Rename target_{stop,continue}_ptid
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbarch.h"
24 #include "gdbcmd.h"
25 #include "regcache.h"
26 #include "reggroups.h"
27 #include "observer.h"
28 #include "exceptions.h"
29 #include "remote.h"
30 #include "valprint.h"
31 #include "regset.h"
32
33 /*
34 * DATA STRUCTURE
35 *
36 * Here is the actual register cache.
37 */
38
39 /* Per-architecture object describing the layout of a register cache.
40 Computed once when the architecture is created. */
41
42 struct gdbarch_data *regcache_descr_handle;
43
44 struct regcache_descr
45 {
46 /* The architecture this descriptor belongs to. */
47 struct gdbarch *gdbarch;
48
49 /* The raw register cache. Each raw (or hard) register is supplied
50 by the target interface. The raw cache should not contain
51 redundant information - if the PC is constructed from two
52 registers then those registers and not the PC lives in the raw
53 cache. */
54 int nr_raw_registers;
55 long sizeof_raw_registers;
56 long sizeof_raw_register_status;
57
58 /* The cooked register space. Each cooked register in the range
59 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
60 register. The remaining [NR_RAW_REGISTERS
61 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
62 both raw registers and memory by the architecture methods
63 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
64 int nr_cooked_registers;
65 long sizeof_cooked_registers;
66 long sizeof_cooked_register_status;
67
68 /* Offset and size (in 8 bit bytes), of each register in the
69 register cache. All registers (including those in the range
70 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
71 offset. */
72 long *register_offset;
73 long *sizeof_register;
74
75 /* Cached table containing the type of each register. */
76 struct type **register_type;
77 };
78
79 static void *
80 init_regcache_descr (struct gdbarch *gdbarch)
81 {
82 int i;
83 struct regcache_descr *descr;
84 gdb_assert (gdbarch != NULL);
85
86 /* Create an initial, zero filled, table. */
87 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
88 descr->gdbarch = gdbarch;
89
90 /* Total size of the register space. The raw registers are mapped
91 directly onto the raw register cache while the pseudo's are
92 either mapped onto raw-registers or memory. */
93 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
94 + gdbarch_num_pseudo_regs (gdbarch);
95 descr->sizeof_cooked_register_status
96 = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
97
98 /* Fill in a table of register types. */
99 descr->register_type
100 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
101 struct type *);
102 for (i = 0; i < descr->nr_cooked_registers; i++)
103 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
104
105 /* Construct a strictly RAW register cache. Don't allow pseudo's
106 into the register cache. */
107 descr->nr_raw_registers = gdbarch_num_regs (gdbarch);
108 descr->sizeof_raw_register_status = gdbarch_num_regs (gdbarch);
109
110 /* Lay out the register cache.
111
112 NOTE: cagney/2002-05-22: Only register_type() is used when
113 constructing the register cache. It is assumed that the
114 register's raw size, virtual size and type length are all the
115 same. */
116
117 {
118 long offset = 0;
119
120 descr->sizeof_register
121 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
122 descr->register_offset
123 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
124 for (i = 0; i < descr->nr_raw_registers; i++)
125 {
126 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
127 descr->register_offset[i] = offset;
128 offset += descr->sizeof_register[i];
129 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
130 }
131 /* Set the real size of the raw register cache buffer. */
132 descr->sizeof_raw_registers = offset;
133
134 for (; i < descr->nr_cooked_registers; i++)
135 {
136 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
137 descr->register_offset[i] = offset;
138 offset += descr->sizeof_register[i];
139 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
140 }
141 /* Set the real size of the readonly register cache buffer. */
142 descr->sizeof_cooked_registers = offset;
143 }
144
145 return descr;
146 }
147
148 static struct regcache_descr *
149 regcache_descr (struct gdbarch *gdbarch)
150 {
151 return gdbarch_data (gdbarch, regcache_descr_handle);
152 }
153
154 /* Utility functions returning useful register attributes stored in
155 the regcache descr. */
156
157 struct type *
158 register_type (struct gdbarch *gdbarch, int regnum)
159 {
160 struct regcache_descr *descr = regcache_descr (gdbarch);
161
162 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
163 return descr->register_type[regnum];
164 }
165
166 /* Utility functions returning useful register attributes stored in
167 the regcache descr. */
168
169 int
170 register_size (struct gdbarch *gdbarch, int regnum)
171 {
172 struct regcache_descr *descr = regcache_descr (gdbarch);
173 int size;
174
175 gdb_assert (regnum >= 0
176 && regnum < (gdbarch_num_regs (gdbarch)
177 + gdbarch_num_pseudo_regs (gdbarch)));
178 size = descr->sizeof_register[regnum];
179 return size;
180 }
181
182 /* The register cache for storing raw register values. */
183
184 struct regcache
185 {
186 struct regcache_descr *descr;
187
188 /* The address space of this register cache (for registers where it
189 makes sense, like PC or SP). */
190 struct address_space *aspace;
191
192 /* The register buffers. A read-only register cache can hold the
193 full [0 .. gdbarch_num_regs + gdbarch_num_pseudo_regs) while a read/write
194 register cache can only hold [0 .. gdbarch_num_regs). */
195 gdb_byte *registers;
196 /* Register cache status. */
197 signed char *register_status;
198 /* Is this a read-only cache? A read-only cache is used for saving
199 the target's register state (e.g, across an inferior function
200 call or just before forcing a function return). A read-only
201 cache can only be updated via the methods regcache_dup() and
202 regcache_cpy(). The actual contents are determined by the
203 reggroup_save and reggroup_restore methods. */
204 int readonly_p;
205 /* If this is a read-write cache, which thread's registers is
206 it connected to? */
