Copyright year update in most files of the GDB Project.
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986-1987, 1989, 1991, 1994-1996, 1998, 2000-2002,
4 2004, 2007-2012 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdbarch.h"
25 #include "gdbcmd.h"
26 #include "regcache.h"
27 #include "reggroups.h"
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "gdbcmd.h" /* For maintenanceprintlist. */
31 #include "observer.h"
32 #include "exceptions.h"
33 #include "remote.h"
34
35 /*
36 * DATA STRUCTURE
37 *
38 * Here is the actual register cache.
39 */
40
41 /* Per-architecture object describing the layout of a register cache.
42 Computed once when the architecture is created. */
43
44 struct gdbarch_data *regcache_descr_handle;
45
46 struct regcache_descr
47 {
48 /* The architecture this descriptor belongs to. */
49 struct gdbarch *gdbarch;
50
51 /* The raw register cache. Each raw (or hard) register is supplied
52 by the target interface. The raw cache should not contain
53 redundant information - if the PC is constructed from two
54 registers then those registers and not the PC lives in the raw
55 cache. */
56 int nr_raw_registers;
57 long sizeof_raw_registers;
58 long sizeof_raw_register_status;
59
60 /* The cooked register space. Each cooked register in the range
61 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
62 register. The remaining [NR_RAW_REGISTERS
63 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
64 both raw registers and memory by the architecture methods
65 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
66 int nr_cooked_registers;
67 long sizeof_cooked_registers;
68 long sizeof_cooked_register_status;
69
70 /* Offset and size (in 8 bit bytes), of each register in the
71 register cache. All registers (including those in the range
72 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
73 offset. */
74 long *register_offset;
75 long *sizeof_register;
76
77 /* Cached table containing the type of each register. */
78 struct type **register_type;
79 };
80
81 static void *
82 init_regcache_descr (struct gdbarch *gdbarch)
83 {
84 int i;
85 struct regcache_descr *descr;
86 gdb_assert (gdbarch != NULL);
87
88 /* Create an initial, zero filled, table. */
89 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
90 descr->gdbarch = gdbarch;
91
92 /* Total size of the register space. The raw registers are mapped
93 directly onto the raw register cache while the pseudo's are
94 either mapped onto raw-registers or memory. */
95 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
96 + gdbarch_num_pseudo_regs (gdbarch);
97 descr->sizeof_cooked_register_status
98 = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
99
100 /* Fill in a table of register types. */
101 descr->register_type
102 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
103 struct type *);
104 for (i = 0; i < descr->nr_cooked_registers; i++)
105 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
106
107 /* Construct a strictly RAW register cache. Don't allow pseudo's
108 into the register cache. */
109 descr->nr_raw_registers = gdbarch_num_regs (gdbarch);
110 descr->sizeof_raw_register_status = gdbarch_num_regs (gdbarch);
111
112 /* Lay out the register cache.
113
114 NOTE: cagney/2002-05-22: Only register_type() is used when
115 constructing the register cache. It is assumed that the
116 register's raw size, virtual size and type length are all the
117 same. */
118
119 {
120 long offset = 0;
121
122 descr->sizeof_register
123 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
124 descr->register_offset
125 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
126 for (i = 0; i < descr->nr_raw_registers; i++)
127 {
128 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
129 descr->register_offset[i] = offset;
130 offset += descr->sizeof_register[i];
131 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
132 }
133 /* Set the real size of the raw register cache buffer. */
134 descr->sizeof_raw_registers = offset;
135
136 for (; i < descr->nr_cooked_registers; i++)
137 {
138 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
139 descr->register_offset[i] = offset;
140 offset += descr->sizeof_register[i];
141 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
142 }
143 /* Set the real size of the readonly register cache buffer. */
144 descr->sizeof_cooked_registers = offset;
145 }
146
147 return descr;
148 }
149
150 static struct regcache_descr *
151 regcache_descr (struct gdbarch *gdbarch)
152 {
153 return gdbarch_data (gdbarch, regcache_descr_handle);
154 }
155
156 /* Utility functions returning useful register attributes stored in
157 the regcache descr. */
158
159 struct type *
160 register_type (struct gdbarch *gdbarch, int regnum)
161 {
162 struct regcache_descr *descr = regcache_descr (gdbarch);
163
164 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
165 return descr->register_type[regnum];
166 }
167
168 /* Utility functions returning useful register attributes stored in
169 the regcache descr. */
170
171 int
172 register_size (struct gdbarch *gdbarch, int regnum)
173 {
174 struct regcache_descr *descr = regcache_descr (gdbarch);
175 int size;
176
177 gdb_assert (regnum >= 0
178 && regnum < (gdbarch_num_regs (gdbarch)
179 + gdbarch_num_pseudo_regs (gdbarch)));
180 size = descr->sizeof_register[regnum];
181 return size;
182 }
183
184 /* The register cache for storing raw register values. */
185
186 struct regcache
187 {
188 struct regcache_descr *descr;
189
190 /* The address space of this register cache (for registers where it
191 makes sense, like PC or SP). */
192 struct address_space *aspace;
193
194 /* The register buffers. A read-only register cache can hold the
195 full [0 .. gdbarch_num_regs + gdbarch_num_pseudo_regs) while a read/write
196 register cache can only hold [0 .. gdbarch_num_regs). */
197 gdb_byte *registers;
198 /* Register cache status. */
199 signed char *register_status;
200 /* Is this a read-only cache? A read-only cache is used for saving
