* gdbarch.sh (deprecated_extract_return_value)
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2004, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "inferior.h"
25 #include "target.h"
26 #include "gdbarch.h"
27 #include "gdbcmd.h"
28 #include "regcache.h"
29 #include "reggroups.h"
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdbcmd.h" /* For maintenanceprintlist. */
33 #include "observer.h"
34
35 /*
36 * DATA STRUCTURE
37 *
38 * Here is the actual register cache.
39 */
40
41 /* Per-architecture object describing the layout of a register cache.
42 Computed once when the architecture is created */
43
44 struct gdbarch_data *regcache_descr_handle;
45
46 struct regcache_descr
47 {
48 /* The architecture this descriptor belongs to. */
49 struct gdbarch *gdbarch;
50
51 /* The raw register cache. Each raw (or hard) register is supplied
52 by the target interface. The raw cache should not contain
53 redundant information - if the PC is constructed from two
54 registers then those registers and not the PC lives in the raw
55 cache. */
56 int nr_raw_registers;
57 long sizeof_raw_registers;
58 long sizeof_raw_register_valid_p;
59
60 /* The cooked register space. Each cooked register in the range
61 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
62 register. The remaining [NR_RAW_REGISTERS
63 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
64 both raw registers and memory by the architecture methods
65 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
66 int nr_cooked_registers;
67 long sizeof_cooked_registers;
68 long sizeof_cooked_register_valid_p;
69
70 /* Offset and size (in 8 bit bytes), of reach register in the
71 register cache. All registers (including those in the range
72 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an offset.
73 Assigning all registers an offset makes it possible to keep
74 legacy code, such as that found in read_register_bytes() and
75 write_register_bytes() working. */
76 long *register_offset;
77 long *sizeof_register;
78
79 /* Cached table containing the type of each register. */
80 struct type **register_type;
81 };
82
83 static void *
84 init_regcache_descr (struct gdbarch *gdbarch)
85 {
86 int i;
87 struct regcache_descr *descr;
88 gdb_assert (gdbarch != NULL);
89
90 /* Create an initial, zero filled, table. */
91 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
92 descr->gdbarch = gdbarch;
93
94 /* Total size of the register space. The raw registers are mapped
95 directly onto the raw register cache while the pseudo's are
96 either mapped onto raw-registers or memory. */
97 descr->nr_cooked_registers = NUM_REGS + NUM_PSEUDO_REGS;
98 descr->sizeof_cooked_register_valid_p = NUM_REGS + NUM_PSEUDO_REGS;
99
100 /* Fill in a table of register types. */
101 descr->register_type
102 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, struct type *);
103 for (i = 0; i < descr->nr_cooked_registers; i++)
104 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
105
106 /* Construct a strictly RAW register cache. Don't allow pseudo's
107 into the register cache. */
108 descr->nr_raw_registers = NUM_REGS;
109
110 /* FIXME: cagney/2002-08-13: Overallocate the register_valid_p
111 array. This pretects GDB from erant code that accesses elements
112 of the global register_valid_p[] array in the range [NUM_REGS
113 .. NUM_REGS + NUM_PSEUDO_REGS). */
114 descr->sizeof_raw_register_valid_p = descr->sizeof_cooked_register_valid_p;
115
116 /* Lay out the register cache.
117
118 NOTE: cagney/2002-05-22: Only register_type() is used when
119 constructing the register cache. It is assumed that the
120 register's raw size, virtual size and type length are all the
121 same. */
122
123 {
124 long offset = 0;
125 descr->sizeof_register
126 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
127 descr->register_offset
128 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
129 for (i = 0; i < descr->nr_cooked_registers; i++)
130 {
131 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
132 descr->register_offset[i] = offset;
133 offset += descr->sizeof_register[i];
134 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
135 }
136 /* Set the real size of the register cache buffer. */
137 descr->sizeof_cooked_registers = offset;
138 }
139
140 /* FIXME: cagney/2002-05-22: Should only need to allocate space for
141 the raw registers. Unfortunately some code still accesses the
142 register array directly using the global registers[]. Until that
143 code has been purged, play safe and over allocating the register
144 buffer. Ulgh! */
145 descr->sizeof_raw_registers = descr->sizeof_cooked_registers;
146
147 return descr;
148 }
149
150 static struct regcache_descr *
151 regcache_descr (struct gdbarch *gdbarch)
152 {
153 return gdbarch_data (gdbarch, regcache_descr_handle);
154 }
155
156 /* Utility functions returning useful register attributes stored in
157 the regcache descr. */
158
159 struct type *
160 register_type (struct gdbarch *gdbarch, int regnum)
161 {
162 struct regcache_descr *descr = regcache_descr (gdbarch);
163 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
164 return descr->register_type[regnum];
165 }
166
167 /* Utility functions returning useful register attributes stored in
168 the regcache descr. */
169
170 int
171 register_size (struct gdbarch *gdbarch, int regnum)
