GDB copyright headers update after running GDB's copyright.py script.
[deliverable/binutils-gdb.git] / gdb / record-full.c
1 /* Process record and replay target for GDB, the GNU debugger.
2
3 Copyright (C) 2013-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "regcache.h"
23 #include "gdbthread.h"
24 #include "event-top.h"
25 #include "completer.h"
26 #include "arch-utils.h"
27 #include "gdbcore.h"
28 #include "exec.h"
29 #include "record.h"
30 #include "record-full.h"
31 #include "elf-bfd.h"
32 #include "gcore.h"
33 #include "event-loop.h"
34 #include "inf-loop.h"
35 #include "gdb_bfd.h"
36 #include "observer.h"
37 #include "infrun.h"
38
39 #include <signal.h>
40
41 /* This module implements "target record-full", also known as "process
42 record and replay". This target sits on top of a "normal" target
43 (a target that "has execution"), and provides a record and replay
44 functionality, including reverse debugging.
45
46 Target record has two modes: recording, and replaying.
47
48 In record mode, we intercept the to_resume and to_wait methods.
49 Whenever gdb resumes the target, we run the target in single step
50 mode, and we build up an execution log in which, for each executed
51 instruction, we record all changes in memory and register state.
52 This is invisible to the user, to whom it just looks like an
53 ordinary debugging session (except for performance degredation).
54
55 In replay mode, instead of actually letting the inferior run as a
56 process, we simulate its execution by playing back the recorded
57 execution log. For each instruction in the log, we simulate the
58 instruction's side effects by duplicating the changes that it would
59 have made on memory and registers. */
60
61 #define DEFAULT_RECORD_FULL_INSN_MAX_NUM 200000
62
63 #define RECORD_FULL_IS_REPLAY \
64 (record_full_list->next || execution_direction == EXEC_REVERSE)
65
66 #define RECORD_FULL_FILE_MAGIC netorder32(0x20091016)
67
68 /* These are the core structs of the process record functionality.
69
70 A record_full_entry is a record of the value change of a register
71 ("record_full_reg") or a part of memory ("record_full_mem"). And each
72 instruction must have a struct record_full_entry ("record_full_end")
73 that indicates that this is the last struct record_full_entry of this
74 instruction.
75
76 Each struct record_full_entry is linked to "record_full_list" by "prev"
77 and "next" pointers. */
78
79 struct record_full_mem_entry
80 {
81 CORE_ADDR addr;
82 int len;
83 /* Set this flag if target memory for this entry
84 can no longer be accessed. */
85 int mem_entry_not_accessible;
86 union
87 {
88 gdb_byte *ptr;
89 gdb_byte buf[sizeof (gdb_byte *)];
90 } u;
91 };
92
93 struct record_full_reg_entry
94 {
95 unsigned short num;
96 unsigned short len;
97 union
98 {
99 gdb_byte *ptr;
100 gdb_byte buf[2 * sizeof (gdb_byte *)];
101 } u;
102 };
103
104 struct record_full_end_entry
105 {
106 enum gdb_signal sigval;
107 ULONGEST insn_num;
108 };
109
110 enum record_full_type
111 {
112 record_full_end = 0,
113 record_full_reg,
114 record_full_mem
115 };
116
117 /* This is the data structure that makes up the execution log.
118
119 The execution log consists of a single linked list of entries
120 of type "struct record_full_entry". It is doubly linked so that it
121 can be traversed in either direction.
122
123 The start of the list is anchored by a struct called
124 "record_full_first". The pointer "record_full_list" either points
125 to the last entry that was added to the list (in record mode), or to
126 the next entry in the list that will be executed (in replay mode).
127
128 Each list element (struct record_full_entry), in addition to next
129 and prev pointers, consists of a union of three entry types: mem,
130 reg, and end. A field called "type" determines which entry type is
131 represented by a given list element.
132
133 Each instruction that is added to the execution log is represented
134 by a variable number of list elements ('entries'). The instruction
135 will have one "reg" entry for each register that is changed by
136 executing the instruction (including the PC in every case). It
137 will also have one "mem" entry for each memory change. Finally,
138 each instruction will have an "end" entry that separates it from
139 the changes associated with the next instruction. */
140
141 struct record_full_entry
142 {
143 struct record_full_entry *prev;
144 struct record_full_entry *next;
145 enum record_full_type type;
146 union
147 {
148 /* reg */
149 struct record_full_reg_entry reg;
150 /* mem */
151 struct record_full_mem_entry mem;
152 /* end */
153 struct record_full_end_entry end;
154 } u;
155 };
156
157 /* If true, query if PREC cannot record memory
158 change of next instruction. */
159 int record_full_memory_query = 0;
160
161 struct record_full_core_buf_entry
162 {
163 struct record_full_core_buf_entry *prev;
164 struct target_section *p;
165 bfd_byte *buf;
166 };
167
168 /* Record buf with core target. */
169 static gdb_byte *record_full_core_regbuf = NULL;
170 static struct target_section *record_full_core_start;
171 static struct target_section *record_full_core_end;
172 static struct record_full_core_buf_entry *record_full_core_buf_list = NULL;
173
174 /* The following variables are used for managing the linked list that
175 represents the execution log.
176
177 record_full_first is the anchor that holds down the beginning of
178 the list.
179
180 record_full_list serves two functions:
181 1) In record mode, it anchors the end of the list.
182 2) In replay mode, it traverses the list and points to
183 the next instruction that must be emulated.
184
185 record_full_arch_list_head and record_full_arch_list_tail are used
186 to manage a separate list, which is used to build up the change
187 elements of the currently executing instruction during record mode.
188 When this instruction has been completely annotated in the "arch
189 list", it will be appended to the main execution log. */
190
191 static struct record_full_entry record_full_first;
192 static struct record_full_entry *record_full_list = &record_full_first;
193 static struct record_full_entry *record_full_arch_list_head = NULL;
194 static struct record_full_entry *record_full_arch_list_tail = NULL;
195
196 /* 1 ask user. 0 auto delete the last struct record_full_entry. */
197 static int record_full_stop_at_limit = 1;
198 /* Maximum allowed number of insns in execution log. */
199 static unsigned int record_full_insn_max_num
200 = DEFAULT_RECORD_FULL_INSN_MAX_NUM;
201 /* Actual count of insns presently in execution log. */
202 static unsigned int record_full_insn_num = 0;
203 /* Count of insns logged so far (may be larger
204 than count of insns presently in execution log). */
205 static ULONGEST record_full_insn_count;
206
207 /* The target_ops of process record. */
208 static struct target_ops record_full_ops;
209 static struct target_ops record_full_core_ops;
210
211 /* See record-full.h. */
212
213 int
214 record_full_is_used (void)
215 {
216 struct target_ops *t;
217
218 t = find_record_target ();
219 return (t == &record_full_ops
220 || t == &record_full_core_ops);
221 }
222
223
224 /* Command lists for "set/show record full". */
225 static struct cmd_list_element *set_record_full_cmdlist;
226 static struct cmd_list_element *show_record_full_cmdlist;
227
228 /* Command list for "record full". */
229 static struct cmd_list_element *record_full_cmdlist;
230
231 static void record_full_goto_insn (struct record_full_entry *entry,
232 enum exec_direction_kind dir);
233 static void record_full_save (struct target_ops *self,
234 const char *recfilename);
235
236 /* Alloc and free functions for record_full_reg, record_full_mem, and
237 record_full_end entries. */
238
239 /* Alloc a record_full_reg record entry. */
240
241 static inline struct record_full_entry *
242 record_full_reg_alloc (struct regcache *regcache, int regnum)
243 {
244 struct record_full_entry *rec;
245 struct gdbarch *gdbarch = get_regcache_arch (regcache);
246
247 rec = XCNEW (struct record_full_entry);
248 rec->type = record_full_reg;
249 rec->u.reg.num = regnum;
250 rec->u.reg.len = register_size (gdbarch, regnum);
251 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
252 rec->u.reg.u.ptr = (gdb_byte *) xmalloc (rec->u.reg.len);
253
254 return rec;
255 }
256
257 /* Free a record_full_reg record entry. */
258
259 static inline void
260 record_full_reg_release (struct record_full_entry *rec)
261 {
262 gdb_assert (rec->type == record_full_reg);
263 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
264 xfree (rec->u.reg.u.ptr);
265 xfree (rec);
266 }
267
268 /* Alloc a record_full_mem record entry. */
269
270 static inline struct record_full_entry *
271 record_full_mem_alloc (CORE_ADDR addr, int len)
272 {
273 struct record_full_entry *rec;
274
275 rec = XCNEW (struct record_full_entry);
276 rec->type = record_full_mem;
277 rec->u.mem.addr = addr;
278 rec->u.mem.len = len;
279 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
280 rec->u.mem.u.ptr = (gdb_byte *) xmalloc (len);
281
282 return rec;
283 }
284
285 /* Free a record_full_mem record entry. */
286
287 static inline void
288 record_full_mem_release (struct record_full_entry *rec)
289 {
290 gdb_assert (rec->type == record_full_mem);
291 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
292 xfree (rec->u.mem.u.ptr);
293 xfree (rec);
294 }
295
296 /* Alloc a record_full_end record entry. */
297
298 static inline struct record_full_entry *
299 record_full_end_alloc (void)
300 {
301 struct record_full_entry *rec;
302
303 rec = XCNEW (struct record_full_entry);
304 rec->type = record_full_end;
305
306 return rec;
307 }
308
309 /* Free a record_full_end record entry. */
310
311 static inline void
312 record_full_end_release (struct record_full_entry *rec)
313 {
314 xfree (rec);
315 }
316
317 /* Free one record entry, any type.
318 Return entry->type, in case caller wants to know. */
319
320 static inline enum record_full_type
321 record_full_entry_release (struct record_full_entry *rec)
322 {
323 enum record_full_type type = rec->type;
324
325 switch (type) {
326 case record_full_reg:
327 record_full_reg_release (rec);
328 break;
329 case record_full_mem:
330 record_full_mem_release (rec);
331 break;
332 case record_full_end:
333 record_full_end_release (rec);
334 break;
335 }
336 return type;
337 }
338
339 /* Free all record entries in list pointed to by REC. */
340
341 static void
342 record_full_list_release (struct record_full_entry *rec)
343 {
344 if (!rec)
345 return;
346
347 while (rec->next)
348 rec = rec->next;
349
350 while (rec->prev)
351 {
352 rec = rec->prev;
353 record_full_entry_release (rec->next);
354 }
355
356 if (rec == &record_full_first)
357 {
358 record_full_insn_num = 0;
359 record_full_first.next = NULL;
360 }
361 else
362 record_full_entry_release (rec);
363 }
364
365 /* Free all record entries forward of the given list position. */
366
367 static void
368 record_full_list_release_following (struct record_full_entry *rec)
369 {
370 struct record_full_entry *tmp = rec->next;
371
372 rec->next = NULL;
373 while (tmp)
374 {
375 rec = tmp->next;
376 if (record_full_entry_release (tmp) == record_full_end)
377 {
378 record_full_insn_num--;
379 record_full_insn_count--;
380 }
381 tmp = rec;
382 }
383 }
384
385 /* Delete the first instruction from the beginning of the log, to make
386 room for adding a new instruction at the end of the log.
