Use std::string in ui_out_table
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbarch.h"
24 #include "gdbcmd.h"
25 #include "regcache.h"
26 #include "reggroups.h"
27 #include "observer.h"
28 #include "remote.h"
29 #include "valprint.h"
30 #include "regset.h"
31
32 /*
33 * DATA STRUCTURE
34 *
35 * Here is the actual register cache.
36 */
37
38 /* Per-architecture object describing the layout of a register cache.
39 Computed once when the architecture is created. */
40
41 struct gdbarch_data *regcache_descr_handle;
42
43 struct regcache_descr
44 {
45 /* The architecture this descriptor belongs to. */
46 struct gdbarch *gdbarch;
47
48 /* The raw register cache. Each raw (or hard) register is supplied
49 by the target interface. The raw cache should not contain
50 redundant information - if the PC is constructed from two
51 registers then those registers and not the PC lives in the raw
52 cache. */
53 int nr_raw_registers;
54 long sizeof_raw_registers;
55 long sizeof_raw_register_status;
56
57 /* The cooked register space. Each cooked register in the range
58 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
59 register. The remaining [NR_RAW_REGISTERS
60 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
61 both raw registers and memory by the architecture methods
62 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
63 int nr_cooked_registers;
64 long sizeof_cooked_registers;
65 long sizeof_cooked_register_status;
66
67 /* Offset and size (in 8 bit bytes), of each register in the
68 register cache. All registers (including those in the range
69 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
70 offset. */
71 long *register_offset;
72 long *sizeof_register;
73
74 /* Cached table containing the type of each register. */
75 struct type **register_type;
76 };
77
78 static void *
79 init_regcache_descr (struct gdbarch *gdbarch)
80 {
81 int i;
82 struct regcache_descr *descr;
83 gdb_assert (gdbarch != NULL);
84
85 /* Create an initial, zero filled, table. */
86 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
87 descr->gdbarch = gdbarch;
88
89 /* Total size of the register space. The raw registers are mapped
90 directly onto the raw register cache while the pseudo's are
91 either mapped onto raw-registers or memory. */
92 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
93 + gdbarch_num_pseudo_regs (gdbarch);
94 descr->sizeof_cooked_register_status
95 = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
96
97 /* Fill in a table of register types. */
98 descr->register_type
99 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
100 struct type *);
101 for (i = 0; i < descr->nr_cooked_registers; i++)
102 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
103
104 /* Construct a strictly RAW register cache. Don't allow pseudo's
105 into the register cache. */
106 descr->nr_raw_registers = gdbarch_num_regs (gdbarch);
107 descr->sizeof_raw_register_status = gdbarch_num_regs (gdbarch);
108
109 /* Lay out the register cache.
110
111 NOTE: cagney/2002-05-22: Only register_type() is used when
112 constructing the register cache. It is assumed that the
113 register's raw size, virtual size and type length are all the
114 same. */
115
116 {
117 long offset = 0;
118
119 descr->sizeof_register
120 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
121 descr->register_offset
122 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
123 for (i = 0; i < descr->nr_raw_registers; i++)
124 {
125 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
126 descr->register_offset[i] = offset;
127 offset += descr->sizeof_register[i];
128 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
129 }
130 /* Set the real size of the raw register cache buffer. */
131 descr->sizeof_raw_registers = offset;
132
133 for (; i < descr->nr_cooked_registers; i++)
134 {
135 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
136 descr->register_offset[i] = offset;
137 offset += descr->sizeof_register[i];
138 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
139 }
140 /* Set the real size of the readonly register cache buffer. */
141 descr->sizeof_cooked_registers = offset;
142 }
143
144 return descr;
145 }
146
147 static struct regcache_descr *
148 regcache_descr (struct gdbarch *gdbarch)
149 {
150 return (struct regcache_descr *) gdbarch_data (gdbarch,
151 regcache_descr_handle);
152 }
153
154 /* Utility functions returning useful register attributes stored in
155 the regcache descr. */
156
157 struct type *
158 register_type (struct gdbarch *gdbarch, int regnum)
159 {
160 struct regcache_descr *descr = regcache_descr (gdbarch);
161
162 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
163 return descr->register_type[regnum];
164 }
165
166 /* Utility functions returning useful register attributes stored in
167 the regcache descr. */
168
169 int
170 register_size (struct gdbarch *gdbarch, int regnum)
171 {
172 struct regcache_descr *descr = regcache_descr (gdbarch);
173 int size;
174
175 gdb_assert (regnum >= 0
176 && regnum < (gdbarch_num_regs (gdbarch)
177 + gdbarch_num_pseudo_regs (gdbarch)));
178 size = descr->sizeof_register[regnum];
179 return size;
180 }
181
182 /* See common/common-regcache.h. */
183
184 int
185 regcache_register_size (const struct regcache *regcache, int n)
186 {
187 return register_size (get_regcache_arch (regcache), n);
188 }
189
190 /* The register cache for storing raw register values. */
191
192 struct regcache
193 {
194 struct regcache_descr *descr;
195
196 /* The address space of this register cache (for registers where it
197 makes sense, like PC or SP). */
198 struct address_space *aspace;
199
200 /* The register buffers. A read-only register cache can hold the
201 full [0 .. gdbarch_num_regs + gdbarch_num_pseudo_regs) while a read/write
202 register cache can only hold [0 .. gdbarch_num_regs). */
203 gdb_byte *registers;
204 /* Register cache status. */
205 signed char *register_status;
206 /* Is this a read-only cache? A read-only cache is used for saving
207 the target's register state (e.g, across an inferior function
208 call or just before forcing a function return). A read-only
209 cache can only be updated via the methods regcache_dup() and
210 regcache_cpy(). The actual contents are determined by the
