c37a520b3f8edd9327417c1f9934ca2175062b49
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbarch.h"
24 #include "gdbcmd.h"
25 #include "regcache.h"
26 #include "reggroups.h"
27 #include "observer.h"
28 #include "remote.h"
29 #include "valprint.h"
30 #include "regset.h"
31 #include <forward_list>
32
33 /*
34 * DATA STRUCTURE
35 *
36 * Here is the actual register cache.
37 */
38
39 /* Per-architecture object describing the layout of a register cache.
40 Computed once when the architecture is created. */
41
42 struct gdbarch_data *regcache_descr_handle;
43
44 struct regcache_descr
45 {
46 /* The architecture this descriptor belongs to. */
47 struct gdbarch *gdbarch;
48
49 /* The raw register cache. Each raw (or hard) register is supplied
50 by the target interface. The raw cache should not contain
51 redundant information - if the PC is constructed from two
52 registers then those registers and not the PC lives in the raw
53 cache. */
54 long sizeof_raw_registers;
55
56 /* The cooked register space. Each cooked register in the range
57 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
58 register. The remaining [NR_RAW_REGISTERS
59 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
60 both raw registers and memory by the architecture methods
61 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
62 int nr_cooked_registers;
63 long sizeof_cooked_registers;
64
65 /* Offset and size (in 8 bit bytes), of each register in the
66 register cache. All registers (including those in the range
67 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
68 offset. */
69 long *register_offset;
70 long *sizeof_register;
71
72 /* Cached table containing the type of each register. */
73 struct type **register_type;
74 };
75
76 static void *
77 init_regcache_descr (struct gdbarch *gdbarch)
78 {
79 int i;
80 struct regcache_descr *descr;
81 gdb_assert (gdbarch != NULL);
82
83 /* Create an initial, zero filled, table. */
84 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
85 descr->gdbarch = gdbarch;
86
87 /* Total size of the register space. The raw registers are mapped
88 directly onto the raw register cache while the pseudo's are
89 either mapped onto raw-registers or memory. */
90 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
91 + gdbarch_num_pseudo_regs (gdbarch);
92
93 /* Fill in a table of register types. */
94 descr->register_type
95 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
96 struct type *);
97 for (i = 0; i < descr->nr_cooked_registers; i++)
98 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
99
100 /* Construct a strictly RAW register cache. Don't allow pseudo's
101 into the register cache. */
102
103 /* Lay out the register cache.
104
105 NOTE: cagney/2002-05-22: Only register_type() is used when
106 constructing the register cache. It is assumed that the
107 register's raw size, virtual size and type length are all the
108 same. */
109
110 {
111 long offset = 0;
112
113 descr->sizeof_register
114 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
115 descr->register_offset
116 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
117 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
118 {
119 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
120 descr->register_offset[i] = offset;
121 offset += descr->sizeof_register[i];
122 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
123 }
124 /* Set the real size of the raw register cache buffer. */
125 descr->sizeof_raw_registers = offset;
126
127 for (; i < descr->nr_cooked_registers; i++)
128 {
129 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
130 descr->register_offset[i] = offset;
131 offset += descr->sizeof_register[i];
132 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
133 }
134 /* Set the real size of the readonly register cache buffer. */
135 descr->sizeof_cooked_registers = offset;
136 }
137
138 return descr;
139 }
140
141 static struct regcache_descr *
142 regcache_descr (struct gdbarch *gdbarch)
143 {
144 return (struct regcache_descr *) gdbarch_data (gdbarch,
145 regcache_descr_handle);
146 }
147
148 /* Utility functions returning useful register attributes stored in
149 the regcache descr. */
150
151 struct type *
152 register_type (struct gdbarch *gdbarch, int regnum)
153 {
154 struct regcache_descr *descr = regcache_descr (gdbarch);
155
156 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
157 return descr->register_type[regnum];
158 }
159
160 /* Utility functions returning useful register attributes stored in
161 the regcache descr. */
162
163 int
164 register_size (struct gdbarch *gdbarch, int regnum)
165 {
166 struct regcache_descr *descr = regcache_descr (gdbarch);
167 int size;
168
169 gdb_assert (regnum >= 0
170 && regnum < (gdbarch_num_regs (gdbarch)
171 + gdbarch_num_pseudo_regs (gdbarch)));
172 size = descr->sizeof_register[regnum];
173 return size;
174 }
175
176 /* See common/common-regcache.h. */
177
178 int
179 regcache_register_size (const struct regcache *regcache, int n)
180 {
181 return register_size (regcache->arch (), n);
182 }
183
184 regcache::regcache (gdbarch *gdbarch, const address_space *aspace_,
185 bool readonly_p_)
186 : m_aspace (aspace_), m_readonly_p (readonly_p_)
187 {
188 gdb_assert (gdbarch != NULL);
189 m_descr = regcache_descr (gdbarch);
190
191 if (m_readonly_p)
192 {
193 m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_cooked_registers);
194 m_register_status = XCNEWVEC (signed char,
195 m_descr->nr_cooked_registers);
196 }
197 else
198 {
199 m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_raw_registers);
200 m_register_status = XCNEWVEC (signed char, gdbarch_num_regs (gdbarch));
201 }
202 m_ptid = minus_one_ptid;
203 }
204
205 static enum register_status
206 do_cooked_read (void *src, int regnum, gdb_byte *buf)
207 {
208 struct regcache *regcache = (struct regcache *) src;
209
210 return regcache_cooked_read (regcache, regnum, buf);
211 }
212
213 regcache::regcache (readonly_t, const regcache &src)
214 : regcache (src.arch (), nullptr, true)
215 {
216 gdb_assert (!src.m_readonly_p);
217 save (do_cooked_read, (void *) &src);
218 }
219
220 gdbarch *
221 regcache::arch () const
222 {
223 return m_descr->gdbarch;
224 }
225
226 /* See regcache.h. */
227
228 ptid_t
229 regcache_get_ptid (const struct regcache *regcache)
230 {
231 gdb_assert (!ptid_equal (regcache->ptid (), minus_one_ptid));
232
233 return regcache->ptid ();
234 }
235
236 /* Cleanup class for invalidating a register. */
237
238 class regcache_invalidator
239 {
240 public:
241
242 regcache_invalidator (struct regcache *regcache, int regnum)
243 : m_regcache (regcache),
244 m_regnum (regnum)
245 {
246 }
247
248 ~regcache_invalidator ()
249 {
250 if (m_regcache != nullptr)
251 regcache_invalidate (m_regcache, m_regnum);
252 }
253
254 DISABLE_COPY_AND_ASSIGN (regcache_invalidator);
255
256 void release ()
257 {
258 m_regcache = nullptr;
259 }
260
261 private:
262
263 struct regcache *m_regcache;
264 int m_regnum;
265 };
266
267 /* Return a pointer to register REGNUM's buffer cache. */
268
269 gdb_byte *
270 regcache::register_buffer (int regnum) const
271 {
272 return m_registers + m_descr->register_offset[regnum];
273 }
274
275 void
276 regcache_save (struct regcache *regcache,
277 regcache_cooked_read_ftype *cooked_read, void *src)
278 {
279 regcache->save (cooked_read, src);
280 }
281
282 void
283 regcache::save (regcache_cooked_read_ftype *cooked_read,
284 void *src)
285 {
286 struct gdbarch *gdbarch = m_descr->gdbarch;
287 int regnum;
288
289 /* The DST should be `read-only', if it wasn't then the save would
