doc/ChangeLog:
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2004, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdbarch.h"
25 #include "gdbcmd.h"
26 #include "regcache.h"
27 #include "reggroups.h"
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "gdbcmd.h" /* For maintenanceprintlist. */
31 #include "observer.h"
32
33 /*
34 * DATA STRUCTURE
35 *
36 * Here is the actual register cache.
37 */
38
39 /* Per-architecture object describing the layout of a register cache.
40 Computed once when the architecture is created */
41
42 struct gdbarch_data *regcache_descr_handle;
43
44 struct regcache_descr
45 {
46 /* The architecture this descriptor belongs to. */
47 struct gdbarch *gdbarch;
48
49 /* The raw register cache. Each raw (or hard) register is supplied
50 by the target interface. The raw cache should not contain
51 redundant information - if the PC is constructed from two
52 registers then those registers and not the PC lives in the raw
53 cache. */
54 int nr_raw_registers;
55 long sizeof_raw_registers;
56 long sizeof_raw_register_valid_p;
57
58 /* The cooked register space. Each cooked register in the range
59 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
60 register. The remaining [NR_RAW_REGISTERS
61 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
62 both raw registers and memory by the architecture methods
63 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
64 int nr_cooked_registers;
65 long sizeof_cooked_registers;
66 long sizeof_cooked_register_valid_p;
67
68 /* Offset and size (in 8 bit bytes), of reach register in the
69 register cache. All registers (including those in the range
70 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an offset.
71 Assigning all registers an offset makes it possible to keep
72 legacy code, such as that found in read_register_bytes() and
73 write_register_bytes() working. */
74 long *register_offset;
75 long *sizeof_register;
76
77 /* Cached table containing the type of each register. */
78 struct type **register_type;
79 };
80
81 static void *
82 init_regcache_descr (struct gdbarch *gdbarch)
83 {
84 int i;
85 struct regcache_descr *descr;
86 gdb_assert (gdbarch != NULL);
87
88 /* Create an initial, zero filled, table. */
89 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
90 descr->gdbarch = gdbarch;
91
92 /* Total size of the register space. The raw registers are mapped
93 directly onto the raw register cache while the pseudo's are
94 either mapped onto raw-registers or memory. */
95 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
96 + gdbarch_num_pseudo_regs (gdbarch);
97 descr->sizeof_cooked_register_valid_p = gdbarch_num_regs (gdbarch)
98 + gdbarch_num_pseudo_regs
99 (gdbarch);
100
101 /* Fill in a table of register types. */
102 descr->register_type
103 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, struct type *);
104 for (i = 0; i < descr->nr_cooked_registers; i++)
105 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
106
107 /* Construct a strictly RAW register cache. Don't allow pseudo's
108 into the register cache. */
109 descr->nr_raw_registers = gdbarch_num_regs (gdbarch);
110
111 /* FIXME: cagney/2002-08-13: Overallocate the register_valid_p
112 array. This pretects GDB from erant code that accesses elements
113 of the global register_valid_p[] array in the range
114 [gdbarch_num_regs .. gdbarch_num_regs + gdbarch_num_pseudo_regs). */
115 descr->sizeof_raw_register_valid_p = descr->sizeof_cooked_register_valid_p;
116
117 /* Lay out the register cache.
118
119 NOTE: cagney/2002-05-22: Only register_type() is used when
120 constructing the register cache. It is assumed that the
121 register's raw size, virtual size and type length are all the
122 same. */
123
124 {
125 long offset = 0;
126 descr->sizeof_register
127 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
128 descr->register_offset
129 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
130 for (i = 0; i < descr->nr_cooked_registers; i++)
131 {
132 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
133 descr->register_offset[i] = offset;
134 offset += descr->sizeof_register[i];
135 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
136 }
137 /* Set the real size of the register cache buffer. */
138 descr->sizeof_cooked_registers = offset;
139 }
140
141 /* FIXME: cagney/2002-05-22: Should only need to allocate space for
142 the raw registers. Unfortunately some code still accesses the
143 register array directly using the global registers[]. Until that
144 code has been purged, play safe and over allocating the register
145 buffer. Ulgh! */
146 descr->sizeof_raw_registers = descr->sizeof_cooked_registers;
147
148 return descr;
149 }
150
151 static struct regcache_descr *
152 regcache_descr (struct gdbarch *gdbarch)
153 {
