Remove regcache_cooked_write
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbarch.h"
24 #include "gdbcmd.h"
25 #include "regcache.h"
26 #include "reggroups.h"
27 #include "observable.h"
28 #include "regset.h"
29 #include <forward_list>
30
31 /*
32 * DATA STRUCTURE
33 *
34 * Here is the actual register cache.
35 */
36
37 /* Per-architecture object describing the layout of a register cache.
38 Computed once when the architecture is created. */
39
40 struct gdbarch_data *regcache_descr_handle;
41
42 struct regcache_descr
43 {
44 /* The architecture this descriptor belongs to. */
45 struct gdbarch *gdbarch;
46
47 /* The raw register cache. Each raw (or hard) register is supplied
48 by the target interface. The raw cache should not contain
49 redundant information - if the PC is constructed from two
50 registers then those registers and not the PC lives in the raw
51 cache. */
52 long sizeof_raw_registers;
53
54 /* The cooked register space. Each cooked register in the range
55 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
56 register. The remaining [NR_RAW_REGISTERS
57 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
58 both raw registers and memory by the architecture methods
59 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
60 int nr_cooked_registers;
61 long sizeof_cooked_registers;
62
63 /* Offset and size (in 8 bit bytes), of each register in the
64 register cache. All registers (including those in the range
65 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
66 offset. */
67 long *register_offset;
68 long *sizeof_register;
69
70 /* Cached table containing the type of each register. */
71 struct type **register_type;
72 };
73
74 static void *
75 init_regcache_descr (struct gdbarch *gdbarch)
76 {
77 int i;
78 struct regcache_descr *descr;
79 gdb_assert (gdbarch != NULL);
80
81 /* Create an initial, zero filled, table. */
82 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
83 descr->gdbarch = gdbarch;
84
85 /* Total size of the register space. The raw registers are mapped
86 directly onto the raw register cache while the pseudo's are
87 either mapped onto raw-registers or memory. */
88 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
89 + gdbarch_num_pseudo_regs (gdbarch);
90
91 /* Fill in a table of register types. */
92 descr->register_type
93 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
94 struct type *);
95 for (i = 0; i < descr->nr_cooked_registers; i++)
96 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
97
98 /* Construct a strictly RAW register cache. Don't allow pseudo's
99 into the register cache. */
100
101 /* Lay out the register cache.
102
103 NOTE: cagney/2002-05-22: Only register_type() is used when
104 constructing the register cache. It is assumed that the
105 register's raw size, virtual size and type length are all the
106 same. */
107
108 {
109 long offset = 0;
110
111 descr->sizeof_register
112 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
113 descr->register_offset
114 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
115 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
116 {
117 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
118 descr->register_offset[i] = offset;
119 offset += descr->sizeof_register[i];
120 }
121 /* Set the real size of the raw register cache buffer. */
122 descr->sizeof_raw_registers = offset;
123
124 for (; i < descr->nr_cooked_registers; i++)
125 {
126 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
127 descr->register_offset[i] = offset;
128 offset += descr->sizeof_register[i];
129 }
130 /* Set the real size of the readonly register cache buffer. */
131 descr->sizeof_cooked_registers = offset;
132 }
133
134 return descr;
135 }
136
137 static struct regcache_descr *
138 regcache_descr (struct gdbarch *gdbarch)
139 {
140 return (struct regcache_descr *) gdbarch_data (gdbarch,
141 regcache_descr_handle);
142 }
143
144 /* Utility functions returning useful register attributes stored in
145 the regcache descr. */
146
147 struct type *
148 register_type (struct gdbarch *gdbarch, int regnum)
149 {
150 struct regcache_descr *descr = regcache_descr (gdbarch);
151
152 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
153 return descr->register_type[regnum];
154 }
155
156 /* Utility functions returning useful register attributes stored in
157 the regcache descr. */
158
159 int
160 register_size (struct gdbarch *gdbarch, int regnum)
161 {
162 struct regcache_descr *descr = regcache_descr (gdbarch);
163 int size;
164
165 gdb_assert (regnum >= 0
166 && regnum < (gdbarch_num_regs (gdbarch)
167 + gdbarch_num_pseudo_regs (gdbarch)));
168 size = descr->sizeof_register[regnum];
169 return size;
170 }
171
172 /* See common/common-regcache.h. */
173
174 int
175 regcache_register_size (const struct regcache *regcache, int n)
176 {
177 return register_size (regcache->arch (), n);
178 }
179
180 reg_buffer::reg_buffer (gdbarch *gdbarch, bool has_pseudo)
181 : m_has_pseudo (has_pseudo)
182 {
183 gdb_assert (gdbarch != NULL);
184 m_descr = regcache_descr (gdbarch);
185
186 if (has_pseudo)
187 {
188 m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_cooked_registers);
189 m_register_status = XCNEWVEC (signed char,
190 m_descr->nr_cooked_registers);
191 }
192 else
193 {
194 m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_raw_registers);
195 m_register_status = XCNEWVEC (signed char, gdbarch_num_regs (gdbarch));
196 }
197 }
198
199 regcache::regcache (gdbarch *gdbarch, const address_space *aspace_)
200 /* The register buffers. A read/write register cache can only hold
201 [0 .. gdbarch_num_regs). */
202 : detached_regcache (gdbarch, false), m_aspace (aspace_)
203 {
204 m_ptid = minus_one_ptid;
205 }
206
207 static enum register_status
208 do_cooked_read (void *src, int regnum, gdb_byte *buf)
209 {
210 struct regcache *regcache = (struct regcache *) src;
211
