S390: Multi-inferior watchpoint support
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbarch.h"
24 #include "gdbcmd.h"
25 #include "regcache.h"
26 #include "reggroups.h"
27 #include "observer.h"
28 #include "remote.h"
29 #include "valprint.h"
30 #include "regset.h"
31
32 /*
33 * DATA STRUCTURE
34 *
35 * Here is the actual register cache.
36 */
37
38 /* Per-architecture object describing the layout of a register cache.
39 Computed once when the architecture is created. */
40
41 struct gdbarch_data *regcache_descr_handle;
42
43 struct regcache_descr
44 {
45 /* The architecture this descriptor belongs to. */
46 struct gdbarch *gdbarch;
47
48 /* The raw register cache. Each raw (or hard) register is supplied
49 by the target interface. The raw cache should not contain
50 redundant information - if the PC is constructed from two
51 registers then those registers and not the PC lives in the raw
52 cache. */
53 int nr_raw_registers;
54 long sizeof_raw_registers;
55 long sizeof_raw_register_status;
56
57 /* The cooked register space. Each cooked register in the range
58 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
59 register. The remaining [NR_RAW_REGISTERS
60 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
61 both raw registers and memory by the architecture methods
62 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
63 int nr_cooked_registers;
64 long sizeof_cooked_registers;
65 long sizeof_cooked_register_status;
66
67 /* Offset and size (in 8 bit bytes), of each register in the
68 register cache. All registers (including those in the range
69 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
70 offset. */
71 long *register_offset;
72 long *sizeof_register;
73
74 /* Cached table containing the type of each register. */
75 struct type **register_type;
76 };
77
78 static void *
79 init_regcache_descr (struct gdbarch *gdbarch)
80 {
81 int i;
82 struct regcache_descr *descr;
83 gdb_assert (gdbarch != NULL);
84
85 /* Create an initial, zero filled, table. */
86 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
87 descr->gdbarch = gdbarch;
88
89 /* Total size of the register space. The raw registers are mapped
90 directly onto the raw register cache while the pseudo's are
91 either mapped onto raw-registers or memory. */
92 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
93 + gdbarch_num_pseudo_regs (gdbarch);
94 descr->sizeof_cooked_register_status
95 = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
96
97 /* Fill in a table of register types. */
98 descr->register_type
99 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
100 struct type *);
101 for (i = 0; i < descr->nr_cooked_registers; i++)
102 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
103
104 /* Construct a strictly RAW register cache. Don't allow pseudo's
105 into the register cache. */
106 descr->nr_raw_registers = gdbarch_num_regs (gdbarch);
107 descr->sizeof_raw_register_status = gdbarch_num_regs (gdbarch);
108
109 /* Lay out the register cache.
110
111 NOTE: cagney/2002-05-22: Only register_type() is used when
112 constructing the register cache. It is assumed that the
113 register's raw size, virtual size and type length are all the
114 same. */
115
116 {
117 long offset = 0;
118
119 descr->sizeof_register
120 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
121 descr->register_offset
122 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
123 for (i = 0; i < descr->nr_raw_registers; i++)
124 {
125 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
126 descr->register_offset[i] = offset;
127 offset += descr->sizeof_register[i];
128 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
129 }
130 /* Set the real size of the raw register cache buffer. */
131 descr->sizeof_raw_registers = offset;
132
133 for (; i < descr->nr_cooked_registers; i++)
134 {
135 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
136 descr->register_offset[i] = offset;
137 offset += descr->sizeof_register[i];
138 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
139 }
140 /* Set the real size of the readonly register cache buffer. */
141 descr->sizeof_cooked_registers = offset;
142 }
143
144 return descr;
145 }
146
147 static struct regcache_descr *
148 regcache_descr (struct gdbarch *gdbarch)
149 {
150 return (struct regcache_descr *) gdbarch_data (gdbarch,
151 regcache_descr_handle);
152 }
153
154 /* Utility functions returning useful register attributes stored in
155 the regcache descr. */
156
157 struct type *
158 register_type (struct gdbarch *gdbarch, int regnum)
159 {
160 struct regcache_descr *descr = regcache_descr (gdbarch);
161
162 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
163 return descr->register_type[regnum];
164 }
165
166 /* Utility functions returning useful register attributes stored in
167 the regcache descr. */
168
169 int
170 register_size (struct gdbarch *gdbarch, int regnum)
171 {
172 struct regcache_descr *descr = regcache_descr (gdbarch);
173 int size;
174
175 gdb_assert (regnum >= 0
176 && regnum < (gdbarch_num_regs (gdbarch)
177 + gdbarch_num_pseudo_regs (gdbarch)));
178 size = descr->sizeof_register[regnum];
179 return size;
180 }
181
182 /* See common/common-regcache.h. */
183
184 int
185 regcache_register_size (const struct regcache *regcache, int n)
186 {
187 return register_size (get_regcache_arch (regcache), n);
188 }
189
190 /* The register cache for storing raw register values. */
191
192 struct regcache
193 {
194 struct regcache_descr *descr;
195
196 /* The address space of this register cache (for registers where it
197 makes sense, like PC or SP). */
198 struct address_space *aspace;
199
200 /* The register buffers. A read-only register cache can hold the
201 full [0 .. gdbarch_num_regs + gdbarch_num_pseudo_regs) while a read/write
202 register cache can only hold [0 .. gdbarch_num_regs). */
203 gdb_byte *registers;
204 /* Register cache status. */
205 signed char *register_status;
206 /* Is this a read-only cache? A read-only cache is used for saving
207 the target's register state (e.g, across an inferior function
208 call or just before forcing a function return). A read-only
209 cache can only be updated via the methods regcache_dup() and
210 regcache_cpy(). The actual contents are determined by the