172 {
173 struct regcache_descr *descr = regcache_descr (gdbarch);
174 int size;
175 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
176 size = descr->sizeof_register[regnum];
177 return size;
178 }
179
180 /* The register cache for storing raw register values. */
181
182 struct regcache
183 {
184 struct regcache_descr *descr;
185 /* The register buffers. A read-only register cache can hold the
186 full [0 .. NUM_REGS + NUM_PSEUDO_REGS) while a read/write
187 register cache can only hold [0 .. NUM_REGS). */
188 gdb_byte *registers;
189 /* Register cache status:
190 register_valid_p[REG] == 0 if REG value is not in the cache
191 > 0 if REG value is in the cache
192 < 0 if REG value is permanently unavailable */
193 signed char *register_valid_p;
194 /* Is this a read-only cache? A read-only cache is used for saving
195 the target's register state (e.g, across an inferior function
196 call or just before forcing a function return). A read-only
197 cache can only be updated via the methods regcache_dup() and
198 regcache_cpy(). The actual contents are determined by the
199 reggroup_save and reggroup_restore methods. */
200 int readonly_p;
201 };
202
203 struct regcache *
204 regcache_xmalloc (struct gdbarch *gdbarch)
205 {
206 struct regcache_descr *descr;
207 struct regcache *regcache;
208 gdb_assert (gdbarch != NULL);
209 descr = regcache_descr (gdbarch);
210 regcache = XMALLOC (struct regcache);
211 regcache->descr = descr;
212 regcache->registers
213 = XCALLOC (descr->sizeof_raw_registers, gdb_byte);
214 regcache->register_valid_p
215 = XCALLOC (descr->sizeof_raw_register_valid_p, gdb_byte);
216 regcache->readonly_p = 1;
217 return regcache;
218 }
219
220 void
221 regcache_xfree (struct regcache *regcache)
222 {
223 if (regcache == NULL)
224 return;
225 xfree (regcache->registers);
226 xfree (regcache->register_valid_p);
227 xfree (regcache);
228 }
229
230 static void
231 do_regcache_xfree (void *data)
232 {
233 regcache_xfree (data);
234 }
235
236 struct cleanup *
237 make_cleanup_regcache_xfree (struct regcache *regcache)
238 {
239 return make_cleanup (do_regcache_xfree, regcache);
240 }
241
242 /* Return REGCACHE's architecture. */
243
244 struct gdbarch *
245 get_regcache_arch (const struct regcache *regcache)
246 {
247 return regcache->descr->gdbarch;
248 }
249
250 /* Return a pointer to register REGNUM's buffer cache. */
251
252 static gdb_byte *
253 register_buffer (const struct regcache *regcache, int regnum)
254 {
255 return regcache->registers + regcache->descr->register_offset[regnum];
256 }
257
258 void
259 regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read,
260 void *src)
261 {
262 struct gdbarch *gdbarch = dst->descr->gdbarch;
263 gdb_byte buf[MAX_REGISTER_SIZE];
264 int regnum;
265 /* The DST should be `read-only', if it wasn't then the save would
266 end up trying to write the register values back out to the
267 target. */
268 gdb_assert (dst->readonly_p);
269 /* Clear the dest. */
270 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers);
271 memset (dst->register_valid_p, 0, dst->descr->sizeof_cooked_register_valid_p);
272 /* Copy over any registers (identified by their membership in the
273 save_reggroup) and mark them as valid. The full [0 .. NUM_REGS +
274 NUM_PSEUDO_REGS) range is checked since some architectures need
275 to save/restore `cooked' registers that live in memory. */
276 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
277 {
278 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
279 {
280 int valid = cooked_read (src, regnum, buf);
281 if (valid)
282 {
283 memcpy (register_buffer (dst, regnum), buf,
284 register_size (gdbarch, regnum));
285 dst->register_valid_p[regnum] = 1;
286 }
287 }
288 }
289 }
290
291 void
292 regcache_restore (struct regcache *dst,
293 regcache_cooked_read_ftype *cooked_read,
294 void *cooked_read_context)
295 {
296 struct gdbarch *gdbarch = dst->descr->gdbarch;
297 gdb_byte buf[MAX_REGISTER_SIZE];
298 int regnum;
299 /* The dst had better not be read-only. If it is, the `restore'
300 doesn't make much sense. */
301 gdb_assert (!dst->readonly_p);
302 /* Copy over any registers, being careful to only restore those that
303 were both saved and need to be restored. The full [0 .. NUM_REGS
304 + NUM_PSEUDO_REGS) range is checked since some architectures need
305 to save/restore `cooked' registers that live in memory. */
306 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
307 {
308 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
309 {
310 int valid = cooked_read (cooked_read_context, regnum, buf);
311 if (valid)
312 regcache_cooked_write (dst, regnum, buf);
313 }
314 }
315 }
316
317 static int
318 do_cooked_read (void *src, int regnum, gdb_byte *buf)
319 {
320 struct regcache *regcache = src;
321 if (!regcache->register_valid_p[regnum] && regcache->readonly_p)
322 /* Don't even think about fetching a register from a read-only
323 cache when the register isn't yet valid. There isn't a target
324 from which the register value can be fetched. */
325 return 0;
326 regcache_cooked_read (regcache, regnum, buf);
327 return 1;
328 }
329
330
331 void
332 regcache_cpy (struct regcache *dst, struct regcache *src)
333 {
334 int i;
335 gdb_byte *buf;
336 gdb_assert (src != NULL && dst != NULL);
