem.len, &bfd_offset);
2724 break;
2725
2726 case record_full_end:
2727 if (record_debug)
2728 fprintf_unfiltered (gdb_stdlog,
2729 " Writing record_full_end (1 + "
2730 "%lu + %lu bytes)\n",
2731 (unsigned long) sizeof (signal),
2732 (unsigned long) sizeof (count));
2733 /* Write signal value. */
2734 signal = netorder32 (record_full_list->u.end.sigval);
2735 bfdcore_write (obfd, osec, &signal,
2736 sizeof (signal), &bfd_offset);
2737
2738 /* Write insn count. */
2739 count = netorder32 (record_full_list->u.end.insn_num);
2740 bfdcore_write (obfd, osec, &count,
2741 sizeof (count), &bfd_offset);
2742 break;
2743 }
2744 }
2745
2746 /* Execute entry. */
2747 record_full_exec_insn (regcache, gdbarch, record_full_list);
2748
2749 if (record_full_list->next)
2750 record_full_list = record_full_list->next;
2751 else
2752 break;
2753 }
2754
2755 /* Reverse execute to cur_record_full_list. */
2756 while (1)
2757 {
2758 /* Check for beginning and end of log. */
2759 if (record_full_list == cur_record_full_list)
2760 break;
2761
2762 record_full_exec_insn (regcache, gdbarch, record_full_list);
2763
2764 if (record_full_list->prev)
2765 record_full_list = record_full_list->prev;
2766 }
2767
2768 do_cleanups (set_cleanups);
2769 gdb_bfd_unref (obfd);
2770 discard_cleanups (old_cleanups);
2771
2772 /* Succeeded. */
2773 printf_filtered (_("Saved core file %s with execution log.\n"),
2774 recfilename);
2775 }
2776
2777 /* record_full_goto_insn -- rewind the record log (forward or backward,
2778 depending on DIR) to the given entry, changing the program state
2779 correspondingly. */
2780
2781 static void
2782 record_full_goto_insn (struct record_full_entry *entry,
2783 enum exec_direction_kind dir)
2784 {
2785 struct cleanup *set_cleanups = record_full_gdb_operation_disable_set ();
2786 struct regcache *regcache = get_current_regcache ();
2787 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2788
2789 /* Assume everything is valid: we will hit the entry,
2790 and we will not hit the end of the recording. */
2791
2792 if (dir == EXEC_FORWARD)
2793 record_full_list = record_full_list->next;
2794
2795 do
2796 {
2797 record_full_exec_insn (regcache, gdbarch, record_full_list);
2798 if (dir == EXEC_REVERSE)
2799 record_full_list = record_full_list->prev;
2800 else
2801 record_full_list = record_full_list->next;
2802 } while (record_full_list != entry);
2803 do_cleanups (set_cleanups);
2804 }
2805
2806 /* Alias for "target record-full". */
2807
2808 static void
2809 cmd_record_full_start (char *args, int from_tty)
2810 {
2811 execute_command ("target record-full", from_tty);
2812 }
2813
2814 static void
2815 set_record_full_insn_max_num (char *args, int from_tty,
2816 struct cmd_list_element *c)
2817 {
2818 if (record_full_insn_num > record_full_insn_max_num)
2819 {
2820 /* Count down record_full_insn_num while releasing records from list. */
2821 while (record_full_insn_num > record_full_insn_max_num)
2822 {
2823 record_full_list_release_first ();
2824 record_full_insn_num--;
2825 }
2826 }
2827 }
2828
2829 /* The "set record full" command. */
2830
2831 static void
2832 set_record_full_command (char *args, int from_tty)
2833 {
2834 printf_unfiltered (_("\"set record full\" must be followed "
2835 "by an apporpriate subcommand.\n"));
2836 help_list (set_record_full_cmdlist, "set record full ", all_commands,
2837 gdb_stdout);
2838 }
2839
2840 /* The "show record full" command. */
2841
2842 static void
2843 show_record_full_command (char *args, int from_tty)
2844 {
2845 cmd_show_list (show_record_full_cmdlist, from_tty, "");
2846 }
2847
2848 /* Provide a prototype to silence -Wmissing-prototypes. */
2849 extern initialize_file_ftype _initialize_record_full;
2850
2851 void
2852 _initialize_record_full (void)
2853 {
2854 struct cmd_list_element *c;
2855
2856 /* Init record_full_first. */
2857 record_full_first.prev = NULL;
