Fix ARC TLS support.
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbarch.h"
24 #include "gdbcmd.h"
25 #include "regcache.h"
26 #include "reggroups.h"
27 #include "observer.h"
28 #include "remote.h"
29 #include "valprint.h"
30 #include "regset.h"
31
32 /*
33 * DATA STRUCTURE
34 *
35 * Here is the actual register cache.
36 */
37
38 /* Per-architecture object describing the layout of a register cache.
39 Computed once when the architecture is created. */
40
41 struct gdbarch_data *regcache_descr_handle;
42
43 struct regcache_descr
44 {
45 /* The architecture this descriptor belongs to. */
46 struct gdbarch *gdbarch;
47
48 /* The raw register cache. Each raw (or hard) register is supplied
49 by the target interface. The raw cache should not contain
50 redundant information - if the PC is constructed from two
51 registers then those registers and not the PC lives in the raw
52 cache. */
53 int nr_raw_registers;
54 long sizeof_raw_registers;
55 long sizeof_raw_register_status;
56
57 /* The cooked register space. Each cooked register in the range
58 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
59 register. The remaining [NR_RAW_REGISTERS
60 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
61 both raw registers and memory by the architecture methods
62 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
63 int nr_cooked_registers;
64 long sizeof_cooked_registers;
65 long sizeof_cooked_register_status;
66
67 /* Offset and size (in 8 bit bytes), of each register in the
68 register cache. All registers (including those in the range
69 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
70 offset. */
71 long *register_offset;
72 long *sizeof_register;
73
74 /* Cached table containing the type of each register. */
75 struct type **register_type;
76 };
77
78 static void *
79 init_regcache_descr (struct gdbarch *gdbarch)
80 {
81 int i;
82 struct regcache_descr *descr;
83 gdb_assert (gdbarch != NULL);
84
85 /* Create an initial, zero filled, table. */
86 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
87 descr->gdbarch = gdbarch;
88
89 /* Total size of the register space. The raw registers are mapped
90 directly onto the raw register cache while the pseudo's are
91 either mapped onto raw-registers or memory. */
92 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
93 + gdbarch_num_pseudo_regs (gdbarch);
94 descr->sizeof_cooked_register_status
95 = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
96
97 /* Fill in a table of register types. */
98 descr->register_type
99 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
100 struct type *);
101 for (i = 0; i < descr->nr_cooked_registers; i++)
102 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
103
104 /* Construct a strictly RAW register cache. Don't allow pseudo's
105 into the register cache. */
106 descr->nr_raw_registers = gdbarch_num_regs (gdbarch);
107 descr->sizeof_raw_register_status = gdbarch_num_regs (gdbarch);
108
109 /* Lay out the register cache.
110
111 NOTE: cagney/2002-05-22: Only register_type() is used when
112 constructing the register cache. It is assumed that the
113 register's raw size, virtual size and type length are all the
114 same. */
115
116 {
117 long offset = 0;
118
119 descr->sizeof_register
120 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
121 descr->register_offset
122 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
123 for (i = 0; i < descr->nr_raw_registers; i++)
124 {
125 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
126 descr->register_offset[i] = offset;
127 offset += descr->sizeof_register[i];
128 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
129 }
130 /* Set the real size of the raw register cache buffer. */
131 descr->sizeof_raw_registers = offset;
132
133 for (; i < descr->nr_cooked_registers; i++)
134 {
135 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
136 descr->register_offset[i] = offset;
137 offset += descr->sizeof_register[i];
138 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
139 }
140 /* Set the real size of the readonly register cache buffer. */
141 descr->sizeof_cooked_registers = offset;
142 }
143
144 return descr;
145 }
146
147 static struct regcache_descr *
148 regcache_descr (struct gdbarch *gdbarch)
149 {
150 return (struct regcache_descr *) gdbarch_data (gdbarch,
151 regcache_descr_handle);
152 }
153
154 /* Utility functions returning useful register attributes stored in
155 the regcache descr. */
156
157 struct type *
158 register_type (struct gdbarch *gdbarch, int regnum)
159 {
160 struct regcache_descr *descr = regcache_descr (gdbarch);
161
162 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
163 return descr->register_type[regnum];
164 }
165
166 /* Utility functions returning useful register attributes stored in
167 the regcache descr. */
168
169 int
170 register_size (struct gdbarch *gdbarch, int regnum)
171 {
172 struct regcache_descr *descr = regcache_descr (gdbarch);
173 int size;
174
175 gdb_assert (regnum >= 0
176 && regnum < (gdbarch_num_regs (gdbarch)
177 + gdbarch_num_pseudo_regs (gdbarch)));
178 size = descr->sizeof_register[regnum];
179 return size;
180 }
181
182 /* See common/common-regcache.h. */
183
184 int
185 regcache_register_size (const struct regcache *regcache, int n)
186 {
187 return register_size (get_regcache_arch (regcache), n);
188 }
189
190 /* The register cache for storing raw register values. */
191
192 struct regcache
193 {
194 struct regcache_descr *descr;
195
196 /* The address space of this register cache (for registers where it
197 makes sense, like PC or SP). */
198 struct address_space *aspace;
199
200 /* The register buffers. A read-only register cache can hold the
201 full [0 .. gdbarch_num_regs + gdbarch_num_pseudo_regs) while a read/write
202 register cache can only hold [0 .. gdbarch_num_regs). */
203 gdb_byte *registers;
204 /* Register cache status. */
205 signed char *register_status;
206 /* Is this a read-only cache? A read-only cache is used for saving
207 the target's register state (e.g, across an inferior function
208 call or just before forcing a function return). A read-only
209 cache can only be updated via the methods regcache_dup() and
210 regcache_cpy(). The actual contents are determined by the