290 end up trying to write the register values back out to the
291 target. */
292 gdb_assert (m_readonly_p);
293 /* Clear the dest. */
294 memset (m_registers, 0, m_descr->sizeof_cooked_registers);
295 memset (m_register_status, 0, m_descr->nr_cooked_registers);
296 /* Copy over any registers (identified by their membership in the
297 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
298 gdbarch_num_pseudo_regs) range is checked since some architectures need
299 to save/restore `cooked' registers that live in memory. */
300 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
301 {
302 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
303 {
304 gdb_byte *dst_buf = register_buffer (regnum);
305 enum register_status status = cooked_read (src, regnum, dst_buf);
306
307 gdb_assert (status != REG_UNKNOWN);
308
309 if (status != REG_VALID)
310 memset (dst_buf, 0, register_size (gdbarch, regnum));
311
312 m_register_status[regnum] = status;
313 }
314 }
315 }
316
317 void
318 regcache::restore (struct regcache *src)
319 {
320 struct gdbarch *gdbarch = m_descr->gdbarch;
321 int regnum;
322
323 /* The dst had better not be read-only. If it is, the `restore'
324 doesn't make much sense. */
325 gdb_assert (!m_readonly_p);
326 gdb_assert (src->m_readonly_p);
327 /* Copy over any registers, being careful to only restore those that
328 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
329 + gdbarch_num_pseudo_regs) range is checked since some architectures need
330 to save/restore `cooked' registers that live in memory. */
331 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
332 {
333 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
334 {
335 if (src->m_register_status[regnum] == REG_VALID)
336 cooked_write (regnum, src->register_buffer (regnum));
337 }
338 }
339 }
340
341 void
342 regcache_cpy (struct regcache *dst, struct regcache *src)
343 {
344 gdb_assert (src != NULL && dst != NULL);
345 gdb_assert (src->m_descr->gdbarch == dst->m_descr->gdbarch);
346 gdb_assert (src != dst);
347 gdb_assert (src->m_readonly_p && !dst->m_readonly_p);
348
349 dst->restore (src);
350 }
351
352 struct regcache *
353 regcache_dup (struct regcache *src)
354 {
355 return new regcache (regcache::readonly, *src);
356 }
357
358 enum register_status
359 regcache_register_status (const struct regcache *regcache, int regnum)
360 {
361 gdb_assert (regcache != NULL);
362 return regcache->get_register_status (regnum);
363 }
364
365 enum register_status
366 regcache::get_register_status (int regnum) const
367 {
368 gdb_assert (regnum >= 0);
369 if (m_readonly_p)
370 gdb_assert (regnum < m_descr->nr_cooked_registers);
371 else
372 gdb_assert (regnum < num_raw_registers ());
373
374 return (enum register_status) m_register_status[regnum];
375 }
376
377 void
378 regcache_invalidate (struct regcache *regcache, int regnum)
379 {
380 gdb_assert (regcache != NULL);
381 regcache->invalidate (regnum);
382 }
383
384 void
385 regcache::invalidate (int regnum)
386 {
387 gdb_assert (!m_readonly_p);
388 assert_regnum (regnum);
389 m_register_status[regnum] = REG_UNKNOWN;
390 }
391
392 void
393 regcache::assert_regnum (int regnum) const
394 {
395 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (arch ()));
396 }
397
398 /* Global structure containing the current regcache. */
399
400 /* NOTE: this is a write-through cache. There is no "dirty" bit for
401 recording if the register values have been changed (eg. by the
402 user). Therefore all registers must be written back to the
403 target when appropriate. */
404 std::forward_list<regcache *> regcache::current_regcache;
405
406 struct regcache *
407 get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
408 struct address_space *aspace)
409 {
410 for (const auto &regcache : regcache::current_regcache)
411 if (ptid_equal (regcache->ptid (), ptid) && regcache->arch () == gdbarch)
412 return regcache;
413
414 regcache *new_regcache = new regcache (gdbarch, aspace, false);
415
416 regcache::current_regcache.push_front (new_regcache);
417 new_regcache->set_ptid (ptid);
418
419 return new_regcache;
420 }
421
422 struct regcache *
423 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
424 {
425 address_space *aspace = target_thread_address_space (ptid);
426
427 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
428 }
429
430 static ptid_t current_thread_ptid;
431 static struct gdbarch *current_thread_arch;
432
433 struct regcache *
434 get_thread_regcache (ptid_t ptid)
435 {
436 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
437 {
438 current_thread_ptid = ptid;
439 current_thread_arch = target_thread_architecture (ptid);
440 }
441
442 return get_thread_arch_regcache (ptid, current_thread_arch);
443 }
444
445 struct regcache *
446 get_current_regcache (void)
447 {
448 return get_thread_regcache (inferior_ptid);
449 }
450
451 /* See common/common-regcache.h. */
452
453 struct regcache *
454 get_thread_regcache_for_ptid (ptid_t ptid)
455 {
456 return get_thread_regcache (ptid);
457 }
458
459 /* Observer for the target_changed event. */
460
461 static void
462 regcache_observer_target_changed (struct target_ops *target)
463 {
464 registers_changed ();
465 }
466
467 /* Update global variables old ptids to hold NEW_PTID if they were
468 holding OLD_PTID. */
469 void
470 regcache::regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
471 {
472 for (auto &regcache : regcache::current_regcache)
473 {
474 if (ptid_equal (regcache->ptid (), old_ptid))
475 regcache->set_ptid (new_ptid);
476 }
477 }
478
479 /* Low level examining and depositing of registers.
480
481 The caller is responsible for making sure that the inferior is
482 stopped before calling the fetching routines, or it will get
483 garbage. (a change from GDB version 3, in which the caller got the
484 value from the last stop). */
485
486 /* REGISTERS_CHANGED ()
487
488 Indicate that registers may have changed, so invalidate the cache. */
489
490 void
491 registers_changed_ptid (ptid_t ptid)
492 {
493 for (auto oit = regcache::current_regcache.before_begin (),
494 it = std::next (oit);
495 it != regcache::current_regcache.end ();
496 )
497 {
498 if (ptid_match ((*it)->ptid (), ptid))
499 {
500 delete *it;
501 it = regcache::current_regcache.erase_after (oit);
502 }
503 else
504 oit = it++;
505 }
506
507 if (ptid_match (current_thread_ptid, ptid))
508 {
509 current_thread_ptid = null_ptid;
510 current_thread_arch = NULL;
511 }
512
513 if (ptid_match (inferior_ptid, ptid))
514 {
515 /* We just deleted the regcache of the current thread. Need to
516 forget about any frames we have cached, too. */
517 reinit_frame_cache ();
518 }
519 }
520
521 void
522 registers_changed (void)
523 {
524 registers_changed_ptid (minus_one_ptid);
525
526 /* Force cleanup of any alloca areas if using C alloca instead of
527 a builtin alloca. This particular call is used to clean up
528 areas allocated by low level target code which may build up
529 during lengthy interactions between gdb and the target before
530 gdb gives control to the user (ie watchpoints). */
531 alloca (0);
532 }
533
534 void
535 regcache_raw_update (struct regcache *regcache, int regnum)
536 {
537 gdb_assert (regcache != NULL);
538
539 regcache->raw_update (regnum);
540 }
541
542 void
543 regcache::raw_update (int regnum)
544 {
545 assert_regnum (regnum);
546
547 /* Make certain that the register cache is up-to-date with respect
548 to the current thread. This switching shouldn't be necessary
549 only there is still only one target side register cache. Sigh!
