Per-inferior thread list, thread ranges/iterators, down with ALL_THREADS, etc.
[deliverable/binutils-gdb.git] / gdb / record-full.c
1 /* Process record and replay target for GDB, the GNU debugger.
2
3 Copyright (C) 2013-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "regcache.h"
23 #include "gdbthread.h"
24 #include "inferior.h"
25 #include "event-top.h"
26 #include "completer.h"
27 #include "arch-utils.h"
28 #include "gdbcore.h"
29 #include "exec.h"
30 #include "record.h"
31 #include "record-full.h"
32 #include "elf-bfd.h"
33 #include "gcore.h"
34 #include "event-loop.h"
35 #include "inf-loop.h"
36 #include "gdb_bfd.h"
37 #include "observable.h"
38 #include "infrun.h"
39 #include "common/gdb_unlinker.h"
40 #include "common/byte-vector.h"
41
42 #include <signal.h>
43
44 /* This module implements "target record-full", also known as "process
45 record and replay". This target sits on top of a "normal" target
46 (a target that "has execution"), and provides a record and replay
47 functionality, including reverse debugging.
48
49 Target record has two modes: recording, and replaying.
50
51 In record mode, we intercept the resume and wait methods.
52 Whenever gdb resumes the target, we run the target in single step
53 mode, and we build up an execution log in which, for each executed
54 instruction, we record all changes in memory and register state.
55 This is invisible to the user, to whom it just looks like an
56 ordinary debugging session (except for performance degredation).
57
58 In replay mode, instead of actually letting the inferior run as a
59 process, we simulate its execution by playing back the recorded
60 execution log. For each instruction in the log, we simulate the
61 instruction's side effects by duplicating the changes that it would
62 have made on memory and registers. */
63
64 #define DEFAULT_RECORD_FULL_INSN_MAX_NUM 200000
65
66 #define RECORD_FULL_IS_REPLAY \
67 (record_full_list->next || ::execution_direction == EXEC_REVERSE)
68
69 #define RECORD_FULL_FILE_MAGIC netorder32(0x20091016)
70
71 /* These are the core structs of the process record functionality.
72
73 A record_full_entry is a record of the value change of a register
74 ("record_full_reg") or a part of memory ("record_full_mem"). And each
75 instruction must have a struct record_full_entry ("record_full_end")
76 that indicates that this is the last struct record_full_entry of this
77 instruction.
78
79 Each struct record_full_entry is linked to "record_full_list" by "prev"
80 and "next" pointers. */
81
82 struct record_full_mem_entry
83 {
84 CORE_ADDR addr;
85 int len;
86 /* Set this flag if target memory for this entry
87 can no longer be accessed. */
88 int mem_entry_not_accessible;
89 union
90 {
91 gdb_byte *ptr;
92 gdb_byte buf[sizeof (gdb_byte *)];
93 } u;
94 };
95
96 struct record_full_reg_entry
97 {
98 unsigned short num;
99 unsigned short len;
100 union
101 {
102 gdb_byte *ptr;
103 gdb_byte buf[2 * sizeof (gdb_byte *)];
104 } u;
105 };
106
107 struct record_full_end_entry
108 {
109 enum gdb_signal sigval;
110 ULONGEST insn_num;
111 };
112
113 enum record_full_type
114 {
115 record_full_end = 0,
116 record_full_reg,
117 record_full_mem
118 };
119
120 /* This is the data structure that makes up the execution log.
121
122 The execution log consists of a single linked list of entries
123 of type "struct record_full_entry". It is doubly linked so that it
124 can be traversed in either direction.
125
126 The start of the list is anchored by a struct called
127 "record_full_first". The pointer "record_full_list" either points
128 to the last entry that was added to the list (in record mode), or to
129 the next entry in the list that will be executed (in replay mode).
130
131 Each list element (struct record_full_entry), in addition to next
132 and prev pointers, consists of a union of three entry types: mem,
133 reg, and end. A field called "type" determines which entry type is
134 represented by a given list element.
135
136 Each instruction that is added to the execution log is represented
137 by a variable number of list elements ('entries'). The instruction
138 will have one "reg" entry for each register that is changed by
139 executing the instruction (including the PC in every case). It
140 will also have one "mem" entry for each memory change. Finally,
141 each instruction will have an "end" entry that separates it from
142 the changes associated with the next instruction. */
143
144 struct record_full_entry
145 {
146 struct record_full_entry *prev;
147 struct record_full_entry *next;
148 enum record_full_type type;
149 union
150 {
151 /* reg */
152 struct record_full_reg_entry reg;
153 /* mem */
154 struct record_full_mem_entry mem;
155 /* end */
156 struct record_full_end_entry end;
157 } u;
158 };
159
160 /* If true, query if PREC cannot record memory
161 change of next instruction. */
162 int record_full_memory_query = 0;
163
164 struct record_full_core_buf_entry
165 {
166 struct record_full_core_buf_entry *prev;
167 struct target_section *p;
168 bfd_byte *buf;
169 };
170
171 /* Record buf with core target. */
172 static detached_regcache *record_full_core_regbuf = NULL;
173 static struct target_section *record_full_core_start;
174 static struct target_section *record_full_core_end;
175 static struct record_full_core_buf_entry *record_full_core_buf_list = NULL;
176
177 /* The following variables are used for managing the linked list that
178 represents the execution log.
179
180 record_full_first is the anchor that holds down the beginning of
181 the list.
182
183 record_full_list serves two functions:
184 1) In record mode, it anchors the end of the list.
185 2) In replay mode, it traverses the list and points to
186 the next instruction that must be emulated.
187
188 record_full_arch_list_head and record_full_arch_list_tail are used
189 to manage a separate list, which is used to build up the change
190 elements of the currently executing instruction during record mode.
191 When this instruction has been completely annotated in the "arch
192 list", it will be appended to the main execution log. */
193
194 static struct record_full_entry record_full_first;
195 static struct record_full_entry *record_full_list = &record_full_first;
196 static struct record_full_entry *record_full_arch_list_head = NULL;
197 static struct record_full_entry *record_full_arch_list_tail = NULL;
198
199 /* 1 ask user. 0 auto delete the last struct record_full_entry. */
200 static int record_full_stop_at_limit = 1;
201 /* Maximum allowed number of insns in execution log. */
202 static unsigned int record_full_insn_max_num
203 = DEFAULT_RECORD_FULL_INSN_MAX_NUM;
204 /* Actual count of insns presently in execution log. */
205 static unsigned int record_full_insn_num = 0;
206 /* Count of insns logged so far (may be larger
207 than count of insns presently in execution log). */
208 static ULONGEST record_full_insn_count;
209
210 static const char record_longname[]
211 = N_("Process record and replay target");
212 static const char record_doc[]
213 = N_("Log program while executing and replay execution from log.");
214
215 /* Base class implementing functionality common to both the
216 "record-full" and "record-core" targets. */
217
218 class record_full_base_target : public target_ops
219 {
220 public:
221 record_full_base_target ()
222 { to_stratum = record_stratum; }
223
224 const target_info &info () const override = 0;
225
226 void close () override;
227 void async (int) override;
228 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
229 bool stopped_by_watchpoint () override;
230 bool stopped_data_address (CORE_ADDR *) override;
231
232 bool stopped_by_sw_breakpoint () override;
233 bool supports_stopped_by_sw_breakpoint () override;
234
235 bool stopped_by_hw_breakpoint () override;
236 bool supports_stopped_by_hw_breakpoint () override;
237
238 bool can_execute_reverse () override;
239
240 /* Add bookmark target methods. */
241 gdb_byte *get_bookmark (const char *, int) override;
242 void goto_bookmark (const gdb_byte *, int) override;
243 enum exec_direction_kind execution_direction () override;
244 enum record_method record_method (ptid_t ptid) override;
245 void info_record () override;
246 void save_record (const char *filename) override;
247 bool supports_delete_record () override;
248 void delete_record () override;
249 bool record_is_replaying (ptid_t ptid) override;
250 bool record_will_replay (ptid_t ptid, int dir) override;
251 void record_stop_replaying () override;
252 void goto_record_begin () override;
253 void goto_record_end () override;
254 void goto_record (ULONGEST insn) override;
255 };
256
257 /* The "record-full" target. */
258
259 static const target_info record_full_target_info = {
260 "record-full",
261 record_longname,
262 record_doc,
263 };
264
265 class record_full_target final : public record_full_base_target
266 {
267 public:
268 const target_info &info () const override
269 { return record_full_target_info; }
270
271 void commit_resume () override;
272 void resume (ptid_t, int, enum gdb_signal) override;
273 void disconnect (const char *, int) override;
274 void detach (inferior *, int) override;
275 void mourn_inferior () override;
276 void kill () override;
277 void store_registers (struct regcache *, int) override;
278 enum target_xfer_status xfer_partial (enum target_object object,
279 const char *annex,
280 gdb_byte *readbuf,
281 const gdb_byte *writebuf,
282 ULONGEST offset, ULONGEST len,
283 ULONGEST *xfered_len) override;
284 int insert_breakpoint (struct gdbarch *,
285 struct bp_target_info *) override;
286 int remove_breakpoint (struct gdbarch *,
287 struct bp_target_info *,
288 enum remove_bp_reason) override;
289 };
290
291 /* The "record-core" target. */
292
293 static const target_info record_full_core_target_info = {
294 "record-core",
295 record_longname,
296 record_doc,
297 };
298
299 class record_full_core_target final : public record_full_base_target
300 {
301 public:
302 const target_info &info () const override
303 { return record_full_core_target_info; }
304
305 void resume (ptid_t, int, enum gdb_signal) override;
306 void disconnect (const char *, int) override;
307 void kill () override;
308 void fetch_registers (struct regcache *regcache, int regno) override;
309 void prepare_to_store (struct regcache *regcache) override;
310 void store_registers (struct regcache *, int) override;
311 enum target_xfer_status xfer_partial (enum target_object object,
312 const char *annex,
313 gdb_byte *readbuf,
314 const gdb_byte *writebuf,
315 ULONGEST offset, ULONGEST len,
316 ULONGEST *xfered_len) override;
317 int insert_breakpoint (struct gdbarch *,
318 struct bp_target_info *) override;
319 int remove_breakpoint (struct gdbarch *,
320 struct bp_target_info *,
321 enum remove_bp_reason) override;
322
323 bool has_execution (ptid_t) override;
324 };
325
326 static record_full_target record_full_ops;
327 static record_full_core_target record_full_core_ops;
328
329 void
330 record_full_target::detach (inferior *inf, int from_tty)
331 {
332 record_detach (this, inf, from_tty);
333 }
334
335 void
336 record_full_target::disconnect (const char *args, int from_tty)
337 {
338 record_disconnect (this, args, from_tty);
339 }
340
341 void
342 record_full_core_target::disconnect (const char *args, int from_tty)
343 {
344 record_disconnect (this, args, from_tty);
345 }
346
347 void
348 record_full_target::mourn_inferior ()
349 {
350 record_mourn_inferior (this);
351 }
352
353 void
354 record_full_target::kill ()
355 {
356 record_kill (this);
357 }
358
359 /* See record-full.h. */
360
361 int
362 record_full_is_used (void)
363 {
364 struct target_ops *t;
365
366 t = find_record_target ();
367 return (t == &record_full_ops
368 || t == &record_full_core_ops);
369 }
370
371
372 /* Command lists for "set/show record full". */
373 static struct cmd_list_element *set_record_full_cmdlist;
374 static struct cmd_list_element *show_record_full_cmdlist;
375
376 /* Command list for "record full". */
377 static struct cmd_list_element *record_full_cmdlist;
378
379 static void record_full_goto_insn (struct record_full_entry *entry,
380 enum exec_direction_kind dir);
381
382 /* Alloc and free functions for record_full_reg, record_full_mem, and
383 record_full_end entries. */
384
385 /* Alloc a record_full_reg record entry. */
386
387 static inline struct record_full_entry *
388 record_full_reg_alloc (struct regcache *regcache, int regnum)
389 {
390 struct record_full_entry *rec;
391 struct gdbarch *gdbarch = regcache->arch ();
392
393 rec = XCNEW (struct record_full_entry);
394 rec->type = record_full_reg;
395 rec->u.reg.num = regnum;
396 rec->u.reg.len = register_size (gdbarch, regnum);
397 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
398 rec->u.reg.u.ptr = (gdb_byte *) xmalloc (rec->u.reg.len);
399
400 return rec;
401 }
402
403 /* Free a record_full_reg record entry. */
404
405 static inline void
406 record_full_reg_release (struct record_full_entry *rec)
407 {
408 gdb_assert (rec->type == record_full_reg);
409 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
410 xfree (rec->u.reg.u.ptr);
411 xfree (rec);
412 }
413
414 /* Alloc a record_full_mem record entry. */
415
416 static inline struct record_full_entry *
417 record_full_mem_alloc (CORE_ADDR addr, int len)
418 {
419 struct record_full_entry *rec;
420
421 rec = XCNEW (struct record_full_entry);
422 rec->type = record_full_mem;
423 rec->u.mem.addr = addr;
424 rec->u.mem.len = len;
425 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
426 rec->u.mem.u.ptr = (gdb_byte *) xmalloc (len);
427
428 return rec;
429 }
430
431 /* Free a record_full_mem record entry. */
432
433 static inline void
434 record_full_mem_release (struct record_full_entry *rec)
435 {
436 gdb_assert (rec->type == record_full_mem);
437 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
438 xfree (rec->u.mem.u.ptr);
439 xfree (rec);
440 }
441
442 /* Alloc a record_full_end record entry. */
443
444 static inline struct record_full_entry *
445 record_full_end_alloc (void)
446 {
447 struct record_full_entry *rec;
448
449 rec = XCNEW (struct record_full_entry);
450 rec->type = record_full_end;
451
452 return rec;
453 }
454
455 /* Free a record_full_end record entry. */
456
457 static inline void
458 record_full_end_release (struct record_full_entry *rec)
459 {
460 xfree (rec);
461 }
462
463 /* Free one record entry, any type.