211 reggroup_save and reggroup_restore methods. */
212 int readonly_p;
213 /* If this is a read-write cache, which thread's registers is
214 it connected to? */
215 ptid_t ptid;
216 };
217
218 static struct regcache *
219 regcache_xmalloc_1 (struct gdbarch *gdbarch, struct address_space *aspace,
220 int readonly_p)
221 {
222 struct regcache_descr *descr;
223 struct regcache *regcache;
224
225 gdb_assert (gdbarch != NULL);
226 descr = regcache_descr (gdbarch);
227 regcache = XNEW (struct regcache);
228 regcache->descr = descr;
229 regcache->readonly_p = readonly_p;
230 if (readonly_p)
231 {
232 regcache->registers
233 = XCNEWVEC (gdb_byte, descr->sizeof_cooked_registers);
234 regcache->register_status
235 = XCNEWVEC (signed char, descr->sizeof_cooked_register_status);
236 }
237 else
238 {
239 regcache->registers
240 = XCNEWVEC (gdb_byte, descr->sizeof_raw_registers);
241 regcache->register_status
242 = XCNEWVEC (signed char, descr->sizeof_raw_register_status);
243 }
244 regcache->aspace = aspace;
245 regcache->ptid = minus_one_ptid;
246 return regcache;
247 }
248
249 struct regcache *
250 regcache_xmalloc (struct gdbarch *gdbarch, struct address_space *aspace)
251 {
252 return regcache_xmalloc_1 (gdbarch, aspace, 1);
253 }
254
255 void
256 regcache_xfree (struct regcache *regcache)
257 {
258 if (regcache == NULL)
259 return;
260 xfree (regcache->registers);
261 xfree (regcache->register_status);
262 xfree (regcache);
263 }
264
265 static void
266 do_regcache_xfree (void *data)
267 {
268 regcache_xfree ((struct regcache *) data);
269 }
270
271 struct cleanup *
272 make_cleanup_regcache_xfree (struct regcache *regcache)
273 {
274 return make_cleanup (do_regcache_xfree, regcache);
275 }
276
277 /* Cleanup routines for invalidating a register. */
278
279 struct register_to_invalidate
280 {
281 struct regcache *regcache;
282 int regnum;
283 };
284
285 static void
286 do_regcache_invalidate (void *data)
287 {
288 struct register_to_invalidate *reg = (struct register_to_invalidate *) data;
289
290 regcache_invalidate (reg->regcache, reg->regnum);
291 }
292
293 static struct cleanup *
294 make_cleanup_regcache_invalidate (struct regcache *regcache, int regnum)
295 {
296 struct register_to_invalidate* reg = XNEW (struct register_to_invalidate);
297
298 reg->regcache = regcache;
299 reg->regnum = regnum;
300 return make_cleanup_dtor (do_regcache_invalidate, (void *) reg, xfree);
301 }
302
303 /* Return REGCACHE's architecture. */
304
305 struct gdbarch *
306 get_regcache_arch (const struct regcache *regcache)
307 {
308 return regcache->descr->gdbarch;
309 }
310
311 struct address_space *
312 get_regcache_aspace (const struct regcache *regcache)
313 {
314 return regcache->aspace;
315 }
316
317 /* Return a pointer to register REGNUM's buffer cache. */
318
319 static gdb_byte *
320 register_buffer (const struct regcache *regcache, int regnum)
321 {
322 return regcache->registers + regcache->descr->register_offset[regnum];
323 }
324
325 void
326 regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read,
327 void *src)
328 {
329 struct gdbarch *gdbarch = dst->descr->gdbarch;
330 gdb_byte buf[MAX_REGISTER_SIZE];
331 int regnum;
332
333 /* The DST should be `read-only', if it wasn't then the save would
334 end up trying to write the register values back out to the
335 target. */
336 gdb_assert (dst->readonly_p);
337 /* Clear the dest. */
338 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers);
339 memset (dst->register_status, 0,
340 dst->descr->sizeof_cooked_register_status);
341 /* Copy over any registers (identified by their membership in the
342 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
343 gdbarch_num_pseudo_regs) range is checked since some architectures need
344 to save/restore `cooked' registers that live in memory. */
345 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
346 {
347 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
348 {
349 enum register_status status = cooked_read (src, regnum, buf);
350
351 if (status == REG_VALID)
352 memcpy (register_buffer (dst, regnum), buf,
353 register_size (gdbarch, regnum));
354 else
355 {
356 gdb_assert (status != REG_UNKNOWN);
357
358 memset (register_buffer (dst, regnum), 0,
359 register_size (gdbarch, regnum));
360 }
361 dst->register_status[regnum] = status;
362 }
363 }
364 }
365
366 static void
367 regcache_restore (struct regcache *dst,
368 regcache_cooked_read_ftype *cooked_read,
369 void *cooked_read_context)
370 {
371 struct gdbarch *gdbarch = dst->descr->gdbarch;
372 gdb_byte buf[MAX_REGISTER_SIZE];
373 int regnum;
374
375 /* The dst had better not be read-only. If it is, the `restore'
376 doesn't make much sense. */
377 gdb_assert (!dst->readonly_p);
378 /* Copy over any registers, being careful to only restore those that
379 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
380 + gdbarch_num_pseudo_regs) range is checked since some architectures need
381 to save/restore `cooked' registers that live in memory. */
382 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
383 {
384 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
385 {
386 enum register_status status;
387
388 status = cooked_read (cooked_read_context, regnum, buf);
389 if (status == REG_VALID)
390 regcache_cooked_write (dst, regnum, buf);
391 }
392 }
393 }
394
395 static enum register_status
396 do_cooked_read (void *src, int regnum, gdb_byte *buf)
397 {
398 struct regcache *regcache = (struct regcache *) src;
399
400 return regcache_cooked_read (regcache, regnum, buf);
401 }
402
403 static void regcache_cpy_no_passthrough (struct regcache *dst,
404 struct regcache *src);
405
406 void
407 regcache_cpy (struct regcache *dst, struct regcache *src)
408 {
409 gdb_assert (src != NULL && dst != NULL);
410 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
411 gdb_assert (src != dst);
412 gdb_assert (src->readonly_p || dst->readonly_p);
413
414 if (!src->readonly_p)
415 regcache_save (dst, do_cooked_read, src);
416 else if (!dst->readonly_p)
417 regcache_restore (dst, do_cooked_read, src);
418 else
419 regcache_cpy_no_passthrough (dst, src);
420 }
421
422 /* Copy/duplicate the contents of a register cache. Unlike regcache_cpy,
423 which is pass-through, this does not go through to the target.