201 the target's register state (e.g, across an inferior function
202 call or just before forcing a function return). A read-only
203 cache can only be updated via the methods regcache_dup() and
204 regcache_cpy(). The actual contents are determined by the
205 reggroup_save and reggroup_restore methods. */
206 int readonly_p;
207 /* If this is a read-write cache, which thread's registers is
208 it connected to? */
209 ptid_t ptid;
210 };
211
212 static struct regcache *
213 regcache_xmalloc_1 (struct gdbarch *gdbarch, struct address_space *aspace,
214 int readonly_p)
215 {
216 struct regcache_descr *descr;
217 struct regcache *regcache;
218
219 gdb_assert (gdbarch != NULL);
220 descr = regcache_descr (gdbarch);
221 regcache = XMALLOC (struct regcache);
222 regcache->descr = descr;
223 regcache->readonly_p = readonly_p;
224 if (readonly_p)
225 {
226 regcache->registers
227 = XCALLOC (descr->sizeof_cooked_registers, gdb_byte);
228 regcache->register_status
229 = XCALLOC (descr->sizeof_cooked_register_status, gdb_byte);
230 }
231 else
232 {
233 regcache->registers
234 = XCALLOC (descr->sizeof_raw_registers, gdb_byte);
235 regcache->register_status
236 = XCALLOC (descr->sizeof_raw_register_status, gdb_byte);
237 }
238 regcache->aspace = aspace;
239 regcache->ptid = minus_one_ptid;
240 return regcache;
241 }
242
243 struct regcache *
244 regcache_xmalloc (struct gdbarch *gdbarch, struct address_space *aspace)
245 {
246 return regcache_xmalloc_1 (gdbarch, aspace, 1);
247 }
248
249 void
250 regcache_xfree (struct regcache *regcache)
251 {
252 if (regcache == NULL)
253 return;
254 xfree (regcache->registers);
255 xfree (regcache->register_status);
256 xfree (regcache);
257 }
258
259 static void
260 do_regcache_xfree (void *data)
261 {
262 regcache_xfree (data);
263 }
264
265 struct cleanup *
266 make_cleanup_regcache_xfree (struct regcache *regcache)
267 {
268 return make_cleanup (do_regcache_xfree, regcache);
269 }
270
271 /* Return REGCACHE's architecture. */
272
273 struct gdbarch *
274 get_regcache_arch (const struct regcache *regcache)
275 {
276 return regcache->descr->gdbarch;
277 }
278
279 struct address_space *
280 get_regcache_aspace (const struct regcache *regcache)
281 {
282 return regcache->aspace;
283 }
284
285 /* Return a pointer to register REGNUM's buffer cache. */
286
287 static gdb_byte *
288 register_buffer (const struct regcache *regcache, int regnum)
289 {
290 return regcache->registers + regcache->descr->register_offset[regnum];
291 }
292
293 void
294 regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read,
295 void *src)
296 {
297 struct gdbarch *gdbarch = dst->descr->gdbarch;
298 gdb_byte buf[MAX_REGISTER_SIZE];
299 int regnum;
300
301 /* The DST should be `read-only', if it wasn't then the save would
302 end up trying to write the register values back out to the
303 target. */
304 gdb_assert (dst->readonly_p);
305 /* Clear the dest. */
306 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers);
307 memset (dst->register_status, 0,
308 dst->descr->sizeof_cooked_register_status);
309 /* Copy over any registers (identified by their membership in the
310 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
311 gdbarch_num_pseudo_regs) range is checked since some architectures need
312 to save/restore `cooked' registers that live in memory. */
313 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
314 {
315 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
316 {
317 enum register_status status = cooked_read (src, regnum, buf);
318
319 if (status == REG_VALID)
320 memcpy (register_buffer (dst, regnum), buf,
321 register_size (gdbarch, regnum));
322 else
323 {
324 gdb_assert (status != REG_UNKNOWN);
325
326 memset (register_buffer (dst, regnum), 0,
327 register_size (gdbarch, regnum));
328 }
329 dst->register_status[regnum] = status;
330 }
331 }
332 }
333
334 static void
335 regcache_restore (struct regcache *dst,
336 regcache_cooked_read_ftype *cooked_read,
337 void *cooked_read_context)
338 {
339 struct gdbarch *gdbarch = dst->descr->gdbarch;
340 gdb_byte buf[MAX_REGISTER_SIZE];
341 int regnum;
342
343 /* The dst had better not be read-only. If it is, the `restore'
344 doesn't make much sense. */
345 gdb_assert (!dst->readonly_p);
346 /* Copy over any registers, being careful to only restore those that
347 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
348 + gdbarch_num_pseudo_regs) range is checked since some architectures need
349 to save/restore `cooked' registers that live in memory. */
350 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
351 {
352 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
353 {
354 enum register_status status;
355
356 status = cooked_read (cooked_read_context, regnum, buf);
357 if (status == REG_VALID)
358 regcache_cooked_write (dst, regnum, buf);
359 }
360 }
361 }
362
363 static enum register_status
364 do_cooked_read (void *src, int regnum, gdb_byte *buf)
365 {
366 struct regcache *regcache = src;
367
368 return regcache_cooked_read (regcache, regnum, buf);
369 }
370
371 void
372 regcache_cpy (struct regcache *dst, struct regcache *src)
373 {
374 gdb_assert (src != NULL && dst != NULL);
375 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
376 gdb_assert (src != dst);
377 gdb_assert (src->readonly_p || dst->readonly_p);
378
379 if (!src->readonly_p)
380 regcache_save (dst, do_cooked_read, src);
381 else if (!dst->readonly_p)
382 regcache_restore (dst, do_cooked_read, src);
383 else
384 regcache_cpy_no_passthrough (dst, src);
385 }
386
387 void
388 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
389 {
390 gdb_assert (src != NULL && dst != NULL);
391 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
392 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
393 move of data into a thread's regcache. Doing this would be silly
394 - it would mean that regcache->register_status would be
395 completely invalid. */
396 gdb_assert (dst->readonly_p && src->readonly_p);
397
398 memcpy (dst->registers, src->registers,