154 return gdbarch_data (gdbarch, regcache_descr_handle);
155 }
156
157 /* Utility functions returning useful register attributes stored in
158 the regcache descr. */
159
160 struct type *
161 register_type (struct gdbarch *gdbarch, int regnum)
162 {
163 struct regcache_descr *descr = regcache_descr (gdbarch);
164 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
165 return descr->register_type[regnum];
166 }
167
168 /* Utility functions returning useful register attributes stored in
169 the regcache descr. */
170
171 int
172 register_size (struct gdbarch *gdbarch, int regnum)
173 {
174 struct regcache_descr *descr = regcache_descr (gdbarch);
175 int size;
176 gdb_assert (regnum >= 0
177 && regnum < (gdbarch_num_regs (gdbarch)
178 + gdbarch_num_pseudo_regs (gdbarch)));
179 size = descr->sizeof_register[regnum];
180 return size;
181 }
182
183 /* The register cache for storing raw register values. */
184
185 struct regcache
186 {
187 struct regcache_descr *descr;
188 /* The register buffers. A read-only register cache can hold the
189 full [0 .. gdbarch_num_regs + gdbarch_num_pseudo_regs) while a read/write
190 register cache can only hold [0 .. gdbarch_num_regs). */
191 gdb_byte *registers;
192 /* Register cache status:
193 register_valid_p[REG] == 0 if REG value is not in the cache
194 > 0 if REG value is in the cache
195 < 0 if REG value is permanently unavailable */
196 signed char *register_valid_p;
197 /* Is this a read-only cache? A read-only cache is used for saving
198 the target's register state (e.g, across an inferior function
199 call or just before forcing a function return). A read-only
200 cache can only be updated via the methods regcache_dup() and
201 regcache_cpy(). The actual contents are determined by the
202 reggroup_save and reggroup_restore methods. */
203 int readonly_p;
204 /* If this is a read-write cache, which thread's registers is
205 it connected to? */
206 ptid_t ptid;
207 };
208
209 struct regcache *
210 regcache_xmalloc (struct gdbarch *gdbarch)
211 {
212 struct regcache_descr *descr;
213 struct regcache *regcache;
214 gdb_assert (gdbarch != NULL);
215 descr = regcache_descr (gdbarch);
216 regcache = XMALLOC (struct regcache);
217 regcache->descr = descr;
218 regcache->registers
219 = XCALLOC (descr->sizeof_raw_registers, gdb_byte);
220 regcache->register_valid_p
221 = XCALLOC (descr->sizeof_raw_register_valid_p, gdb_byte);
222 regcache->readonly_p = 1;
223 regcache->ptid = minus_one_ptid;
224 return regcache;
225 }
226
227 void
228 regcache_xfree (struct regcache *regcache)
229 {
230 if (regcache == NULL)
231 return;
232 xfree (regcache->registers);
233 xfree (regcache->register_valid_p);
234 xfree (regcache);
235 }
236
237 static void
238 do_regcache_xfree (void *data)
239 {
240 regcache_xfree (data);
241 }
242
243 struct cleanup *
244 make_cleanup_regcache_xfree (struct regcache *regcache)
245 {
246 return make_cleanup (do_regcache_xfree, regcache);
247 }
248
249 /* Return REGCACHE's architecture. */
250
251 struct gdbarch *
252 get_regcache_arch (const struct regcache *regcache)
253 {
254 return regcache->descr->gdbarch;
255 }
256
257 /* Return a pointer to register REGNUM's buffer cache. */
258
259 static gdb_byte *
260 register_buffer (const struct regcache *regcache, int regnum)
261 {
262 return regcache->registers + regcache->descr->register_offset[regnum];
263 }
264
265 void
266 regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read,
267 void *src)
268 {
269 struct gdbarch *gdbarch = dst->descr->gdbarch;
270 gdb_byte buf[MAX_REGISTER_SIZE];
271 int regnum;
272 /* The DST should be `read-only', if it wasn't then the save would
273 end up trying to write the register values back out to the
274 target. */
275 gdb_assert (dst->readonly_p);
276 /* Clear the dest. */
277 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers);
278 memset (dst->register_valid_p, 0, dst->descr->sizeof_cooked_register_valid_p);
279 /* Copy over any registers (identified by their membership in the
280 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
281 gdbarch_num_pseudo_regs) range is checked since some architectures need
282 to save/restore `cooked' registers that live in memory. */
283 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
284 {
285 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
286 {
287 int valid = cooked_read (src, regnum, buf);
288 if (valid)
289 {
290 memcpy (register_buffer (dst, regnum), buf,
291 register_size (gdbarch, regnum));
292 dst->register_valid_p[regnum] = 1;
293 }
294 }
295 }
296 }
297
298 void
299 regcache_restore (struct regcache *dst,
300 regcache_cooked_read_ftype *cooked_read,
301 void *cooked_read_context)
302 {
303 struct gdbarch *gdbarch = dst->descr->gdbarch;
304 gdb_byte buf[MAX_REGISTER_SIZE];
305 int regnum;
306 /* The dst had better not be read-only. If it is, the `restore'