424 Only values values already in the cache are transferred. The SRC and DST
425 buffers must not overlap. */
426
427 static void
428 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
429 {
430 gdb_assert (src != NULL && dst != NULL);
431 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
432 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
433 move of data into a thread's regcache. Doing this would be silly
434 - it would mean that regcache->register_status would be
435 completely invalid. */
436 gdb_assert (dst->readonly_p && src->readonly_p);
437
438 memcpy (dst->registers, src->registers,
439 dst->descr->sizeof_cooked_registers);
440 memcpy (dst->register_status, src->register_status,
441 dst->descr->sizeof_cooked_register_status);
442 }
443
444 struct regcache *
445 regcache_dup (struct regcache *src)
446 {
447 struct regcache *newbuf;
448
449 newbuf = regcache_xmalloc (src->descr->gdbarch, get_regcache_aspace (src));
450 regcache_cpy (newbuf, src);
451 return newbuf;
452 }
453
454 enum register_status
455 regcache_register_status (const struct regcache *regcache, int regnum)
456 {
457 gdb_assert (regcache != NULL);
458 gdb_assert (regnum >= 0);
459 if (regcache->readonly_p)
460 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
461 else
462 gdb_assert (regnum < regcache->descr->nr_raw_registers);
463
464 return (enum register_status) regcache->register_status[regnum];
465 }
466
467 void
468 regcache_invalidate (struct regcache *regcache, int regnum)
469 {
470 gdb_assert (regcache != NULL);
471 gdb_assert (regnum >= 0);
472 gdb_assert (!regcache->readonly_p);
473 gdb_assert (regnum < regcache->descr->nr_raw_registers);
474 regcache->register_status[regnum] = REG_UNKNOWN;
475 }
476
477
478 /* Global structure containing the current regcache. */
479
480 /* NOTE: this is a write-through cache. There is no "dirty" bit for
481 recording if the register values have been changed (eg. by the
482 user). Therefore all registers must be written back to the
483 target when appropriate. */
484
485 struct regcache_list
486 {
487 struct regcache *regcache;
488 struct regcache_list *next;
489 };
490
491 static struct regcache_list *current_regcache;
492
493 struct regcache *
494 get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
495 struct address_space *aspace)
496 {
497 struct regcache_list *list;
498 struct regcache *new_regcache;
499
500 for (list = current_regcache; list; list = list->next)
501 if (ptid_equal (list->regcache->ptid, ptid)
502 && get_regcache_arch (list->regcache) == gdbarch)
503 return list->regcache;
504
505 new_regcache = regcache_xmalloc_1 (gdbarch, aspace, 0);
506 new_regcache->ptid = ptid;
507
508 list = XNEW (struct regcache_list);
509 list->regcache = new_regcache;
510 list->next = current_regcache;
511 current_regcache = list;
512
513 return new_regcache;
514 }
515
516 struct regcache *
517 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
518 {
519 struct address_space *aspace;
520
521 /* For the benefit of "maint print registers" & co when debugging an
522 executable, allow dumping the regcache even when there is no
523 thread selected (target_thread_address_space internal-errors if
524 no address space is found). Note that normal user commands will
525 fail higher up on the call stack due to no
526 target_has_registers. */
527 aspace = (ptid_equal (null_ptid, ptid)
528 ? NULL
529 : target_thread_address_space (ptid));
530
531 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
532 }
533
534 static ptid_t current_thread_ptid;
535 static struct gdbarch *current_thread_arch;
536
537 struct regcache *
538 get_thread_regcache (ptid_t ptid)
539 {
540 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
541 {
542 current_thread_ptid = ptid;
543 current_thread_arch = target_thread_architecture (ptid);
544 }
545
546 return get_thread_arch_regcache (ptid, current_thread_arch);
547 }
548
549 struct regcache *
550 get_current_regcache (void)
551 {
552 return get_thread_regcache (inferior_ptid);
553 }
554
555 /* See common/common-regcache.h. */
556
557 struct regcache *
558 get_thread_regcache_for_ptid (ptid_t ptid)
559 {
560 return get_thread_regcache (ptid);
561 }
562
563 /* Observer for the target_changed event. */
564
565 static void
566 regcache_observer_target_changed (struct target_ops *target)
567 {
568 registers_changed ();
569 }
570
571 /* Update global variables old ptids to hold NEW_PTID if they were
572 holding OLD_PTID. */
573 static void
574 regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
575 {
576 struct regcache_list *list;
577
578 for (list = current_regcache; list; list = list->next)
579 if (ptid_equal (list->regcache->ptid, old_ptid))
580 list->regcache->ptid = new_ptid;
581 }
582
583 /* Low level examining and depositing of registers.
584
585 The caller is responsible for making sure that the inferior is
586 stopped before calling the fetching routines, or it will get
587 garbage. (a change from GDB version 3, in which the caller got the
588 value from the last stop). */
589
590 /* REGISTERS_CHANGED ()
591
592 Indicate that registers may have changed, so invalidate the cache. */
593
594 void
595 registers_changed_ptid (ptid_t ptid)
596 {
597 struct regcache_list *list, **list_link;
598
599 list = current_regcache;
600 list_link = &current_regcache;
601 while (list)
602 {
603 if (ptid_match (list->regcache->ptid, ptid))
604 {
605 struct regcache_list *dead = list;
606
607 *list_link = list->next;
608 regcache_xfree (list->regcache);
609 list = *list_link;
610 xfree (dead);
611 continue;
612 }
613
614 list_link = &list->next;
615 list = *list_link;
616 }
617
618 if (ptid_match (current_thread_ptid, ptid))
619 {
620 current_thread_ptid = null_ptid;
621 current_thread_arch = NULL;
622 }
623
624 if (ptid_match (inferior_ptid, ptid))
625 {
626 /* We just deleted the regcache of the current thread. Need to
627 forget about any frames we have cached, too. */
628 reinit_frame_cache ();
629 }
630 }
631
632 void
633 registers_changed (void)
634 {
635 registers_changed_ptid (minus_one_ptid);
636
637 /* Force cleanup of any alloca areas if using C alloca instead of
638 a builtin alloca. This particular call is used to clean up
639 areas allocated by low level target code which may build up
640 during lengthy interactions between gdb and the target before
641 gdb gives control to the user (ie watchpoints). */
642 alloca (0);
643 }
644
645 enum register_status
646 regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf)
647 {
648 gdb_assert (regcache != NULL && buf != NULL);
649 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
650 /* Make certain that the register cache is up-to-date with respect
651 to the current thread. This switching shouldn't be necessary
652 only there is still only one target side register cache. Sigh!