464 Return entry->type, in case caller wants to know. */
465
466 static inline enum record_full_type
467 record_full_entry_release (struct record_full_entry *rec)
468 {
469 enum record_full_type type = rec->type;
470
471 switch (type) {
472 case record_full_reg:
473 record_full_reg_release (rec);
474 break;
475 case record_full_mem:
476 record_full_mem_release (rec);
477 break;
478 case record_full_end:
479 record_full_end_release (rec);
480 break;
481 }
482 return type;
483 }
484
485 /* Free all record entries in list pointed to by REC. */
486
487 static void
488 record_full_list_release (struct record_full_entry *rec)
489 {
490 if (!rec)
491 return;
492
493 while (rec->next)
494 rec = rec->next;
495
496 while (rec->prev)
497 {
498 rec = rec->prev;
499 record_full_entry_release (rec->next);
500 }
501
502 if (rec == &record_full_first)
503 {
504 record_full_insn_num = 0;
505 record_full_first.next = NULL;
506 }
507 else
508 record_full_entry_release (rec);
509 }
510
511 /* Free all record entries forward of the given list position. */
512
513 static void
514 record_full_list_release_following (struct record_full_entry *rec)
515 {
516 struct record_full_entry *tmp = rec->next;
517
518 rec->next = NULL;
519 while (tmp)
520 {
521 rec = tmp->next;
522 if (record_full_entry_release (tmp) == record_full_end)
523 {
524 record_full_insn_num--;
525 record_full_insn_count--;
526 }
527 tmp = rec;
528 }
529 }
530
531 /* Delete the first instruction from the beginning of the log, to make
532 room for adding a new instruction at the end of the log.
533
534 Note -- this function does not modify record_full_insn_num. */
535
536 static void
537 record_full_list_release_first (void)
538 {
539 struct record_full_entry *tmp;
540
541 if (!record_full_first.next)
542 return;
543
544 /* Loop until a record_full_end. */
545 while (1)
546 {
547 /* Cut record_full_first.next out of the linked list. */
548 tmp = record_full_first.next;
549 record_full_first.next = tmp->next;
550 tmp->next->prev = &record_full_first;
551
552 /* tmp is now isolated, and can be deleted. */
553 if (record_full_entry_release (tmp) == record_full_end)
554 break; /* End loop at first record_full_end. */
555
556 if (!record_full_first.next)
557 {
558 gdb_assert (record_full_insn_num == 1);
559 break; /* End loop when list is empty. */
560 }
561 }
562 }
563
564 /* Add a struct record_full_entry to record_full_arch_list. */
565
566 static void
567 record_full_arch_list_add (struct record_full_entry *rec)
568 {
569 if (record_debug > 1)
570 fprintf_unfiltered (gdb_stdlog,
571 "Process record: record_full_arch_list_add %s.\n",
572 host_address_to_string (rec));
573
574 if (record_full_arch_list_tail)
575 {
576 record_full_arch_list_tail->next = rec;
577 rec->prev = record_full_arch_list_tail;
578 record_full_arch_list_tail = rec;
579 }
580 else
581 {
582 record_full_arch_list_head = rec;
583 record_full_arch_list_tail = rec;
584 }
585 }
586
587 /* Return the value storage location of a record entry. */
588 static inline gdb_byte *
589 record_full_get_loc (struct record_full_entry *rec)
590 {
591 switch (rec->type) {
592 case record_full_mem:
593 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
594 return rec->u.mem.u.ptr;
595 else
596 return rec->u.mem.u.buf;
597 case record_full_reg:
598 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
599 return rec->u.reg.u.ptr;
600 else
601 return rec->u.reg.u.buf;
602 case record_full_end:
603 default:
604 gdb_assert_not_reached ("unexpected record_full_entry type");
605 return NULL;
606 }
607 }
608
609 /* Record the value of a register NUM to record_full_arch_list. */
610
611 int
612 record_full_arch_list_add_reg (struct regcache *regcache, int regnum)
613 {
614 struct record_full_entry *rec;
615
616 if (record_debug > 1)
617 fprintf_unfiltered (gdb_stdlog,
618 "Process record: add register num = %d to "
619 "record list.\n",
620 regnum);
621
622 rec = record_full_reg_alloc (regcache, regnum);
623
624 regcache->raw_read (regnum, record_full_get_loc (rec));
625
626 record_full_arch_list_add (rec);
627
628 return 0;
629 }
630
631 /* Record the value of a region of memory whose address is ADDR and
632 length is LEN to record_full_arch_list. */
633
634 int
635 record_full_arch_list_add_mem (CORE_ADDR addr, int len)
636 {
637 struct record_full_entry *rec;
638
639 if (record_debug > 1)
640 fprintf_unfiltered (gdb_stdlog,
641 "Process record: add mem addr = %s len = %d to "
642 "record list.\n",
643 paddress (target_gdbarch (), addr), len);
644
645 if (!addr) /* FIXME: Why? Some arch must permit it... */
646 return 0;
647
648 rec = record_full_mem_alloc (addr, len);
649
650 if (record_read_memory (target_gdbarch (), addr,
651 record_full_get_loc (rec), len))
652 {
653 record_full_mem_release (rec);
654 return -1;
655 }
656
657 record_full_arch_list_add (rec);
658
659 return 0;
660 }
661
662 /* Add a record_full_end type struct record_full_entry to
663 record_full_arch_list. */
664
665 int
666 record_full_arch_list_add_end (void)
667 {
668 struct record_full_entry *rec;
669
670 if (record_debug > 1)
671 fprintf_unfiltered (gdb_stdlog,
672 "Process record: add end to arch list.\n");
673
674 rec = record_full_end_alloc ();
675 rec->u.end.sigval = GDB_SIGNAL_0;
676 rec->u.end.insn_num = ++record_full_insn_count;
677
678 record_full_arch_list_add (rec);
679
680 return 0;
681 }
682
683 static void
684 record_full_check_insn_num (void)
685 {
686 if (record_full_insn_num == record_full_insn_max_num)
687 {
688 /* Ask user what to do. */
689 if (record_full_stop_at_limit)
690 {
691 if (!yquery (_("Do you want to auto delete previous execution "
692 "log entries when record/replay buffer becomes "
693 "full (record full stop-at-limit)?")))
694 error (_("Process record: stopped by user."));
695 record_full_stop_at_limit = 0;
696 }
697 }
698 }
699
700 /* Before inferior step (when GDB record the running message, inferior
701 only can step), GDB will call this function to record the values to
702 record_full_list. This function will call gdbarch_process_record to
703 record the running message of inferior and set them to
704 record_full_arch_list, and add it to record_full_list. */
705
706 static void
707 record_full_message (struct regcache *regcache, enum gdb_signal signal)
708 {
709 int ret;
710 struct gdbarch *gdbarch = regcache->arch ();
711
712 TRY
713 {
714 record_full_arch_list_head = NULL;
715 record_full_arch_list_tail = NULL;
716
717 /* Check record_full_insn_num. */
718 record_full_check_insn_num ();
719
720 /* If gdb sends a signal value to target_resume,
721 save it in the 'end' field of the previous instruction.
722
723 Maybe process record should record what really happened,
724 rather than what gdb pretends has happened.
725
726 So if Linux delivered the signal to the child process during
727 the record mode, we will record it and deliver it again in
728 the replay mode.
729
730 If user says "ignore this signal" during the record mode, then
731 it will be ignored again during the replay mode (no matter if
732 the user says something different, like "deliver this signal"
733 during the replay mode).
734
735 User should understand that nothing he does during the replay
736 mode will change the behavior of the child. If he tries,
737 then that is a user error.