211 reggroup_save and reggroup_restore methods. */
212 int readonly_p;
213 /* If this is a read-write cache, which thread's registers is
214 it connected to? */
215 ptid_t ptid;
216 };
217
218 static struct regcache *
219 regcache_xmalloc_1 (struct gdbarch *gdbarch, struct address_space *aspace,
220 int readonly_p)
221 {
222 struct regcache_descr *descr;
223 struct regcache *regcache;
224
225 gdb_assert (gdbarch != NULL);
226 descr = regcache_descr (gdbarch);
227 regcache = XNEW (struct regcache);
228 regcache->descr = descr;
229 regcache->readonly_p = readonly_p;
230 if (readonly_p)
231 {
232 regcache->registers
233 = XCNEWVEC (gdb_byte, descr->sizeof_cooked_registers);
234 regcache->register_status
235 = XCNEWVEC (signed char, descr->sizeof_cooked_register_status);
236 }
237 else
238 {
239 regcache->registers
240 = XCNEWVEC (gdb_byte, descr->sizeof_raw_registers);
241 regcache->register_status
242 = XCNEWVEC (signed char, descr->sizeof_raw_register_status);
243 }
244 regcache->aspace = aspace;
245 regcache->ptid = minus_one_ptid;
246 return regcache;
247 }
248
249 struct regcache *
250 regcache_xmalloc (struct gdbarch *gdbarch, struct address_space *aspace)
251 {
252 return regcache_xmalloc_1 (gdbarch, aspace, 1);
253 }
254
255 void
256 regcache_xfree (struct regcache *regcache)
257 {
258 if (regcache == NULL)
259 return;
260 xfree (regcache->registers);
261 xfree (regcache->register_status);
262 xfree (regcache);
263 }
264
265 static void
266 do_regcache_xfree (void *data)
267 {
268 regcache_xfree ((struct regcache *) data);
269 }
270
271 struct cleanup *
272 make_cleanup_regcache_xfree (struct regcache *regcache)
273 {
274 return make_cleanup (do_regcache_xfree, regcache);
275 }
276
277 /* Cleanup routines for invalidating a register. */
278
279 struct register_to_invalidate
280 {
281 struct regcache *regcache;
282 int regnum;
283 };
284
285 static void
286 do_regcache_invalidate (void *data)
287 {
288 struct register_to_invalidate *reg = (struct register_to_invalidate *) data;
289
290 regcache_invalidate (reg->regcache, reg->regnum);
291 }
292
293 static struct cleanup *
294 make_cleanup_regcache_invalidate (struct regcache *regcache, int regnum)
295 {
296 struct register_to_invalidate* reg = XNEW (struct register_to_invalidate);
297
298 reg->regcache = regcache;
299 reg->regnum = regnum;
300 return make_cleanup_dtor (do_regcache_invalidate, (void *) reg, xfree);
301 }
302
303 /* Return REGCACHE's architecture. */
304
305 struct gdbarch *
306 get_regcache_arch (const struct regcache *regcache)
307 {
308 return regcache->descr->gdbarch;
309 }
310
311 struct address_space *
312 get_regcache_aspace (const struct regcache *regcache)
313 {
314 return regcache->aspace;
315 }
316
317 /* Return a pointer to register REGNUM's buffer cache. */
318
319 static gdb_byte *
320 register_buffer (const struct regcache *regcache, int regnum)
321 {
322 return regcache->registers + regcache->descr->register_offset[regnum];
323 }
324
325 void
326 regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read,
327 void *src)
328 {
329 struct gdbarch *gdbarch = dst->descr->gdbarch;
330 gdb_byte buf[MAX_REGISTER_SIZE];
331 int regnum;
332
333 /* The DST should be `read-only', if it wasn't then the save would
334 end up trying to write the register values back out to the
335 target. */
336 gdb_assert (dst->readonly_p);
337 /* Clear the dest. */
338 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers);
339 memset (dst->register_status, 0,
340 dst->descr->sizeof_cooked_register_status);
341 /* Copy over any registers (identified by their membership in the
342 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
343 gdbarch_num_pseudo_regs) range is checked since some architectures need
344 to save/restore `cooked' registers that live in memory. */
345 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
346 {
347 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
348 {
349 enum register_status status = cooked_read (src, regnum, buf);
350
351 if (status == REG_VALID)
352 memcpy (register_buffer (dst, regnum), buf,
353 register_size (gdbarch, regnum));
354 else
355 {
356 gdb_assert (status != REG_UNKNOWN);
357
358 memset (register_buffer (dst, regnum), 0,
359 register_size (gdbarch, regnum));
360 }
361 dst->register_status[regnum] = status;
362 }
363 }
364 }
365
366 static void
367 regcache_restore (struct regcache *dst,
368 regcache_cooked_read_ftype *cooked_read,
369 void *cooked_read_context)
370 {
371 struct gdbarch *gdbarch = dst->descr->gdbarch;
372 gdb_byte buf[MAX_REGISTER_SIZE];
373 int regnum;
374
375 /* The dst had better not be read-only. If it is, the `restore'
376 doesn't make much sense. */
377 gdb_assert (!dst->readonly_p);
378 /* Copy over any registers, being careful to only restore those that
379 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
380 + gdbarch_num_pseudo_regs) range is checked since some architectures need
381 to save/restore `cooked' registers that live in memory. */
382 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
383 {
384 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
385 {
386 enum register_status status;
387
388 status = cooked_read (cooked_read_context, regnum, buf);
389 if (status == REG_VALID)
390 regcache_cooked_write (dst, regnum, buf);
391 }
392 }
393 }
394
395 static enum register_status
396 do_cooked_read (void *src, int regnum, gdb_byte *buf)
397 {
398 struct regcache *regcache = (struct regcache *) src;
399
400 return regcache_cooked_read (regcache, regnum, buf);
401 }
402
403 static void regcache_cpy_no_passthrough (struct regcache *dst,
404 struct regcache *src);
405
406 void
407 regcache_cpy (struct regcache *dst, struct regcache *src)
408 {
409 gdb_assert (src != NULL && dst != NULL);
410 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
411 gdb_assert (src != dst);
412 gdb_assert (src->readonly_p || dst->readonly_p);
413
414 if (!src->readonly_p)
415 regcache_save (dst, do_cooked_read, src);
416 else if (!dst->readonly_p)
417 regcache_restore (dst, do_cooked_read, src);
418 else
419 regcache_cpy_no_passthrough (dst, src);
420 }
421
422 /* Copy/duplicate the contents of a register cache. Unlike regcache_cpy,
423 which is pass-through, this does not go through to the target.