211 reggroup_save and reggroup_restore methods. */
212 int readonly_p;
213 /* If this is a read-write cache, which thread's registers is
214 it connected to? */
215 ptid_t ptid;
216 };
217
218 static struct regcache *
219 regcache_xmalloc_1 (struct gdbarch *gdbarch, struct address_space *aspace,
220 int readonly_p)
221 {
222 struct regcache_descr *descr;
223 struct regcache *regcache;
224
225 gdb_assert (gdbarch != NULL);
226 descr = regcache_descr (gdbarch);
227 regcache = XNEW (struct regcache);
228 regcache->descr = descr;
229 regcache->readonly_p = readonly_p;
230 if (readonly_p)
231 {
232 regcache->registers
233 = XCNEWVEC (gdb_byte, descr->sizeof_cooked_registers);
234 regcache->register_status
235 = XCNEWVEC (signed char, descr->sizeof_cooked_register_status);
236 }
237 else
238 {
239 regcache->registers
240 = XCNEWVEC (gdb_byte, descr->sizeof_raw_registers);
241 regcache->register_status
242 = XCNEWVEC (signed char, descr->sizeof_raw_register_status);
243 }
244 regcache->aspace = aspace;
245 regcache->ptid = minus_one_ptid;
246 return regcache;
247 }
248
249 struct regcache *
250 regcache_xmalloc (struct gdbarch *gdbarch, struct address_space *aspace)
251 {
252 return regcache_xmalloc_1 (gdbarch, aspace, 1);
253 }
254
255 void
256 regcache_xfree (struct regcache *regcache)
257 {
258 if (regcache == NULL)
259 return;
260 xfree (regcache->registers);
261 xfree (regcache->register_status);
262 xfree (regcache);
263 }
264
265 static void
266 do_regcache_xfree (void *data)
267 {
268 regcache_xfree ((struct regcache *) data);
269 }
270
271 struct cleanup *
272 make_cleanup_regcache_xfree (struct regcache *regcache)
273 {
274 return make_cleanup (do_regcache_xfree, regcache);
275 }
276
277 /* Cleanup routines for invalidating a register. */
278
279 struct register_to_invalidate
280 {
281 struct regcache *regcache;
282 int regnum;
283 };
284
285 static void
286 do_regcache_invalidate (void *data)
287 {
288 struct register_to_invalidate *reg = (struct register_to_invalidate *) data;
289
290 regcache_invalidate (reg->regcache, reg->regnum);
291 }
292
293 static struct cleanup *
294 make_cleanup_regcache_invalidate (struct regcache *regcache, int regnum)
295 {
296 struct register_to_invalidate* reg = XNEW (struct register_to_invalidate);
297
298 reg->regcache = regcache;
299 reg->regnum = regnum;
300 return make_cleanup_dtor (do_regcache_invalidate, (void *) reg, xfree);
301 }
302
303 /* Return REGCACHE's architecture. */
304
305 struct gdbarch *
306 get_regcache_arch (const struct regcache *regcache)
307 {
308 return regcache->descr->gdbarch;
309 }
310
311 struct address_space *
312 get_regcache_aspace (const struct regcache *regcache)
313 {
314 return regcache->aspace;
315 }
316
317 /* Return a pointer to register REGNUM's buffer cache. */
318
319 static gdb_byte *
320 register_buffer (const struct regcache *regcache, int regnum)
321 {
322 return regcache->registers + regcache->descr->register_offset[regnum];
323 }
324
325 void
326 regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read,
327 void *src)
328 {
329 struct gdbarch *gdbarch = dst->descr->gdbarch;
330 gdb_byte buf[MAX_REGISTER_SIZE];
331 int regnum;
332
333 /* The DST should be `read-only', if it wasn't then the save would
334 end up trying to write the register values back out to the
335 target. */
336 gdb_assert (dst->readonly_p);
337 /* Clear the dest. */
338 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers);
339 memset (dst->register_status, 0,
340 dst->descr->sizeof_cooked_register_status);
341 /* Copy over any registers (identified by their membership in the
342 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
343 gdbarch_num_pseudo_regs) range is checked since some architectures need
344 to save/restore `cooked' registers that live in memory. */
345 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
346 {
347 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
348 {
349 enum register_status status = cooked_read (src, regnum, buf);
350
351 if (status == REG_VALID)
352 memcpy (register_buffer (dst, regnum), buf,
353 register_size (gdbarch, regnum));
354 else
355 {
356 gdb_assert (status != REG_UNKNOWN);
357
358 memset (register_buffer (dst, regnum), 0,
359 register_size (gdbarch, regnum));
360 }
361 dst->register_status[regnum] = status;
362 }
363 }
364 }
365
366 static void
367 regcache_restore (struct regcache *dst,
368 regcache_cooked_read_ftype *cooked_read,
369 void *cooked_read_context)
370 {
371 struct gdbarch *gdbarch = dst->descr->gdbarch;
372 gdb_byte buf[MAX_REGISTER_SIZE];
373 int regnum;
374
375 /* The dst had better not be read-only. If it is, the `restore'
376 doesn't make much sense. */
377 gdb_assert (!dst->readonly_p);
378 /* Copy over any registers, being careful to only restore those that
379 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
380 + gdbarch_num_pseudo_regs) range is checked since some architectures need
381 to save/restore `cooked' registers that live in memory. */
382 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
383 {
384 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
385 {
386 enum register_status status;
387
388 status = cooked_read (cooked_read_context, regnum, buf);
389 if (status == REG_VALID)
390 regcache_cooked_write (dst, regnum, buf);
391 }
392 }
393 }
394
395 static enum register_status
396 do_cooked_read (void *src, int regnum, gdb_byte *buf)
397 {
398 struct regcache *regcache = (struct regcache *) src;
399
400 return regcache_cooked_read (regcache, regnum, buf);
401 }
402
403 static void regcache_cpy_no_passthrough (struct regcache *dst,
404 struct regcache *src);
405
406 void
407 regcache_cpy (struct regcache *dst, struct regcache *src)
408 {
409 gdb_assert (src != NULL && dst != NULL);
410 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
411 gdb_assert (src != dst);
412 gdb_assert (src->readonly_p || dst->readonly_p);
413
414 if (!src->readonly_p)
415 regcache_save (dst, do_cooked_read, src);
416 else if (!dst->readonly_p)
417 regcache_restore (dst, do_cooked_read, src);
418 else
419 regcache_cpy_no_passthrough (dst, src);
420 }
421
422 /* Copy/duplicate the contents of a register cache. Unlike regcache_cpy,
423 which is pass-through, this does not go through to the target.