387
388 Note -- this function does not modify record_full_insn_num. */
389
390 static void
391 record_full_list_release_first (void)
392 {
393 struct record_full_entry *tmp;
394
395 if (!record_full_first.next)
396 return;
397
398 /* Loop until a record_full_end. */
399 while (1)
400 {
401 /* Cut record_full_first.next out of the linked list. */
402 tmp = record_full_first.next;
403 record_full_first.next = tmp->next;
404 tmp->next->prev = &record_full_first;
405
406 /* tmp is now isolated, and can be deleted. */
407 if (record_full_entry_release (tmp) == record_full_end)
408 break; /* End loop at first record_full_end. */
409
410 if (!record_full_first.next)
411 {
412 gdb_assert (record_full_insn_num == 1);
413 break; /* End loop when list is empty. */
414 }
415 }
416 }
417
418 /* Add a struct record_full_entry to record_full_arch_list. */
419
420 static void
421 record_full_arch_list_add (struct record_full_entry *rec)
422 {
423 if (record_debug > 1)
424 fprintf_unfiltered (gdb_stdlog,
425 "Process record: record_full_arch_list_add %s.\n",
426 host_address_to_string (rec));
427
428 if (record_full_arch_list_tail)
429 {
430 record_full_arch_list_tail->next = rec;
431 rec->prev = record_full_arch_list_tail;
432 record_full_arch_list_tail = rec;
433 }
434 else
435 {
436 record_full_arch_list_head = rec;
437 record_full_arch_list_tail = rec;
438 }
439 }
440
441 /* Return the value storage location of a record entry. */
442 static inline gdb_byte *
443 record_full_get_loc (struct record_full_entry *rec)
444 {
445 switch (rec->type) {
446 case record_full_mem:
447 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
448 return rec->u.mem.u.ptr;
449 else
450 return rec->u.mem.u.buf;
451 case record_full_reg:
452 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
453 return rec->u.reg.u.ptr;
454 else
455 return rec->u.reg.u.buf;
456 case record_full_end:
457 default:
458 gdb_assert_not_reached ("unexpected record_full_entry type");
459 return NULL;
460 }
461 }
462
463 /* Record the value of a register NUM to record_full_arch_list. */
464
465 int
466 record_full_arch_list_add_reg (struct regcache *regcache, int regnum)
467 {
468 struct record_full_entry *rec;
469
470 if (record_debug > 1)
471 fprintf_unfiltered (gdb_stdlog,
472 "Process record: add register num = %d to "
473 "record list.\n",
474 regnum);
475
476 rec = record_full_reg_alloc (regcache, regnum);
477
478 regcache_raw_read (regcache, regnum, record_full_get_loc (rec));
479
480 record_full_arch_list_add (rec);
481
482 return 0;
483 }
484
485 /* Record the value of a region of memory whose address is ADDR and
486 length is LEN to record_full_arch_list. */
487
488 int
489 record_full_arch_list_add_mem (CORE_ADDR addr, int len)
490 {
491 struct record_full_entry *rec;
492
493 if (record_debug > 1)
494 fprintf_unfiltered (gdb_stdlog,
495 "Process record: add mem addr = %s len = %d to "
496 "record list.\n",
497 paddress (target_gdbarch (), addr), len);
498
499 if (!addr) /* FIXME: Why? Some arch must permit it... */
500 return 0;
501
502 rec = record_full_mem_alloc (addr, len);
503
504 if (record_read_memory (target_gdbarch (), addr,
505 record_full_get_loc (rec), len))
506 {
507 record_full_mem_release (rec);
508 return -1;
509 }
510
511 record_full_arch_list_add (rec);
512
513 return 0;
514 }
515
516 /* Add a record_full_end type struct record_full_entry to
517 record_full_arch_list. */
518
519 int
520 record_full_arch_list_add_end (void)
521 {
522 struct record_full_entry *rec;
523
524 if (record_debug > 1)
525 fprintf_unfiltered (gdb_stdlog,
526 "Process record: add end to arch list.\n");
527
528 rec = record_full_end_alloc ();
529 rec->u.end.sigval = GDB_SIGNAL_0;
530 rec->u.end.insn_num = ++record_full_insn_count;
531
532 record_full_arch_list_add (rec);
533
534 return 0;
535 }
536
537 static void
538 record_full_check_insn_num (int set_terminal)
539 {
540 if (record_full_insn_num == record_full_insn_max_num)
541 {
542 /* Ask user what to do. */
543 if (record_full_stop_at_limit)
544 {
545 int q;
546
547 if (set_terminal)
548 target_terminal_ours ();
549 q = yquery (_("Do you want to auto delete previous execution "
550 "log entries when record/replay buffer becomes "
551 "full (record full stop-at-limit)?"));
552 if (set_terminal)
553 target_terminal_inferior ();
554 if (q)
555 record_full_stop_at_limit = 0;
556 else
557 error (_("Process record: stopped by user."));
558 }
559 }
560 }
561
562 static void
563 record_full_arch_list_cleanups (void *ignore)
564 {
565 record_full_list_release (record_full_arch_list_tail);
566 }
567
568 /* Before inferior step (when GDB record the running message, inferior
569 only can step), GDB will call this function to record the values to
570 record_full_list. This function will call gdbarch_process_record to
571 record the running message of inferior and set them to
572 record_full_arch_list, and add it to record_full_list. */
573
574 static int
575 record_full_message (struct regcache *regcache, enum gdb_signal signal)
576 {
577 int ret;
578 struct gdbarch *gdbarch = get_regcache_arch (regcache);
579 struct cleanup *old_cleanups
580 = make_cleanup (record_full_arch_list_cleanups, 0);
581
582 record_full_arch_list_head = NULL;
583 record_full_arch_list_tail = NULL;
584
585 /* Check record_full_insn_num. */
586 record_full_check_insn_num (1);
587
588 /* If gdb sends a signal value to target_resume,
589 save it in the 'end' field of the previous instruction.
590
591 Maybe process record should record what really happened,
592 rather than what gdb pretends has happened.
593
594 So if Linux delivered the signal to the child process during
595 the record mode, we will record it and deliver it again in
596 the replay mode.
597
598 If user says "ignore this signal" during the record mode, then
599 it will be ignored again during the replay mode (no matter if
600 the user says something different, like "deliver this signal"
601 during the replay mode).
602
603 User should understand that nothing he does during the replay
604 mode will change the behavior of the child. If he tries,
605 then that is a user error.
606
607 But we should still deliver the signal to gdb during the replay,
608 if we delivered it during the recording. Therefore we should
609 record the signal during record_full_wait, not
610 record_full_resume. */
611 if (record_full_list != &record_full_first) /* FIXME better way to check */
612 {
613 gdb_assert (record_full_list->type == record_full_end);
614 record_full_list->u.end.sigval = signal;
615 }
616
617 if (signal == GDB_SIGNAL_0
618 || !gdbarch_process_record_signal_p (gdbarch))
619 ret = gdbarch_process_record (gdbarch,
620 regcache,
621 regcache_read_pc (regcache));
622 else
623 ret = gdbarch_process_record_signal (gdbarch,
624 regcache,
625 signal);
626
627 if (ret > 0)
628 error (_("Process record: inferior program stopped."));
629 if (ret < 0)
630 error (_("Process record: failed to record execution log."));
631
632 discard_cleanups (old_cleanups);
633
634 record_full_list->next = record_full_arch_list_head;
635 record_full_arch_list_head->prev = record_full_list;
636 record_full_list = record_full_arch_list_tail;
637
638 if (record_full_insn_num == record_full_insn_max_num)
639 record_full_list_release_first ();
640 else
641 record_full_insn_num++;
642
643 return 1;
644 }
645
646 struct record_full_message_args {
647 struct regcache *regcache;
648 enum gdb_signal signal;
649 };
650
651 static int
652 record_full_message_wrapper (void *args)
653 {
654 struct record_full_message_args *record_full_args
655 = (struct record_full_message_args *) args;
656
657 return record_full_message (record_full_args->regcache,
658 record_full_args->signal);
659 }
660
661 static int
662 record_full_message_wrapper_safe (struct regcache *regcache,
663 enum gdb_signal signal)
664 {
665 struct record_full_message_args args;
666
667 args.regcache = regcache;
668 args.signal = signal;
669
670 return catch_errors (record_full_message_wrapper, &args, "",
671 RETURN_MASK_ALL);
672 }
673
674 /* Set to 1 if record_full_store_registers and record_full_xfer_partial
675 doesn't need record. */
676
677 static int record_full_gdb_operation_disable = 0;
678
679 struct cleanup *
680 record_full_gdb_operation_disable_set (void)
681 {
682 struct cleanup *old_cleanups = NULL;
683
684 old_cleanups =
685 make_cleanup_restore_integer (&record_full_gdb_operation_disable);
686 record_full_gdb_operation_disable = 1;
687
688 return old_cleanups;
689 }
690
691 /* Flag set to TRUE for target_stopped_by_watchpoint. */
692 static enum target_stop_reason record_full_stop_reason
693 = TARGET_STOPPED_BY_NO_REASON;
694
695 /* Execute one instruction from the record log. Each instruction in
696 the log will be represented by an arbitrary sequence of register
697 entries and memory entries, followed by an 'end' entry. */
698
699 static inline void
700 record_full_exec_insn (struct regcache *regcache,
701 struct gdbarch *gdbarch,
702 struct record_full_entry *entry)
703 {
704 switch (entry->type)
705 {
706 case record_full_reg: /* reg */
707 {
708 gdb_byte reg[MAX_REGISTER_SIZE];
709
710 if (record_debug > 1)
711 fprintf_unfiltered (gdb_stdlog,
712 "Process record: record_full_reg %s to "
713 "inferior num = %d.\n",
714 host_address_to_string (entry),
715 entry->u.reg.num);
716
717 regcache_cooked_read (regcache, entry->u.reg.num, reg);
718 regcache_cooked_write (regcache, entry->u.reg.num,
719 record_full_get_loc (entry));
720 memcpy (record_full_get_loc (entry), reg, entry->u.reg.len);
721 }
722 break;
723
724 case record_full_mem: /* mem */
725 {
726 /* Nothing to do if the entry is flagged not_accessible. */
727 if (!entry->u.mem.mem_entry_not_accessible)
728 {
729 gdb_byte *mem = (gdb_byte *) xmalloc (entry->u.mem.len);
730 struct cleanup *cleanup = make_cleanup (xfree, mem);
731
732 if (record_debug > 1)
733 fprintf_unfiltered (gdb_stdlog,
734 "Process record: record_full_mem %s to "
735 "inferior addr = %s len = %d.\n",
736 host_address_to_string (entry),
737 paddress (gdbarch, entry->u.mem.addr),
738 entry->u.mem.len);
739
740 if (record_read_memory (gdbarch,
741 entry->u.mem.addr, mem, entry->u.mem.len))
742 entry->u.mem.mem_entry_not_accessible = 1;
743 else
744 {
745 if (target_write_memory (entry->u.mem.addr,
746 record_full_get_loc (entry),
747 entry->u.mem.len))
748 {
749 entry->u.mem.mem_entry_not_accessible = 1;
750 if (record_debug)
751 warning (_("Process record: error writing memory at "
752 "addr = %s len = %d."),
753 paddress (gdbarch, entry->u.mem.addr),
754 entry->u.mem.len);
755 }
756 else
757 {
758 memcpy (record_full_get_loc (entry), mem,
759 entry->u.mem.len);
760
761 /* We've changed memory --- check if a hardware
762 watchpoint should trap. Note that this
763 presently assumes the target beneath supports
764 continuable watchpoints. On non-continuable
765 watchpoints target, we'll want to check this
766 _before_ actually doing the memory change, and
767 not doing the change at all if the watchpoint
768 traps. */
769 if (hardware_watchpoint_inserted_in_range
770 (get_regcache_aspace (regcache),
771 entry->u.mem.addr, entry->u.mem.len))
772 record_full_stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
773 }
774 }
775
776 do_cleanups (cleanup);
777 }
778 }
779 break;
780 }
781 }
782
783 static void record_full_restore (void);
784
785 /* Asynchronous signal handle registered as event loop source for when
786 we have pending events ready to be passed to the core. */
787
788 static struct async_event_handler *record_full_async_inferior_event_token;
789
790 static void
791 record_full_async_inferior_event_handler (gdb_client_data data)
792 {
793 inferior_event_handler (INF_REG_EVENT, NULL);
794 }
795
796 /* Open the process record target. */
797
798 static void
799 record_full_core_open_1 (const char *name, int from_tty)
800 {
801 struct regcache *regcache = get_current_regcache ();
802 int regnum = gdbarch_num_regs (get_regcache_arch (regcache));
803 int i;
804
805 /* Get record_full_core_regbuf. */
806 target_fetch_registers (regcache, -1);
807 record_full_core_regbuf = (gdb_byte *) xmalloc (MAX_REGISTER_SIZE * regnum);
808 for (i = 0; i < regnum; i ++)
809 regcache_raw_collect (regcache, i,