207 ptid_t ptid;
208 };
209
210 static struct regcache *
211 regcache_xmalloc_1 (struct gdbarch *gdbarch, struct address_space *aspace,
212 int readonly_p)
213 {
214 struct regcache_descr *descr;
215 struct regcache *regcache;
216
217 gdb_assert (gdbarch != NULL);
218 descr = regcache_descr (gdbarch);
219 regcache = XNEW (struct regcache);
220 regcache->descr = descr;
221 regcache->readonly_p = readonly_p;
222 if (readonly_p)
223 {
224 regcache->registers
225 = XCNEWVEC (gdb_byte, descr->sizeof_cooked_registers);
226 regcache->register_status
227 = XCNEWVEC (signed char, descr->sizeof_cooked_register_status);
228 }
229 else
230 {
231 regcache->registers
232 = XCNEWVEC (gdb_byte, descr->sizeof_raw_registers);
233 regcache->register_status
234 = XCNEWVEC (signed char, descr->sizeof_raw_register_status);
235 }
236 regcache->aspace = aspace;
237 regcache->ptid = minus_one_ptid;
238 return regcache;
239 }
240
241 struct regcache *
242 regcache_xmalloc (struct gdbarch *gdbarch, struct address_space *aspace)
243 {
244 return regcache_xmalloc_1 (gdbarch, aspace, 1);
245 }
246
247 void
248 regcache_xfree (struct regcache *regcache)
249 {
250 if (regcache == NULL)
251 return;
252 xfree (regcache->registers);
253 xfree (regcache->register_status);
254 xfree (regcache);
255 }
256
257 static void
258 do_regcache_xfree (void *data)
259 {
260 regcache_xfree (data);
261 }
262
263 struct cleanup *
264 make_cleanup_regcache_xfree (struct regcache *regcache)
265 {
266 return make_cleanup (do_regcache_xfree, regcache);
267 }
268
269 /* Cleanup routines for invalidating a register. */
270
271 struct register_to_invalidate
272 {
273 struct regcache *regcache;
274 int regnum;
275 };
276
277 static void
278 do_regcache_invalidate (void *data)
279 {
280 struct register_to_invalidate *reg = data;
281
282 regcache_invalidate (reg->regcache, reg->regnum);
283 }
284
285 static struct cleanup *
286 make_cleanup_regcache_invalidate (struct regcache *regcache, int regnum)
287 {
288 struct register_to_invalidate* reg = XNEW (struct register_to_invalidate);
289
290 reg->regcache = regcache;
291 reg->regnum = regnum;
292 return make_cleanup_dtor (do_regcache_invalidate, (void *) reg, xfree);
293 }
294
295 /* Return REGCACHE's architecture. */
296
297 struct gdbarch *
298 get_regcache_arch (const struct regcache *regcache)
299 {
300 return regcache->descr->gdbarch;
301 }
302
303 struct address_space *
304 get_regcache_aspace (const struct regcache *regcache)
305 {
306 return regcache->aspace;
307 }
308
309 /* Return a pointer to register REGNUM's buffer cache. */
310
311 static gdb_byte *
312 register_buffer (const struct regcache *regcache, int regnum)
313 {
314 return regcache->registers + regcache->descr->register_offset[regnum];
315 }
316
317 void
318 regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read,
319 void *src)
320 {
321 struct gdbarch *gdbarch = dst->descr->gdbarch;
322 gdb_byte buf[MAX_REGISTER_SIZE];
323 int regnum;
324
325 /* The DST should be `read-only', if it wasn't then the save would
326 end up trying to write the register values back out to the
327 target. */
328 gdb_assert (dst->readonly_p);
329 /* Clear the dest. */
330 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers);
331 memset (dst->register_status, 0,
332 dst->descr->sizeof_cooked_register_status);
333 /* Copy over any registers (identified by their membership in the
334 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
335 gdbarch_num_pseudo_regs) range is checked since some architectures need
336 to save/restore `cooked' registers that live in memory. */
337 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
338 {
339 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
340 {
341 enum register_status status = cooked_read (src, regnum, buf);
342
343 if (status == REG_VALID)
344 memcpy (register_buffer (dst, regnum), buf,
345 register_size (gdbarch, regnum));
346 else
347 {
348 gdb_assert (status != REG_UNKNOWN);
349
350 memset (register_buffer (dst, regnum), 0,
351 register_size (gdbarch, regnum));
352 }
353 dst->register_status[regnum] = status;
354 }
355 }
356 }
357
358 static void
359 regcache_restore (struct regcache *dst,
360 regcache_cooked_read_ftype *cooked_read,
361 void *cooked_read_context)
362 {
363 struct gdbarch *gdbarch = dst->descr->gdbarch;
364 gdb_byte buf[MAX_REGISTER_SIZE];
365 int regnum;
366
367 /* The dst had better not be read-only. If it is, the `restore'
368 doesn't make much sense. */
369 gdb_assert (!dst->readonly_p);
370 /* Copy over any registers, being careful to only restore those that
371 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
372 + gdbarch_num_pseudo_regs) range is checked since some architectures need
373 to save/restore `cooked' registers that live in memory. */
374 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
375 {
376 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
377 {
378 enum register_status status;
379
380 status = cooked_read (cooked_read_context, regnum, buf);
381 if (status == REG_VALID)
382 regcache_cooked_write (dst, regnum, buf);
383 }
384 }
385 }
386
387 static enum register_status
388 do_cooked_read (void *src, int regnum, gdb_byte *buf)
389 {
390 struct regcache *regcache = src;
391
392 return regcache_cooked_read (regcache, regnum, buf);
393 }
394
395 void
396 regcache_cpy (struct regcache *dst, struct regcache *src)
397 {
398 gdb_assert (src != NULL && dst != NULL);
399 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
400 gdb_assert (src != dst);
401 gdb_assert (src->readonly_p || dst->readonly_p);
402
403 if (!src->readonly_p)
404 regcache_save (dst, do_cooked_read, src);
405 else if (!dst->readonly_p)
406 regcache_restore (dst, do_cooked_read, src);
407 else
408 regcache_cpy_no_passthrough (dst, src);
409 }
410
411 void
412 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
413 {
414 gdb_assert (src != NULL && dst != NULL);
415 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
416 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
417 move of data into a thread's regcache. Doing this would be silly
418 - it would mean that regcache->register_status would be
419 completely invalid. */
420 gdb_assert (dst->readonly_p && src->readonly_p);
421