399 dst->descr->sizeof_cooked_registers);
400 memcpy (dst->register_status, src->register_status,
401 dst->descr->sizeof_cooked_register_status);
402 }
403
404 struct regcache *
405 regcache_dup (struct regcache *src)
406 {
407 struct regcache *newbuf;
408
409 newbuf = regcache_xmalloc (src->descr->gdbarch, get_regcache_aspace (src));
410 regcache_cpy (newbuf, src);
411 return newbuf;
412 }
413
414 int
415 regcache_register_status (const struct regcache *regcache, int regnum)
416 {
417 gdb_assert (regcache != NULL);
418 gdb_assert (regnum >= 0);
419 if (regcache->readonly_p)
420 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
421 else
422 gdb_assert (regnum < regcache->descr->nr_raw_registers);
423
424 return regcache->register_status[regnum];
425 }
426
427 void
428 regcache_invalidate (struct regcache *regcache, int regnum)
429 {
430 gdb_assert (regcache != NULL);
431 gdb_assert (regnum >= 0);
432 gdb_assert (!regcache->readonly_p);
433 gdb_assert (regnum < regcache->descr->nr_raw_registers);
434 regcache->register_status[regnum] = REG_UNKNOWN;
435 }
436
437
438 /* Global structure containing the current regcache. */
439
440 /* NOTE: this is a write-through cache. There is no "dirty" bit for
441 recording if the register values have been changed (eg. by the
442 user). Therefore all registers must be written back to the
443 target when appropriate. */
444
445 struct regcache_list
446 {
447 struct regcache *regcache;
448 struct regcache_list *next;
449 };
450
451 static struct regcache_list *current_regcache;
452
453 struct regcache *
454 get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
455 struct address_space *aspace)
456 {
457 struct regcache_list *list;
458 struct regcache *new_regcache;
459
460 for (list = current_regcache; list; list = list->next)
461 if (ptid_equal (list->regcache->ptid, ptid)
462 && get_regcache_arch (list->regcache) == gdbarch)
463 return list->regcache;
464
465 new_regcache = regcache_xmalloc_1 (gdbarch, aspace, 0);
466 new_regcache->ptid = ptid;
467
468 list = xmalloc (sizeof (struct regcache_list));
469 list->regcache = new_regcache;
470 list->next = current_regcache;
471 current_regcache = list;
472
473 return new_regcache;
474 }
475
476 struct regcache *
477 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
478 {
479 struct address_space *aspace;
480
481 /* For the benefit of "maint print registers" & co when debugging an
482 executable, allow dumping the regcache even when there is no
483 thread selected (target_thread_address_space internal-errors if
484 no address space is found). Note that normal user commands will
485 fail higher up on the call stack due to no
486 target_has_registers. */
487 aspace = (ptid_equal (null_ptid, ptid)
488 ? NULL
489 : target_thread_address_space (ptid));
490
491 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
492 }
493
494 static ptid_t current_thread_ptid;
495 static struct gdbarch *current_thread_arch;
496
497 struct regcache *
498 get_thread_regcache (ptid_t ptid)
499 {
500 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
501 {
502 current_thread_ptid = ptid;
503 current_thread_arch = target_thread_architecture (ptid);
504 }
505
506 return get_thread_arch_regcache (ptid, current_thread_arch);
507 }
508
509 struct regcache *
510 get_current_regcache (void)
511 {
512 return get_thread_regcache (inferior_ptid);
513 }
514
515
516 /* Observer for the target_changed event. */
517
518 static void
519 regcache_observer_target_changed (struct target_ops *target)
520 {
521 registers_changed ();
522 }
523
524 /* Update global variables old ptids to hold NEW_PTID if they were
525 holding OLD_PTID. */
526 static void
527 regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
528 {
529 struct regcache_list *list;
530
531 for (list = current_regcache; list; list = list->next)
532 if (ptid_equal (list->regcache->ptid, old_ptid))
533 list->regcache->ptid = new_ptid;
534 }
535
536 /* Low level examining and depositing of registers.
537
538 The caller is responsible for making sure that the inferior is
539 stopped before calling the fetching routines, or it will get
540 garbage. (a change from GDB version 3, in which the caller got the
541 value from the last stop). */
542
543 /* REGISTERS_CHANGED ()
544
545 Indicate that registers may have changed, so invalidate the cache. */
546
547 void
548 registers_changed_ptid (ptid_t ptid)
549 {
550 struct regcache_list *list, **list_link;
551
552 list = current_regcache;
553 list_link = &current_regcache;
554 while (list)
555 {
556 if (ptid_match (list->regcache->ptid, ptid))
557 {
558 struct regcache_list *dead = list;
559
560 *list_link = list->next;
561 regcache_xfree (list->regcache);
562 list = *list_link;
563 xfree (dead);
564 continue;
565 }
566
567 list_link = &list->next;
568 list = *list_link;
569 }
570
571 if (ptid_match (current_thread_ptid, ptid))
572 {
573 current_thread_ptid = null_ptid;
574 current_thread_arch = NULL;
575 }
576
577 if (ptid_match (inferior_ptid, ptid))
578 {
579 /* We just deleted the regcache of the current thread. Need to
580 forget about any frames we have cached, too. */
581 reinit_frame_cache ();
582 }
583 }
584
585 void
586 registers_changed (void)
587 {
588 registers_changed_ptid (minus_one_ptid);
589
590 /* Force cleanup of any alloca areas if using C alloca instead of
591 a builtin alloca. This particular call is used to clean up
592 areas allocated by low level target code which may build up
593 during lengthy interactions between gdb and the target before
594 gdb gives control to the user (ie watchpoints). */
595 alloca (0);
596 }
597
598 enum register_status
599 regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf)
600 {
601 gdb_assert (regcache != NULL && buf != NULL);
602 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
603 /* Make certain that the register cache is up-to-date with respect
604 to the current thread. This switching shouldn't be necessary
605 only there is still only one target side register cache. Sigh!
