import strstr and strerror modules
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbarch.h"
24 #include "gdbcmd.h"
25 #include "regcache.h"
26 #include "reggroups.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "gdbcmd.h" /* For maintenanceprintlist. */
30 #include "observer.h"
31 #include "exceptions.h"
32 #include "remote.h"
33 #include "valprint.h"
34
35 /*
36 * DATA STRUCTURE
37 *
38 * Here is the actual register cache.
39 */
40
41 /* Per-architecture object describing the layout of a register cache.
42 Computed once when the architecture is created. */
43
44 struct gdbarch_data *regcache_descr_handle;
45
46 struct regcache_descr
47 {
48 /* The architecture this descriptor belongs to. */
49 struct gdbarch *gdbarch;
50
51 /* The raw register cache. Each raw (or hard) register is supplied
52 by the target interface. The raw cache should not contain
53 redundant information - if the PC is constructed from two
54 registers then those registers and not the PC lives in the raw
55 cache. */
56 int nr_raw_registers;
57 long sizeof_raw_registers;
58 long sizeof_raw_register_status;
59
60 /* The cooked register space. Each cooked register in the range
61 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
62 register. The remaining [NR_RAW_REGISTERS
63 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
64 both raw registers and memory by the architecture methods
65 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
66 int nr_cooked_registers;
67 long sizeof_cooked_registers;
68 long sizeof_cooked_register_status;
69
70 /* Offset and size (in 8 bit bytes), of each register in the
71 register cache. All registers (including those in the range
72 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
73 offset. */
74 long *register_offset;
75 long *sizeof_register;
76
77 /* Cached table containing the type of each register. */
78 struct type **register_type;
79 };
80
81 static void *
82 init_regcache_descr (struct gdbarch *gdbarch)
83 {
84 int i;
85 struct regcache_descr *descr;
86 gdb_assert (gdbarch != NULL);
87
88 /* Create an initial, zero filled, table. */
89 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
90 descr->gdbarch = gdbarch;
91
92 /* Total size of the register space. The raw registers are mapped
93 directly onto the raw register cache while the pseudo's are
94 either mapped onto raw-registers or memory. */
95 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
96 + gdbarch_num_pseudo_regs (gdbarch);
97 descr->sizeof_cooked_register_status
98 = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
99
100 /* Fill in a table of register types. */
101 descr->register_type
102 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
103 struct type *);
104 for (i = 0; i < descr->nr_cooked_registers; i++)
105 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
106
107 /* Construct a strictly RAW register cache. Don't allow pseudo's
108 into the register cache. */
109 descr->nr_raw_registers = gdbarch_num_regs (gdbarch);
110 descr->sizeof_raw_register_status = gdbarch_num_regs (gdbarch);
111
112 /* Lay out the register cache.
113
114 NOTE: cagney/2002-05-22: Only register_type() is used when
115 constructing the register cache. It is assumed that the
116 register's raw size, virtual size and type length are all the
117 same. */
118
119 {
120 long offset = 0;
121
122 descr->sizeof_register
123 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
124 descr->register_offset
125 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
126 for (i = 0; i < descr->nr_raw_registers; i++)
127 {
128 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
129 descr->register_offset[i] = offset;
130 offset += descr->sizeof_register[i];
131 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
132 }
133 /* Set the real size of the raw register cache buffer. */
134 descr->sizeof_raw_registers = offset;
135
136 for (; i < descr->nr_cooked_registers; i++)
137 {
138 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
139 descr->register_offset[i] = offset;
140 offset += descr->sizeof_register[i];
141 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
142 }
143 /* Set the real size of the readonly register cache buffer. */
144 descr->sizeof_cooked_registers = offset;
145 }
146
147 return descr;
148 }
149
150 static struct regcache_descr *
151 regcache_descr (struct gdbarch *gdbarch)
152 {
153 return gdbarch_data (gdbarch, regcache_descr_handle);
154 }
155
156 /* Utility functions returning useful register attributes stored in
157 the regcache descr. */
158
159 struct type *
160 register_type (struct gdbarch *gdbarch, int regnum)
161 {
162 struct regcache_descr *descr = regcache_descr (gdbarch);
163
164 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
165 return descr->register_type[regnum];
166 }
167
168 /* Utility functions returning useful register attributes stored in
169 the regcache descr. */
170
171 int
172 register_size (struct gdbarch *gdbarch, int regnum)
173 {
174 struct regcache_descr *descr = regcache_descr (gdbarch);
175 int size;
176
177 gdb_assert (regnum >= 0
178 && regnum < (gdbarch_num_regs (gdbarch)
179 + gdbarch_num_pseudo_regs (gdbarch)));
180 size = descr->sizeof_register[regnum];
181 return size;
182 }
183
184 /* The register cache for storing raw register values. */