810 record_full_core_regbuf + MAX_REGISTER_SIZE * i);
811
812 /* Get record_full_core_start and record_full_core_end. */
813 if (build_section_table (core_bfd, &record_full_core_start,
814 &record_full_core_end))
815 {
816 xfree (record_full_core_regbuf);
817 record_full_core_regbuf = NULL;
818 error (_("\"%s\": Can't find sections: %s"),
819 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
820 }
821
822 push_target (&record_full_core_ops);
823 record_full_restore ();
824 }
825
826 /* "to_open" target method for 'live' processes. */
827
828 static void
829 record_full_open_1 (const char *name, int from_tty)
830 {
831 if (record_debug)
832 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n");
833
834 /* check exec */
835 if (!target_has_execution)
836 error (_("Process record: the program is not being run."));
837 if (non_stop)
838 error (_("Process record target can't debug inferior in non-stop mode "
839 "(non-stop)."));
840
841 if (!gdbarch_process_record_p (target_gdbarch ()))
842 error (_("Process record: the current architecture doesn't support "
843 "record function."));
844
845 push_target (&record_full_ops);
846 }
847
848 static void record_full_init_record_breakpoints (void);
849
850 /* "to_open" target method. Open the process record target. */
851
852 static void
853 record_full_open (const char *name, int from_tty)
854 {
855 struct target_ops *t;
856
857 if (record_debug)
858 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n");
859
860 record_preopen ();
861
862 /* Reset */
863 record_full_insn_num = 0;
864 record_full_insn_count = 0;
865 record_full_list = &record_full_first;
866 record_full_list->next = NULL;
867
868 if (core_bfd)
869 record_full_core_open_1 (name, from_tty);
870 else
871 record_full_open_1 (name, from_tty);
872
873 /* Register extra event sources in the event loop. */
874 record_full_async_inferior_event_token
875 = create_async_event_handler (record_full_async_inferior_event_handler,
876 NULL);
877
878 record_full_init_record_breakpoints ();
879
880 observer_notify_record_changed (current_inferior (), 1);
881 }
882
883 /* "to_close" target method. Close the process record target. */
884
885 static void
886 record_full_close (struct target_ops *self)
887 {
888 struct record_full_core_buf_entry *entry;
889
890 if (record_debug)
891 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_close\n");
892
893 record_full_list_release (record_full_list);
894
895 /* Release record_full_core_regbuf. */
896 if (record_full_core_regbuf)
897 {
898 xfree (record_full_core_regbuf);
899 record_full_core_regbuf = NULL;
900 }
901
902 /* Release record_full_core_buf_list. */
903 if (record_full_core_buf_list)
904 {
905 for (entry = record_full_core_buf_list->prev; entry;
906 entry = entry->prev)
907 {
908 xfree (record_full_core_buf_list);
909 record_full_core_buf_list = entry;
910 }
911 record_full_core_buf_list = NULL;
912 }
913
914 if (record_full_async_inferior_event_token)
915 delete_async_event_handler (&record_full_async_inferior_event_token);
916 }
917
918 /* "to_async" target method. */
919
920 static void
921 record_full_async (struct target_ops *ops, int enable)
922 {
923 if (enable)
924 mark_async_event_handler (record_full_async_inferior_event_token);
925 else
926 clear_async_event_handler (record_full_async_inferior_event_token);
927
928 ops->beneath->to_async (ops->beneath, enable);
929 }
930
931 static int record_full_resume_step = 0;
932
933 /* True if we've been resumed, and so each record_full_wait call should
934 advance execution. If this is false, record_full_wait will return a
935 TARGET_WAITKIND_IGNORE. */
936 static int record_full_resumed = 0;
937
938 /* The execution direction of the last resume we got. This is
939 necessary for async mode. Vis (order is not strictly accurate):
940
941 1. user has the global execution direction set to forward
942 2. user does a reverse-step command
943 3. record_full_resume is called with global execution direction
944 temporarily switched to reverse
945 4. GDB's execution direction is reverted back to forward
946 5. target record notifies event loop there's an event to handle
947 6. infrun asks the target which direction was it going, and switches
948 the global execution direction accordingly (to reverse)
949 7. infrun polls an event out of the record target, and handles it
950 8. GDB goes back to the event loop, and goto #4.
951 */
952 static enum exec_direction_kind record_full_execution_dir = EXEC_FORWARD;
953
954 /* "to_resume" target method. Resume the process record target. */
955
956 static void
957 record_full_resume (struct target_ops *ops, ptid_t ptid, int step,
958 enum gdb_signal signal)
959 {
960 record_full_resume_step = step;
961 record_full_resumed = 1;
962 record_full_execution_dir = execution_direction;
963
964 if (!RECORD_FULL_IS_REPLAY)
965 {
966 struct gdbarch *gdbarch = target_thread_architecture (ptid);
967
968 record_full_message (get_current_regcache (), signal);
969
970 if (!step)
971 {
972 /* This is not hard single step. */
973 if (!gdbarch_software_single_step_p (gdbarch))
974 {
975 /* This is a normal continue. */
976 step = 1;
977 }
978 else
979 {
980 /* This arch support soft sigle step. */
981 if (thread_has_single_step_breakpoints_set (inferior_thread ()))
982 {
983 /* This is a soft single step. */
984 record_full_resume_step = 1;
985 }
986 else
987 {
988 /* This is a continue.
989 Try to insert a soft single step breakpoint. */
990 if (!gdbarch_software_single_step (gdbarch,
991 get_current_frame ()))
992 {
993 /* This system don't want use soft single step.
994 Use hard sigle step. */
995 step = 1;
996 }
997 }
998 }
999 }
1000
1001 /* Make sure the target beneath reports all signals. */
1002 target_pass_signals (0, NULL);
1003
1004 ops->beneath->to_resume (ops->beneath, ptid, step, signal);
1005 }
1006
1007 /* We are about to start executing the inferior (or simulate it),
1008 let's register it with the event loop. */
1009 if (target_can_async_p ())
1010 target_async (1);
1011 }
1012
1013 static int record_full_get_sig = 0;
1014
1015 /* SIGINT signal handler, registered by "to_wait" method. */
1016
1017 static void
1018 record_full_sig_handler (int signo)
1019 {
1020 if (record_debug)
1021 fprintf_unfiltered (gdb_stdlog, "Process record: get a signal\n");
1022
1023 /* It will break the running inferior in replay mode. */
1024 record_full_resume_step = 1;
1025
1026 /* It will let record_full_wait set inferior status to get the signal
1027 SIGINT. */
1028 record_full_get_sig = 1;
1029 }
1030
1031 static void
1032 record_full_wait_cleanups (void *ignore)
1033 {
1034 if (execution_direction == EXEC_REVERSE)
1035 {
1036 if (record_full_list->next)
1037 record_full_list = record_full_list->next;
1038 }
1039 else
1040 record_full_list = record_full_list->prev;
1041 }
1042
1043 /* "to_wait" target method for process record target.
1044
1045 In record mode, the target is always run in singlestep mode
1046 (even when gdb says to continue). The to_wait method intercepts
1047 the stop events and determines which ones are to be passed on to
1048 gdb. Most stop events are just singlestep events that gdb is not
1049 to know about, so the to_wait method just records them and keeps
1050 singlestepping.
1051
1052 In replay mode, this function emulates the recorded execution log,
1053 one instruction at a time (forward or backward), and determines
1054 where to stop. */
1055
1056 static ptid_t
1057 record_full_wait_1 (struct target_ops *ops,
1058 ptid_t ptid, struct target_waitstatus *status,
1059 int options)
1060 {
1061 struct cleanup *set_cleanups = record_full_gdb_operation_disable_set ();
1062
1063 if (record_debug)
1064 fprintf_unfiltered (gdb_stdlog,
1065 "Process record: record_full_wait "
1066 "record_full_resume_step = %d, "
1067 "record_full_resumed = %d, direction=%s\n",
1068 record_full_resume_step, record_full_resumed,
1069 record_full_execution_dir == EXEC_FORWARD
1070 ? "forward" : "reverse");
1071
1072 if (!record_full_resumed)
1073 {
1074 gdb_assert ((options & TARGET_WNOHANG) != 0);
1075
1076 /* No interesting event. */
1077 status->kind = TARGET_WAITKIND_IGNORE;
1078 return minus_one_ptid;
1079 }
1080
1081 record_full_get_sig = 0;
1082 signal (SIGINT, record_full_sig_handler);
1083
1084 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1085
1086 if (!RECORD_FULL_IS_REPLAY && ops != &record_full_core_ops)
1087 {
1088 if (record_full_resume_step)
1089 {
1090 /* This is a single step. */
1091 return ops->beneath->to_wait (ops->beneath, ptid, status, options);
1092 }
1093 else
1094 {
1095 /* This is not a single step. */
1096 ptid_t ret;
1097 CORE_ADDR tmp_pc;
1098 struct gdbarch *gdbarch = target_thread_architecture (inferior_ptid);
1099
1100 while (1)
1101 {
1102 struct thread_info *tp;
1103
1104 ret = ops->beneath->to_wait (ops->beneath, ptid, status, options);
1105 if (status->kind == TARGET_WAITKIND_IGNORE)
1106 {
1107 if (record_debug)
1108 fprintf_unfiltered (gdb_stdlog,
1109 "Process record: record_full_wait "
1110 "target beneath not done yet\n");
1111 return ret;
1112 }
1113
1114 ALL_NON_EXITED_THREADS (tp)
1115 delete_single_step_breakpoints (tp);
1116
1117 if (record_full_resume_step)
1118 return ret;
1119
1120 /* Is this a SIGTRAP? */
1121 if (status->kind == TARGET_WAITKIND_STOPPED
1122 && status->value.sig == GDB_SIGNAL_TRAP)
1123 {
1124 struct regcache *regcache;
1125 struct address_space *aspace;
1126 enum target_stop_reason *stop_reason_p
1127 = &record_full_stop_reason;
1128
1129 /* Yes -- this is likely our single-step finishing,
1130 but check if there's any reason the core would be
1131 interested in the event. */
1132
1133 registers_changed ();
1134 regcache = get_current_regcache ();
1135 tmp_pc = regcache_read_pc (regcache);
1136 aspace = get_regcache_aspace (regcache);
1137
1138 if (target_stopped_by_watchpoint ())
1139 {
1140 /* Always interested in watchpoints. */
1141 }
1142 else if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1143 stop_reason_p))
1144 {
1145 /* There is a breakpoint here. Let the core
1146 handle it. */
1147 }
1148 else
1149 {
1150 /* This is a single-step trap. Record the
1151 insn and issue another step.
1152 FIXME: this part can be a random SIGTRAP too.
1153 But GDB cannot handle it. */
1154 int step = 1;
1155
1156 if (!record_full_message_wrapper_safe (regcache,
1157 GDB_SIGNAL_0))
1158 {
1159 status->kind = TARGET_WAITKIND_STOPPED;
1160 status->value.sig = GDB_SIGNAL_0;
1161 break;
1162 }
1163
1164 if (gdbarch_software_single_step_p (gdbarch))
1165 {
1166 /* Try to insert the software single step breakpoint.
1167 If insert success, set step to 0. */
1168 set_executing (inferior_ptid, 0);
1169 reinit_frame_cache ();
1170 if (gdbarch_software_single_step (gdbarch,
1171 get_current_frame ()))
1172 step = 0;
1173 set_executing (inferior_ptid, 1);
1174 }
1175
1176 if (record_debug)
1177 fprintf_unfiltered (gdb_stdlog,
1178 "Process record: record_full_wait "
1179 "issuing one more step in the "
1180 "target beneath\n");
1181 ops->beneath->to_resume (ops->beneath, ptid, step,
1182 GDB_SIGNAL_0);
1183 continue;
1184 }
1185 }
1186
1187 /* The inferior is broken by a breakpoint or a signal. */
1188 break;
1189 }
1190
1191 return ret;
1192 }
1193 }
1194 else
1195 {
1196 struct regcache *regcache = get_current_regcache ();
1197 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1198 struct address_space *aspace = get_regcache_aspace (regcache);
1199 int continue_flag = 1;
1200 int first_record_full_end = 1;
1201 struct cleanup *old_cleanups
1202 = make_cleanup (record_full_wait_cleanups, 0);
1203 CORE_ADDR tmp_pc;
1204
1205 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1206 status->kind = TARGET_WAITKIND_STOPPED;
1207
1208 /* Check breakpoint when forward execute. */
1209 if (execution_direction == EXEC_FORWARD)
1210 {
1211 tmp_pc = regcache_read_pc (regcache);
1212 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1213 &record_full_stop_reason))
1214 {
1215 if (record_debug)
1216 fprintf_unfiltered (gdb_stdlog,
1217 "Process record: break at %s.\n",
1218 paddress (gdbarch, tmp_pc));
1219 goto replay_out;
1220 }
1221 }
1222
1223 /* If GDB is in terminal_inferior mode, it will not get the signal.
