2004-06-26 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000,
4 2001, 2002, 2004 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "inferior.h"
25 #include "target.h"
26 #include "gdbarch.h"
27 #include "gdbcmd.h"
28 #include "regcache.h"
29 #include "reggroups.h"
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdbcmd.h" /* For maintenanceprintlist. */
33 #include "observer.h"
34
35 /*
36 * DATA STRUCTURE
37 *
38 * Here is the actual register cache.
39 */
40
41 /* Per-architecture object describing the layout of a register cache.
42 Computed once when the architecture is created */
43
44 struct gdbarch_data *regcache_descr_handle;
45
46 struct regcache_descr
47 {
48 /* The architecture this descriptor belongs to. */
49 struct gdbarch *gdbarch;
50
51 /* Is this a ``legacy'' register cache? Such caches reserve space
52 for raw and pseudo registers and allow access to both. */
53 int legacy_p;
54
55 /* The raw register cache. Each raw (or hard) register is supplied
56 by the target interface. The raw cache should not contain
57 redundant information - if the PC is constructed from two
58 registers then those regigisters and not the PC lives in the raw
59 cache. */
60 int nr_raw_registers;
61 long sizeof_raw_registers;
62 long sizeof_raw_register_valid_p;
63
64 /* The cooked register space. Each cooked register in the range
65 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
66 register. The remaining [NR_RAW_REGISTERS
67 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
68 both raw registers and memory by the architecture methods
69 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
70 int nr_cooked_registers;
71 long sizeof_cooked_registers;
72 long sizeof_cooked_register_valid_p;
73
74 /* Offset and size (in 8 bit bytes), of reach register in the
75 register cache. All registers (including those in the range
76 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an offset.
77 Assigning all registers an offset makes it possible to keep
78 legacy code, such as that found in read_register_bytes() and
79 write_register_bytes() working. */
80 long *register_offset;
81 long *sizeof_register;
82
83 /* Cached table containing the type of each register. */
84 struct type **register_type;
85 };
86
87 static void
88 init_legacy_regcache_descr (struct gdbarch *gdbarch,
89 struct regcache_descr *descr)
90 {
91 int i;
92 /* FIXME: cagney/2002-05-11: gdbarch_data() should take that
93 ``gdbarch'' as a parameter. */
94 gdb_assert (gdbarch != NULL);
95
96 /* Compute the offset of each register. Legacy architectures define
97 DEPRECATED_REGISTER_BYTE() so use that. */
98 /* FIXME: cagney/2002-11-07: Instead of using
99 DEPRECATED_REGISTER_BYTE() this code should, as is done in
100 init_regcache_descr(), compute the offets at runtime. This
101 currently isn't possible as some ISAs define overlapping register
102 regions - see the mess in read_register_bytes() and
103 write_register_bytes() registers. */
104 descr->sizeof_register
105 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
106 descr->register_offset
107 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
108 for (i = 0; i < descr->nr_cooked_registers; i++)
109 {
110 /* FIXME: cagney/2001-12-04: This code shouldn't need to use
111 DEPRECATED_REGISTER_BYTE(). Unfortunately, legacy code likes
112 to lay the buffer out so that certain registers just happen
113 to overlap. Ulgh! New targets use gdbarch's register
114 read/write and entirely avoid this uglyness. */
115 descr->register_offset[i] = DEPRECATED_REGISTER_BYTE (i);
116 descr->sizeof_register[i] = DEPRECATED_REGISTER_RAW_SIZE (i);
117 gdb_assert (MAX_REGISTER_SIZE >= DEPRECATED_REGISTER_RAW_SIZE (i));
118 gdb_assert (MAX_REGISTER_SIZE >= DEPRECATED_REGISTER_VIRTUAL_SIZE (i));
119 }
120
121 /* Compute the real size of the register buffer. Start out by
122 trusting DEPRECATED_REGISTER_BYTES, but then adjust it upwards
123 should that be found to not be sufficient. */
124 /* FIXME: cagney/2002-11-05: Instead of using the macro
125 DEPRECATED_REGISTER_BYTES, this code should, as is done in
126 init_regcache_descr(), compute the total number of register bytes
127 using the accumulated offsets. */
128 descr->sizeof_cooked_registers = DEPRECATED_REGISTER_BYTES; /* OK */
129 for (i = 0; i < descr->nr_cooked_registers; i++)
130 {
131 long regend;
132 /* Keep extending the buffer so that there is always enough
133 space for all registers. The comparison is necessary since
134 legacy code is free to put registers in random places in the
135 buffer separated by holes. Once DEPRECATED_REGISTER_BYTE()
136 is killed this can be greatly simplified. */
137 regend = descr->register_offset[i] + descr->sizeof_register[i];
138 if (descr->sizeof_cooked_registers < regend)
139 descr->sizeof_cooked_registers = regend;
140 }
141 /* FIXME: cagney/2002-05-11: Shouldn't be including pseudo-registers
142 in the register cache. Unfortunately some architectures still
143 rely on this and the pseudo_register_write() method. */
144 descr->sizeof_raw_registers = descr->sizeof_cooked_registers;
145 }
146
147 static void *
148 init_regcache_descr (struct gdbarch *gdbarch)
149 {
150 int i;
151 struct regcache_descr *descr;
152 gdb_assert (gdbarch != NULL);
153
154 /* Create an initial, zero filled, table. */
155 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
156 descr->gdbarch = gdbarch;
157
158 /* Total size of the register space. The raw registers are mapped
159 directly onto the raw register cache while the pseudo's are
160 either mapped onto raw-registers or memory. */
161 descr->nr_cooked_registers = NUM_REGS + NUM_PSEUDO_REGS;
162 descr->sizeof_cooked_register_valid_p = NUM_REGS + NUM_PSEUDO_REGS;
163
164 /* Fill in a table of register types. */
165 descr->register_type
166 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, struct type *);
167 for (i = 0; i < descr->nr_cooked_registers; i++)
168 {
169 if (gdbarch_register_type_p (gdbarch))
170 {
171 gdb_assert (!DEPRECATED_REGISTER_VIRTUAL_TYPE_P ()); /* OK */
172 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
173 }
174 else
175 descr->register_type[i] = DEPRECATED_REGISTER_VIRTUAL_TYPE (i); /* OK */
176 }
177
178 /* Construct a strictly RAW register cache. Don't allow pseudo's
179 into the register cache. */
180 descr->nr_raw_registers = NUM_REGS;
181
182 /* FIXME: cagney/2002-08-13: Overallocate the register_valid_p
183 array. This pretects GDB from erant code that accesses elements
184 of the global register_valid_p[] array in the range [NUM_REGS
185 .. NUM_REGS + NUM_PSEUDO_REGS). */
186 descr->sizeof_raw_register_valid_p = descr->sizeof_cooked_register_valid_p;
187
188 /* If an old style architecture, fill in the remainder of the
189 register cache descriptor using the register macros. */
190 /* NOTE: cagney/2003-06-29: If either of DEPRECATED_REGISTER_BYTE or
191 DEPRECATED_REGISTER_RAW_SIZE are still present, things are most likely
192 totally screwed. Ex: an architecture with raw register sizes
193 smaller than what DEPRECATED_REGISTER_BYTE indicates; non
194 monotonic DEPRECATED_REGISTER_BYTE values. For GDB 6 check for
195 these nasty methods and fall back to legacy code when present.