653 On the bright side, at least there is a regcache object. */
654 if (!regcache->readonly_p
655 && regcache_register_status (regcache, regnum) == REG_UNKNOWN)
656 {
657 struct cleanup *old_chain = save_inferior_ptid ();
658
659 inferior_ptid = regcache->ptid;
660 target_fetch_registers (regcache, regnum);
661 do_cleanups (old_chain);
662
663 /* A number of targets can't access the whole set of raw
664 registers (because the debug API provides no means to get at
665 them). */
666 if (regcache->register_status[regnum] == REG_UNKNOWN)
667 regcache->register_status[regnum] = REG_UNAVAILABLE;
668 }
669
670 if (regcache->register_status[regnum] != REG_VALID)
671 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
672 else
673 memcpy (buf, register_buffer (regcache, regnum),
674 regcache->descr->sizeof_register[regnum]);
675
676 return (enum register_status) regcache->register_status[regnum];
677 }
678
679 enum register_status
680 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
681 {
682 gdb_byte *buf;
683 enum register_status status;
684
685 gdb_assert (regcache != NULL);
686 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
687 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
688 status = regcache_raw_read (regcache, regnum, buf);
689 if (status == REG_VALID)
690 *val = extract_signed_integer
691 (buf, regcache->descr->sizeof_register[regnum],
692 gdbarch_byte_order (regcache->descr->gdbarch));
693 else
694 *val = 0;
695 return status;
696 }
697
698 enum register_status
699 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
700 ULONGEST *val)
701 {
702 gdb_byte *buf;
703 enum register_status status;
704
705 gdb_assert (regcache != NULL);
706 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
707 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
708 status = regcache_raw_read (regcache, regnum, buf);
709 if (status == REG_VALID)
710 *val = extract_unsigned_integer
711 (buf, regcache->descr->sizeof_register[regnum],
712 gdbarch_byte_order (regcache->descr->gdbarch));
713 else
714 *val = 0;
715 return status;
716 }
717
718 void
719 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
720 {
721 gdb_byte *buf;
722
723 gdb_assert (regcache != NULL);
724 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
725 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
726 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
727 gdbarch_byte_order (regcache->descr->gdbarch), val);
728 regcache_raw_write (regcache, regnum, buf);
729 }
730
731 void
732 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
733 ULONGEST val)
734 {
735 gdb_byte *buf;
736
737 gdb_assert (regcache != NULL);
738 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
739 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
740 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
741 gdbarch_byte_order (regcache->descr->gdbarch), val);
742 regcache_raw_write (regcache, regnum, buf);
743 }
744
745 enum register_status
746 regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf)
747 {
748 gdb_assert (regnum >= 0);
749 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
750 if (regnum < regcache->descr->nr_raw_registers)
751 return regcache_raw_read (regcache, regnum, buf);
752 else if (regcache->readonly_p
753 && regcache->register_status[regnum] != REG_UNKNOWN)
754 {
755 /* Read-only register cache, perhaps the cooked value was
756 cached? */
757 if (regcache->register_status[regnum] == REG_VALID)
758 memcpy (buf, register_buffer (regcache, regnum),
759 regcache->descr->sizeof_register[regnum]);
760 else
761 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
762
763 return (enum register_status) regcache->register_status[regnum];
764 }
765 else if (gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch))
766 {
767 struct value *mark, *computed;
768 enum register_status result = REG_VALID;
769
770 mark = value_mark ();
771
772 computed = gdbarch_pseudo_register_read_value (regcache->descr->gdbarch,
773 regcache, regnum);
774 if (value_entirely_available (computed))
775 memcpy (buf, value_contents_raw (computed),
776 regcache->descr->sizeof_register[regnum]);
777 else
778 {
779 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
780 result = REG_UNAVAILABLE;
781 }
782
783 value_free_to_mark (mark);
784
785 return result;
786 }
787 else
788 return gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache,
789 regnum, buf);
790 }
791
792 struct value *
793 regcache_cooked_read_value (struct regcache *regcache, int regnum)
794 {
795 gdb_assert (regnum >= 0);
796 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
797
798 if (regnum < regcache->descr->nr_raw_registers
799 || (regcache->readonly_p
800 && regcache->register_status[regnum] != REG_UNKNOWN)
801 || !gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch))
802 {
803 struct value *result;
804
805 result = allocate_value (register_type (regcache->descr->gdbarch,
806 regnum));
807 VALUE_LVAL (result) = lval_register;
808 VALUE_REGNUM (result) = regnum;
809
810 /* It is more efficient in general to do this delegation in this
811 direction than in the other one, even though the value-based
812 API is preferred. */
813 if (regcache_cooked_read (regcache, regnum,
814 value_contents_raw (result)) == REG_UNAVAILABLE)
815 mark_value_bytes_unavailable (result, 0,
816 TYPE_LENGTH (value_type (result)));
817
818 return result;
819 }
820 else
821 return gdbarch_pseudo_register_read_value (regcache->descr->gdbarch,
822 regcache, regnum);
823 }
824
825 enum register_status
826 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
827 LONGEST *val)
828 {
829 enum register_status status;