550 On the bright side, at least there is a regcache object. */
551
552 if (!m_readonly_p && get_register_status (regnum) == REG_UNKNOWN)
553 {
554 target_fetch_registers (this, regnum);
555
556 /* A number of targets can't access the whole set of raw
557 registers (because the debug API provides no means to get at
558 them). */
559 if (m_register_status[regnum] == REG_UNKNOWN)
560 m_register_status[regnum] = REG_UNAVAILABLE;
561 }
562 }
563
564 enum register_status
565 regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf)
566 {
567 return regcache->raw_read (regnum, buf);
568 }
569
570 enum register_status
571 regcache::raw_read (int regnum, gdb_byte *buf)
572 {
573 gdb_assert (buf != NULL);
574 raw_update (regnum);
575
576 if (m_register_status[regnum] != REG_VALID)
577 memset (buf, 0, m_descr->sizeof_register[regnum]);
578 else
579 memcpy (buf, register_buffer (regnum),
580 m_descr->sizeof_register[regnum]);
581
582 return (enum register_status) m_register_status[regnum];
583 }
584
585 enum register_status
586 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
587 {
588 gdb_assert (regcache != NULL);
589 return regcache->raw_read (regnum, val);
590 }
591
592 template<typename T, typename>
593 enum register_status
594 regcache::raw_read (int regnum, T *val)
595 {
596 gdb_byte *buf;
597 enum register_status status;
598
599 assert_regnum (regnum);
600 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
601 status = raw_read (regnum, buf);
602 if (status == REG_VALID)
603 *val = extract_integer<T> (buf,
604 m_descr->sizeof_register[regnum],
605 gdbarch_byte_order (m_descr->gdbarch));
606 else
607 *val = 0;
608 return status;
609 }
610
611 enum register_status
612 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
613 ULONGEST *val)
614 {
615 gdb_assert (regcache != NULL);
616 return regcache->raw_read (regnum, val);
617 }
618
619 void
620 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
621 {
622 gdb_assert (regcache != NULL);
623 regcache->raw_write (regnum, val);
624 }
625
626 template<typename T, typename>
627 void
628 regcache::raw_write (int regnum, T val)
629 {
630 gdb_byte *buf;
631
632 assert_regnum (regnum);
633 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
634 store_integer (buf, m_descr->sizeof_register[regnum],
635 gdbarch_byte_order (m_descr->gdbarch), val);
636 raw_write (regnum, buf);
637 }
638
639 void
640 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
641 ULONGEST val)
642 {
643 gdb_assert (regcache != NULL);
644 regcache->raw_write (regnum, val);
645 }
646
647 LONGEST
648 regcache_raw_get_signed (struct regcache *regcache, int regnum)
649 {
650 LONGEST value;
651 enum register_status status;
652
653 status = regcache_raw_read_signed (regcache, regnum, &value);
654 if (status == REG_UNAVAILABLE)
655 throw_error (NOT_AVAILABLE_ERROR,
656 _("Register %d is not available"), regnum);
657 return value;
658 }
659
660 enum register_status
661 regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf)
662 {
663 return regcache->cooked_read (regnum, buf);
664 }
665
666 enum register_status
667 regcache::cooked_read (int regnum, gdb_byte *buf)
668 {
669 gdb_assert (regnum >= 0);
670 gdb_assert (regnum < m_descr->nr_cooked_registers);
671 if (regnum < num_raw_registers ())
672 return raw_read (regnum, buf);
673 else if (m_readonly_p
674 && m_register_status[regnum] != REG_UNKNOWN)
675 {
676 /* Read-only register cache, perhaps the cooked value was
677 cached? */
678 if (m_register_status[regnum] == REG_VALID)
679 memcpy (buf, register_buffer (regnum),
680 m_descr->sizeof_register[regnum]);
681 else
682 memset (buf, 0, m_descr->sizeof_register[regnum]);
683
684 return (enum register_status) m_register_status[regnum];
685 }
686 else if (gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
687 {
688 struct value *mark, *computed;
689 enum register_status result = REG_VALID;
690
691 mark = value_mark ();
692
693 computed = gdbarch_pseudo_register_read_value (m_descr->gdbarch,
694 this, regnum);
695 if (value_entirely_available (computed))
696 memcpy (buf, value_contents_raw (computed),
697 m_descr->sizeof_register[regnum]);
698 else
699 {
700 memset (buf, 0, m_descr->sizeof_register[regnum]);
701 result = REG_UNAVAILABLE;
702 }
703
704 value_free_to_mark (mark);
705
706 return result;
707 }
708 else
709 return gdbarch_pseudo_register_read (m_descr->gdbarch, this,
710 regnum, buf);
711 }
712
713 struct value *
714 regcache_cooked_read_value (struct regcache *regcache, int regnum)
715 {
716 return regcache->cooked_read_value (regnum);
717 }
718
719 struct value *
720 regcache::cooked_read_value (int regnum)
721 {
722 gdb_assert (regnum >= 0);
723 gdb_assert (regnum < m_descr->nr_cooked_registers);
724
725 if (regnum < num_raw_registers ()
726 || (m_readonly_p && m_register_status[regnum] != REG_UNKNOWN)
727 || !gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
728 {
729 struct value *result;
730
731 result = allocate_value (register_type (m_descr->gdbarch, regnum));
732 VALUE_LVAL (result) = lval_register;
733 VALUE_REGNUM (result) = regnum;
734
735 /* It is more efficient in general to do this delegation in this
736 direction than in the other one, even though the value-based
737 API is preferred. */
738 if (cooked_read (regnum,
739 value_contents_raw (result)) == REG_UNAVAILABLE)
740 mark_value_bytes_unavailable (result, 0,
741 TYPE_LENGTH (value_type (result)));
742
743 return result;
744 }
745 else
746 return gdbarch_pseudo_register_read_value (m_descr->gdbarch,
747 this, regnum);
748 }
749
750 enum register_status
751 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
752 LONGEST *val)
753 {
754 gdb_assert (regcache != NULL);
755 return regcache->cooked_read (regnum, val);
756 }
757
758 template<typename T, typename>
759 enum register_status
760 regcache::cooked_read (int regnum, T *val)
761 {
762 enum register_status status;
763 gdb_byte *buf;
764
765 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
766 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
767 status = cooked_read (regnum, buf);
768 if (status == REG_VALID)
769 *val = extract_integer<T> (buf, m_descr->sizeof_register[regnum],
770 gdbarch_byte_order (m_descr->gdbarch));
771 else
772 *val = 0;
773 return status;
774 }
775
776 enum register_status
777 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
778 ULONGEST *val)
779 {
780 gdb_assert (regcache != NULL);
781 return regcache->cooked_read (regnum, val);
782 }
783
784 void
785 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
786 LONGEST val)
787 {
788 gdb_assert (regcache != NULL);
789 regcache->cooked_write (regnum, val);
790 }
791
792 template<typename T, typename>
793 void
794 regcache::cooked_write (int regnum, T val)
795 {
796 gdb_byte *buf;
797
798 gdb_assert (regnum >=0 && regnum < m_descr->nr_cooked_registers);
799 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
800 store_integer (buf, m_descr->sizeof_register[regnum],
801 gdbarch_byte_order (m_descr->gdbarch), val);
802 cooked_write (regnum, buf);
803 }
804
805 void
806 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
807 ULONGEST val)
808 {
809 gdb_assert (regcache != NULL);
810 regcache->cooked_write (regnum, val);
811 }
812
813 /* See regcache.h. */
814
815 void
816 regcache_raw_set_cached_value (struct regcache *regcache, int regnum,
817 const gdb_byte *buf)
818 {
819 regcache->raw_set_cached_value (regnum, buf);
820 }
821
822 void
823 regcache::raw_set_cached_value (int regnum, const gdb_byte *buf)
824 {
825 memcpy (register_buffer (regnum), buf,
826 m_descr->sizeof_register[regnum]);
827 m_register_status[regnum] = REG_VALID;
828 }
829
830 void
831 regcache_raw_write (struct regcache *regcache, int regnum,
832 const gdb_byte *buf)
833 {
834 gdb_assert (regcache != NULL && buf != NULL);
835 regcache->raw_write (regnum, buf);
836 }
837
838 void