337 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
338 gdb_assert (src != dst);
339 gdb_assert (src->readonly_p || dst->readonly_p);
340 if (!src->readonly_p)
341 regcache_save (dst, do_cooked_read, src);
342 else if (!dst->readonly_p)
343 regcache_restore (dst, do_cooked_read, src);
344 else
345 regcache_cpy_no_passthrough (dst, src);
346 }
347
348 void
349 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
350 {
351 int i;
352 gdb_assert (src != NULL && dst != NULL);
353 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
354 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
355 move of data into the current_regcache(). Doing this would be
356 silly - it would mean that valid_p would be completely invalid. */
357 gdb_assert (dst != current_regcache);
358 memcpy (dst->registers, src->registers, dst->descr->sizeof_raw_registers);
359 memcpy (dst->register_valid_p, src->register_valid_p,
360 dst->descr->sizeof_raw_register_valid_p);
361 }
362
363 struct regcache *
364 regcache_dup (struct regcache *src)
365 {
366 struct regcache *newbuf;
367 gdb_assert (current_regcache != NULL);
368 newbuf = regcache_xmalloc (src->descr->gdbarch);
369 regcache_cpy (newbuf, src);
370 return newbuf;
371 }
372
373 struct regcache *
374 regcache_dup_no_passthrough (struct regcache *src)
375 {
376 struct regcache *newbuf;
377 gdb_assert (current_regcache != NULL);
378 newbuf = regcache_xmalloc (src->descr->gdbarch);
379 regcache_cpy_no_passthrough (newbuf, src);
380 return newbuf;
381 }
382
383 int
384 regcache_valid_p (struct regcache *regcache, int regnum)
385 {
386 gdb_assert (regcache != NULL);
387 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
388 return regcache->register_valid_p[regnum];
389 }
390
391 /* Global structure containing the current regcache. */
392 /* FIXME: cagney/2002-05-11: The two global arrays registers[] and
393 deprecated_register_valid[] currently point into this structure. */
394 struct regcache *current_regcache;
395
396 /* NOTE: this is a write-through cache. There is no "dirty" bit for
397 recording if the register values have been changed (eg. by the
398 user). Therefore all registers must be written back to the
399 target when appropriate. */
400
401 /* The thread/process associated with the current set of registers. */
402
403 static ptid_t registers_ptid;
404
405 /*
406 * FUNCTIONS:
407 */
408
409 /* REGISTER_CACHED()
410
411 Returns 0 if the value is not in the cache (needs fetch).
412 >0 if the value is in the cache.
413 <0 if the value is permanently unavailable (don't ask again). */
414
415 int
416 register_cached (int regnum)
417 {
418 return current_regcache->register_valid_p[regnum];
419 }
420
421 /* Record that REGNUM's value is cached if STATE is >0, uncached but
422 fetchable if STATE is 0, and uncached and unfetchable if STATE is <0. */
423
424 void
425 set_register_cached (int regnum, int state)
426 {
427 gdb_assert (regnum >= 0);
428 gdb_assert (regnum < current_regcache->descr->nr_raw_registers);
429 current_regcache->register_valid_p[regnum] = state;
430 }
431
432 /* Observer for the target_changed event. */
433
434 void
435 regcache_observer_target_changed (struct target_ops *target)
436 {
437 registers_changed ();
438 }
439
440 /* Low level examining and depositing of registers.
441
442 The caller is responsible for making sure that the inferior is
443 stopped before calling the fetching routines, or it will get
444 garbage. (a change from GDB version 3, in which the caller got the
445 value from the last stop). */
446
447 /* REGISTERS_CHANGED ()
448
449 Indicate that registers may have changed, so invalidate the cache. */
450
451 void
452 registers_changed (void)
453 {
454 int i;
455
456 registers_ptid = pid_to_ptid (-1);
457
458 /* Force cleanup of any alloca areas if using C alloca instead of
459 a builtin alloca. This particular call is used to clean up
460 areas allocated by low level target code which may build up
461 during lengthy interactions between gdb and the target before
462 gdb gives control to the user (ie watchpoints). */
463 alloca (0);
464
465 for (i = 0; i < current_regcache->descr->nr_raw_registers; i++)
466 set_register_cached (i, 0);
467
468 if (deprecated_registers_changed_hook)
469 deprecated_registers_changed_hook ();
470 }
471
472 /* DEPRECATED_REGISTERS_FETCHED ()
473
474 Indicate that all registers have been fetched, so mark them all valid. */
475
476 /* FIXME: cagney/2001-12-04: This function is DEPRECATED. The target
477 code was blatting the registers[] array and then calling this.
478 Since targets should only be using regcache_raw_supply() the need for
479 this function/hack is eliminated. */
480
481 void
482 deprecated_registers_fetched (void)
483 {
484 int i;
485
486 for (i = 0; i < NUM_REGS; i++)
487 set_register_cached (i, 1);
488 /* Do not assume that the pseudo-regs have also been fetched.
489 Fetching all real regs NEVER accounts for pseudo-regs. */
490 }
491
492 void
493 regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf)
494 {
495 gdb_assert (regcache != NULL && buf != NULL);
496 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
497 /* Make certain that the register cache is up-to-date with respect
498 to the current thread. This switching shouldn't be necessary
499 only there is still only one target side register cache. Sigh!