307 doesn't make much sense. */
308 gdb_assert (!dst->readonly_p);
309 /* Copy over any registers, being careful to only restore those that
310 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
311 + gdbarch_num_pseudo_regs) range is checked since some architectures need
312 to save/restore `cooked' registers that live in memory. */
313 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
314 {
315 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
316 {
317 int valid = cooked_read (cooked_read_context, regnum, buf);
318 if (valid)
319 regcache_cooked_write (dst, regnum, buf);
320 }
321 }
322 }
323
324 static int
325 do_cooked_read (void *src, int regnum, gdb_byte *buf)
326 {
327 struct regcache *regcache = src;
328 if (!regcache->register_valid_p[regnum] && regcache->readonly_p)
329 /* Don't even think about fetching a register from a read-only
330 cache when the register isn't yet valid. There isn't a target
331 from which the register value can be fetched. */
332 return 0;
333 regcache_cooked_read (regcache, regnum, buf);
334 return 1;
335 }
336
337
338 void
339 regcache_cpy (struct regcache *dst, struct regcache *src)
340 {
341 int i;
342 gdb_byte *buf;
343 gdb_assert (src != NULL && dst != NULL);
344 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
345 gdb_assert (src != dst);
346 gdb_assert (src->readonly_p || dst->readonly_p);
347 if (!src->readonly_p)
348 regcache_save (dst, do_cooked_read, src);
349 else if (!dst->readonly_p)
350 regcache_restore (dst, do_cooked_read, src);
351 else
352 regcache_cpy_no_passthrough (dst, src);
353 }
354
355 void
356 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
357 {
358 int i;
359 gdb_assert (src != NULL && dst != NULL);
360 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
361 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
362 move of data into the current regcache. Doing this would be
363 silly - it would mean that valid_p would be completely invalid. */
364 gdb_assert (dst->readonly_p);
365 memcpy (dst->registers, src->registers, dst->descr->sizeof_raw_registers);
366 memcpy (dst->register_valid_p, src->register_valid_p,
367 dst->descr->sizeof_raw_register_valid_p);
368 }
369
370 struct regcache *
371 regcache_dup (struct regcache *src)
372 {
373 struct regcache *newbuf;
374 newbuf = regcache_xmalloc (src->descr->gdbarch);
375 regcache_cpy (newbuf, src);
376 return newbuf;
377 }
378
379 struct regcache *
380 regcache_dup_no_passthrough (struct regcache *src)
381 {
382 struct regcache *newbuf;
383 newbuf = regcache_xmalloc (src->descr->gdbarch);
384 regcache_cpy_no_passthrough (newbuf, src);
385 return newbuf;
386 }
387
388 int
389 regcache_valid_p (const struct regcache *regcache, int regnum)
390 {
391 gdb_assert (regcache != NULL);
392 gdb_assert (regnum >= 0);
393 if (regcache->readonly_p)
394 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
395 else
396 gdb_assert (regnum < regcache->descr->nr_raw_registers);
397
398 return regcache->register_valid_p[regnum];
399 }
400
401 void
402 regcache_invalidate (struct regcache *regcache, int regnum)
403 {
404 gdb_assert (regcache != NULL);
405 gdb_assert (regnum >= 0);
406 gdb_assert (!regcache->readonly_p);
407 gdb_assert (regnum < regcache->descr->nr_raw_registers);
408 regcache->register_valid_p[regnum] = 0;
409 }
410
411
412 /* Global structure containing the current regcache. */
413 /* FIXME: cagney/2002-05-11: The two global arrays registers[] and
414 deprecated_register_valid[] currently point into this structure. */
415 static struct regcache *current_regcache;
416
417 /* NOTE: this is a write-through cache. There is no "dirty" bit for
418 recording if the register values have been changed (eg. by the
419 user). Therefore all registers must be written back to the
420 target when appropriate. */
421
422 struct regcache *get_thread_regcache (ptid_t ptid)
423 {
424 /* NOTE: uweigand/2007-05-05: We need to detect the thread's
425 current architecture at this point. */
426 struct gdbarch *thread_gdbarch = current_gdbarch;
427
428 if (current_regcache && ptid_equal (current_regcache->ptid, ptid)
429 && get_regcache_arch (current_regcache) == thread_gdbarch)
430 return current_regcache;
431
432 if (current_regcache)
433 regcache_xfree (current_regcache);
434
435 current_regcache = regcache_xmalloc (thread_gdbarch);
436 current_regcache->readonly_p = 0;
437 current_regcache->ptid = ptid;
438
439 return current_regcache;
440 }
441
442 struct regcache *get_current_regcache (void)
443 {
444 return get_thread_regcache (inferior_ptid);
445 }
446
447
448 /* Observer for the target_changed event. */
449
450 void
451 regcache_observer_target_changed (struct target_ops *target)
452 {
453 registers_changed ();
454 }
455
456 /* Low level examining and depositing of registers.