839 regcache::raw_write (int regnum, const gdb_byte *buf)
840 {
841
842 gdb_assert (buf != NULL);
843 assert_regnum (regnum);
844 gdb_assert (!m_readonly_p);
845
846 /* On the sparc, writing %g0 is a no-op, so we don't even want to
847 change the registers array if something writes to this register. */
848 if (gdbarch_cannot_store_register (arch (), regnum))
849 return;
850
851 /* If we have a valid copy of the register, and new value == old
852 value, then don't bother doing the actual store. */
853 if (get_register_status (regnum) == REG_VALID
854 && (memcmp (register_buffer (regnum), buf,
855 m_descr->sizeof_register[regnum]) == 0))
856 return;
857
858 target_prepare_to_store (this);
859 raw_set_cached_value (regnum, buf);
860
861 /* Invalidate the register after it is written, in case of a
862 failure. */
863 regcache_invalidator invalidator (this, regnum);
864
865 target_store_registers (this, regnum);
866
867 /* The target did not throw an error so we can discard invalidating
868 the register. */
869 invalidator.release ();
870 }
871
872 void
873 regcache_cooked_write (struct regcache *regcache, int regnum,
874 const gdb_byte *buf)
875 {
876 regcache->cooked_write (regnum, buf);
877 }
878
879 void
880 regcache::cooked_write (int regnum, const gdb_byte *buf)
881 {
882 gdb_assert (regnum >= 0);
883 gdb_assert (regnum < m_descr->nr_cooked_registers);
884 if (regnum < num_raw_registers ())
885 raw_write (regnum, buf);
886 else
887 gdbarch_pseudo_register_write (m_descr->gdbarch, this,
888 regnum, buf);
889 }
890
891 /* Perform a partial register transfer using a read, modify, write
892 operation. */
893
894 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
895 void *buf);
896 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
897 const void *buf);
898
899 enum register_status
900 regcache::xfer_part (int regnum, int offset, int len, void *in,
901 const void *out, bool is_raw)
902 {
903 struct gdbarch *gdbarch = arch ();
904 gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
905
906 gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]);
907 gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]);
908 /* Something to do? */
909 if (offset + len == 0)
910 return REG_VALID;
911 /* Read (when needed) ... */
912 if (in != NULL
913 || offset > 0
914 || offset + len < m_descr->sizeof_register[regnum])
915 {
916 enum register_status status;
917
918 if (is_raw)
919 status = raw_read (regnum, reg);
920 else
921 status = cooked_read (regnum, reg);
922 if (status != REG_VALID)
923 return status;
924 }
925 /* ... modify ... */
926 if (in != NULL)
927 memcpy (in, reg + offset, len);
928 if (out != NULL)
929 memcpy (reg + offset, out, len);
930 /* ... write (when needed). */
931 if (out != NULL)
932 {
933 if (is_raw)
934 raw_write (regnum, reg);
935 else
936 cooked_write (regnum, reg);
937 }
938
939 return REG_VALID;
940 }
941
942 enum register_status
943 regcache_raw_read_part (struct regcache *regcache, int regnum,
944 int offset, int len, gdb_byte *buf)
945 {
946 return regcache->raw_read_part (regnum, offset, len, buf);
947 }
948
949 enum register_status
950 regcache::raw_read_part (int regnum, int offset, int len, gdb_byte *buf)
951 {
952 assert_regnum (regnum);
953 return xfer_part (regnum, offset, len, buf, NULL, true);
954 }
955
956 void
957 regcache_raw_write_part (struct regcache *regcache, int regnum,
958 int offset, int len, const gdb_byte *buf)
959 {
960 regcache->raw_write_part (regnum, offset, len, buf);
961 }
962
963 void
964 regcache::raw_write_part (int regnum, int offset, int len,
965 const gdb_byte *buf)
966 {
967 assert_regnum (regnum);
968 xfer_part (regnum, offset, len, NULL, buf, true);
969 }
970
971 enum register_status
972 regcache_cooked_read_part (struct regcache *regcache, int regnum,
973 int offset, int len, gdb_byte *buf)
974 {
975 return regcache->cooked_read_part (regnum, offset, len, buf);
976 }
977
978
979 enum register_status
980 regcache::cooked_read_part (int regnum, int offset, int len, gdb_byte *buf)
981 {
982 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
983 return xfer_part (regnum, offset, len, buf, NULL, false);
984 }
985
986 void
987 regcache_cooked_write_part (struct regcache *regcache, int regnum,
988 int offset, int len, const gdb_byte *buf)
989 {
990 regcache->cooked_write_part (regnum, offset, len, buf);
991 }
992
993 void
994 regcache::cooked_write_part (int regnum, int offset, int len,
995 const gdb_byte *buf)
996 {
997 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
998 xfer_part (regnum, offset, len, NULL, buf, false);
999 }
1000
1001 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
1002
1003 void
1004 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
1005 {
1006 gdb_assert (regcache != NULL);
1007 regcache->raw_supply (regnum, buf);
1008 }
1009
1010 void
1011 regcache::raw_supply (int regnum, const void *buf)
1012 {
1013 void *regbuf;
1014 size_t size;
1015
1016 assert_regnum (regnum);
1017 gdb_assert (!m_readonly_p);
1018
1019 regbuf = register_buffer (regnum);
1020 size = m_descr->sizeof_register[regnum];
1021
1022 if (buf)
1023 {
1024 memcpy (regbuf, buf, size);
1025 m_register_status[regnum] = REG_VALID;
1026 }
1027 else
1028 {
1029 /* This memset not strictly necessary, but better than garbage
1030 in case the register value manages to escape somewhere (due
1031 to a bug, no less). */
1032 memset (regbuf, 0, size);
1033 m_register_status[regnum] = REG_UNAVAILABLE;
1034 }
1035 }
1036
1037 /* Supply register REGNUM to REGCACHE. Value to supply is an integer stored at
1038 address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED. If
1039 the register size is greater than ADDR_LEN, then the integer will be sign or
1040 zero extended. If the register size is smaller than the integer, then the
1041 most significant bytes of the integer will be truncated. */
1042
1043 void
1044 regcache::raw_supply_integer (int regnum, const gdb_byte *addr, int addr_len,
1045 bool is_signed)
1046 {
1047 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
1048 gdb_byte *regbuf;
1049 size_t regsize;
1050
1051 assert_regnum (regnum);
1052 gdb_assert (!m_readonly_p);
1053
1054 regbuf = register_buffer (regnum);
1055 regsize = m_descr->sizeof_register[regnum];
1056
1057 copy_integer_to_size (regbuf, regsize, addr, addr_len, is_signed,
1058 byte_order);
1059 m_register_status[regnum] = REG_VALID;
1060 }
1061
1062 /* Supply register REGNUM with zeroed value to REGCACHE. This is not the same
1063 as calling raw_supply with NULL (which will set the state to
1064 unavailable). */
1065
1066 void
1067 regcache::raw_supply_zeroed (int regnum)
1068 {
1069 void *regbuf;
1070 size_t size;
1071
1072 assert_regnum (regnum);
1073 gdb_assert (!m_readonly_p);
1074
1075 regbuf = register_buffer (regnum);
1076 size = m_descr->sizeof_register[regnum];
1077
1078 memset (regbuf, 0, size);
1079 m_register_status[regnum] = REG_VALID;
1080 }
1081
1082 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
1083
1084 void
1085 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
1086 {
1087 gdb_assert (regcache != NULL && buf != NULL);
1088 regcache->raw_collect (regnum, buf);
1089 }
1090
1091 void
1092 regcache::raw_collect (int regnum, void *buf) const
1093 {
1094 const void *regbuf;
1095 size_t size;
1096
1097 gdb_assert (buf != NULL);
1098 assert_regnum (regnum);
1099
1100 regbuf = register_buffer (regnum);
1101 size = m_descr->sizeof_register[regnum];
1102 memcpy (buf, regbuf, size);
1103 }
1104
1105 /* Transfer a single or all registers belonging to a certain register
1106 set to or from a buffer. This is the main worker function for
1107 regcache_supply_regset and regcache_collect_regset. */
1108
1109 /* Collect register REGNUM from REGCACHE. Store collected value as an integer
1110 at address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED.