422 memcpy (dst->registers, src->registers,
423 dst->descr->sizeof_cooked_registers);
424 memcpy (dst->register_status, src->register_status,
425 dst->descr->sizeof_cooked_register_status);
426 }
427
428 struct regcache *
429 regcache_dup (struct regcache *src)
430 {
431 struct regcache *newbuf;
432
433 newbuf = regcache_xmalloc (src->descr->gdbarch, get_regcache_aspace (src));
434 regcache_cpy (newbuf, src);
435 return newbuf;
436 }
437
438 enum register_status
439 regcache_register_status (const struct regcache *regcache, int regnum)
440 {
441 gdb_assert (regcache != NULL);
442 gdb_assert (regnum >= 0);
443 if (regcache->readonly_p)
444 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
445 else
446 gdb_assert (regnum < regcache->descr->nr_raw_registers);
447
448 return regcache->register_status[regnum];
449 }
450
451 void
452 regcache_invalidate (struct regcache *regcache, int regnum)
453 {
454 gdb_assert (regcache != NULL);
455 gdb_assert (regnum >= 0);
456 gdb_assert (!regcache->readonly_p);
457 gdb_assert (regnum < regcache->descr->nr_raw_registers);
458 regcache->register_status[regnum] = REG_UNKNOWN;
459 }
460
461
462 /* Global structure containing the current regcache. */
463
464 /* NOTE: this is a write-through cache. There is no "dirty" bit for
465 recording if the register values have been changed (eg. by the
466 user). Therefore all registers must be written back to the
467 target when appropriate. */
468
469 struct regcache_list
470 {
471 struct regcache *regcache;
472 struct regcache_list *next;
473 };
474
475 static struct regcache_list *current_regcache;
476
477 struct regcache *
478 get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
479 struct address_space *aspace)
480 {
481 struct regcache_list *list;
482 struct regcache *new_regcache;
483
484 for (list = current_regcache; list; list = list->next)
485 if (ptid_equal (list->regcache->ptid, ptid)
486 && get_regcache_arch (list->regcache) == gdbarch)
487 return list->regcache;
488
489 new_regcache = regcache_xmalloc_1 (gdbarch, aspace, 0);
490 new_regcache->ptid = ptid;
491
492 list = xmalloc (sizeof (struct regcache_list));
493 list->regcache = new_regcache;
494 list->next = current_regcache;
495 current_regcache = list;
496
497 return new_regcache;
498 }
499
500 struct regcache *
501 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
502 {
503 struct address_space *aspace;
504
505 /* For the benefit of "maint print registers" & co when debugging an
506 executable, allow dumping the regcache even when there is no
507 thread selected (target_thread_address_space internal-errors if
508 no address space is found). Note that normal user commands will
509 fail higher up on the call stack due to no
510 target_has_registers. */
511 aspace = (ptid_equal (null_ptid, ptid)
512 ? NULL
513 : target_thread_address_space (ptid));
514
515 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
516 }
517
518 static ptid_t current_thread_ptid;
519 static struct gdbarch *current_thread_arch;
520
521 struct regcache *
522 get_thread_regcache (ptid_t ptid)
523 {
524 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
525 {
526 current_thread_ptid = ptid;
527 current_thread_arch = target_thread_architecture (ptid);
528 }
529
530 return get_thread_arch_regcache (ptid, current_thread_arch);
531 }
532
533 struct regcache *
534 get_current_regcache (void)
535 {
536 return get_thread_regcache (inferior_ptid);
537 }
538
539 /* See common/common-regcache.h. */
540
541 struct regcache *
542 get_thread_regcache_for_ptid (ptid_t ptid)
543 {
544 return get_thread_regcache (ptid);
545 }
546
547 /* Observer for the target_changed event. */
548
549 static void
550 regcache_observer_target_changed (struct target_ops *target)
551 {
552 registers_changed ();
553 }
554
555 /* Update global variables old ptids to hold NEW_PTID if they were
556 holding OLD_PTID. */
557 static void
558 regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
559 {
560 struct regcache_list *list;
561
562 for (list = current_regcache; list; list = list->next)
563 if (ptid_equal (list->regcache->ptid, old_ptid))
564 list->regcache->ptid = new_ptid;
565 }
566
567 /* Low level examining and depositing of registers.
568
569 The caller is responsible for making sure that the inferior is
570 stopped before calling the fetching routines, or it will get
571 garbage. (a change from GDB version 3, in which the caller got the
572 value from the last stop). */
573
574 /* REGISTERS_CHANGED ()
575
576 Indicate that registers may have changed, so invalidate the cache. */
577
578 void
579 registers_changed_ptid (ptid_t ptid)
580 {
581 struct regcache_list *list, **list_link;
582
583 list = current_regcache;
584 list_link = &current_regcache;
585 while (list)
586 {
587 if (ptid_match (list->regcache->ptid, ptid))
588 {
589 struct regcache_list *dead = list;
590
591 *list_link = list->next;
592 regcache_xfree (list->regcache);
593 list = *list_link;
594 xfree (dead);
595 continue;
596 }
597
598 list_link = &list->next;
599 list = *list_link;
600 }
601
602 if (ptid_match (current_thread_ptid, ptid))
603 {
604 current_thread_ptid = null_ptid;
605 current_thread_arch = NULL;
606 }
607
608 if (ptid_match (inferior_ptid, ptid))
609 {
610 /* We just deleted the regcache of the current thread. Need to
611 forget about any frames we have cached, too. */
612 reinit_frame_cache ();
613 }
614 }
615
616 void
617 registers_changed (void)
618 {
619 registers_changed_ptid (minus_one_ptid);
620
621 /* Force cleanup of any alloca areas if using C alloca instead of
622 a builtin alloca. This particular call is used to clean up
623 areas allocated by low level target code which may build up
624 during lengthy interactions between gdb and the target before
625 gdb gives control to the user (ie watchpoints). */
626 alloca (0);
627 }
628
629 enum register_status
630 regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf)
631 {
632 gdb_assert (regcache != NULL && buf != NULL);
633 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
634 /* Make certain that the register cache is up-to-date with respect
635 to the current thread. This switching shouldn't be necessary
636 only there is still only one target side register cache. Sigh!