500 On the bright side, at least there is a regcache object. */
501 if (!regcache->readonly_p)
502 {
503 gdb_assert (regcache == current_regcache);
504 if (! ptid_equal (registers_ptid, inferior_ptid))
505 {
506 registers_changed ();
507 registers_ptid = inferior_ptid;
508 }
509 if (!register_cached (regnum))
510 target_fetch_registers (regnum);
511 #if 0
512 /* FIXME: cagney/2004-08-07: At present a number of targets
513 forget (or didn't know that they needed) to set this leading to
514 panics. Also is the problem that targets need to indicate
515 that a register is in one of the possible states: valid,
516 undefined, unknown. The last of which isn't yet
517 possible. */
518 gdb_assert (register_cached (regnum));
519 #endif
520 }
521 /* Copy the value directly into the register cache. */
522 memcpy (buf, register_buffer (regcache, regnum),
523 regcache->descr->sizeof_register[regnum]);
524 }
525
526 void
527 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
528 {
529 gdb_byte *buf;
530 gdb_assert (regcache != NULL);
531 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
532 buf = alloca (regcache->descr->sizeof_register[regnum]);
533 regcache_raw_read (regcache, regnum, buf);
534 (*val) = extract_signed_integer (buf,
535 regcache->descr->sizeof_register[regnum]);
536 }
537
538 void
539 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
540 ULONGEST *val)
541 {
542 gdb_byte *buf;
543 gdb_assert (regcache != NULL);
544 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
545 buf = alloca (regcache->descr->sizeof_register[regnum]);
546 regcache_raw_read (regcache, regnum, buf);
547 (*val) = extract_unsigned_integer (buf,
548 regcache->descr->sizeof_register[regnum]);
549 }
550
551 void
552 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
553 {
554 void *buf;
555 gdb_assert (regcache != NULL);
556 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
557 buf = alloca (regcache->descr->sizeof_register[regnum]);
558 store_signed_integer (buf, regcache->descr->sizeof_register[regnum], val);
559 regcache_raw_write (regcache, regnum, buf);
560 }
561
562 void
563 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
564 ULONGEST val)
565 {
566 void *buf;
567 gdb_assert (regcache != NULL);
568 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
569 buf = alloca (regcache->descr->sizeof_register[regnum]);
570 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], val);
571 regcache_raw_write (regcache, regnum, buf);
572 }
573
574 void
575 deprecated_read_register_gen (int regnum, gdb_byte *buf)
576 {
577 gdb_assert (current_regcache != NULL);
578 gdb_assert (current_regcache->descr->gdbarch == current_gdbarch);
579 regcache_cooked_read (current_regcache, regnum, buf);
580 }
581
582 void
583 regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf)
584 {
585 gdb_assert (regnum >= 0);
586 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
587 if (regnum < regcache->descr->nr_raw_registers)
588 regcache_raw_read (regcache, regnum, buf);
589 else if (regcache->readonly_p
590 && regnum < regcache->descr->nr_cooked_registers
591 && regcache->register_valid_p[regnum])
592 /* Read-only register cache, perhaps the cooked value was cached? */
593 memcpy (buf, register_buffer (regcache, regnum),
594 regcache->descr->sizeof_register[regnum]);
595 else
596 gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache,
597 regnum, buf);
598 }
599
600 void
601 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
602 LONGEST *val)
603 {
604 gdb_byte *buf;
605 gdb_assert (regcache != NULL);
606 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
607 buf = alloca (regcache->descr->sizeof_register[regnum]);
608 regcache_cooked_read (regcache, regnum, buf);
609 (*val) = extract_signed_integer (buf,
610 regcache->descr->sizeof_register[regnum]);
611 }
612
613 void
614 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
615 ULONGEST *val)
616 {
617 gdb_byte *buf;
618 gdb_assert (regcache != NULL);
619 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
620 buf = alloca (regcache->descr->sizeof_register[regnum]);
621 regcache_cooked_read (regcache, regnum, buf);
622 (*val) = extract_unsigned_integer (buf,
623 regcache->descr->sizeof_register[regnum]);
624 }
625
626 void
627 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
628 LONGEST val)
629 {
630 void *buf;
631 gdb_assert (regcache != NULL);
632 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
633 buf = alloca (regcache->descr->sizeof_register[regnum]);
634 store_signed_integer (buf, regcache->descr->sizeof_register[regnum], val);
635 regcache_cooked_write (regcache, regnum, buf);
636 }
637
638 void
639 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
640 ULONGEST val)
641 {
642 void *buf;
643 gdb_assert (regcache != NULL);
644 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
645 buf = alloca (regcache->descr->sizeof_register[regnum]);
646 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], val);