1111 If ADDR_LEN is greater than the register size, then the integer will be sign
1112 or zero extended. If ADDR_LEN is smaller than the register size, then the
1113 most significant bytes of the integer will be truncated. */
1114
1115 void
1116 regcache::raw_collect_integer (int regnum, gdb_byte *addr, int addr_len,
1117 bool is_signed) const
1118 {
1119 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
1120 const gdb_byte *regbuf;
1121 size_t regsize;
1122
1123 assert_regnum (regnum);
1124
1125 regbuf = register_buffer (regnum);
1126 regsize = m_descr->sizeof_register[regnum];
1127
1128 copy_integer_to_size (addr, addr_len, regbuf, regsize, is_signed,
1129 byte_order);
1130 }
1131
1132 void
1133 regcache::transfer_regset (const struct regset *regset,
1134 struct regcache *out_regcache,
1135 int regnum, const void *in_buf,
1136 void *out_buf, size_t size) const
1137 {
1138 const struct regcache_map_entry *map;
1139 int offs = 0, count;
1140
1141 for (map = (const struct regcache_map_entry *) regset->regmap;
1142 (count = map->count) != 0;
1143 map++)
1144 {
1145 int regno = map->regno;
1146 int slot_size = map->size;
1147
1148 if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
1149 slot_size = m_descr->sizeof_register[regno];
1150
1151 if (regno == REGCACHE_MAP_SKIP
1152 || (regnum != -1
1153 && (regnum < regno || regnum >= regno + count)))
1154 offs += count * slot_size;
1155
1156 else if (regnum == -1)
1157 for (; count--; regno++, offs += slot_size)
1158 {
1159 if (offs + slot_size > size)
1160 break;
1161
1162 if (out_buf)
1163 raw_collect (regno, (gdb_byte *) out_buf + offs);
1164 else
1165 out_regcache->raw_supply (regno, in_buf
1166 ? (const gdb_byte *) in_buf + offs
1167 : NULL);
1168 }
1169 else
1170 {
1171 /* Transfer a single register and return. */
1172 offs += (regnum - regno) * slot_size;
1173 if (offs + slot_size > size)
1174 return;
1175
1176 if (out_buf)
1177 raw_collect (regnum, (gdb_byte *) out_buf + offs);
1178 else
1179 out_regcache->raw_supply (regnum, in_buf
1180 ? (const gdb_byte *) in_buf + offs
1181 : NULL);
1182 return;
1183 }
1184 }
1185 }
1186
1187 /* Supply register REGNUM from BUF to REGCACHE, using the register map
1188 in REGSET. If REGNUM is -1, do this for all registers in REGSET.
1189 If BUF is NULL, set the register(s) to "unavailable" status. */
1190
1191 void
1192 regcache_supply_regset (const struct regset *regset,
1193 struct regcache *regcache,
1194 int regnum, const void *buf, size_t size)
1195 {
1196 regcache->supply_regset (regset, regnum, buf, size);
1197 }
1198
1199 void
1200 regcache::supply_regset (const struct regset *regset,
1201 int regnum, const void *buf, size_t size)
1202 {
1203 transfer_regset (regset, this, regnum, buf, NULL, size);
1204 }
1205
1206 /* Collect register REGNUM from REGCACHE to BUF, using the register
1207 map in REGSET. If REGNUM is -1, do this for all registers in
1208 REGSET. */
1209
1210 void
1211 regcache_collect_regset (const struct regset *regset,
1212 const struct regcache *regcache,
1213 int regnum, void *buf, size_t size)
1214 {
1215 regcache->collect_regset (regset, regnum, buf, size);
1216 }
1217
1218 void
1219 regcache::collect_regset (const struct regset *regset,
1220 int regnum, void *buf, size_t size) const
1221 {
1222 transfer_regset (regset, NULL, regnum, NULL, buf, size);
1223 }
1224
1225
1226 /* Special handling for register PC. */
1227
1228 CORE_ADDR
1229 regcache_read_pc (struct regcache *regcache)
1230 {
1231 struct gdbarch *gdbarch = regcache->arch ();
1232
1233 CORE_ADDR pc_val;
1234
1235 if (gdbarch_read_pc_p (gdbarch))
1236 pc_val = gdbarch_read_pc (gdbarch, regcache);
1237 /* Else use per-frame method on get_current_frame. */
1238 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1239 {
1240 ULONGEST raw_val;
1241
1242 if (regcache_cooked_read_unsigned (regcache,
1243 gdbarch_pc_regnum (gdbarch),
1244 &raw_val) == REG_UNAVAILABLE)
1245 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1246
1247 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
1248 }
1249 else
1250 internal_error (__FILE__, __LINE__,
1251 _("regcache_read_pc: Unable to find PC"));
1252 return pc_val;
1253 }
1254
1255 void
1256 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
1257 {
1258 struct gdbarch *gdbarch = regcache->arch ();
1259
1260 if (gdbarch_write_pc_p (gdbarch))
1261 gdbarch_write_pc (gdbarch, regcache, pc);
1262 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1263 regcache_cooked_write_unsigned (regcache,
1264 gdbarch_pc_regnum (gdbarch), pc);
1265 else
1266 internal_error (__FILE__, __LINE__,
1267 _("regcache_write_pc: Unable to update PC"));
1268
1269 /* Writing the PC (for instance, from "load") invalidates the
1270 current frame. */
1271 reinit_frame_cache ();
1272 }
1273
1274 int
1275 regcache::num_raw_registers () const
1276 {
1277 return gdbarch_num_regs (arch ());
1278 }
1279
1280 void
1281 regcache::debug_print_register (const char *func, int regno)
1282 {
1283 struct gdbarch *gdbarch = arch ();
1284
1285 fprintf_unfiltered (gdb_stdlog, "%s ", func);
1286 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
1287 && gdbarch_register_name (gdbarch, regno) != NULL
1288 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
1289 fprintf_unfiltered (gdb_stdlog, "(%s)",
1290 gdbarch_register_name (gdbarch, regno));
1291 else
1292 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
1293 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
1294 {
1295 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1296 int size = register_size (gdbarch, regno);
1297 gdb_byte *buf = register_buffer (regno);
1298
1299 fprintf_unfiltered (gdb_stdlog, " = ");
1300 for (int i = 0; i < size; i++)
1301 {
1302 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1303 }
1304 if (size <= sizeof (LONGEST))
1305 {
1306 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
1307
1308 fprintf_unfiltered (gdb_stdlog, " %s %s",
1309 core_addr_to_string_nz (val), plongest (val));
1310 }
1311 }
1312 fprintf_unfiltered (gdb_stdlog, "\n");
1313 }
1314