637 On the bright side, at least there is a regcache object. */
638 if (!regcache->readonly_p
639 && regcache_register_status (regcache, regnum) == REG_UNKNOWN)
640 {
641 struct cleanup *old_chain = save_inferior_ptid ();
642
643 inferior_ptid = regcache->ptid;
644 target_fetch_registers (regcache, regnum);
645 do_cleanups (old_chain);
646
647 /* A number of targets can't access the whole set of raw
648 registers (because the debug API provides no means to get at
649 them). */
650 if (regcache->register_status[regnum] == REG_UNKNOWN)
651 regcache->register_status[regnum] = REG_UNAVAILABLE;
652 }
653
654 if (regcache->register_status[regnum] != REG_VALID)
655 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
656 else
657 memcpy (buf, register_buffer (regcache, regnum),
658 regcache->descr->sizeof_register[regnum]);
659
660 return regcache->register_status[regnum];
661 }
662
663 enum register_status
664 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
665 {
666 gdb_byte *buf;
667 enum register_status status;
668
669 gdb_assert (regcache != NULL);
670 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
671 buf = alloca (regcache->descr->sizeof_register[regnum]);
672 status = regcache_raw_read (regcache, regnum, buf);
673 if (status == REG_VALID)
674 *val = extract_signed_integer
675 (buf, regcache->descr->sizeof_register[regnum],
676 gdbarch_byte_order (regcache->descr->gdbarch));
677 else
678 *val = 0;
679 return status;
680 }
681
682 enum register_status
683 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
684 ULONGEST *val)
685 {
686 gdb_byte *buf;
687 enum register_status status;
688
689 gdb_assert (regcache != NULL);
690 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
691 buf = alloca (regcache->descr->sizeof_register[regnum]);
692 status = regcache_raw_read (regcache, regnum, buf);
693 if (status == REG_VALID)
694 *val = extract_unsigned_integer
695 (buf, regcache->descr->sizeof_register[regnum],
696 gdbarch_byte_order (regcache->descr->gdbarch));
697 else
698 *val = 0;
699 return status;
700 }
701
702 void
703 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
704 {
705 void *buf;
706
707 gdb_assert (regcache != NULL);
708 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
709 buf = alloca (regcache->descr->sizeof_register[regnum]);
710 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
711 gdbarch_byte_order (regcache->descr->gdbarch), val);
712 regcache_raw_write (regcache, regnum, buf);
713 }
714
715 void
716 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
717 ULONGEST val)
718 {
719 void *buf;
720
721 gdb_assert (regcache != NULL);
722 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
723 buf = alloca (regcache->descr->sizeof_register[regnum]);
724 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
725 gdbarch_byte_order (regcache->descr->gdbarch), val);
726 regcache_raw_write (regcache, regnum, buf);
727 }
728
729 enum register_status
730 regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf)
731 {
732 gdb_assert (regnum >= 0);
733 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
734 if (regnum < regcache->descr->nr_raw_registers)
735 return regcache_raw_read (regcache, regnum, buf);
736 else if (regcache->readonly_p
737 && regcache->register_status[regnum] != REG_UNKNOWN)
738 {
739 /* Read-only register cache, perhaps the cooked value was
740 cached? */
741 if (regcache->register_status[regnum] == REG_VALID)
742 memcpy (buf, register_buffer (regcache, regnum),
743 regcache->descr->sizeof_register[regnum]);
744 else
745 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
746
747 return regcache->register_status[regnum];
748 }
749 else if (gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch))
750 {
751 struct value *mark, *computed;
752 enum register_status result = REG_VALID;
753
754 mark = value_mark ();
755
756 computed = gdbarch_pseudo_register_read_value (regcache->descr->gdbarch,
757 regcache, regnum);
758 if (value_entirely_available (computed))
759 memcpy (buf, value_contents_raw (computed),
760 regcache->descr->sizeof_register[regnum]);
761 else
762 {
763 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
764 result = REG_UNAVAILABLE;
765 }
766
767 value_free_to_mark (mark);
768
769 return result;
770 }
771 else
772 return gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache,
773 regnum, buf);
774 }
775
776 struct value *
777 regcache_cooked_read_value (struct regcache *regcache, int regnum)
778 {
779 gdb_assert (regnum >= 0);
780 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
781
782 if (regnum < regcache->descr->nr_raw_registers
783 || (regcache->readonly_p
784 && regcache->register_status[regnum] != REG_UNKNOWN)
785 || !gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch))
786 {
787 struct value *result;
788
789 result = allocate_value (register_type (regcache->descr->gdbarch,
790 regnum));
791 VALUE_LVAL (result) = lval_register;
792 VALUE_REGNUM (result) = regnum;
793
794 /* It is more efficient in general to do this delegation in this
795 direction than in the other one, even though the value-based
796 API is preferred. */
797 if (regcache_cooked_read (regcache, regnum,
798 value_contents_raw (result)) == REG_UNAVAILABLE)
799 mark_value_bytes_unavailable (result, 0,
800 TYPE_LENGTH (value_type (result)));
801
802 return result;
803 }
804 else
805 return gdbarch_pseudo_register_read_value (regcache->descr->gdbarch,
806 regcache, regnum);
807 }
808
809 enum register_status
810 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
811 LONGEST *val)
812 {
813 enum register_status status;