457
458 The caller is responsible for making sure that the inferior is
459 stopped before calling the fetching routines, or it will get
460 garbage. (a change from GDB version 3, in which the caller got the
461 value from the last stop). */
462
463 /* REGISTERS_CHANGED ()
464
465 Indicate that registers may have changed, so invalidate the cache. */
466
467 void
468 registers_changed (void)
469 {
470 int i;
471
472 regcache_xfree (current_regcache);
473 current_regcache = NULL;
474
475 /* Need to forget about any frames we have cached, too. */
476 reinit_frame_cache ();
477
478 /* Force cleanup of any alloca areas if using C alloca instead of
479 a builtin alloca. This particular call is used to clean up
480 areas allocated by low level target code which may build up
481 during lengthy interactions between gdb and the target before
482 gdb gives control to the user (ie watchpoints). */
483 alloca (0);
484 }
485
486
487 void
488 regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf)
489 {
490 gdb_assert (regcache != NULL && buf != NULL);
491 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
492 /* Make certain that the register cache is up-to-date with respect
493 to the current thread. This switching shouldn't be necessary
494 only there is still only one target side register cache. Sigh!
495 On the bright side, at least there is a regcache object. */
496 if (!regcache->readonly_p)
497 {
498 if (!regcache_valid_p (regcache, regnum))
499 {
500 struct cleanup *old_chain = save_inferior_ptid ();
501 inferior_ptid = regcache->ptid;
502 target_fetch_registers (regcache, regnum);
503 do_cleanups (old_chain);
504 }
505 #if 0
506 /* FIXME: cagney/2004-08-07: At present a number of targets
507 forget (or didn't know that they needed) to set this leading to
508 panics. Also is the problem that targets need to indicate
509 that a register is in one of the possible states: valid,
510 undefined, unknown. The last of which isn't yet
511 possible. */
512 gdb_assert (regcache_valid_p (regcache, regnum));
513 #endif
514 }
515 /* Copy the value directly into the register cache. */
516 memcpy (buf, register_buffer (regcache, regnum),
517 regcache->descr->sizeof_register[regnum]);
518 }
519
520 void
521 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
522 {
523 gdb_byte *buf;
524 gdb_assert (regcache != NULL);
525 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
526 buf = alloca (regcache->descr->sizeof_register[regnum]);
527 regcache_raw_read (regcache, regnum, buf);
528 (*val) = extract_signed_integer (buf,
529 regcache->descr->sizeof_register[regnum]);
530 }
531
532 void
533 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
534 ULONGEST *val)
535 {
536 gdb_byte *buf;
537 gdb_assert (regcache != NULL);
538 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
539 buf = alloca (regcache->descr->sizeof_register[regnum]);
540 regcache_raw_read (regcache, regnum, buf);
541 (*val) = extract_unsigned_integer (buf,
542 regcache->descr->sizeof_register[regnum]);
543 }
544
545 void
546 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
547 {
548 void *buf;
549 gdb_assert (regcache != NULL);
550 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
551 buf = alloca (regcache->descr->sizeof_register[regnum]);
552 store_signed_integer (buf, regcache->descr->sizeof_register[regnum], val);
553 regcache_raw_write (regcache, regnum, buf);
554 }
555
556 void
557 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
558 ULONGEST val)
559 {
560 void *buf;
561 gdb_assert (regcache != NULL);
562 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
563 buf = alloca (regcache->descr->sizeof_register[regnum]);
564 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], val);
565 regcache_raw_write (regcache, regnum, buf);
566 }
567
568 void
569 regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf)
570 {
571 gdb_assert (regnum >= 0);
572 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
573 if (regnum < regcache->descr->nr_raw_registers)
574 regcache_raw_read (regcache, regnum, buf);
575 else if (regcache->readonly_p
576 && regnum < regcache->descr->nr_cooked_registers
577 && regcache->register_valid_p[regnum])
578 /* Read-only register cache, perhaps the cooked value was cached? */
579 memcpy (buf, register_buffer (regcache, regnum),
580 regcache->descr->sizeof_register[regnum]);
581 else
582 gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache,
583 regnum, buf);
584 }
585
586 void