212 return regcache->cooked_read (regnum, buf);
213 }
214
215 readonly_detached_regcache::readonly_detached_regcache (const regcache &src)
216 : readonly_detached_regcache (src.arch (), do_cooked_read, (void *) &src)
217 {
218 }
219
220 gdbarch *
221 reg_buffer::arch () const
222 {
223 return m_descr->gdbarch;
224 }
225
226 /* Cleanup class for invalidating a register. */
227
228 class regcache_invalidator
229 {
230 public:
231
232 regcache_invalidator (struct regcache *regcache, int regnum)
233 : m_regcache (regcache),
234 m_regnum (regnum)
235 {
236 }
237
238 ~regcache_invalidator ()
239 {
240 if (m_regcache != nullptr)
241 m_regcache->invalidate (m_regnum);
242 }
243
244 DISABLE_COPY_AND_ASSIGN (regcache_invalidator);
245
246 void release ()
247 {
248 m_regcache = nullptr;
249 }
250
251 private:
252
253 struct regcache *m_regcache;
254 int m_regnum;
255 };
256
257 /* Return a pointer to register REGNUM's buffer cache. */
258
259 gdb_byte *
260 reg_buffer::register_buffer (int regnum) const
261 {
262 return m_registers + m_descr->register_offset[regnum];
263 }
264
265 void
266 reg_buffer::save (regcache_cooked_read_ftype *cooked_read,
267 void *src)
268 {
269 struct gdbarch *gdbarch = m_descr->gdbarch;
270 int regnum;
271
272 /* It should have pseudo registers. */
273 gdb_assert (m_has_pseudo);
274 /* Clear the dest. */
275 memset (m_registers, 0, m_descr->sizeof_cooked_registers);
276 memset (m_register_status, 0, m_descr->nr_cooked_registers);
277 /* Copy over any registers (identified by their membership in the
278 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
279 gdbarch_num_pseudo_regs) range is checked since some architectures need
280 to save/restore `cooked' registers that live in memory. */
281 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
282 {
283 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
284 {
285 gdb_byte *dst_buf = register_buffer (regnum);
286 enum register_status status = cooked_read (src, regnum, dst_buf);
287
288 gdb_assert (status != REG_UNKNOWN);
289
290 if (status != REG_VALID)
291 memset (dst_buf, 0, register_size (gdbarch, regnum));
292
293 m_register_status[regnum] = status;
294 }
295 }
296 }
297
298 void
299 regcache::restore (readonly_detached_regcache *src)
300 {
301 struct gdbarch *gdbarch = m_descr->gdbarch;
302 int regnum;
303
304 gdb_assert (src != NULL);
305 gdb_assert (src->m_has_pseudo);
306
307 gdb_assert (gdbarch == src->arch ());
308
309 /* Copy over any registers, being careful to only restore those that
310 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
311 + gdbarch_num_pseudo_regs) range is checked since some architectures need
312 to save/restore `cooked' registers that live in memory. */
313 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
314 {
315 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
316 {
317 if (src->m_register_status[regnum] == REG_VALID)
318 cooked_write (regnum, src->register_buffer (regnum));
319 }
320 }
321 }
322
323 enum register_status
324 reg_buffer::get_register_status (int regnum) const
325 {
326 assert_regnum (regnum);
327
328 return (enum register_status) m_register_status[regnum];
329 }
330
331 void
332 detached_regcache::invalidate (int regnum)
333 {
334 assert_regnum (regnum);
335 m_register_status[regnum] = REG_UNKNOWN;
336 }
337
338 void
339 reg_buffer::assert_regnum (int regnum) const
340 {
341 gdb_assert (regnum >= 0);
342 if (m_has_pseudo)
343 gdb_assert (regnum < m_descr->nr_cooked_registers);
344 else
345 gdb_assert (regnum < gdbarch_num_regs (arch ()));
346 }
347
348 /* Global structure containing the current regcache. */
349
350 /* NOTE: this is a write-through cache. There is no "dirty" bit for
351 recording if the register values have been changed (eg. by the
352 user). Therefore all registers must be written back to the
353 target when appropriate. */
354 std::forward_list<regcache *> regcache::current_regcache;
355
356 struct regcache *
357 get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
358 struct address_space *aspace)
359 {
360 for (const auto &regcache : regcache::current_regcache)
361 if (ptid_equal (regcache->ptid (), ptid) && regcache->arch () == gdbarch)
362 return regcache;
363
364 regcache *new_regcache = new regcache (gdbarch, aspace);
365
366 regcache::current_regcache.push_front (new_regcache);
367 new_regcache->set_ptid (ptid);
368
369 return new_regcache;
370 }
371
372 struct regcache *
373 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
374 {
375 address_space *aspace = target_thread_address_space (ptid);
376
377 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
378 }
379
380 static ptid_t current_thread_ptid;
381 static struct gdbarch *current_thread_arch;
382
383 struct regcache *
384 get_thread_regcache (ptid_t ptid)
385 {
386 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
387 {
388 current_thread_ptid = ptid;
389 current_thread_arch = target_thread_architecture (ptid);
390 }
391
392 return get_thread_arch_regcache (ptid, current_thread_arch);
393 }
394
395 struct regcache *
396 get_current_regcache (void)
397 {
398 return get_thread_regcache (inferior_ptid);
399 }
400
401 /* See common/common-regcache.h. */
402
403 struct regcache *
404 get_thread_regcache_for_ptid (ptid_t ptid)
405 {
406 return get_thread_regcache (ptid);
407 }
408
409 /* Observer for the target_changed event. */
410
411 static void
412 regcache_observer_target_changed (struct target_ops *target)
413 {
414 registers_changed ();
415 }
416
417 /* Update global variables old ptids to hold NEW_PTID if they were
418 holding OLD_PTID. */
419 void
420 regcache::regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
421 {
422 for (auto &regcache : regcache::current_regcache)
423 {
424 if (ptid_equal (regcache->ptid (), old_ptid))
425 regcache->set_ptid (new_ptid);
426 }
427 }
428
429 /* Low level examining and depositing of registers.