185
186 struct regcache
187 {
188 struct regcache_descr *descr;
189
190 /* The address space of this register cache (for registers where it
191 makes sense, like PC or SP). */
192 struct address_space *aspace;
193
194 /* The register buffers. A read-only register cache can hold the
195 full [0 .. gdbarch_num_regs + gdbarch_num_pseudo_regs) while a read/write
196 register cache can only hold [0 .. gdbarch_num_regs). */
197 gdb_byte *registers;
198 /* Register cache status. */
199 signed char *register_status;
200 /* Is this a read-only cache? A read-only cache is used for saving
201 the target's register state (e.g, across an inferior function
202 call or just before forcing a function return). A read-only
203 cache can only be updated via the methods regcache_dup() and
204 regcache_cpy(). The actual contents are determined by the
205 reggroup_save and reggroup_restore methods. */
206 int readonly_p;
207 /* If this is a read-write cache, which thread's registers is
208 it connected to? */
209 ptid_t ptid;
210 };
211
212 static struct regcache *
213 regcache_xmalloc_1 (struct gdbarch *gdbarch, struct address_space *aspace,
214 int readonly_p)
215 {
216 struct regcache_descr *descr;
217 struct regcache *regcache;
218
219 gdb_assert (gdbarch != NULL);
220 descr = regcache_descr (gdbarch);
221 regcache = XMALLOC (struct regcache);
222 regcache->descr = descr;
223 regcache->readonly_p = readonly_p;
224 if (readonly_p)
225 {
226 regcache->registers
227 = XCALLOC (descr->sizeof_cooked_registers, gdb_byte);
228 regcache->register_status
229 = XCALLOC (descr->sizeof_cooked_register_status, signed char);
230 }
231 else
232 {
233 regcache->registers
234 = XCALLOC (descr->sizeof_raw_registers, gdb_byte);
235 regcache->register_status
236 = XCALLOC (descr->sizeof_raw_register_status, signed char);
237 }
238 regcache->aspace = aspace;
239 regcache->ptid = minus_one_ptid;
240 return regcache;
241 }
242
243 struct regcache *
244 regcache_xmalloc (struct gdbarch *gdbarch, struct address_space *aspace)
245 {
246 return regcache_xmalloc_1 (gdbarch, aspace, 1);
247 }
248
249 void
250 regcache_xfree (struct regcache *regcache)
251 {
252 if (regcache == NULL)
253 return;
254 xfree (regcache->registers);
255 xfree (regcache->register_status);
256 xfree (regcache);
257 }
258
259 static void
260 do_regcache_xfree (void *data)
261 {
262 regcache_xfree (data);
263 }
264
265 struct cleanup *
266 make_cleanup_regcache_xfree (struct regcache *regcache)
267 {
268 return make_cleanup (do_regcache_xfree, regcache);
269 }
270
271 /* Return REGCACHE's architecture. */
272
273 struct gdbarch *
274 get_regcache_arch (const struct regcache *regcache)
275 {
276 return regcache->descr->gdbarch;
277 }
278
279 struct address_space *
280 get_regcache_aspace (const struct regcache *regcache)
281 {
282 return regcache->aspace;
283 }
284
285 /* Return a pointer to register REGNUM's buffer cache. */
286
287 static gdb_byte *
288 register_buffer (const struct regcache *regcache, int regnum)
289 {
290 return regcache->registers + regcache->descr->register_offset[regnum];
291 }
292
293 void
294 regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read,
295 void *src)
296 {
297 struct gdbarch *gdbarch = dst->descr->gdbarch;
298 gdb_byte buf[MAX_REGISTER_SIZE];
299 int regnum;
300
301 /* The DST should be `read-only', if it wasn't then the save would
302 end up trying to write the register values back out to the
303 target. */
304 gdb_assert (dst->readonly_p);
305 /* Clear the dest. */
306 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers);
307 memset (dst->register_status, 0,
308 dst->descr->sizeof_cooked_register_status);
309 /* Copy over any registers (identified by their membership in the
310 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
311 gdbarch_num_pseudo_regs) range is checked since some architectures need
312 to save/restore `cooked' registers that live in memory. */
313 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
314 {
315 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
316 {
317 enum register_status status = cooked_read (src, regnum, buf);
318
319 if (status == REG_VALID)
320 memcpy (register_buffer (dst, regnum), buf,
321 register_size (gdbarch, regnum));
322 else
323 {
324 gdb_assert (status != REG_UNKNOWN);
325
326 memset (register_buffer (dst, regnum), 0,
327 register_size (gdbarch, regnum));
328 }
329 dst->register_status[regnum] = status;
330 }
331 }
332 }
333
334 static void
335 regcache_restore (struct regcache *dst,
336 regcache_cooked_read_ftype *cooked_read,
337 void *cooked_read_context)
338 {
339 struct gdbarch *gdbarch = dst->descr->gdbarch;
340 gdb_byte buf[MAX_REGISTER_SIZE];
341 int regnum;
342
343 /* The dst had better not be read-only. If it is, the `restore'
344 doesn't make much sense. */
345 gdb_assert (!dst->readonly_p);
346 /* Copy over any registers, being careful to only restore those that
347 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
348 + gdbarch_num_pseudo_regs) range is checked since some architectures need
349 to save/restore `cooked' registers that live in memory. */
350 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
351 {
352 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
353 {
354 enum register_status status;
355
356 status = cooked_read (cooked_read_context, regnum, buf);