424 Only values values already in the cache are transferred. The SRC and DST
425 buffers must not overlap. */
426
427 static void
428 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
429 {
430 gdb_assert (src != NULL && dst != NULL);
431 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
432 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
433 move of data into a thread's regcache. Doing this would be silly
434 - it would mean that regcache->register_status would be
435 completely invalid. */
436 gdb_assert (dst->readonly_p && src->readonly_p);
437
438 memcpy (dst->registers, src->registers,
439 dst->descr->sizeof_cooked_registers);
440 memcpy (dst->register_status, src->register_status,
441 dst->descr->sizeof_cooked_register_status);
442 }
443
444 struct regcache *
445 regcache_dup (struct regcache *src)
446 {
447 struct regcache *newbuf;
448
449 newbuf = regcache_xmalloc (src->descr->gdbarch, get_regcache_aspace (src));
450 regcache_cpy (newbuf, src);
451 return newbuf;
452 }
453
454 enum register_status
455 regcache_register_status (const struct regcache *regcache, int regnum)
456 {
457 gdb_assert (regcache != NULL);
458 gdb_assert (regnum >= 0);
459 if (regcache->readonly_p)
460 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
461 else
462 gdb_assert (regnum < regcache->descr->nr_raw_registers);
463
464 return (enum register_status) regcache->register_status[regnum];
465 }
466
467 void
468 regcache_invalidate (struct regcache *regcache, int regnum)
469 {
470 gdb_assert (regcache != NULL);
471 gdb_assert (regnum >= 0);
472 gdb_assert (!regcache->readonly_p);
473 gdb_assert (regnum < regcache->descr->nr_raw_registers);
474 regcache->register_status[regnum] = REG_UNKNOWN;
475 }
476
477
478 /* Global structure containing the current regcache. */
479
480 /* NOTE: this is a write-through cache. There is no "dirty" bit for
481 recording if the register values have been changed (eg. by the
482 user). Therefore all registers must be written back to the
483 target when appropriate. */
484
485 struct regcache_list
486 {
487 struct regcache *regcache;
488 struct regcache_list *next;
489 };
490
491 static struct regcache_list *current_regcache;
492
493 struct regcache *
494 get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
495 struct address_space *aspace)
496 {
497 struct regcache_list *list;
498 struct regcache *new_regcache;
499
500 for (list = current_regcache; list; list = list->next)
501 if (ptid_equal (list->regcache->ptid, ptid)
502 && get_regcache_arch (list->regcache) == gdbarch)
503 return list->regcache;
504
505 new_regcache = regcache_xmalloc_1 (gdbarch, aspace, 0);
506 new_regcache->ptid = ptid;
507
508 list = XNEW (struct regcache_list);
509 list->regcache = new_regcache;
510 list->next = current_regcache;
511 current_regcache = list;
512
513 return new_regcache;
514 }
515
516 struct regcache *
517 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
518 {
519 struct address_space *aspace;
520
521 /* For the benefit of "maint print registers" & co when debugging an
522 executable, allow dumping the regcache even when there is no
523 thread selected (target_thread_address_space internal-errors if
524 no address space is found). Note that normal user commands will
525 fail higher up on the call stack due to no
526 target_has_registers. */
527 aspace = (ptid_equal (null_ptid, ptid)
528 ? NULL
529 : target_thread_address_space (ptid));
530
531 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
532 }
533
534 static ptid_t current_thread_ptid;
535 static struct gdbarch *current_thread_arch;
536
537 struct regcache *
538 get_thread_regcache (ptid_t ptid)
539 {
540 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
541 {
542 current_thread_ptid = ptid;
543 current_thread_arch = target_thread_architecture (ptid);
544 }
545
546 return get_thread_arch_regcache (ptid, current_thread_arch);
547 }
548
549 struct regcache *
550 get_current_regcache (void)
551 {
552 return get_thread_regcache (inferior_ptid);
553 }
554
555 /* See common/common-regcache.h. */
556
557 struct regcache *
558 get_thread_regcache_for_ptid (ptid_t ptid)
559 {
560 return get_thread_regcache (ptid);
561 }
562
563 /* Observer for the target_changed event. */
564
565 static void
566 regcache_observer_target_changed (struct target_ops *target)
567 {
568 registers_changed ();
569 }
570
571 /* Update global variables old ptids to hold NEW_PTID if they were
572 holding OLD_PTID. */
573 static void
574 regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
575 {
576 struct regcache_list *list;
577
578 for (list = current_regcache; list; list = list->next)
579 if (ptid_equal (list->regcache->ptid, old_ptid))
580 list->regcache->ptid = new_ptid;
581 }
582
583 /* Low level examining and depositing of registers.
584
585 The caller is responsible for making sure that the inferior is
586 stopped before calling the fetching routines, or it will get
587 garbage. (a change from GDB version 3, in which the caller got the
588 value from the last stop). */
589
590 /* REGISTERS_CHANGED ()
591
592 Indicate that registers may have changed, so invalidate the cache. */
593
594 void
595 registers_changed_ptid (ptid_t ptid)
596 {
597 struct regcache_list *list, **list_link;
598
599 list = current_regcache;
600 list_link = &current_regcache;
601 while (list)
602 {
603 if (ptid_match (list->regcache->ptid, ptid))
604 {
605 struct regcache_list *dead = list;
606
607 *list_link = list->next;
608 regcache_xfree (list->regcache);
609 list = *list_link;
610 xfree (dead);
611 continue;
612 }
613
614 list_link = &list->next;
615 list = *list_link;
616 }
617
618 if (ptid_match (current_thread_ptid, ptid))
619 {
620 current_thread_ptid = null_ptid;
621 current_thread_arch = NULL;
622 }
623
624 if (ptid_match (inferior_ptid, ptid))
625 {
626 /* We just deleted the regcache of the current thread. Need to
627 forget about any frames we have cached, too. */
628 reinit_frame_cache ();
629 }
630 }
631
632 void
633 registers_changed (void)
634 {
635 registers_changed_ptid (minus_one_ptid);
636
637 /* Force cleanup of any alloca areas if using C alloca instead of
638 a builtin alloca. This particular call is used to clean up
639 areas allocated by low level target code which may build up
640 during lengthy interactions between gdb and the target before
641 gdb gives control to the user (ie watchpoints). */
642 alloca (0);
643 }
644
645 enum register_status
646 regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf)
647 {
648 gdb_assert (regcache != NULL && buf != NULL);
649 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
650 /* Make certain that the register cache is up-to-date with respect
651 to the current thread. This switching shouldn't be necessary
652 only there is still only one target side register cache. Sigh!