1224 And in GDB replay mode, GDB doesn't need to be in terminal_inferior
1225 mode, because inferior will not executed.
1226 Then set it to terminal_ours to make GDB get the signal. */
1227 target_terminal_ours ();
1228
1229 /* In EXEC_FORWARD mode, record_full_list points to the tail of prev
1230 instruction. */
1231 if (execution_direction == EXEC_FORWARD && record_full_list->next)
1232 record_full_list = record_full_list->next;
1233
1234 /* Loop over the record_full_list, looking for the next place to
1235 stop. */
1236 do
1237 {
1238 /* Check for beginning and end of log. */
1239 if (execution_direction == EXEC_REVERSE
1240 && record_full_list == &record_full_first)
1241 {
1242 /* Hit beginning of record log in reverse. */
1243 status->kind = TARGET_WAITKIND_NO_HISTORY;
1244 break;
1245 }
1246 if (execution_direction != EXEC_REVERSE && !record_full_list->next)
1247 {
1248 /* Hit end of record log going forward. */
1249 status->kind = TARGET_WAITKIND_NO_HISTORY;
1250 break;
1251 }
1252
1253 record_full_exec_insn (regcache, gdbarch, record_full_list);
1254
1255 if (record_full_list->type == record_full_end)
1256 {
1257 if (record_debug > 1)
1258 fprintf_unfiltered (gdb_stdlog,
1259 "Process record: record_full_end %s to "
1260 "inferior.\n",
1261 host_address_to_string (record_full_list));
1262
1263 if (first_record_full_end && execution_direction == EXEC_REVERSE)
1264 {
1265 /* When reverse excute, the first record_full_end is the
1266 part of current instruction. */
1267 first_record_full_end = 0;
1268 }
1269 else
1270 {
1271 /* In EXEC_REVERSE mode, this is the record_full_end of prev
1272 instruction.
1273 In EXEC_FORWARD mode, this is the record_full_end of
1274 current instruction. */
1275 /* step */
1276 if (record_full_resume_step)
1277 {
1278 if (record_debug > 1)
1279 fprintf_unfiltered (gdb_stdlog,
1280 "Process record: step.\n");
1281 continue_flag = 0;
1282 }
1283
1284 /* check breakpoint */
1285 tmp_pc = regcache_read_pc (regcache);
1286 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1287 &record_full_stop_reason))
1288 {
1289 if (record_debug)
1290 fprintf_unfiltered (gdb_stdlog,
1291 "Process record: break "
1292 "at %s.\n",
1293 paddress (gdbarch, tmp_pc));
1294
1295 continue_flag = 0;
1296 }
1297
1298 if (record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
1299 {
1300 if (record_debug)
1301 fprintf_unfiltered (gdb_stdlog,
1302 "Process record: hit hw "
1303 "watchpoint.\n");
1304 continue_flag = 0;
1305 }
1306 /* Check target signal */
1307 if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1308 /* FIXME: better way to check */
1309 continue_flag = 0;
1310 }
1311 }
1312
1313 if (continue_flag)
1314 {
1315 if (execution_direction == EXEC_REVERSE)
1316 {
1317 if (record_full_list->prev)
1318 record_full_list = record_full_list->prev;
1319 }
1320 else
1321 {
1322 if (record_full_list->next)
1323 record_full_list = record_full_list->next;
1324 }
1325 }
1326 }
1327 while (continue_flag);
1328
1329 replay_out:
1330 if (record_full_get_sig)
1331 status->value.sig = GDB_SIGNAL_INT;
1332 else if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1333 /* FIXME: better way to check */
1334 status->value.sig = record_full_list->u.end.sigval;
1335 else
1336 status->value.sig = GDB_SIGNAL_TRAP;
1337
1338 discard_cleanups (old_cleanups);
1339 }
1340
1341 signal (SIGINT, handle_sigint);
1342
1343 do_cleanups (set_cleanups);
1344 return inferior_ptid;
1345 }
1346
1347 static ptid_t
1348 record_full_wait (struct target_ops *ops,
1349 ptid_t ptid, struct target_waitstatus *status,
1350 int options)
1351 {
1352 ptid_t return_ptid;
1353
1354 return_ptid = record_full_wait_1 (ops, ptid, status, options);
1355 if (status->kind != TARGET_WAITKIND_IGNORE)
1356 {
1357 /* We're reporting a stop. Make sure any spurious
1358 target_wait(WNOHANG) doesn't advance the target until the
1359 core wants us resumed again. */
1360 record_full_resumed = 0;
1361 }
1362 return return_ptid;
1363 }
1364
1365 static int
1366 record_full_stopped_by_watchpoint (struct target_ops *ops)
1367 {
1368 if (RECORD_FULL_IS_REPLAY)
1369 return record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
1370 else
1371 return ops->beneath->to_stopped_by_watchpoint (ops->beneath);
1372 }
1373
1374 static int
1375 record_full_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
1376 {
1377 if (RECORD_FULL_IS_REPLAY)
1378 return 0;
1379 else
1380 return ops->beneath->to_stopped_data_address (ops->beneath, addr_p);
1381 }
1382
1383 /* The to_stopped_by_sw_breakpoint method of target record-full. */
1384
1385 static int
1386 record_full_stopped_by_sw_breakpoint (struct target_ops *ops)
1387 {
1388 return record_full_stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
1389 }
1390
1391 /* The to_supports_stopped_by_sw_breakpoint method of target
1392 record-full. */
1393
1394 static int
1395 record_full_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
1396 {
1397 return 1;
1398 }
1399
1400 /* The to_stopped_by_hw_breakpoint method of target record-full. */
1401
1402 static int
1403 record_full_stopped_by_hw_breakpoint (struct target_ops *ops)
1404 {
1405 return record_full_stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
1406 }
1407
1408 /* The to_supports_stopped_by_sw_breakpoint method of target
1409 record-full. */
1410
1411 static int
1412 record_full_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
1413 {
1414 return 1;
1415 }
1416
1417 /* Record registers change (by user or by GDB) to list as an instruction. */
1418
1419 static void
1420 record_full_registers_change (struct regcache *regcache, int regnum)
1421 {
1422 /* Check record_full_insn_num. */
1423 record_full_check_insn_num (0);
1424
1425 record_full_arch_list_head = NULL;
1426 record_full_arch_list_tail = NULL;
1427
1428 if (regnum < 0)
1429 {
1430 int i;
1431
1432 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
1433 {
1434 if (record_full_arch_list_add_reg (regcache, i))
1435 {
1436 record_full_list_release (record_full_arch_list_tail);
1437 error (_("Process record: failed to record execution log."));
1438 }
1439 }
1440 }
1441 else
1442 {
1443 if (record_full_arch_list_add_reg (regcache, regnum))
1444 {
1445 record_full_list_release (record_full_arch_list_tail);
1446 error (_("Process record: failed to record execution log."));
1447 }
1448 }
1449 if (record_full_arch_list_add_end ())
1450 {
1451 record_full_list_release (record_full_arch_list_tail);
1452 error (_("Process record: failed to record execution log."));
1453 }
1454 record_full_list->next = record_full_arch_list_head;
1455 record_full_arch_list_head->prev = record_full_list;
1456 record_full_list = record_full_arch_list_tail;
1457
1458 if (record_full_insn_num == record_full_insn_max_num)
1459 record_full_list_release_first ();
1460 else
1461 record_full_insn_num++;
1462 }
1463
1464 /* "to_store_registers" method for process record target. */
1465
1466 static void
1467 record_full_store_registers (struct target_ops *ops,
1468 struct regcache *regcache,
1469 int regno)
1470 {
1471 if (!record_full_gdb_operation_disable)
1472 {
1473 if (RECORD_FULL_IS_REPLAY)
1474 {
1475 int n;
1476
1477 /* Let user choose if he wants to write register or not. */
1478 if (regno < 0)
1479 n =
1480 query (_("Because GDB is in replay mode, changing the "
1481 "value of a register will make the execution "
1482 "log unusable from this point onward. "
1483 "Change all registers?"));
1484 else
1485 n =
1486 query (_("Because GDB is in replay mode, changing the value "
1487 "of a register will make the execution log unusable "
1488 "from this point onward. Change register %s?"),
1489 gdbarch_register_name (get_regcache_arch (regcache),
1490 regno));
1491
1492 if (!n)
1493 {
1494 /* Invalidate the value of regcache that was set in function
1495 "regcache_raw_write". */
1496 if (regno < 0)
1497 {
1498 int i;
1499
1500 for (i = 0;
1501 i < gdbarch_num_regs (get_regcache_arch (regcache));
1502 i++)
1503 regcache_invalidate (regcache, i);
1504 }
1505 else
1506 regcache_invalidate (regcache, regno);
1507
1508 error (_("Process record canceled the operation."));
1509 }
1510
1511 /* Destroy the record from here forward. */
1512 record_full_list_release_following (record_full_list);
1513 }
1514
1515 record_full_registers_change (regcache, regno);
1516 }
1517 ops->beneath->to_store_registers (ops->beneath, regcache, regno);