1315 static void
1316 reg_flush_command (const char *command, int from_tty)
1317 {
1318 /* Force-flush the register cache. */
1319 registers_changed ();
1320 if (from_tty)
1321 printf_filtered (_("Register cache flushed.\n"));
1322 }
1323
1324 void
1325 regcache::dump (ui_file *file, enum regcache_dump_what what_to_dump)
1326 {
1327 struct gdbarch *gdbarch = m_descr->gdbarch;
1328 int regnum;
1329 int footnote_nr = 0;
1330 int footnote_register_size = 0;
1331 int footnote_register_offset = 0;
1332 int footnote_register_type_name_null = 0;
1333 long register_offset = 0;
1334
1335 gdb_assert (m_descr->nr_cooked_registers
1336 == (gdbarch_num_regs (gdbarch)
1337 + gdbarch_num_pseudo_regs (gdbarch)));
1338
1339 for (regnum = -1; regnum < m_descr->nr_cooked_registers; regnum++)
1340 {
1341 /* Name. */
1342 if (regnum < 0)
1343 fprintf_unfiltered (file, " %-10s", "Name");
1344 else
1345 {
1346 const char *p = gdbarch_register_name (gdbarch, regnum);
1347
1348 if (p == NULL)
1349 p = "";
1350 else if (p[0] == '\0')
1351 p = "''";
1352 fprintf_unfiltered (file, " %-10s", p);
1353 }
1354
1355 /* Number. */
1356 if (regnum < 0)
1357 fprintf_unfiltered (file, " %4s", "Nr");
1358 else
1359 fprintf_unfiltered (file, " %4d", regnum);
1360
1361 /* Relative number. */
1362 if (regnum < 0)
1363 fprintf_unfiltered (file, " %4s", "Rel");
1364 else if (regnum < gdbarch_num_regs (gdbarch))
1365 fprintf_unfiltered (file, " %4d", regnum);
1366 else
1367 fprintf_unfiltered (file, " %4d",
1368 (regnum - gdbarch_num_regs (gdbarch)));
1369
1370 /* Offset. */
1371 if (regnum < 0)
1372 fprintf_unfiltered (file, " %6s ", "Offset");
1373 else
1374 {
1375 fprintf_unfiltered (file, " %6ld",
1376 m_descr->register_offset[regnum]);
1377 if (register_offset != m_descr->register_offset[regnum]
1378 || (regnum > 0
1379 && (m_descr->register_offset[regnum]
1380 != (m_descr->register_offset[regnum - 1]
1381 + m_descr->sizeof_register[regnum - 1])))
1382 )
1383 {
1384 if (!footnote_register_offset)
1385 footnote_register_offset = ++footnote_nr;
1386 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1387 }
1388 else
1389 fprintf_unfiltered (file, " ");
1390 register_offset = (m_descr->register_offset[regnum]
1391 + m_descr->sizeof_register[regnum]);
1392 }
1393
1394 /* Size. */
1395 if (regnum < 0)
1396 fprintf_unfiltered (file, " %5s ", "Size");
1397 else
1398 fprintf_unfiltered (file, " %5ld", m_descr->sizeof_register[regnum]);
1399
1400 /* Type. */
1401 {
1402 const char *t;
1403 std::string name_holder;
1404
1405 if (regnum < 0)
1406 t = "Type";
1407 else
1408 {
1409 static const char blt[] = "builtin_type";
1410
1411 t = TYPE_NAME (register_type (arch (), regnum));
1412 if (t == NULL)
1413 {
1414 if (!footnote_register_type_name_null)
1415 footnote_register_type_name_null = ++footnote_nr;
1416 name_holder = string_printf ("*%d",
1417 footnote_register_type_name_null);
1418 t = name_holder.c_str ();
1419 }
1420 /* Chop a leading builtin_type. */
1421 if (startswith (t, blt))
1422 t += strlen (blt);
1423 }
1424 fprintf_unfiltered (file, " %-15s", t);
1425 }
1426
1427 /* Leading space always present. */
1428 fprintf_unfiltered (file, " ");
1429
1430 /* Value, raw. */
1431 if (what_to_dump == regcache_dump_raw)
1432 {
1433 if (regnum < 0)
1434 fprintf_unfiltered (file, "Raw value");
1435 else if (regnum >= num_raw_registers ())
1436 fprintf_unfiltered (file, "<cooked>");
1437 else if (get_register_status (regnum) == REG_UNKNOWN)
1438 fprintf_unfiltered (file, "<invalid>");
1439 else if (get_register_status (regnum) == REG_UNAVAILABLE)
1440 fprintf_unfiltered (file, "<unavailable>");
1441 else
1442 {
1443 raw_update (regnum);
1444 print_hex_chars (file, register_buffer (regnum),
1445 m_descr->sizeof_register[regnum],
1446 gdbarch_byte_order (gdbarch), true);
1447 }
1448 }
1449
1450 /* Value, cooked. */
1451 if (what_to_dump == regcache_dump_cooked)
1452 {
1453 if (regnum < 0)
1454 fprintf_unfiltered (file, "Cooked value");
1455 else
1456 {
1457 const gdb_byte *buf = NULL;
1458 enum register_status status;
1459 struct value *value = NULL;
1460
1461 if (regnum < num_raw_registers ())
1462 {
1463 raw_update (regnum);
1464 status = get_register_status (regnum);
1465 buf = register_buffer (regnum);
1466 }
1467 else
1468 {
1469 value = cooked_read_value (regnum);
1470
1471 if (!value_optimized_out (value)
1472 && value_entirely_available (value))
1473 {
1474 status = REG_VALID;
1475 buf = value_contents_all (value);
1476 }
1477 else
1478 status = REG_UNAVAILABLE;
1479 }
1480
1481 if (status == REG_UNKNOWN)
1482 fprintf_unfiltered (file, "<invalid>");
1483 else if (status == REG_UNAVAILABLE)
1484 fprintf_unfiltered (file, "<unavailable>");
1485 else
1486 print_hex_chars (file, buf,
1487 m_descr->sizeof_register[regnum],
1488 gdbarch_byte_order (gdbarch), true);
1489
1490 if (value != NULL)
1491 {
1492 release_value (value);
1493 value_free (value);
1494 }
1495 }
1496 }
1497
1498 /* Group members. */
1499 if (what_to_dump == regcache_dump_groups)
1500 {
1501 if (regnum < 0)
1502 fprintf_unfiltered (file, "Groups");
1503 else
1504 {
1505 const char *sep = "";
1506 struct reggroup *group;
1507
1508 for (group = reggroup_next (gdbarch, NULL);
1509 group != NULL;
1510 group = reggroup_next (gdbarch, group))
1511 {
1512 if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
1513 {
1514 fprintf_unfiltered (file,
1515 "%s%s", sep, reggroup_name (group));
1516 sep = ",";
1517 }
1518 }
1519 }
1520 }
1521
1522 /* Remote packet configuration. */
1523 if (what_to_dump == regcache_dump_remote)
1524 {
1525 if (regnum < 0)
1526 {
1527 fprintf_unfiltered (file, "Rmt Nr g/G Offset");
1528 }
1529 else if (regnum < num_raw_registers ())
1530 {
1531 int pnum, poffset;
1532
1533 if (remote_register_number_and_offset (arch (), regnum,
1534 &pnum, &poffset))
1535 fprintf_unfiltered (file, "%7d %11d", pnum, poffset);
1536 }
1537 }
1538
1539 fprintf_unfiltered (file, "\n");
1540 }
1541
1542 if (footnote_register_size)
1543 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
1544 footnote_register_size);