196 Sigh! */
197 if ((!gdbarch_pseudo_register_read_p (gdbarch)
198 && !gdbarch_pseudo_register_write_p (gdbarch)
199 && !gdbarch_register_type_p (gdbarch))
200 || DEPRECATED_REGISTER_BYTE_P ()
201 || DEPRECATED_REGISTER_RAW_SIZE_P ())
202 {
203 descr->legacy_p = 1;
204 init_legacy_regcache_descr (gdbarch, descr);
205 return descr;
206 }
207
208 /* Lay out the register cache.
209
210 NOTE: cagney/2002-05-22: Only register_type() is used when
211 constructing the register cache. It is assumed that the
212 register's raw size, virtual size and type length are all the
213 same. */
214
215 {
216 long offset = 0;
217 descr->sizeof_register
218 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
219 descr->register_offset
220 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
221 for (i = 0; i < descr->nr_cooked_registers; i++)
222 {
223 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
224 descr->register_offset[i] = offset;
225 offset += descr->sizeof_register[i];
226 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
227 }
228 /* Set the real size of the register cache buffer. */
229 descr->sizeof_cooked_registers = offset;
230 }
231
232 /* FIXME: cagney/2002-05-22: Should only need to allocate space for
233 the raw registers. Unfortunately some code still accesses the
234 register array directly using the global registers[]. Until that
235 code has been purged, play safe and over allocating the register
236 buffer. Ulgh! */
237 descr->sizeof_raw_registers = descr->sizeof_cooked_registers;
238
239 /* Sanity check. Confirm that there is agreement between the
240 regcache and the target's redundant DEPRECATED_REGISTER_BYTE (new
241 targets should not even be defining it). */
242 for (i = 0; i < descr->nr_cooked_registers; i++)
243 {
244 if (DEPRECATED_REGISTER_BYTE_P ())
245 gdb_assert (descr->register_offset[i] == DEPRECATED_REGISTER_BYTE (i));
246 #if 0
247 gdb_assert (descr->sizeof_register[i] == DEPRECATED_REGISTER_RAW_SIZE (i));
248 gdb_assert (descr->sizeof_register[i] == DEPRECATED_REGISTER_VIRTUAL_SIZE (i));
249 #endif
250 }
251 /* gdb_assert (descr->sizeof_raw_registers == DEPRECATED_REGISTER_BYTES (i)); */
252
253 return descr;
254 }
255
256 static struct regcache_descr *
257 regcache_descr (struct gdbarch *gdbarch)
258 {
259 return gdbarch_data (gdbarch, regcache_descr_handle);
260 }
261
262 /* Utility functions returning useful register attributes stored in
263 the regcache descr. */
264
265 struct type *
266 register_type (struct gdbarch *gdbarch, int regnum)
267 {
268 struct regcache_descr *descr = regcache_descr (gdbarch);
269 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
270 return descr->register_type[regnum];
271 }
272
273 /* Utility functions returning useful register attributes stored in
274 the regcache descr. */
275
276 int
277 register_size (struct gdbarch *gdbarch, int regnum)
278 {
279 struct regcache_descr *descr = regcache_descr (gdbarch);
280 int size;
281 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
282 size = descr->sizeof_register[regnum];
283 /* NB: The deprecated DEPRECATED_REGISTER_RAW_SIZE, if not provided, defaults
284 to the size of the register's type. */
285 gdb_assert (size == DEPRECATED_REGISTER_RAW_SIZE (regnum)); /* OK */
286 /* NB: Don't check the register's virtual size. It, in say the case
287 of the MIPS, may not match the raw size! */
288 return size;
289 }
290
291 /* The register cache for storing raw register values. */
292
293 struct regcache
294 {
295 struct regcache_descr *descr;
296 /* The register buffers. A read-only register cache can hold the
297 full [0 .. NUM_REGS + NUM_PSEUDO_REGS) while a read/write
298 register cache can only hold [0 .. NUM_REGS). */
299 char *registers;
300 char *register_valid_p;
301 /* Is this a read-only cache? A read-only cache is used for saving
302 the target's register state (e.g, across an inferior function
303 call or just before forcing a function return). A read-only
304 cache can only be updated via the methods regcache_dup() and
305 regcache_cpy(). The actual contents are determined by the
306 reggroup_save and reggroup_restore methods. */
307 int readonly_p;
308 };
309
310 struct regcache *
311 regcache_xmalloc (struct gdbarch *gdbarch)
312 {
313 struct regcache_descr *descr;
314 struct regcache *regcache;
315 gdb_assert (gdbarch != NULL);
316 descr = regcache_descr (gdbarch);
317 regcache = XMALLOC (struct regcache);
318 regcache->descr = descr;
319 regcache->registers
320 = XCALLOC (descr->sizeof_raw_registers, char);
321 regcache->register_valid_p
322 = XCALLOC (descr->sizeof_raw_register_valid_p, char);
323 regcache->readonly_p = 1;
324 return regcache;
325 }
326
327 void
328 regcache_xfree (struct regcache *regcache)
329 {
330 if (regcache == NULL)
331 return;
332 xfree (regcache->registers);
333 xfree (regcache->register_valid_p);
334 xfree (regcache);
335 }
336
337 static void
338 do_regcache_xfree (void *data)
339 {
340 regcache_xfree (data);
341 }
342
343 struct cleanup *
344 make_cleanup_regcache_xfree (struct regcache *regcache)
345 {
346 return make_cleanup (do_regcache_xfree, regcache);
347 }
348
349 /* Return REGCACHE's architecture. */
350
351 struct gdbarch *
352 get_regcache_arch (const struct regcache *regcache)
353 {
354 return regcache->descr->gdbarch;
355 }
356
357 /* Return a pointer to register REGNUM's buffer cache. */
358
359 static char *
360 register_buffer (const struct regcache *regcache, int regnum)
361 {
362 return regcache->registers + regcache->descr->register_offset[regnum];
363 }
364
365 void
366 regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read,
367 void *src)
368 {
369 struct gdbarch *gdbarch = dst->descr->gdbarch;
370 char buf[MAX_REGISTER_SIZE];
371 int regnum;
372 /* The DST should be `read-only', if it wasn't then the save would
373 end up trying to write the register values back out to the
374 target. */
375 gdb_assert (dst->readonly_p);
376 /* Clear the dest. */
377 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers);
378 memset (dst->register_valid_p, 0, dst->descr->sizeof_cooked_register_valid_p);
379 /* Copy over any registers (identified by their membership in the
380 save_reggroup) and mark them as valid. The full [0 .. NUM_REGS +
381 NUM_PSEUDO_REGS) range is checked since some architectures need
382 to save/restore `cooked' registers that live in memory. */
383 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
384 {
385 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
386 {
387 int valid = cooked_read (src, regnum, buf);
388 if (valid)
389 {
390 memcpy (register_buffer (dst, regnum), buf,
391 register_size (gdbarch, regnum));
392 dst->register_valid_p[regnum] = 1;
393 }
394 }
395 }
396 }
397
398 void
399 regcache_restore (struct regcache *dst,
400 regcache_cooked_read_ftype *cooked_read,
401 void *src)
402 {
403 struct gdbarch *gdbarch = dst->descr->gdbarch;
404 char buf[MAX_REGISTER_SIZE];
405 int regnum;
406 /* The dst had better not be read-only. If it is, the `restore'
407 doesn't make much sense. */
408 gdb_assert (!dst->readonly_p);
409 /* Copy over any registers, being careful to only restore those that
410 were both saved and need to be restored. The full [0 .. NUM_REGS
411 + NUM_PSEUDO_REGS) range is checked since some architectures need
412 to save/restore `cooked' registers that live in memory. */
413 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
414 {
415 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
416 {
417 int valid = cooked_read (src, regnum, buf);