830 gdb_byte *buf;
831
832 gdb_assert (regcache != NULL);
833 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
834 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
835 status = regcache_cooked_read (regcache, regnum, buf);
836 if (status == REG_VALID)
837 *val = extract_signed_integer
838 (buf, regcache->descr->sizeof_register[regnum],
839 gdbarch_byte_order (regcache->descr->gdbarch));
840 else
841 *val = 0;
842 return status;
843 }
844
845 enum register_status
846 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
847 ULONGEST *val)
848 {
849 enum register_status status;
850 gdb_byte *buf;
851
852 gdb_assert (regcache != NULL);
853 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
854 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
855 status = regcache_cooked_read (regcache, regnum, buf);
856 if (status == REG_VALID)
857 *val = extract_unsigned_integer
858 (buf, regcache->descr->sizeof_register[regnum],
859 gdbarch_byte_order (regcache->descr->gdbarch));
860 else
861 *val = 0;
862 return status;
863 }
864
865 void
866 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
867 LONGEST val)
868 {
869 gdb_byte *buf;
870
871 gdb_assert (regcache != NULL);
872 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
873 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
874 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
875 gdbarch_byte_order (regcache->descr->gdbarch), val);
876 regcache_cooked_write (regcache, regnum, buf);
877 }
878
879 void
880 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
881 ULONGEST val)
882 {
883 gdb_byte *buf;
884
885 gdb_assert (regcache != NULL);
886 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
887 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
888 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
889 gdbarch_byte_order (regcache->descr->gdbarch), val);
890 regcache_cooked_write (regcache, regnum, buf);
891 }
892
893 void
894 regcache_raw_write (struct regcache *regcache, int regnum,
895 const gdb_byte *buf)
896 {
897 struct cleanup *chain_before_save_inferior;
898 struct cleanup *chain_before_invalidate_register;
899
900 gdb_assert (regcache != NULL && buf != NULL);
901 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
902 gdb_assert (!regcache->readonly_p);
903
904 /* On the sparc, writing %g0 is a no-op, so we don't even want to
905 change the registers array if something writes to this register. */
906 if (gdbarch_cannot_store_register (get_regcache_arch (regcache), regnum))
907 return;
908
909 /* If we have a valid copy of the register, and new value == old
910 value, then don't bother doing the actual store. */
911 if (regcache_register_status (regcache, regnum) == REG_VALID
912 && (memcmp (register_buffer (regcache, regnum), buf,
913 regcache->descr->sizeof_register[regnum]) == 0))
914 return;
915
916 chain_before_save_inferior = save_inferior_ptid ();
917 inferior_ptid = regcache->ptid;
918
919 target_prepare_to_store (regcache);
920 memcpy (register_buffer (regcache, regnum), buf,
921 regcache->descr->sizeof_register[regnum]);
922 regcache->register_status[regnum] = REG_VALID;
923
924 /* Register a cleanup function for invalidating the register after it is
925 written, in case of a failure. */
926 chain_before_invalidate_register
927 = make_cleanup_regcache_invalidate (regcache, regnum);
928
929 target_store_registers (regcache, regnum);
930
931 /* The target did not throw an error so we can discard invalidating the
932 register and restore the cleanup chain to what it was. */
933 discard_cleanups (chain_before_invalidate_register);
934
935 do_cleanups (chain_before_save_inferior);
936 }
937
938 void
939 regcache_cooked_write (struct regcache *regcache, int regnum,
940 const gdb_byte *buf)
941 {
942 gdb_assert (regnum >= 0);
943 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
944 if (regnum < regcache->descr->nr_raw_registers)
945 regcache_raw_write (regcache, regnum, buf);
946 else
947 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache,
948 regnum, buf);
949 }
950
951 /* Perform a partial register transfer using a read, modify, write
952 operation. */
953
954 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
955 void *buf);
956 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
957 const void *buf);
958
959 static enum register_status
960 regcache_xfer_part (struct regcache *regcache, int regnum,
961 int offset, int len, void *in, const void *out,
962 enum register_status (*read) (struct regcache *regcache,
963 int regnum,
964 gdb_byte *buf),
965 void (*write) (struct regcache *regcache, int regnum,
966 const gdb_byte *buf))
967 {
968 struct regcache_descr *descr = regcache->descr;
969 gdb_byte reg[MAX_REGISTER_SIZE];
970
971 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]);
972 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]);
973 /* Something to do? */
974 if (offset + len == 0)
975 return REG_VALID;
976 /* Read (when needed) ... */
977 if (in != NULL
978 || offset > 0
979 || offset + len < descr->sizeof_register[regnum])
980 {
981 enum register_status status;
982
983 gdb_assert (read != NULL);
984 status = read (regcache, regnum, reg);
985 if (status != REG_VALID)
986 return status;
987 }
988 /* ... modify ... */
989 if (in != NULL)
990 memcpy (in, reg + offset, len);
991 if (out != NULL)
992 memcpy (reg + offset, out, len);
993 /* ... write (when needed). */
994 if (out != NULL)
995 {
996 gdb_assert (write != NULL);
997 write (regcache, regnum, reg);
998 }
999
1000 return REG_VALID;
1001 }
1002
1003 enum register_status
1004 regcache_raw_read_part (struct regcache *regcache, int regnum,