1518 }
1519
1520 /* "to_xfer_partial" method. Behavior is conditional on
1521 RECORD_FULL_IS_REPLAY.
1522 In replay mode, we cannot write memory unles we are willing to
1523 invalidate the record/replay log from this point forward. */
1524
1525 static enum target_xfer_status
1526 record_full_xfer_partial (struct target_ops *ops, enum target_object object,
1527 const char *annex, gdb_byte *readbuf,
1528 const gdb_byte *writebuf, ULONGEST offset,
1529 ULONGEST len, ULONGEST *xfered_len)
1530 {
1531 if (!record_full_gdb_operation_disable
1532 && (object == TARGET_OBJECT_MEMORY
1533 || object == TARGET_OBJECT_RAW_MEMORY) && writebuf)
1534 {
1535 if (RECORD_FULL_IS_REPLAY)
1536 {
1537 /* Let user choose if he wants to write memory or not. */
1538 if (!query (_("Because GDB is in replay mode, writing to memory "
1539 "will make the execution log unusable from this "
1540 "point onward. Write memory at address %s?"),
1541 paddress (target_gdbarch (), offset)))
1542 error (_("Process record canceled the operation."));
1543
1544 /* Destroy the record from here forward. */
1545 record_full_list_release_following (record_full_list);
1546 }
1547
1548 /* Check record_full_insn_num */
1549 record_full_check_insn_num (0);
1550
1551 /* Record registers change to list as an instruction. */
1552 record_full_arch_list_head = NULL;
1553 record_full_arch_list_tail = NULL;
1554 if (record_full_arch_list_add_mem (offset, len))
1555 {
1556 record_full_list_release (record_full_arch_list_tail);
1557 if (record_debug)
1558 fprintf_unfiltered (gdb_stdlog,
1559 "Process record: failed to record "
1560 "execution log.");
1561 return TARGET_XFER_E_IO;
1562 }
1563 if (record_full_arch_list_add_end ())
1564 {
1565 record_full_list_release (record_full_arch_list_tail);
1566 if (record_debug)
1567 fprintf_unfiltered (gdb_stdlog,
1568 "Process record: failed to record "
1569 "execution log.");
1570 return TARGET_XFER_E_IO;
1571 }
1572 record_full_list->next = record_full_arch_list_head;
1573 record_full_arch_list_head->prev = record_full_list;
1574 record_full_list = record_full_arch_list_tail;
1575
1576 if (record_full_insn_num == record_full_insn_max_num)
1577 record_full_list_release_first ();
1578 else
1579 record_full_insn_num++;
1580 }
1581
1582 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1583 readbuf, writebuf, offset,
1584 len, xfered_len);
1585 }
1586
1587 /* This structure represents a breakpoint inserted while the record
1588 target is active. We use this to know when to install/remove
1589 breakpoints in/from the target beneath. For example, a breakpoint
1590 may be inserted while recording, but removed when not replaying nor
1591 recording. In that case, the breakpoint had not been inserted on
1592 the target beneath, so we should not try to remove it there. */
1593
1594 struct record_full_breakpoint
1595 {
1596 /* The address and address space the breakpoint was set at. */
1597 struct address_space *address_space;
1598 CORE_ADDR addr;
1599
1600 /* True when the breakpoint has been also installed in the target
1601 beneath. This will be false for breakpoints set during replay or
1602 when recording. */
1603 int in_target_beneath;
1604 };
1605
1606 typedef struct record_full_breakpoint *record_full_breakpoint_p;
1607 DEF_VEC_P(record_full_breakpoint_p);
1608
1609 /* The list of breakpoints inserted while the record target is
1610 active. */
1611 VEC(record_full_breakpoint_p) *record_full_breakpoints = NULL;
1612
1613 static void
1614 record_full_sync_record_breakpoints (struct bp_location *loc, void *data)
1615 {
1616 if (loc->loc_type != bp_loc_software_breakpoint)
1617 return;
1618
1619 if (loc->inserted)
1620 {
1621 struct record_full_breakpoint *bp = XNEW (struct record_full_breakpoint);
1622
1623 bp->addr = loc->target_info.placed_address;
1624 bp->address_space = loc->target_info.placed_address_space;
1625
1626 bp->in_target_beneath = 1;
1627
1628 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp);
1629 }
1630 }
1631
1632 /* Sync existing breakpoints to record_full_breakpoints. */
1633
1634 static void
1635 record_full_init_record_breakpoints (void)
1636 {
1637 VEC_free (record_full_breakpoint_p, record_full_breakpoints);
1638
1639 iterate_over_bp_locations (record_full_sync_record_breakpoints);
1640 }
1641
1642 /* Behavior is conditional on RECORD_FULL_IS_REPLAY. We will not actually
1643 insert or remove breakpoints in the real target when replaying, nor
1644 when recording. */
1645
1646 static int
1647 record_full_insert_breakpoint (struct target_ops *ops,
1648 struct gdbarch *gdbarch,
1649 struct bp_target_info *bp_tgt)
1650 {
1651 struct record_full_breakpoint *bp;
1652 int in_target_beneath = 0;
1653
1654 if (!RECORD_FULL_IS_REPLAY)
1655 {
1656 /* When recording, we currently always single-step, so we don't
1657 really need to install regular breakpoints in the inferior.
1658 However, we do have to insert software single-step
1659 breakpoints, in case the target can't hardware step. To keep
1660 things single, we always insert. */
1661 struct cleanup *old_cleanups;
1662 int ret;
1663
1664 old_cleanups = record_full_gdb_operation_disable_set ();
1665 ret = ops->beneath->to_insert_breakpoint (ops->beneath, gdbarch, bp_tgt);
1666 do_cleanups (old_cleanups);
1667
1668 if (ret != 0)
1669 return ret;
1670
1671 in_target_beneath = 1;
1672 }
1673
1674 bp = XNEW (struct record_full_breakpoint);
1675 bp->addr = bp_tgt->placed_address;
1676 bp->address_space = bp_tgt->placed_address_space;
1677 bp->in_target_beneath = in_target_beneath;
1678 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp);
1679 return 0;
1680 }
1681
1682 /* "to_remove_breakpoint" method for process record target. */
1683
1684 static int
1685 record_full_remove_breakpoint (struct target_ops *ops,
1686 struct gdbarch *gdbarch,
1687 struct bp_target_info *bp_tgt)
1688 {
1689 struct record_full_breakpoint *bp;
1690 int ix;
1691
1692 for (ix = 0;
1693 VEC_iterate (record_full_breakpoint_p,
1694 record_full_breakpoints, ix, bp);
1695 ++ix)
1696 {
1697 if (bp->addr == bp_tgt->placed_address
1698 && bp->address_space == bp_tgt->placed_address_space)
1699 {
1700 if (bp->in_target_beneath)
1701 {
1702 struct cleanup *old_cleanups;
1703 int ret;
1704
1705 old_cleanups = record_full_gdb_operation_disable_set ();
1706 ret = ops->beneath->to_remove_breakpoint (ops->beneath, gdbarch,
1707 bp_tgt);
1708 do_cleanups (old_cleanups);
1709
1710 if (ret != 0)
1711 return ret;
1712 }
1713
1714 VEC_unordered_remove (record_full_breakpoint_p,
1715 record_full_breakpoints, ix);
1716 return 0;
1717 }
1718 }
1719
1720 gdb_assert_not_reached ("removing unknown breakpoint");
1721 }
1722
1723 /* "to_can_execute_reverse" method for process record target. */
1724
1725 static int
1726 record_full_can_execute_reverse (struct target_ops *self)
1727 {
1728 return 1;
1729 }
1730
1731 /* "to_get_bookmark" method for process record and prec over core. */
1732
1733 static gdb_byte *
1734 record_full_get_bookmark (struct target_ops *self, const char *args,
1735 int from_tty)
1736 {
1737 char *ret = NULL;
1738
1739 /* Return stringified form of instruction count. */
1740 if (record_full_list && record_full_list->type == record_full_end)
1741 ret = xstrdup (pulongest (record_full_list->u.end.insn_num));
1742
1743 if (record_debug)
1744 {
1745 if (ret)
1746 fprintf_unfiltered (gdb_stdlog,
1747 "record_full_get_bookmark returns %s\n", ret);
1748 else
1749 fprintf_unfiltered (gdb_stdlog,
1750 "record_full_get_bookmark returns NULL\n");
1751 }
1752 return (gdb_byte *) ret;
1753 }
1754
1755 /* "to_goto_bookmark" method for process record and prec over core. */
1756
1757 static void
1758 record_full_goto_bookmark (struct target_ops *self,
1759 const gdb_byte *raw_bookmark, int from_tty)
1760 {
1761 const char *bookmark = (const char *) raw_bookmark;
1762 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1763
1764 if (record_debug)
1765 fprintf_unfiltered (gdb_stdlog,
1766 "record_full_goto_bookmark receives %s\n", bookmark);
1767
1768 if (bookmark[0] == '\'' || bookmark[0] == '\"')
1769 {
1770 char *copy;
1771
1772 if (bookmark[strlen (bookmark) - 1] != bookmark[0])
1773 error (_("Unbalanced quotes: %s"), bookmark);
1774
1775
1776 copy = savestring (bookmark + 1, strlen (bookmark) - 2);
1777 make_cleanup (xfree, copy);
1778 bookmark = copy;
1779 }
1780
1781 record_goto (bookmark);
1782
1783 do_cleanups (cleanup);
1784 }
1785
1786 static enum exec_direction_kind
1787 record_full_execution_direction (struct target_ops *self)
1788 {
1789 return record_full_execution_dir;
1790 }
1791
1792 static void
1793 record_full_info (struct target_ops *self)
1794 {
1795 struct record_full_entry *p;
1796
1797 if (RECORD_FULL_IS_REPLAY)
1798 printf_filtered (_("Replay mode:\n"));
1799 else
1800 printf_filtered (_("Record mode:\n"));
1801
1802 /* Find entry for first actual instruction in the log. */
1803 for (p = record_full_first.next;
1804 p != NULL && p->type != record_full_end;
1805 p = p->next)
1806 ;
1807
1808 /* Do we have a log at all? */
1809 if (p != NULL && p->type == record_full_end)
1810 {
1811 /* Display instruction number for first instruction in the log. */
1812 printf_filtered (_("Lowest recorded instruction number is %s.\n"),
1813 pulongest (p->u.end.insn_num));
1814
1815 /* If in replay mode, display where we are in the log. */
1816 if (RECORD_FULL_IS_REPLAY)
1817 printf_filtered (_("Current instruction number is %s.\n"),
1818 pulongest (record_full_list->u.end.insn_num));
1819
1820 /* Display instruction number for last instruction in the log. */
1821 printf_filtered (_("Highest recorded instruction number is %s.\n"),
1822 pulongest (record_full_insn_count));
1823
1824 /* Display log count. */
1825 printf_filtered (_("Log contains %u instructions.\n"),
1826 record_full_insn_num);
1827 }
1828 else
1829 printf_filtered (_("No instructions have been logged.\n"));
1830
1831 /* Display max log size. */
1832 printf_filtered (_("Max logged instructions is %u.\n"),
1833 record_full_insn_max_num);
1834 }
1835
1836 /* The "to_record_delete" target method. */
1837
1838 static void
1839 record_full_delete (struct target_ops *self)
1840 {
1841 record_full_list_release_following (record_full_list);
1842 }
1843
1844 /* The "to_record_is_replaying" target method. */
1845
1846 static int
1847 record_full_is_replaying (struct target_ops *self, ptid_t ptid)
1848 {
1849 return RECORD_FULL_IS_REPLAY;
1850 }
1851
1852 /* The "to_record_will_replay" target method. */
1853
1854 static int
1855 record_full_will_replay (struct target_ops *self, ptid_t ptid, int dir)
1856 {
1857 /* We can currently only record when executing forwards. Should we be able
1858 to record when executing backwards on targets that support reverse
1859 execution, this needs to be changed. */
1860
1861 return RECORD_FULL_IS_REPLAY || dir == EXEC_REVERSE;
1862 }
1863
1864 /* Go to a specific entry. */
1865
1866 static void
1867 record_full_goto_entry (struct record_full_entry *p)
1868 {
1869 if (p == NULL)
1870 error (_("Target insn not found."));
1871 else if (p == record_full_list)
1872 error (_("Already at target insn."));
1873 else if (p->u.end.insn_num > record_full_list->u.end.insn_num)
1874 {
1875 printf_filtered (_("Go forward to insn number %s\n"),
1876 pulongest (p->u.end.insn_num));
1877 record_full_goto_insn (p, EXEC_FORWARD);
1878 }
1879 else
1880 {
1881 printf_filtered (_("Go backward to insn number %s\n"),
1882 pulongest (p->u.end.insn_num));
1883 record_full_goto_insn (p, EXEC_REVERSE);
1884 }
1885
1886 registers_changed ();
1887 reinit_frame_cache ();
1888 stop_pc = regcache_read_pc (get_current_regcache ());
1889 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
1890 }
1891
1892 /* The "to_goto_record_begin" target method. */
1893
1894 static void
1895 record_full_goto_begin (struct target_ops *self)