357 if (status == REG_VALID)
358 regcache_cooked_write (dst, regnum, buf);
359 }
360 }
361 }
362
363 static enum register_status
364 do_cooked_read (void *src, int regnum, gdb_byte *buf)
365 {
366 struct regcache *regcache = src;
367
368 return regcache_cooked_read (regcache, regnum, buf);
369 }
370
371 void
372 regcache_cpy (struct regcache *dst, struct regcache *src)
373 {
374 gdb_assert (src != NULL && dst != NULL);
375 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
376 gdb_assert (src != dst);
377 gdb_assert (src->readonly_p || dst->readonly_p);
378
379 if (!src->readonly_p)
380 regcache_save (dst, do_cooked_read, src);
381 else if (!dst->readonly_p)
382 regcache_restore (dst, do_cooked_read, src);
383 else
384 regcache_cpy_no_passthrough (dst, src);
385 }
386
387 void
388 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
389 {
390 gdb_assert (src != NULL && dst != NULL);
391 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
392 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
393 move of data into a thread's regcache. Doing this would be silly
394 - it would mean that regcache->register_status would be
395 completely invalid. */
396 gdb_assert (dst->readonly_p && src->readonly_p);
397
398 memcpy (dst->registers, src->registers,
399 dst->descr->sizeof_cooked_registers);
400 memcpy (dst->register_status, src->register_status,
401 dst->descr->sizeof_cooked_register_status);
402 }
403
404 struct regcache *
405 regcache_dup (struct regcache *src)
406 {
407 struct regcache *newbuf;
408
409 newbuf = regcache_xmalloc (src->descr->gdbarch, get_regcache_aspace (src));
410 regcache_cpy (newbuf, src);
411 return newbuf;
412 }
413
414 enum register_status
415 regcache_register_status (const struct regcache *regcache, int regnum)
416 {
417 gdb_assert (regcache != NULL);
418 gdb_assert (regnum >= 0);
419 if (regcache->readonly_p)
420 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
421 else
422 gdb_assert (regnum < regcache->descr->nr_raw_registers);
423
424 return regcache->register_status[regnum];
425 }
426
427 void
428 regcache_invalidate (struct regcache *regcache, int regnum)
429 {
430 gdb_assert (regcache != NULL);
431 gdb_assert (regnum >= 0);
432 gdb_assert (!regcache->readonly_p);
433 gdb_assert (regnum < regcache->descr->nr_raw_registers);
434 regcache->register_status[regnum] = REG_UNKNOWN;
435 }
436
437
438 /* Global structure containing the current regcache. */
439
440 /* NOTE: this is a write-through cache. There is no "dirty" bit for
441 recording if the register values have been changed (eg. by the
442 user). Therefore all registers must be written back to the
443 target when appropriate. */
444
445 struct regcache_list
446 {
447 struct regcache *regcache;
448 struct regcache_list *next;
449 };
450
451 static struct regcache_list *current_regcache;
452
453 struct regcache *
454 get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
455 struct address_space *aspace)
456 {
457 struct regcache_list *list;
458 struct regcache *new_regcache;
459
460 for (list = current_regcache; list; list = list->next)
461 if (ptid_equal (list->regcache->ptid, ptid)
462 && get_regcache_arch (list->regcache) == gdbarch)
463 return list->regcache;
464
465 new_regcache = regcache_xmalloc_1 (gdbarch, aspace, 0);
466 new_regcache->ptid = ptid;
467
468 list = xmalloc (sizeof (struct regcache_list));
469 list->regcache = new_regcache;
470 list->next = current_regcache;
471 current_regcache = list;
472
473 return new_regcache;
474 }
475
476 struct regcache *
477 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
478 {
479 struct address_space *aspace;
480
481 /* For the benefit of "maint print registers" & co when debugging an
482 executable, allow dumping the regcache even when there is no
483 thread selected (target_thread_address_space internal-errors if
484 no address space is found). Note that normal user commands will
485 fail higher up on the call stack due to no
486 target_has_registers. */
487 aspace = (ptid_equal (null_ptid, ptid)
488 ? NULL
489 : target_thread_address_space (ptid));
490
491 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
492 }
493
494 static ptid_t current_thread_ptid;
495 static struct gdbarch *current_thread_arch;
496
497 struct regcache *
498 get_thread_regcache (ptid_t ptid)
499 {
500 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
501 {
502 current_thread_ptid = ptid;
503 current_thread_arch = target_thread_architecture (ptid);
504 }
505
506 return get_thread_arch_regcache (ptid, current_thread_arch);
507 }
508
509 struct regcache *
510 get_current_regcache (void)
511 {
512 return get_thread_regcache (inferior_ptid);
513 }
514
515
516 /* Observer for the target_changed event. */
517
518 static void
519 regcache_observer_target_changed (struct target_ops *target)
520 {
521 registers_changed ();
522 }
523
524 /* Update global variables old ptids to hold NEW_PTID if they were
525 holding OLD_PTID. */
526 static void
527 regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
528 {
529 struct regcache_list *list;
530
531 for (list = current_regcache; list; list = list->next)
532 if (ptid_equal (list->regcache->ptid, old_ptid))
533 list->regcache->ptid = new_ptid;
534 }
535
536 /* Low level examining and depositing of registers.