1005 int offset, int len, gdb_byte *buf)
1006 {
1007 struct regcache_descr *descr = regcache->descr;
1008
1009 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
1010 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
1011 regcache_raw_read, regcache_raw_write);
1012 }
1013
1014 void
1015 regcache_raw_write_part (struct regcache *regcache, int regnum,
1016 int offset, int len, const gdb_byte *buf)
1017 {
1018 struct regcache_descr *descr = regcache->descr;
1019
1020 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
1021 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
1022 regcache_raw_read, regcache_raw_write);
1023 }
1024
1025 enum register_status
1026 regcache_cooked_read_part (struct regcache *regcache, int regnum,
1027 int offset, int len, gdb_byte *buf)
1028 {
1029 struct regcache_descr *descr = regcache->descr;
1030
1031 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
1032 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
1033 regcache_cooked_read, regcache_cooked_write);
1034 }
1035
1036 void
1037 regcache_cooked_write_part (struct regcache *regcache, int regnum,
1038 int offset, int len, const gdb_byte *buf)
1039 {
1040 struct regcache_descr *descr = regcache->descr;
1041
1042 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
1043 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
1044 regcache_cooked_read, regcache_cooked_write);
1045 }
1046
1047 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
1048
1049 void
1050 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
1051 {
1052 void *regbuf;
1053 size_t size;
1054
1055 gdb_assert (regcache != NULL);
1056 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1057 gdb_assert (!regcache->readonly_p);
1058
1059 regbuf = register_buffer (regcache, regnum);
1060 size = regcache->descr->sizeof_register[regnum];
1061
1062 if (buf)
1063 {
1064 memcpy (regbuf, buf, size);
1065 regcache->register_status[regnum] = REG_VALID;
1066 }
1067 else
1068 {
1069 /* This memset not strictly necessary, but better than garbage
1070 in case the register value manages to escape somewhere (due
1071 to a bug, no less). */
1072 memset (regbuf, 0, size);
1073 regcache->register_status[regnum] = REG_UNAVAILABLE;
1074 }
1075 }
1076
1077 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
1078
1079 void
1080 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
1081 {
1082 const void *regbuf;
1083 size_t size;
1084
1085 gdb_assert (regcache != NULL && buf != NULL);
1086 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1087
1088 regbuf = register_buffer (regcache, regnum);
1089 size = regcache->descr->sizeof_register[regnum];
1090 memcpy (buf, regbuf, size);
1091 }
1092
1093 /* Transfer a single or all registers belonging to a certain register
1094 set to or from a buffer. This is the main worker function for
1095 regcache_supply_regset and regcache_collect_regset. */
1096
1097 static void
1098 regcache_transfer_regset (const struct regset *regset,
1099 const struct regcache *regcache,
1100 struct regcache *out_regcache,
1101 int regnum, const void *in_buf,
1102 void *out_buf, size_t size)
1103 {
1104 const struct regcache_map_entry *map;
1105 int offs = 0, count;
1106
1107 for (map = (const struct regcache_map_entry *) regset->regmap;
1108 (count = map->count) != 0;
1109 map++)
1110 {
1111 int regno = map->regno;
1112 int slot_size = map->size;
1113
1114 if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
1115 slot_size = regcache->descr->sizeof_register[regno];
1116
1117 if (regno == REGCACHE_MAP_SKIP
1118 || (regnum != -1
1119 && (regnum < regno || regnum >= regno + count)))
1120 offs += count * slot_size;
1121
1122 else if (regnum == -1)
1123 for (; count--; regno++, offs += slot_size)
1124 {
1125 if (offs + slot_size > size)
1126 break;
1127
1128 if (out_buf)
1129 regcache_raw_collect (regcache, regno,
1130 (gdb_byte *) out_buf + offs);
1131 else
1132 regcache_raw_supply (out_regcache, regno, in_buf
1133 ? (const gdb_byte *) in_buf + offs
1134 : NULL);
1135 }
1136 else
1137 {
1138 /* Transfer a single register and return. */
1139 offs += (regnum - regno) * slot_size;
1140 if (offs + slot_size > size)
1141 return;
1142
1143 if (out_buf)
1144 regcache_raw_collect (regcache, regnum,
1145 (gdb_byte *) out_buf + offs);
1146 else
1147 regcache_raw_supply (out_regcache, regnum, in_buf
1148 ? (const gdb_byte *) in_buf + offs
1149 : NULL);
1150 return;
1151 }
1152 }
1153 }
1154
1155 /* Supply register REGNUM from BUF to REGCACHE, using the register map
1156 in REGSET. If REGNUM is -1, do this for all registers in REGSET.
1157 If BUF is NULL, set the register(s) to "unavailable" status. */
1158
1159 void
1160 regcache_supply_regset (const struct regset *regset,
1161 struct regcache *regcache,
1162 int regnum, const void *buf, size_t size)
1163 {
1164 regcache_transfer_regset (regset, regcache, regcache, regnum,
1165 buf, NULL, size);
1166 }
1167
1168 /* Collect register REGNUM from REGCACHE to BUF, using the register
1169 map in REGSET. If REGNUM is -1, do this for all registers in
1170 REGSET. */
1171
1172 void
1173 regcache_collect_regset (const struct regset *regset,
1174 const struct regcache *regcache,
1175 int regnum, void *buf, size_t size)
1176 {
1177 regcache_transfer_regset (regset, regcache, NULL, regnum,
1178 NULL, buf, size);
1179 }
1180
1181
1182 /* Special handling for register PC. */
1183
1184 CORE_ADDR
1185 regcache_read_pc (struct regcache *regcache)
1186 {
1187 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1188
1189 CORE_ADDR pc_val;
1190
1191 if (gdbarch_read_pc_p (gdbarch))