1896 {
1897 struct record_full_entry *p = NULL;
1898
1899 for (p = &record_full_first; p != NULL; p = p->next)
1900 if (p->type == record_full_end)
1901 break;
1902
1903 record_full_goto_entry (p);
1904 }
1905
1906 /* The "to_goto_record_end" target method. */
1907
1908 static void
1909 record_full_goto_end (struct target_ops *self)
1910 {
1911 struct record_full_entry *p = NULL;
1912
1913 for (p = record_full_list; p->next != NULL; p = p->next)
1914 ;
1915 for (; p!= NULL; p = p->prev)
1916 if (p->type == record_full_end)
1917 break;
1918
1919 record_full_goto_entry (p);
1920 }
1921
1922 /* The "to_goto_record" target method. */
1923
1924 static void
1925 record_full_goto (struct target_ops *self, ULONGEST target_insn)
1926 {
1927 struct record_full_entry *p = NULL;
1928
1929 for (p = &record_full_first; p != NULL; p = p->next)
1930 if (p->type == record_full_end && p->u.end.insn_num == target_insn)
1931 break;
1932
1933 record_full_goto_entry (p);
1934 }
1935
1936 /* The "to_record_stop_replaying" target method. */
1937
1938 static void
1939 record_full_stop_replaying (struct target_ops *self)
1940 {
1941 record_full_goto_end (self);
1942 }
1943
1944 static void
1945 init_record_full_ops (void)
1946 {
1947 record_full_ops.to_shortname = "record-full";
1948 record_full_ops.to_longname = "Process record and replay target";
1949 record_full_ops.to_doc =
1950 "Log program while executing and replay execution from log.";
1951 record_full_ops.to_open = record_full_open;
1952 record_full_ops.to_close = record_full_close;
1953 record_full_ops.to_async = record_full_async;
1954 record_full_ops.to_resume = record_full_resume;
1955 record_full_ops.to_wait = record_full_wait;
1956 record_full_ops.to_disconnect = record_disconnect;
1957 record_full_ops.to_detach = record_detach;
1958 record_full_ops.to_mourn_inferior = record_mourn_inferior;
1959 record_full_ops.to_kill = record_kill;
1960 record_full_ops.to_store_registers = record_full_store_registers;
1961 record_full_ops.to_xfer_partial = record_full_xfer_partial;
1962 record_full_ops.to_insert_breakpoint = record_full_insert_breakpoint;
1963 record_full_ops.to_remove_breakpoint = record_full_remove_breakpoint;
1964 record_full_ops.to_stopped_by_watchpoint = record_full_stopped_by_watchpoint;
1965 record_full_ops.to_stopped_data_address = record_full_stopped_data_address;
1966 record_full_ops.to_stopped_by_sw_breakpoint
1967 = record_full_stopped_by_sw_breakpoint;
1968 record_full_ops.to_supports_stopped_by_sw_breakpoint
1969 = record_full_supports_stopped_by_sw_breakpoint;
1970 record_full_ops.to_stopped_by_hw_breakpoint
1971 = record_full_stopped_by_hw_breakpoint;
1972 record_full_ops.to_supports_stopped_by_hw_breakpoint
1973 = record_full_supports_stopped_by_hw_breakpoint;
1974 record_full_ops.to_can_execute_reverse = record_full_can_execute_reverse;
1975 record_full_ops.to_stratum = record_stratum;
1976 /* Add bookmark target methods. */
1977 record_full_ops.to_get_bookmark = record_full_get_bookmark;
1978 record_full_ops.to_goto_bookmark = record_full_goto_bookmark;
1979 record_full_ops.to_execution_direction = record_full_execution_direction;
1980 record_full_ops.to_info_record = record_full_info;
1981 record_full_ops.to_save_record = record_full_save;
1982 record_full_ops.to_delete_record = record_full_delete;
1983 record_full_ops.to_record_is_replaying = record_full_is_replaying;
1984 record_full_ops.to_record_will_replay = record_full_will_replay;
1985 record_full_ops.to_record_stop_replaying = record_full_stop_replaying;
1986 record_full_ops.to_goto_record_begin = record_full_goto_begin;
1987 record_full_ops.to_goto_record_end = record_full_goto_end;
1988 record_full_ops.to_goto_record = record_full_goto;
1989 record_full_ops.to_magic = OPS_MAGIC;
1990 }
1991
1992 /* "to_resume" method for prec over corefile. */
1993
1994 static void
1995 record_full_core_resume (struct target_ops *ops, ptid_t ptid, int step,
1996 enum gdb_signal signal)
1997 {
1998 record_full_resume_step = step;
1999 record_full_resumed = 1;
2000 record_full_execution_dir = execution_direction;
2001
2002 /* We are about to start executing the inferior (or simulate it),
2003 let's register it with the event loop. */
2004 if (target_can_async_p ())
2005 target_async (1);
2006 }
2007
2008 /* "to_kill" method for prec over corefile. */
2009
2010 static void
2011 record_full_core_kill (struct target_ops *ops)
2012 {
2013 if (record_debug)
2014 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_core_kill\n");
2015
2016 unpush_target (&record_full_core_ops);
2017 }
2018
2019 /* "to_fetch_registers" method for prec over corefile. */
2020
2021 static void
2022 record_full_core_fetch_registers (struct target_ops *ops,
2023 struct regcache *regcache,
2024 int regno)
2025 {
2026 if (regno < 0)
2027 {
2028 int num = gdbarch_num_regs (get_regcache_arch (regcache));
2029 int i;
2030
2031 for (i = 0; i < num; i ++)
2032 regcache_raw_supply (regcache, i,
2033 record_full_core_regbuf + MAX_REGISTER_SIZE * i);
2034 }
2035 else
2036 regcache_raw_supply (regcache, regno,
2037 record_full_core_regbuf + MAX_REGISTER_SIZE * regno);
2038 }
2039
2040 /* "to_prepare_to_store" method for prec over corefile. */
2041
2042 static void
2043 record_full_core_prepare_to_store (struct target_ops *self,
2044 struct regcache *regcache)
2045 {
2046 }
2047
2048 /* "to_store_registers" method for prec over corefile. */
2049
2050 static void
2051 record_full_core_store_registers (struct target_ops *ops,
2052 struct regcache *regcache,
2053 int regno)
2054 {
2055 if (record_full_gdb_operation_disable)
2056 regcache_raw_collect (regcache, regno,
2057 record_full_core_regbuf + MAX_REGISTER_SIZE * regno);
2058 else
2059 error (_("You can't do that without a process to debug."));
2060 }
2061
2062 /* "to_xfer_partial" method for prec over corefile. */
2063
2064 static enum target_xfer_status
2065 record_full_core_xfer_partial (struct target_ops *ops,
2066 enum target_object object,
2067 const char *annex, gdb_byte *readbuf,
2068 const gdb_byte *writebuf, ULONGEST offset,
2069 ULONGEST len, ULONGEST *xfered_len)
2070 {
2071 if (object == TARGET_OBJECT_MEMORY)
2072 {
2073 if (record_full_gdb_operation_disable || !writebuf)
2074 {
2075 struct target_section *p;
2076
2077 for (p = record_full_core_start; p < record_full_core_end; p++)
2078 {
2079 if (offset >= p->addr)
2080 {
2081 struct record_full_core_buf_entry *entry;
2082 ULONGEST sec_offset;
2083
2084 if (offset >= p->endaddr)
2085 continue;
2086
2087 if (offset + len > p->endaddr)
2088 len = p->endaddr - offset;
2089
2090 sec_offset = offset - p->addr;
2091
2092 /* Read readbuf or write writebuf p, offset, len. */
2093 /* Check flags. */
2094 if (p->the_bfd_section->flags & SEC_CONSTRUCTOR
2095 || (p->the_bfd_section->flags & SEC_HAS_CONTENTS) == 0)
2096 {
2097 if (readbuf)
2098 memset (readbuf, 0, len);
2099
2100 *xfered_len = len;
2101 return TARGET_XFER_OK;
2102 }
2103 /* Get record_full_core_buf_entry. */
2104 for (entry = record_full_core_buf_list; entry;
2105 entry = entry->prev)
2106 if (entry->p == p)
2107 break;
2108 if (writebuf)
2109 {
2110 if (!entry)
2111 {
2112 /* Add a new entry. */
2113 entry = XNEW (struct record_full_core_buf_entry);
2114 entry->p = p;
2115 if (!bfd_malloc_and_get_section
2116 (p->the_bfd_section->owner,
2117 p->the_bfd_section,
2118 &entry->buf))
2119 {
2120 xfree (entry);
2121 return TARGET_XFER_EOF;
2122 }
2123 entry->prev = record_full_core_buf_list;
2124 record_full_core_buf_list = entry;
2125 }
2126
2127 memcpy (entry->buf + sec_offset, writebuf,
2128 (size_t) len);
2129 }
2130 else
2131 {
2132 if (!entry)
2133 return ops->beneath->to_xfer_partial (ops->beneath,
2134 object, annex,
2135 readbuf, writebuf,
2136 offset, len,
2137 xfered_len);
2138
2139 memcpy (readbuf, entry->buf + sec_offset,
2140 (size_t) len);
2141 }
2142
2143 *xfered_len = len;
2144 return TARGET_XFER_OK;
2145 }
2146 }
2147
2148 return TARGET_XFER_E_IO;
2149 }
2150 else
2151 error (_("You can't do that without a process to debug."));
2152 }
2153
2154 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
2155 readbuf, writebuf, offset, len,
2156 xfered_len);
2157 }
2158
2159 /* "to_insert_breakpoint" method for prec over corefile. */
2160
2161 static int
2162 record_full_core_insert_breakpoint (struct target_ops *ops,
2163 struct gdbarch *gdbarch,
2164 struct bp_target_info *bp_tgt)
2165 {
2166 return 0;
2167 }
2168
2169 /* "to_remove_breakpoint" method for prec over corefile. */
2170
2171 static int
2172 record_full_core_remove_breakpoint (struct target_ops *ops,
2173 struct gdbarch *gdbarch,
2174 struct bp_target_info *bp_tgt)
2175 {
2176 return 0;
2177 }
2178
2179 /* "to_has_execution" method for prec over corefile. */
2180
2181 static int
2182 record_full_core_has_execution (struct target_ops *ops, ptid_t the_ptid)
2183 {
2184 return 1;
2185 }
2186
2187 static void
2188 init_record_full_core_ops (void)
2189 {
2190 record_full_core_ops.to_shortname = "record-core";
2191 record_full_core_ops.to_longname = "Process record and replay target";
2192 record_full_core_ops.to_doc =
2193 "Log program while executing and replay execution from log.";
2194 record_full_core_ops.to_open = record_full_open;
2195 record_full_core_ops.to_close = record_full_close;
2196 record_full_core_ops.to_async = record_full_async;
2197 record_full_core_ops.to_resume = record_full_core_resume;
2198 record_full_core_ops.to_wait = record_full_wait;
2199 record_full_core_ops.to_kill = record_full_core_kill;
2200 record_full_core_ops.to_fetch_registers = record_full_core_fetch_registers;
2201 record_full_core_ops.to_prepare_to_store = record_full_core_prepare_to_store;
2202 record_full_core_ops.to_store_registers = record_full_core_store_registers;
2203 record_full_core_ops.to_xfer_partial = record_full_core_xfer_partial;
2204 record_full_core_ops.to_insert_breakpoint
2205 = record_full_core_insert_breakpoint;
2206 record_full_core_ops.to_remove_breakpoint
2207 = record_full_core_remove_breakpoint;
2208 record_full_core_ops.to_stopped_by_watchpoint
2209 = record_full_stopped_by_watchpoint;
2210 record_full_core_ops.to_stopped_data_address
2211 = record_full_stopped_data_address;
2212 record_full_core_ops.to_stopped_by_sw_breakpoint
2213 = record_full_stopped_by_sw_breakpoint;
2214 record_full_core_ops.to_supports_stopped_by_sw_breakpoint
2215 = record_full_supports_stopped_by_sw_breakpoint;
2216 record_full_core_ops.to_stopped_by_hw_breakpoint
2217 = record_full_stopped_by_hw_breakpoint;
2218 record_full_core_ops.to_supports_stopped_by_hw_breakpoint
2219 = record_full_supports_stopped_by_hw_breakpoint;
2220 record_full_core_ops.to_can_execute_reverse
2221 = record_full_can_execute_reverse;
2222 record_full_core_ops.to_has_execution = record_full_core_has_execution;
2223 record_full_core_ops.to_stratum = record_stratum;
2224 /* Add bookmark target methods. */
2225 record_full_core_ops.to_get_bookmark = record_full_get_bookmark;
2226 record_full_core_ops.to_goto_bookmark = record_full_goto_bookmark;
2227 record_full_core_ops.to_execution_direction
2228 = record_full_execution_direction;
2229 record_full_core_ops.to_info_record = record_full_info;
2230 record_full_core_ops.to_delete_record = record_full_delete;
2231 record_full_core_ops.to_record_is_replaying = record_full_is_replaying;
2232 record_full_core_ops.to_record_will_replay = record_full_will_replay;
2233 record_full_core_ops.to_goto_record_begin = record_full_goto_begin;
2234 record_full_core_ops.to_goto_record_end = record_full_goto_end;
2235 record_full_core_ops.to_goto_record = record_full_goto;
2236 record_full_core_ops.to_magic = OPS_MAGIC;
2237 }
2238
2239 /* Record log save-file format
2240 Version 1 (never released)
2241
2242 Header:
2243 4 bytes: magic number htonl(0x20090829).