418 if (valid)
419 regcache_cooked_write (dst, regnum, buf);
420 }
421 }
422 }
423
424 static int
425 do_cooked_read (void *src, int regnum, void *buf)
426 {
427 struct regcache *regcache = src;
428 if (!regcache->register_valid_p[regnum] && regcache->readonly_p)
429 /* Don't even think about fetching a register from a read-only
430 cache when the register isn't yet valid. There isn't a target
431 from which the register value can be fetched. */
432 return 0;
433 regcache_cooked_read (regcache, regnum, buf);
434 return 1;
435 }
436
437
438 void
439 regcache_cpy (struct regcache *dst, struct regcache *src)
440 {
441 int i;
442 char *buf;
443 gdb_assert (src != NULL && dst != NULL);
444 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
445 gdb_assert (src != dst);
446 gdb_assert (src->readonly_p || dst->readonly_p);
447 if (!src->readonly_p)
448 regcache_save (dst, do_cooked_read, src);
449 else if (!dst->readonly_p)
450 regcache_restore (dst, do_cooked_read, src);
451 else
452 regcache_cpy_no_passthrough (dst, src);
453 }
454
455 void
456 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
457 {
458 int i;
459 gdb_assert (src != NULL && dst != NULL);
460 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
461 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
462 move of data into the current_regcache(). Doing this would be
463 silly - it would mean that valid_p would be completely invalid. */
464 gdb_assert (dst != current_regcache);
465 memcpy (dst->registers, src->registers, dst->descr->sizeof_raw_registers);
466 memcpy (dst->register_valid_p, src->register_valid_p,
467 dst->descr->sizeof_raw_register_valid_p);
468 }
469
470 struct regcache *
471 regcache_dup (struct regcache *src)
472 {
473 struct regcache *newbuf;
474 gdb_assert (current_regcache != NULL);
475 newbuf = regcache_xmalloc (src->descr->gdbarch);
476 regcache_cpy (newbuf, src);
477 return newbuf;
478 }
479
480 struct regcache *
481 regcache_dup_no_passthrough (struct regcache *src)
482 {
483 struct regcache *newbuf;
484 gdb_assert (current_regcache != NULL);
485 newbuf = regcache_xmalloc (src->descr->gdbarch);
486 regcache_cpy_no_passthrough (newbuf, src);
487 return newbuf;
488 }
489
490 int
491 regcache_valid_p (struct regcache *regcache, int regnum)
492 {
493 gdb_assert (regcache != NULL);
494 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
495 return regcache->register_valid_p[regnum];
496 }
497
498 char *
499 deprecated_grub_regcache_for_registers (struct regcache *regcache)
500 {
501 return regcache->registers;
502 }
503
504 /* Global structure containing the current regcache. */
505 /* FIXME: cagney/2002-05-11: The two global arrays registers[] and
506 deprecated_register_valid[] currently point into this structure. */
507 struct regcache *current_regcache;
508
509 /* NOTE: this is a write-through cache. There is no "dirty" bit for
510 recording if the register values have been changed (eg. by the
511 user). Therefore all registers must be written back to the
512 target when appropriate. */
513
514 /* REGISTERS contains the cached register values (in target byte order). */
515
516 char *deprecated_registers;
517
518 /* DEPRECATED_REGISTER_VALID is 0 if the register needs to be fetched,
519 1 if it has been fetched, and
520 -1 if the register value was not available.
521
522 "Not available" indicates that the target is not not able to supply
523 the register at this state. The register may become available at a
524 later time (after the next resume). This often occures when GDB is
525 manipulating a target that contains only a snapshot of the entire
526 system being debugged - some of the registers in such a system may
527 not have been saved. */
528
529 signed char *deprecated_register_valid;
530
531 /* The thread/process associated with the current set of registers. */
532
533 static ptid_t registers_ptid;
534
535 /*
536 * FUNCTIONS:
537 */
538
539 /* REGISTER_CACHED()
540
541 Returns 0 if the value is not in the cache (needs fetch).
542 >0 if the value is in the cache.
543 <0 if the value is permanently unavailable (don't ask again). */
544
545 int
546 register_cached (int regnum)
547 {
548 return deprecated_register_valid[regnum];
549 }
550
551 /* Record that REGNUM's value is cached if STATE is >0, uncached but
552 fetchable if STATE is 0, and uncached and unfetchable if STATE is <0. */
553
554 void
555 set_register_cached (int regnum, int state)
556 {
557 gdb_assert (regnum >= 0);
558 gdb_assert (regnum < current_regcache->descr->nr_raw_registers);
559 current_regcache->register_valid_p[regnum] = state;
560 }
561
562 /* Return whether register REGNUM is a real register. */
563
564 static int
565 real_register (int regnum)
566 {
567 return regnum >= 0 && regnum < NUM_REGS;
568 }
569
570 /* Observer for the target_changed event. */
571
572 void
573 regcache_observer_target_changed (struct target_ops *target)
574 {
575 registers_changed ();
576 }
577
578 /* Low level examining and depositing of registers.
579
580 The caller is responsible for making sure that the inferior is
581 stopped before calling the fetching routines, or it will get
582 garbage. (a change from GDB version 3, in which the caller got the
583 value from the last stop). */
584
585 /* REGISTERS_CHANGED ()
586
587 Indicate that registers may have changed, so invalidate the cache. */
588
589 void
590 registers_changed (void)
591 {
592 int i;
593
594 registers_ptid = pid_to_ptid (-1);
595
596 /* Force cleanup of any alloca areas if using C alloca instead of
597 a builtin alloca. This particular call is used to clean up
598 areas allocated by low level target code which may build up
599 during lengthy interactions between gdb and the target before
600 gdb gives control to the user (ie watchpoints). */
601 alloca (0);
602
603 for (i = 0; i < current_regcache->descr->nr_raw_registers; i++)
604 set_register_cached (i, 0);
605
606 if (deprecated_registers_changed_hook)
607 deprecated_registers_changed_hook ();
608 }
609
610 /* DEPRECATED_REGISTERS_FETCHED ()
611
612 Indicate that all registers have been fetched, so mark them all valid. */
613
614 /* NOTE: cagney/2001-12-04: This function does not set valid on the
615 pseudo-register range since pseudo registers are always supplied
616 using supply_register(). */
617 /* FIXME: cagney/2001-12-04: This function is DEPRECATED. The target
618 code was blatting the registers[] array and then calling this.
619 Since targets should only be using supply_register() the need for
620 this function/hack is eliminated. */
621
622 void
623 deprecated_registers_fetched (void)
624 {
625 int i;
626
627 for (i = 0; i < NUM_REGS; i++)
628 set_register_cached (i, 1);
629 /* Do not assume that the pseudo-regs have also been fetched.
630 Fetching all real regs NEVER accounts for pseudo-regs. */
631 }
632
633 /* deprecated_read_register_bytes and deprecated_write_register_bytes
634 are generally a *BAD* idea. They are inefficient because they need
635 to check for partial updates, which can only be done by scanning
636 through all of the registers and seeing if the bytes that are being
637 read/written fall inside of an invalid register. [The main reason
638 this is necessary is that register sizes can vary, so a simple
639 index won't suffice.] It is far better to call read_register_gen
640 and write_register_gen if you want to get at the raw register
641 contents, as it only takes a regnum as an argument, and therefore
642 can't do a partial register update.