606 On the bright side, at least there is a regcache object. */
607 if (!regcache->readonly_p
608 && regcache_register_status (regcache, regnum) == REG_UNKNOWN)
609 {
610 struct cleanup *old_chain = save_inferior_ptid ();
611
612 inferior_ptid = regcache->ptid;
613 target_fetch_registers (regcache, regnum);
614 do_cleanups (old_chain);
615
616 /* A number of targets can't access the whole set of raw
617 registers (because the debug API provides no means to get at
618 them). */
619 if (regcache->register_status[regnum] == REG_UNKNOWN)
620 regcache->register_status[regnum] = REG_UNAVAILABLE;
621 }
622
623 if (regcache->register_status[regnum] != REG_VALID)
624 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
625 else
626 memcpy (buf, register_buffer (regcache, regnum),
627 regcache->descr->sizeof_register[regnum]);
628
629 return regcache->register_status[regnum];
630 }
631
632 enum register_status
633 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
634 {
635 gdb_byte *buf;
636 enum register_status status;
637
638 gdb_assert (regcache != NULL);
639 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
640 buf = alloca (regcache->descr->sizeof_register[regnum]);
641 status = regcache_raw_read (regcache, regnum, buf);
642 if (status == REG_VALID)
643 *val = extract_signed_integer
644 (buf, regcache->descr->sizeof_register[regnum],
645 gdbarch_byte_order (regcache->descr->gdbarch));
646 else
647 *val = 0;
648 return status;
649 }
650
651 enum register_status
652 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
653 ULONGEST *val)
654 {
655 gdb_byte *buf;
656 enum register_status status;
657
658 gdb_assert (regcache != NULL);
659 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
660 buf = alloca (regcache->descr->sizeof_register[regnum]);
661 status = regcache_raw_read (regcache, regnum, buf);
662 if (status == REG_VALID)
663 *val = extract_unsigned_integer
664 (buf, regcache->descr->sizeof_register[regnum],
665 gdbarch_byte_order (regcache->descr->gdbarch));
666 else
667 *val = 0;
668 return status;
669 }
670
671 void
672 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
673 {
674 void *buf;
675
676 gdb_assert (regcache != NULL);
677 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
678 buf = alloca (regcache->descr->sizeof_register[regnum]);
679 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
680 gdbarch_byte_order (regcache->descr->gdbarch), val);
681 regcache_raw_write (regcache, regnum, buf);
682 }
683
684 void
685 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
686 ULONGEST val)
687 {
688 void *buf;
689
690 gdb_assert (regcache != NULL);
691 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
692 buf = alloca (regcache->descr->sizeof_register[regnum]);
693 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
694 gdbarch_byte_order (regcache->descr->gdbarch), val);
695 regcache_raw_write (regcache, regnum, buf);
696 }
697
698 enum register_status
699 regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf)
700 {
701 gdb_assert (regnum >= 0);
702 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
703 if (regnum < regcache->descr->nr_raw_registers)
704 return regcache_raw_read (regcache, regnum, buf);
705 else if (regcache->readonly_p
706 && regcache->register_status[regnum] != REG_UNKNOWN)
707 {
708 /* Read-only register cache, perhaps the cooked value was
709 cached? */
710 struct gdbarch *gdbarch = regcache->descr->gdbarch;
711
712 if (regcache->register_status[regnum] == REG_VALID)
713 memcpy (buf, register_buffer (regcache, regnum),
714 regcache->descr->sizeof_register[regnum]);
715 else
716 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
717
718 return regcache->register_status[regnum];
719 }
720 else if (gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch))
721 {
722 struct value *mark, *computed;
723 enum register_status result = REG_VALID;
724
725 mark = value_mark ();
726
727 computed = gdbarch_pseudo_register_read_value (regcache->descr->gdbarch,
728 regcache, regnum);
729 if (value_entirely_available (computed))
730 memcpy (buf, value_contents_raw (computed),
731 regcache->descr->sizeof_register[regnum]);
732 else
733 {
734 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
735 result = REG_UNAVAILABLE;
736 }
737
738 value_free_to_mark (mark);
739
740 return result;
741 }
742 else
743 return gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache,
744 regnum, buf);
745 }
746
747 struct value *
748 regcache_cooked_read_value (struct regcache *regcache, int regnum)
749 {
750 gdb_assert (regnum >= 0);
751 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
752
753 if (regnum < regcache->descr->nr_raw_registers
754 || (regcache->readonly_p
755 && regcache->register_status[regnum] != REG_UNKNOWN)
756 || !gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch))
757 {
758 struct value *result;
759
760 result = allocate_value (register_type (regcache->descr->gdbarch,
761 regnum));
762 VALUE_LVAL (result) = lval_register;
763 VALUE_REGNUM (result) = regnum;
764
765 /* It is more efficient in general to do this delegation in this