430
431 The caller is responsible for making sure that the inferior is
432 stopped before calling the fetching routines, or it will get
433 garbage. (a change from GDB version 3, in which the caller got the
434 value from the last stop). */
435
436 /* REGISTERS_CHANGED ()
437
438 Indicate that registers may have changed, so invalidate the cache. */
439
440 void
441 registers_changed_ptid (ptid_t ptid)
442 {
443 for (auto oit = regcache::current_regcache.before_begin (),
444 it = std::next (oit);
445 it != regcache::current_regcache.end ();
446 )
447 {
448 if (ptid_match ((*it)->ptid (), ptid))
449 {
450 delete *it;
451 it = regcache::current_regcache.erase_after (oit);
452 }
453 else
454 oit = it++;
455 }
456
457 if (ptid_match (current_thread_ptid, ptid))
458 {
459 current_thread_ptid = null_ptid;
460 current_thread_arch = NULL;
461 }
462
463 if (ptid_match (inferior_ptid, ptid))
464 {
465 /* We just deleted the regcache of the current thread. Need to
466 forget about any frames we have cached, too. */
467 reinit_frame_cache ();
468 }
469 }
470
471 void
472 registers_changed (void)
473 {
474 registers_changed_ptid (minus_one_ptid);
475
476 /* Force cleanup of any alloca areas if using C alloca instead of
477 a builtin alloca. This particular call is used to clean up
478 areas allocated by low level target code which may build up
479 during lengthy interactions between gdb and the target before
480 gdb gives control to the user (ie watchpoints). */
481 alloca (0);
482 }
483
484 void
485 regcache::raw_update (int regnum)
486 {
487 assert_regnum (regnum);
488
489 /* Make certain that the register cache is up-to-date with respect
490 to the current thread. This switching shouldn't be necessary
491 only there is still only one target side register cache. Sigh!
492 On the bright side, at least there is a regcache object. */
493
494 if (get_register_status (regnum) == REG_UNKNOWN)
495 {
496 target_fetch_registers (this, regnum);
497
498 /* A number of targets can't access the whole set of raw
499 registers (because the debug API provides no means to get at
500 them). */
501 if (m_register_status[regnum] == REG_UNKNOWN)
502 m_register_status[regnum] = REG_UNAVAILABLE;
503 }
504 }
505
506 enum register_status
507 readable_regcache::raw_read (int regnum, gdb_byte *buf)
508 {
509 gdb_assert (buf != NULL);
510 raw_update (regnum);
511
512 if (m_register_status[regnum] != REG_VALID)
513 memset (buf, 0, m_descr->sizeof_register[regnum]);
514 else
515 memcpy (buf, register_buffer (regnum),
516 m_descr->sizeof_register[regnum]);
517
518 return (enum register_status) m_register_status[regnum];
519 }
520
521 enum register_status
522 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
523 {
524 gdb_assert (regcache != NULL);
525 return regcache->raw_read (regnum, val);
526 }
527
528 template<typename T, typename>
529 enum register_status
530 readable_regcache::raw_read (int regnum, T *val)
531 {
532 gdb_byte *buf;
533 enum register_status status;
534
535 assert_regnum (regnum);
536 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
537 status = raw_read (regnum, buf);
538 if (status == REG_VALID)
539 *val = extract_integer<T> (buf,
540 m_descr->sizeof_register[regnum],
541 gdbarch_byte_order (m_descr->gdbarch));
542 else
543 *val = 0;
544 return status;
545 }
546
547 enum register_status
548 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
549 ULONGEST *val)
550 {
551 gdb_assert (regcache != NULL);
552 return regcache->raw_read (regnum, val);
553 }
554
555 void
556 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
557 {
558 gdb_assert (regcache != NULL);
559 regcache->raw_write (regnum, val);
560 }
561
562 template<typename T, typename>
563 void
564 regcache::raw_write (int regnum, T val)
565 {
566 gdb_byte *buf;
567
568 assert_regnum (regnum);
569 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
570 store_integer (buf, m_descr->sizeof_register[regnum],
571 gdbarch_byte_order (m_descr->gdbarch), val);
572 raw_write (regnum, buf);
573 }
574
575 void
576 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
577 ULONGEST val)
578 {
579 gdb_assert (regcache != NULL);
580 regcache->raw_write (regnum, val);
581 }
582
583 LONGEST
584 regcache_raw_get_signed (struct regcache *regcache, int regnum)
585 {
586 LONGEST value;
587 enum register_status status;
588
589 status = regcache_raw_read_signed (regcache, regnum, &value);
590 if (status == REG_UNAVAILABLE)
591 throw_error (NOT_AVAILABLE_ERROR,
592 _("Register %d is not available"), regnum);
593 return value;
594 }
595
596 enum register_status
597 readable_regcache::cooked_read (int regnum, gdb_byte *buf)
598 {
599 gdb_assert (regnum >= 0);
600 gdb_assert (regnum < m_descr->nr_cooked_registers);
601 if (regnum < num_raw_registers ())
602 return raw_read (regnum, buf);
603 else if (m_has_pseudo
604 && m_register_status[regnum] != REG_UNKNOWN)
605 {
606 if (m_register_status[regnum] == REG_VALID)
607 memcpy (buf, register_buffer (regnum),
608 m_descr->sizeof_register[regnum]);
609 else
610 memset (buf, 0, m_descr->sizeof_register[regnum]);
611
612 return (enum register_status) m_register_status[regnum];
613 }
614 else if (gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
615 {
616 struct value *mark, *computed;
617 enum register_status result = REG_VALID;
618
619 mark = value_mark ();
620
621 computed = gdbarch_pseudo_register_read_value (m_descr->gdbarch,
622 this, regnum);