424 Only values values already in the cache are transferred. The SRC and DST
425 buffers must not overlap. */
426
427 static void
428 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
429 {
430 gdb_assert (src != NULL && dst != NULL);
431 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
432 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
433 move of data into a thread's regcache. Doing this would be silly
434 - it would mean that regcache->register_status would be
435 completely invalid. */
436 gdb_assert (dst->readonly_p && src->readonly_p);
437
438 memcpy (dst->registers, src->registers,
439 dst->descr->sizeof_cooked_registers);
440 memcpy (dst->register_status, src->register_status,
441 dst->descr->sizeof_cooked_register_status);
442 }
443
444 struct regcache *
445 regcache_dup (struct regcache *src)
446 {
447 struct regcache *newbuf;
448
449 newbuf = regcache_xmalloc (src->descr->gdbarch, get_regcache_aspace (src));
450 regcache_cpy (newbuf, src);
451 return newbuf;
452 }
453
454 enum register_status
455 regcache_register_status (const struct regcache *regcache, int regnum)
456 {
457 gdb_assert (regcache != NULL);
458 gdb_assert (regnum >= 0);
459 if (regcache->readonly_p)
460 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
461 else
462 gdb_assert (regnum < regcache->descr->nr_raw_registers);
463
464 return (enum register_status) regcache->register_status[regnum];
465 }
466
467 void
468 regcache_invalidate (struct regcache *regcache, int regnum)
469 {
470 gdb_assert (regcache != NULL);
471 gdb_assert (regnum >= 0);
472 gdb_assert (!regcache->readonly_p);
473 gdb_assert (regnum < regcache->descr->nr_raw_registers);
474 regcache->register_status[regnum] = REG_UNKNOWN;
475 }
476
477
478 /* Global structure containing the current regcache. */
479
480 /* NOTE: this is a write-through cache. There is no "dirty" bit for
481 recording if the register values have been changed (eg. by the
482 user). Therefore all registers must be written back to the
483 target when appropriate. */
484
485 struct regcache_list
486 {
487 struct regcache *regcache;
488 struct regcache_list *next;
489 };
490
491 static struct regcache_list *current_regcache;
492
493 struct regcache *
494 get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
495 struct address_space *aspace)
496 {
497 struct regcache_list *list;
498 struct regcache *new_regcache;
499
500 for (list = current_regcache; list; list = list->next)
501 if (ptid_equal (list->regcache->ptid, ptid)
502 && get_regcache_arch (list->regcache) == gdbarch)
503 return list->regcache;
504
505 new_regcache = regcache_xmalloc_1 (gdbarch, aspace, 0);
506 new_regcache->ptid = ptid;
507
508 list = XNEW (struct regcache_list);
509 list->regcache = new_regcache;
510 list->next = current_regcache;
511 current_regcache = list;
512
513 return new_regcache;
514 }
515
516 struct regcache *
517 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
518 {
519 struct address_space *aspace;
520
521 /* For the benefit of "maint print registers" & co when debugging an
522 executable, allow dumping the regcache even when there is no
523 thread selected (target_thread_address_space internal-errors if
524 no address space is found). Note that normal user commands will
525 fail higher up on the call stack due to no
526 target_has_registers. */
527 aspace = (ptid_equal (null_ptid, ptid)
528 ? NULL
529 : target_thread_address_space (ptid));
530
531 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
532 }
533
534 static ptid_t current_thread_ptid;
535 static struct gdbarch *current_thread_arch;
536
537 struct regcache *
538 get_thread_regcache (ptid_t ptid)
539 {
540 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
541 {
542 current_thread_ptid = ptid;
543 current_thread_arch = target_thread_architecture (ptid);
544 }
545
546 return get_thread_arch_regcache (ptid, current_thread_arch);
547 }
548
549 struct regcache *
550 get_current_regcache (void)
551 {
552 return get_thread_regcache (inferior_ptid);
553 }
554
555 /* See common/common-regcache.h. */
556
557 struct regcache *
558 get_thread_regcache_for_ptid (ptid_t ptid)
559 {
560 return get_thread_regcache (ptid);
561 }
562
563 /* Observer for the target_changed event. */
564
565 static void
566 regcache_observer_target_changed (struct target_ops *target)
567 {
568 registers_changed ();
569 }
570
571 /* Update global variables old ptids to hold NEW_PTID if they were
572 holding OLD_PTID. */
573 static void
574 regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
575 {
576 struct regcache_list *list;
577
578 for (list = current_regcache; list; list = list->next)
579 if (ptid_equal (list->regcache->ptid, old_ptid))
580 list->regcache->ptid = new_ptid;
581 }
582
583 /* Low level examining and depositing of registers.
584
585 The caller is responsible for making sure that the inferior is
586 stopped before calling the fetching routines, or it will get
587 garbage. (a change from GDB version 3, in which the caller got the
588 value from the last stop). */
589
590 /* REGISTERS_CHANGED ()
591
592 Indicate that registers may have changed, so invalidate the cache. */
593
594 void
595 registers_changed_ptid (ptid_t ptid)
596 {
597 struct regcache_list *list, **list_link;
598
599 list = current_regcache;
600 list_link = &current_regcache;
601 while (list)
602 {
603 if (ptid_match (list->regcache->ptid, ptid))
604 {
605 struct regcache_list *dead = list;
606
607 *list_link = list->next;
608 regcache_xfree (list->regcache);
609 list = *list_link;
610 xfree (dead);
611 continue;
612 }
613
614 list_link = &list->next;
615 list = *list_link;
616 }
617
618 if (ptid_match (current_thread_ptid, ptid))
619 {
620 current_thread_ptid = null_ptid;
621 current_thread_arch = NULL;
622 }
623
624 if (ptid_match (inferior_ptid, ptid))
625 {
626 /* We just deleted the regcache of the current thread. Need to
627 forget about any frames we have cached, too. */
628 reinit_frame_cache ();
629 }
630 }
631
632 void
633 registers_changed (void)
634 {
635 registers_changed_ptid (minus_one_ptid);
636
637 /* Force cleanup of any alloca areas if using C alloca instead of
638 a builtin alloca. This particular call is used to clean up
639 areas allocated by low level target code which may build up
640 during lengthy interactions between gdb and the target before
641 gdb gives control to the user (ie watchpoints). */
642 alloca (0);
643 }
644
645 enum register_status
646 regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf)
647 {
648 gdb_assert (regcache != NULL && buf != NULL);
649 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
650 /* Make certain that the register cache is up-to-date with respect
651 to the current thread. This switching shouldn't be necessary
652 only there is still only one target side register cache. Sigh!