643
644 Prior to the recent fixes to check for partial updates, both read
645 and deprecated_write_register_bytes always checked to see if any
646 registers were stale, and then called target_fetch_registers (-1)
647 to update the whole set. This caused really slowed things down for
648 remote targets. */
649
650 /* Copy INLEN bytes of consecutive data from registers
651 starting with the INREGBYTE'th byte of register data
652 into memory at MYADDR. */
653
654 void
655 deprecated_read_register_bytes (int in_start, char *in_buf, int in_len)
656 {
657 int in_end = in_start + in_len;
658 int regnum;
659 char reg_buf[MAX_REGISTER_SIZE];
660
661 /* See if we are trying to read bytes from out-of-date registers. If so,
662 update just those registers. */
663
664 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
665 {
666 int reg_start;
667 int reg_end;
668 int reg_len;
669 int start;
670 int end;
671 int byte;
672
673 reg_start = DEPRECATED_REGISTER_BYTE (regnum);
674 reg_len = DEPRECATED_REGISTER_RAW_SIZE (regnum);
675 reg_end = reg_start + reg_len;
676
677 if (reg_end <= in_start || in_end <= reg_start)
678 /* The range the user wants to read doesn't overlap with regnum. */
679 continue;
680
681 if (REGISTER_NAME (regnum) != NULL && *REGISTER_NAME (regnum) != '\0')
682 /* Force the cache to fetch the entire register. */
683 deprecated_read_register_gen (regnum, reg_buf);
684 else
685 /* Legacy note: even though this register is ``invalid'' we
686 still need to return something. It would appear that some
687 code relies on apparent gaps in the register array also
688 being returned. */
689 /* FIXME: cagney/2001-08-18: This is just silly. It defeats
690 the entire register read/write flow of control. Must
691 resist temptation to return 0xdeadbeef. */
692 memcpy (reg_buf, &deprecated_registers[reg_start], reg_len);
693
694 /* Legacy note: This function, for some reason, allows a NULL
695 input buffer. If the buffer is NULL, the registers are still
696 fetched, just the final transfer is skipped. */
697 if (in_buf == NULL)
698 continue;
699
700 /* start = max (reg_start, in_start) */
701 if (reg_start > in_start)
702 start = reg_start;
703 else
704 start = in_start;
705
706 /* end = min (reg_end, in_end) */
707 if (reg_end < in_end)
708 end = reg_end;
709 else
710 end = in_end;
711
712 /* Transfer just the bytes common to both IN_BUF and REG_BUF */
713 for (byte = start; byte < end; byte++)
714 {
715 in_buf[byte - in_start] = reg_buf[byte - reg_start];
716 }
717 }
718 }
719
720 /* Read register REGNUM into memory at MYADDR, which must be large
721 enough for REGISTER_RAW_BYTES (REGNUM). Target byte-order. If the
722 register is known to be the size of a CORE_ADDR or smaller,
723 read_register can be used instead. */
724
725 static void
726 legacy_read_register_gen (int regnum, char *myaddr)
727 {
728 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
729 if (! ptid_equal (registers_ptid, inferior_ptid))
730 {
731 registers_changed ();
732 registers_ptid = inferior_ptid;
733 }
734
735 if (!register_cached (regnum))
736 target_fetch_registers (regnum);
737
738 memcpy (myaddr, register_buffer (current_regcache, regnum),
739 DEPRECATED_REGISTER_RAW_SIZE (regnum));
740 }
741
742 void
743 regcache_raw_read (struct regcache *regcache, int regnum, void *buf)
744 {
745 gdb_assert (regcache != NULL && buf != NULL);
746 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
747 if (regcache->descr->legacy_p
748 && !regcache->readonly_p)
749 {
750 gdb_assert (regcache == current_regcache);
751 /* For moment, just use underlying legacy code. Ulgh!!! This
752 silently and very indirectly updates the regcache's regcache
753 via the global deprecated_register_valid[]. */
754 legacy_read_register_gen (regnum, buf);
755 return;
756 }
757 /* Make certain that the register cache is up-to-date with respect
758 to the current thread. This switching shouldn't be necessary
759 only there is still only one target side register cache. Sigh!
760 On the bright side, at least there is a regcache object. */
761 if (!regcache->readonly_p)
762 {
763 gdb_assert (regcache == current_regcache);
764 if (! ptid_equal (registers_ptid, inferior_ptid))
765 {
766 registers_changed ();
767 registers_ptid = inferior_ptid;
768 }
769 if (!register_cached (regnum))
770 target_fetch_registers (regnum);
771 }
772 /* Copy the value directly into the register cache. */
773 memcpy (buf, register_buffer (regcache, regnum),
774 regcache->descr->sizeof_register[regnum]);
775 }
776
777 void
778 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
779 {
780 char *buf;
781 gdb_assert (regcache != NULL);
782 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
783 buf = alloca (regcache->descr->sizeof_register[regnum]);
784 regcache_raw_read (regcache, regnum, buf);
785 (*val) = extract_signed_integer (buf,
786 regcache->descr->sizeof_register[regnum]);
787 }
788
789 void
790 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
791 ULONGEST *val)
792 {
793 char *buf;
794 gdb_assert (regcache != NULL);
795 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
796 buf = alloca (regcache->descr->sizeof_register[regnum]);
797 regcache_raw_read (regcache, regnum, buf);
798 (*val) = extract_unsigned_integer (buf,
799 regcache->descr->sizeof_register[regnum]);
800 }
801
802 void
803 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
804 {
805 void *buf;
806 gdb_assert (regcache != NULL);
807 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
808 buf = alloca (regcache->descr->sizeof_register[regnum]);
809 store_signed_integer (buf, regcache->descr->sizeof_register[regnum], val);
810 regcache_raw_write (regcache, regnum, buf);
811 }
812
813 void
814 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
815 ULONGEST val)
816 {
817 void *buf;
818 gdb_assert (regcache != NULL);
819 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
820 buf = alloca (regcache->descr->sizeof_register[regnum]);
821 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], val);
822 regcache_raw_write (regcache, regnum, buf);
823 }
824
825 void
826 deprecated_read_register_gen (int regnum, char *buf)
827 {
828 gdb_assert (current_regcache != NULL);
829 gdb_assert (current_regcache->descr->gdbarch == current_gdbarch);
830 if (current_regcache->descr->legacy_p)
831 {
832 legacy_read_register_gen (regnum, buf);
833 return;
834 }
835 regcache_cooked_read (current_regcache, regnum, buf);
836 }
837
838 void
839 regcache_cooked_read (struct regcache *regcache, int regnum, void *buf)
840 {
841 gdb_assert (regnum >= 0);
842 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
843 if (regnum < regcache->descr->nr_raw_registers)
844 regcache_raw_read (regcache, regnum, buf);
845 else if (regcache->readonly_p
846 && regnum < regcache->descr->nr_cooked_registers
847 && regcache->register_valid_p[regnum])
848 /* Read-only register cache, perhaphs the cooked value was cached? */