647 regcache_cooked_write (regcache, regnum, buf);
648 }
649
650 void
651 regcache_raw_write (struct regcache *regcache, int regnum,
652 const gdb_byte *buf)
653 {
654 gdb_assert (regcache != NULL && buf != NULL);
655 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
656 gdb_assert (!regcache->readonly_p);
657
658 /* On the sparc, writing %g0 is a no-op, so we don't even want to
659 change the registers array if something writes to this register. */
660 if (CANNOT_STORE_REGISTER (regnum))
661 return;
662
663 /* Make certain that the correct cache is selected. */
664 gdb_assert (regcache == current_regcache);
665 if (! ptid_equal (registers_ptid, inferior_ptid))
666 {
667 registers_changed ();
668 registers_ptid = inferior_ptid;
669 }
670
671 /* If we have a valid copy of the register, and new value == old
672 value, then don't bother doing the actual store. */
673 if (regcache_valid_p (regcache, regnum)
674 && (memcmp (register_buffer (regcache, regnum), buf,
675 regcache->descr->sizeof_register[regnum]) == 0))
676 return;
677
678 target_prepare_to_store ();
679 memcpy (register_buffer (regcache, regnum), buf,
680 regcache->descr->sizeof_register[regnum]);
681 regcache->register_valid_p[regnum] = 1;
682 target_store_registers (regnum);
683 }
684
685 void
686 deprecated_write_register_gen (int regnum, gdb_byte *buf)
687 {
688 gdb_assert (current_regcache != NULL);
689 gdb_assert (current_regcache->descr->gdbarch == current_gdbarch);
690 regcache_cooked_write (current_regcache, regnum, buf);
691 }
692
693 void
694 regcache_cooked_write (struct regcache *regcache, int regnum,
695 const gdb_byte *buf)
696 {
697 gdb_assert (regnum >= 0);
698 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
699 if (regnum < regcache->descr->nr_raw_registers)
700 regcache_raw_write (regcache, regnum, buf);
701 else
702 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache,
703 regnum, buf);
704 }
705
706 /* Perform a partial register transfer using a read, modify, write
707 operation. */
708
709 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
710 void *buf);
711 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
712 const void *buf);
713
714 static void
715 regcache_xfer_part (struct regcache *regcache, int regnum,
716 int offset, int len, void *in, const void *out,
717 void (*read) (struct regcache *regcache, int regnum,
718 gdb_byte *buf),
719 void (*write) (struct regcache *regcache, int regnum,
720 const gdb_byte *buf))
721 {
722 struct regcache_descr *descr = regcache->descr;
723 gdb_byte reg[MAX_REGISTER_SIZE];
724 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]);
725 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]);
726 /* Something to do? */
727 if (offset + len == 0)
728 return;
729 /* Read (when needed) ... */
730 if (in != NULL
731 || offset > 0
732 || offset + len < descr->sizeof_register[regnum])
733 {
734 gdb_assert (read != NULL);
735 read (regcache, regnum, reg);
736 }
737 /* ... modify ... */
738 if (in != NULL)
739 memcpy (in, reg + offset, len);
740 if (out != NULL)
741 memcpy (reg + offset, out, len);
742 /* ... write (when needed). */
743 if (out != NULL)
744 {
745 gdb_assert (write != NULL);
746 write (regcache, regnum, reg);
747 }
748 }
749
750 void
751 regcache_raw_read_part (struct regcache *regcache, int regnum,
752 int offset, int len, gdb_byte *buf)
753 {
754 struct regcache_descr *descr = regcache->descr;
755 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
756 regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
757 regcache_raw_read, regcache_raw_write);
758 }
759
760 void
761 regcache_raw_write_part (struct regcache *regcache, int regnum,
762 int offset, int len, const gdb_byte *buf)
763 {
764 struct regcache_descr *descr = regcache->descr;
765 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
766 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
767 regcache_raw_read, regcache_raw_write);
768 }
769
770 void
771 regcache_cooked_read_part (struct regcache *regcache, int regnum,
772 int offset, int len, gdb_byte *buf)
773 {
774 struct regcache_descr *descr = regcache->descr;
775 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
776 regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
777 regcache_cooked_read, regcache_cooked_write);
778 }
779
780 void
781 regcache_cooked_write_part (struct regcache *regcache, int regnum,
782 int offset, int len, const gdb_byte *buf)
783 {
784 struct regcache_descr *descr = regcache->descr;
785 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
786 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
787 regcache_cooked_read, regcache_cooked_write);
788 }
789
790 /* Hack to keep code that view the register buffer as raw bytes
791 working. */
792
793 int
794 register_offset_hack (struct gdbarch *gdbarch, int regnum)
795 {
796 struct regcache_descr *descr = regcache_descr (gdbarch);
797 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