653 On the bright side, at least there is a regcache object. */
654 if (!regcache->readonly_p
655 && regcache_register_status (regcache, regnum) == REG_UNKNOWN)
656 {
657 struct cleanup *old_chain = save_inferior_ptid ();
658
659 inferior_ptid = regcache->ptid;
660 target_fetch_registers (regcache, regnum);
661 do_cleanups (old_chain);
662
663 /* A number of targets can't access the whole set of raw
664 registers (because the debug API provides no means to get at
665 them). */
666 if (regcache->register_status[regnum] == REG_UNKNOWN)
667 regcache->register_status[regnum] = REG_UNAVAILABLE;
668 }
669
670 if (regcache->register_status[regnum] != REG_VALID)
671 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
672 else
673 memcpy (buf, register_buffer (regcache, regnum),
674 regcache->descr->sizeof_register[regnum]);
675
676 return (enum register_status) regcache->register_status[regnum];
677 }
678
679 enum register_status
680 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
681 {
682 gdb_byte *buf;
683 enum register_status status;
684
685 gdb_assert (regcache != NULL);
686 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
687 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
688 status = regcache_raw_read (regcache, regnum, buf);
689 if (status == REG_VALID)
690 *val = extract_signed_integer
691 (buf, regcache->descr->sizeof_register[regnum],
692 gdbarch_byte_order (regcache->descr->gdbarch));
693 else
694 *val = 0;
695 return status;
696 }
697
698 enum register_status
699 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
700 ULONGEST *val)
701 {
702 gdb_byte *buf;
703 enum register_status status;
704
705 gdb_assert (regcache != NULL);
706 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
707 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
708 status = regcache_raw_read (regcache, regnum, buf);
709 if (status == REG_VALID)
710 *val = extract_unsigned_integer
711 (buf, regcache->descr->sizeof_register[regnum],
712 gdbarch_byte_order (regcache->descr->gdbarch));
713 else
714 *val = 0;
715 return status;
716 }
717
718 void
719 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
720 {
721 gdb_byte *buf;
722
723 gdb_assert (regcache != NULL);
724 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
725 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
726 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
727 gdbarch_byte_order (regcache->descr->gdbarch), val);
728 regcache_raw_write (regcache, regnum, buf);
729 }
730
731 void
732 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
733 ULONGEST val)
734 {
735 gdb_byte *buf;
736
737 gdb_assert (regcache != NULL);
738 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
739 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
740 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
741 gdbarch_byte_order (regcache->descr->gdbarch), val);
742 regcache_raw_write (regcache, regnum, buf);
743 }
744
745 LONGEST
746 regcache_raw_get_signed (struct regcache *regcache, int regnum)
747 {
748 LONGEST value;
749 enum register_status status;
750
751 status = regcache_raw_read_signed (regcache, regnum, &value);
752 if (status == REG_UNAVAILABLE)
753 throw_error (NOT_AVAILABLE_ERROR,
754 _("Register %d is not available"), regnum);
755 return value;
756 }
757
758 enum register_status
759 regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf)
760 {
761 gdb_assert (regnum >= 0);
762 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
763 if (regnum < regcache->descr->nr_raw_registers)
764 return regcache_raw_read (regcache, regnum, buf);
765 else if (regcache->readonly_p
766 && regcache->register_status[regnum] != REG_UNKNOWN)
767 {
768 /* Read-only register cache, perhaps the cooked value was
769 cached? */
770 if (regcache->register_status[regnum] == REG_VALID)
771 memcpy (buf, register_buffer (regcache, regnum),
772 regcache->descr->sizeof_register[regnum]);
773 else
774 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
775
776 return (enum register_status) regcache->register_status[regnum];
777 }
778 else if (gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch))
779 {
780 struct value *mark, *computed;
781 enum register_status result = REG_VALID;
782
783 mark = value_mark ();
784
785 computed = gdbarch_pseudo_register_read_value (regcache->descr->gdbarch,
786 regcache, regnum);
787 if (value_entirely_available (computed))
788 memcpy (buf, value_contents_raw (computed),
789 regcache->descr->sizeof_register[regnum]);
790 else
791 {
792 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
793 result = REG_UNAVAILABLE;
794 }
795
796 value_free_to_mark (mark);
797
798 return result;
799 }
800 else
801 return gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache,
802 regnum, buf);
803 }
804
805 struct value *
806 regcache_cooked_read_value (struct regcache *regcache, int regnum)
807 {
808 gdb_assert (regnum >= 0);
809 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
810
811 if (regnum < regcache->descr->nr_raw_registers
812 || (regcache->readonly_p
813 && regcache->register_status[regnum] != REG_UNKNOWN)
814 || !gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch))
815 {
816 struct value *result;
817
818 result = allocate_value (register_type (regcache->descr->gdbarch,
819 regnum));
820 VALUE_LVAL (result) = lval_register;
821 VALUE_REGNUM (result) = regnum;
822
823 /* It is more efficient in general to do this delegation in this
824 direction than in the other one, even though the value-based
825 API is preferred. */
826 if (regcache_cooked_read (regcache, regnum,
827 value_contents_raw (result)) == REG_UNAVAILABLE)
828 mark_value_bytes_unavailable (result, 0,
829 TYPE_LENGTH (value_type (result)));
830
831 return result;
832 }