738
739 But we should still deliver the signal to gdb during the replay,
740 if we delivered it during the recording. Therefore we should
741 record the signal during record_full_wait, not
742 record_full_resume. */
743 if (record_full_list != &record_full_first) /* FIXME better way
744 to check */
745 {
746 gdb_assert (record_full_list->type == record_full_end);
747 record_full_list->u.end.sigval = signal;
748 }
749
750 if (signal == GDB_SIGNAL_0
751 || !gdbarch_process_record_signal_p (gdbarch))
752 ret = gdbarch_process_record (gdbarch,
753 regcache,
754 regcache_read_pc (regcache));
755 else
756 ret = gdbarch_process_record_signal (gdbarch,
757 regcache,
758 signal);
759
760 if (ret > 0)
761 error (_("Process record: inferior program stopped."));
762 if (ret < 0)
763 error (_("Process record: failed to record execution log."));
764 }
765 CATCH (ex, RETURN_MASK_ALL)
766 {
767 record_full_list_release (record_full_arch_list_tail);
768 throw_exception (ex);
769 }
770 END_CATCH
771
772 record_full_list->next = record_full_arch_list_head;
773 record_full_arch_list_head->prev = record_full_list;
774 record_full_list = record_full_arch_list_tail;
775
776 if (record_full_insn_num == record_full_insn_max_num)
777 record_full_list_release_first ();
778 else
779 record_full_insn_num++;
780 }
781
782 static bool
783 record_full_message_wrapper_safe (struct regcache *regcache,
784 enum gdb_signal signal)
785 {
786 TRY
787 {
788 record_full_message (regcache, signal);
789 }
790 CATCH (ex, RETURN_MASK_ALL)
791 {
792 exception_print (gdb_stderr, ex);
793 return false;
794 }
795 END_CATCH
796
797 return true;
798 }
799
800 /* Set to 1 if record_full_store_registers and record_full_xfer_partial
801 doesn't need record. */
802
803 static int record_full_gdb_operation_disable = 0;
804
805 scoped_restore_tmpl<int>
806 record_full_gdb_operation_disable_set (void)
807 {
808 return make_scoped_restore (&record_full_gdb_operation_disable, 1);
809 }
810
811 /* Flag set to TRUE for target_stopped_by_watchpoint. */
812 static enum target_stop_reason record_full_stop_reason
813 = TARGET_STOPPED_BY_NO_REASON;
814
815 /* Execute one instruction from the record log. Each instruction in
816 the log will be represented by an arbitrary sequence of register
817 entries and memory entries, followed by an 'end' entry. */
818
819 static inline void
820 record_full_exec_insn (struct regcache *regcache,
821 struct gdbarch *gdbarch,
822 struct record_full_entry *entry)
823 {
824 switch (entry->type)
825 {
826 case record_full_reg: /* reg */
827 {
828 gdb::byte_vector reg (entry->u.reg.len);
829
830 if (record_debug > 1)
831 fprintf_unfiltered (gdb_stdlog,
832 "Process record: record_full_reg %s to "
833 "inferior num = %d.\n",
834 host_address_to_string (entry),
835 entry->u.reg.num);
836
837 regcache->cooked_read (entry->u.reg.num, reg.data ());
838 regcache->cooked_write (entry->u.reg.num, record_full_get_loc (entry));
839 memcpy (record_full_get_loc (entry), reg.data (), entry->u.reg.len);
840 }
841 break;
842
843 case record_full_mem: /* mem */
844 {
845 /* Nothing to do if the entry is flagged not_accessible. */
846 if (!entry->u.mem.mem_entry_not_accessible)
847 {
848 gdb::byte_vector mem (entry->u.mem.len);
849
850 if (record_debug > 1)
851 fprintf_unfiltered (gdb_stdlog,
852 "Process record: record_full_mem %s to "
853 "inferior addr = %s len = %d.\n",
854 host_address_to_string (entry),
855 paddress (gdbarch, entry->u.mem.addr),
856 entry->u.mem.len);
857
858 if (record_read_memory (gdbarch,
859 entry->u.mem.addr, mem.data (),
860 entry->u.mem.len))
861 entry->u.mem.mem_entry_not_accessible = 1;
862 else
863 {
864 if (target_write_memory (entry->u.mem.addr,
865 record_full_get_loc (entry),
866 entry->u.mem.len))
867 {
868 entry->u.mem.mem_entry_not_accessible = 1;
869 if (record_debug)
870 warning (_("Process record: error writing memory at "
871 "addr = %s len = %d."),
872 paddress (gdbarch, entry->u.mem.addr),
873 entry->u.mem.len);
874 }
875 else
876 {
877 memcpy (record_full_get_loc (entry), mem.data (),
878 entry->u.mem.len);
879
880 /* We've changed memory --- check if a hardware
881 watchpoint should trap. Note that this
882 presently assumes the target beneath supports
883 continuable watchpoints. On non-continuable
884 watchpoints target, we'll want to check this
885 _before_ actually doing the memory change, and
886 not doing the change at all if the watchpoint
887 traps. */
888 if (hardware_watchpoint_inserted_in_range
889 (regcache->aspace (),
890 entry->u.mem.addr, entry->u.mem.len))
891 record_full_stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
892 }
893 }
894 }
895 }
896 break;
897 }
898 }
899
900 static void record_full_restore (void);
901
902 /* Asynchronous signal handle registered as event loop source for when
903 we have pending events ready to be passed to the core. */
904
905 static struct async_event_handler *record_full_async_inferior_event_token;
906
907 static void
908 record_full_async_inferior_event_handler (gdb_client_data data)
909 {
910 inferior_event_handler (INF_REG_EVENT, NULL);
911 }
912
913 /* Open the process record target for 'core' files. */
914
915 static void
916 record_full_core_open_1 (const char *name, int from_tty)
917 {
918 struct regcache *regcache = get_current_regcache ();
919 int regnum = gdbarch_num_regs (regcache->arch ());
920 int i;
921
922 /* Get record_full_core_regbuf. */
923 target_fetch_registers (regcache, -1);
924 record_full_core_regbuf = new detached_regcache (regcache->arch (), false);
925
926 for (i = 0; i < regnum; i ++)
927 record_full_core_regbuf->raw_supply (i, *regcache);
928
929 /* Get record_full_core_start and record_full_core_end. */
930 if (build_section_table (core_bfd, &record_full_core_start,
931 &record_full_core_end))
932 {
933 delete record_full_core_regbuf;
934 record_full_core_regbuf = NULL;
935 error (_("\"%s\": Can't find sections: %s"),
936 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
937 }
938
939 push_target (&record_full_core_ops);
940 record_full_restore ();
941 }
942
943 /* Open the process record target for 'live' processes. */
944
945 static void
946 record_full_open_1 (const char *name, int from_tty)
947 {
948 if (record_debug)
949 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open_1\n");
950
951 /* check exec */
952 if (!target_has_execution)
953 error (_("Process record: the program is not being run."));
954 if (non_stop)
955 error (_("Process record target can't debug inferior in non-stop mode "
956 "(non-stop)."));
957
958 if (!gdbarch_process_record_p (target_gdbarch ()))
959 error (_("Process record: the current architecture doesn't support "
960 "record function."));
961
962 push_target (&record_full_ops);
963 }
964
965 static void record_full_init_record_breakpoints (void);
966
967 /* Open the process record target. */
968
969 static void
970 record_full_open (const char *name, int from_tty)
971 {
972 if (record_debug)
973 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n");
974
975 record_preopen ();
976
977 /* Reset */
978 record_full_insn_num = 0;
979 record_full_insn_count = 0;
980 record_full_list = &record_full_first;
981 record_full_list->next = NULL;
982
983 if (core_bfd)
984 record_full_core_open_1 (name, from_tty);
985 else
986 record_full_open_1 (name, from_tty);
987
988 /* Register extra event sources in the event loop. */
989 record_full_async_inferior_event_token
990 = create_async_event_handler (record_full_async_inferior_event_handler,
991 NULL);
992
993 record_full_init_record_breakpoints ();
994
995 gdb::observers::record_changed.notify (current_inferior (), 1, "full", NULL);
996 }
997
998 /* "close" target method. Close the process record target. */
999
1000 void
1001 record_full_base_target::close ()
1002 {
1003 struct record_full_core_buf_entry *entry;
1004
1005 if (record_debug)
1006 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_close\n");
1007
1008 record_full_list_release (record_full_list);
1009
1010 /* Release record_full_core_regbuf. */
1011 if (record_full_core_regbuf)
1012 {
1013 delete record_full_core_regbuf;
1014 record_full_core_regbuf = NULL;
1015 }
1016
1017 /* Release record_full_core_buf_list. */
1018 if (record_full_core_buf_list)
1019 {
1020 for (entry = record_full_core_buf_list->prev; entry;
1021 entry = entry->prev)
1022 {
1023 xfree (record_full_core_buf_list);
1024 record_full_core_buf_list = entry;
1025 }
1026 record_full_core_buf_list = NULL;
1027 }
1028
1029 if (record_full_async_inferior_event_token)
1030 delete_async_event_handler (&record_full_async_inferior_event_token);
1031 }
1032
1033 /* "async" target method. */
1034
1035 void
1036 record_full_base_target::async (int enable)
1037 {
1038 if (enable)
1039 mark_async_event_handler (record_full_async_inferior_event_token);
1040 else
1041 clear_async_event_handler (record_full_async_inferior_event_token);
1042
1043 beneath ()->async (enable);
1044 }
1045
1046 static int record_full_resume_step = 0;
1047
1048 /* True if we've been resumed, and so each record_full_wait call should
1049 advance execution. If this is false, record_full_wait will return a
1050 TARGET_WAITKIND_IGNORE. */
1051 static int record_full_resumed = 0;
1052
1053 /* The execution direction of the last resume we got. This is
1054 necessary for async mode. Vis (order is not strictly accurate):
1055
1056 1. user has the global execution direction set to forward
1057 2. user does a reverse-step command
1058 3. record_full_resume is called with global execution direction
1059 temporarily switched to reverse
1060 4. GDB's execution direction is reverted back to forward
1061 5. target record notifies event loop there's an event to handle
1062 6. infrun asks the target which direction was it going, and switches
1063 the global execution direction accordingly (to reverse)
1064 7. infrun polls an event out of the record target, and handles it
1065 8. GDB goes back to the event loop, and goto #4.
1066 */
1067 static enum exec_direction_kind record_full_execution_dir = EXEC_FORWARD;
1068
1069 /* "resume" target method. Resume the process record target. */
1070
1071 void
1072 record_full_target::resume (ptid_t ptid, int step, enum gdb_signal signal)
1073 {
1074 record_full_resume_step = step;
1075 record_full_resumed = 1;
1076 record_full_execution_dir = ::execution_direction;
1077
1078 if (!RECORD_FULL_IS_REPLAY)
1079 {
1080 struct gdbarch *gdbarch = target_thread_architecture (ptid);
1081
1082 record_full_message (get_current_regcache (), signal);
1083
1084 if (!step)
1085 {
1086 /* This is not hard single step. */
1087 if (!gdbarch_software_single_step_p (gdbarch))
1088 {
1089 /* This is a normal continue. */
1090 step = 1;
1091 }
1092 else
1093 {
1094 /* This arch supports soft single step. */
1095 if (thread_has_single_step_breakpoints_set (inferior_thread ()))
1096 {
1097 /* This is a soft single step. */
1098 record_full_resume_step = 1;
1099 }
1100 else
1101 step = !insert_single_step_breakpoints (gdbarch);
1102 }
1103 }
1104
1105 /* Make sure the target beneath reports all signals. */
1106 target_pass_signals (0, NULL);
1107
1108 this->beneath ()->resume (ptid, step, signal);
1109 }
1110
1111 /* We are about to start executing the inferior (or simulate it),
1112 let's register it with the event loop. */
1113 if (target_can_async_p ())
1114 target_async (1);
1115 }
1116
1117 /* "commit_resume" method for process record target. */
1118
1119 void
1120 record_full_target::commit_resume ()
1121 {
1122 if (!RECORD_FULL_IS_REPLAY)
1123 beneath ()->commit_resume ();
1124 }
1125
1126 static int record_full_get_sig = 0;
1127
1128 /* SIGINT signal handler, registered by "wait" method. */
1129
1130 static void
1131 record_full_sig_handler (int signo)
1132 {
1133 if (record_debug)
1134 fprintf_unfiltered (gdb_stdlog, "Process record: get a signal\n");
1135
1136 /* It will break the running inferior in replay mode. */
1137 record_full_resume_step = 1;
1138
1139 /* It will let record_full_wait set inferior status to get the signal
1140 SIGINT. */
1141 record_full_get_sig = 1;
1142 }
1143
1144 /* "wait" target method for process record target.
1145
1146 In record mode, the target is always run in singlestep mode
1147 (even when gdb says to continue). The wait method intercepts
1148 the stop events and determines which ones are to be passed on to
1149 gdb. Most stop events are just singlestep events that gdb is not
1150 to know about, so the wait method just records them and keeps
1151 singlestepping.