623 if (value_entirely_available (computed))
624 memcpy (buf, value_contents_raw (computed),
625 m_descr->sizeof_register[regnum]);
626 else
627 {
628 memset (buf, 0, m_descr->sizeof_register[regnum]);
629 result = REG_UNAVAILABLE;
630 }
631
632 value_free_to_mark (mark);
633
634 return result;
635 }
636 else
637 return gdbarch_pseudo_register_read (m_descr->gdbarch, this,
638 regnum, buf);
639 }
640
641 struct value *
642 regcache_cooked_read_value (struct regcache *regcache, int regnum)
643 {
644 return regcache->cooked_read_value (regnum);
645 }
646
647 struct value *
648 readable_regcache::cooked_read_value (int regnum)
649 {
650 gdb_assert (regnum >= 0);
651 gdb_assert (regnum < m_descr->nr_cooked_registers);
652
653 if (regnum < num_raw_registers ()
654 || (m_has_pseudo && m_register_status[regnum] != REG_UNKNOWN)
655 || !gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
656 {
657 struct value *result;
658
659 result = allocate_value (register_type (m_descr->gdbarch, regnum));
660 VALUE_LVAL (result) = lval_register;
661 VALUE_REGNUM (result) = regnum;
662
663 /* It is more efficient in general to do this delegation in this
664 direction than in the other one, even though the value-based
665 API is preferred. */
666 if (cooked_read (regnum,
667 value_contents_raw (result)) == REG_UNAVAILABLE)
668 mark_value_bytes_unavailable (result, 0,
669 TYPE_LENGTH (value_type (result)));
670
671 return result;
672 }
673 else
674 return gdbarch_pseudo_register_read_value (m_descr->gdbarch,
675 this, regnum);
676 }
677
678 enum register_status
679 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
680 LONGEST *val)
681 {
682 gdb_assert (regcache != NULL);
683 return regcache->cooked_read (regnum, val);
684 }
685
686 template<typename T, typename>
687 enum register_status
688 readable_regcache::cooked_read (int regnum, T *val)
689 {
690 enum register_status status;
691 gdb_byte *buf;
692
693 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
694 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
695 status = cooked_read (regnum, buf);
696 if (status == REG_VALID)
697 *val = extract_integer<T> (buf, m_descr->sizeof_register[regnum],
698 gdbarch_byte_order (m_descr->gdbarch));
699 else
700 *val = 0;
701 return status;
702 }
703
704 enum register_status
705 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
706 ULONGEST *val)
707 {
708 gdb_assert (regcache != NULL);
709 return regcache->cooked_read (regnum, val);
710 }
711
712 void
713 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
714 LONGEST val)
715 {
716 gdb_assert (regcache != NULL);
717 regcache->cooked_write (regnum, val);
718 }
719
720 template<typename T, typename>
721 void
722 regcache::cooked_write (int regnum, T val)
723 {
724 gdb_byte *buf;
725
726 gdb_assert (regnum >=0 && regnum < m_descr->nr_cooked_registers);
727 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
728 store_integer (buf, m_descr->sizeof_register[regnum],
729 gdbarch_byte_order (m_descr->gdbarch), val);
730 cooked_write (regnum, buf);
731 }
732
733 void
734 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
735 ULONGEST val)
736 {
737 gdb_assert (regcache != NULL);
738 regcache->cooked_write (regnum, val);
739 }
740
741 void
742 regcache::raw_write (int regnum, const gdb_byte *buf)
743 {
744
745 gdb_assert (buf != NULL);
746 assert_regnum (regnum);
747
748 /* On the sparc, writing %g0 is a no-op, so we don't even want to
749 change the registers array if something writes to this register. */
750 if (gdbarch_cannot_store_register (arch (), regnum))
751 return;
752
753 /* If we have a valid copy of the register, and new value == old
754 value, then don't bother doing the actual store. */
755 if (get_register_status (regnum) == REG_VALID
756 && (memcmp (register_buffer (regnum), buf,
757 m_descr->sizeof_register[regnum]) == 0))
758 return;
759
760 target_prepare_to_store (this);
761 raw_supply (regnum, buf);
762
763 /* Invalidate the register after it is written, in case of a
764 failure. */
765 regcache_invalidator invalidator (this, regnum);
766
767 target_store_registers (this, regnum);
768
769 /* The target did not throw an error so we can discard invalidating
770 the register. */
771 invalidator.release ();
772 }
773
774 void
775 regcache::cooked_write (int regnum, const gdb_byte *buf)
776 {
777 gdb_assert (regnum >= 0);
778 gdb_assert (regnum < m_descr->nr_cooked_registers);
779 if (regnum < num_raw_registers ())
780 raw_write (regnum, buf);
781 else
782 gdbarch_pseudo_register_write (m_descr->gdbarch, this,
783 regnum, buf);
784 }
785
786 /* Perform a partial register transfer using a read, modify, write
787 operation. */
788
789 enum register_status
790 readable_regcache::read_part (int regnum, int offset, int len, void *in,
791 bool is_raw)
792 {
793 struct gdbarch *gdbarch = arch ();
794 gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
795
796 gdb_assert (in != NULL);
797 gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]);
798 gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]);
799 /* Something to do? */
800 if (offset + len == 0)
801 return REG_VALID;
802 /* Read (when needed) ... */
803 enum register_status status;
804
805 if (is_raw)
806 status = raw_read (regnum, reg);
807 else
808 status = cooked_read (regnum, reg);
809 if (status != REG_VALID)
810 return status;
811
812 /* ... modify ... */
813 memcpy (in, reg + offset, len);