766 direction than in the other one, even though the value-based
767 API is preferred. */
768 if (regcache_cooked_read (regcache, regnum,
769 value_contents_raw (result)) == REG_UNAVAILABLE)
770 mark_value_bytes_unavailable (result, 0,
771 TYPE_LENGTH (value_type (result)));
772
773 return result;
774 }
775 else
776 return gdbarch_pseudo_register_read_value (regcache->descr->gdbarch,
777 regcache, regnum);
778 }
779
780 enum register_status
781 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
782 LONGEST *val)
783 {
784 enum register_status status;
785 gdb_byte *buf;
786
787 gdb_assert (regcache != NULL);
788 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
789 buf = alloca (regcache->descr->sizeof_register[regnum]);
790 status = regcache_cooked_read (regcache, regnum, buf);
791 if (status == REG_VALID)
792 *val = extract_signed_integer
793 (buf, regcache->descr->sizeof_register[regnum],
794 gdbarch_byte_order (regcache->descr->gdbarch));
795 else
796 *val = 0;
797 return status;
798 }
799
800 enum register_status
801 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
802 ULONGEST *val)
803 {
804 enum register_status status;
805 gdb_byte *buf;
806
807 gdb_assert (regcache != NULL);
808 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
809 buf = alloca (regcache->descr->sizeof_register[regnum]);
810 status = regcache_cooked_read (regcache, regnum, buf);
811 if (status == REG_VALID)
812 *val = extract_unsigned_integer
813 (buf, regcache->descr->sizeof_register[regnum],
814 gdbarch_byte_order (regcache->descr->gdbarch));
815 else
816 *val = 0;
817 return status;
818 }
819
820 void
821 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
822 LONGEST val)
823 {
824 void *buf;
825
826 gdb_assert (regcache != NULL);
827 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
828 buf = alloca (regcache->descr->sizeof_register[regnum]);
829 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
830 gdbarch_byte_order (regcache->descr->gdbarch), val);
831 regcache_cooked_write (regcache, regnum, buf);
832 }
833
834 void
835 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
836 ULONGEST val)
837 {
838 void *buf;
839
840 gdb_assert (regcache != NULL);
841 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
842 buf = alloca (regcache->descr->sizeof_register[regnum]);
843 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
844 gdbarch_byte_order (regcache->descr->gdbarch), val);
845 regcache_cooked_write (regcache, regnum, buf);
846 }
847
848 void
849 regcache_raw_write (struct regcache *regcache, int regnum,
850 const gdb_byte *buf)
851 {
852 struct cleanup *old_chain;
853
854 gdb_assert (regcache != NULL && buf != NULL);
855 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
856 gdb_assert (!regcache->readonly_p);
857
858 /* On the sparc, writing %g0 is a no-op, so we don't even want to
859 change the registers array if something writes to this register. */
860 if (gdbarch_cannot_store_register (get_regcache_arch (regcache), regnum))
861 return;
862
863 /* If we have a valid copy of the register, and new value == old
864 value, then don't bother doing the actual store. */
865 if (regcache_register_status (regcache, regnum) == REG_VALID
866 && (memcmp (register_buffer (regcache, regnum), buf,
867 regcache->descr->sizeof_register[regnum]) == 0))
868 return;
869
870 old_chain = save_inferior_ptid ();
871 inferior_ptid = regcache->ptid;
872
873 target_prepare_to_store (regcache);
874 memcpy (register_buffer (regcache, regnum), buf,
875 regcache->descr->sizeof_register[regnum]);
876 regcache->register_status[regnum] = REG_VALID;
877 target_store_registers (regcache, regnum);
878
879 do_cleanups (old_chain);
880 }
881
882 void
883 regcache_cooked_write (struct regcache *regcache, int regnum,
884 const gdb_byte *buf)
885 {
886 gdb_assert (regnum >= 0);
887 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
888 if (regnum < regcache->descr->nr_raw_registers)
889 regcache_raw_write (regcache, regnum, buf);
890 else
891 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache,
892 regnum, buf);
893 }
894
895 /* Perform a partial register transfer using a read, modify, write
896 operation. */
897
898 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
899 void *buf);
900 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
901 const void *buf);
902
903 static enum register_status
904 regcache_xfer_part (struct regcache *regcache, int regnum,
905 int offset, int len, void *in, const void *out,
906 enum register_status (*read) (struct regcache *regcache,
907 int regnum,
908 gdb_byte *buf),
909 void (*write) (struct regcache *regcache, int regnum,
910 const gdb_byte *buf))
911 {
912 struct regcache_descr *descr = regcache->descr;
913 gdb_byte reg[MAX_REGISTER_SIZE];
914
915 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]);
916 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]);
917 /* Something to do? */
918 if (offset + len == 0)
919 return REG_VALID;
920 /* Read (when needed) ... */
921 if (in != NULL
922 || offset > 0
923 || offset + len < descr->sizeof_register[regnum])
924 {
925 enum register_status status;