1545 if (footnote_register_offset)
1546 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1547 footnote_register_offset);
1548 if (footnote_register_type_name_null)
1549 fprintf_unfiltered (file,
1550 "*%d: Register type's name NULL.\n",
1551 footnote_register_type_name_null);
1552 }
1553
1554 static void
1555 regcache_print (const char *args, enum regcache_dump_what what_to_dump)
1556 {
1557 /* Where to send output. */
1558 stdio_file file;
1559 ui_file *out;
1560
1561 if (args == NULL)
1562 out = gdb_stdout;
1563 else
1564 {
1565 if (!file.open (args, "w"))
1566 perror_with_name (_("maintenance print architecture"));
1567 out = &file;
1568 }
1569
1570 if (target_has_registers)
1571 get_current_regcache ()->dump (out, what_to_dump);
1572 else
1573 {
1574 /* For the benefit of "maint print registers" & co when
1575 debugging an executable, allow dumping a regcache even when
1576 there is no thread selected / no registers. */
1577 regcache dummy_regs (target_gdbarch ());
1578 dummy_regs.dump (out, what_to_dump);
1579 }
1580 }
1581
1582 static void
1583 maintenance_print_registers (const char *args, int from_tty)
1584 {
1585 regcache_print (args, regcache_dump_none);
1586 }
1587
1588 static void
1589 maintenance_print_raw_registers (const char *args, int from_tty)
1590 {
1591 regcache_print (args, regcache_dump_raw);
1592 }
1593
1594 static void
1595 maintenance_print_cooked_registers (const char *args, int from_tty)
1596 {
1597 regcache_print (args, regcache_dump_cooked);
1598 }
1599
1600 static void
1601 maintenance_print_register_groups (const char *args, int from_tty)
1602 {
1603 regcache_print (args, regcache_dump_groups);
1604 }
1605
1606 static void
1607 maintenance_print_remote_registers (const char *args, int from_tty)
1608 {
1609 regcache_print (args, regcache_dump_remote);
1610 }
1611
1612 #if GDB_SELF_TEST
1613 #include "selftest.h"
1614 #include "selftest-arch.h"
1615 #include "gdbthread.h"
1616
1617 namespace selftests {
1618
1619 class regcache_access : public regcache
1620 {
1621 public:
1622
1623 /* Return the number of elements in current_regcache. */
1624
1625 static size_t
1626 current_regcache_size ()
1627 {
1628 return std::distance (regcache::current_regcache.begin (),
1629 regcache::current_regcache.end ());
1630 }
1631 };
1632
1633 static void
1634 current_regcache_test (void)
1635 {
1636 /* It is empty at the start. */
1637 SELF_CHECK (regcache_access::current_regcache_size () == 0);
1638
1639 ptid_t ptid1 (1), ptid2 (2), ptid3 (3);
1640
1641 /* Get regcache from ptid1, a new regcache is added to
1642 current_regcache. */
1643 regcache *regcache = get_thread_arch_aspace_regcache (ptid1,
1644 target_gdbarch (),
1645 NULL);
1646
1647 SELF_CHECK (regcache != NULL);
1648 SELF_CHECK (regcache->ptid () == ptid1);
1649 SELF_CHECK (regcache_access::current_regcache_size () == 1);
1650
1651 /* Get regcache from ptid2, a new regcache is added to
1652 current_regcache. */
1653 regcache = get_thread_arch_aspace_regcache (ptid2,
1654 target_gdbarch (),
1655 NULL);
1656 SELF_CHECK (regcache != NULL);
1657 SELF_CHECK (regcache->ptid () == ptid2);
1658 SELF_CHECK (regcache_access::current_regcache_size () == 2);
1659
1660 /* Get regcache from ptid3, a new regcache is added to
1661 current_regcache. */
1662 regcache = get_thread_arch_aspace_regcache (ptid3,
1663 target_gdbarch (),
1664 NULL);
1665 SELF_CHECK (regcache != NULL);
1666 SELF_CHECK (regcache->ptid () == ptid3);
1667 SELF_CHECK (regcache_access::current_regcache_size () == 3);
1668
1669 /* Get regcache from ptid2 again, nothing is added to
1670 current_regcache. */
1671 regcache = get_thread_arch_aspace_regcache (ptid2,
1672 target_gdbarch (),
1673 NULL);
1674 SELF_CHECK (regcache != NULL);
1675 SELF_CHECK (regcache->ptid () == ptid2);
1676 SELF_CHECK (regcache_access::current_regcache_size () == 3);
1677
1678 /* Mark ptid2 is changed, so regcache of ptid2 should be removed from
1679 current_regcache. */
1680 registers_changed_ptid (ptid2);
1681 SELF_CHECK (regcache_access::current_regcache_size () == 2);
1682 }
1683
1684 static void test_target_fetch_registers (target_ops *self, regcache *regs,
1685 int regno);
1686 static void test_target_store_registers (target_ops *self, regcache *regs,
1687 int regno);
1688 static enum target_xfer_status
1689 test_target_xfer_partial (struct target_ops *ops,
1690 enum target_object object,
1691 const char *annex, gdb_byte *readbuf,
1692 const gdb_byte *writebuf,
1693 ULONGEST offset, ULONGEST len,
1694 ULONGEST *xfered_len);
1695
1696 class target_ops_no_register : public test_target_ops
1697 {
1698 public:
1699 target_ops_no_register ()
1700 : test_target_ops {}
1701 {
1702 to_fetch_registers = test_target_fetch_registers;
1703 to_store_registers = test_target_store_registers;
1704 to_xfer_partial = test_target_xfer_partial;
1705
1706 to_data = this;
1707 }
1708
1709 void reset ()
1710 {
1711 fetch_registers_called = 0;
1712 store_registers_called = 0;
1713 xfer_partial_called = 0;
1714 }
1715
1716 unsigned int fetch_registers_called = 0;
1717 unsigned int store_registers_called = 0;
1718 unsigned int xfer_partial_called = 0;
1719 };
1720
1721 static void
1722 test_target_fetch_registers (target_ops *self, regcache *regs, int regno)
1723 {
1724 auto ops = static_cast<target_ops_no_register *> (self->to_data);
1725
1726 /* Mark register available. */
1727 regs->raw_supply_zeroed (regno);
1728 ops->fetch_registers_called++;
1729 }
1730
1731 static void
1732 test_target_store_registers (target_ops *self, regcache *regs, int regno)
1733 {
1734 auto ops = static_cast<target_ops_no_register *> (self->to_data);
1735
1736 ops->store_registers_called++;
1737 }
1738
1739 static enum target_xfer_status
1740 test_target_xfer_partial (struct target_ops *self, enum target_object object,
1741 const char *annex, gdb_byte *readbuf,
1742 const gdb_byte *writebuf,
1743 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
1744 {
1745 auto ops = static_cast<target_ops_no_register *> (self->to_data);
1746
1747 ops->xfer_partial_called++;