653 On the bright side, at least there is a regcache object. */
654 if (!regcache->readonly_p
655 && regcache_register_status (regcache, regnum) == REG_UNKNOWN)
656 {
657 struct cleanup *old_chain = save_inferior_ptid ();
658
659 inferior_ptid = regcache->ptid;
660 target_fetch_registers (regcache, regnum);
661 do_cleanups (old_chain);
662
663 /* A number of targets can't access the whole set of raw
664 registers (because the debug API provides no means to get at
665 them). */
666 if (regcache->register_status[regnum] == REG_UNKNOWN)
667 regcache->register_status[regnum] = REG_UNAVAILABLE;
668 }
669
670 if (regcache->register_status[regnum] != REG_VALID)
671 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
672 else
673 memcpy (buf, register_buffer (regcache, regnum),
674 regcache->descr->sizeof_register[regnum]);
675
676 return (enum register_status) regcache->register_status[regnum];
677 }
678
679 enum register_status
680 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
681 {
682 gdb_byte *buf;
683 enum register_status status;
684
685 gdb_assert (regcache != NULL);
686 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
687 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
688 status = regcache_raw_read (regcache, regnum, buf);
689 if (status == REG_VALID)
690 *val = extract_signed_integer
691 (buf, regcache->descr->sizeof_register[regnum],
692 gdbarch_byte_order (regcache->descr->gdbarch));
693 else
694 *val = 0;
695 return status;
696 }
697
698 enum register_status
699 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
700 ULONGEST *val)
701 {
702 gdb_byte *buf;
703 enum register_status status;
704
705 gdb_assert (regcache != NULL);
706 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
707 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
708 status = regcache_raw_read (regcache, regnum, buf);
709 if (status == REG_VALID)
710 *val = extract_unsigned_integer
711 (buf, regcache->descr->sizeof_register[regnum],
712 gdbarch_byte_order (regcache->descr->gdbarch));
713 else
714 *val = 0;
715 return status;
716 }
717
718 void
719 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
720 {
721 gdb_byte *buf;
722
723 gdb_assert (regcache != NULL);
724 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
725 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
726 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
727 gdbarch_byte_order (regcache->descr->gdbarch), val);
728 regcache_raw_write (regcache, regnum, buf);
729 }
730
731 void
732 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
733 ULONGEST val)
734 {
735 gdb_byte *buf;
736
737 gdb_assert (regcache != NULL);
738 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
739 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
740 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
741 gdbarch_byte_order (regcache->descr->gdbarch), val);
742 regcache_raw_write (regcache, regnum, buf);
743 }
744
745 enum register_status
746 regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf)
747 {
748 gdb_assert (regnum >= 0);
749 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
750 if (regnum < regcache->descr->nr_raw_registers)
751 return regcache_raw_read (regcache, regnum, buf);
752 else if (regcache->readonly_p
753 && regcache->register_status[regnum] != REG_UNKNOWN)
754 {
755 /* Read-only register cache, perhaps the cooked value was
756 cached? */
757 if (regcache->register_status[regnum] == REG_VALID)
758 memcpy (buf, register_buffer (regcache, regnum),
759 regcache->descr->sizeof_register[regnum]);
760 else
761 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
762
763 return (enum register_status) regcache->register_status[regnum];
764 }
765 else if (gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch))
766 {
767 struct value *mark, *computed;
768 enum register_status result = REG_VALID;
769
770 mark = value_mark ();
771
772 computed = gdbarch_pseudo_register_read_value (regcache->descr->gdbarch,
773 regcache, regnum);
774 if (value_entirely_available (computed))
775 memcpy (buf, value_contents_raw (computed),
776 regcache->descr->sizeof_register[regnum]);
777 else
778 {
779 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
780 result = REG_UNAVAILABLE;
781 }
782
783 value_free_to_mark (mark);
784
785 return result;
786 }
787 else
788 return gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache,
789 regnum, buf);
790 }
791
792 struct value *
793 regcache_cooked_read_value (struct regcache *regcache, int regnum)
794 {
795 gdb_assert (regnum >= 0);
796 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
797
798 if (regnum < regcache->descr->nr_raw_registers
799 || (regcache->readonly_p
800 && regcache->register_status[regnum] != REG_UNKNOWN)
801 || !gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch))
802 {
803 struct value *result;
804
805 result = allocate_value (register_type (regcache->descr->gdbarch,
806 regnum));
807 VALUE_LVAL (result) = lval_register;
808 VALUE_REGNUM (result) = regnum;
809
810 /* It is more efficient in general to do this delegation in this
811 direction than in the other one, even though the value-based
812 API is preferred. */
813 if (regcache_cooked_read (regcache, regnum,
814 value_contents_raw (result)) == REG_UNAVAILABLE)
815 mark_value_bytes_unavailable (result, 0,
816 TYPE_LENGTH (value_type (result)));
817
818 return result;
819 }
820 else
821 return gdbarch_pseudo_register_read_value (regcache->descr->gdbarch,
822 regcache, regnum);
823 }
824
825 enum register_status
826 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
827 LONGEST *val)
828 {
829 enum register_status status;
830 gdb_byte *buf;
831