833 else
834 return gdbarch_pseudo_register_read_value (regcache->descr->gdbarch,
835 regcache, regnum);
836 }
837
838 enum register_status
839 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
840 LONGEST *val)
841 {
842 enum register_status status;
843 gdb_byte *buf;
844
845 gdb_assert (regcache != NULL);
846 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
847 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
848 status = regcache_cooked_read (regcache, regnum, buf);
849 if (status == REG_VALID)
850 *val = extract_signed_integer
851 (buf, regcache->descr->sizeof_register[regnum],
852 gdbarch_byte_order (regcache->descr->gdbarch));
853 else
854 *val = 0;
855 return status;
856 }
857
858 enum register_status
859 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
860 ULONGEST *val)
861 {
862 enum register_status status;
863 gdb_byte *buf;
864
865 gdb_assert (regcache != NULL);
866 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
867 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
868 status = regcache_cooked_read (regcache, regnum, buf);
869 if (status == REG_VALID)
870 *val = extract_unsigned_integer
871 (buf, regcache->descr->sizeof_register[regnum],
872 gdbarch_byte_order (regcache->descr->gdbarch));
873 else
874 *val = 0;
875 return status;
876 }
877
878 void
879 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
880 LONGEST val)
881 {
882 gdb_byte *buf;
883
884 gdb_assert (regcache != NULL);
885 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
886 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
887 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
888 gdbarch_byte_order (regcache->descr->gdbarch), val);
889 regcache_cooked_write (regcache, regnum, buf);
890 }
891
892 void
893 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
894 ULONGEST val)
895 {
896 gdb_byte *buf;
897
898 gdb_assert (regcache != NULL);
899 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
900 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
901 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
902 gdbarch_byte_order (regcache->descr->gdbarch), val);
903 regcache_cooked_write (regcache, regnum, buf);
904 }
905
906 /* See regcache.h. */
907
908 void
909 regcache_raw_set_cached_value (struct regcache *regcache, int regnum,
910 const gdb_byte *buf)
911 {
912 memcpy (register_buffer (regcache, regnum), buf,
913 regcache->descr->sizeof_register[regnum]);
914 regcache->register_status[regnum] = REG_VALID;
915 }
916
917 void
918 regcache_raw_write (struct regcache *regcache, int regnum,
919 const gdb_byte *buf)
920 {
921 struct cleanup *chain_before_save_inferior;
922 struct cleanup *chain_before_invalidate_register;
923
924 gdb_assert (regcache != NULL && buf != NULL);
925 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
926 gdb_assert (!regcache->readonly_p);
927
928 /* On the sparc, writing %g0 is a no-op, so we don't even want to
929 change the registers array if something writes to this register. */
930 if (gdbarch_cannot_store_register (get_regcache_arch (regcache), regnum))
931 return;
932
933 /* If we have a valid copy of the register, and new value == old
934 value, then don't bother doing the actual store. */
935 if (regcache_register_status (regcache, regnum) == REG_VALID
936 && (memcmp (register_buffer (regcache, regnum), buf,
937 regcache->descr->sizeof_register[regnum]) == 0))
938 return;
939
940 chain_before_save_inferior = save_inferior_ptid ();
941 inferior_ptid = regcache->ptid;
942
943 target_prepare_to_store (regcache);
944 regcache_raw_set_cached_value (regcache, regnum, buf);
945
946 /* Register a cleanup function for invalidating the register after it is
947 written, in case of a failure. */
948 chain_before_invalidate_register
949 = make_cleanup_regcache_invalidate (regcache, regnum);
950
951 target_store_registers (regcache, regnum);
952
953 /* The target did not throw an error so we can discard invalidating the
954 register and restore the cleanup chain to what it was. */
955 discard_cleanups (chain_before_invalidate_register);
956
957 do_cleanups (chain_before_save_inferior);
958 }
959
960 void
961 regcache_cooked_write (struct regcache *regcache, int regnum,
962 const gdb_byte *buf)
963 {
964 gdb_assert (regnum >= 0);
965 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
966 if (regnum < regcache->descr->nr_raw_registers)
967 regcache_raw_write (regcache, regnum, buf);
968 else
969 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache,
970 regnum, buf);
971 }
972
973 /* Perform a partial register transfer using a read, modify, write
974 operation. */
975
976 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
977 void *buf);
978 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
979 const void *buf);
980
981 static enum register_status
982 regcache_xfer_part (struct regcache *regcache, int regnum,
983 int offset, int len, void *in, const void *out,
984 enum register_status (*read) (struct regcache *regcache,
985 int regnum,
986 gdb_byte *buf),
987 void (*write) (struct regcache *regcache, int regnum,
988 const gdb_byte *buf))
989 {
990 struct regcache_descr *descr = regcache->descr;
991 gdb_byte reg[MAX_REGISTER_SIZE];
992
993 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]);
994 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]);
995 /* Something to do? */
996 if (offset + len == 0)
997 return REG_VALID;
998 /* Read (when needed) ... */
999 if (in != NULL
1000 || offset > 0
1001 || offset + len < descr->sizeof_register[regnum])
1002 {
1003 enum register_status status;
1004
1005 gdb_assert (read != NULL);
1006 status = read (regcache, regnum, reg);
1007 if (status != REG_VALID)
1008 return status;
1009 }
1010 /* ... modify ... */
1011 if (in != NULL)