814
815 return REG_VALID;
816 }
817
818 enum register_status
819 regcache::write_part (int regnum, int offset, int len,
820 const void *out, bool is_raw)
821 {
822 struct gdbarch *gdbarch = arch ();
823 gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
824
825 gdb_assert (out != NULL);
826 gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]);
827 gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]);
828 /* Something to do? */
829 if (offset + len == 0)
830 return REG_VALID;
831 /* Read (when needed) ... */
832 if (offset > 0
833 || offset + len < m_descr->sizeof_register[regnum])
834 {
835 enum register_status status;
836
837 if (is_raw)
838 status = raw_read (regnum, reg);
839 else
840 status = cooked_read (regnum, reg);
841 if (status != REG_VALID)
842 return status;
843 }
844
845 memcpy (reg + offset, out, len);
846 /* ... write (when needed). */
847 if (is_raw)
848 raw_write (regnum, reg);
849 else
850 cooked_write (regnum, reg);
851
852 return REG_VALID;
853 }
854
855 enum register_status
856 readable_regcache::raw_read_part (int regnum, int offset, int len, gdb_byte *buf)
857 {
858 assert_regnum (regnum);
859 return read_part (regnum, offset, len, buf, true);
860 }
861
862 /* See regcache.h. */
863
864 void
865 regcache::raw_write_part (int regnum, int offset, int len,
866 const gdb_byte *buf)
867 {
868 assert_regnum (regnum);
869 write_part (regnum, offset, len, buf, true);
870 }
871
872 enum register_status
873 regcache_cooked_read_part (struct regcache *regcache, int regnum,
874 int offset, int len, gdb_byte *buf)
875 {
876 return regcache->cooked_read_part (regnum, offset, len, buf);
877 }
878
879
880 enum register_status
881 readable_regcache::cooked_read_part (int regnum, int offset, int len,
882 gdb_byte *buf)
883 {
884 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
885 return read_part (regnum, offset, len, buf, false);
886 }
887
888 void
889 regcache_cooked_write_part (struct regcache *regcache, int regnum,
890 int offset, int len, const gdb_byte *buf)
891 {
892 regcache->cooked_write_part (regnum, offset, len, buf);
893 }
894
895 void
896 regcache::cooked_write_part (int regnum, int offset, int len,
897 const gdb_byte *buf)
898 {
899 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
900 write_part (regnum, offset, len, buf, false);
901 }
902
903 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
904
905 void
906 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
907 {
908 gdb_assert (regcache != NULL);
909 regcache->raw_supply (regnum, buf);
910 }
911
912 void
913 detached_regcache::raw_supply (int regnum, const void *buf)
914 {
915 void *regbuf;
916 size_t size;
917
918 assert_regnum (regnum);
919
920 regbuf = register_buffer (regnum);
921 size = m_descr->sizeof_register[regnum];
922
923 if (buf)
924 {
925 memcpy (regbuf, buf, size);
926 m_register_status[regnum] = REG_VALID;
927 }
928 else
929 {
930 /* This memset not strictly necessary, but better than garbage
931 in case the register value manages to escape somewhere (due
932 to a bug, no less). */
933 memset (regbuf, 0, size);
934 m_register_status[regnum] = REG_UNAVAILABLE;
935 }
936 }
937
938 /* Supply register REGNUM to REGCACHE. Value to supply is an integer stored at
939 address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED. If
940 the register size is greater than ADDR_LEN, then the integer will be sign or
941 zero extended. If the register size is smaller than the integer, then the
942 most significant bytes of the integer will be truncated. */
943
944 void
945 detached_regcache::raw_supply_integer (int regnum, const gdb_byte *addr,
946 int addr_len, bool is_signed)
947 {
948 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
949 gdb_byte *regbuf;
950 size_t regsize;
951
952 assert_regnum (regnum);
953
954 regbuf = register_buffer (regnum);
955 regsize = m_descr->sizeof_register[regnum];
956
957 copy_integer_to_size (regbuf, regsize, addr, addr_len, is_signed,
958 byte_order);
959 m_register_status[regnum] = REG_VALID;
960 }
961
962 /* Supply register REGNUM with zeroed value to REGCACHE. This is not the same
963 as calling raw_supply with NULL (which will set the state to
964 unavailable). */
965
966 void
967 detached_regcache::raw_supply_zeroed (int regnum)
968 {
969 void *regbuf;
970 size_t size;
971
972 assert_regnum (regnum);
973
974 regbuf = register_buffer (regnum);
975 size = m_descr->sizeof_register[regnum];
976
977 memset (regbuf, 0, size);
978 m_register_status[regnum] = REG_VALID;
979 }
980
981 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
982
983 void
984 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
985 {
986 gdb_assert (regcache != NULL && buf != NULL);
987 regcache->raw_collect (regnum, buf);
988 }
989
990 void
991 regcache::raw_collect (int regnum, void *buf) const
992 {
993 const void *regbuf;
994 size_t size;
995
996 gdb_assert (buf != NULL);
997 assert_regnum (regnum);
998
999 regbuf = register_buffer (regnum);
1000 size = m_descr->sizeof_register[regnum];
1001 memcpy (buf, regbuf, size);
1002 }
1003
1004 /* Transfer a single or all registers belonging to a certain register
1005 set to or from a buffer. This is the main worker function for
1006 regcache_supply_regset and regcache_collect_regset. */
1007
1008 /* Collect register REGNUM from REGCACHE. Store collected value as an integer
1009 at address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED.