832 gdb_assert (regcache != NULL);
833 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
834 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
835 status = regcache_cooked_read (regcache, regnum, buf);
836 if (status == REG_VALID)
837 *val = extract_signed_integer
838 (buf, regcache->descr->sizeof_register[regnum],
839 gdbarch_byte_order (regcache->descr->gdbarch));
840 else
841 *val = 0;
842 return status;
843 }
844
845 enum register_status
846 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
847 ULONGEST *val)
848 {
849 enum register_status status;
850 gdb_byte *buf;
851
852 gdb_assert (regcache != NULL);
853 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
854 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
855 status = regcache_cooked_read (regcache, regnum, buf);
856 if (status == REG_VALID)
857 *val = extract_unsigned_integer
858 (buf, regcache->descr->sizeof_register[regnum],
859 gdbarch_byte_order (regcache->descr->gdbarch));
860 else
861 *val = 0;
862 return status;
863 }
864
865 void
866 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
867 LONGEST val)
868 {
869 gdb_byte *buf;
870
871 gdb_assert (regcache != NULL);
872 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
873 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
874 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
875 gdbarch_byte_order (regcache->descr->gdbarch), val);
876 regcache_cooked_write (regcache, regnum, buf);
877 }
878
879 void
880 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
881 ULONGEST val)
882 {
883 gdb_byte *buf;
884
885 gdb_assert (regcache != NULL);
886 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
887 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
888 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
889 gdbarch_byte_order (regcache->descr->gdbarch), val);
890 regcache_cooked_write (regcache, regnum, buf);
891 }
892
893 /* See regcache.h. */
894
895 void
896 regcache_raw_set_cached_value (struct regcache *regcache, int regnum,
897 const gdb_byte *buf)
898 {
899 memcpy (register_buffer (regcache, regnum), buf,
900 regcache->descr->sizeof_register[regnum]);
901 regcache->register_status[regnum] = REG_VALID;
902 }
903
904 void
905 regcache_raw_write (struct regcache *regcache, int regnum,
906 const gdb_byte *buf)
907 {
908 struct cleanup *chain_before_save_inferior;
909 struct cleanup *chain_before_invalidate_register;
910
911 gdb_assert (regcache != NULL && buf != NULL);
912 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
913 gdb_assert (!regcache->readonly_p);
914
915 /* On the sparc, writing %g0 is a no-op, so we don't even want to
916 change the registers array if something writes to this register. */
917 if (gdbarch_cannot_store_register (get_regcache_arch (regcache), regnum))
918 return;
919
920 /* If we have a valid copy of the register, and new value == old
921 value, then don't bother doing the actual store. */
922 if (regcache_register_status (regcache, regnum) == REG_VALID
923 && (memcmp (register_buffer (regcache, regnum), buf,
924 regcache->descr->sizeof_register[regnum]) == 0))
925 return;
926
927 chain_before_save_inferior = save_inferior_ptid ();
928 inferior_ptid = regcache->ptid;
929
930 target_prepare_to_store (regcache);
931 regcache_raw_set_cached_value (regcache, regnum, buf);
932
933 /* Register a cleanup function for invalidating the register after it is
934 written, in case of a failure. */
935 chain_before_invalidate_register
936 = make_cleanup_regcache_invalidate (regcache, regnum);
937
938 target_store_registers (regcache, regnum);
939
940 /* The target did not throw an error so we can discard invalidating the
941 register and restore the cleanup chain to what it was. */
942 discard_cleanups (chain_before_invalidate_register);
943
944 do_cleanups (chain_before_save_inferior);
945 }
946
947 void
948 regcache_cooked_write (struct regcache *regcache, int regnum,
949 const gdb_byte *buf)
950 {
951 gdb_assert (regnum >= 0);
952 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
953 if (regnum < regcache->descr->nr_raw_registers)
954 regcache_raw_write (regcache, regnum, buf);
955 else
956 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache,
957 regnum, buf);
958 }
959
960 /* Perform a partial register transfer using a read, modify, write
961 operation. */
962
963 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
964 void *buf);
965 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
966 const void *buf);
967
968 static enum register_status
969 regcache_xfer_part (struct regcache *regcache, int regnum,
970 int offset, int len, void *in, const void *out,
971 enum register_status (*read) (struct regcache *regcache,
972 int regnum,
973 gdb_byte *buf),
974 void (*write) (struct regcache *regcache, int regnum,
975 const gdb_byte *buf))
976 {
977 struct regcache_descr *descr = regcache->descr;
978 gdb_byte reg[MAX_REGISTER_SIZE];
979
980 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]);
981 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]);
982 /* Something to do? */
983 if (offset + len == 0)
984 return REG_VALID;
985 /* Read (when needed) ... */
986 if (in != NULL
987 || offset > 0
988 || offset + len < descr->sizeof_register[regnum])
989 {
990 enum register_status status;
991
992 gdb_assert (read != NULL);
993 status = read (regcache, regnum, reg);
994 if (status != REG_VALID)
995 return status;
996 }
997 /* ... modify ... */
998 if (in != NULL)
999 memcpy (in, reg + offset, len);
1000 if (out != NULL)
1001 memcpy (reg + offset, out, len);
1002 /* ... write (when needed). */
1003 if (out != NULL)
1004 {
1005 gdb_assert (write != NULL);
1006 write (regcache, regnum, reg);