814 gdb_byte *buf;
815
816 gdb_assert (regcache != NULL);
817 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
818 buf = alloca (regcache->descr->sizeof_register[regnum]);
819 status = regcache_cooked_read (regcache, regnum, buf);
820 if (status == REG_VALID)
821 *val = extract_signed_integer
822 (buf, regcache->descr->sizeof_register[regnum],
823 gdbarch_byte_order (regcache->descr->gdbarch));
824 else
825 *val = 0;
826 return status;
827 }
828
829 enum register_status
830 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
831 ULONGEST *val)
832 {
833 enum register_status status;
834 gdb_byte *buf;
835
836 gdb_assert (regcache != NULL);
837 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
838 buf = alloca (regcache->descr->sizeof_register[regnum]);
839 status = regcache_cooked_read (regcache, regnum, buf);
840 if (status == REG_VALID)
841 *val = extract_unsigned_integer
842 (buf, regcache->descr->sizeof_register[regnum],
843 gdbarch_byte_order (regcache->descr->gdbarch));
844 else
845 *val = 0;
846 return status;
847 }
848
849 void
850 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
851 LONGEST val)
852 {
853 void *buf;
854
855 gdb_assert (regcache != NULL);
856 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
857 buf = alloca (regcache->descr->sizeof_register[regnum]);
858 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
859 gdbarch_byte_order (regcache->descr->gdbarch), val);
860 regcache_cooked_write (regcache, regnum, buf);
861 }
862
863 void
864 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
865 ULONGEST val)
866 {
867 void *buf;
868
869 gdb_assert (regcache != NULL);
870 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
871 buf = alloca (regcache->descr->sizeof_register[regnum]);
872 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
873 gdbarch_byte_order (regcache->descr->gdbarch), val);
874 regcache_cooked_write (regcache, regnum, buf);
875 }
876
877 void
878 regcache_raw_write (struct regcache *regcache, int regnum,
879 const gdb_byte *buf)
880 {
881 struct cleanup *chain_before_save_inferior;
882 struct cleanup *chain_before_invalidate_register;
883
884 gdb_assert (regcache != NULL && buf != NULL);
885 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
886 gdb_assert (!regcache->readonly_p);
887
888 /* On the sparc, writing %g0 is a no-op, so we don't even want to
889 change the registers array if something writes to this register. */
890 if (gdbarch_cannot_store_register (get_regcache_arch (regcache), regnum))
891 return;
892
893 /* If we have a valid copy of the register, and new value == old
894 value, then don't bother doing the actual store. */
895 if (regcache_register_status (regcache, regnum) == REG_VALID
896 && (memcmp (register_buffer (regcache, regnum), buf,
897 regcache->descr->sizeof_register[regnum]) == 0))
898 return;
899
900 chain_before_save_inferior = save_inferior_ptid ();
901 inferior_ptid = regcache->ptid;
902
903 target_prepare_to_store (regcache);
904 memcpy (register_buffer (regcache, regnum), buf,
905 regcache->descr->sizeof_register[regnum]);
906 regcache->register_status[regnum] = REG_VALID;
907
908 /* Register a cleanup function for invalidating the register after it is
909 written, in case of a failure. */
910 chain_before_invalidate_register
911 = make_cleanup_regcache_invalidate (regcache, regnum);
912
913 target_store_registers (regcache, regnum);
914
915 /* The target did not throw an error so we can discard invalidating the
916 register and restore the cleanup chain to what it was. */
917 discard_cleanups (chain_before_invalidate_register);
918
919 do_cleanups (chain_before_save_inferior);
920 }
921
922 void
923 regcache_cooked_write (struct regcache *regcache, int regnum,
924 const gdb_byte *buf)
925 {
926 gdb_assert (regnum >= 0);
927 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
928 if (regnum < regcache->descr->nr_raw_registers)
929 regcache_raw_write (regcache, regnum, buf);
930 else
931 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache,
932 regnum, buf);
933 }
934
935 /* Perform a partial register transfer using a read, modify, write
936 operation. */
937
938 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
939 void *buf);
940 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
941 const void *buf);
942
943 static enum register_status
944 regcache_xfer_part (struct regcache *regcache, int regnum,
945 int offset, int len, void *in, const void *out,
946 enum register_status (*read) (struct regcache *regcache,
947 int regnum,
948 gdb_byte *buf),
949 void (*write) (struct regcache *regcache, int regnum,
950 const gdb_byte *buf))
951 {
952 struct regcache_descr *descr = regcache->descr;
953 gdb_byte reg[MAX_REGISTER_SIZE];
954
955 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]);
956 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]);
957 /* Something to do? */
958 if (offset + len == 0)
959 return REG_VALID;
960 /* Read (when needed) ... */
961 if (in != NULL
962 || offset > 0
963 || offset + len < descr->sizeof_register[regnum])
964 {
965 enum register_status status;
966
967 gdb_assert (read != NULL);
968 status = read (regcache, regnum, reg);
969 if (status != REG_VALID)
970 return status;
971 }
972 /* ... modify ... */
973 if (in != NULL)
974 memcpy (in, reg + offset, len);
975 if (out != NULL)
976 memcpy (reg + offset, out, len);
977 /* ... write (when needed). */
978 if (out != NULL)
979 {
980 gdb_assert (write != NULL);
981 write (regcache, regnum, reg);
982 }
983
984 return REG_VALID;
985 }
986
987 enum register_status
988 regcache_raw_read_part (struct regcache *regcache, int regnum,