537
538 The caller is responsible for making sure that the inferior is
539 stopped before calling the fetching routines, or it will get
540 garbage. (a change from GDB version 3, in which the caller got the
541 value from the last stop). */
542
543 /* REGISTERS_CHANGED ()
544
545 Indicate that registers may have changed, so invalidate the cache. */
546
547 void
548 registers_changed_ptid (ptid_t ptid)
549 {
550 struct regcache_list *list, **list_link;
551
552 list = current_regcache;
553 list_link = &current_regcache;
554 while (list)
555 {
556 if (ptid_match (list->regcache->ptid, ptid))
557 {
558 struct regcache_list *dead = list;
559
560 *list_link = list->next;
561 regcache_xfree (list->regcache);
562 list = *list_link;
563 xfree (dead);
564 continue;
565 }
566
567 list_link = &list->next;
568 list = *list_link;
569 }
570
571 if (ptid_match (current_thread_ptid, ptid))
572 {
573 current_thread_ptid = null_ptid;
574 current_thread_arch = NULL;
575 }
576
577 if (ptid_match (inferior_ptid, ptid))
578 {
579 /* We just deleted the regcache of the current thread. Need to
580 forget about any frames we have cached, too. */
581 reinit_frame_cache ();
582 }
583 }
584
585 void
586 registers_changed (void)
587 {
588 registers_changed_ptid (minus_one_ptid);
589
590 /* Force cleanup of any alloca areas if using C alloca instead of
591 a builtin alloca. This particular call is used to clean up
592 areas allocated by low level target code which may build up
593 during lengthy interactions between gdb and the target before
594 gdb gives control to the user (ie watchpoints). */
595 alloca (0);
596 }
597
598 enum register_status
599 regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf)
600 {
601 gdb_assert (regcache != NULL && buf != NULL);
602 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
603 /* Make certain that the register cache is up-to-date with respect
604 to the current thread. This switching shouldn't be necessary
605 only there is still only one target side register cache. Sigh!
606 On the bright side, at least there is a regcache object. */
607 if (!regcache->readonly_p
608 && regcache_register_status (regcache, regnum) == REG_UNKNOWN)
609 {
610 struct cleanup *old_chain = save_inferior_ptid ();
611
612 inferior_ptid = regcache->ptid;
613 target_fetch_registers (regcache, regnum);
614 do_cleanups (old_chain);
615
616 /* A number of targets can't access the whole set of raw
617 registers (because the debug API provides no means to get at
618 them). */
619 if (regcache->register_status[regnum] == REG_UNKNOWN)
620 regcache->register_status[regnum] = REG_UNAVAILABLE;
621 }
622
623 if (regcache->register_status[regnum] != REG_VALID)
624 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
625 else
626 memcpy (buf, register_buffer (regcache, regnum),
627 regcache->descr->sizeof_register[regnum]);
628
629 return regcache->register_status[regnum];
630 }
631
632 enum register_status
633 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
634 {
635 gdb_byte *buf;
636 enum register_status status;
637
638 gdb_assert (regcache != NULL);
639 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
640 buf = alloca (regcache->descr->sizeof_register[regnum]);
641 status = regcache_raw_read (regcache, regnum, buf);
642 if (status == REG_VALID)
643 *val = extract_signed_integer
644 (buf, regcache->descr->sizeof_register[regnum],
645 gdbarch_byte_order (regcache->descr->gdbarch));
646 else
647 *val = 0;
648 return status;
649 }
650
651 enum register_status
652 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
653 ULONGEST *val)
654 {
655 gdb_byte *buf;
656 enum register_status status;
657
658 gdb_assert (regcache != NULL);
659 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
660 buf = alloca (regcache->descr->sizeof_register[regnum]);
661 status = regcache_raw_read (regcache, regnum, buf);
662 if (status == REG_VALID)
663 *val = extract_unsigned_integer
664 (buf, regcache->descr->sizeof_register[regnum],
665 gdbarch_byte_order (regcache->descr->gdbarch));
666 else
667 *val = 0;
668 return status;
669 }
670
671 void
672 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
673 {
674 void *buf;
675
676 gdb_assert (regcache != NULL);
677 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
678 buf = alloca (regcache->descr->sizeof_register[regnum]);
679 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
680 gdbarch_byte_order (regcache->descr->gdbarch), val);
681 regcache_raw_write (regcache, regnum, buf);
682 }
683
684 void
685 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
686 ULONGEST val)
687 {
688 void *buf;
689
690 gdb_assert (regcache != NULL);
691 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
692 buf = alloca (regcache->descr->sizeof_register[regnum]);
693 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
694 gdbarch_byte_order (regcache->descr->gdbarch), val);
695 regcache_raw_write (regcache, regnum, buf);
696 }
697
698 enum register_status
699 regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf)
700 {
701 gdb_assert (regnum >= 0);
702 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
703 if (regnum < regcache->descr->nr_raw_registers)
704 return regcache_raw_read (regcache, regnum, buf);
705 else if (regcache->readonly_p
706 && regcache->register_status[regnum] != REG_UNKNOWN)
707 {
708 /* Read-only register cache, perhaps the cooked value was