1007 }
1008
1009 return REG_VALID;
1010 }
1011
1012 enum register_status
1013 regcache_raw_read_part (struct regcache *regcache, int regnum,
1014 int offset, int len, gdb_byte *buf)
1015 {
1016 struct regcache_descr *descr = regcache->descr;
1017
1018 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
1019 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
1020 regcache_raw_read, regcache_raw_write);
1021 }
1022
1023 void
1024 regcache_raw_write_part (struct regcache *regcache, int regnum,
1025 int offset, int len, const gdb_byte *buf)
1026 {
1027 struct regcache_descr *descr = regcache->descr;
1028
1029 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
1030 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
1031 regcache_raw_read, regcache_raw_write);
1032 }
1033
1034 enum register_status
1035 regcache_cooked_read_part (struct regcache *regcache, int regnum,
1036 int offset, int len, gdb_byte *buf)
1037 {
1038 struct regcache_descr *descr = regcache->descr;
1039
1040 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
1041 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
1042 regcache_cooked_read, regcache_cooked_write);
1043 }
1044
1045 void
1046 regcache_cooked_write_part (struct regcache *regcache, int regnum,
1047 int offset, int len, const gdb_byte *buf)
1048 {
1049 struct regcache_descr *descr = regcache->descr;
1050
1051 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
1052 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
1053 regcache_cooked_read, regcache_cooked_write);
1054 }
1055
1056 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
1057
1058 void
1059 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
1060 {
1061 void *regbuf;
1062 size_t size;
1063
1064 gdb_assert (regcache != NULL);
1065 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1066 gdb_assert (!regcache->readonly_p);
1067
1068 regbuf = register_buffer (regcache, regnum);
1069 size = regcache->descr->sizeof_register[regnum];
1070
1071 if (buf)
1072 {
1073 memcpy (regbuf, buf, size);
1074 regcache->register_status[regnum] = REG_VALID;
1075 }
1076 else
1077 {
1078 /* This memset not strictly necessary, but better than garbage
1079 in case the register value manages to escape somewhere (due
1080 to a bug, no less). */
1081 memset (regbuf, 0, size);
1082 regcache->register_status[regnum] = REG_UNAVAILABLE;
1083 }
1084 }
1085
1086 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
1087
1088 void
1089 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
1090 {
1091 const void *regbuf;
1092 size_t size;
1093
1094 gdb_assert (regcache != NULL && buf != NULL);
1095 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1096
1097 regbuf = register_buffer (regcache, regnum);
1098 size = regcache->descr->sizeof_register[regnum];
1099 memcpy (buf, regbuf, size);
1100 }
1101
1102 /* Transfer a single or all registers belonging to a certain register
1103 set to or from a buffer. This is the main worker function for
1104 regcache_supply_regset and regcache_collect_regset. */
1105
1106 static void
1107 regcache_transfer_regset (const struct regset *regset,
1108 const struct regcache *regcache,
1109 struct regcache *out_regcache,
1110 int regnum, const void *in_buf,
1111 void *out_buf, size_t size)
1112 {
1113 const struct regcache_map_entry *map;
1114 int offs = 0, count;
1115
1116 for (map = (const struct regcache_map_entry *) regset->regmap;
1117 (count = map->count) != 0;
1118 map++)
1119 {
1120 int regno = map->regno;
1121 int slot_size = map->size;
1122
1123 if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
1124 slot_size = regcache->descr->sizeof_register[regno];
1125
1126 if (regno == REGCACHE_MAP_SKIP
1127 || (regnum != -1
1128 && (regnum < regno || regnum >= regno + count)))
1129 offs += count * slot_size;
1130
1131 else if (regnum == -1)
1132 for (; count--; regno++, offs += slot_size)
1133 {
1134 if (offs + slot_size > size)
1135 break;
1136
1137 if (out_buf)
1138 regcache_raw_collect (regcache, regno,
1139 (gdb_byte *) out_buf + offs);
1140 else
1141 regcache_raw_supply (out_regcache, regno, in_buf
1142 ? (const gdb_byte *) in_buf + offs
1143 : NULL);
1144 }
1145 else
1146 {
1147 /* Transfer a single register and return. */
1148 offs += (regnum - regno) * slot_size;
1149 if (offs + slot_size > size)
1150 return;
1151
1152 if (out_buf)
1153 regcache_raw_collect (regcache, regnum,
1154 (gdb_byte *) out_buf + offs);
1155 else
1156 regcache_raw_supply (out_regcache, regnum, in_buf
1157 ? (const gdb_byte *) in_buf + offs
1158 : NULL);
1159 return;
1160 }
1161 }
1162 }
1163
1164 /* Supply register REGNUM from BUF to REGCACHE, using the register map
1165 in REGSET. If REGNUM is -1, do this for all registers in REGSET.
1166 If BUF is NULL, set the register(s) to "unavailable" status. */
1167
1168 void
1169 regcache_supply_regset (const struct regset *regset,
1170 struct regcache *regcache,
1171 int regnum, const void *buf, size_t size)
1172 {
1173 regcache_transfer_regset (regset, regcache, regcache, regnum,
1174 buf, NULL, size);
1175 }
1176
1177 /* Collect register REGNUM from REGCACHE to BUF, using the register
1178 map in REGSET. If REGNUM is -1, do this for all registers in
1179 REGSET. */
1180
1181 void
1182 regcache_collect_regset (const struct regset *regset,
1183 const struct regcache *regcache,
1184 int regnum, void *buf, size_t size)
1185 {
1186 regcache_transfer_regset (regset, regcache, NULL, regnum,
1187 NULL, buf, size);
1188 }
1189
1190
1191 /* Special handling for register PC. */
1192
1193 CORE_ADDR
1194 regcache_read_pc (struct regcache *regcache)
1195 {
1196 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1197