587 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
588 LONGEST *val)
589 {
590 gdb_byte *buf;
591 gdb_assert (regcache != NULL);
592 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
593 buf = alloca (regcache->descr->sizeof_register[regnum]);
594 regcache_cooked_read (regcache, regnum, buf);
595 (*val) = extract_signed_integer (buf,
596 regcache->descr->sizeof_register[regnum]);
597 }
598
599 void
600 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
601 ULONGEST *val)
602 {
603 gdb_byte *buf;
604 gdb_assert (regcache != NULL);
605 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
606 buf = alloca (regcache->descr->sizeof_register[regnum]);
607 regcache_cooked_read (regcache, regnum, buf);
608 (*val) = extract_unsigned_integer (buf,
609 regcache->descr->sizeof_register[regnum]);
610 }
611
612 void
613 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
614 LONGEST val)
615 {
616 void *buf;
617 gdb_assert (regcache != NULL);
618 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
619 buf = alloca (regcache->descr->sizeof_register[regnum]);
620 store_signed_integer (buf, regcache->descr->sizeof_register[regnum], val);
621 regcache_cooked_write (regcache, regnum, buf);
622 }
623
624 void
625 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
626 ULONGEST val)
627 {
628 void *buf;
629 gdb_assert (regcache != NULL);
630 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
631 buf = alloca (regcache->descr->sizeof_register[regnum]);
632 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], val);
633 regcache_cooked_write (regcache, regnum, buf);
634 }
635
636 void
637 regcache_raw_write (struct regcache *regcache, int regnum,
638 const gdb_byte *buf)
639 {
640 struct cleanup *old_chain;
641
642 gdb_assert (regcache != NULL && buf != NULL);
643 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
644 gdb_assert (!regcache->readonly_p);
645
646 /* On the sparc, writing %g0 is a no-op, so we don't even want to
647 change the registers array if something writes to this register. */
648 if (gdbarch_cannot_store_register (get_regcache_arch (regcache), regnum))
649 return;
650
651 /* If we have a valid copy of the register, and new value == old
652 value, then don't bother doing the actual store. */
653 if (regcache_valid_p (regcache, regnum)
654 && (memcmp (register_buffer (regcache, regnum), buf,
655 regcache->descr->sizeof_register[regnum]) == 0))
656 return;
657
658 old_chain = save_inferior_ptid ();
659 inferior_ptid = regcache->ptid;
660
661 target_prepare_to_store (regcache);
662 memcpy (register_buffer (regcache, regnum), buf,
663 regcache->descr->sizeof_register[regnum]);
664 regcache->register_valid_p[regnum] = 1;
665 target_store_registers (regcache, regnum);
666
667 do_cleanups (old_chain);
668 }
669
670 void
671 regcache_cooked_write (struct regcache *regcache, int regnum,
672 const gdb_byte *buf)
673 {
674 gdb_assert (regnum >= 0);
675 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
676 if (regnum < regcache->descr->nr_raw_registers)
677 regcache_raw_write (regcache, regnum, buf);
678 else
679 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache,
680 regnum, buf);
681 }
682
683 /* Perform a partial register transfer using a read, modify, write
684 operation. */
685
686 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
687 void *buf);
688 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
689 const void *buf);
690
691 static void
692 regcache_xfer_part (struct regcache *regcache, int regnum,
693 int offset, int len, void *in, const void *out,
694 void (*read) (struct regcache *regcache, int regnum,
695 gdb_byte *buf),
696 void (*write) (struct regcache *regcache, int regnum,
697 const gdb_byte *buf))
698 {
699 struct regcache_descr *descr = regcache->descr;
700 gdb_byte reg[MAX_REGISTER_SIZE];
701 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]);
702 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]);
703 /* Something to do? */
704 if (offset + len == 0)
705 return;
706 /* Read (when needed) ... */
707 if (in != NULL
708 || offset > 0
709 || offset + len < descr->sizeof_register[regnum])
710 {
711 gdb_assert (read != NULL);
712 read (regcache, regnum, reg);
713 }
714 /* ... modify ... */
715 if (in != NULL)
716 memcpy (in, reg + offset, len);
717 if (out != NULL)
718 memcpy (reg + offset, out, len);
719 /* ... write (when needed). */
720 if (out != NULL)
721 {
722 gdb_assert (write != NULL);
723 write (regcache, regnum, reg);
724 }
725 }
726
727 void