1192 pc_val = gdbarch_read_pc (gdbarch, regcache);
1193 /* Else use per-frame method on get_current_frame. */
1194 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1195 {
1196 ULONGEST raw_val;
1197
1198 if (regcache_cooked_read_unsigned (regcache,
1199 gdbarch_pc_regnum (gdbarch),
1200 &raw_val) == REG_UNAVAILABLE)
1201 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1202
1203 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
1204 }
1205 else
1206 internal_error (__FILE__, __LINE__,
1207 _("regcache_read_pc: Unable to find PC"));
1208 return pc_val;
1209 }
1210
1211 void
1212 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
1213 {
1214 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1215
1216 if (gdbarch_write_pc_p (gdbarch))
1217 gdbarch_write_pc (gdbarch, regcache, pc);
1218 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1219 regcache_cooked_write_unsigned (regcache,
1220 gdbarch_pc_regnum (gdbarch), pc);
1221 else
1222 internal_error (__FILE__, __LINE__,
1223 _("regcache_write_pc: Unable to update PC"));
1224
1225 /* Writing the PC (for instance, from "load") invalidates the
1226 current frame. */
1227 reinit_frame_cache ();
1228 }
1229
1230
1231 static void
1232 reg_flush_command (char *command, int from_tty)
1233 {
1234 /* Force-flush the register cache. */
1235 registers_changed ();
1236 if (from_tty)
1237 printf_filtered (_("Register cache flushed.\n"));
1238 }
1239
1240 enum regcache_dump_what
1241 {
1242 regcache_dump_none, regcache_dump_raw,
1243 regcache_dump_cooked, regcache_dump_groups,
1244 regcache_dump_remote
1245 };
1246
1247 static void
1248 regcache_dump (struct regcache *regcache, struct ui_file *file,
1249 enum regcache_dump_what what_to_dump)
1250 {
1251 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1252 struct gdbarch *gdbarch = regcache->descr->gdbarch;
1253 int regnum;
1254 int footnote_nr = 0;
1255 int footnote_register_size = 0;
1256 int footnote_register_offset = 0;
1257 int footnote_register_type_name_null = 0;
1258 long register_offset = 0;
1259 gdb_byte buf[MAX_REGISTER_SIZE];
1260
1261 #if 0
1262 fprintf_unfiltered (file, "nr_raw_registers %d\n",
1263 regcache->descr->nr_raw_registers);
1264 fprintf_unfiltered (file, "nr_cooked_registers %d\n",
1265 regcache->descr->nr_cooked_registers);
1266 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n",
1267 regcache->descr->sizeof_raw_registers);
1268 fprintf_unfiltered (file, "sizeof_raw_register_status %ld\n",
1269 regcache->descr->sizeof_raw_register_status);
1270 fprintf_unfiltered (file, "gdbarch_num_regs %d\n",
1271 gdbarch_num_regs (gdbarch));
1272 fprintf_unfiltered (file, "gdbarch_num_pseudo_regs %d\n",
1273 gdbarch_num_pseudo_regs (gdbarch));
1274 #endif
1275
1276 gdb_assert (regcache->descr->nr_cooked_registers
1277 == (gdbarch_num_regs (gdbarch)
1278 + gdbarch_num_pseudo_regs (gdbarch)));
1279
1280 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++)
1281 {
1282 /* Name. */
1283 if (regnum < 0)
1284 fprintf_unfiltered (file, " %-10s", "Name");
1285 else
1286 {
1287 const char *p = gdbarch_register_name (gdbarch, regnum);
1288
1289 if (p == NULL)
1290 p = "";
1291 else if (p[0] == '\0')
1292 p = "''";
1293 fprintf_unfiltered (file, " %-10s", p);
1294 }
1295
1296 /* Number. */
1297 if (regnum < 0)
1298 fprintf_unfiltered (file, " %4s", "Nr");
1299 else
1300 fprintf_unfiltered (file, " %4d", regnum);
1301
1302 /* Relative number. */
1303 if (regnum < 0)
1304 fprintf_unfiltered (file, " %4s", "Rel");
1305 else if (regnum < gdbarch_num_regs (gdbarch))
1306 fprintf_unfiltered (file, " %4d", regnum);
1307 else
1308 fprintf_unfiltered (file, " %4d",
1309 (regnum - gdbarch_num_regs (gdbarch)));
1310
1311 /* Offset. */
1312 if (regnum < 0)
1313 fprintf_unfiltered (file, " %6s ", "Offset");
1314 else
1315 {
1316 fprintf_unfiltered (file, " %6ld",
1317 regcache->descr->register_offset[regnum]);
1318 if (register_offset != regcache->descr->register_offset[regnum]
1319 || (regnum > 0
1320 && (regcache->descr->register_offset[regnum]
1321 != (regcache->descr->register_offset[regnum - 1]
1322 + regcache->descr->sizeof_register[regnum - 1])))
1323 )
1324 {
1325 if (!footnote_register_offset)
1326 footnote_register_offset = ++footnote_nr;
1327 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1328 }
1329 else
1330 fprintf_unfiltered (file, " ");
1331 register_offset = (regcache->descr->register_offset[regnum]
1332 + regcache->descr->sizeof_register[regnum]);
1333 }
1334
1335 /* Size. */
1336 if (regnum < 0)
1337 fprintf_unfiltered (file, " %5s ", "Size");
1338 else
1339 fprintf_unfiltered (file, " %5ld",
1340 regcache->descr->sizeof_register[regnum]);
1341
1342 /* Type. */
1343 {
1344 const char *t;
1345
1346 if (regnum < 0)
1347 t = "Type";
1348 else
1349 {
1350 static const char blt[] = "builtin_type";
1351
1352 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum));
1353 if (t == NULL)
1354 {
1355 char *n;
1356
1357 if (!footnote_register_type_name_null)
1358 footnote_register_type_name_null = ++footnote_nr;
1359 n = xstrprintf ("*%d", footnote_register_type_name_null);
1360 make_cleanup (xfree, n);
1361 t = n;
1362 }
1363 /* Chop a leading builtin_type. */
1364 if (startswith (t, blt))
1365 t += strlen (blt);
1366 }
1367 fprintf_unfiltered (file, " %-15s", t);
1368 }
1369
1370 /* Leading space always present. */
1371 fprintf_unfiltered (file, " ");
1372
1373 /* Value, raw. */
1374 if (what_to_dump == regcache_dump_raw)
1375 {
1376 if (regnum < 0)
1377 fprintf_unfiltered (file, "Raw value");
1378 else if (regnum >= regcache->descr->nr_raw_registers)
1379 fprintf_unfiltered (file, "<cooked>");