1198 CORE_ADDR pc_val;
1199
1200 if (gdbarch_read_pc_p (gdbarch))
1201 pc_val = gdbarch_read_pc (gdbarch, regcache);
1202 /* Else use per-frame method on get_current_frame. */
1203 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1204 {
1205 ULONGEST raw_val;
1206
1207 if (regcache_cooked_read_unsigned (regcache,
1208 gdbarch_pc_regnum (gdbarch),
1209 &raw_val) == REG_UNAVAILABLE)
1210 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1211
1212 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
1213 }
1214 else
1215 internal_error (__FILE__, __LINE__,
1216 _("regcache_read_pc: Unable to find PC"));
1217 return pc_val;
1218 }
1219
1220 void
1221 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
1222 {
1223 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1224
1225 if (gdbarch_write_pc_p (gdbarch))
1226 gdbarch_write_pc (gdbarch, regcache, pc);
1227 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1228 regcache_cooked_write_unsigned (regcache,
1229 gdbarch_pc_regnum (gdbarch), pc);
1230 else
1231 internal_error (__FILE__, __LINE__,
1232 _("regcache_write_pc: Unable to update PC"));
1233
1234 /* Writing the PC (for instance, from "load") invalidates the
1235 current frame. */
1236 reinit_frame_cache ();
1237 }
1238
1239
1240 static void
1241 reg_flush_command (char *command, int from_tty)
1242 {
1243 /* Force-flush the register cache. */
1244 registers_changed ();
1245 if (from_tty)
1246 printf_filtered (_("Register cache flushed.\n"));
1247 }
1248
1249 enum regcache_dump_what
1250 {
1251 regcache_dump_none, regcache_dump_raw,
1252 regcache_dump_cooked, regcache_dump_groups,
1253 regcache_dump_remote
1254 };
1255
1256 static void
1257 regcache_dump (struct regcache *regcache, struct ui_file *file,
1258 enum regcache_dump_what what_to_dump)
1259 {
1260 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1261 struct gdbarch *gdbarch = regcache->descr->gdbarch;
1262 int regnum;
1263 int footnote_nr = 0;
1264 int footnote_register_size = 0;
1265 int footnote_register_offset = 0;
1266 int footnote_register_type_name_null = 0;
1267 long register_offset = 0;
1268 gdb_byte buf[MAX_REGISTER_SIZE];
1269
1270 #if 0
1271 fprintf_unfiltered (file, "nr_raw_registers %d\n",
1272 regcache->descr->nr_raw_registers);
1273 fprintf_unfiltered (file, "nr_cooked_registers %d\n",
1274 regcache->descr->nr_cooked_registers);
1275 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n",
1276 regcache->descr->sizeof_raw_registers);
1277 fprintf_unfiltered (file, "sizeof_raw_register_status %ld\n",
1278 regcache->descr->sizeof_raw_register_status);
1279 fprintf_unfiltered (file, "gdbarch_num_regs %d\n",
1280 gdbarch_num_regs (gdbarch));
1281 fprintf_unfiltered (file, "gdbarch_num_pseudo_regs %d\n",
1282 gdbarch_num_pseudo_regs (gdbarch));
1283 #endif
1284
1285 gdb_assert (regcache->descr->nr_cooked_registers
1286 == (gdbarch_num_regs (gdbarch)
1287 + gdbarch_num_pseudo_regs (gdbarch)));
1288
1289 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++)
1290 {
1291 /* Name. */
1292 if (regnum < 0)
1293 fprintf_unfiltered (file, " %-10s", "Name");
1294 else
1295 {
1296 const char *p = gdbarch_register_name (gdbarch, regnum);
1297
1298 if (p == NULL)
1299 p = "";
1300 else if (p[0] == '\0')
1301 p = "''";
1302 fprintf_unfiltered (file, " %-10s", p);
1303 }
1304
1305 /* Number. */
1306 if (regnum < 0)
1307 fprintf_unfiltered (file, " %4s", "Nr");
1308 else
1309 fprintf_unfiltered (file, " %4d", regnum);
1310
1311 /* Relative number. */
1312 if (regnum < 0)
1313 fprintf_unfiltered (file, " %4s", "Rel");
1314 else if (regnum < gdbarch_num_regs (gdbarch))
1315 fprintf_unfiltered (file, " %4d", regnum);
1316 else
1317 fprintf_unfiltered (file, " %4d",
1318 (regnum - gdbarch_num_regs (gdbarch)));
1319
1320 /* Offset. */
1321 if (regnum < 0)
1322 fprintf_unfiltered (file, " %6s ", "Offset");
1323 else
1324 {
1325 fprintf_unfiltered (file, " %6ld",
1326 regcache->descr->register_offset[regnum]);
1327 if (register_offset != regcache->descr->register_offset[regnum]
1328 || (regnum > 0
1329 && (regcache->descr->register_offset[regnum]
1330 != (regcache->descr->register_offset[regnum - 1]
1331 + regcache->descr->sizeof_register[regnum - 1])))
1332 )
1333 {
1334 if (!footnote_register_offset)
1335 footnote_register_offset = ++footnote_nr;
1336 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1337 }
1338 else
1339 fprintf_unfiltered (file, " ");
1340 register_offset = (regcache->descr->register_offset[regnum]
1341 + regcache->descr->sizeof_register[regnum]);
1342 }
1343
1344 /* Size. */
1345 if (regnum < 0)
1346 fprintf_unfiltered (file, " %5s ", "Size");
1347 else
1348 fprintf_unfiltered (file, " %5ld",
1349 regcache->descr->sizeof_register[regnum]);
1350
1351 /* Type. */
1352 {
1353 const char *t;
1354
1355 if (regnum < 0)
1356 t = "Type";
1357 else
1358 {
1359 static const char blt[] = "builtin_type";
1360
1361 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum));
1362 if (t == NULL)
1363 {
1364 char *n;
1365
1366 if (!footnote_register_type_name_null)
1367 footnote_register_type_name_null = ++footnote_nr;
1368 n = xstrprintf ("*%d", footnote_register_type_name_null);
1369 make_cleanup (xfree, n);
1370 t = n;
1371 }
1372 /* Chop a leading builtin_type. */
1373 if (startswith (t, blt))
1374 t += strlen (blt);
1375 }
1376 fprintf_unfiltered (file, " %-15s", t);
1377 }
1378
1379 /* Leading space always present. */
1380 fprintf_unfiltered (file, " ");
1381
1382 /* Value, raw. */
1383 if (what_to_dump == regcache_dump_raw)
1384 {
1385 if (regnum < 0)
1386 fprintf_unfiltered (file, "Raw value");
1387 else if (regnum >= regcache->descr->nr_raw_registers)