728 regcache_raw_read_part (struct regcache *regcache, int regnum,
729 int offset, int len, gdb_byte *buf)
730 {
731 struct regcache_descr *descr = regcache->descr;
732 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
733 regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
734 regcache_raw_read, regcache_raw_write);
735 }
736
737 void
738 regcache_raw_write_part (struct regcache *regcache, int regnum,
739 int offset, int len, const gdb_byte *buf)
740 {
741 struct regcache_descr *descr = regcache->descr;
742 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
743 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
744 regcache_raw_read, regcache_raw_write);
745 }
746
747 void
748 regcache_cooked_read_part (struct regcache *regcache, int regnum,
749 int offset, int len, gdb_byte *buf)
750 {
751 struct regcache_descr *descr = regcache->descr;
752 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
753 regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
754 regcache_cooked_read, regcache_cooked_write);
755 }
756
757 void
758 regcache_cooked_write_part (struct regcache *regcache, int regnum,
759 int offset, int len, const gdb_byte *buf)
760 {
761 struct regcache_descr *descr = regcache->descr;
762 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
763 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
764 regcache_cooked_read, regcache_cooked_write);
765 }
766
767 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
768
769 void
770 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
771 {
772 void *regbuf;
773 size_t size;
774
775 gdb_assert (regcache != NULL);
776 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
777 gdb_assert (!regcache->readonly_p);
778
779 regbuf = register_buffer (regcache, regnum);
780 size = regcache->descr->sizeof_register[regnum];
781
782 if (buf)
783 memcpy (regbuf, buf, size);
784 else
785 memset (regbuf, 0, size);
786
787 /* Mark the register as cached. */
788 regcache->register_valid_p[regnum] = 1;
789 }
790
791 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
792
793 void
794 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
795 {
796 const void *regbuf;
797 size_t size;
798
799 gdb_assert (regcache != NULL && buf != NULL);
800 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
801
802 regbuf = register_buffer (regcache, regnum);
803 size = regcache->descr->sizeof_register[regnum];
804 memcpy (buf, regbuf, size);
805 }
806
807
808 /* read_pc, write_pc, etc. Special handling for register PC. */
809
810 /* NOTE: cagney/2001-02-18: The functions read_pc_pid(), read_pc() and
811 read_sp(), will eventually be replaced by per-frame methods.
812 Instead of relying on the global INFERIOR_PTID, they will use the
813 contextual information provided by the FRAME. These functions do
814 not belong in the register cache. */
815
816 /* NOTE: cagney/2003-06-07: The functions generic_target_write_pc(),
817 write_pc_pid() and write_pc(), all need to be replaced by something
818 that does not rely on global state. But what? */
819
820 CORE_ADDR
821 read_pc_pid (ptid_t ptid)
822 {
823 struct regcache *regcache = get_thread_regcache (ptid);
824 struct gdbarch *gdbarch = get_regcache_arch (regcache);
825
826 CORE_ADDR pc_val;
827
828 if (gdbarch_read_pc_p (gdbarch))
829 pc_val = gdbarch_read_pc (gdbarch, regcache);
830 /* Else use per-frame method on get_current_frame. */
831 else if (gdbarch_pc_regnum (gdbarch) >= 0)
832 {
833 ULONGEST raw_val;
834 regcache_cooked_read_unsigned (regcache,
835 gdbarch_pc_regnum (gdbarch),
836 &raw_val);
837 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
838 }
839 else
840 internal_error (__FILE__, __LINE__, _("read_pc_pid: Unable to find PC"));
841
842 return pc_val;
843 }
844
845 CORE_ADDR
846 read_pc (void)
847 {
848 return read_pc_pid (inferior_ptid);
849 }
850
851 void
852 write_pc_pid (CORE_ADDR pc, ptid_t ptid)
853 {
854 struct regcache *regcache = get_thread_regcache (ptid);
855 struct gdbarch *gdbarch = get_regcache_arch (regcache);
856
857 if (gdbarch_write_pc_p (gdbarch))
858 gdbarch_write_pc (gdbarch, regcache, pc);
859 else if (gdbarch_pc_regnum (gdbarch) >= 0)
860 regcache_cooked_write_unsigned (regcache,
861 gdbarch_pc_regnum (gdbarch), pc);
862 else
863 internal_error (__FILE__, __LINE__,
864 _("write_pc_pid: Unable to update PC"));
865 }
866
867 void
868 write_pc (CORE_ADDR pc)
869 {
870 write_pc_pid (pc, inferior_ptid);
871 }
872
873
874 static void
875 reg_flush_command (char *command, int from_tty)