1152
1153 In replay mode, this function emulates the recorded execution log,
1154 one instruction at a time (forward or backward), and determines
1155 where to stop. */
1156
1157 static ptid_t
1158 record_full_wait_1 (struct target_ops *ops,
1159 ptid_t ptid, struct target_waitstatus *status,
1160 int options)
1161 {
1162 scoped_restore restore_operation_disable
1163 = record_full_gdb_operation_disable_set ();
1164
1165 if (record_debug)
1166 fprintf_unfiltered (gdb_stdlog,
1167 "Process record: record_full_wait "
1168 "record_full_resume_step = %d, "
1169 "record_full_resumed = %d, direction=%s\n",
1170 record_full_resume_step, record_full_resumed,
1171 record_full_execution_dir == EXEC_FORWARD
1172 ? "forward" : "reverse");
1173
1174 if (!record_full_resumed)
1175 {
1176 gdb_assert ((options & TARGET_WNOHANG) != 0);
1177
1178 /* No interesting event. */
1179 status->kind = TARGET_WAITKIND_IGNORE;
1180 return minus_one_ptid;
1181 }
1182
1183 record_full_get_sig = 0;
1184 signal (SIGINT, record_full_sig_handler);
1185
1186 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1187
1188 if (!RECORD_FULL_IS_REPLAY && ops != &record_full_core_ops)
1189 {
1190 if (record_full_resume_step)
1191 {
1192 /* This is a single step. */
1193 return ops->beneath ()->wait (ptid, status, options);
1194 }
1195 else
1196 {
1197 /* This is not a single step. */
1198 ptid_t ret;
1199 CORE_ADDR tmp_pc;
1200 struct gdbarch *gdbarch = target_thread_architecture (inferior_ptid);
1201
1202 while (1)
1203 {
1204 ret = ops->beneath ()->wait (ptid, status, options);
1205 if (status->kind == TARGET_WAITKIND_IGNORE)
1206 {
1207 if (record_debug)
1208 fprintf_unfiltered (gdb_stdlog,
1209 "Process record: record_full_wait "
1210 "target beneath not done yet\n");
1211 return ret;
1212 }
1213
1214 for (thread_info *tp : all_non_exited_threads ())
1215 delete_single_step_breakpoints (tp);
1216
1217 if (record_full_resume_step)
1218 return ret;
1219
1220 /* Is this a SIGTRAP? */
1221 if (status->kind == TARGET_WAITKIND_STOPPED
1222 && status->value.sig == GDB_SIGNAL_TRAP)
1223 {
1224 struct regcache *regcache;
1225 enum target_stop_reason *stop_reason_p
1226 = &record_full_stop_reason;
1227
1228 /* Yes -- this is likely our single-step finishing,
1229 but check if there's any reason the core would be
1230 interested in the event. */
1231
1232 registers_changed ();
1233 regcache = get_current_regcache ();
1234 tmp_pc = regcache_read_pc (regcache);
1235 const struct address_space *aspace = regcache->aspace ();
1236
1237 if (target_stopped_by_watchpoint ())
1238 {
1239 /* Always interested in watchpoints. */
1240 }
1241 else if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1242 stop_reason_p))
1243 {
1244 /* There is a breakpoint here. Let the core
1245 handle it. */
1246 }
1247 else
1248 {
1249 /* This is a single-step trap. Record the
1250 insn and issue another step.
1251 FIXME: this part can be a random SIGTRAP too.
1252 But GDB cannot handle it. */
1253 int step = 1;
1254
1255 if (!record_full_message_wrapper_safe (regcache,
1256 GDB_SIGNAL_0))
1257 {
1258 status->kind = TARGET_WAITKIND_STOPPED;
1259 status->value.sig = GDB_SIGNAL_0;
1260 break;
1261 }
1262
1263 if (gdbarch_software_single_step_p (gdbarch))
1264 {
1265 /* Try to insert the software single step breakpoint.
1266 If insert success, set step to 0. */
1267 set_executing (inferior_ptid, 0);
1268 reinit_frame_cache ();
1269
1270 step = !insert_single_step_breakpoints (gdbarch);
1271
1272 set_executing (inferior_ptid, 1);
1273 }
1274
1275 if (record_debug)
1276 fprintf_unfiltered (gdb_stdlog,
1277 "Process record: record_full_wait "
1278 "issuing one more step in the "
1279 "target beneath\n");
1280 ops->beneath ()->resume (ptid, step, GDB_SIGNAL_0);
1281 ops->beneath ()->commit_resume ();
1282 continue;
1283 }
1284 }
1285
1286 /* The inferior is broken by a breakpoint or a signal. */
1287 break;
1288 }
1289
1290 return ret;
1291 }
1292 }
1293 else
1294 {
1295 struct regcache *regcache = get_current_regcache ();
1296 struct gdbarch *gdbarch = regcache->arch ();
1297 const struct address_space *aspace = regcache->aspace ();
1298 int continue_flag = 1;
1299 int first_record_full_end = 1;
1300
1301 TRY
1302 {
1303 CORE_ADDR tmp_pc;
1304
1305 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1306 status->kind = TARGET_WAITKIND_STOPPED;
1307
1308 /* Check breakpoint when forward execute. */
1309 if (execution_direction == EXEC_FORWARD)
1310 {
1311 tmp_pc = regcache_read_pc (regcache);
1312 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1313 &record_full_stop_reason))
1314 {
1315 if (record_debug)
1316 fprintf_unfiltered (gdb_stdlog,
1317 "Process record: break at %s.\n",
1318 paddress (gdbarch, tmp_pc));
1319 goto replay_out;
1320 }
1321 }
1322
1323 /* If GDB is in terminal_inferior mode, it will not get the
1324 signal. And in GDB replay mode, GDB doesn't need to be
1325 in terminal_inferior mode, because inferior will not
1326 executed. Then set it to terminal_ours to make GDB get
1327 the signal. */
1328 target_terminal::ours ();
1329
1330 /* In EXEC_FORWARD mode, record_full_list points to the tail of prev
1331 instruction. */
1332 if (execution_direction == EXEC_FORWARD && record_full_list->next)
1333 record_full_list = record_full_list->next;
1334
1335 /* Loop over the record_full_list, looking for the next place to
1336 stop. */
1337 do
1338 {
1339 /* Check for beginning and end of log. */
1340 if (execution_direction == EXEC_REVERSE
1341 && record_full_list == &record_full_first)
1342 {
1343 /* Hit beginning of record log in reverse. */
1344 status->kind = TARGET_WAITKIND_NO_HISTORY;
1345 break;
1346 }
1347 if (execution_direction != EXEC_REVERSE
1348 && !record_full_list->next)
1349 {
1350 /* Hit end of record log going forward. */
1351 status->kind = TARGET_WAITKIND_NO_HISTORY;
1352 break;
1353 }
1354
1355 record_full_exec_insn (regcache, gdbarch, record_full_list);
1356
1357 if (record_full_list->type == record_full_end)
1358 {
1359 if (record_debug > 1)
1360 fprintf_unfiltered
1361 (gdb_stdlog,
1362 "Process record: record_full_end %s to "
1363 "inferior.\n",
1364 host_address_to_string (record_full_list));
1365
1366 if (first_record_full_end
1367 && execution_direction == EXEC_REVERSE)
1368 {
1369 /* When reverse excute, the first
1370 record_full_end is the part of current
1371 instruction. */
1372 first_record_full_end = 0;
1373 }
1374 else
1375 {
1376 /* In EXEC_REVERSE mode, this is the
1377 record_full_end of prev instruction. In
1378 EXEC_FORWARD mode, this is the
1379 record_full_end of current instruction. */
1380 /* step */
1381 if (record_full_resume_step)
1382 {
1383 if (record_debug > 1)
1384 fprintf_unfiltered (gdb_stdlog,
1385 "Process record: step.\n");
1386 continue_flag = 0;
1387 }
1388
1389 /* check breakpoint */
1390 tmp_pc = regcache_read_pc (regcache);
1391 if (record_check_stopped_by_breakpoint
1392 (aspace, tmp_pc, &record_full_stop_reason))
1393 {
1394 if (record_debug)
1395 fprintf_unfiltered (gdb_stdlog,
1396 "Process record: break "
1397 "at %s.\n",
1398 paddress (gdbarch, tmp_pc));
1399
1400 continue_flag = 0;
1401 }
1402
1403 if (record_full_stop_reason
1404 == TARGET_STOPPED_BY_WATCHPOINT)
1405 {
1406 if (record_debug)
1407 fprintf_unfiltered (gdb_stdlog,
1408 "Process record: hit hw "
1409 "watchpoint.\n");
1410 continue_flag = 0;
1411 }
1412 /* Check target signal */
1413 if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1414 /* FIXME: better way to check */
1415 continue_flag = 0;
1416 }
1417 }
1418
1419 if (continue_flag)
1420 {
1421 if (execution_direction == EXEC_REVERSE)
1422 {
1423 if (record_full_list->prev)
1424 record_full_list = record_full_list->prev;
1425 }
1426 else
1427 {
1428 if (record_full_list->next)
1429 record_full_list = record_full_list->next;
1430 }
1431 }
1432 }
1433 while (continue_flag);
1434
1435 replay_out:
1436 if (record_full_get_sig)
1437 status->value.sig = GDB_SIGNAL_INT;
1438 else if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1439 /* FIXME: better way to check */
1440 status->value.sig = record_full_list->u.end.sigval;
1441 else
1442 status->value.sig = GDB_SIGNAL_TRAP;
1443 }
1444 CATCH (ex, RETURN_MASK_ALL)
1445 {
1446 if (execution_direction == EXEC_REVERSE)
1447 {
1448 if (record_full_list->next)
1449 record_full_list = record_full_list->next;
1450 }
1451 else
1452 record_full_list = record_full_list->prev;
1453
1454 throw_exception (ex);
1455 }
1456 END_CATCH
1457 }
1458
1459 signal (SIGINT, handle_sigint);
1460
1461 return inferior_ptid;
1462 }
1463
1464 ptid_t
1465 record_full_base_target::wait (ptid_t ptid, struct target_waitstatus *status,
1466 int options)
1467 {
1468 ptid_t return_ptid;
1469
1470 return_ptid = record_full_wait_1 (this, ptid, status, options);
1471 if (status->kind != TARGET_WAITKIND_IGNORE)
1472 {
1473 /* We're reporting a stop. Make sure any spurious
1474 target_wait(WNOHANG) doesn't advance the target until the
1475 core wants us resumed again. */
1476 record_full_resumed = 0;
1477 }
1478 return return_ptid;
1479 }
1480
1481 bool
1482 record_full_base_target::stopped_by_watchpoint ()
1483 {
1484 if (RECORD_FULL_IS_REPLAY)
1485 return record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
1486 else
1487 return beneath ()->stopped_by_watchpoint ();
1488 }
1489
1490 bool
1491 record_full_base_target::stopped_data_address (CORE_ADDR *addr_p)
1492 {
1493 if (RECORD_FULL_IS_REPLAY)
1494 return false;
1495 else
1496 return this->beneath ()->stopped_data_address (addr_p);
1497 }
1498
1499 /* The stopped_by_sw_breakpoint method of target record-full. */
1500
1501 bool
1502 record_full_base_target::stopped_by_sw_breakpoint ()
1503 {
1504 return record_full_stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
1505 }
1506
1507 /* The supports_stopped_by_sw_breakpoint method of target
1508 record-full. */
1509
1510 bool
1511 record_full_base_target::supports_stopped_by_sw_breakpoint ()
1512 {
1513 return true;
1514 }
1515
1516 /* The stopped_by_hw_breakpoint method of target record-full. */
1517
1518 bool
1519 record_full_base_target::stopped_by_hw_breakpoint ()
1520 {
1521 return record_full_stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
1522 }
1523
1524 /* The supports_stopped_by_sw_breakpoint method of target
1525 record-full. */
1526
1527 bool
1528 record_full_base_target::supports_stopped_by_hw_breakpoint ()
1529 {
1530 return true;
1531 }
1532
1533 /* Record registers change (by user or by GDB) to list as an instruction. */
1534
1535 static void
1536 record_full_registers_change (struct regcache *regcache, int regnum)
1537 {
1538 /* Check record_full_insn_num. */
1539 record_full_check_insn_num ();
1540
1541 record_full_arch_list_head = NULL;
1542 record_full_arch_list_tail = NULL;
1543
1544 if (regnum < 0)
1545 {
1546 int i;
1547
1548 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
1549 {
1550 if (record_full_arch_list_add_reg (regcache, i))
1551 {
1552 record_full_list_release (record_full_arch_list_tail);
1553 error (_("Process record: failed to record execution log."));
1554 }
1555 }
1556 }
1557 else
1558 {
1559 if (record_full_arch_list_add_reg (regcache, regnum))
1560 {
1561 record_full_list_release (record_full_arch_list_tail);
1562 error (_("Process record: failed to record execution log."));
1563 }
1564 }
1565 if (record_full_arch_list_add_end ())
1566 {
1567 record_full_list_release (record_full_arch_list_tail);
1568 error (_("Process record: failed to record execution log."));
1569 }
1570 record_full_list->next = record_full_arch_list_head;
1571 record_full_arch_list_head->prev = record_full_list;
1572 record_full_list = record_full_arch_list_tail;
1573
1574 if (record_full_insn_num == record_full_insn_max_num)
1575 record_full_list_release_first ();
1576 else
1577 record_full_insn_num++;
1578 }
1579
1580 /* "store_registers" method for process record target. */
1581
1582 void
1583 record_full_target::store_registers (struct regcache *regcache, int regno)
1584 {
1585 if (!record_full_gdb_operation_disable)
1586 {
1587 if (RECORD_FULL_IS_REPLAY)
1588 {
1589 int n;
1590
1591 /* Let user choose if he wants to write register or not. */
1592 if (regno < 0)
1593 n =
1594 query (_("Because GDB is in replay mode, changing the "
1595 "value of a register will make the execution "
1596 "log unusable from this point onward. "
1597 "Change all registers?"));
1598 else
1599 n =
1600 query (_("Because GDB is in replay mode, changing the value "
1601 "of a register will make the execution log unusable "
1602 "from this point onward. Change register %s?"),
1603 gdbarch_register_name (regcache->arch (),
1604 regno));
1605
1606 if (!n)
1607 {
1608 /* Invalidate the value of regcache that was set in function
1609 "regcache_raw_write". */
1610 if (regno < 0)
1611 {
1612 int i;
1613
1614 for (i = 0;
1615 i < gdbarch_num_regs (regcache->arch ());
1616 i++)
1617 regcache->invalidate (i);
1618 }
1619 else
1620 regcache->invalidate (regno);
1621
1622 error (_("Process record canceled the operation."));
1623 }
1624
1625 /* Destroy the record from here forward. */
1626 record_full_list_release_following (record_full_list);
1627 }
1628
1629 record_full_registers_change (regcache, regno);
1630 }
1631 this->beneath ()->store_registers (regcache, regno);