798 return descr->register_offset[regnum];
799 }
800
801 /* Return the contents of register REGNUM as an unsigned integer. */
802
803 ULONGEST
804 read_register (int regnum)
805 {
806 gdb_byte *buf = alloca (register_size (current_gdbarch, regnum));
807 deprecated_read_register_gen (regnum, buf);
808 return (extract_unsigned_integer (buf, register_size (current_gdbarch, regnum)));
809 }
810
811 ULONGEST
812 read_register_pid (int regnum, ptid_t ptid)
813 {
814 ptid_t save_ptid;
815 int save_pid;
816 CORE_ADDR retval;
817
818 if (ptid_equal (ptid, inferior_ptid))
819 return read_register (regnum);
820
821 save_ptid = inferior_ptid;
822
823 inferior_ptid = ptid;
824
825 retval = read_register (regnum);
826
827 inferior_ptid = save_ptid;
828
829 return retval;
830 }
831
832 /* Store VALUE into the raw contents of register number REGNUM. */
833
834 void
835 write_register (int regnum, LONGEST val)
836 {
837 void *buf;
838 int size;
839 size = register_size (current_gdbarch, regnum);
840 buf = alloca (size);
841 store_signed_integer (buf, size, (LONGEST) val);
842 deprecated_write_register_gen (regnum, buf);
843 }
844
845 void
846 write_register_pid (int regnum, CORE_ADDR val, ptid_t ptid)
847 {
848 ptid_t save_ptid;
849
850 if (ptid_equal (ptid, inferior_ptid))
851 {
852 write_register (regnum, val);
853 return;
854 }
855
856 save_ptid = inferior_ptid;
857
858 inferior_ptid = ptid;
859
860 write_register (regnum, val);
861
862 inferior_ptid = save_ptid;
863 }
864
865 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
866
867 void
868 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
869 {
870 void *regbuf;
871 size_t size;
872
873 gdb_assert (regcache != NULL);
874 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
875 gdb_assert (!regcache->readonly_p);
876
877 /* FIXME: kettenis/20030828: It shouldn't be necessary to handle
878 CURRENT_REGCACHE specially here. */
879 if (regcache == current_regcache
880 && !ptid_equal (registers_ptid, inferior_ptid))
881 {
882 registers_changed ();
883 registers_ptid = inferior_ptid;
884 }
885
886 regbuf = register_buffer (regcache, regnum);
887 size = regcache->descr->sizeof_register[regnum];
888
889 if (buf)
890 memcpy (regbuf, buf, size);
891 else
892 memset (regbuf, 0, size);
893
894 /* Mark the register as cached. */
895 regcache->register_valid_p[regnum] = 1;
896 }
897
898 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
899
900 void
901 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
902 {
903 const void *regbuf;
904 size_t size;
905
906 gdb_assert (regcache != NULL && buf != NULL);
907 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
908
909 regbuf = register_buffer (regcache, regnum);
910 size = regcache->descr->sizeof_register[regnum];
911 memcpy (buf, regbuf, size);
912 }
913
914
915 /* read_pc, write_pc, read_sp, etc. Special handling for registers
916 PC, SP, and FP. */
917
918 /* NOTE: cagney/2001-02-18: The functions read_pc_pid(), read_pc() and
919 read_sp(), will eventually be replaced by per-frame methods.
920 Instead of relying on the global INFERIOR_PTID, they will use the
921 contextual information provided by the FRAME. These functions do
922 not belong in the register cache. */
923
924 /* NOTE: cagney/2003-06-07: The functions generic_target_write_pc(),
925 write_pc_pid() and write_pc(), all need to be replaced by something
926 that does not rely on global state. But what? */
927
928 CORE_ADDR
929 read_pc_pid (ptid_t ptid)
930 {
931 ptid_t saved_inferior_ptid;
932 CORE_ADDR pc_val;
933
934 /* In case ptid != inferior_ptid. */
935 saved_inferior_ptid = inferior_ptid;
936 inferior_ptid = ptid;
937
938 if (TARGET_READ_PC_P ())
939 pc_val = TARGET_READ_PC (ptid);
940 /* Else use per-frame method on get_current_frame. */
941 else if (PC_REGNUM >= 0)
942 {
943 CORE_ADDR raw_val = read_register_pid (PC_REGNUM, ptid);
944 pc_val = ADDR_BITS_REMOVE (raw_val);
945 }
946 else
947 internal_error (__FILE__, __LINE__, _("read_pc_pid: Unable to find PC"));
948
949 inferior_ptid = saved_inferior_ptid;
950 return pc_val;
951 }
952
953 CORE_ADDR
954 read_pc (void)
955 {
956 return read_pc_pid (inferior_ptid);
957 }
958
959 void
960 generic_target_write_pc (CORE_ADDR pc, ptid_t ptid)
961 {
962 if (PC_REGNUM >= 0)
963 write_register_pid (PC_REGNUM, pc, ptid);
964 else
965 internal_error (__FILE__, __LINE__,
966 _("generic_target_write_pc"));
967 }
968
969 void
970 write_pc_pid (CORE_ADDR pc, ptid_t ptid)
971 {
972 ptid_t saved_inferior_ptid;
973
974 /* In case ptid != inferior_ptid. */
975 saved_inferior_ptid = inferior_ptid;
976 inferior_ptid = ptid;
977
978 TARGET_WRITE_PC (pc, ptid);
979
980 inferior_ptid = saved_inferior_ptid;
981 }
982
983 void
984 write_pc (CORE_ADDR pc)
985 {
986 write_pc_pid (pc, inferior_ptid);
987 }
988
989 /* Cope with strage ways of getting to the stack and frame pointers */
990
991 CORE_ADDR
992 read_sp (void)
993 {
994 if (TARGET_READ_SP_P ())