709 cached? */
710 if (regcache->register_status[regnum] == REG_VALID)
711 memcpy (buf, register_buffer (regcache, regnum),
712 regcache->descr->sizeof_register[regnum]);
713 else
714 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
715
716 return regcache->register_status[regnum];
717 }
718 else if (gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch))
719 {
720 struct value *mark, *computed;
721 enum register_status result = REG_VALID;
722
723 mark = value_mark ();
724
725 computed = gdbarch_pseudo_register_read_value (regcache->descr->gdbarch,
726 regcache, regnum);
727 if (value_entirely_available (computed))
728 memcpy (buf, value_contents_raw (computed),
729 regcache->descr->sizeof_register[regnum]);
730 else
731 {
732 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
733 result = REG_UNAVAILABLE;
734 }
735
736 value_free_to_mark (mark);
737
738 return result;
739 }
740 else
741 return gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache,
742 regnum, buf);
743 }
744
745 struct value *
746 regcache_cooked_read_value (struct regcache *regcache, int regnum)
747 {
748 gdb_assert (regnum >= 0);
749 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
750
751 if (regnum < regcache->descr->nr_raw_registers
752 || (regcache->readonly_p
753 && regcache->register_status[regnum] != REG_UNKNOWN)
754 || !gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch))
755 {
756 struct value *result;
757
758 result = allocate_value (register_type (regcache->descr->gdbarch,
759 regnum));
760 VALUE_LVAL (result) = lval_register;
761 VALUE_REGNUM (result) = regnum;
762
763 /* It is more efficient in general to do this delegation in this
764 direction than in the other one, even though the value-based
765 API is preferred. */
766 if (regcache_cooked_read (regcache, regnum,
767 value_contents_raw (result)) == REG_UNAVAILABLE)
768 mark_value_bytes_unavailable (result, 0,
769 TYPE_LENGTH (value_type (result)));
770
771 return result;
772 }
773 else
774 return gdbarch_pseudo_register_read_value (regcache->descr->gdbarch,
775 regcache, regnum);
776 }
777
778 enum register_status
779 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
780 LONGEST *val)
781 {
782 enum register_status status;
783 gdb_byte *buf;
784
785 gdb_assert (regcache != NULL);
786 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
787 buf = alloca (regcache->descr->sizeof_register[regnum]);
788 status = regcache_cooked_read (regcache, regnum, buf);
789 if (status == REG_VALID)
790 *val = extract_signed_integer
791 (buf, regcache->descr->sizeof_register[regnum],
792 gdbarch_byte_order (regcache->descr->gdbarch));
793 else
794 *val = 0;
795 return status;
796 }
797
798 enum register_status
799 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
800 ULONGEST *val)
801 {
802 enum register_status status;
803 gdb_byte *buf;
804
805 gdb_assert (regcache != NULL);
806 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
807 buf = alloca (regcache->descr->sizeof_register[regnum]);
808 status = regcache_cooked_read (regcache, regnum, buf);
809 if (status == REG_VALID)
810 *val = extract_unsigned_integer
811 (buf, regcache->descr->sizeof_register[regnum],
812 gdbarch_byte_order (regcache->descr->gdbarch));
813 else
814 *val = 0;
815 return status;
816 }
817
818 void
819 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
820 LONGEST val)
821 {
822 void *buf;
823
824 gdb_assert (regcache != NULL);
825 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
826 buf = alloca (regcache->descr->sizeof_register[regnum]);
827 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
828 gdbarch_byte_order (regcache->descr->gdbarch), val);
829 regcache_cooked_write (regcache, regnum, buf);
830 }
831
832 void
833 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
834 ULONGEST val)
835 {
836 void *buf;
837
838 gdb_assert (regcache != NULL);
839 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
840 buf = alloca (regcache->descr->sizeof_register[regnum]);
841 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
842 gdbarch_byte_order (regcache->descr->gdbarch), val);
843 regcache_cooked_write (regcache, regnum, buf);
844 }
845
846 void
847 regcache_raw_write (struct regcache *regcache, int regnum,
848 const gdb_byte *buf)
849 {
850 struct cleanup *old_chain;
851
852 gdb_assert (regcache != NULL && buf != NULL);
853 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
854 gdb_assert (!regcache->readonly_p);
855
856 /* On the sparc, writing %g0 is a no-op, so we don't even want to
857 change the registers array if something writes to this register. */
858 if (gdbarch_cannot_store_register (get_regcache_arch (regcache), regnum))
859 return;
860
861 /* If we have a valid copy of the register, and new value == old
862 value, then don't bother doing the actual store. */
863 if (regcache_register_status (regcache, regnum) == REG_VALID
864 && (memcmp (register_buffer (regcache, regnum), buf,
865 regcache->descr->sizeof_register[regnum]) == 0))
866 return;
867
868 old_chain = save_inferior_ptid ();
869 inferior_ptid = regcache->ptid;
870
871 target_prepare_to_store (regcache);
872 memcpy (register_buffer (regcache, regnum), buf,
873 regcache->descr->sizeof_register[regnum]);
874 regcache->register_status[regnum] = REG_VALID;
875 target_store_registers (regcache, regnum);
876
877 do_cleanups (old_chain);
878 }
879