876 {
877 /* Force-flush the register cache. */
878 registers_changed ();
879 if (from_tty)
880 printf_filtered (_("Register cache flushed.\n"));
881 }
882
883 static void
884 dump_endian_bytes (struct ui_file *file, enum bfd_endian endian,
885 const unsigned char *buf, long len)
886 {
887 int i;
888 switch (endian)
889 {
890 case BFD_ENDIAN_BIG:
891 for (i = 0; i < len; i++)
892 fprintf_unfiltered (file, "%02x", buf[i]);
893 break;
894 case BFD_ENDIAN_LITTLE:
895 for (i = len - 1; i >= 0; i--)
896 fprintf_unfiltered (file, "%02x", buf[i]);
897 break;
898 default:
899 internal_error (__FILE__, __LINE__, _("Bad switch"));
900 }
901 }
902
903 enum regcache_dump_what
904 {
905 regcache_dump_none, regcache_dump_raw, regcache_dump_cooked, regcache_dump_groups
906 };
907
908 static void
909 regcache_dump (struct regcache *regcache, struct ui_file *file,
910 enum regcache_dump_what what_to_dump)
911 {
912 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
913 struct gdbarch *gdbarch = regcache->descr->gdbarch;
914 int regnum;
915 int footnote_nr = 0;
916 int footnote_register_size = 0;
917 int footnote_register_offset = 0;
918 int footnote_register_type_name_null = 0;
919 long register_offset = 0;
920 unsigned char buf[MAX_REGISTER_SIZE];
921
922 #if 0
923 fprintf_unfiltered (file, "nr_raw_registers %d\n",
924 regcache->descr->nr_raw_registers);
925 fprintf_unfiltered (file, "nr_cooked_registers %d\n",
926 regcache->descr->nr_cooked_registers);
927 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n",
928 regcache->descr->sizeof_raw_registers);
929 fprintf_unfiltered (file, "sizeof_raw_register_valid_p %ld\n",
930 regcache->descr->sizeof_raw_register_valid_p);
931 fprintf_unfiltered (file, "gdbarch_num_regs %d\n",
932 gdbarch_num_regs (gdbarch));
933 fprintf_unfiltered (file, "gdbarch_num_pseudo_regs %d\n",
934 gdbarch_num_pseudo_regs (gdbarch));
935 #endif
936
937 gdb_assert (regcache->descr->nr_cooked_registers
938 == (gdbarch_num_regs (gdbarch)
939 + gdbarch_num_pseudo_regs (gdbarch)));
940
941 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++)
942 {
943 /* Name. */
944 if (regnum < 0)
945 fprintf_unfiltered (file, " %-10s", "Name");
946 else
947 {
948 const char *p = gdbarch_register_name (gdbarch, regnum);
949 if (p == NULL)
950 p = "";
951 else if (p[0] == '\0')
952 p = "''";
953 fprintf_unfiltered (file, " %-10s", p);
954 }
955
956 /* Number. */
957 if (regnum < 0)
958 fprintf_unfiltered (file, " %4s", "Nr");
959 else
960 fprintf_unfiltered (file, " %4d", regnum);
961
962 /* Relative number. */
963 if (regnum < 0)
964 fprintf_unfiltered (file, " %4s", "Rel");
965 else if (regnum < gdbarch_num_regs (gdbarch))
966 fprintf_unfiltered (file, " %4d", regnum);
967 else
968 fprintf_unfiltered (file, " %4d",
969 (regnum - gdbarch_num_regs (gdbarch)));
970
971 /* Offset. */
972 if (regnum < 0)
973 fprintf_unfiltered (file, " %6s ", "Offset");
974 else
975 {
976 fprintf_unfiltered (file, " %6ld",
977 regcache->descr->register_offset[regnum]);
978 if (register_offset != regcache->descr->register_offset[regnum]
979 || (regnum > 0
980 && (regcache->descr->register_offset[regnum]
981 != (regcache->descr->register_offset[regnum - 1]
982 + regcache->descr->sizeof_register[regnum - 1])))
983 )
984 {
985 if (!footnote_register_offset)
986 footnote_register_offset = ++footnote_nr;
987 fprintf_unfiltered (file, "*%d", footnote_register_offset);
988 }
989 else
990 fprintf_unfiltered (file, " ");
991 register_offset = (regcache->descr->register_offset[regnum]
992 + regcache->descr->sizeof_register[regnum]);
993 }
994
995 /* Size. */
996 if (regnum < 0)
997 fprintf_unfiltered (file, " %5s ", "Size");
998 else
999 fprintf_unfiltered (file, " %5ld",
1000 regcache->descr->sizeof_register[regnum]);
1001
1002 /* Type. */
1003 {
1004 const char *t;
1005 if (regnum < 0)
1006 t = "Type";
1007 else
1008 {
1009 static const char blt[] = "builtin_type";
1010 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum));
1011 if (t == NULL)
1012 {
1013 char *n;
1014 if (!footnote_register_type_name_null)
1015 footnote_register_type_name_null = ++footnote_nr;
1016 n = xstrprintf ("*%d", footnote_register_type_name_null);
1017 make_cleanup (xfree, n);
1018 t = n;
1019 }
1020 /* Chop a leading builtin_type. */
1021 if (strncmp (t, blt, strlen (blt)) == 0)
1022 t += strlen (blt);
1023 }
1024 fprintf_unfiltered (file, " %-15s", t);
1025 }
1026
1027 /* Leading space always present. */
1028 fprintf_unfiltered (file, " ");