849 memcpy (buf, register_buffer (regcache, regnum),
850 regcache->descr->sizeof_register[regnum]);
851 else
852 gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache,
853 regnum, buf);
854 }
855
856 void
857 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
858 LONGEST *val)
859 {
860 char *buf;
861 gdb_assert (regcache != NULL);
862 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
863 buf = alloca (regcache->descr->sizeof_register[regnum]);
864 regcache_cooked_read (regcache, regnum, buf);
865 (*val) = extract_signed_integer (buf,
866 regcache->descr->sizeof_register[regnum]);
867 }
868
869 void
870 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
871 ULONGEST *val)
872 {
873 char *buf;
874 gdb_assert (regcache != NULL);
875 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
876 buf = alloca (regcache->descr->sizeof_register[regnum]);
877 regcache_cooked_read (regcache, regnum, buf);
878 (*val) = extract_unsigned_integer (buf,
879 regcache->descr->sizeof_register[regnum]);
880 }
881
882 void
883 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
884 LONGEST val)
885 {
886 void *buf;
887 gdb_assert (regcache != NULL);
888 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
889 buf = alloca (regcache->descr->sizeof_register[regnum]);
890 store_signed_integer (buf, regcache->descr->sizeof_register[regnum], val);
891 regcache_cooked_write (regcache, regnum, buf);
892 }
893
894 void
895 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
896 ULONGEST val)
897 {
898 void *buf;
899 gdb_assert (regcache != NULL);
900 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
901 buf = alloca (regcache->descr->sizeof_register[regnum]);
902 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], val);
903 regcache_cooked_write (regcache, regnum, buf);
904 }
905
906 /* Write register REGNUM at MYADDR to the target. MYADDR points at
907 REGISTER_RAW_BYTES(REGNUM), which must be in target byte-order. */
908
909 static void
910 legacy_write_register_gen (int regnum, const void *myaddr)
911 {
912 int size;
913 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
914
915 /* On the sparc, writing %g0 is a no-op, so we don't even want to
916 change the registers array if something writes to this register. */
917 if (CANNOT_STORE_REGISTER (regnum))
918 return;
919
920 if (! ptid_equal (registers_ptid, inferior_ptid))
921 {
922 registers_changed ();
923 registers_ptid = inferior_ptid;
924 }
925
926 size = DEPRECATED_REGISTER_RAW_SIZE (regnum);
927
928 if (real_register (regnum))
929 {
930 /* If we have a valid copy of the register, and new value == old
931 value, then don't bother doing the actual store. */
932 if (register_cached (regnum)
933 && (memcmp (register_buffer (current_regcache, regnum), myaddr, size)
934 == 0))
935 return;
936 else
937 target_prepare_to_store ();
938 }
939
940 memcpy (register_buffer (current_regcache, regnum), myaddr, size);
941
942 set_register_cached (regnum, 1);
943 target_store_registers (regnum);
944 }
945
946 void
947 regcache_raw_write (struct regcache *regcache, int regnum, const void *buf)
948 {
949 gdb_assert (regcache != NULL && buf != NULL);
950 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
951 gdb_assert (!regcache->readonly_p);
952
953 if (regcache->descr->legacy_p)
954 {
955 /* For moment, just use underlying legacy code. Ulgh!!! This
956 silently and very indirectly updates the regcache's buffers
957 via the globals deprecated_register_valid[] and registers[]. */
958 gdb_assert (regcache == current_regcache);
959 legacy_write_register_gen (regnum, buf);
960 return;
961 }
962
963 /* On the sparc, writing %g0 is a no-op, so we don't even want to
964 change the registers array if something writes to this register. */
965 if (CANNOT_STORE_REGISTER (regnum))
966 return;
967
968 /* Make certain that the correct cache is selected. */
969 gdb_assert (regcache == current_regcache);
970 if (! ptid_equal (registers_ptid, inferior_ptid))
971 {
972 registers_changed ();
973 registers_ptid = inferior_ptid;
974 }
975
976 /* If we have a valid copy of the register, and new value == old
977 value, then don't bother doing the actual store. */
978 if (regcache_valid_p (regcache, regnum)
979 && (memcmp (register_buffer (regcache, regnum), buf,
980 regcache->descr->sizeof_register[regnum]) == 0))
981 return;
982
983 target_prepare_to_store ();
984 memcpy (register_buffer (regcache, regnum), buf,
985 regcache->descr->sizeof_register[regnum]);
986 regcache->register_valid_p[regnum] = 1;
987 target_store_registers (regnum);
988 }
989
990 void
991 deprecated_write_register_gen (int regnum, char *buf)
992 {
993 gdb_assert (current_regcache != NULL);
994 gdb_assert (current_regcache->descr->gdbarch == current_gdbarch);
995 if (current_regcache->descr->legacy_p)
996 {
997 legacy_write_register_gen (regnum, buf);
998 return;
999 }
1000 regcache_cooked_write (current_regcache, regnum, buf);
1001 }
1002
1003 void
1004 regcache_cooked_write (struct regcache *regcache, int regnum, const void *buf)
1005 {
1006 gdb_assert (regnum >= 0);
1007 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
1008 if (regnum < regcache->descr->nr_raw_registers)
1009 regcache_raw_write (regcache, regnum, buf);
1010 else
1011 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache,
1012 regnum, buf);
1013 }
1014
1015 /* Copy INLEN bytes of consecutive data from memory at MYADDR
1016 into registers starting with the MYREGSTART'th byte of register data. */
1017
1018 void
1019 deprecated_write_register_bytes (int myregstart, char *myaddr, int inlen)
1020 {
1021 int myregend = myregstart + inlen;
1022 int regnum;
1023
1024 target_prepare_to_store ();
1025
1026 /* Scan through the registers updating any that are covered by the
1027 range myregstart<=>myregend using write_register_gen, which does
1028 nice things like handling threads, and avoiding updates when the
1029 new and old contents are the same. */
1030
1031 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
1032 {
1033 int regstart, regend;
1034
1035 regstart = DEPRECATED_REGISTER_BYTE (regnum);
1036 regend = regstart + DEPRECATED_REGISTER_RAW_SIZE (regnum);
1037
1038 /* Is this register completely outside the range the user is writing? */
1039 if (myregend <= regstart || regend <= myregstart)
1040 /* do nothing */ ;
1041
1042 /* Is this register completely within the range the user is writing? */
1043 else if (myregstart <= regstart && regend <= myregend)
1044 deprecated_write_register_gen (regnum, myaddr + (regstart - myregstart));
1045
1046 /* The register partially overlaps the range being written. */
1047 else
1048 {
1049 char regbuf[MAX_REGISTER_SIZE];
1050 /* What's the overlap between this register's bytes and
1051 those the caller wants to write? */
1052 int overlapstart = max (regstart, myregstart);
1053 int overlapend = min (regend, myregend);
1054
1055 /* We may be doing a partial update of an invalid register.