880 void
881 regcache_cooked_write (struct regcache *regcache, int regnum,
882 const gdb_byte *buf)
883 {
884 gdb_assert (regnum >= 0);
885 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
886 if (regnum < regcache->descr->nr_raw_registers)
887 regcache_raw_write (regcache, regnum, buf);
888 else
889 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache,
890 regnum, buf);
891 }
892
893 /* Perform a partial register transfer using a read, modify, write
894 operation. */
895
896 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
897 void *buf);
898 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
899 const void *buf);
900
901 static enum register_status
902 regcache_xfer_part (struct regcache *regcache, int regnum,
903 int offset, int len, void *in, const void *out,
904 enum register_status (*read) (struct regcache *regcache,
905 int regnum,
906 gdb_byte *buf),
907 void (*write) (struct regcache *regcache, int regnum,
908 const gdb_byte *buf))
909 {
910 struct regcache_descr *descr = regcache->descr;
911 gdb_byte reg[MAX_REGISTER_SIZE];
912
913 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]);
914 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]);
915 /* Something to do? */
916 if (offset + len == 0)
917 return REG_VALID;
918 /* Read (when needed) ... */
919 if (in != NULL
920 || offset > 0
921 || offset + len < descr->sizeof_register[regnum])
922 {
923 enum register_status status;
924
925 gdb_assert (read != NULL);
926 status = read (regcache, regnum, reg);
927 if (status != REG_VALID)
928 return status;
929 }
930 /* ... modify ... */
931 if (in != NULL)
932 memcpy (in, reg + offset, len);
933 if (out != NULL)
934 memcpy (reg + offset, out, len);
935 /* ... write (when needed). */
936 if (out != NULL)
937 {
938 gdb_assert (write != NULL);
939 write (regcache, regnum, reg);
940 }
941
942 return REG_VALID;
943 }
944
945 enum register_status
946 regcache_raw_read_part (struct regcache *regcache, int regnum,
947 int offset, int len, gdb_byte *buf)
948 {
949 struct regcache_descr *descr = regcache->descr;
950
951 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
952 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
953 regcache_raw_read, regcache_raw_write);
954 }
955
956 void
957 regcache_raw_write_part (struct regcache *regcache, int regnum,
958 int offset, int len, const gdb_byte *buf)
959 {
960 struct regcache_descr *descr = regcache->descr;
961
962 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
963 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
964 regcache_raw_read, regcache_raw_write);
965 }
966
967 enum register_status
968 regcache_cooked_read_part (struct regcache *regcache, int regnum,
969 int offset, int len, gdb_byte *buf)
970 {
971 struct regcache_descr *descr = regcache->descr;
972
973 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
974 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
975 regcache_cooked_read, regcache_cooked_write);
976 }
977
978 void
979 regcache_cooked_write_part (struct regcache *regcache, int regnum,
980 int offset, int len, const gdb_byte *buf)
981 {
982 struct regcache_descr *descr = regcache->descr;
983
984 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
985 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
986 regcache_cooked_read, regcache_cooked_write);
987 }
988
989 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
990
991 void
992 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
993 {
994 void *regbuf;
995 size_t size;
996
997 gdb_assert (regcache != NULL);
998 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
999 gdb_assert (!regcache->readonly_p);
1000
1001 regbuf = register_buffer (regcache, regnum);
1002 size = regcache->descr->sizeof_register[regnum];
1003
1004 if (buf)
1005 {
1006 memcpy (regbuf, buf, size);
1007 regcache->register_status[regnum] = REG_VALID;
1008 }
1009 else
1010 {
1011 /* This memset not strictly necessary, but better than garbage
1012 in case the register value manages to escape somewhere (due
1013 to a bug, no less). */
1014 memset (regbuf, 0, size);
1015 regcache->register_status[regnum] = REG_UNAVAILABLE;
1016 }
1017 }
1018
1019 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
1020
1021 void
1022 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
1023 {
1024 const void *regbuf;
1025 size_t size;
1026
1027 gdb_assert (regcache != NULL && buf != NULL);
1028 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1029
1030 regbuf = register_buffer (regcache, regnum);
1031 size = regcache->descr->sizeof_register[regnum];
1032 memcpy (buf, regbuf, size);
1033 }
1034
1035
1036 /* Special handling for register PC. */
1037
1038 CORE_ADDR
1039 regcache_read_pc (struct regcache *regcache)
1040 {
1041 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1042
1043 CORE_ADDR pc_val;
1044
1045 if (gdbarch_read_pc_p (gdbarch))
1046 pc_val = gdbarch_read_pc (gdbarch, regcache);
1047 /* Else use per-frame method on get_current_frame. */
1048 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1049 {
1050 ULONGEST raw_val;
1051
1052 if (regcache_cooked_read_unsigned (regcache,
1053 gdbarch_pc_regnum (gdbarch),
1054 &raw_val) == REG_UNAVAILABLE)
1055 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1056
1057 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
1058 }
1059 else
1060 internal_error (__FILE__, __LINE__,