1632 }
1633
1634 /* "xfer_partial" method. Behavior is conditional on
1635 RECORD_FULL_IS_REPLAY.
1636 In replay mode, we cannot write memory unles we are willing to
1637 invalidate the record/replay log from this point forward. */
1638
1639 enum target_xfer_status
1640 record_full_target::xfer_partial (enum target_object object,
1641 const char *annex, gdb_byte *readbuf,
1642 const gdb_byte *writebuf, ULONGEST offset,
1643 ULONGEST len, ULONGEST *xfered_len)
1644 {
1645 if (!record_full_gdb_operation_disable
1646 && (object == TARGET_OBJECT_MEMORY
1647 || object == TARGET_OBJECT_RAW_MEMORY) && writebuf)
1648 {
1649 if (RECORD_FULL_IS_REPLAY)
1650 {
1651 /* Let user choose if he wants to write memory or not. */
1652 if (!query (_("Because GDB is in replay mode, writing to memory "
1653 "will make the execution log unusable from this "
1654 "point onward. Write memory at address %s?"),
1655 paddress (target_gdbarch (), offset)))
1656 error (_("Process record canceled the operation."));
1657
1658 /* Destroy the record from here forward. */
1659 record_full_list_release_following (record_full_list);
1660 }
1661
1662 /* Check record_full_insn_num */
1663 record_full_check_insn_num ();
1664
1665 /* Record registers change to list as an instruction. */
1666 record_full_arch_list_head = NULL;
1667 record_full_arch_list_tail = NULL;
1668 if (record_full_arch_list_add_mem (offset, len))
1669 {
1670 record_full_list_release (record_full_arch_list_tail);
1671 if (record_debug)
1672 fprintf_unfiltered (gdb_stdlog,
1673 "Process record: failed to record "
1674 "execution log.");
1675 return TARGET_XFER_E_IO;
1676 }
1677 if (record_full_arch_list_add_end ())
1678 {
1679 record_full_list_release (record_full_arch_list_tail);
1680 if (record_debug)
1681 fprintf_unfiltered (gdb_stdlog,
1682 "Process record: failed to record "
1683 "execution log.");
1684 return TARGET_XFER_E_IO;
1685 }
1686 record_full_list->next = record_full_arch_list_head;
1687 record_full_arch_list_head->prev = record_full_list;
1688 record_full_list = record_full_arch_list_tail;
1689
1690 if (record_full_insn_num == record_full_insn_max_num)
1691 record_full_list_release_first ();
1692 else
1693 record_full_insn_num++;
1694 }
1695
1696 return this->beneath ()->xfer_partial (object, annex, readbuf, writebuf,
1697 offset, len, xfered_len);
1698 }
1699
1700 /* This structure represents a breakpoint inserted while the record
1701 target is active. We use this to know when to install/remove
1702 breakpoints in/from the target beneath. For example, a breakpoint
1703 may be inserted while recording, but removed when not replaying nor
1704 recording. In that case, the breakpoint had not been inserted on
1705 the target beneath, so we should not try to remove it there. */
1706
1707 struct record_full_breakpoint
1708 {
1709 record_full_breakpoint (struct address_space *address_space_,
1710 CORE_ADDR addr_,
1711 bool in_target_beneath_)
1712 : address_space (address_space_),
1713 addr (addr_),
1714 in_target_beneath (in_target_beneath_)
1715 {
1716 }
1717
1718 /* The address and address space the breakpoint was set at. */
1719 struct address_space *address_space;
1720 CORE_ADDR addr;
1721
1722 /* True when the breakpoint has been also installed in the target
1723 beneath. This will be false for breakpoints set during replay or
1724 when recording. */
1725 bool in_target_beneath;
1726 };
1727
1728 /* The list of breakpoints inserted while the record target is
1729 active. */
1730 static std::vector<record_full_breakpoint> record_full_breakpoints;
1731
1732 static void
1733 record_full_sync_record_breakpoints (struct bp_location *loc, void *data)
1734 {
1735 if (loc->loc_type != bp_loc_software_breakpoint)
1736 return;
1737
1738 if (loc->inserted)
1739 {
1740 record_full_breakpoints.emplace_back
1741 (loc->target_info.placed_address_space,
1742 loc->target_info.placed_address,
1743 1);
1744 }
1745 }
1746
1747 /* Sync existing breakpoints to record_full_breakpoints. */
1748
1749 static void
1750 record_full_init_record_breakpoints (void)
1751 {
1752 record_full_breakpoints.clear ();
1753
1754 iterate_over_bp_locations (record_full_sync_record_breakpoints);
1755 }
1756
1757 /* Behavior is conditional on RECORD_FULL_IS_REPLAY. We will not actually
1758 insert or remove breakpoints in the real target when replaying, nor
1759 when recording. */
1760
1761 int
1762 record_full_target::insert_breakpoint (struct gdbarch *gdbarch,
1763 struct bp_target_info *bp_tgt)
1764 {
1765 bool in_target_beneath = false;
1766
1767 if (!RECORD_FULL_IS_REPLAY)
1768 {
1769 /* When recording, we currently always single-step, so we don't
1770 really need to install regular breakpoints in the inferior.
1771 However, we do have to insert software single-step
1772 breakpoints, in case the target can't hardware step. To keep
1773 things simple, we always insert. */
1774
1775 scoped_restore restore_operation_disable
1776 = record_full_gdb_operation_disable_set ();
1777
1778 int ret = this->beneath ()->insert_breakpoint (gdbarch, bp_tgt);
1779 if (ret != 0)
1780 return ret;
1781
1782 in_target_beneath = true;
1783 }
1784
1785 /* Use the existing entries if found in order to avoid duplication
1786 in record_full_breakpoints. */
1787
1788 for (const record_full_breakpoint &bp : record_full_breakpoints)
1789 {
1790 if (bp.addr == bp_tgt->placed_address
1791 && bp.address_space == bp_tgt->placed_address_space)
1792 {
1793 gdb_assert (bp.in_target_beneath == in_target_beneath);
1794 return 0;
1795 }
1796 }
1797
1798 record_full_breakpoints.emplace_back (bp_tgt->placed_address_space,
1799 bp_tgt->placed_address,
1800 in_target_beneath);
1801 return 0;
1802 }
1803
1804 /* "remove_breakpoint" method for process record target. */
1805
1806 int
1807 record_full_target::remove_breakpoint (struct gdbarch *gdbarch,
1808 struct bp_target_info *bp_tgt,
1809 enum remove_bp_reason reason)
1810 {
1811 for (auto iter = record_full_breakpoints.begin ();
1812 iter != record_full_breakpoints.end ();
1813 ++iter)
1814 {
1815 struct record_full_breakpoint &bp = *iter;
1816
1817 if (bp.addr == bp_tgt->placed_address
1818 && bp.address_space == bp_tgt->placed_address_space)
1819 {
1820 if (bp.in_target_beneath)
1821 {
1822 scoped_restore restore_operation_disable
1823 = record_full_gdb_operation_disable_set ();
1824
1825 int ret = this->beneath ()->remove_breakpoint (gdbarch, bp_tgt,
1826 reason);
1827 if (ret != 0)
1828 return ret;
1829 }
1830
1831 if (reason == REMOVE_BREAKPOINT)
1832 unordered_remove (record_full_breakpoints, iter);
1833 return 0;
1834 }
1835 }
1836
1837 gdb_assert_not_reached ("removing unknown breakpoint");
1838 }
1839
1840 /* "can_execute_reverse" method for process record target. */
1841
1842 bool
1843 record_full_base_target::can_execute_reverse ()
1844 {
1845 return true;
1846 }
1847
1848 /* "get_bookmark" method for process record and prec over core. */
1849
1850 gdb_byte *
1851 record_full_base_target::get_bookmark (const char *args, int from_tty)
1852 {
1853 char *ret = NULL;
1854
1855 /* Return stringified form of instruction count. */
1856 if (record_full_list && record_full_list->type == record_full_end)
1857 ret = xstrdup (pulongest (record_full_list->u.end.insn_num));
1858
1859 if (record_debug)
1860 {
1861 if (ret)
1862 fprintf_unfiltered (gdb_stdlog,
1863 "record_full_get_bookmark returns %s\n", ret);
1864 else
1865 fprintf_unfiltered (gdb_stdlog,
1866 "record_full_get_bookmark returns NULL\n");
1867 }
1868 return (gdb_byte *) ret;
1869 }
1870
1871 /* "goto_bookmark" method for process record and prec over core. */
1872
1873 void
1874 record_full_base_target::goto_bookmark (const gdb_byte *raw_bookmark,
1875 int from_tty)
1876 {
1877 const char *bookmark = (const char *) raw_bookmark;
1878
1879 if (record_debug)
1880 fprintf_unfiltered (gdb_stdlog,
1881 "record_full_goto_bookmark receives %s\n", bookmark);
1882
1883 std::string name_holder;
1884 if (bookmark[0] == '\'' || bookmark[0] == '\"')
1885 {
1886 if (bookmark[strlen (bookmark) - 1] != bookmark[0])
1887 error (_("Unbalanced quotes: %s"), bookmark);
1888
1889 name_holder = std::string (bookmark + 1, strlen (bookmark) - 2);
1890 bookmark = name_holder.c_str ();
1891 }
1892
1893 record_goto (bookmark);
1894 }
1895
1896 enum exec_direction_kind
1897 record_full_base_target::execution_direction ()
1898 {
1899 return record_full_execution_dir;
1900 }
1901
1902 /* The record_method method of target record-full. */
1903
1904 enum record_method
1905 record_full_base_target::record_method (ptid_t ptid)
1906 {
1907 return RECORD_METHOD_FULL;
1908 }
1909
1910 void
1911 record_full_base_target::info_record ()
1912 {
1913 struct record_full_entry *p;
1914
1915 if (RECORD_FULL_IS_REPLAY)
1916 printf_filtered (_("Replay mode:\n"));
1917 else
1918 printf_filtered (_("Record mode:\n"));
1919
1920 /* Find entry for first actual instruction in the log. */
1921 for (p = record_full_first.next;
1922 p != NULL && p->type != record_full_end;
1923 p = p->next)
1924 ;
1925