1012 memcpy (in, reg + offset, len);
1013 if (out != NULL)
1014 memcpy (reg + offset, out, len);
1015 /* ... write (when needed). */
1016 if (out != NULL)
1017 {
1018 gdb_assert (write != NULL);
1019 write (regcache, regnum, reg);
1020 }
1021
1022 return REG_VALID;
1023 }
1024
1025 enum register_status
1026 regcache_raw_read_part (struct regcache *regcache, int regnum,
1027 int offset, int len, gdb_byte *buf)
1028 {
1029 struct regcache_descr *descr = regcache->descr;
1030
1031 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
1032 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
1033 regcache_raw_read, regcache_raw_write);
1034 }
1035
1036 void
1037 regcache_raw_write_part (struct regcache *regcache, int regnum,
1038 int offset, int len, const gdb_byte *buf)
1039 {
1040 struct regcache_descr *descr = regcache->descr;
1041
1042 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
1043 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
1044 regcache_raw_read, regcache_raw_write);
1045 }
1046
1047 enum register_status
1048 regcache_cooked_read_part (struct regcache *regcache, int regnum,
1049 int offset, int len, gdb_byte *buf)
1050 {
1051 struct regcache_descr *descr = regcache->descr;
1052
1053 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
1054 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
1055 regcache_cooked_read, regcache_cooked_write);
1056 }
1057
1058 void
1059 regcache_cooked_write_part (struct regcache *regcache, int regnum,
1060 int offset, int len, const gdb_byte *buf)
1061 {
1062 struct regcache_descr *descr = regcache->descr;
1063
1064 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
1065 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
1066 regcache_cooked_read, regcache_cooked_write);
1067 }
1068
1069 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
1070
1071 void
1072 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
1073 {
1074 void *regbuf;
1075 size_t size;
1076
1077 gdb_assert (regcache != NULL);
1078 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1079 gdb_assert (!regcache->readonly_p);
1080
1081 regbuf = register_buffer (regcache, regnum);
1082 size = regcache->descr->sizeof_register[regnum];
1083
1084 if (buf)
1085 {
1086 memcpy (regbuf, buf, size);
1087 regcache->register_status[regnum] = REG_VALID;
1088 }
1089 else
1090 {
1091 /* This memset not strictly necessary, but better than garbage
1092 in case the register value manages to escape somewhere (due
1093 to a bug, no less). */
1094 memset (regbuf, 0, size);
1095 regcache->register_status[regnum] = REG_UNAVAILABLE;
1096 }
1097 }
1098
1099 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
1100
1101 void
1102 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
1103 {
1104 const void *regbuf;
1105 size_t size;
1106
1107 gdb_assert (regcache != NULL && buf != NULL);
1108 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1109
1110 regbuf = register_buffer (regcache, regnum);
1111 size = regcache->descr->sizeof_register[regnum];
1112 memcpy (buf, regbuf, size);
1113 }
1114
1115 /* Transfer a single or all registers belonging to a certain register
1116 set to or from a buffer. This is the main worker function for
1117 regcache_supply_regset and regcache_collect_regset. */
1118
1119 static void
1120 regcache_transfer_regset (const struct regset *regset,
1121 const struct regcache *regcache,
1122 struct regcache *out_regcache,
1123 int regnum, const void *in_buf,
1124 void *out_buf, size_t size)
1125 {
1126 const struct regcache_map_entry *map;
1127 int offs = 0, count;
1128
1129 for (map = (const struct regcache_map_entry *) regset->regmap;
1130 (count = map->count) != 0;
1131 map++)
1132 {
1133 int regno = map->regno;
1134 int slot_size = map->size;
1135
1136 if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
1137 slot_size = regcache->descr->sizeof_register[regno];
1138
1139 if (regno == REGCACHE_MAP_SKIP
1140 || (regnum != -1
1141 && (regnum < regno || regnum >= regno + count)))
1142 offs += count * slot_size;
1143
1144 else if (regnum == -1)
1145 for (; count--; regno++, offs += slot_size)
1146 {
1147 if (offs + slot_size > size)
1148 break;
1149
1150 if (out_buf)
1151 regcache_raw_collect (regcache, regno,
1152 (gdb_byte *) out_buf + offs);
1153 else
1154 regcache_raw_supply (out_regcache, regno, in_buf
1155 ? (const gdb_byte *) in_buf + offs
1156 : NULL);
1157 }
1158 else
1159 {
1160 /* Transfer a single register and return. */
1161 offs += (regnum - regno) * slot_size;
1162 if (offs + slot_size > size)
1163 return;
1164
1165 if (out_buf)
1166 regcache_raw_collect (regcache, regnum,
1167 (gdb_byte *) out_buf + offs);
1168 else
1169 regcache_raw_supply (out_regcache, regnum, in_buf
1170 ? (const gdb_byte *) in_buf + offs
1171 : NULL);
1172 return;
1173 }
1174 }
1175 }
1176
1177 /* Supply register REGNUM from BUF to REGCACHE, using the register map
1178 in REGSET. If REGNUM is -1, do this for all registers in REGSET.
1179 If BUF is NULL, set the register(s) to "unavailable" status. */
1180
1181 void
1182 regcache_supply_regset (const struct regset *regset,
1183 struct regcache *regcache,
1184 int regnum, const void *buf, size_t size)
1185 {
1186 regcache_transfer_regset (regset, regcache, regcache, regnum,
1187 buf, NULL, size);
1188 }
1189
1190 /* Collect register REGNUM from REGCACHE to BUF, using the register
1191 map in REGSET. If REGNUM is -1, do this for all registers in
1192 REGSET. */
1193
1194 void
1195 regcache_collect_regset (const struct regset *regset,
1196 const struct regcache *regcache,
1197 int regnum, void *buf, size_t size)
1198 {
1199 regcache_transfer_regset (regset, regcache, NULL, regnum,
1200 NULL, buf, size);
1201 }
1202
1203
1204 /* Special handling for register PC. */