1061 _("regcache_read_pc: Unable to find PC"));
1062 return pc_val;
1063 }
1064
1065 void
1066 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
1067 {
1068 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1069
1070 if (gdbarch_write_pc_p (gdbarch))
1071 gdbarch_write_pc (gdbarch, regcache, pc);
1072 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1073 regcache_cooked_write_unsigned (regcache,
1074 gdbarch_pc_regnum (gdbarch), pc);
1075 else
1076 internal_error (__FILE__, __LINE__,
1077 _("regcache_write_pc: Unable to update PC"));
1078
1079 /* Writing the PC (for instance, from "load") invalidates the
1080 current frame. */
1081 reinit_frame_cache ();
1082 }
1083
1084
1085 static void
1086 reg_flush_command (char *command, int from_tty)
1087 {
1088 /* Force-flush the register cache. */
1089 registers_changed ();
1090 if (from_tty)
1091 printf_filtered (_("Register cache flushed.\n"));
1092 }
1093
1094 enum regcache_dump_what
1095 {
1096 regcache_dump_none, regcache_dump_raw,
1097 regcache_dump_cooked, regcache_dump_groups,
1098 regcache_dump_remote
1099 };
1100
1101 static void
1102 regcache_dump (struct regcache *regcache, struct ui_file *file,
1103 enum regcache_dump_what what_to_dump)
1104 {
1105 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1106 struct gdbarch *gdbarch = regcache->descr->gdbarch;
1107 int regnum;
1108 int footnote_nr = 0;
1109 int footnote_register_size = 0;
1110 int footnote_register_offset = 0;
1111 int footnote_register_type_name_null = 0;
1112 long register_offset = 0;
1113 gdb_byte buf[MAX_REGISTER_SIZE];
1114
1115 #if 0
1116 fprintf_unfiltered (file, "nr_raw_registers %d\n",
1117 regcache->descr->nr_raw_registers);
1118 fprintf_unfiltered (file, "nr_cooked_registers %d\n",
1119 regcache->descr->nr_cooked_registers);
1120 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n",
1121 regcache->descr->sizeof_raw_registers);
1122 fprintf_unfiltered (file, "sizeof_raw_register_status %ld\n",
1123 regcache->descr->sizeof_raw_register_status);
1124 fprintf_unfiltered (file, "gdbarch_num_regs %d\n",
1125 gdbarch_num_regs (gdbarch));
1126 fprintf_unfiltered (file, "gdbarch_num_pseudo_regs %d\n",
1127 gdbarch_num_pseudo_regs (gdbarch));
1128 #endif
1129
1130 gdb_assert (regcache->descr->nr_cooked_registers
1131 == (gdbarch_num_regs (gdbarch)
1132 + gdbarch_num_pseudo_regs (gdbarch)));
1133
1134 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++)
1135 {
1136 /* Name. */
1137 if (regnum < 0)
1138 fprintf_unfiltered (file, " %-10s", "Name");
1139 else
1140 {
1141 const char *p = gdbarch_register_name (gdbarch, regnum);
1142
1143 if (p == NULL)
1144 p = "";
1145 else if (p[0] == '\0')
1146 p = "''";
1147 fprintf_unfiltered (file, " %-10s", p);
1148 }
1149
1150 /* Number. */
1151 if (regnum < 0)
1152 fprintf_unfiltered (file, " %4s", "Nr");
1153 else
1154 fprintf_unfiltered (file, " %4d", regnum);
1155
1156 /* Relative number. */
1157 if (regnum < 0)
1158 fprintf_unfiltered (file, " %4s", "Rel");
1159 else if (regnum < gdbarch_num_regs (gdbarch))
1160 fprintf_unfiltered (file, " %4d", regnum);
1161 else
1162 fprintf_unfiltered (file, " %4d",
1163 (regnum - gdbarch_num_regs (gdbarch)));
1164
1165 /* Offset. */
1166 if (regnum < 0)
1167 fprintf_unfiltered (file, " %6s ", "Offset");
1168 else
1169 {
1170 fprintf_unfiltered (file, " %6ld",
1171 regcache->descr->register_offset[regnum]);
1172 if (register_offset != regcache->descr->register_offset[regnum]
1173 || (regnum > 0
1174 && (regcache->descr->register_offset[regnum]
1175 != (regcache->descr->register_offset[regnum - 1]
1176 + regcache->descr->sizeof_register[regnum - 1])))
1177 )
1178 {
1179 if (!footnote_register_offset)
1180 footnote_register_offset = ++footnote_nr;
1181 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1182 }
1183 else
1184 fprintf_unfiltered (file, " ");
1185 register_offset = (regcache->descr->register_offset[regnum]
1186 + regcache->descr->sizeof_register[regnum]);
1187 }
1188
1189 /* Size. */
1190 if (regnum < 0)
1191 fprintf_unfiltered (file, " %5s ", "Size");
1192 else
1193 fprintf_unfiltered (file, " %5ld",
1194 regcache->descr->sizeof_register[regnum]);
1195
1196 /* Type. */
1197 {
1198 const char *t;
1199
1200 if (regnum < 0)
1201 t = "Type";
1202 else
1203 {
1204 static const char blt[] = "builtin_type";
1205
1206 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum));
1207 if (t == NULL)
1208 {
1209 char *n;
1210
1211 if (!footnote_register_type_name_null)
1212 footnote_register_type_name_null = ++footnote_nr;
1213 n = xstrprintf ("*%d", footnote_register_type_name_null);
1214 make_cleanup (xfree, n);
1215 t = n;
1216 }
1217 /* Chop a leading builtin_type. */
1218 if (strncmp (t, blt, strlen (blt)) == 0)
1219 t += strlen (blt);
1220 }
1221 fprintf_unfiltered (file, " %-15s", t);
1222 }
1223
1224 /* Leading space always present. */
1225 fprintf_unfiltered (file, " ");
1226
1227 /* Value, raw. */
1228 if (what_to_dump == regcache_dump_raw)
1229 {
1230 if (regnum < 0)
1231 fprintf_unfiltered (file, "Raw value");
1232 else if (regnum >= regcache->descr->nr_raw_registers)
1233 fprintf_unfiltered (file, "<cooked>");
1234 else if (regcache_register_status (regcache, regnum) == REG_UNKNOWN)
1235 fprintf_unfiltered (file, "<invalid>");
1236 else if (regcache_register_status (regcache, regnum) == REG_UNAVAILABLE)
1237 fprintf_unfiltered (file, "<unavailable>");
1238 else