1926 /* Do we have a log at all? */
1927 if (p != NULL && p->type == record_full_end)
1928 {
1929 /* Display instruction number for first instruction in the log. */
1930 printf_filtered (_("Lowest recorded instruction number is %s.\n"),
1931 pulongest (p->u.end.insn_num));
1932
1933 /* If in replay mode, display where we are in the log. */
1934 if (RECORD_FULL_IS_REPLAY)
1935 printf_filtered (_("Current instruction number is %s.\n"),
1936 pulongest (record_full_list->u.end.insn_num));
1937
1938 /* Display instruction number for last instruction in the log. */
1939 printf_filtered (_("Highest recorded instruction number is %s.\n"),
1940 pulongest (record_full_insn_count));
1941
1942 /* Display log count. */
1943 printf_filtered (_("Log contains %u instructions.\n"),
1944 record_full_insn_num);
1945 }
1946 else
1947 printf_filtered (_("No instructions have been logged.\n"));
1948
1949 /* Display max log size. */
1950 printf_filtered (_("Max logged instructions is %u.\n"),
1951 record_full_insn_max_num);
1952 }
1953
1954 bool
1955 record_full_base_target::supports_delete_record ()
1956 {
1957 return true;
1958 }
1959
1960 /* The "delete_record" target method. */
1961
1962 void
1963 record_full_base_target::delete_record ()
1964 {
1965 record_full_list_release_following (record_full_list);
1966 }
1967
1968 /* The "record_is_replaying" target method. */
1969
1970 bool
1971 record_full_base_target::record_is_replaying (ptid_t ptid)
1972 {
1973 return RECORD_FULL_IS_REPLAY;
1974 }
1975
1976 /* The "record_will_replay" target method. */
1977
1978 bool
1979 record_full_base_target::record_will_replay (ptid_t ptid, int dir)
1980 {
1981 /* We can currently only record when executing forwards. Should we be able
1982 to record when executing backwards on targets that support reverse
1983 execution, this needs to be changed. */
1984
1985 return RECORD_FULL_IS_REPLAY || dir == EXEC_REVERSE;
1986 }
1987
1988 /* Go to a specific entry. */
1989
1990 static void
1991 record_full_goto_entry (struct record_full_entry *p)
1992 {
1993 if (p == NULL)
1994 error (_("Target insn not found."));
1995 else if (p == record_full_list)
1996 error (_("Already at target insn."));
1997 else if (p->u.end.insn_num > record_full_list->u.end.insn_num)
1998 {
1999 printf_filtered (_("Go forward to insn number %s\n"),
2000 pulongest (p->u.end.insn_num));
2001 record_full_goto_insn (p, EXEC_FORWARD);
2002 }
2003 else
2004 {
2005 printf_filtered (_("Go backward to insn number %s\n"),
2006 pulongest (p->u.end.insn_num));
2007 record_full_goto_insn (p, EXEC_REVERSE);
2008 }
2009
2010 registers_changed ();
2011 reinit_frame_cache ();
2012 inferior_thread ()->suspend.stop_pc
2013 = regcache_read_pc (get_current_regcache ());
2014 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2015 }
2016
2017 /* The "goto_record_begin" target method. */
2018
2019 void
2020 record_full_base_target::goto_record_begin ()
2021 {
2022 struct record_full_entry *p = NULL;
2023
2024 for (p = &record_full_first; p != NULL; p = p->next)
2025 if (p->type == record_full_end)
2026 break;
2027
2028 record_full_goto_entry (p);
2029 }
2030
2031 /* The "goto_record_end" target method. */
2032
2033 void
2034 record_full_base_target::goto_record_end ()
2035 {
2036 struct record_full_entry *p = NULL;
2037
2038 for (p = record_full_list; p->next != NULL; p = p->next)
2039 ;
2040 for (; p!= NULL; p = p->prev)
2041 if (p->type == record_full_end)
2042 break;
2043
2044 record_full_goto_entry (p);
2045 }
2046
2047 /* The "goto_record" target method. */
2048
2049 void
2050 record_full_base_target::goto_record (ULONGEST target_insn)
2051 {
2052 struct record_full_entry *p = NULL;
2053
2054 for (p = &record_full_first; p != NULL; p = p->next)
2055 if (p->type == record_full_end && p->u.end.insn_num == target_insn)
2056 break;
2057
2058 record_full_goto_entry (p);
2059 }
2060
2061 /* The "record_stop_replaying" target method. */
2062
2063 void
2064 record_full_base_target::record_stop_replaying ()
2065 {
2066 goto_record_end ();
2067 }
2068
2069 /* "resume" method for prec over corefile. */
2070
2071 void
2072 record_full_core_target::resume (ptid_t ptid, int step,
2073 enum gdb_signal signal)
2074 {
2075 record_full_resume_step = step;
2076 record_full_resumed = 1;
2077 record_full_execution_dir = ::execution_direction;
2078
2079 /* We are about to start executing the inferior (or simulate it),
2080 let's register it with the event loop. */
2081 if (target_can_async_p ())
2082 target_async (1);
2083 }
2084
2085 /* "kill" method for prec over corefile. */
2086
2087 void
2088 record_full_core_target::kill ()
2089 {
2090 if (record_debug)
2091 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_core_kill\n");
2092
2093 unpush_target (this);
2094 }
2095
2096 /* "fetch_registers" method for prec over corefile. */
2097
2098 void
2099 record_full_core_target::fetch_registers (struct regcache *regcache,
2100 int regno)
2101 {
2102 if (regno < 0)
2103 {
2104 int num = gdbarch_num_regs (regcache->arch ());
2105 int i;
2106
2107 for (i = 0; i < num; i ++)
2108 regcache->raw_supply (i, *record_full_core_regbuf);
2109 }
2110 else
2111 regcache->raw_supply (regno, *record_full_core_regbuf);
2112 }
2113
2114 /* "prepare_to_store" method for prec over corefile. */
2115
2116 void
2117 record_full_core_target::prepare_to_store (struct regcache *regcache)
2118 {
2119 }
2120
2121 /* "store_registers" method for prec over corefile. */
2122
2123 void
2124 record_full_core_target::store_registers (struct regcache *regcache,
2125 int regno)
2126 {
2127 if (record_full_gdb_operation_disable)
2128 record_full_core_regbuf->raw_supply (regno, *regcache);
2129 else
2130 error (_("You can't do that without a process to debug."));
2131 }
2132
2133 /* "xfer_partial" method for prec over corefile. */
2134
2135 enum target_xfer_status
2136 record_full_core_target::xfer_partial (enum target_object object,
2137 const char *annex, gdb_byte *readbuf,
2138 const gdb_byte *writebuf, ULONGEST offset,
2139 ULONGEST len, ULONGEST *xfered_len)
2140 {
2141 if (object == TARGET_OBJECT_MEMORY)
2142 {
2143 if (record_full_gdb_operation_disable || !writebuf)
2144 {
2145 struct target_section *p;
2146
2147 for (p = record_full_core_start; p < record_full_core_end; p++)
2148 {
2149 if (offset >= p->addr)
2150 {
2151 struct record_full_core_buf_entry *entry;
2152 ULONGEST sec_offset;
2153
2154 if (offset >= p->endaddr)
2155 continue;
2156
2157 if (offset + len > p->endaddr)
2158 len = p->endaddr - offset;
2159
2160 sec_offset = offset - p->addr;
2161
2162 /* Read readbuf or write writebuf p, offset, len. */
2163 /* Check flags. */
2164 if (p->the_bfd_section->flags & SEC_CONSTRUCTOR
2165 || (p->the_bfd_section->flags & SEC_HAS_CONTENTS) == 0)
2166 {
2167 if (readbuf)
2168 memset (readbuf, 0, len);
2169
2170 *xfered_len = len;
2171 return TARGET_XFER_OK;
2172 }
2173 /* Get record_full_core_buf_entry. */
2174 for (entry = record_full_core_buf_list; entry;
2175 entry = entry->prev)
2176 if (entry->p == p)
2177 break;
2178 if (writebuf)
2179 {
2180 if (!entry)
2181 {
2182 /* Add a new entry. */
2183 entry = XNEW (struct record_full_core_buf_entry);
2184 entry->p = p;
2185 if (!bfd_malloc_and_get_section
2186 (p->the_bfd_section->owner,
2187 p->the_bfd_section,
2188 &entry->buf))
2189 {
2190 xfree (entry);
2191 return TARGET_XFER_EOF;
2192 }
2193 entry->prev = record_full_core_buf_list;
2194 record_full_core_buf_list = entry;
2195 }
2196
2197 memcpy (entry->buf + sec_offset, writebuf,
2198 (size_t) len);
2199 }
2200 else
2201 {
2202 if (!entry)
2203 return this->beneath ()->xfer_partial (object, annex,
2204 readbuf, writebuf,
2205 offset, len,
2206 xfered_len);
2207
2208 memcpy (readbuf, entry->buf + sec_offset,
2209 (size_t) len);
2210 }
2211
2212 *xfered_len = len;
2213 return TARGET_XFER_OK;
2214 }
2215 }
2216
2217 return TARGET_XFER_E_IO;
2218 }
2219 else
2220 error (_("You can't do that without a process to debug."));
2221 }
2222
2223 return this->beneath ()->xfer_partial (object, annex,
2224 readbuf, writebuf, offset, len,
2225 xfered_len);
2226 }
2227
2228 /* "insert_breakpoint" method for prec over corefile. */
2229
2230 int
2231 record_full_core_target::insert_breakpoint (struct gdbarch *gdbarch,
2232 struct bp_target_info *bp_tgt)
2233 {
2234 return 0;
2235 }
2236
2237 /* "remove_breakpoint" method for prec over corefile. */
2238
2239 int
2240 record_full_core_target::remove_breakpoint (struct gdbarch *gdbarch,
2241 struct bp_target_info *bp_tgt,
2242 enum remove_bp_reason reason)
2243 {
2244 return 0;
2245 }
2246
2247 /* "has_execution" method for prec over corefile. */
2248
2249 bool
2250 record_full_core_target::has_execution (ptid_t the_ptid)
2251 {
2252 return true;
2253 }
2254
2255 /* Record log save-file format
2256 Version 1 (never released)
2257
2258 Header:
2259 4 bytes: magic number htonl(0x20090829).
2260 NOTE: be sure to change whenever this file format changes!
2261
2262 Records:
2263 record_full_end:
2264 1 byte: record type (record_full_end, see enum record_full_type).