1056 Update it from the target before scribbling on it. */
1057 deprecated_read_register_gen (regnum, regbuf);
1058
1059 memcpy (&deprecated_registers[overlapstart],
1060 myaddr + (overlapstart - myregstart),
1061 overlapend - overlapstart);
1062
1063 target_store_registers (regnum);
1064 }
1065 }
1066 }
1067
1068 /* Perform a partial register transfer using a read, modify, write
1069 operation. */
1070
1071 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
1072 void *buf);
1073 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
1074 const void *buf);
1075
1076 static void
1077 regcache_xfer_part (struct regcache *regcache, int regnum,
1078 int offset, int len, void *in, const void *out,
1079 regcache_read_ftype *read, regcache_write_ftype *write)
1080 {
1081 struct regcache_descr *descr = regcache->descr;
1082 bfd_byte reg[MAX_REGISTER_SIZE];
1083 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]);
1084 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]);
1085 /* Something to do? */
1086 if (offset + len == 0)
1087 return;
1088 /* Read (when needed) ... */
1089 if (in != NULL
1090 || offset > 0
1091 || offset + len < descr->sizeof_register[regnum])
1092 {
1093 gdb_assert (read != NULL);
1094 read (regcache, regnum, reg);
1095 }
1096 /* ... modify ... */
1097 if (in != NULL)
1098 memcpy (in, reg + offset, len);
1099 if (out != NULL)
1100 memcpy (reg + offset, out, len);
1101 /* ... write (when needed). */
1102 if (out != NULL)
1103 {
1104 gdb_assert (write != NULL);
1105 write (regcache, regnum, reg);
1106 }
1107 }
1108
1109 void
1110 regcache_raw_read_part (struct regcache *regcache, int regnum,
1111 int offset, int len, void *buf)
1112 {
1113 struct regcache_descr *descr = regcache->descr;
1114 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
1115 regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
1116 regcache_raw_read, regcache_raw_write);
1117 }
1118
1119 void
1120 regcache_raw_write_part (struct regcache *regcache, int regnum,
1121 int offset, int len, const void *buf)
1122 {
1123 struct regcache_descr *descr = regcache->descr;
1124 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
1125 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
1126 regcache_raw_read, regcache_raw_write);
1127 }
1128
1129 void
1130 regcache_cooked_read_part (struct regcache *regcache, int regnum,
1131 int offset, int len, void *buf)
1132 {
1133 struct regcache_descr *descr = regcache->descr;
1134 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
1135 regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
1136 regcache_cooked_read, regcache_cooked_write);
1137 }
1138
1139 void
1140 regcache_cooked_write_part (struct regcache *regcache, int regnum,
1141 int offset, int len, const void *buf)
1142 {
1143 struct regcache_descr *descr = regcache->descr;
1144 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
1145 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
1146 regcache_cooked_read, regcache_cooked_write);
1147 }
1148
1149 /* Hack to keep code that view the register buffer as raw bytes
1150 working. */
1151
1152 int
1153 register_offset_hack (struct gdbarch *gdbarch, int regnum)
1154 {
1155 struct regcache_descr *descr = regcache_descr (gdbarch);
1156 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
1157 return descr->register_offset[regnum];
1158 }
1159
1160 /* Return the contents of register REGNUM as an unsigned integer. */
1161
1162 ULONGEST
1163 read_register (int regnum)
1164 {
1165 char *buf = alloca (DEPRECATED_REGISTER_RAW_SIZE (regnum));
1166 deprecated_read_register_gen (regnum, buf);
1167 return (extract_unsigned_integer (buf, DEPRECATED_REGISTER_RAW_SIZE (regnum)));
1168 }
1169
1170 ULONGEST
1171 read_register_pid (int regnum, ptid_t ptid)
1172 {
1173 ptid_t save_ptid;
1174 int save_pid;
1175 CORE_ADDR retval;
1176
1177 if (ptid_equal (ptid, inferior_ptid))
1178 return read_register (regnum);
1179
1180 save_ptid = inferior_ptid;
1181
1182 inferior_ptid = ptid;
1183
1184 retval = read_register (regnum);
1185
1186 inferior_ptid = save_ptid;
1187
1188 return retval;
1189 }
1190
1191 /* Store VALUE into the raw contents of register number REGNUM. */
1192
1193 void
1194 write_register (int regnum, LONGEST val)
1195 {
1196 void *buf;
1197 int size;
1198 size = DEPRECATED_REGISTER_RAW_SIZE (regnum);
1199 buf = alloca (size);
1200 store_signed_integer (buf, size, (LONGEST) val);
1201 deprecated_write_register_gen (regnum, buf);
1202 }
1203
1204 void
1205 write_register_pid (int regnum, CORE_ADDR val, ptid_t ptid)
1206 {
1207 ptid_t save_ptid;
1208
1209 if (ptid_equal (ptid, inferior_ptid))
1210 {
1211 write_register (regnum, val);
1212 return;
1213 }
1214
1215 save_ptid = inferior_ptid;
1216
1217 inferior_ptid = ptid;
1218
1219 write_register (regnum, val);
1220
1221 inferior_ptid = save_ptid;
1222 }
1223
1224 /* FIXME: kettenis/20030828: We should get rid of supply_register and
1225 regcache_collect in favour of regcache_raw_supply and
1226 regcache_raw_collect. */
1227
1228 /* SUPPLY_REGISTER()
1229
1230 Record that register REGNUM contains VAL. This is used when the
1231 value is obtained from the inferior or core dump, so there is no
1232 need to store the value there.
1233
1234 If VAL is a NULL pointer, then it's probably an unsupported register.
1235 We just set its value to all zeros. We might want to record this
1236 fact, and report it to the users of read_register and friends. */
1237
1238 void
1239 supply_register (int regnum, const void *val)
1240 {
1241 regcache_raw_supply (current_regcache, regnum, val);
1242 }
1243
1244 void
1245 regcache_collect (int regnum, void *buf)
1246 {
1247 regcache_raw_collect (current_regcache, regnum, buf);
1248 }
1249
1250 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
1251
1252 void
1253 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
1254 {
1255 void *regbuf;
1256 size_t size;
1257
1258 gdb_assert (regcache != NULL);
1259 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1260 gdb_assert (!regcache->readonly_p);
1261
1262 /* FIXME: kettenis/20030828: It shouldn't be necessary to handle
1263 CURRENT_REGCACHE specially here. */
1264 if (regcache == current_regcache
1265 && !ptid_equal (registers_ptid, inferior_ptid))
1266 {
1267 registers_changed ();
1268 registers_ptid = inferior_ptid;
1269 }
1270
1271 regbuf = register_buffer (regcache, regnum);
1272 size = regcache->descr->sizeof_register[regnum];
1273
1274 if (buf)
1275 memcpy (regbuf, buf, size);
1276 else
1277 memset (regbuf, 0, size);
1278
1279 /* Mark the register as cached. */
1280 regcache->register_valid_p[regnum] = 1;
1281 }
1282
1283 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
1284
1285 void
1286 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
1287 {
1288 const void *regbuf;
1289 size_t size;
1290
1291 gdb_assert (regcache != NULL && buf != NULL);
1292 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1293
1294 regbuf = register_buffer (regcache, regnum);
1295 size = regcache->descr->sizeof_register[regnum];
1296 memcpy (buf, regbuf, size);
1297 }
1298
1299
1300 /* read_pc, write_pc, read_sp, deprecated_read_fp, etc. Special
1301 handling for registers PC, SP, and FP. */
1302
1303 /* NOTE: cagney/2001-02-18: The functions read_pc_pid(), read_pc(),
1304 read_sp(), and deprecated_read_fp(), will eventually be replaced by
1305 per-frame methods. Instead of relying on the global INFERIOR_PTID,
1306 they will use the contextual information provided by the FRAME.