1388 fprintf_unfiltered (file, "<cooked>");
1389 else if (regcache_register_status (regcache, regnum) == REG_UNKNOWN)
1390 fprintf_unfiltered (file, "<invalid>");
1391 else if (regcache_register_status (regcache, regnum) == REG_UNAVAILABLE)
1392 fprintf_unfiltered (file, "<unavailable>");
1393 else
1394 {
1395 regcache_raw_read (regcache, regnum, buf);
1396 print_hex_chars (file, buf,
1397 regcache->descr->sizeof_register[regnum],
1398 gdbarch_byte_order (gdbarch));
1399 }
1400 }
1401
1402 /* Value, cooked. */
1403 if (what_to_dump == regcache_dump_cooked)
1404 {
1405 if (regnum < 0)
1406 fprintf_unfiltered (file, "Cooked value");
1407 else
1408 {
1409 enum register_status status;
1410
1411 status = regcache_cooked_read (regcache, regnum, buf);
1412 if (status == REG_UNKNOWN)
1413 fprintf_unfiltered (file, "<invalid>");
1414 else if (status == REG_UNAVAILABLE)
1415 fprintf_unfiltered (file, "<unavailable>");
1416 else
1417 print_hex_chars (file, buf,
1418 regcache->descr->sizeof_register[regnum],
1419 gdbarch_byte_order (gdbarch));
1420 }
1421 }
1422
1423 /* Group members. */
1424 if (what_to_dump == regcache_dump_groups)
1425 {
1426 if (regnum < 0)
1427 fprintf_unfiltered (file, "Groups");
1428 else
1429 {
1430 const char *sep = "";
1431 struct reggroup *group;
1432
1433 for (group = reggroup_next (gdbarch, NULL);
1434 group != NULL;
1435 group = reggroup_next (gdbarch, group))
1436 {
1437 if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
1438 {
1439 fprintf_unfiltered (file,
1440 "%s%s", sep, reggroup_name (group));
1441 sep = ",";
1442 }
1443 }
1444 }
1445 }
1446
1447 /* Remote packet configuration. */
1448 if (what_to_dump == regcache_dump_remote)
1449 {
1450 if (regnum < 0)
1451 {
1452 fprintf_unfiltered (file, "Rmt Nr g/G Offset");
1453 }
1454 else if (regnum < regcache->descr->nr_raw_registers)
1455 {
1456 int pnum, poffset;
1457
1458 if (remote_register_number_and_offset (get_regcache_arch (regcache), regnum,
1459 &pnum, &poffset))
1460 fprintf_unfiltered (file, "%7d %11d", pnum, poffset);
1461 }
1462 }
1463
1464 fprintf_unfiltered (file, "\n");
1465 }
1466
1467 if (footnote_register_size)
1468 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
1469 footnote_register_size);
1470 if (footnote_register_offset)
1471 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1472 footnote_register_offset);
1473 if (footnote_register_type_name_null)
1474 fprintf_unfiltered (file,
1475 "*%d: Register type's name NULL.\n",
1476 footnote_register_type_name_null);
1477 do_cleanups (cleanups);
1478 }
1479
1480 static void
1481 regcache_print (char *args, enum regcache_dump_what what_to_dump)
1482 {
1483 if (args == NULL)
1484 regcache_dump (get_current_regcache (), gdb_stdout, what_to_dump);
1485 else
1486 {
1487 struct cleanup *cleanups;
1488 struct ui_file *file = gdb_fopen (args, "w");
1489
1490 if (file == NULL)
1491 perror_with_name (_("maintenance print architecture"));
1492 cleanups = make_cleanup_ui_file_delete (file);
1493 regcache_dump (get_current_regcache (), file, what_to_dump);
1494 do_cleanups (cleanups);
1495 }
1496 }
1497
1498 static void
1499 maintenance_print_registers (char *args, int from_tty)
1500 {
1501 regcache_print (args, regcache_dump_none);
1502 }
1503
1504 static void
1505 maintenance_print_raw_registers (char *args, int from_tty)
1506 {
1507 regcache_print (args, regcache_dump_raw);
1508 }
1509
1510 static void
1511 maintenance_print_cooked_registers (char *args, int from_tty)
1512 {
1513 regcache_print (args, regcache_dump_cooked);
1514 }
1515
1516 static void
1517 maintenance_print_register_groups (char *args, int from_tty)
1518 {
1519 regcache_print (args, regcache_dump_groups);
1520 }
1521
1522 static void
1523 maintenance_print_remote_registers (char *args, int from_tty)
1524 {
1525 regcache_print (args, regcache_dump_remote);
1526 }
1527
1528 extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */
1529
1530 void
1531 _initialize_regcache (void)
1532 {
1533 regcache_descr_handle
1534 = gdbarch_data_register_post_init (init_regcache_descr);
1535
1536 observer_attach_target_changed (regcache_observer_target_changed);
1537 observer_attach_thread_ptid_changed (regcache_thread_ptid_changed);
1538
1539 add_com ("flushregs", class_maintenance, reg_flush_command,
1540 _("Force gdb to flush its register cache (maintainer command)"));
1541
1542 add_cmd ("registers", class_maintenance, maintenance_print_registers,
1543 _("Print the internal register configuration.\n"
1544 "Takes an optional file parameter."), &maintenanceprintlist);
1545 add_cmd ("raw-registers", class_maintenance,
1546 maintenance_print_raw_registers,
1547 _("Print the internal register configuration "
1548 "including raw values.\n"
1549 "Takes an optional file parameter."), &maintenanceprintlist);
1550 add_cmd ("cooked-registers", class_maintenance,
1551 maintenance_print_cooked_registers,
1552 _("Print the internal register configuration "
1553 "including cooked values.\n"
1554 "Takes an optional file parameter."), &maintenanceprintlist);
1555 add_cmd ("register-groups", class_maintenance,
1556 maintenance_print_register_groups,
1557 _("Print the internal register configuration "
1558 "including each register's group.\n"
1559 "Takes an optional file parameter."),
1560 &maintenanceprintlist);
1561 add_cmd ("remote-registers", class_maintenance,
1562 maintenance_print_remote_registers, _("\
1563 Print the internal register configuration including each register's\n\
1564 remote register number and buffer offset in the g/G packets.\n\
1565 Takes an optional file parameter."),
1566 &maintenanceprintlist);
1567
1568 }
This page took 0.060773 seconds and 4 git commands to generate.