1010 If ADDR_LEN is greater than the register size, then the integer will be sign
1011 or zero extended. If ADDR_LEN is smaller than the register size, then the
1012 most significant bytes of the integer will be truncated. */
1013
1014 void
1015 regcache::raw_collect_integer (int regnum, gdb_byte *addr, int addr_len,
1016 bool is_signed) const
1017 {
1018 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
1019 const gdb_byte *regbuf;
1020 size_t regsize;
1021
1022 assert_regnum (regnum);
1023
1024 regbuf = register_buffer (regnum);
1025 regsize = m_descr->sizeof_register[regnum];
1026
1027 copy_integer_to_size (addr, addr_len, regbuf, regsize, is_signed,
1028 byte_order);
1029 }
1030
1031 void
1032 regcache::transfer_regset (const struct regset *regset,
1033 struct regcache *out_regcache,
1034 int regnum, const void *in_buf,
1035 void *out_buf, size_t size) const
1036 {
1037 const struct regcache_map_entry *map;
1038 int offs = 0, count;
1039
1040 for (map = (const struct regcache_map_entry *) regset->regmap;
1041 (count = map->count) != 0;
1042 map++)
1043 {
1044 int regno = map->regno;
1045 int slot_size = map->size;
1046
1047 if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
1048 slot_size = m_descr->sizeof_register[regno];
1049
1050 if (regno == REGCACHE_MAP_SKIP
1051 || (regnum != -1
1052 && (regnum < regno || regnum >= regno + count)))
1053 offs += count * slot_size;
1054
1055 else if (regnum == -1)
1056 for (; count--; regno++, offs += slot_size)
1057 {
1058 if (offs + slot_size > size)
1059 break;
1060
1061 if (out_buf)
1062 raw_collect (regno, (gdb_byte *) out_buf + offs);
1063 else
1064 out_regcache->raw_supply (regno, in_buf
1065 ? (const gdb_byte *) in_buf + offs
1066 : NULL);
1067 }
1068 else
1069 {
1070 /* Transfer a single register and return. */
1071 offs += (regnum - regno) * slot_size;
1072 if (offs + slot_size > size)
1073 return;
1074
1075 if (out_buf)
1076 raw_collect (regnum, (gdb_byte *) out_buf + offs);
1077 else
1078 out_regcache->raw_supply (regnum, in_buf
1079 ? (const gdb_byte *) in_buf + offs
1080 : NULL);
1081 return;
1082 }
1083 }
1084 }
1085
1086 /* Supply register REGNUM from BUF to REGCACHE, using the register map
1087 in REGSET. If REGNUM is -1, do this for all registers in REGSET.
1088 If BUF is NULL, set the register(s) to "unavailable" status. */
1089
1090 void
1091 regcache_supply_regset (const struct regset *regset,
1092 struct regcache *regcache,
1093 int regnum, const void *buf, size_t size)
1094 {
1095 regcache->supply_regset (regset, regnum, buf, size);
1096 }
1097
1098 void
1099 regcache::supply_regset (const struct regset *regset,
1100 int regnum, const void *buf, size_t size)
1101 {
1102 transfer_regset (regset, this, regnum, buf, NULL, size);
1103 }
1104
1105 /* Collect register REGNUM from REGCACHE to BUF, using the register
1106 map in REGSET. If REGNUM is -1, do this for all registers in
1107 REGSET. */
1108
1109 void
1110 regcache_collect_regset (const struct regset *regset,
1111 const struct regcache *regcache,
1112 int regnum, void *buf, size_t size)
1113 {
1114 regcache->collect_regset (regset, regnum, buf, size);
1115 }
1116
1117 void
1118 regcache::collect_regset (const struct regset *regset,
1119 int regnum, void *buf, size_t size) const
1120 {
1121 transfer_regset (regset, NULL, regnum, NULL, buf, size);
1122 }
1123
1124
1125 /* Special handling for register PC. */
1126
1127 CORE_ADDR
1128 regcache_read_pc (struct regcache *regcache)
1129 {
1130 struct gdbarch *gdbarch = regcache->arch ();
1131
1132 CORE_ADDR pc_val;
1133
1134 if (gdbarch_read_pc_p (gdbarch))
1135 pc_val = gdbarch_read_pc (gdbarch, regcache);
1136 /* Else use per-frame method on get_current_frame. */
1137 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1138 {
1139 ULONGEST raw_val;
1140
1141 if (regcache_cooked_read_unsigned (regcache,
1142 gdbarch_pc_regnum (gdbarch),
1143 &raw_val) == REG_UNAVAILABLE)
1144 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1145
1146 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
1147 }
1148 else
1149 internal_error (__FILE__, __LINE__,
1150 _("regcache_read_pc: Unable to find PC"));
1151 return pc_val;
1152 }
1153
1154 void
1155 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
1156 {
1157 struct gdbarch *gdbarch = regcache->arch ();
1158
1159 if (gdbarch_write_pc_p (gdbarch))
1160 gdbarch_write_pc (gdbarch, regcache, pc);
1161 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1162 regcache_cooked_write_unsigned (regcache,
1163 gdbarch_pc_regnum (gdbarch), pc);
1164 else
1165 internal_error (__FILE__, __LINE__,
1166 _("regcache_write_pc: Unable to update PC"));
1167
1168 /* Writing the PC (for instance, from "load") invalidates the
1169 current frame. */
1170 reinit_frame_cache ();
1171 }
1172
1173 int