1307 These functions do not belong in the register cache. */
1308
1309 /* NOTE: cagney/2003-06-07: The functions generic_target_write_pc(),
1310 write_pc_pid(), write_pc(), and deprecated_read_fp(), all need to
1311 be replaced by something that does not rely on global state. But
1312 what? */
1313
1314 CORE_ADDR
1315 read_pc_pid (ptid_t ptid)
1316 {
1317 ptid_t saved_inferior_ptid;
1318 CORE_ADDR pc_val;
1319
1320 /* In case ptid != inferior_ptid. */
1321 saved_inferior_ptid = inferior_ptid;
1322 inferior_ptid = ptid;
1323
1324 if (TARGET_READ_PC_P ())
1325 pc_val = TARGET_READ_PC (ptid);
1326 /* Else use per-frame method on get_current_frame. */
1327 else if (PC_REGNUM >= 0)
1328 {
1329 CORE_ADDR raw_val = read_register_pid (PC_REGNUM, ptid);
1330 pc_val = ADDR_BITS_REMOVE (raw_val);
1331 }
1332 else
1333 internal_error (__FILE__, __LINE__, "read_pc_pid: Unable to find PC");
1334
1335 inferior_ptid = saved_inferior_ptid;
1336 return pc_val;
1337 }
1338
1339 CORE_ADDR
1340 read_pc (void)
1341 {
1342 return read_pc_pid (inferior_ptid);
1343 }
1344
1345 void
1346 generic_target_write_pc (CORE_ADDR pc, ptid_t ptid)
1347 {
1348 if (PC_REGNUM >= 0)
1349 write_register_pid (PC_REGNUM, pc, ptid);
1350 else
1351 internal_error (__FILE__, __LINE__,
1352 "generic_target_write_pc");
1353 }
1354
1355 void
1356 write_pc_pid (CORE_ADDR pc, ptid_t ptid)
1357 {
1358 ptid_t saved_inferior_ptid;
1359
1360 /* In case ptid != inferior_ptid. */
1361 saved_inferior_ptid = inferior_ptid;
1362 inferior_ptid = ptid;
1363
1364 TARGET_WRITE_PC (pc, ptid);
1365
1366 inferior_ptid = saved_inferior_ptid;
1367 }
1368
1369 void
1370 write_pc (CORE_ADDR pc)
1371 {
1372 write_pc_pid (pc, inferior_ptid);
1373 }
1374
1375 /* Cope with strage ways of getting to the stack and frame pointers */
1376
1377 CORE_ADDR
1378 read_sp (void)
1379 {
1380 if (TARGET_READ_SP_P ())
1381 return TARGET_READ_SP ();
1382 else if (gdbarch_unwind_sp_p (current_gdbarch))
1383 return get_frame_sp (get_current_frame ());
1384 else if (SP_REGNUM >= 0)
1385 /* Try SP_REGNUM last: this makes all sorts of [wrong] assumptions
1386 about the architecture so put it at the end. */
1387 return read_register (SP_REGNUM);
1388 internal_error (__FILE__, __LINE__, "read_sp: Unable to find SP");
1389 }
1390
1391 void
1392 deprecated_write_sp (CORE_ADDR val)
1393 {
1394 gdb_assert (SP_REGNUM >= 0);
1395 write_register (SP_REGNUM, val);
1396 }
1397
1398 CORE_ADDR
1399 deprecated_read_fp (void)
1400 {
1401 if (DEPRECATED_TARGET_READ_FP_P ())
1402 return DEPRECATED_TARGET_READ_FP ();
1403 else if (DEPRECATED_FP_REGNUM >= 0)
1404 return read_register (DEPRECATED_FP_REGNUM);
1405 else
1406 internal_error (__FILE__, __LINE__, "deprecated_read_fp");
1407 }
1408
1409 static void
1410 reg_flush_command (char *command, int from_tty)
1411 {
1412 /* Force-flush the register cache. */
1413 registers_changed ();
1414 if (from_tty)
1415 printf_filtered ("Register cache flushed.\n");
1416 }
1417
1418 static void
1419 build_regcache (void)
1420 {
1421 current_regcache = regcache_xmalloc (current_gdbarch);
1422 current_regcache->readonly_p = 0;
1423 deprecated_registers = deprecated_grub_regcache_for_registers (current_regcache);
1424 deprecated_register_valid = current_regcache->register_valid_p;
1425 }
1426
1427 static void
1428 dump_endian_bytes (struct ui_file *file, enum bfd_endian endian,
1429 const unsigned char *buf, long len)
1430 {
1431 int i;
1432 switch (endian)
1433 {
1434 case BFD_ENDIAN_BIG:
1435 for (i = 0; i < len; i++)
1436 fprintf_unfiltered (file, "%02x", buf[i]);
1437 break;
1438 case BFD_ENDIAN_LITTLE:
1439 for (i = len - 1; i >= 0; i--)
1440 fprintf_unfiltered (file, "%02x", buf[i]);
1441 break;
1442 default:
1443 internal_error (__FILE__, __LINE__, "Bad switch");
1444 }
1445 }
1446
1447 enum regcache_dump_what
1448 {
1449 regcache_dump_none, regcache_dump_raw, regcache_dump_cooked, regcache_dump_groups
1450 };
1451
1452 static void
1453 regcache_dump (struct regcache *regcache, struct ui_file *file,
1454 enum regcache_dump_what what_to_dump)
1455 {
1456 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1457 struct gdbarch *gdbarch = regcache->descr->gdbarch;
1458 int regnum;
1459 int footnote_nr = 0;
1460 int footnote_register_size = 0;
1461 int footnote_register_offset = 0;
1462 int footnote_register_type_name_null = 0;
1463 long register_offset = 0;
1464 unsigned char buf[MAX_REGISTER_SIZE];
1465
1466 #if 0
1467 fprintf_unfiltered (file, "legacy_p %d\n", regcache->descr->legacy_p);
1468 fprintf_unfiltered (file, "nr_raw_registers %d\n",
1469 regcache->descr->nr_raw_registers);
1470 fprintf_unfiltered (file, "nr_cooked_registers %d\n",
1471 regcache->descr->nr_cooked_registers);
1472 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n",
1473 regcache->descr->sizeof_raw_registers);
1474 fprintf_unfiltered (file, "sizeof_raw_register_valid_p %ld\n",
1475 regcache->descr->sizeof_raw_register_valid_p);
1476 fprintf_unfiltered (file, "NUM_REGS %d\n", NUM_REGS);
1477 fprintf_unfiltered (file, "NUM_PSEUDO_REGS %d\n", NUM_PSEUDO_REGS);
1478 #endif
1479
1480 gdb_assert (regcache->descr->nr_cooked_registers
1481 == (NUM_REGS + NUM_PSEUDO_REGS));
1482
1483 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++)
1484 {
1485 /* Name. */
1486 if (regnum < 0)
1487 fprintf_unfiltered (file, " %-10s", "Name");
1488 else
1489 {
1490 const char *p = REGISTER_NAME (regnum);
1491 if (p == NULL)
1492 p = "";
1493 else if (p[0] == '\0')
1494 p = "''";
1495 fprintf_unfiltered (file, " %-10s", p);
1496 }
1497
1498 /* Number. */
1499 if (regnum < 0)
1500 fprintf_unfiltered (file, " %4s", "Nr");
1501 else
1502 fprintf_unfiltered (file, " %4d", regnum);
1503
1504 /* Relative number. */
1505 if (regnum < 0)
1506 fprintf_unfiltered (file, " %4s", "Rel");
1507 else if (regnum < NUM_REGS)
1508 fprintf_unfiltered (file, " %4d", regnum);
1509 else
1510 fprintf_unfiltered (file, " %4d", (regnum - NUM_REGS));
1511
1512 /* Offset. */
1513 if (regnum < 0)
1514 fprintf_unfiltered (file, " %6s ", "Offset");
1515 else
1516 {
1517 fprintf_unfiltered (file, " %6ld",
1518 regcache->descr->register_offset[regnum]);
1519 if (register_offset != regcache->descr->register_offset[regnum]
1520 || register_offset != DEPRECATED_REGISTER_BYTE (regnum)
1521 || (regnum > 0
1522 && (regcache->descr->register_offset[regnum]
1523 != (regcache->descr->register_offset[regnum - 1]
1524 + regcache->descr->sizeof_register[regnum - 1])))
1525 )
1526 {
1527 if (!footnote_register_offset)
1528 footnote_register_offset = ++footnote_nr;