1239 {
1240 regcache_raw_read (regcache, regnum, buf);
1241 print_hex_chars (file, buf,
1242 regcache->descr->sizeof_register[regnum],
1243 gdbarch_byte_order (gdbarch));
1244 }
1245 }
1246
1247 /* Value, cooked. */
1248 if (what_to_dump == regcache_dump_cooked)
1249 {
1250 if (regnum < 0)
1251 fprintf_unfiltered (file, "Cooked value");
1252 else
1253 {
1254 enum register_status status;
1255
1256 status = regcache_cooked_read (regcache, regnum, buf);
1257 if (status == REG_UNKNOWN)
1258 fprintf_unfiltered (file, "<invalid>");
1259 else if (status == REG_UNAVAILABLE)
1260 fprintf_unfiltered (file, "<unavailable>");
1261 else
1262 print_hex_chars (file, buf,
1263 regcache->descr->sizeof_register[regnum],
1264 gdbarch_byte_order (gdbarch));
1265 }
1266 }
1267
1268 /* Group members. */
1269 if (what_to_dump == regcache_dump_groups)
1270 {
1271 if (regnum < 0)
1272 fprintf_unfiltered (file, "Groups");
1273 else
1274 {
1275 const char *sep = "";
1276 struct reggroup *group;
1277
1278 for (group = reggroup_next (gdbarch, NULL);
1279 group != NULL;
1280 group = reggroup_next (gdbarch, group))
1281 {
1282 if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
1283 {
1284 fprintf_unfiltered (file,
1285 "%s%s", sep, reggroup_name (group));
1286 sep = ",";
1287 }
1288 }
1289 }
1290 }
1291
1292 /* Remote packet configuration. */
1293 if (what_to_dump == regcache_dump_remote)
1294 {
1295 if (regnum < 0)
1296 {
1297 fprintf_unfiltered (file, "Rmt Nr g/G Offset");
1298 }
1299 else if (regnum < regcache->descr->nr_raw_registers)
1300 {
1301 int pnum, poffset;
1302
1303 if (remote_register_number_and_offset (get_regcache_arch (regcache), regnum,
1304 &pnum, &poffset))
1305 fprintf_unfiltered (file, "%7d %11d", pnum, poffset);
1306 }
1307 }
1308
1309 fprintf_unfiltered (file, "\n");
1310 }
1311
1312 if (footnote_register_size)
1313 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
1314 footnote_register_size);
1315 if (footnote_register_offset)
1316 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1317 footnote_register_offset);
1318 if (footnote_register_type_name_null)
1319 fprintf_unfiltered (file,
1320 "*%d: Register type's name NULL.\n",
1321 footnote_register_type_name_null);
1322 do_cleanups (cleanups);
1323 }
1324
1325 static void
1326 regcache_print (char *args, enum regcache_dump_what what_to_dump)
1327 {
1328 if (args == NULL)
1329 regcache_dump (get_current_regcache (), gdb_stdout, what_to_dump);
1330 else
1331 {
1332 struct cleanup *cleanups;
1333 struct ui_file *file = gdb_fopen (args, "w");
1334
1335 if (file == NULL)
1336 perror_with_name (_("maintenance print architecture"));
1337 cleanups = make_cleanup_ui_file_delete (file);
1338 regcache_dump (get_current_regcache (), file, what_to_dump);
1339 do_cleanups (cleanups);
1340 }
1341 }
1342
1343 static void
1344 maintenance_print_registers (char *args, int from_tty)
1345 {
1346 regcache_print (args, regcache_dump_none);
1347 }
1348
1349 static void
1350 maintenance_print_raw_registers (char *args, int from_tty)
1351 {
1352 regcache_print (args, regcache_dump_raw);
1353 }
1354
1355 static void
1356 maintenance_print_cooked_registers (char *args, int from_tty)
1357 {
1358 regcache_print (args, regcache_dump_cooked);
1359 }
1360
1361 static void
1362 maintenance_print_register_groups (char *args, int from_tty)
1363 {
1364 regcache_print (args, regcache_dump_groups);
1365 }
1366
1367 static void
1368 maintenance_print_remote_registers (char *args, int from_tty)
1369 {
1370 regcache_print (args, regcache_dump_remote);
1371 }
1372
1373 extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */
1374
1375 void
1376 _initialize_regcache (void)
1377 {
1378 regcache_descr_handle
1379 = gdbarch_data_register_post_init (init_regcache_descr);
1380
1381 observer_attach_target_changed (regcache_observer_target_changed);
1382 observer_attach_thread_ptid_changed (regcache_thread_ptid_changed);
1383
1384 add_com ("flushregs", class_maintenance, reg_flush_command,
1385 _("Force gdb to flush its register cache (maintainer command)"));
1386
1387 add_cmd ("registers", class_maintenance, maintenance_print_registers,
1388 _("Print the internal register configuration.\n"
1389 "Takes an optional file parameter."), &maintenanceprintlist);
1390 add_cmd ("raw-registers", class_maintenance,
1391 maintenance_print_raw_registers,
1392 _("Print the internal register configuration "
1393 "including raw values.\n"
1394 "Takes an optional file parameter."), &maintenanceprintlist);
1395 add_cmd ("cooked-registers", class_maintenance,
1396 maintenance_print_cooked_registers,
1397 _("Print the internal register configuration "
1398 "including cooked values.\n"
1399 "Takes an optional file parameter."), &maintenanceprintlist);
1400 add_cmd ("register-groups", class_maintenance,
1401 maintenance_print_register_groups,
1402 _("Print the internal register configuration "
1403 "including each register's group.\n"
1404 "Takes an optional file parameter."),
1405 &maintenanceprintlist);
1406 add_cmd ("remote-registers", class_maintenance,
1407 maintenance_print_remote_registers, _("\
1408 Print the internal register configuration including each register's\n\
1409 remote register number and buffer offset in the g/G packets.\n\
1410 Takes an optional file parameter."),
1411 &maintenanceprintlist);
1412
1413 }
This page took 0.059686 seconds and 4 git commands to generate.