1205
1206 CORE_ADDR
1207 regcache_read_pc (struct regcache *regcache)
1208 {
1209 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1210
1211 CORE_ADDR pc_val;
1212
1213 if (gdbarch_read_pc_p (gdbarch))
1214 pc_val = gdbarch_read_pc (gdbarch, regcache);
1215 /* Else use per-frame method on get_current_frame. */
1216 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1217 {
1218 ULONGEST raw_val;
1219
1220 if (regcache_cooked_read_unsigned (regcache,
1221 gdbarch_pc_regnum (gdbarch),
1222 &raw_val) == REG_UNAVAILABLE)
1223 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1224
1225 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
1226 }
1227 else
1228 internal_error (__FILE__, __LINE__,
1229 _("regcache_read_pc: Unable to find PC"));
1230 return pc_val;
1231 }
1232
1233 void
1234 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
1235 {
1236 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1237
1238 if (gdbarch_write_pc_p (gdbarch))
1239 gdbarch_write_pc (gdbarch, regcache, pc);
1240 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1241 regcache_cooked_write_unsigned (regcache,
1242 gdbarch_pc_regnum (gdbarch), pc);
1243 else
1244 internal_error (__FILE__, __LINE__,
1245 _("regcache_write_pc: Unable to update PC"));
1246
1247 /* Writing the PC (for instance, from "load") invalidates the
1248 current frame. */
1249 reinit_frame_cache ();
1250 }
1251
1252
1253 static void
1254 reg_flush_command (char *command, int from_tty)
1255 {
1256 /* Force-flush the register cache. */
1257 registers_changed ();
1258 if (from_tty)
1259 printf_filtered (_("Register cache flushed.\n"));
1260 }
1261
1262 enum regcache_dump_what
1263 {
1264 regcache_dump_none, regcache_dump_raw,
1265 regcache_dump_cooked, regcache_dump_groups,
1266 regcache_dump_remote
1267 };
1268
1269 static void
1270 regcache_dump (struct regcache *regcache, struct ui_file *file,
1271 enum regcache_dump_what what_to_dump)
1272 {
1273 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1274 struct gdbarch *gdbarch = regcache->descr->gdbarch;
1275 int regnum;
1276 int footnote_nr = 0;
1277 int footnote_register_size = 0;
1278 int footnote_register_offset = 0;
1279 int footnote_register_type_name_null = 0;
1280 long register_offset = 0;
1281 gdb_byte buf[MAX_REGISTER_SIZE];
1282
1283 #if 0
1284 fprintf_unfiltered (file, "nr_raw_registers %d\n",
1285 regcache->descr->nr_raw_registers);
1286 fprintf_unfiltered (file, "nr_cooked_registers %d\n",
1287 regcache->descr->nr_cooked_registers);
1288 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n",
1289 regcache->descr->sizeof_raw_registers);
1290 fprintf_unfiltered (file, "sizeof_raw_register_status %ld\n",
1291 regcache->descr->sizeof_raw_register_status);
1292 fprintf_unfiltered (file, "gdbarch_num_regs %d\n",
1293 gdbarch_num_regs (gdbarch));
1294 fprintf_unfiltered (file, "gdbarch_num_pseudo_regs %d\n",
1295 gdbarch_num_pseudo_regs (gdbarch));
1296 #endif
1297
1298 gdb_assert (regcache->descr->nr_cooked_registers
1299 == (gdbarch_num_regs (gdbarch)
1300 + gdbarch_num_pseudo_regs (gdbarch)));
1301
1302 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++)
1303 {
1304 /* Name. */
1305 if (regnum < 0)
1306 fprintf_unfiltered (file, " %-10s", "Name");
1307 else
1308 {
1309 const char *p = gdbarch_register_name (gdbarch, regnum);
1310
1311 if (p == NULL)
1312 p = "";
1313 else if (p[0] == '\0')
1314 p = "''";
1315 fprintf_unfiltered (file, " %-10s", p);
1316 }
1317
1318 /* Number. */
1319 if (regnum < 0)
1320 fprintf_unfiltered (file, " %4s", "Nr");
1321 else
1322 fprintf_unfiltered (file, " %4d", regnum);
1323
1324 /* Relative number. */
1325 if (regnum < 0)
1326 fprintf_unfiltered (file, " %4s", "Rel");
1327 else if (regnum < gdbarch_num_regs (gdbarch))
1328 fprintf_unfiltered (file, " %4d", regnum);
1329 else
1330 fprintf_unfiltered (file, " %4d",
1331 (regnum - gdbarch_num_regs (gdbarch)));
1332
1333 /* Offset. */
1334 if (regnum < 0)
1335 fprintf_unfiltered (file, " %6s ", "Offset");
1336 else
1337 {
1338 fprintf_unfiltered (file, " %6ld",
1339 regcache->descr->register_offset[regnum]);
1340 if (register_offset != regcache->descr->register_offset[regnum]
1341 || (regnum > 0
1342 && (regcache->descr->register_offset[regnum]
1343 != (regcache->descr->register_offset[regnum - 1]
1344 + regcache->descr->sizeof_register[regnum - 1])))
1345 )
1346 {
1347 if (!footnote_register_offset)
1348 footnote_register_offset = ++footnote_nr;
1349 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1350 }
1351 else
1352 fprintf_unfiltered (file, " ");
1353 register_offset = (regcache->descr->register_offset[regnum]
1354 + regcache->descr->sizeof_register[regnum]);
1355 }
1356
1357 /* Size. */
1358 if (regnum < 0)
1359 fprintf_unfiltered (file, " %5s ", "Size");
1360 else
1361 fprintf_unfiltered (file, " %5ld",
1362 regcache->descr->sizeof_register[regnum]);
1363
1364 /* Type. */
1365 {
1366 const char *t;
1367
1368 if (regnum < 0)
1369 t = "Type";
1370 else
1371 {
1372 static const char blt[] = "builtin_type";
1373
1374 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum));
1375 if (t == NULL)
1376 {
1377 char *n;
1378
1379 if (!footnote_register_type_name_null)
1380 footnote_register_type_name_null = ++footnote_nr;
1381 n = xstrprintf ("*%d", footnote_register_type_name_null);
1382 make_cleanup (xfree, n);
1383 t = n;
1384 }
1385 /* Chop a leading builtin_type. */
1386 if (startswith (t, blt))
1387 t += strlen (blt);
1388 }
1389 fprintf_unfiltered (file, " %-15s", t);
1390 }
1391
1392 /* Leading space always present. */
1393 fprintf_unfiltered (file, " ");
1394
1395 /* Value, raw. */
1396 if (what_to_dump == regcache_dump_raw)
1397 {
1398 if (regnum < 0)
1399 fprintf_unfiltered (file, "Raw value");