1380 else if (regcache_register_status (regcache, regnum) == REG_UNKNOWN)
1381 fprintf_unfiltered (file, "<invalid>");
1382 else if (regcache_register_status (regcache, regnum) == REG_UNAVAILABLE)
1383 fprintf_unfiltered (file, "<unavailable>");
1384 else
1385 {
1386 regcache_raw_read (regcache, regnum, buf);
1387 print_hex_chars (file, buf,
1388 regcache->descr->sizeof_register[regnum],
1389 gdbarch_byte_order (gdbarch));
1390 }
1391 }
1392
1393 /* Value, cooked. */
1394 if (what_to_dump == regcache_dump_cooked)
1395 {
1396 if (regnum < 0)
1397 fprintf_unfiltered (file, "Cooked value");
1398 else
1399 {
1400 enum register_status status;
1401
1402 status = regcache_cooked_read (regcache, regnum, buf);
1403 if (status == REG_UNKNOWN)
1404 fprintf_unfiltered (file, "<invalid>");
1405 else if (status == REG_UNAVAILABLE)
1406 fprintf_unfiltered (file, "<unavailable>");
1407 else
1408 print_hex_chars (file, buf,
1409 regcache->descr->sizeof_register[regnum],
1410 gdbarch_byte_order (gdbarch));
1411 }
1412 }
1413
1414 /* Group members. */
1415 if (what_to_dump == regcache_dump_groups)
1416 {
1417 if (regnum < 0)
1418 fprintf_unfiltered (file, "Groups");
1419 else
1420 {
1421 const char *sep = "";
1422 struct reggroup *group;
1423
1424 for (group = reggroup_next (gdbarch, NULL);
1425 group != NULL;
1426 group = reggroup_next (gdbarch, group))
1427 {
1428 if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
1429 {
1430 fprintf_unfiltered (file,
1431 "%s%s", sep, reggroup_name (group));
1432 sep = ",";
1433 }
1434 }
1435 }
1436 }
1437
1438 /* Remote packet configuration. */
1439 if (what_to_dump == regcache_dump_remote)
1440 {
1441 if (regnum < 0)
1442 {
1443 fprintf_unfiltered (file, "Rmt Nr g/G Offset");
1444 }
1445 else if (regnum < regcache->descr->nr_raw_registers)
1446 {
1447 int pnum, poffset;
1448
1449 if (remote_register_number_and_offset (get_regcache_arch (regcache), regnum,
1450 &pnum, &poffset))
1451 fprintf_unfiltered (file, "%7d %11d", pnum, poffset);
1452 }
1453 }
1454
1455 fprintf_unfiltered (file, "\n");
1456 }
1457
1458 if (footnote_register_size)
1459 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
1460 footnote_register_size);
1461 if (footnote_register_offset)
1462 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1463 footnote_register_offset);
1464 if (footnote_register_type_name_null)
1465 fprintf_unfiltered (file,
1466 "*%d: Register type's name NULL.\n",
1467 footnote_register_type_name_null);
1468 do_cleanups (cleanups);
1469 }
1470
1471 static void
1472 regcache_print (char *args, enum regcache_dump_what what_to_dump)
1473 {
1474 if (args == NULL)
1475 regcache_dump (get_current_regcache (), gdb_stdout, what_to_dump);
1476 else
1477 {
1478 struct cleanup *cleanups;
1479 struct ui_file *file = gdb_fopen (args, "w");
1480
1481 if (file == NULL)
1482 perror_with_name (_("maintenance print architecture"));
1483 cleanups = make_cleanup_ui_file_delete (file);
1484 regcache_dump (get_current_regcache (), file, what_to_dump);
1485 do_cleanups (cleanups);
1486 }
1487 }
1488
1489 static void
1490 maintenance_print_registers (char *args, int from_tty)
1491 {
1492 regcache_print (args, regcache_dump_none);
1493 }
1494
1495 static void
1496 maintenance_print_raw_registers (char *args, int from_tty)
1497 {
1498 regcache_print (args, regcache_dump_raw);
1499 }
1500
1501 static void
1502 maintenance_print_cooked_registers (char *args, int from_tty)
1503 {
1504 regcache_print (args, regcache_dump_cooked);
1505 }
1506
1507 static void
1508 maintenance_print_register_groups (char *args, int from_tty)
1509 {
1510 regcache_print (args, regcache_dump_groups);
1511 }
1512
1513 static void
1514 maintenance_print_remote_registers (char *args, int from_tty)
1515 {
1516 regcache_print (args, regcache_dump_remote);
1517 }
1518
1519 extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */
1520
1521 void
1522 _initialize_regcache (void)
1523 {
1524 regcache_descr_handle
1525 = gdbarch_data_register_post_init (init_regcache_descr);
1526
1527 observer_attach_target_changed (regcache_observer_target_changed);
1528 observer_attach_thread_ptid_changed (regcache_thread_ptid_changed);
1529
1530 add_com ("flushregs", class_maintenance, reg_flush_command,
1531 _("Force gdb to flush its register cache (maintainer command)"));
1532
1533 add_cmd ("registers", class_maintenance, maintenance_print_registers,
1534 _("Print the internal register configuration.\n"
1535 "Takes an optional file parameter."), &maintenanceprintlist);
1536 add_cmd ("raw-registers", class_maintenance,
1537 maintenance_print_raw_registers,
1538 _("Print the internal register configuration "
1539 "including raw values.\n"
1540 "Takes an optional file parameter."), &maintenanceprintlist);
1541 add_cmd ("cooked-registers", class_maintenance,
1542 maintenance_print_cooked_registers,
1543 _("Print the internal register configuration "
1544 "including cooked values.\n"
1545 "Takes an optional file parameter."), &maintenanceprintlist);
1546 add_cmd ("register-groups", class_maintenance,
1547 maintenance_print_register_groups,
1548 _("Print the internal register configuration "
1549 "including each register's group.\n"
1550 "Takes an optional file parameter."),
1551 &maintenanceprintlist);
1552 add_cmd ("remote-registers", class_maintenance,
1553 maintenance_print_remote_registers, _("\
1554 Print the internal register configuration including each register's\n\
1555 remote register number and buffer offset in the g/G packets.\n\
1556 Takes an optional file parameter."),
1557 &maintenanceprintlist);
1558
1559 }
This page took 0.089221 seconds and 4 git commands to generate.