2244 NOTE: be sure to change whenever this file format changes!
2245
2246 Records:
2247 record_full_end:
2248 1 byte: record type (record_full_end, see enum record_full_type).
2249 record_full_reg:
2250 1 byte: record type (record_full_reg, see enum record_full_type).
2251 8 bytes: register id (network byte order).
2252 MAX_REGISTER_SIZE bytes: register value.
2253 record_full_mem:
2254 1 byte: record type (record_full_mem, see enum record_full_type).
2255 8 bytes: memory length (network byte order).
2256 8 bytes: memory address (network byte order).
2257 n bytes: memory value (n == memory length).
2258
2259 Version 2
2260 4 bytes: magic number netorder32(0x20091016).
2261 NOTE: be sure to change whenever this file format changes!
2262
2263 Records:
2264 record_full_end:
2265 1 byte: record type (record_full_end, see enum record_full_type).
2266 4 bytes: signal
2267 4 bytes: instruction count
2268 record_full_reg:
2269 1 byte: record type (record_full_reg, see enum record_full_type).
2270 4 bytes: register id (network byte order).
2271 n bytes: register value (n == actual register size).
2272 (eg. 4 bytes for x86 general registers).
2273 record_full_mem:
2274 1 byte: record type (record_full_mem, see enum record_full_type).
2275 4 bytes: memory length (network byte order).
2276 8 bytes: memory address (network byte order).
2277 n bytes: memory value (n == memory length).
2278
2279 */
2280
2281 /* bfdcore_read -- read bytes from a core file section. */
2282
2283 static inline void
2284 bfdcore_read (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2285 {
2286 int ret = bfd_get_section_contents (obfd, osec, buf, *offset, len);
2287
2288 if (ret)
2289 *offset += len;
2290 else
2291 error (_("Failed to read %d bytes from core file %s ('%s')."),
2292 len, bfd_get_filename (obfd),
2293 bfd_errmsg (bfd_get_error ()));
2294 }
2295
2296 static inline uint64_t
2297 netorder64 (uint64_t input)
2298 {
2299 uint64_t ret;
2300
2301 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2302 BFD_ENDIAN_BIG, input);
2303 return ret;
2304 }
2305
2306 static inline uint32_t
2307 netorder32 (uint32_t input)
2308 {
2309 uint32_t ret;
2310
2311 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2312 BFD_ENDIAN_BIG, input);
2313 return ret;
2314 }
2315
2316 static inline uint16_t
2317 netorder16 (uint16_t input)
2318 {
2319 uint16_t ret;
2320
2321 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2322 BFD_ENDIAN_BIG, input);
2323 return ret;
2324 }
2325
2326 /* Restore the execution log from a core_bfd file. */
2327 static void
2328 record_full_restore (void)
2329 {
2330 uint32_t magic;
2331 struct cleanup *old_cleanups;
2332 struct record_full_entry *rec;
2333 asection *osec;
2334 uint32_t osec_size;
2335 int bfd_offset = 0;
2336 struct regcache *regcache;
2337
2338 /* We restore the execution log from the open core bfd,
2339 if there is one. */
2340 if (core_bfd == NULL)
2341 return;
2342
2343 /* "record_full_restore" can only be called when record list is empty. */
2344 gdb_assert (record_full_first.next == NULL);
2345
2346 if (record_debug)
2347 fprintf_unfiltered (gdb_stdlog, "Restoring recording from core file.\n");
2348
2349 /* Now need to find our special note section. */
2350 osec = bfd_get_section_by_name (core_bfd, "null0");
2351 if (record_debug)
2352 fprintf_unfiltered (gdb_stdlog, "Find precord section %s.\n",
2353 osec ? "succeeded" : "failed");
2354 if (osec == NULL)
2355 return;
2356 osec_size = bfd_section_size (core_bfd, osec);
2357 if (record_debug)
2358 fprintf_unfiltered (gdb_stdlog, "%s", bfd_section_name (core_bfd, osec));
2359
2360 /* Check the magic code. */
2361 bfdcore_read (core_bfd, osec, &magic, sizeof (magic), &bfd_offset);
2362 if (magic != RECORD_FULL_FILE_MAGIC)
2363 error (_("Version mis-match or file format error in core file %s."),
2364 bfd_get_filename (core_bfd));
2365 if (record_debug)
2366 fprintf_unfiltered (gdb_stdlog,
2367 " Reading 4-byte magic cookie "
2368 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2369 phex_nz (netorder32 (magic), 4));
2370
2371 /* Restore the entries in recfd into record_full_arch_list_head and
2372 record_full_arch_list_tail. */
2373 record_full_arch_list_head = NULL;
2374 record_full_arch_list_tail = NULL;
2375 record_full_insn_num = 0;
2376 old_cleanups = make_cleanup (record_full_arch_list_cleanups, 0);
2377 regcache = get_current_regcache ();
2378
2379 while (1)
2380 {
2381 uint8_t rectype;
2382 uint32_t regnum, len, signal, count;
2383 uint64_t addr;
2384
2385 /* We are finished when offset reaches osec_size. */
2386 if (bfd_offset >= osec_size)
2387 break;
2388 bfdcore_read (core_bfd, osec, &rectype, sizeof (rectype), &bfd_offset);
2389
2390 switch (rectype)
2391 {
2392 case record_full_reg: /* reg */
2393 /* Get register number to regnum. */
2394 bfdcore_read (core_bfd, osec, &regnum,
2395 sizeof (regnum), &bfd_offset);
2396 regnum = netorder32 (regnum);
2397
2398 rec = record_full_reg_alloc (regcache, regnum);
2399
2400 /* Get val. */
2401 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2402 rec->u.reg.len, &bfd_offset);
2403
2404 if (record_debug)
2405 fprintf_unfiltered (gdb_stdlog,
2406 " Reading register %d (1 "
2407 "plus %lu plus %d bytes)\n",
2408 rec->u.reg.num,
2409 (unsigned long) sizeof (regnum),
2410 rec->u.reg.len);
2411 break;
2412
2413 case record_full_mem: /* mem */
2414 /* Get len. */
2415 bfdcore_read (core_bfd, osec, &len,
2416 sizeof (len), &bfd_offset);
2417 len = netorder32 (len);
2418
2419 /* Get addr. */
2420 bfdcore_read (core_bfd, osec, &addr,
2421 sizeof (addr), &bfd_offset);
2422 addr = netorder64 (addr);
2423
2424 rec = record_full_mem_alloc (addr, len);
2425
2426 /* Get val. */
2427 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2428 rec->u.mem.len, &bfd_offset);
2429
2430 if (record_debug)
2431 fprintf_unfiltered (gdb_stdlog,
2432 " Reading memory %s (1 plus "
2433 "%lu plus %lu plus %d bytes)\n",
2434 paddress (get_current_arch (),
2435 rec->u.mem.addr),
2436 (unsigned long) sizeof (addr),
2437 (unsigned long) sizeof (len),
2438 rec->u.mem.len);
2439 break;
2440
2441 case record_full_end: /* end */
2442 rec = record_full_end_alloc ();
2443 record_full_insn_num ++;
2444
2445 /* Get signal value. */
2446 bfdcore_read (core_bfd, osec, &signal,
2447 sizeof (signal), &bfd_offset);
2448 signal = netorder32 (signal);
2449 rec->u.end.sigval = (enum gdb_signal) signal;
2450
2451 /* Get insn count. */
2452 bfdcore_read (core_bfd, osec, &count,
2453 sizeof (count), &bfd_offset);
2454 count = netorder32 (count);
2455 rec->u.end.insn_num = count;
2456 record_full_insn_count = count + 1;
2457 if (record_debug)
2458 fprintf_unfiltered (gdb_stdlog,
2459 " Reading record_full_end (1 + "
2460 "%lu + %lu bytes), offset == %s\n",
2461 (unsigned long) sizeof (signal),
2462 (unsigned long) sizeof (count),
2463 paddress (get_current_arch (),
2464 bfd_offset));
2465 break;
2466
2467 default:
2468 error (_("Bad entry type in core file %s."),
2469 bfd_get_filename (core_bfd));
2470 break;
2471 }
2472
2473 /* Add rec to record arch list. */
2474 record_full_arch_list_add (rec);
2475 }
2476
2477 discard_cleanups (old_cleanups);
2478
2479 /* Add record_full_arch_list_head to the end of record list. */
2480 record_full_first.next = record_full_arch_list_head;
2481 record_full_arch_list_head->prev = &record_full_first;
2482 record_full_arch_list_tail->next = NULL;
2483 record_full_list = &record_full_first;
2484
2485 /* Update record_full_insn_max_num. */
2486 if (record_full_insn_num > record_full_insn_max_num)
2487 {
2488 record_full_insn_max_num = record_full_insn_num;
2489 warning (_("Auto increase record/replay buffer limit to %u."),
2490 record_full_insn_max_num);
2491 }
2492
2493 /* Succeeded. */
2494 printf_filtered (_("Restored records from core file %s.\n"),
2495 bfd_get_filename (core_bfd));
2496
2497 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2498 }
2499
2500 /* bfdcore_write -- write bytes into a core file section. */
2501
2502 static inline void
2503 bfdcore_write (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2504 {
2505 int ret = bfd_set_section_contents (obfd, osec, buf, *offset, len);
2506
2507 if (ret)
2508 *offset += len;
2509 else
2510 error (_("Failed to write %d bytes to core file %s ('%s')."),
2511 len, bfd_get_filename (obfd),
2512 bfd_errmsg (bfd_get_error ()));
2513 }
2514
2515 /* Restore the execution log from a file. We use a modified elf
2516 corefile format, with an extra section for our data. */
2517
2518 static void
2519 cmd_record_full_restore (char *args, int from_tty)
2520 {
2521 core_file_command (args, from_tty);
2522 record_full_open (args, from_tty);
2523 }
2524
2525 static void
2526 record_full_save_cleanups (void *data)
2527 {
2528 bfd *obfd = (bfd *) data;
2529 char *pathname = xstrdup (bfd_get_filename (obfd));
2530
2531 gdb_bfd_unref (obfd);
2532 unlink (pathname);
2533 xfree (pathname);
2534 }
2535
2536 /* Save the execution log to a file. We use a modified elf corefile
2537 format, with an extra section for our data. */
2538
2539 static void
2540 record_full_save (struct target_ops *self, const char *recfilename)
2541 {
2542 struct record_full_entry *cur_record_full_list;
2543 uint32_t magic;
2544 struct regcache *regcache;
2545 struct gdbarch *gdbarch;
2546 struct cleanup *old_cleanups;
2547 struct cleanup *set_cleanups;
2548 bfd *obfd;
2549 int save_size = 0;
2550 asection *osec = NULL;
2551 int bfd_offset = 0;
2552
2553 /* Open the save file. */
2554 if (record_debug)
2555 fprintf_unfiltered (gdb_stdlog, "Saving execution log to core file '%s'\n",
2556 recfilename);
2557
2558 /* Open the output file. */
2559 obfd = create_gcore_bfd (recfilename);
2560 old_cleanups = make_cleanup (record_full_save_cleanups, obfd);
2561
2562 /* Save the current record entry to "cur_record_full_list". */
2563 cur_record_full_list = record_full_list;
2564
2565 /* Get the values of regcache and gdbarch. */
2566 regcache = get_current_regcache ();
2567 gdbarch = get_regcache_arch (regcache);
2568
2569 /* Disable the GDB operation record. */
2570 set_cleanups = record_full_gdb_operation_disable_set ();
2571
2572 /* Reverse execute to the begin of record list. */
2573 while (1)
2574 {
2575 /* Check for beginning and end of log. */
2576 if (record_full_list == &record_full_first)
2577 break;
2578
2579 record_full_exec_insn (regcache, gdbarch, record_full_list);
2580
2581 if (record_full_list->prev)
2582 record_full_list = record_full_list->prev;
2583 }
2584
2585 /* Compute the size needed for the extra bfd section. */
2586 save_size = 4; /* magic cookie */
2587 for (record_full_list = record_full_first.next; record_full_list;
2588 record_full_list = record_full_list->next)
2589 switch (record_full_list->type)
2590 {
2591 case record_full_end:
2592 save_size += 1 + 4 + 4;
2593 break;
2594 case record_full_reg:
2595 save_size += 1 + 4 + record_full_list->u.reg.len;
2596 break;
2597 case record_full_mem:
2598 save_size += 1 + 4 + 8 + record_full_list->u.mem.len;
2599 break;
2600 }
2601
2602 /* Make the new bfd section. */
2603 osec = bfd_make_section_anyway_with_flags (obfd, "precord",
2604 SEC_HAS_CONTENTS
2605 | SEC_READONLY);
2606 if (osec == NULL)
2607 error (_("Failed to create 'precord' section for corefile %s: %s"),
2608 recfilename,
2609 bfd_errmsg (bfd_get_error ()));
2610 bfd_set_section_size (obfd, osec, save_size);
2611 bfd_set_section_vma (obfd, osec, 0);
2612 bfd_set_section_alignment (obfd, osec, 0);
2613 bfd_section_lma (obfd, osec) = 0;
2614
2615 /* Save corefile state. */
2616 write_gcore_file (obfd);
2617
2618 /* Write out the record log. */
2619 /* Write the magic code. */
2620 magic = RECORD_FULL_FILE_MAGIC;
2621 if (record_debug)
2622 fprintf_unfiltered (gdb_stdlog,
2623 " Writing 4-byte magic cookie "
2624 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2625 phex_nz (magic, 4));
2626 bfdcore_write (obfd, osec, &magic, sizeof (magic), &bfd_offset);
2627
2628 /* Save the entries to recfd and forward execute to the end of
2629 record list. */
2630 record_full_list = &record_full_first;
2631 while (1)
2632 {
2633 /* Save entry. */
2634 if (record_full_list != &record_full_first)
2635 {
2636 uint8_t type;
2637 uint32_t regnum, len, signal, count;
2638 uint64_t addr;
2639
2640 type = record_full_list->type;
2641 bfdcore_write (obfd, osec, &type, sizeof (type), &bfd_offset);
2642
2643 switch (record_full_list->type)
2644 {
2645 case record_full_reg: /* reg */
2646 if (record_debug)
2647 fprintf_unfiltered (gdb_stdlog,
2648 " Writing register %d (1 "
2649 "plus %lu plus %d bytes)\n",
2650 record_full_list->u.reg.num,
2651 (unsigned long) sizeof (regnum),
2652 record_full_list->u.reg.len);
2653
2654 /* Write regnum. */
2655 regnum = netorder32 (record_full_list->u.reg.num);
2656 bfdcore_write (obfd, osec, &regnum,
2657 sizeof (regnum), &bfd_offset);
2658
2659 /* Write regval. */
2660 bfdcore_write (obfd, osec,
2661 record_full_get_loc (record_full_list),
2662 record_full_list->u.reg.len, &bfd_offset);
2663 break;
2664
2665 case record_full_mem: /* mem */
2666 if (record_debug)
2667 fprintf_unfiltered (gdb_stdlog,
2668 " Writing memory %s (1 plus "
2669 "%lu plus %lu plus %d bytes)\n",
2670 paddress (gdbarch,
2671 record_full_list->u.mem.addr),
2672 (unsigned long) sizeof (addr),
2673 (unsigned long) sizeof (len),
2674 record_full_list->u.mem.len);
2675
2676 /* Write memlen. */
2677 len = netorder32 (record_full_list->u.mem.len);
2678 bfdcore_write (obfd, osec, &len, sizeof (len), &bfd_offset);
2679
2680 /* Write memaddr. */
2681 addr = netorder64 (record_full_list->u.mem.addr);
2682 bfdcore_write (obfd, osec, &addr,
2683 sizeof (addr), &bfd_offset);
2684
2685 /* Write memval. */
2686 bfdcore_write (obfd, osec,
2687 record_full_get_loc (record_full_list),
2688 record_full_list->u.mem.len, &bfd_offset);
2689 break;
2690
2691 case record_full_end:
2692 if (record_debug)
2693 fprintf_unfiltered (gdb_stdlog,
2694 " Writing record_full_end (1 + "
2695 "%lu + %lu bytes)\n",
2696 (unsigned long) sizeof (signal),
2697 (unsigned long) sizeof (count));
2698 /* Write signal value. */
2699 signal = netorder32 (record_full_list->u.end.sigval);
2700 bfdcore_write (obfd, osec, &signal,
2701 sizeof (signal), &bfd_offset);
2702
2703 /* Write insn count. */
2704 count = netorder32 (record_full_list->u.end.insn_num);
2705 bfdcore_write (obfd, osec, &count,
2706 sizeof (count), &bfd_offset);
2707 break;
2708 }
2709 }
2710
2711 /* Execute entry. */
2712 record_full_exec_insn (regcache, gdbarch, record_full_list);
2713
2714 if (record_full_list->next)
2715 record_full_list = record_full_list->next;
2716 else
2717 break;
2718 }
2719
2720 /* Reverse execute to cur_record_full_list. */
2721 while (1)
2722 {
2723 /* Check for beginning and end of log. */
2724 if (record_full_list == cur_record_full_list)
2725 break;
2726
2727 record_full_exec_insn (regcache, gdbarch, record_full_list);
2728
2729 if (record_full_list->prev)
2730 record_full_list = record_full_list->prev;
2731 }
2732
2733 do_cleanups (set_cleanups);
2734 gdb_bfd_unref (obfd);
2735 discard_cleanups (old_cleanups);
2736
2737 /* Succeeded. */
2738 printf_filtered (_("Saved core file %s with execution log.\n"),
2739 recfilename);
2740 }
2741
2742 /* record_full_goto_insn -- rewind the record log (forward or backward,
2743 depending on DIR) to the given entry, changing the program state
2744 correspondingly. */
2745
2746 static void
2747 record_full_goto_insn (struct record_full_entry *entry,
2748 enum exec_direction_kind dir)
2749 {
2750 struct cleanup *set_cleanups = record_full_gdb_operation_disable_set ();
2751 struct regcache *regcache = get_current_regcache ();
2752 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2753
2754 /* Assume everything is valid: we will hit the entry,
2755 and we will not hit the end of the recording. */
2756
2757 if (dir == EXEC_FORWARD)
2758 record_full_list = record_full_list->next;
2759
2760 do
2761 {
2762 record_full_exec_insn (regcache, gdbarch, record_full_list);
2763 if (dir == EXEC_REVERSE)
2764 record_full_list = record_full_list->prev;
2765 else
2766 record_full_list = record_full_list->next;
2767 } while (record_full_list != entry);
2768 do_cleanups (set_cleanups);
2769 }
2770
2771 /* Alias for "target record-full". */
2772
2773 static void
2774 cmd_record_full_start (char *args, int from_tty)
2775 {
2776 execute_command ("target record-full", from_tty);
2777 }
2778
2779 static void
2780 set_record_full_insn_max_num (char *args, int from_tty,
2781 struct cmd_list_element *c)
2782 {
2783 if (record_full_insn_num > record_full_insn_max_num)
2784 {
2785 /* Count down record_full_insn_num while releasing records from list. */
2786 while (record_full_insn_num > record_full_insn_max_num)
2787 {
2788 record_full_list_release_first ();
2789 record_full_insn_num--;
2790 }
2791 }
2792 }
2793
2794 /* The "set record full" command. */
2795
2796 static void
2797 set_record_full_command (char *args, int from_tty)
2798 {
2799 printf_unfiltered (_("\"set record full\" must be followed "
2800 "by an apporpriate subcommand.\n"));
2801 help_list (set_record_full_cmdlist, "set record full ", all_commands,
2802 gdb_stdout);
2803 }
2804
2805 /* The "show record full" command. */
2806
2807 static void
2808 show_record_full_command (char *args, int from_tty)
2809 {
2810 cmd_show_list (show_record_full_cmdlist, from_tty, "");
2811 }
2812
2813 /* Provide a prototype to silence -Wmissing-prototypes. */
2814 extern initialize_file_ftype _initialize_record_full;
2815
2816 void
2817 _initialize_record_full (void)
2818 {
2819 struct cmd_list_element *c;
2820
2821 /* Init record_full_first. */
2822 record_full_first.prev = NULL;
2823 record_full_first.next = NULL;
2824 record_full_first.type = record_full_end;
2825
2826 init_record_full_ops ();
2827 add_target (&record_full_ops);
2828 add_deprecated_target_alias (&record_full_ops, "record");
2829 init_record_full_core_ops ();
2830 add_target (&record_full_core_ops);
2831
2832 add_prefix_cmd ("full", class_obscure, cmd_record_full_start,
2833 _("Start full execution recording."), &record_full_cmdlist,
2834 "record full ", 0, &record_cmdlist);
2835
2836 c = add_cmd ("restore", class_obscure, cmd_record_full_restore,
2837 _("Restore the execution log from a file.\n\
2838 Argument is filename. File must be created with 'record save'."),
2839 &record_full_cmdlist);
2840 set_cmd_completer (c, filename_completer);
2841
2842 /* Deprecate the old version without "full" prefix. */
2843 c = add_alias_cmd ("restore", "full restore", class_obscure, 1,
2844 &record_cmdlist);
2845 set_cmd_completer (c, filename_completer);
2846 deprecate_cmd (c, "record full restore");
2847
2848 add_prefix_cmd ("full", class_support, set_record_full_command,
2849 _("Set record options"), &set_record_full_cmdlist,
2850 "set record full ", 0, &set_record_cmdlist);
2851
2852 add_prefix_cmd ("full", class_support, show_record_full_command,
2853 _("Show record options"), &show_record_full_cmdlist,
2854 "show record full ", 0, &show_record_cmdlist);
2855
2856 /* Record instructions number limit command. */
2857 add_setshow_boolean_cmd ("stop-at-limit", no_class,
2858 &record_full_stop_at_limit, _("\
2859 Set whether record/replay stops when record/replay buffer becomes full."), _("\
2860 Show whether record/replay stops when record/replay buffer becomes full."),
2861 _("Default is ON.\n\
2862 When ON, if the record/replay buffer becomes full, ask user what to do.\n\
2863 When OFF, if the record/replay buffer becomes full,\n\
2864 delete the oldest recorded instruction to make room for each new one."),
2865 NULL, NULL,
2866 &set_record_full_cmdlist, &show_record_full_cmdlist);
2867
2868 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2869 &set_record_cmdlist);
2870 deprecate_cmd (c, "set record full stop-at-limit");
2871
2872 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2873 &show_record_cmdlist);
2874 deprecate_cmd (c, "show record full stop-at-limit");
2875
2876 add_setshow_uinteger_cmd ("insn-number-max", no_class,
2877 &record_full_insn_max_num,
2878 _("Set record/replay buffer limit."),
2879 _("Show record/replay buffer limit."), _("\
2880 Set the maximum number of instructions to be stored in the\n\
2881 record/replay buffer. A value of either \"unlimited\" or zero means no\n\
2882 limit. Default is 200000."),
2883 set_record_full_insn_max_num,
2884 NULL, &set_record_full_cmdlist,
2885 &show_record_full_cmdlist);
2886
2887 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2888 &set_record_cmdlist);
2889 deprecate_cmd (c, "set record full insn-number-max");
2890
2891 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2892 &show_record_cmdlist);
2893 deprecate_cmd (c, "show record full insn-number-max");
2894
2895 add_setshow_boolean_cmd ("memory-query", no_class,
2896 &record_full_memory_query, _("\
2897 Set whether query if PREC cannot record memory change of next instruction."),
2898 _("\
2899 Show whether query if PREC cannot record memory change of next instruction."),
2900 _("\
2901 Default is OFF.\n\
2902 When ON, query if PREC cannot record memory change of next instruction."),
2903 NULL, NULL,
2904 &set_record_full_cmdlist,
2905 &show_record_full_cmdlist);
2906
2907 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2908 &set_record_cmdlist);
2909 deprecate_cmd (c, "set record full memory-query");
2910
2911 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2912 &show_record_cmdlist);
2913 deprecate_cmd (c, "show record full memory-query");
2914 }
This page took 0.095576 seconds and 5 git commands to generate.