2858 record_full_first.next = NULL;
2859 record_full_first.type = record_full_end;
2860
2861 init_record_full_ops ();
2862 add_target (&record_full_ops);
2863 add_deprecated_target_alias (&record_full_ops, "record");
2864 init_record_full_core_ops ();
2865 add_target (&record_full_core_ops);
2866
2867 add_prefix_cmd ("full", class_obscure, cmd_record_full_start,
2868 _("Start full execution recording."), &record_full_cmdlist,
2869 "record full ", 0, &record_cmdlist);
2870
2871 c = add_cmd ("restore", class_obscure, cmd_record_full_restore,
2872 _("Restore the execution log from a file.\n\
2873 Argument is filename. File must be created with 'record save'."),
2874 &record_full_cmdlist);
2875 set_cmd_completer (c, filename_completer);
2876
2877 /* Deprecate the old version without "full" prefix. */
2878 c = add_alias_cmd ("restore", "full restore", class_obscure, 1,
2879 &record_cmdlist);
2880 set_cmd_completer (c, filename_completer);
2881 deprecate_cmd (c, "record full restore");
2882
2883 add_prefix_cmd ("full", class_support, set_record_full_command,
2884 _("Set record options"), &set_record_full_cmdlist,
2885 "set record full ", 0, &set_record_cmdlist);
2886
2887 add_prefix_cmd ("full", class_support, show_record_full_command,
2888 _("Show record options"), &show_record_full_cmdlist,
2889 "show record full ", 0, &show_record_cmdlist);
2890
2891 /* Record instructions number limit command. */
2892 add_setshow_boolean_cmd ("stop-at-limit", no_class,
2893 &record_full_stop_at_limit, _("\
2894 Set whether record/replay stops when record/replay buffer becomes full."), _("\
2895 Show whether record/replay stops when record/replay buffer becomes full."),
2896 _("Default is ON.\n\
2897 When ON, if the record/replay buffer becomes full, ask user what to do.\n\
2898 When OFF, if the record/replay buffer becomes full,\n\
2899 delete the oldest recorded instruction to make room for each new one."),
2900 NULL, NULL,
2901 &set_record_full_cmdlist, &show_record_full_cmdlist);
2902
2903 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2904 &set_record_cmdlist);
2905 deprecate_cmd (c, "set record full stop-at-limit");
2906
2907 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2908 &show_record_cmdlist);
2909 deprecate_cmd (c, "show record full stop-at-limit");
2910
2911 add_setshow_uinteger_cmd ("insn-number-max", no_class,
2912 &record_full_insn_max_num,
2913 _("Set record/replay buffer limit."),
2914 _("Show record/replay buffer limit."), _("\
2915 Set the maximum number of instructions to be stored in the\n\
2916 record/replay buffer. A value of either \"unlimited\" or zero means no\n\
2917 limit. Default is 200000."),
2918 set_record_full_insn_max_num,
2919 NULL, &set_record_full_cmdlist,
2920 &show_record_full_cmdlist);
2921
2922 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2923 &set_record_cmdlist);
2924 deprecate_cmd (c, "set record full insn-number-max");
2925
2926 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2927 &show_record_cmdlist);
2928 deprecate_cmd (c, "show record full insn-number-max");
2929
2930 add_setshow_boolean_cmd ("memory-query", no_class,
2931 &record_full_memory_query, _("\
2932 Set whether query if PREC cannot record memory change of next instruction."),
2933 _("\
2934 Show whether query if PREC cannot record memory change of next instruction."),
2935 _("\
2936 Default is OFF.\n\
2937 When ON, query if PREC cannot record memory change of next instruction."),
2938 NULL, NULL,
2939 &set_record_full_cmdlist,
2940 &show_record_full_cmdlist);
2941
2942 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2943 &set_record_cmdlist);
2944 deprecate_cmd (c, "set record full memory-query");
2945
2946 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2947 &show_record_cmdlist);
2948 deprecate_cmd (c, "show record full memory-query");
2949 }
This page took 0.112449 seconds and 4 git commands to generate.