989 int offset, int len, gdb_byte *buf)
990 {
991 struct regcache_descr *descr = regcache->descr;
992
993 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
994 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
995 regcache_raw_read, regcache_raw_write);
996 }
997
998 void
999 regcache_raw_write_part (struct regcache *regcache, int regnum,
1000 int offset, int len, const gdb_byte *buf)
1001 {
1002 struct regcache_descr *descr = regcache->descr;
1003
1004 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
1005 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
1006 regcache_raw_read, regcache_raw_write);
1007 }
1008
1009 enum register_status
1010 regcache_cooked_read_part (struct regcache *regcache, int regnum,
1011 int offset, int len, gdb_byte *buf)
1012 {
1013 struct regcache_descr *descr = regcache->descr;
1014
1015 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
1016 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
1017 regcache_cooked_read, regcache_cooked_write);
1018 }
1019
1020 void
1021 regcache_cooked_write_part (struct regcache *regcache, int regnum,
1022 int offset, int len, const gdb_byte *buf)
1023 {
1024 struct regcache_descr *descr = regcache->descr;
1025
1026 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
1027 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
1028 regcache_cooked_read, regcache_cooked_write);
1029 }
1030
1031 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
1032
1033 void
1034 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
1035 {
1036 void *regbuf;
1037 size_t size;
1038
1039 gdb_assert (regcache != NULL);
1040 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1041 gdb_assert (!regcache->readonly_p);
1042
1043 regbuf = register_buffer (regcache, regnum);
1044 size = regcache->descr->sizeof_register[regnum];
1045
1046 if (buf)
1047 {
1048 memcpy (regbuf, buf, size);
1049 regcache->register_status[regnum] = REG_VALID;
1050 }
1051 else
1052 {
1053 /* This memset not strictly necessary, but better than garbage
1054 in case the register value manages to escape somewhere (due
1055 to a bug, no less). */
1056 memset (regbuf, 0, size);
1057 regcache->register_status[regnum] = REG_UNAVAILABLE;
1058 }
1059 }
1060
1061 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
1062
1063 void
1064 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
1065 {
1066 const void *regbuf;
1067 size_t size;
1068
1069 gdb_assert (regcache != NULL && buf != NULL);
1070 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1071
1072 regbuf = register_buffer (regcache, regnum);
1073 size = regcache->descr->sizeof_register[regnum];
1074 memcpy (buf, regbuf, size);
1075 }
1076
1077 /* Transfer a single or all registers belonging to a certain register
1078 set to or from a buffer. This is the main worker function for
1079 regcache_supply_regset and regcache_collect_regset. */
1080
1081 static void
1082 regcache_transfer_regset (const struct regset *regset,
1083 const struct regcache *regcache,
1084 struct regcache *out_regcache,
1085 int regnum, const void *in_buf,
1086 void *out_buf, size_t size)
1087 {
1088 const struct regcache_map_entry *map;
1089 int offs = 0, count;
1090
1091 for (map = regset->regmap; (count = map->count) != 0; map++)
1092 {
1093 int regno = map->regno;
1094 int slot_size = map->size;
1095
1096 if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
1097 slot_size = regcache->descr->sizeof_register[regno];
1098
1099 if (regno == REGCACHE_MAP_SKIP
1100 || (regnum != -1
1101 && (regnum < regno || regnum >= regno + count)))
1102 offs += count * slot_size;
1103
1104 else if (regnum == -1)
1105 for (; count--; regno++, offs += slot_size)
1106 {
1107 if (offs + slot_size > size)
1108 break;
1109
1110 if (out_buf)
1111 regcache_raw_collect (regcache, regno,
1112 (gdb_byte *) out_buf + offs);
1113 else
1114 regcache_raw_supply (out_regcache, regno, in_buf
1115 ? (const gdb_byte *) in_buf + offs
1116 : NULL);
1117 }
1118 else
1119 {
1120 /* Transfer a single register and return. */
1121 offs += (regnum - regno) * slot_size;
1122 if (offs + slot_size > size)
1123 return;
1124
1125 if (out_buf)
1126 regcache_raw_collect (regcache, regnum,
1127 (gdb_byte *) out_buf + offs);
1128 else
1129 regcache_raw_supply (out_regcache, regnum, in_buf
1130 ? (const gdb_byte *) in_buf + offs
1131 : NULL);
1132 return;
1133 }
1134 }
1135 }
1136
1137 /* Supply register REGNUM from BUF to REGCACHE, using the register map
1138 in REGSET. If REGNUM is -1, do this for all registers in REGSET.
1139 If BUF is NULL, set the register(s) to "unavailable" status. */
1140
1141 void
1142 regcache_supply_regset (const struct regset *regset,
1143 struct regcache *regcache,
1144 int regnum, const void *buf, size_t size)
1145 {
1146 regcache_transfer_regset (regset, regcache, regcache, regnum,
1147 buf, NULL, size);
1148 }
1149
1150 /* Collect register REGNUM from REGCACHE to BUF, using the register
1151 map in REGSET. If REGNUM is -1, do this for all registers in
1152 REGSET. */
1153
1154 void
1155 regcache_collect_regset (const struct regset *regset,
1156 const struct regcache *regcache,
1157 int regnum, void *buf, size_t size)
1158 {
1159 regcache_transfer_regset (regset, regcache, NULL, regnum,
1160 NULL, buf, size);
1161 }
1162
1163
1164 /* Special handling for register PC. */
1165
1166 CORE_ADDR
1167 regcache_read_pc (struct regcache *regcache)
1168 {
1169 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1170
1171 CORE_ADDR pc_val;
1172
1173 if (gdbarch_read_pc_p (gdbarch))
1174 pc_val = gdbarch_read_pc (gdbarch, regcache);