1174 reg_buffer::num_raw_registers () const
1175 {
1176 return gdbarch_num_regs (arch ());
1177 }
1178
1179 void
1180 regcache::debug_print_register (const char *func, int regno)
1181 {
1182 struct gdbarch *gdbarch = arch ();
1183
1184 fprintf_unfiltered (gdb_stdlog, "%s ", func);
1185 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
1186 && gdbarch_register_name (gdbarch, regno) != NULL
1187 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
1188 fprintf_unfiltered (gdb_stdlog, "(%s)",
1189 gdbarch_register_name (gdbarch, regno));
1190 else
1191 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
1192 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
1193 {
1194 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1195 int size = register_size (gdbarch, regno);
1196 gdb_byte *buf = register_buffer (regno);
1197
1198 fprintf_unfiltered (gdb_stdlog, " = ");
1199 for (int i = 0; i < size; i++)
1200 {
1201 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1202 }
1203 if (size <= sizeof (LONGEST))
1204 {
1205 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
1206
1207 fprintf_unfiltered (gdb_stdlog, " %s %s",
1208 core_addr_to_string_nz (val), plongest (val));
1209 }
1210 }
1211 fprintf_unfiltered (gdb_stdlog, "\n");
1212 }
1213
1214 static void
1215 reg_flush_command (const char *command, int from_tty)
1216 {
1217 /* Force-flush the register cache. */
1218 registers_changed ();
1219 if (from_tty)
1220 printf_filtered (_("Register cache flushed.\n"));
1221 }
1222
1223 void
1224 register_dump::dump (ui_file *file)
1225 {
1226 auto descr = regcache_descr (m_gdbarch);
1227 int regnum;
1228 int footnote_nr = 0;
1229 int footnote_register_offset = 0;
1230 int footnote_register_type_name_null = 0;
1231 long register_offset = 0;
1232
1233 gdb_assert (descr->nr_cooked_registers
1234 == (gdbarch_num_regs (m_gdbarch)
1235 + gdbarch_num_pseudo_regs (m_gdbarch)));
1236
1237 for (regnum = -1; regnum < descr->nr_cooked_registers; regnum++)
1238 {
1239 /* Name. */
1240 if (regnum < 0)
1241 fprintf_unfiltered (file, " %-10s", "Name");
1242 else
1243 {
1244 const char *p = gdbarch_register_name (m_gdbarch, regnum);
1245
1246 if (p == NULL)
1247 p = "";
1248 else if (p[0] == '\0')
1249 p = "''";
1250 fprintf_unfiltered (file, " %-10s", p);
1251 }
1252
1253 /* Number. */
1254 if (regnum < 0)
1255 fprintf_unfiltered (file, " %4s", "Nr");
1256 else
1257 fprintf_unfiltered (file, " %4d", regnum);
1258
1259 /* Relative number. */
1260 if (regnum < 0)
1261 fprintf_unfiltered (file, " %4s", "Rel");
1262 else if (regnum < gdbarch_num_regs (m_gdbarch))
1263 fprintf_unfiltered (file, " %4d", regnum);
1264 else
1265 fprintf_unfiltered (file, " %4d",
1266 (regnum - gdbarch_num_regs (m_gdbarch)));
1267
1268 /* Offset. */
1269 if (regnum < 0)
1270 fprintf_unfiltered (file, " %6s ", "Offset");
1271 else
1272 {
1273 fprintf_unfiltered (file, " %6ld",
1274 descr->register_offset[regnum]);
1275 if (register_offset != descr->register_offset[regnum]
1276 || (regnum > 0
1277 && (descr->register_offset[regnum]
1278 != (descr->register_offset[regnum - 1]
1279 + descr->sizeof_register[regnum - 1])))
1280 )
1281 {
1282 if (!footnote_register_offset)
1283 footnote_register_offset = ++footnote_nr;
1284 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1285 }
1286 else
1287 fprintf_unfiltered (file, " ");
1288 register_offset = (descr->register_offset[regnum]
1289 + descr->sizeof_register[regnum]);
1290 }
1291
1292 /* Size. */
1293 if (regnum < 0)
1294 fprintf_unfiltered (file, " %5s ", "Size");
1295 else
1296 fprintf_unfiltered (file, " %5ld", descr->sizeof_register[regnum]);
1297
1298 /* Type. */
1299 {
1300 const char *t;
1301 std::string name_holder;
1302
1303 if (regnum < 0)
1304 t = "Type";
1305 else
1306 {
1307 static const char blt[] = "builtin_type";
1308
1309 t = TYPE_NAME (register_type (m_gdbarch, regnum));
1310 if (t == NULL)
1311 {
1312 if (!footnote_register_type_name_null)
1313 footnote_register_type_name_null = ++footnote_nr;
1314 name_holder = string_printf ("*%d",
1315 footnote_register_type_name_null);
1316 t = name_holder.c_str ();
1317 }
1318 /* Chop a leading builtin_type. */
1319 if (startswith (t, blt))
1320 t += strlen (blt);
1321 }
1322 fprintf_unfiltered (file, " %-15s", t);
1323 }
1324
1325 /* Leading space always present. */
1326 fprintf_unfiltered (file, " ");
1327
1328 dump_reg (file, regnum);
1329
1330 fprintf_unfiltered (file, "\n");
1331 }
1332
1333 if (footnote_register_offset)
1334 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1335 footnote_register_offset);
1336 if (footnote_register_type_name_null)
1337 fprintf_unfiltered (file,
1338 "*%d: Register type's name NULL.\n",
1339 footnote_register_type_name_null);
1340 }
1341
1342 #if GDB_SELF_TEST
1343 #include "selftest.h"
1344 #include "selftest-arch.h"