1400 else if (regnum >= regcache->descr->nr_raw_registers)
1401 fprintf_unfiltered (file, "<cooked>");
1402 else if (regcache_register_status (regcache, regnum) == REG_UNKNOWN)
1403 fprintf_unfiltered (file, "<invalid>");
1404 else if (regcache_register_status (regcache, regnum) == REG_UNAVAILABLE)
1405 fprintf_unfiltered (file, "<unavailable>");
1406 else
1407 {
1408 regcache_raw_read (regcache, regnum, buf);
1409 print_hex_chars (file, buf,
1410 regcache->descr->sizeof_register[regnum],
1411 gdbarch_byte_order (gdbarch));
1412 }
1413 }
1414
1415 /* Value, cooked. */
1416 if (what_to_dump == regcache_dump_cooked)
1417 {
1418 if (regnum < 0)
1419 fprintf_unfiltered (file, "Cooked value");
1420 else
1421 {
1422 enum register_status status;
1423
1424 status = regcache_cooked_read (regcache, regnum, buf);
1425 if (status == REG_UNKNOWN)
1426 fprintf_unfiltered (file, "<invalid>");
1427 else if (status == REG_UNAVAILABLE)
1428 fprintf_unfiltered (file, "<unavailable>");
1429 else
1430 print_hex_chars (file, buf,
1431 regcache->descr->sizeof_register[regnum],
1432 gdbarch_byte_order (gdbarch));
1433 }
1434 }
1435
1436 /* Group members. */
1437 if (what_to_dump == regcache_dump_groups)
1438 {
1439 if (regnum < 0)
1440 fprintf_unfiltered (file, "Groups");
1441 else
1442 {
1443 const char *sep = "";
1444 struct reggroup *group;
1445
1446 for (group = reggroup_next (gdbarch, NULL);
1447 group != NULL;
1448 group = reggroup_next (gdbarch, group))
1449 {
1450 if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
1451 {
1452 fprintf_unfiltered (file,
1453 "%s%s", sep, reggroup_name (group));
1454 sep = ",";
1455 }
1456 }
1457 }
1458 }
1459
1460 /* Remote packet configuration. */
1461 if (what_to_dump == regcache_dump_remote)
1462 {
1463 if (regnum < 0)
1464 {
1465 fprintf_unfiltered (file, "Rmt Nr g/G Offset");
1466 }
1467 else if (regnum < regcache->descr->nr_raw_registers)
1468 {
1469 int pnum, poffset;
1470
1471 if (remote_register_number_and_offset (get_regcache_arch (regcache), regnum,
1472 &pnum, &poffset))
1473 fprintf_unfiltered (file, "%7d %11d", pnum, poffset);
1474 }
1475 }
1476
1477 fprintf_unfiltered (file, "\n");
1478 }
1479
1480 if (footnote_register_size)
1481 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
1482 footnote_register_size);
1483 if (footnote_register_offset)
1484 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1485 footnote_register_offset);
1486 if (footnote_register_type_name_null)
1487 fprintf_unfiltered (file,
1488 "*%d: Register type's name NULL.\n",
1489 footnote_register_type_name_null);
1490 do_cleanups (cleanups);
1491 }
1492
1493 static void
1494 regcache_print (char *args, enum regcache_dump_what what_to_dump)
1495 {
1496 if (args == NULL)
1497 regcache_dump (get_current_regcache (), gdb_stdout, what_to_dump);
1498 else
1499 {
1500 struct cleanup *cleanups;
1501 struct ui_file *file = gdb_fopen (args, "w");
1502
1503 if (file == NULL)
1504 perror_with_name (_("maintenance print architecture"));
1505 cleanups = make_cleanup_ui_file_delete (file);
1506 regcache_dump (get_current_regcache (), file, what_to_dump);
1507 do_cleanups (cleanups);
1508 }
1509 }
1510
1511 static void
1512 maintenance_print_registers (char *args, int from_tty)
1513 {
1514 regcache_print (args, regcache_dump_none);
1515 }
1516
1517 static void
1518 maintenance_print_raw_registers (char *args, int from_tty)
1519 {
1520 regcache_print (args, regcache_dump_raw);
1521 }
1522
1523 static void
1524 maintenance_print_cooked_registers (char *args, int from_tty)
1525 {
1526 regcache_print (args, regcache_dump_cooked);
1527 }
1528
1529 static void
1530 maintenance_print_register_groups (char *args, int from_tty)
1531 {
1532 regcache_print (args, regcache_dump_groups);
1533 }
1534
1535 static void
1536 maintenance_print_remote_registers (char *args, int from_tty)
1537 {
1538 regcache_print (args, regcache_dump_remote);
1539 }
1540
1541 extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */
1542
1543 void
1544 _initialize_regcache (void)
1545 {
1546 regcache_descr_handle
1547 = gdbarch_data_register_post_init (init_regcache_descr);
1548
1549 observer_attach_target_changed (regcache_observer_target_changed);
1550 observer_attach_thread_ptid_changed (regcache_thread_ptid_changed);
1551
1552 add_com ("flushregs", class_maintenance, reg_flush_command,
1553 _("Force gdb to flush its register cache (maintainer command)"));
1554
1555 add_cmd ("registers", class_maintenance, maintenance_print_registers,
1556 _("Print the internal register configuration.\n"
1557 "Takes an optional file parameter."), &maintenanceprintlist);
1558 add_cmd ("raw-registers", class_maintenance,
1559 maintenance_print_raw_registers,
1560 _("Print the internal register configuration "
1561 "including raw values.\n"
1562 "Takes an optional file parameter."), &maintenanceprintlist);
1563 add_cmd ("cooked-registers", class_maintenance,
1564 maintenance_print_cooked_registers,
1565 _("Print the internal register configuration "
1566 "including cooked values.\n"
1567 "Takes an optional file parameter."), &maintenanceprintlist);
1568 add_cmd ("register-groups", class_maintenance,
1569 maintenance_print_register_groups,
1570 _("Print the internal register configuration "
1571 "including each register's group.\n"
1572 "Takes an optional file parameter."),
1573 &maintenanceprintlist);
1574 add_cmd ("remote-registers", class_maintenance,
1575 maintenance_print_remote_registers, _("\
1576 Print the internal register configuration including each register's\n\
1577 remote register number and buffer offset in the g/G packets.\n\
1578 Takes an optional file parameter."),
1579 &maintenanceprintlist);
1580
1581 }
This page took 0.154638 seconds and 4 git commands to generate.