926
927 gdb_assert (read != NULL);
928 status = read (regcache, regnum, reg);
929 if (status != REG_VALID)
930 return status;
931 }
932 /* ... modify ... */
933 if (in != NULL)
934 memcpy (in, reg + offset, len);
935 if (out != NULL)
936 memcpy (reg + offset, out, len);
937 /* ... write (when needed). */
938 if (out != NULL)
939 {
940 gdb_assert (write != NULL);
941 write (regcache, regnum, reg);
942 }
943
944 return REG_VALID;
945 }
946
947 enum register_status
948 regcache_raw_read_part (struct regcache *regcache, int regnum,
949 int offset, int len, gdb_byte *buf)
950 {
951 struct regcache_descr *descr = regcache->descr;
952
953 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
954 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
955 regcache_raw_read, regcache_raw_write);
956 }
957
958 void
959 regcache_raw_write_part (struct regcache *regcache, int regnum,
960 int offset, int len, const gdb_byte *buf)
961 {
962 struct regcache_descr *descr = regcache->descr;
963
964 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
965 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
966 regcache_raw_read, regcache_raw_write);
967 }
968
969 enum register_status
970 regcache_cooked_read_part (struct regcache *regcache, int regnum,
971 int offset, int len, gdb_byte *buf)
972 {
973 struct regcache_descr *descr = regcache->descr;
974
975 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
976 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
977 regcache_cooked_read, regcache_cooked_write);
978 }
979
980 void
981 regcache_cooked_write_part (struct regcache *regcache, int regnum,
982 int offset, int len, const gdb_byte *buf)
983 {
984 struct regcache_descr *descr = regcache->descr;
985
986 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
987 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
988 regcache_cooked_read, regcache_cooked_write);
989 }
990
991 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
992
993 void
994 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
995 {
996 void *regbuf;
997 size_t size;
998
999 gdb_assert (regcache != NULL);
1000 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1001 gdb_assert (!regcache->readonly_p);
1002
1003 regbuf = register_buffer (regcache, regnum);
1004 size = regcache->descr->sizeof_register[regnum];
1005
1006 if (buf)
1007 {
1008 memcpy (regbuf, buf, size);
1009 regcache->register_status[regnum] = REG_VALID;
1010 }
1011 else
1012 {
1013 /* This memset not strictly necessary, but better than garbage
1014 in case the register value manages to escape somewhere (due
1015 to a bug, no less). */
1016 memset (regbuf, 0, size);
1017 regcache->register_status[regnum] = REG_UNAVAILABLE;
1018 }
1019 }
1020
1021 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
1022
1023 void
1024 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
1025 {
1026 const void *regbuf;
1027 size_t size;
1028
1029 gdb_assert (regcache != NULL && buf != NULL);
1030 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1031
1032 regbuf = register_buffer (regcache, regnum);
1033 size = regcache->descr->sizeof_register[regnum];
1034 memcpy (buf, regbuf, size);
1035 }
1036
1037
1038 /* Special handling for register PC. */
1039
1040 CORE_ADDR
1041 regcache_read_pc (struct regcache *regcache)
1042 {
1043 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1044
1045 CORE_ADDR pc_val;
1046
1047 if (gdbarch_read_pc_p (gdbarch))
1048 pc_val = gdbarch_read_pc (gdbarch, regcache);
1049 /* Else use per-frame method on get_current_frame. */
1050 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1051 {
1052 ULONGEST raw_val;
1053
1054 if (regcache_cooked_read_unsigned (regcache,
1055 gdbarch_pc_regnum (gdbarch),
1056 &raw_val) == REG_UNAVAILABLE)
1057 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1058
1059 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
1060 }
1061 else
1062 internal_error (__FILE__, __LINE__,
1063 _("regcache_read_pc: Unable to find PC"));
1064 return pc_val;
1065 }
1066
1067 void
1068 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
1069 {
1070 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1071
1072 if (gdbarch_write_pc_p (gdbarch))
1073 gdbarch_write_pc (gdbarch, regcache, pc);
1074 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1075 regcache_cooked_write_unsigned (regcache,
1076 gdbarch_pc_regnum (gdbarch), pc);
1077 else
1078 internal_error (__FILE__, __LINE__,
1079 _("regcache_write_pc: Unable to update PC"));
1080
1081 /* Writing the PC (for instance, from "load") invalidates the
1082 current frame. */
1083 reinit_frame_cache ();
1084 }
1085
1086
1087 static void
1088 reg_flush_command (char *command, int from_tty)
1089 {
1090 /* Force-flush the register cache. */
1091 registers_changed ();
1092 if (from_tty)
1093 printf_filtered (_("Register cache flushed.\n"));
1094 }
1095
1096 static void
1097 dump_endian_bytes (struct ui_file *file, enum bfd_endian endian,
1098 const unsigned char *buf, long len)
1099 {
1100 int i;
1101
1102 switch (endian)
1103 {
1104 case BFD_ENDIAN_BIG:
1105 for (i = 0; i < len; i++)