2265 record_full_reg:
2266 1 byte: record type (record_full_reg, see enum record_full_type).
2267 8 bytes: register id (network byte order).
2268 MAX_REGISTER_SIZE bytes: register value.
2269 record_full_mem:
2270 1 byte: record type (record_full_mem, see enum record_full_type).
2271 8 bytes: memory length (network byte order).
2272 8 bytes: memory address (network byte order).
2273 n bytes: memory value (n == memory length).
2274
2275 Version 2
2276 4 bytes: magic number netorder32(0x20091016).
2277 NOTE: be sure to change whenever this file format changes!
2278
2279 Records:
2280 record_full_end:
2281 1 byte: record type (record_full_end, see enum record_full_type).
2282 4 bytes: signal
2283 4 bytes: instruction count
2284 record_full_reg:
2285 1 byte: record type (record_full_reg, see enum record_full_type).
2286 4 bytes: register id (network byte order).
2287 n bytes: register value (n == actual register size).
2288 (eg. 4 bytes for x86 general registers).
2289 record_full_mem:
2290 1 byte: record type (record_full_mem, see enum record_full_type).
2291 4 bytes: memory length (network byte order).
2292 8 bytes: memory address (network byte order).
2293 n bytes: memory value (n == memory length).
2294
2295 */
2296
2297 /* bfdcore_read -- read bytes from a core file section. */
2298
2299 static inline void
2300 bfdcore_read (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2301 {
2302 int ret = bfd_get_section_contents (obfd, osec, buf, *offset, len);
2303
2304 if (ret)
2305 *offset += len;
2306 else
2307 error (_("Failed to read %d bytes from core file %s ('%s')."),
2308 len, bfd_get_filename (obfd),
2309 bfd_errmsg (bfd_get_error ()));
2310 }
2311
2312 static inline uint64_t
2313 netorder64 (uint64_t input)
2314 {
2315 uint64_t ret;
2316
2317 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2318 BFD_ENDIAN_BIG, input);
2319 return ret;
2320 }
2321
2322 static inline uint32_t
2323 netorder32 (uint32_t input)
2324 {
2325 uint32_t ret;
2326
2327 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2328 BFD_ENDIAN_BIG, input);
2329 return ret;
2330 }
2331
2332 /* Restore the execution log from a core_bfd file. */
2333 static void
2334 record_full_restore (void)
2335 {
2336 uint32_t magic;
2337 struct record_full_entry *rec;
2338 asection *osec;
2339 uint32_t osec_size;
2340 int bfd_offset = 0;
2341 struct regcache *regcache;
2342
2343 /* We restore the execution log from the open core bfd,
2344 if there is one. */
2345 if (core_bfd == NULL)
2346 return;
2347
2348 /* "record_full_restore" can only be called when record list is empty. */
2349 gdb_assert (record_full_first.next == NULL);
2350
2351 if (record_debug)
2352 fprintf_unfiltered (gdb_stdlog, "Restoring recording from core file.\n");
2353
2354 /* Now need to find our special note section. */
2355 osec = bfd_get_section_by_name (core_bfd, "null0");
2356 if (record_debug)
2357 fprintf_unfiltered (gdb_stdlog, "Find precord section %s.\n",
2358 osec ? "succeeded" : "failed");
2359 if (osec == NULL)
2360 return;
2361 osec_size = bfd_section_size (core_bfd, osec);
2362 if (record_debug)
2363 fprintf_unfiltered (gdb_stdlog, "%s", bfd_section_name (core_bfd, osec));
2364
2365 /* Check the magic code. */
2366 bfdcore_read (core_bfd, osec, &magic, sizeof (magic), &bfd_offset);
2367 if (magic != RECORD_FULL_FILE_MAGIC)
2368 error (_("Version mis-match or file format error in core file %s."),
2369 bfd_get_filename (core_bfd));
2370 if (record_debug)
2371 fprintf_unfiltered (gdb_stdlog,
2372 " Reading 4-byte magic cookie "
2373 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2374 phex_nz (netorder32 (magic), 4));
2375
2376 /* Restore the entries in recfd into record_full_arch_list_head and
2377 record_full_arch_list_tail. */
2378 record_full_arch_list_head = NULL;
2379 record_full_arch_list_tail = NULL;
2380 record_full_insn_num = 0;
2381
2382 TRY
2383 {
2384 regcache = get_current_regcache ();
2385
2386 while (1)
2387 {
2388 uint8_t rectype;
2389 uint32_t regnum, len, signal, count;
2390 uint64_t addr;
2391
2392 /* We are finished when offset reaches osec_size. */
2393 if (bfd_offset >= osec_size)
2394 break;
2395 bfdcore_read (core_bfd, osec, &rectype, sizeof (rectype), &bfd_offset);
2396
2397 switch (rectype)
2398 {
2399 case record_full_reg: /* reg */
2400 /* Get register number to regnum. */
2401 bfdcore_read (core_bfd, osec, &regnum,
2402 sizeof (regnum), &bfd_offset);
2403 regnum = netorder32 (regnum);
2404
2405 rec = record_full_reg_alloc (regcache, regnum);
2406
2407 /* Get val. */
2408 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2409 rec->u.reg.len, &bfd_offset);
2410
2411 if (record_debug)
2412 fprintf_unfiltered (gdb_stdlog,
2413 " Reading register %d (1 "
2414 "plus %lu plus %d bytes)\n",
2415 rec->u.reg.num,
2416 (unsigned long) sizeof (regnum),
2417 rec->u.reg.len);
2418 break;
2419
2420 case record_full_mem: /* mem */
2421 /* Get len. */
2422 bfdcore_read (core_bfd, osec, &len,
2423 sizeof (len), &bfd_offset);
2424 len = netorder32 (len);
2425
2426 /* Get addr. */
2427 bfdcore_read (core_bfd, osec, &addr,
2428 sizeof (addr), &bfd_offset);
2429 addr = netorder64 (addr);
2430
2431 rec = record_full_mem_alloc (addr, len);
2432
2433 /* Get val. */
2434 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2435 rec->u.mem.len, &bfd_offset);
2436
2437 if (record_debug)
2438 fprintf_unfiltered (gdb_stdlog,
2439 " Reading memory %s (1 plus "
2440 "%lu plus %lu plus %d bytes)\n",
2441 paddress (get_current_arch (),
2442 rec->u.mem.addr),
2443 (unsigned long) sizeof (addr),
2444 (unsigned long) sizeof (len),
2445 rec->u.mem.len);
2446 break;
2447
2448 case record_full_end: /* end */
2449 rec = record_full_end_alloc ();
2450 record_full_insn_num ++;
2451
2452 /* Get signal value. */
2453 bfdcore_read (core_bfd, osec, &signal,
2454 sizeof (signal), &bfd_offset);
2455 signal = netorder32 (signal);
2456 rec->u.end.sigval = (enum gdb_signal) signal;
2457
2458 /* Get insn count. */
2459 bfdcore_read (core_bfd, osec, &count,
2460 sizeof (count), &bfd_offset);
2461 count = netorder32 (count);
2462 rec->u.end.insn_num = count;
2463 record_full_insn_count = count + 1;
2464 if (record_debug)
2465 fprintf_unfiltered (gdb_stdlog,
2466 " Reading record_full_end (1 + "
2467 "%lu + %lu bytes), offset == %s\n",
2468 (unsigned long) sizeof (signal),
2469 (unsigned long) sizeof (count),
2470 paddress (get_current_arch (),
2471 bfd_offset));
2472 break;
2473
2474 default:
2475 error (_("Bad entry type in core file %s."),
2476 bfd_get_filename (core_bfd));
2477 break;
2478 }
2479
2480 /* Add rec to record arch list. */
2481 record_full_arch_list_add (rec);
2482 }
2483 }
2484 CATCH (ex, RETURN_MASK_ALL)
2485 {
2486 record_full_list_release (record_full_arch_list_tail);
2487 throw_exception (ex);
2488 }
2489 END_CATCH
2490
2491 /* Add record_full_arch_list_head to the end of record list. */
2492 record_full_first.next = record_full_arch_list_head;
2493 record_full_arch_list_head->prev = &record_full_first;
2494 record_full_arch_list_tail->next = NULL;
2495 record_full_list = &record_full_first;
2496
2497 /* Update record_full_insn_max_num. */
2498 if (record_full_insn_num > record_full_insn_max_num)
2499 {
2500 record_full_insn_max_num = record_full_insn_num;
2501 warning (_("Auto increase record/replay buffer limit to %u."),
2502 record_full_insn_max_num);
2503 }
2504
2505 /* Succeeded. */
2506 printf_filtered (_("Restored records from core file %s.\n"),
2507 bfd_get_filename (core_bfd));
2508
2509 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2510 }
2511
2512 /* bfdcore_write -- write bytes into a core file section. */
2513
2514 static inline void
2515 bfdcore_write (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2516 {
2517 int ret = bfd_set_section_contents (obfd, osec, buf, *offset, len);
2518
2519 if (ret)
2520 *offset += len;
2521 else
2522 error (_("Failed to write %d bytes to core file %s ('%s')."),
2523 len, bfd_get_filename (obfd),
2524 bfd_errmsg (bfd_get_error ()));
2525 }
2526
2527 /* Restore the execution log from a file. We use a modified elf
2528 corefile format, with an extra section for our data. */
2529
2530 static void
2531 cmd_record_full_restore (const char *args, int from_tty)
2532 {
2533 core_file_command (args, from_tty);
2534 record_full_open (args, from_tty);
2535 }
2536
2537 /* Save the execution log to a file. We use a modified elf corefile
2538 format, with an extra section for our data. */
2539
2540 void
2541 record_full_base_target::save_record (const char *recfilename)
2542 {
2543 struct record_full_entry *cur_record_full_list;
2544 uint32_t magic;
2545 struct regcache *regcache;
2546 struct gdbarch *gdbarch;
2547 int save_size = 0;
2548 asection *osec = NULL;
2549 int bfd_offset = 0;
2550
2551 /* Open the save file. */
2552 if (record_debug)
2553 fprintf_unfiltered (gdb_stdlog, "Saving execution log to core file '%s'\n",
2554 recfilename);
2555
2556 /* Open the output file. */
2557 gdb_bfd_ref_ptr obfd (create_gcore_bfd (recfilename));
2558
2559 /* Arrange to remove the output file on failure. */
2560 gdb::unlinker unlink_file (recfilename);
2561
2562 /* Save the current record entry to "cur_record_full_list". */
2563 cur_record_full_list = record_full_list;
2564
2565 /* Get the values of regcache and gdbarch. */
2566 regcache = get_current_regcache ();
2567 gdbarch = regcache->arch ();
2568
2569 /* Disable the GDB operation record. */
2570 scoped_restore restore_operation_disable
2571 = record_full_gdb_operation_disable_set ();
2572
2573 /* Reverse execute to the begin of record list. */
2574 while (1)
2575 {
2576 /* Check for beginning and end of log. */
2577 if (record_full_list == &record_full_first)
2578 break;
2579
2580 record_full_exec_insn (regcache, gdbarch, record_full_list);
2581
2582 if (record_full_list->prev)
2583 record_full_list = record_full_list->prev;
2584 }
2585
2586 /* Compute the size needed for the extra bfd section. */
2587 save_size = 4; /* magic cookie */
2588 for (record_full_list = record_full_first.next; record_full_list;
2589 record_full_list = record_full_list->next)
2590 switch (record_full_list->type)
2591 {
2592 case record_full_end:
2593 save_size += 1 + 4 + 4;
2594 break;
2595 case record_full_reg:
2596 save_size += 1 + 4 + record_full_list->u.reg.len;
2597 break;
2598 case record_full_mem:
2599 save_size += 1 + 4 + 8 + record_full_list->u.mem.len;
2600 break;
2601 }
2602
2603 /* Make the new bfd section. */