1748
1749 *xfered_len = len;
1750 return TARGET_XFER_OK;
1751 }
1752
1753 class readwrite_regcache : public regcache
1754 {
1755 public:
1756 readwrite_regcache (struct gdbarch *gdbarch)
1757 : regcache (gdbarch, nullptr, false)
1758 {}
1759 };
1760
1761 /* Test regcache::cooked_read gets registers from raw registers and
1762 memory instead of target to_{fetch,store}_registers. */
1763
1764 static void
1765 cooked_read_test (struct gdbarch *gdbarch)
1766 {
1767 /* Error out if debugging something, because we're going to push the
1768 test target, which would pop any existing target. */
1769 if (current_target.to_stratum >= process_stratum)
1770 error (_("target already pushed"));
1771
1772 /* Create a mock environment. An inferior with a thread, with a
1773 process_stratum target pushed. */
1774
1775 target_ops_no_register mock_target;
1776 ptid_t mock_ptid (1, 1);
1777 inferior mock_inferior (mock_ptid.pid ());
1778 address_space mock_aspace {};
1779 mock_inferior.gdbarch = gdbarch;
1780 mock_inferior.aspace = &mock_aspace;
1781 thread_info mock_thread (&mock_inferior, mock_ptid);
1782
1783 scoped_restore restore_thread_list
1784 = make_scoped_restore (&thread_list, &mock_thread);
1785
1786 /* Add the mock inferior to the inferior list so that look ups by
1787 target+ptid can find it. */
1788 scoped_restore restore_inferior_list
1789 = make_scoped_restore (&inferior_list);
1790 inferior_list = &mock_inferior;
1791
1792 /* Switch to the mock inferior. */
1793 scoped_restore_current_inferior restore_current_inferior;
1794 set_current_inferior (&mock_inferior);
1795
1796 /* Push the process_stratum target so we can mock accessing
1797 registers. */
1798 push_target (&mock_target);
1799
1800 /* Pop it again on exit (return/exception). */
1801 struct on_exit
1802 {
1803 ~on_exit ()
1804 {
1805 pop_all_targets_at_and_above (process_stratum);
1806 }
1807 } pop_targets;
1808
1809 /* Switch to the mock thread. */
1810 scoped_restore restore_inferior_ptid
1811 = make_scoped_restore (&inferior_ptid, mock_ptid);
1812
1813 /* Test that read one raw register from regcache_no_target will go
1814 to the target layer. */
1815 int regnum;
1816
1817 /* Find a raw register which size isn't zero. */
1818 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1819 {
1820 if (register_size (gdbarch, regnum) != 0)
1821 break;
1822 }
1823
1824 readwrite_regcache readwrite (gdbarch);
1825 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1826
1827 readwrite.raw_read (regnum, buf.data ());
1828
1829 /* raw_read calls target_fetch_registers. */
1830 SELF_CHECK (mock_target.fetch_registers_called > 0);
1831 mock_target.reset ();
1832
1833 /* Mark all raw registers valid, so the following raw registers
1834 accesses won't go to target. */
1835 for (auto i = 0; i < gdbarch_num_regs (gdbarch); i++)
1836 readwrite.raw_update (i);
1837
1838 mock_target.reset ();
1839 /* Then, read all raw and pseudo registers, and don't expect calling
1840 to_{fetch,store}_registers. */
1841 for (int regnum = 0;
1842 regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1843 regnum++)
1844 {
1845 if (register_size (gdbarch, regnum) == 0)
1846 continue;
1847
1848 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1849
1850 SELF_CHECK (REG_VALID == readwrite.cooked_read (regnum, buf.data ()));
1851
1852 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_mt)
1853 {
1854 /* MT pseudo registers are banked, and different banks are
1855 selected by a raw registers, so GDB needs to write to
1856 that raw register to get different banked pseudo registers.
1857 See mt_select_coprocessor. */
1858 SELF_CHECK (mock_target.fetch_registers_called == 0);
1859 SELF_CHECK (mock_target.store_registers_called == 0);
1860 }
1861
1862 /* Some SPU pseudo registers are got via TARGET_OBJECT_SPU. */
1863 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1864 SELF_CHECK (mock_target.xfer_partial_called == 0);
1865
1866 mock_target.reset ();
1867 }
1868 }
1869
1870 } // namespace selftests
1871 #endif /* GDB_SELF_TEST */
1872
1873 void
1874 _initialize_regcache (void)
1875 {
1876 regcache_descr_handle
1877 = gdbarch_data_register_post_init (init_regcache_descr);
1878
1879 observer_attach_target_changed (regcache_observer_target_changed);
1880 observer_attach_thread_ptid_changed (regcache::regcache_thread_ptid_changed);
1881
1882 add_com ("flushregs", class_maintenance, reg_flush_command,
1883 _("Force gdb to flush its register cache (maintainer command)"));
1884
1885 add_cmd ("registers", class_maintenance, maintenance_print_registers,
1886 _("Print the internal register configuration.\n"
1887 "Takes an optional file parameter."), &maintenanceprintlist);
1888 add_cmd ("raw-registers", class_maintenance,
1889 maintenance_print_raw_registers,
1890 _("Print the internal register configuration "
1891 "including raw values.\n"
1892 "Takes an optional file parameter."), &maintenanceprintlist);
1893 add_cmd ("cooked-registers", class_maintenance,
1894 maintenance_print_cooked_registers,
1895 _("Print the internal register configuration "
1896 "including cooked values.\n"
1897 "Takes an optional file parameter."), &maintenanceprintlist);
1898 add_cmd ("register-groups", class_maintenance,
1899 maintenance_print_register_groups,
1900 _("Print the internal register configuration "
1901 "including each register's group.\n"
1902 "Takes an optional file parameter."),
1903 &maintenanceprintlist);
1904 add_cmd ("remote-registers", class_maintenance,
1905 maintenance_print_remote_registers, _("\
1906 Print the internal register configuration including each register's\n\
1907 remote register number and buffer offset in the g/G packets.\n\
1908 Takes an optional file parameter."),
1909 &maintenanceprintlist);
1910
1911 #if GDB_SELF_TEST
1912 selftests::register_test ("current_regcache", selftests::current_regcache_test);
1913
1914 selftests::register_test_foreach_arch ("regcache::cooked_read_test",
1915 selftests::cooked_read_test);
1916 #endif
1917 }
This page took 0.094079 seconds and 4 git commands to generate.