1106 fprintf_unfiltered (file, "%02x", buf[i]);
1107 break;
1108 case BFD_ENDIAN_LITTLE:
1109 for (i = len - 1; i >= 0; i--)
1110 fprintf_unfiltered (file, "%02x", buf[i]);
1111 break;
1112 default:
1113 internal_error (__FILE__, __LINE__, _("Bad switch"));
1114 }
1115 }
1116
1117 enum regcache_dump_what
1118 {
1119 regcache_dump_none, regcache_dump_raw,
1120 regcache_dump_cooked, regcache_dump_groups,
1121 regcache_dump_remote
1122 };
1123
1124 static void
1125 regcache_dump (struct regcache *regcache, struct ui_file *file,
1126 enum regcache_dump_what what_to_dump)
1127 {
1128 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1129 struct gdbarch *gdbarch = regcache->descr->gdbarch;
1130 int regnum;
1131 int footnote_nr = 0;
1132 int footnote_register_size = 0;
1133 int footnote_register_offset = 0;
1134 int footnote_register_type_name_null = 0;
1135 long register_offset = 0;
1136 unsigned char buf[MAX_REGISTER_SIZE];
1137
1138 #if 0
1139 fprintf_unfiltered (file, "nr_raw_registers %d\n",
1140 regcache->descr->nr_raw_registers);
1141 fprintf_unfiltered (file, "nr_cooked_registers %d\n",
1142 regcache->descr->nr_cooked_registers);
1143 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n",
1144 regcache->descr->sizeof_raw_registers);
1145 fprintf_unfiltered (file, "sizeof_raw_register_status %ld\n",
1146 regcache->descr->sizeof_raw_register_status);
1147 fprintf_unfiltered (file, "gdbarch_num_regs %d\n",
1148 gdbarch_num_regs (gdbarch));
1149 fprintf_unfiltered (file, "gdbarch_num_pseudo_regs %d\n",
1150 gdbarch_num_pseudo_regs (gdbarch));
1151 #endif
1152
1153 gdb_assert (regcache->descr->nr_cooked_registers
1154 == (gdbarch_num_regs (gdbarch)
1155 + gdbarch_num_pseudo_regs (gdbarch)));
1156
1157 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++)
1158 {
1159 /* Name. */
1160 if (regnum < 0)
1161 fprintf_unfiltered (file, " %-10s", "Name");
1162 else
1163 {
1164 const char *p = gdbarch_register_name (gdbarch, regnum);
1165
1166 if (p == NULL)
1167 p = "";
1168 else if (p[0] == '\0')
1169 p = "''";
1170 fprintf_unfiltered (file, " %-10s", p);
1171 }
1172
1173 /* Number. */
1174 if (regnum < 0)
1175 fprintf_unfiltered (file, " %4s", "Nr");
1176 else
1177 fprintf_unfiltered (file, " %4d", regnum);
1178
1179 /* Relative number. */
1180 if (regnum < 0)
1181 fprintf_unfiltered (file, " %4s", "Rel");
1182 else if (regnum < gdbarch_num_regs (gdbarch))
1183 fprintf_unfiltered (file, " %4d", regnum);
1184 else
1185 fprintf_unfiltered (file, " %4d",
1186 (regnum - gdbarch_num_regs (gdbarch)));
1187
1188 /* Offset. */
1189 if (regnum < 0)
1190 fprintf_unfiltered (file, " %6s ", "Offset");
1191 else
1192 {
1193 fprintf_unfiltered (file, " %6ld",
1194 regcache->descr->register_offset[regnum]);
1195 if (register_offset != regcache->descr->register_offset[regnum]
1196 || (regnum > 0
1197 && (regcache->descr->register_offset[regnum]
1198 != (regcache->descr->register_offset[regnum - 1]
1199 + regcache->descr->sizeof_register[regnum - 1])))
1200 )
1201 {
1202 if (!footnote_register_offset)
1203 footnote_register_offset = ++footnote_nr;
1204 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1205 }
1206 else
1207 fprintf_unfiltered (file, " ");
1208 register_offset = (regcache->descr->register_offset[regnum]
1209 + regcache->descr->sizeof_register[regnum]);
1210 }
1211
1212 /* Size. */
1213 if (regnum < 0)
1214 fprintf_unfiltered (file, " %5s ", "Size");
1215 else
1216 fprintf_unfiltered (file, " %5ld",
1217 regcache->descr->sizeof_register[regnum]);
1218
1219 /* Type. */
1220 {
1221 const char *t;
1222
1223 if (regnum < 0)
1224 t = "Type";
1225 else
1226 {
1227 static const char blt[] = "builtin_type";
1228
1229 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum));
1230 if (t == NULL)
1231 {
1232 char *n;
1233
1234 if (!footnote_register_type_name_null)
1235 footnote_register_type_name_null = ++footnote_nr;
1236 n = xstrprintf ("*%d", footnote_register_type_name_null);
1237 make_cleanup (xfree, n);
1238 t = n;
1239 }
1240 /* Chop a leading builtin_type. */
1241 if (strncmp (t, blt, strlen (blt)) == 0)
1242 t += strlen (blt);
1243 }
1244 fprintf_unfiltered (file, " %-15s", t);
1245 }
1246
1247 /* Leading space always present. */
1248 fprintf_unfiltered (file, " ");
1249
1250 /* Value, raw. */
1251 if (what_to_dump == regcache_dump_raw)
1252 {
1253 if (regnum < 0)
1254 fprintf_unfiltered (file, "Raw value");
1255 else if (regnum >= regcache->descr->nr_raw_registers)
1256 fprintf_unfiltered (file, "<cooked>");
1257 else if (regcache_register_status (regcache, regnum) == REG_UNKNOWN)
1258 fprintf_unfiltered (file, "<invalid>");
1259 else if (regcache_register_status (regcache, regnum) == REG_UNAVAILABLE)
1260 fprintf_unfiltered (file, "<unavailable>");
1261 else
1262 {
1263 regcache_raw_read (regcache, regnum, buf);
1264 fprintf_unfiltered (file, "0x");
1265 dump_endian_bytes (file,
1266 gdbarch_byte_order (gdbarch), buf,
1267 regcache->descr->sizeof_register[regnum]);
1268 }
1269 }
1270
1271 /* Value, cooked. */
1272 if (what_to_dump == regcache_dump_cooked)
1273 {
1274 if (regnum < 0)
1275 fprintf_unfiltered (file, "Cooked value");