995 return TARGET_READ_SP ();
996 else if (gdbarch_unwind_sp_p (current_gdbarch))
997 return get_frame_sp (get_current_frame ());
998 else if (SP_REGNUM >= 0)
999 /* Try SP_REGNUM last: this makes all sorts of [wrong] assumptions
1000 about the architecture so put it at the end. */
1001 return read_register (SP_REGNUM);
1002 internal_error (__FILE__, __LINE__, _("read_sp: Unable to find SP"));
1003 }
1004
1005 static void
1006 reg_flush_command (char *command, int from_tty)
1007 {
1008 /* Force-flush the register cache. */
1009 registers_changed ();
1010 if (from_tty)
1011 printf_filtered (_("Register cache flushed.\n"));
1012 }
1013
1014 static void
1015 build_regcache (void)
1016 {
1017 current_regcache = regcache_xmalloc (current_gdbarch);
1018 current_regcache->readonly_p = 0;
1019 }
1020
1021 static void
1022 dump_endian_bytes (struct ui_file *file, enum bfd_endian endian,
1023 const unsigned char *buf, long len)
1024 {
1025 int i;
1026 switch (endian)
1027 {
1028 case BFD_ENDIAN_BIG:
1029 for (i = 0; i < len; i++)
1030 fprintf_unfiltered (file, "%02x", buf[i]);
1031 break;
1032 case BFD_ENDIAN_LITTLE:
1033 for (i = len - 1; i >= 0; i--)
1034 fprintf_unfiltered (file, "%02x", buf[i]);
1035 break;
1036 default:
1037 internal_error (__FILE__, __LINE__, _("Bad switch"));
1038 }
1039 }
1040
1041 enum regcache_dump_what
1042 {
1043 regcache_dump_none, regcache_dump_raw, regcache_dump_cooked, regcache_dump_groups
1044 };
1045
1046 static void
1047 regcache_dump (struct regcache *regcache, struct ui_file *file,
1048 enum regcache_dump_what what_to_dump)
1049 {
1050 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1051 struct gdbarch *gdbarch = regcache->descr->gdbarch;
1052 int regnum;
1053 int footnote_nr = 0;
1054 int footnote_register_size = 0;
1055 int footnote_register_offset = 0;
1056 int footnote_register_type_name_null = 0;
1057 long register_offset = 0;
1058 unsigned char buf[MAX_REGISTER_SIZE];
1059
1060 #if 0
1061 fprintf_unfiltered (file, "nr_raw_registers %d\n",
1062 regcache->descr->nr_raw_registers);
1063 fprintf_unfiltered (file, "nr_cooked_registers %d\n",
1064 regcache->descr->nr_cooked_registers);
1065 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n",
1066 regcache->descr->sizeof_raw_registers);
1067 fprintf_unfiltered (file, "sizeof_raw_register_valid_p %ld\n",
1068 regcache->descr->sizeof_raw_register_valid_p);
1069 fprintf_unfiltered (file, "NUM_REGS %d\n", NUM_REGS);
1070 fprintf_unfiltered (file, "NUM_PSEUDO_REGS %d\n", NUM_PSEUDO_REGS);
1071 #endif
1072
1073 gdb_assert (regcache->descr->nr_cooked_registers
1074 == (NUM_REGS + NUM_PSEUDO_REGS));
1075
1076 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++)
1077 {
1078 /* Name. */
1079 if (regnum < 0)
1080 fprintf_unfiltered (file, " %-10s", "Name");
1081 else
1082 {
1083 const char *p = REGISTER_NAME (regnum);
1084 if (p == NULL)
1085 p = "";
1086 else if (p[0] == '\0')
1087 p = "''";
1088 fprintf_unfiltered (file, " %-10s", p);
1089 }
1090
1091 /* Number. */
1092 if (regnum < 0)
1093 fprintf_unfiltered (file, " %4s", "Nr");
1094 else
1095 fprintf_unfiltered (file, " %4d", regnum);
1096
1097 /* Relative number. */
1098 if (regnum < 0)
1099 fprintf_unfiltered (file, " %4s", "Rel");
1100 else if (regnum < NUM_REGS)
1101 fprintf_unfiltered (file, " %4d", regnum);
1102 else
1103 fprintf_unfiltered (file, " %4d", (regnum - NUM_REGS));
1104
1105 /* Offset. */
1106 if (regnum < 0)
1107 fprintf_unfiltered (file, " %6s ", "Offset");
1108 else
1109 {
1110 fprintf_unfiltered (file, " %6ld",
1111 regcache->descr->register_offset[regnum]);
1112 if (register_offset != regcache->descr->register_offset[regnum]
1113 || register_offset != DEPRECATED_REGISTER_BYTE (regnum)
1114 || (regnum > 0
1115 && (regcache->descr->register_offset[regnum]
1116 != (regcache->descr->register_offset[regnum - 1]
1117 + regcache->descr->sizeof_register[regnum - 1])))
1118 )
1119 {
1120 if (!footnote_register_offset)
1121 footnote_register_offset = ++footnote_nr;
1122 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1123 }
1124 else
1125 fprintf_unfiltered (file, " ");
1126 register_offset = (regcache->descr->register_offset[regnum]
1127 + regcache->descr->sizeof_register[regnum]);
1128 }
1129
1130 /* Size. */
1131 if (regnum < 0)
1132 fprintf_unfiltered (file, " %5s ", "Size");
1133 else
1134 fprintf_unfiltered (file, " %5ld",
1135 regcache->descr->sizeof_register[regnum]);
1136
1137 /* Type. */
1138 {
1139 const char *t;
1140 if (regnum < 0)
1141 t = "Type";
1142 else
1143 {
1144 static const char blt[] = "builtin_type";
1145 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum));
1146 if (t == NULL)
1147 {
1148 char *n;
1149 if (!footnote_register_type_name_null)
1150 footnote_register_type_name_null = ++footnote_nr;
1151 n = xstrprintf ("*%d", footnote_register_type_name_null);
1152 make_cleanup (xfree, n);
1153 t = n;
1154 }
1155 /* Chop a leading builtin_type. */