2604 osec = bfd_make_section_anyway_with_flags (obfd.get (), "precord",
2605 SEC_HAS_CONTENTS
2606 | SEC_READONLY);
2607 if (osec == NULL)
2608 error (_("Failed to create 'precord' section for corefile %s: %s"),
2609 recfilename,
2610 bfd_errmsg (bfd_get_error ()));
2611 bfd_set_section_size (obfd.get (), osec, save_size);
2612 bfd_set_section_vma (obfd.get (), osec, 0);
2613 bfd_set_section_alignment (obfd.get (), osec, 0);
2614 bfd_section_lma (obfd.get (), osec) = 0;
2615
2616 /* Save corefile state. */
2617 write_gcore_file (obfd.get ());
2618
2619 /* Write out the record log. */
2620 /* Write the magic code. */
2621 magic = RECORD_FULL_FILE_MAGIC;
2622 if (record_debug)
2623 fprintf_unfiltered (gdb_stdlog,
2624 " Writing 4-byte magic cookie "
2625 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2626 phex_nz (magic, 4));
2627 bfdcore_write (obfd.get (), osec, &magic, sizeof (magic), &bfd_offset);
2628
2629 /* Save the entries to recfd and forward execute to the end of
2630 record list. */
2631 record_full_list = &record_full_first;
2632 while (1)
2633 {
2634 /* Save entry. */
2635 if (record_full_list != &record_full_first)
2636 {
2637 uint8_t type;
2638 uint32_t regnum, len, signal, count;
2639 uint64_t addr;
2640
2641 type = record_full_list->type;
2642 bfdcore_write (obfd.get (), osec, &type, sizeof (type), &bfd_offset);
2643
2644 switch (record_full_list->type)
2645 {
2646 case record_full_reg: /* reg */
2647 if (record_debug)
2648 fprintf_unfiltered (gdb_stdlog,
2649 " Writing register %d (1 "
2650 "plus %lu plus %d bytes)\n",
2651 record_full_list->u.reg.num,
2652 (unsigned long) sizeof (regnum),
2653 record_full_list->u.reg.len);
2654
2655 /* Write regnum. */
2656 regnum = netorder32 (record_full_list->u.reg.num);
2657 bfdcore_write (obfd.get (), osec, &regnum,
2658 sizeof (regnum), &bfd_offset);
2659
2660 /* Write regval. */
2661 bfdcore_write (obfd.get (), osec,
2662 record_full_get_loc (record_full_list),
2663 record_full_list->u.reg.len, &bfd_offset);
2664 break;
2665
2666 case record_full_mem: /* mem */
2667 if (record_debug)
2668 fprintf_unfiltered (gdb_stdlog,
2669 " Writing memory %s (1 plus "
2670 "%lu plus %lu plus %d bytes)\n",
2671 paddress (gdbarch,
2672 record_full_list->u.mem.addr),
2673 (unsigned long) sizeof (addr),
2674 (unsigned long) sizeof (len),
2675 record_full_list->u.mem.len);
2676
2677 /* Write memlen. */
2678 len = netorder32 (record_full_list->u.mem.len);
2679 bfdcore_write (obfd.get (), osec, &len, sizeof (len),
2680 &bfd_offset);
2681
2682 /* Write memaddr. */
2683 addr = netorder64 (record_full_list->u.mem.addr);
2684 bfdcore_write (obfd.get (), osec, &addr,
2685 sizeof (addr), &bfd_offset);
2686
2687 /* Write memval. */
2688 bfdcore_write (obfd.get (), osec,
2689 record_full_get_loc (record_full_list),
2690 record_full_list->u.mem.len, &bfd_offset);
2691 break;
2692
2693 case record_full_end:
2694 if (record_debug)
2695 fprintf_unfiltered (gdb_stdlog,
2696 " Writing record_full_end (1 + "
2697 "%lu + %lu bytes)\n",
2698 (unsigned long) sizeof (signal),
2699 (unsigned long) sizeof (count));
2700 /* Write signal value. */
2701 signal = netorder32 (record_full_list->u.end.sigval);
2702 bfdcore_write (obfd.get (), osec, &signal,
2703 sizeof (signal), &bfd_offset);
2704
2705 /* Write insn count. */
2706 count = netorder32 (record_full_list->u.end.insn_num);
2707 bfdcore_write (obfd.get (), osec, &count,
2708 sizeof (count), &bfd_offset);
2709 break;
2710 }
2711 }
2712
2713 /* Execute entry. */
2714 record_full_exec_insn (regcache, gdbarch, record_full_list);
2715
2716 if (record_full_list->next)
2717 record_full_list = record_full_list->next;
2718 else
2719 break;
2720 }
2721
2722 /* Reverse execute to cur_record_full_list. */
2723 while (1)
2724 {
2725 /* Check for beginning and end of log. */
2726 if (record_full_list == cur_record_full_list)
2727 break;
2728
2729 record_full_exec_insn (regcache, gdbarch, record_full_list);
2730
2731 if (record_full_list->prev)
2732 record_full_list = record_full_list->prev;
2733 }
2734
2735 unlink_file.keep ();
2736
2737 /* Succeeded. */
2738 printf_filtered (_("Saved core file %s with execution log.\n"),
2739 recfilename);
2740 }
2741
2742 /* record_full_goto_insn -- rewind the record log (forward or backward,
2743 depending on DIR) to the given entry, changing the program state
2744 correspondingly. */
2745
2746 static void
2747 record_full_goto_insn (struct record_full_entry *entry,
2748 enum exec_direction_kind dir)
2749 {
2750 scoped_restore restore_operation_disable
2751 = record_full_gdb_operation_disable_set ();
2752 struct regcache *regcache = get_current_regcache ();
2753 struct gdbarch *gdbarch = regcache->arch ();
2754
2755 /* Assume everything is valid: we will hit the entry,
2756 and we will not hit the end of the recording. */
2757
2758 if (dir == EXEC_FORWARD)
2759 record_full_list = record_full_list->next;
2760
2761 do
2762 {
2763 record_full_exec_insn (regcache, gdbarch, record_full_list);
2764 if (dir == EXEC_REVERSE)
2765 record_full_list = record_full_list->prev;
2766 else
2767 record_full_list = record_full_list->next;
2768 } while (record_full_list != entry);
2769 }
2770
2771 /* Alias for "target record-full". */
2772
2773 static void
2774 cmd_record_full_start (const char *args, int from_tty)
2775 {
2776 execute_command ("target record-full", from_tty);
2777 }
2778
2779 static void
2780 set_record_full_insn_max_num (const char *args, int from_tty,
2781 struct cmd_list_element *c)
2782 {
2783 if (record_full_insn_num > record_full_insn_max_num)
2784 {
2785 /* Count down record_full_insn_num while releasing records from list. */
2786 while (record_full_insn_num > record_full_insn_max_num)
2787 {
2788 record_full_list_release_first ();
2789 record_full_insn_num--;
2790 }
2791 }
2792 }
2793
2794 /* The "set record full" command. */
2795
2796 static void
2797 set_record_full_command (const char *args, int from_tty)
2798 {
2799 printf_unfiltered (_("\"set record full\" must be followed "
2800 "by an appropriate subcommand.\n"));
2801 help_list (set_record_full_cmdlist, "set record full ", all_commands,
2802 gdb_stdout);
2803 }
2804
2805 /* The "show record full" command. */
2806
2807 static void
2808 show_record_full_command (const char *args, int from_tty)
2809 {
2810 cmd_show_list (show_record_full_cmdlist, from_tty, "");
2811 }
2812
2813 void
2814 _initialize_record_full (void)
2815 {
2816 struct cmd_list_element *c;
2817
2818 /* Init record_full_first. */
2819 record_full_first.prev = NULL;
2820 record_full_first.next = NULL;
2821 record_full_first.type = record_full_end;
2822
2823 add_target (record_full_target_info, record_full_open);
2824 add_deprecated_target_alias (record_full_target_info, "record");
2825 add_target (record_full_core_target_info, record_full_open);
2826
2827 add_prefix_cmd ("full", class_obscure, cmd_record_full_start,
2828 _("Start full execution recording."), &record_full_cmdlist,
2829 "record full ", 0, &record_cmdlist);
2830
2831 c = add_cmd ("restore", class_obscure, cmd_record_full_restore,
2832 _("Restore the execution log from a file.\n\
2833 Argument is filename. File must be created with 'record save'."),
2834 &record_full_cmdlist);
2835 set_cmd_completer (c, filename_completer);
2836
2837 /* Deprecate the old version without "full" prefix. */
2838 c = add_alias_cmd ("restore", "full restore", class_obscure, 1,
2839 &record_cmdlist);
2840 set_cmd_completer (c, filename_completer);
2841 deprecate_cmd (c, "record full restore");
2842
2843 add_prefix_cmd ("full", class_support, set_record_full_command,
2844 _("Set record options"), &set_record_full_cmdlist,
2845 "set record full ", 0, &set_record_cmdlist);
2846
2847 add_prefix_cmd ("full", class_support, show_record_full_command,
2848 _("Show record options"), &show_record_full_cmdlist,
2849 "show record full ", 0, &show_record_cmdlist);
2850
2851 /* Record instructions number limit command. */
2852 add_setshow_boolean_cmd ("stop-at-limit", no_class,
2853 &record_full_stop_at_limit, _("\
2854 Set whether record/replay stops when record/replay buffer becomes full."), _("\
2855 Show whether record/replay stops when record/replay buffer becomes full."),
2856 _("Default is ON.\n\
2857 When ON, if the record/replay buffer becomes full, ask user what to do.\n\
2858 When OFF, if the record/replay buffer becomes full,\n\
2859 delete the oldest recorded instruction to make room for each new one."),
2860 NULL, NULL,
2861 &set_record_full_cmdlist, &show_record_full_cmdlist);
2862
2863 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2864 &set_record_cmdlist);
2865 deprecate_cmd (c, "set record full stop-at-limit");
2866
2867 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2868 &show_record_cmdlist);
2869 deprecate_cmd (c, "show record full stop-at-limit");
2870
2871 add_setshow_uinteger_cmd ("insn-number-max", no_class,
2872 &record_full_insn_max_num,
2873 _("Set record/replay buffer limit."),
2874 _("Show record/replay buffer limit."), _("\
2875 Set the maximum number of instructions to be stored in the\n\
2876 record/replay buffer. A value of either \"unlimited\" or zero means no\n\
2877 limit. Default is 200000."),
2878 set_record_full_insn_max_num,
2879 NULL, &set_record_full_cmdlist,
2880 &show_record_full_cmdlist);
2881
2882 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2883 &set_record_cmdlist);
2884 deprecate_cmd (c, "set record full insn-number-max");
2885
2886 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2887 &show_record_cmdlist);
2888 deprecate_cmd (c, "show record full insn-number-max");
2889
2890 add_setshow_boolean_cmd ("memory-query", no_class,
2891 &record_full_memory_query, _("\
2892 Set whether query if PREC cannot record memory change of next instruction."),
2893 _("\
2894 Show whether query if PREC cannot record memory change of next instruction."),
2895 _("\
2896 Default is OFF.\n\
2897 When ON, query if PREC cannot record memory change of next instruction."),
2898 NULL, NULL,
2899 &set_record_full_cmdlist,
2900 &show_record_full_cmdlist);
2901
2902 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2903 &set_record_cmdlist);
2904 deprecate_cmd (c, "set record full memory-query");
2905
2906 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2907 &show_record_cmdlist);
2908 deprecate_cmd (c, "show record full memory-query");
2909 }
This page took 0.15834 seconds and 4 git commands to generate.