1029
1030 /* Value, raw. */
1031 if (what_to_dump == regcache_dump_raw)
1032 {
1033 if (regnum < 0)
1034 fprintf_unfiltered (file, "Raw value");
1035 else if (regnum >= regcache->descr->nr_raw_registers)
1036 fprintf_unfiltered (file, "<cooked>");
1037 else if (!regcache_valid_p (regcache, regnum))
1038 fprintf_unfiltered (file, "<invalid>");
1039 else
1040 {
1041 regcache_raw_read (regcache, regnum, buf);
1042 fprintf_unfiltered (file, "0x");
1043 dump_endian_bytes (file,
1044 gdbarch_byte_order (gdbarch), buf,
1045 regcache->descr->sizeof_register[regnum]);
1046 }
1047 }
1048
1049 /* Value, cooked. */
1050 if (what_to_dump == regcache_dump_cooked)
1051 {
1052 if (regnum < 0)
1053 fprintf_unfiltered (file, "Cooked value");
1054 else
1055 {
1056 regcache_cooked_read (regcache, regnum, buf);
1057 fprintf_unfiltered (file, "0x");
1058 dump_endian_bytes (file,
1059 gdbarch_byte_order (gdbarch), buf,
1060 regcache->descr->sizeof_register[regnum]);
1061 }
1062 }
1063
1064 /* Group members. */
1065 if (what_to_dump == regcache_dump_groups)
1066 {
1067 if (regnum < 0)
1068 fprintf_unfiltered (file, "Groups");
1069 else
1070 {
1071 const char *sep = "";
1072 struct reggroup *group;
1073 for (group = reggroup_next (gdbarch, NULL);
1074 group != NULL;
1075 group = reggroup_next (gdbarch, group))
1076 {
1077 if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
1078 {
1079 fprintf_unfiltered (file, "%s%s", sep, reggroup_name (group));
1080 sep = ",";
1081 }
1082 }
1083 }
1084 }
1085
1086 fprintf_unfiltered (file, "\n");
1087 }
1088
1089 if (footnote_register_size)
1090 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
1091 footnote_register_size);
1092 if (footnote_register_offset)
1093 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1094 footnote_register_offset);
1095 if (footnote_register_type_name_null)
1096 fprintf_unfiltered (file,
1097 "*%d: Register type's name NULL.\n",
1098 footnote_register_type_name_null);
1099 do_cleanups (cleanups);
1100 }
1101
1102 static void
1103 regcache_print (char *args, enum regcache_dump_what what_to_dump)
1104 {
1105 if (args == NULL)
1106 regcache_dump (get_current_regcache (), gdb_stdout, what_to_dump);
1107 else
1108 {
1109 struct ui_file *file = gdb_fopen (args, "w");
1110 if (file == NULL)
1111 perror_with_name (_("maintenance print architecture"));
1112 regcache_dump (get_current_regcache (), file, what_to_dump);
1113 ui_file_delete (file);
1114 }
1115 }
1116
1117 static void
1118 maintenance_print_registers (char *args, int from_tty)
1119 {
1120 regcache_print (args, regcache_dump_none);
1121 }
1122
1123 static void
1124 maintenance_print_raw_registers (char *args, int from_tty)
1125 {
1126 regcache_print (args, regcache_dump_raw);
1127 }
1128
1129 static void
1130 maintenance_print_cooked_registers (char *args, int from_tty)
1131 {
1132 regcache_print (args, regcache_dump_cooked);
1133 }
1134
1135 static void
1136 maintenance_print_register_groups (char *args, int from_tty)
1137 {
1138 regcache_print (args, regcache_dump_groups);
1139 }
1140
1141 extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */
1142
1143 void
1144 _initialize_regcache (void)
1145 {
1146 regcache_descr_handle = gdbarch_data_register_post_init (init_regcache_descr);
1147
1148 observer_attach_target_changed (regcache_observer_target_changed);
1149
1150 add_com ("flushregs", class_maintenance, reg_flush_command,
1151 _("Force gdb to flush its register cache (maintainer command)"));
1152
1153 add_cmd ("registers", class_maintenance, maintenance_print_registers, _("\
1154 Print the internal register configuration.\n\
1155 Takes an optional file parameter."), &maintenanceprintlist);
1156 add_cmd ("raw-registers", class_maintenance,
1157 maintenance_print_raw_registers, _("\
1158 Print the internal register configuration including raw values.\n\
1159 Takes an optional file parameter."), &maintenanceprintlist);
1160 add_cmd ("cooked-registers", class_maintenance,
1161 maintenance_print_cooked_registers, _("\
1162 Print the internal register configuration including cooked values.\n\
1163 Takes an optional file parameter."), &maintenanceprintlist);
1164 add_cmd ("register-groups", class_maintenance,
1165 maintenance_print_register_groups, _("\
1166 Print the internal register configuration including each register's group.\n\
1167 Takes an optional file parameter."),
1168 &maintenanceprintlist);
1169
1170 }
This page took 0.053087 seconds and 4 git commands to generate.