1529 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1530 }
1531 else
1532 fprintf_unfiltered (file, " ");
1533 register_offset = (regcache->descr->register_offset[regnum]
1534 + regcache->descr->sizeof_register[regnum]);
1535 }
1536
1537 /* Size. */
1538 if (regnum < 0)
1539 fprintf_unfiltered (file, " %5s ", "Size");
1540 else
1541 {
1542 fprintf_unfiltered (file, " %5ld",
1543 regcache->descr->sizeof_register[regnum]);
1544 if ((regcache->descr->sizeof_register[regnum]
1545 != DEPRECATED_REGISTER_RAW_SIZE (regnum))
1546 || (regcache->descr->sizeof_register[regnum]
1547 != DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum))
1548 || (regcache->descr->sizeof_register[regnum]
1549 != TYPE_LENGTH (register_type (regcache->descr->gdbarch,
1550 regnum)))
1551 )
1552 {
1553 if (!footnote_register_size)
1554 footnote_register_size = ++footnote_nr;
1555 fprintf_unfiltered (file, "*%d", footnote_register_size);
1556 }
1557 else
1558 fprintf_unfiltered (file, " ");
1559 }
1560
1561 /* Type. */
1562 {
1563 const char *t;
1564 if (regnum < 0)
1565 t = "Type";
1566 else
1567 {
1568 static const char blt[] = "builtin_type";
1569 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum));
1570 if (t == NULL)
1571 {
1572 char *n;
1573 if (!footnote_register_type_name_null)
1574 footnote_register_type_name_null = ++footnote_nr;
1575 n = xstrprintf ("*%d", footnote_register_type_name_null);
1576 make_cleanup (xfree, n);
1577 t = n;
1578 }
1579 /* Chop a leading builtin_type. */
1580 if (strncmp (t, blt, strlen (blt)) == 0)
1581 t += strlen (blt);
1582 }
1583 fprintf_unfiltered (file, " %-15s", t);
1584 }
1585
1586 /* Leading space always present. */
1587 fprintf_unfiltered (file, " ");
1588
1589 /* Value, raw. */
1590 if (what_to_dump == regcache_dump_raw)
1591 {
1592 if (regnum < 0)
1593 fprintf_unfiltered (file, "Raw value");
1594 else if (regnum >= regcache->descr->nr_raw_registers)
1595 fprintf_unfiltered (file, "<cooked>");
1596 else if (!regcache_valid_p (regcache, regnum))
1597 fprintf_unfiltered (file, "<invalid>");
1598 else
1599 {
1600 regcache_raw_read (regcache, regnum, buf);
1601 fprintf_unfiltered (file, "0x");
1602 dump_endian_bytes (file, TARGET_BYTE_ORDER, buf,
1603 DEPRECATED_REGISTER_RAW_SIZE (regnum));
1604 }
1605 }
1606
1607 /* Value, cooked. */
1608 if (what_to_dump == regcache_dump_cooked)
1609 {
1610 if (regnum < 0)
1611 fprintf_unfiltered (file, "Cooked value");
1612 else
1613 {
1614 regcache_cooked_read (regcache, regnum, buf);
1615 fprintf_unfiltered (file, "0x");
1616 dump_endian_bytes (file, TARGET_BYTE_ORDER, buf,
1617 DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum));
1618 }
1619 }
1620
1621 /* Group members. */
1622 if (what_to_dump == regcache_dump_groups)
1623 {
1624 if (regnum < 0)
1625 fprintf_unfiltered (file, "Groups");
1626 else
1627 {
1628 const char *sep = "";
1629 struct reggroup *group;
1630 for (group = reggroup_next (gdbarch, NULL);
1631 group != NULL;
1632 group = reggroup_next (gdbarch, group))
1633 {
1634 if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
1635 {
1636 fprintf_unfiltered (file, "%s%s", sep, reggroup_name (group));
1637 sep = ",";
1638 }
1639 }
1640 }
1641 }
1642
1643 fprintf_unfiltered (file, "\n");
1644 }
1645
1646 if (footnote_register_size)
1647 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
1648 footnote_register_size);
1649 if (footnote_register_offset)
1650 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1651 footnote_register_offset);
1652 if (footnote_register_type_name_null)
1653 fprintf_unfiltered (file,
1654 "*%d: Register type's name NULL.\n",
1655 footnote_register_type_name_null);
1656 do_cleanups (cleanups);
1657 }
1658
1659 static void
1660 regcache_print (char *args, enum regcache_dump_what what_to_dump)
1661 {
1662 if (args == NULL)
1663 regcache_dump (current_regcache, gdb_stdout, what_to_dump);
1664 else
1665 {
1666 struct ui_file *file = gdb_fopen (args, "w");
1667 if (file == NULL)
1668 perror_with_name ("maintenance print architecture");
1669 regcache_dump (current_regcache, file, what_to_dump);
1670 ui_file_delete (file);
1671 }
1672 }
1673
1674 static void
1675 maintenance_print_registers (char *args, int from_tty)
1676 {
1677 regcache_print (args, regcache_dump_none);
1678 }
1679
1680 static void
1681 maintenance_print_raw_registers (char *args, int from_tty)
1682 {
1683 regcache_print (args, regcache_dump_raw);
1684 }
1685
1686 static void
1687 maintenance_print_cooked_registers (char *args, int from_tty)
1688 {
1689 regcache_print (args, regcache_dump_cooked);
1690 }
1691
1692 static void
1693 maintenance_print_register_groups (char *args, int from_tty)
1694 {
1695 regcache_print (args, regcache_dump_groups);
1696 }
1697
1698 extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */
1699
1700 void
1701 _initialize_regcache (void)
1702 {
1703 regcache_descr_handle = gdbarch_data_register_post_init (init_regcache_descr);
1704 DEPRECATED_REGISTER_GDBARCH_SWAP (current_regcache);
1705 DEPRECATED_REGISTER_GDBARCH_SWAP (deprecated_registers);
1706 DEPRECATED_REGISTER_GDBARCH_SWAP (deprecated_register_valid);
1707 deprecated_register_gdbarch_swap (NULL, 0, build_regcache);
1708
1709 observer_attach_target_changed (regcache_observer_target_changed);
1710
1711 add_com ("flushregs", class_maintenance, reg_flush_command,
1712 "Force gdb to flush its register cache (maintainer command)");
1713
1714 /* Initialize the thread/process associated with the current set of
1715 registers. For now, -1 is special, and means `no current process'. */
1716 registers_ptid = pid_to_ptid (-1);
1717
1718 add_cmd ("registers", class_maintenance,
1719 maintenance_print_registers,
1720 "Print the internal register configuration.\
1721 Takes an optional file parameter.",
1722 &maintenanceprintlist);
1723 add_cmd ("raw-registers", class_maintenance,
1724 maintenance_print_raw_registers,
1725 "Print the internal register configuration including raw values.\
1726 Takes an optional file parameter.",
1727 &maintenanceprintlist);
1728 add_cmd ("cooked-registers", class_maintenance,
1729 maintenance_print_cooked_registers,
1730 "Print the internal register configuration including cooked values.\
1731 Takes an optional file parameter.",
1732 &maintenanceprintlist);
1733 add_cmd ("register-groups", class_maintenance,
1734 maintenance_print_register_groups,
1735 "Print the internal register configuration including each register's group.\
1736 Takes an optional file parameter.",
1737 &maintenanceprintlist);
1738
1739 }
This page took 0.095105 seconds and 4 git commands to generate.