1175 /* Else use per-frame method on get_current_frame. */
1176 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1177 {
1178 ULONGEST raw_val;
1179
1180 if (regcache_cooked_read_unsigned (regcache,
1181 gdbarch_pc_regnum (gdbarch),
1182 &raw_val) == REG_UNAVAILABLE)
1183 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1184
1185 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
1186 }
1187 else
1188 internal_error (__FILE__, __LINE__,
1189 _("regcache_read_pc: Unable to find PC"));
1190 return pc_val;
1191 }
1192
1193 void
1194 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
1195 {
1196 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1197
1198 if (gdbarch_write_pc_p (gdbarch))
1199 gdbarch_write_pc (gdbarch, regcache, pc);
1200 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1201 regcache_cooked_write_unsigned (regcache,
1202 gdbarch_pc_regnum (gdbarch), pc);
1203 else
1204 internal_error (__FILE__, __LINE__,
1205 _("regcache_write_pc: Unable to update PC"));
1206
1207 /* Writing the PC (for instance, from "load") invalidates the
1208 current frame. */
1209 reinit_frame_cache ();
1210 }
1211
1212
1213 static void
1214 reg_flush_command (char *command, int from_tty)
1215 {
1216 /* Force-flush the register cache. */
1217 registers_changed ();
1218 if (from_tty)
1219 printf_filtered (_("Register cache flushed.\n"));
1220 }
1221
1222 enum regcache_dump_what
1223 {
1224 regcache_dump_none, regcache_dump_raw,
1225 regcache_dump_cooked, regcache_dump_groups,
1226 regcache_dump_remote
1227 };
1228
1229 static void
1230 regcache_dump (struct regcache *regcache, struct ui_file *file,
1231 enum regcache_dump_what what_to_dump)
1232 {
1233 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1234 struct gdbarch *gdbarch = regcache->descr->gdbarch;
1235 int regnum;
1236 int footnote_nr = 0;
1237 int footnote_register_size = 0;
1238 int footnote_register_offset = 0;
1239 int footnote_register_type_name_null = 0;
1240 long register_offset = 0;
1241 gdb_byte buf[MAX_REGISTER_SIZE];
1242
1243 #if 0
1244 fprintf_unfiltered (file, "nr_raw_registers %d\n",
1245 regcache->descr->nr_raw_registers);
1246 fprintf_unfiltered (file, "nr_cooked_registers %d\n",
1247 regcache->descr->nr_cooked_registers);
1248 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n",
1249 regcache->descr->sizeof_raw_registers);
1250 fprintf_unfiltered (file, "sizeof_raw_register_status %ld\n",
1251 regcache->descr->sizeof_raw_register_status);
1252 fprintf_unfiltered (file, "gdbarch_num_regs %d\n",
1253 gdbarch_num_regs (gdbarch));
1254 fprintf_unfiltered (file, "gdbarch_num_pseudo_regs %d\n",
1255 gdbarch_num_pseudo_regs (gdbarch));
1256 #endif
1257
1258 gdb_assert (regcache->descr->nr_cooked_registers
1259 == (gdbarch_num_regs (gdbarch)
1260 + gdbarch_num_pseudo_regs (gdbarch)));
1261
1262 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++)
1263 {
1264 /* Name. */
1265 if (regnum < 0)
1266 fprintf_unfiltered (file, " %-10s", "Name");
1267 else
1268 {
1269 const char *p = gdbarch_register_name (gdbarch, regnum);
1270
1271 if (p == NULL)
1272 p = "";
1273 else if (p[0] == '\0')
1274 p = "''";
1275 fprintf_unfiltered (file, " %-10s", p);
1276 }
1277
1278 /* Number. */
1279 if (regnum < 0)
1280 fprintf_unfiltered (file, " %4s", "Nr");
1281 else
1282 fprintf_unfiltered (file, " %4d", regnum);
1283
1284 /* Relative number. */
1285 if (regnum < 0)
1286 fprintf_unfiltered (file, " %4s", "Rel");
1287 else if (regnum < gdbarch_num_regs (gdbarch))
1288 fprintf_unfiltered (file, " %4d", regnum);
1289 else
1290 fprintf_unfiltered (file, " %4d",
1291 (regnum - gdbarch_num_regs (gdbarch)));
1292
1293 /* Offset. */
1294 if (regnum < 0)
1295 fprintf_unfiltered (file, " %6s ", "Offset");
1296 else
1297 {
1298 fprintf_unfiltered (file, " %6ld",
1299 regcache->descr->register_offset[regnum]);
1300 if (register_offset != regcache->descr->register_offset[regnum]
1301 || (regnum > 0
1302 && (regcache->descr->register_offset[regnum]
1303 != (regcache->descr->register_offset[regnum - 1]
1304 + regcache->descr->sizeof_register[regnum - 1])))
1305 )
1306 {
1307 if (!footnote_register_offset)
1308 footnote_register_offset = ++footnote_nr;
1309 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1310 }
1311 else
1312 fprintf_unfiltered (file, " ");
1313 register_offset = (regcache->descr->register_offset[regnum]
1314 + regcache->descr->sizeof_register[regnum]);
1315 }
1316
1317 /* Size. */
1318 if (regnum < 0)
1319 fprintf_unfiltered (file, " %5s ", "Size");
1320 else
1321 fprintf_unfiltered (file, " %5ld",
1322 regcache->descr->sizeof_register[regnum]);
1323
1324 /* Type. */
1325 {
1326 const char *t;
1327
1328 if (regnum < 0)
1329 t = "Type";
1330 else
1331 {
1332 static const char blt[] = "builtin_type";
1333
1334 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum));
1335 if (t == NULL)
1336 {
1337 char *n;
1338
1339 if (!footnote_register_type_name_null)
1340 footnote_register_type_name_null = ++footnote_nr;
1341 n = xstrprintf ("*%d", footnote_register_type_name_null);
1342 make_cleanup (xfree, n);
1343 t = n;
1344 }
1345 /* Chop a leading builtin_type. */
1346 if (strncmp (t, blt, strlen (blt)) == 0)
1347 t += strlen (blt);
1348 }
1349 fprintf_unfiltered (file, " %-15s", t);
1350 }
1351
1352 /* Leading space always present. */
1353 fprintf_unfiltered (file, " ");
1354
1355 /* Value, raw. */
1356 if (what_to_dump == regcache_dump_raw)
1357 {
1358 if (regnum < 0)
1359 fprintf_unfiltered (file, "Raw value");
1360 else if (regnum >= regcache->descr->nr_raw_registers)
1361 fprintf_unfiltered (file, "<cooked>");