1276 else
1277 {
1278 enum register_status status;
1279
1280 status = regcache_cooked_read (regcache, regnum, buf);
1281 if (status == REG_UNKNOWN)
1282 fprintf_unfiltered (file, "<invalid>");
1283 else if (status == REG_UNAVAILABLE)
1284 fprintf_unfiltered (file, "<unavailable>");
1285 else
1286 {
1287 fprintf_unfiltered (file, "0x");
1288 dump_endian_bytes (file,
1289 gdbarch_byte_order (gdbarch), buf,
1290 regcache->descr->sizeof_register[regnum]);
1291 }
1292 }
1293 }
1294
1295 /* Group members. */
1296 if (what_to_dump == regcache_dump_groups)
1297 {
1298 if (regnum < 0)
1299 fprintf_unfiltered (file, "Groups");
1300 else
1301 {
1302 const char *sep = "";
1303 struct reggroup *group;
1304
1305 for (group = reggroup_next (gdbarch, NULL);
1306 group != NULL;
1307 group = reggroup_next (gdbarch, group))
1308 {
1309 if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
1310 {
1311 fprintf_unfiltered (file,
1312 "%s%s", sep, reggroup_name (group));
1313 sep = ",";
1314 }
1315 }
1316 }
1317 }
1318
1319 /* Remote packet configuration. */
1320 if (what_to_dump == regcache_dump_remote)
1321 {
1322 if (regnum < 0)
1323 {
1324 fprintf_unfiltered (file, "Rmt Nr g/G Offset");
1325 }
1326 else if (regnum < regcache->descr->nr_raw_registers)
1327 {
1328 int pnum, poffset;
1329
1330 if (remote_register_number_and_offset (get_regcache_arch (regcache), regnum,
1331 &pnum, &poffset))
1332 fprintf_unfiltered (file, "%7d %11d", pnum, poffset);
1333 }
1334 }
1335
1336 fprintf_unfiltered (file, "\n");
1337 }
1338
1339 if (footnote_register_size)
1340 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
1341 footnote_register_size);
1342 if (footnote_register_offset)
1343 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1344 footnote_register_offset);
1345 if (footnote_register_type_name_null)
1346 fprintf_unfiltered (file,
1347 "*%d: Register type's name NULL.\n",
1348 footnote_register_type_name_null);
1349 do_cleanups (cleanups);
1350 }
1351
1352 static void
1353 regcache_print (char *args, enum regcache_dump_what what_to_dump)
1354 {
1355 if (args == NULL)
1356 regcache_dump (get_current_regcache (), gdb_stdout, what_to_dump);
1357 else
1358 {
1359 struct cleanup *cleanups;
1360 struct ui_file *file = gdb_fopen (args, "w");
1361
1362 if (file == NULL)
1363 perror_with_name (_("maintenance print architecture"));
1364 cleanups = make_cleanup_ui_file_delete (file);
1365 regcache_dump (get_current_regcache (), file, what_to_dump);
1366 do_cleanups (cleanups);
1367 }
1368 }
1369
1370 static void
1371 maintenance_print_registers (char *args, int from_tty)
1372 {
1373 regcache_print (args, regcache_dump_none);
1374 }
1375
1376 static void
1377 maintenance_print_raw_registers (char *args, int from_tty)
1378 {
1379 regcache_print (args, regcache_dump_raw);
1380 }
1381
1382 static void
1383 maintenance_print_cooked_registers (char *args, int from_tty)
1384 {
1385 regcache_print (args, regcache_dump_cooked);
1386 }
1387
1388 static void
1389 maintenance_print_register_groups (char *args, int from_tty)
1390 {
1391 regcache_print (args, regcache_dump_groups);
1392 }
1393
1394 static void
1395 maintenance_print_remote_registers (char *args, int from_tty)
1396 {
1397 regcache_print (args, regcache_dump_remote);
1398 }
1399
1400 extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */
1401
1402 void
1403 _initialize_regcache (void)
1404 {
1405 regcache_descr_handle
1406 = gdbarch_data_register_post_init (init_regcache_descr);
1407
1408 observer_attach_target_changed (regcache_observer_target_changed);
1409 observer_attach_thread_ptid_changed (regcache_thread_ptid_changed);
1410
1411 add_com ("flushregs", class_maintenance, reg_flush_command,
1412 _("Force gdb to flush its register cache (maintainer command)"));
1413
1414 add_cmd ("registers", class_maintenance, maintenance_print_registers,
1415 _("Print the internal register configuration.\n"
1416 "Takes an optional file parameter."), &maintenanceprintlist);
1417 add_cmd ("raw-registers", class_maintenance,
1418 maintenance_print_raw_registers,
1419 _("Print the internal register configuration "
1420 "including raw values.\n"
1421 "Takes an optional file parameter."), &maintenanceprintlist);
1422 add_cmd ("cooked-registers", class_maintenance,
1423 maintenance_print_cooked_registers,
1424 _("Print the internal register configuration "
1425 "including cooked values.\n"
1426 "Takes an optional file parameter."), &maintenanceprintlist);
1427 add_cmd ("register-groups", class_maintenance,
1428 maintenance_print_register_groups,
1429 _("Print the internal register configuration "
1430 "including each register's group.\n"
1431 "Takes an optional file parameter."),
1432 &maintenanceprintlist);
1433 add_cmd ("remote-registers", class_maintenance,
1434 maintenance_print_remote_registers, _("\
1435 Print the internal register configuration including each register's\n\
1436 remote register number and buffer offset in the g/G packets.\n\
1437 Takes an optional file parameter."),
1438 &maintenanceprintlist);
1439
1440 }
This page took 0.060583 seconds and 4 git commands to generate.