1156 if (strncmp (t, blt, strlen (blt)) == 0)
1157 t += strlen (blt);
1158 }
1159 fprintf_unfiltered (file, " %-15s", t);
1160 }
1161
1162 /* Leading space always present. */
1163 fprintf_unfiltered (file, " ");
1164
1165 /* Value, raw. */
1166 if (what_to_dump == regcache_dump_raw)
1167 {
1168 if (regnum < 0)
1169 fprintf_unfiltered (file, "Raw value");
1170 else if (regnum >= regcache->descr->nr_raw_registers)
1171 fprintf_unfiltered (file, "<cooked>");
1172 else if (!regcache_valid_p (regcache, regnum))
1173 fprintf_unfiltered (file, "<invalid>");
1174 else
1175 {
1176 regcache_raw_read (regcache, regnum, buf);
1177 fprintf_unfiltered (file, "0x");
1178 dump_endian_bytes (file, TARGET_BYTE_ORDER, buf,
1179 regcache->descr->sizeof_register[regnum]);
1180 }
1181 }
1182
1183 /* Value, cooked. */
1184 if (what_to_dump == regcache_dump_cooked)
1185 {
1186 if (regnum < 0)
1187 fprintf_unfiltered (file, "Cooked value");
1188 else
1189 {
1190 regcache_cooked_read (regcache, regnum, buf);
1191 fprintf_unfiltered (file, "0x");
1192 dump_endian_bytes (file, TARGET_BYTE_ORDER, buf,
1193 regcache->descr->sizeof_register[regnum]);
1194 }
1195 }
1196
1197 /* Group members. */
1198 if (what_to_dump == regcache_dump_groups)
1199 {
1200 if (regnum < 0)
1201 fprintf_unfiltered (file, "Groups");
1202 else
1203 {
1204 const char *sep = "";
1205 struct reggroup *group;
1206 for (group = reggroup_next (gdbarch, NULL);
1207 group != NULL;
1208 group = reggroup_next (gdbarch, group))
1209 {
1210 if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
1211 {
1212 fprintf_unfiltered (file, "%s%s", sep, reggroup_name (group));
1213 sep = ",";
1214 }
1215 }
1216 }
1217 }
1218
1219 fprintf_unfiltered (file, "\n");
1220 }
1221
1222 if (footnote_register_size)
1223 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
1224 footnote_register_size);
1225 if (footnote_register_offset)
1226 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1227 footnote_register_offset);
1228 if (footnote_register_type_name_null)
1229 fprintf_unfiltered (file,
1230 "*%d: Register type's name NULL.\n",
1231 footnote_register_type_name_null);
1232 do_cleanups (cleanups);
1233 }
1234
1235 static void
1236 regcache_print (char *args, enum regcache_dump_what what_to_dump)
1237 {
1238 if (args == NULL)
1239 regcache_dump (current_regcache, gdb_stdout, what_to_dump);
1240 else
1241 {
1242 struct ui_file *file = gdb_fopen (args, "w");
1243 if (file == NULL)
1244 perror_with_name (_("maintenance print architecture"));
1245 regcache_dump (current_regcache, file, what_to_dump);
1246 ui_file_delete (file);
1247 }
1248 }
1249
1250 static void
1251 maintenance_print_registers (char *args, int from_tty)
1252 {
1253 regcache_print (args, regcache_dump_none);
1254 }
1255
1256 static void
1257 maintenance_print_raw_registers (char *args, int from_tty)
1258 {
1259 regcache_print (args, regcache_dump_raw);
1260 }
1261
1262 static void
1263 maintenance_print_cooked_registers (char *args, int from_tty)
1264 {
1265 regcache_print (args, regcache_dump_cooked);
1266 }
1267
1268 static void
1269 maintenance_print_register_groups (char *args, int from_tty)
1270 {
1271 regcache_print (args, regcache_dump_groups);
1272 }
1273
1274 extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */
1275
1276 void
1277 _initialize_regcache (void)
1278 {
1279 regcache_descr_handle = gdbarch_data_register_post_init (init_regcache_descr);
1280 DEPRECATED_REGISTER_GDBARCH_SWAP (current_regcache);
1281 deprecated_register_gdbarch_swap (NULL, 0, build_regcache);
1282
1283 observer_attach_target_changed (regcache_observer_target_changed);
1284
1285 add_com ("flushregs", class_maintenance, reg_flush_command,
1286 _("Force gdb to flush its register cache (maintainer command)"));
1287
1288 /* Initialize the thread/process associated with the current set of
1289 registers. For now, -1 is special, and means `no current process'. */
1290 registers_ptid = pid_to_ptid (-1);
1291
1292 add_cmd ("registers", class_maintenance, maintenance_print_registers, _("\
1293 Print the internal register configuration.\n\
1294 Takes an optional file parameter."), &maintenanceprintlist);
1295 add_cmd ("raw-registers", class_maintenance,
1296 maintenance_print_raw_registers, _("\
1297 Print the internal register configuration including raw values.\n\
1298 Takes an optional file parameter."), &maintenanceprintlist);
1299 add_cmd ("cooked-registers", class_maintenance,
1300 maintenance_print_cooked_registers, _("\
1301 Print the internal register configuration including cooked values.\n\
1302 Takes an optional file parameter."), &maintenanceprintlist);
1303 add_cmd ("register-groups", class_maintenance,
1304 maintenance_print_register_groups, _("\
1305 Print the internal register configuration including each register's group.\n\
1306 Takes an optional file parameter."),
1307 &maintenanceprintlist);
1308
1309 }
This page took 0.056472 seconds and 5 git commands to generate.