1362 else if (regcache_register_status (regcache, regnum) == REG_UNKNOWN)
1363 fprintf_unfiltered (file, "<invalid>");
1364 else if (regcache_register_status (regcache, regnum) == REG_UNAVAILABLE)
1365 fprintf_unfiltered (file, "<unavailable>");
1366 else
1367 {
1368 regcache_raw_read (regcache, regnum, buf);
1369 print_hex_chars (file, buf,
1370 regcache->descr->sizeof_register[regnum],
1371 gdbarch_byte_order (gdbarch));
1372 }
1373 }
1374
1375 /* Value, cooked. */
1376 if (what_to_dump == regcache_dump_cooked)
1377 {
1378 if (regnum < 0)
1379 fprintf_unfiltered (file, "Cooked value");
1380 else
1381 {
1382 enum register_status status;
1383
1384 status = regcache_cooked_read (regcache, regnum, buf);
1385 if (status == REG_UNKNOWN)
1386 fprintf_unfiltered (file, "<invalid>");
1387 else if (status == REG_UNAVAILABLE)
1388 fprintf_unfiltered (file, "<unavailable>");
1389 else
1390 print_hex_chars (file, buf,
1391 regcache->descr->sizeof_register[regnum],
1392 gdbarch_byte_order (gdbarch));
1393 }
1394 }
1395
1396 /* Group members. */
1397 if (what_to_dump == regcache_dump_groups)
1398 {
1399 if (regnum < 0)
1400 fprintf_unfiltered (file, "Groups");
1401 else
1402 {
1403 const char *sep = "";
1404 struct reggroup *group;
1405
1406 for (group = reggroup_next (gdbarch, NULL);
1407 group != NULL;
1408 group = reggroup_next (gdbarch, group))
1409 {
1410 if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
1411 {
1412 fprintf_unfiltered (file,
1413 "%s%s", sep, reggroup_name (group));
1414 sep = ",";
1415 }
1416 }
1417 }
1418 }
1419
1420 /* Remote packet configuration. */
1421 if (what_to_dump == regcache_dump_remote)
1422 {
1423 if (regnum < 0)
1424 {
1425 fprintf_unfiltered (file, "Rmt Nr g/G Offset");
1426 }
1427 else if (regnum < regcache->descr->nr_raw_registers)
1428 {
1429 int pnum, poffset;
1430
1431 if (remote_register_number_and_offset (get_regcache_arch (regcache), regnum,
1432 &pnum, &poffset))
1433 fprintf_unfiltered (file, "%7d %11d", pnum, poffset);
1434 }
1435 }
1436
1437 fprintf_unfiltered (file, "\n");
1438 }
1439
1440 if (footnote_register_size)
1441 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
1442 footnote_register_size);
1443 if (footnote_register_offset)
1444 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1445 footnote_register_offset);
1446 if (footnote_register_type_name_null)
1447 fprintf_unfiltered (file,
1448 "*%d: Register type's name NULL.\n",
1449 footnote_register_type_name_null);
1450 do_cleanups (cleanups);
1451 }
1452
1453 static void
1454 regcache_print (char *args, enum regcache_dump_what what_to_dump)
1455 {
1456 if (args == NULL)
1457 regcache_dump (get_current_regcache (), gdb_stdout, what_to_dump);
1458 else
1459 {
1460 struct cleanup *cleanups;
1461 struct ui_file *file = gdb_fopen (args, "w");
1462
1463 if (file == NULL)
1464 perror_with_name (_("maintenance print architecture"));
1465 cleanups = make_cleanup_ui_file_delete (file);
1466 regcache_dump (get_current_regcache (), file, what_to_dump);
1467 do_cleanups (cleanups);
1468 }
1469 }
1470
1471 static void
1472 maintenance_print_registers (char *args, int from_tty)
1473 {
1474 regcache_print (args, regcache_dump_none);
1475 }
1476
1477 static void
1478 maintenance_print_raw_registers (char *args, int from_tty)
1479 {
1480 regcache_print (args, regcache_dump_raw);
1481 }
1482
1483 static void
1484 maintenance_print_cooked_registers (char *args, int from_tty)
1485 {
1486 regcache_print (args, regcache_dump_cooked);
1487 }
1488
1489 static void
1490 maintenance_print_register_groups (char *args, int from_tty)
1491 {
1492 regcache_print (args, regcache_dump_groups);
1493 }
1494
1495 static void
1496 maintenance_print_remote_registers (char *args, int from_tty)
1497 {
1498 regcache_print (args, regcache_dump_remote);
1499 }
1500
1501 extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */
1502
1503 void
1504 _initialize_regcache (void)
1505 {
1506 regcache_descr_handle
1507 = gdbarch_data_register_post_init (init_regcache_descr);
1508
1509 observer_attach_target_changed (regcache_observer_target_changed);
1510 observer_attach_thread_ptid_changed (regcache_thread_ptid_changed);
1511
1512 add_com ("flushregs", class_maintenance, reg_flush_command,
1513 _("Force gdb to flush its register cache (maintainer command)"));
1514
1515 add_cmd ("registers", class_maintenance, maintenance_print_registers,
1516 _("Print the internal register configuration.\n"
1517 "Takes an optional file parameter."), &maintenanceprintlist);
1518 add_cmd ("raw-registers", class_maintenance,
1519 maintenance_print_raw_registers,
1520 _("Print the internal register configuration "
1521 "including raw values.\n"
1522 "Takes an optional file parameter."), &maintenanceprintlist);
1523 add_cmd ("cooked-registers", class_maintenance,
1524 maintenance_print_cooked_registers,
1525 _("Print the internal register configuration "
1526 "including cooked values.\n"
1527 "Takes an optional file parameter."), &maintenanceprintlist);
1528 add_cmd ("register-groups", class_maintenance,
1529 maintenance_print_register_groups,
1530 _("Print the internal register configuration "
1531 "including each register's group.\n"
1532 "Takes an optional file parameter."),
1533 &maintenanceprintlist);
1534 add_cmd ("remote-registers", class_maintenance,
1535 maintenance_print_remote_registers, _("\
1536 Print the internal register configuration including each register's\n\
1537 remote register number and buffer offset in the g/G packets.\n\
1538 Takes an optional file parameter."),
1539 &maintenanceprintlist);
1540
1541 }
This page took 0.191277 seconds and 4 git commands to generate.