1345 #include "gdbthread.h"
1346 #include "target-float.h"
1347
1348 namespace selftests {
1349
1350 class regcache_access : public regcache
1351 {
1352 public:
1353
1354 /* Return the number of elements in current_regcache. */
1355
1356 static size_t
1357 current_regcache_size ()
1358 {
1359 return std::distance (regcache::current_regcache.begin (),
1360 regcache::current_regcache.end ());
1361 }
1362 };
1363
1364 static void
1365 current_regcache_test (void)
1366 {
1367 /* It is empty at the start. */
1368 SELF_CHECK (regcache_access::current_regcache_size () == 0);
1369
1370 ptid_t ptid1 (1), ptid2 (2), ptid3 (3);
1371
1372 /* Get regcache from ptid1, a new regcache is added to
1373 current_regcache. */
1374 regcache *regcache = get_thread_arch_aspace_regcache (ptid1,
1375 target_gdbarch (),
1376 NULL);
1377
1378 SELF_CHECK (regcache != NULL);
1379 SELF_CHECK (regcache->ptid () == ptid1);
1380 SELF_CHECK (regcache_access::current_regcache_size () == 1);
1381
1382 /* Get regcache from ptid2, a new regcache is added to
1383 current_regcache. */
1384 regcache = get_thread_arch_aspace_regcache (ptid2,
1385 target_gdbarch (),
1386 NULL);
1387 SELF_CHECK (regcache != NULL);
1388 SELF_CHECK (regcache->ptid () == ptid2);
1389 SELF_CHECK (regcache_access::current_regcache_size () == 2);
1390
1391 /* Get regcache from ptid3, a new regcache is added to
1392 current_regcache. */
1393 regcache = get_thread_arch_aspace_regcache (ptid3,
1394 target_gdbarch (),
1395 NULL);
1396 SELF_CHECK (regcache != NULL);
1397 SELF_CHECK (regcache->ptid () == ptid3);
1398 SELF_CHECK (regcache_access::current_regcache_size () == 3);
1399
1400 /* Get regcache from ptid2 again, nothing is added to
1401 current_regcache. */
1402 regcache = get_thread_arch_aspace_regcache (ptid2,
1403 target_gdbarch (),
1404 NULL);
1405 SELF_CHECK (regcache != NULL);
1406 SELF_CHECK (regcache->ptid () == ptid2);
1407 SELF_CHECK (regcache_access::current_regcache_size () == 3);
1408
1409 /* Mark ptid2 is changed, so regcache of ptid2 should be removed from
1410 current_regcache. */
1411 registers_changed_ptid (ptid2);
1412 SELF_CHECK (regcache_access::current_regcache_size () == 2);
1413 }
1414
1415 class target_ops_no_register : public test_target_ops
1416 {
1417 public:
1418 target_ops_no_register ()
1419 : test_target_ops {}
1420 {}
1421
1422 void reset ()
1423 {
1424 fetch_registers_called = 0;
1425 store_registers_called = 0;
1426 xfer_partial_called = 0;
1427 }
1428
1429 void fetch_registers (regcache *regs, int regno) override;
1430 void store_registers (regcache *regs, int regno) override;
1431
1432 enum target_xfer_status xfer_partial (enum target_object object,
1433 const char *annex, gdb_byte *readbuf,
1434 const gdb_byte *writebuf,
1435 ULONGEST offset, ULONGEST len,
1436 ULONGEST *xfered_len) override;
1437
1438 unsigned int fetch_registers_called = 0;
1439 unsigned int store_registers_called = 0;
1440 unsigned int xfer_partial_called = 0;
1441 };
1442
1443 void
1444 target_ops_no_register::fetch_registers (regcache *regs, int regno)
1445 {
1446 /* Mark register available. */
1447 regs->raw_supply_zeroed (regno);
1448 this->fetch_registers_called++;
1449 }
1450
1451 void
1452 target_ops_no_register::store_registers (regcache *regs, int regno)
1453 {
1454 this->store_registers_called++;
1455 }
1456
1457 enum target_xfer_status
1458 target_ops_no_register::xfer_partial (enum target_object object,
1459 const char *annex, gdb_byte *readbuf,
1460 const gdb_byte *writebuf,
1461 ULONGEST offset, ULONGEST len,
1462 ULONGEST *xfered_len)
1463 {
1464 this->xfer_partial_called++;
1465
1466 *xfered_len = len;
1467 return TARGET_XFER_OK;
1468 }
1469
1470 class readwrite_regcache : public regcache
1471 {
1472 public:
1473 readwrite_regcache (struct gdbarch *gdbarch)
1474 : regcache (gdbarch, nullptr)
1475 {}
1476 };
1477
1478 /* Test regcache::cooked_read gets registers from raw registers and
1479 memory instead of target to_{fetch,store}_registers. */
1480
1481 static void
1482 cooked_read_test (struct gdbarch *gdbarch)
1483 {
1484 /* Error out if debugging something, because we're going to push the
1485 test target, which would pop any existing target. */
1486 if (target_stack->to_stratum >= process_stratum)
1487 error (_("target already pushed"));
1488
1489 /* Create a mock environment. An inferior with a thread, with a
1490 process_stratum target pushed. */
1491
1492 target_ops_no_register mock_target;
1493 ptid_t mock_ptid (1, 1);
1494 inferior mock_inferior (mock_ptid.pid ());
1495 address_space mock_aspace {};
1496 mock_inferior.gdbarch = gdbarch;
1497 mock_inferior.aspace = &mock_aspace;
1498 thread_info mock_thread (&mock_inferior, mock_ptid);
1499
1500 scoped_restore restore_thread_list
1501 = make_scoped_restore (&thread_list, &mock_thread);
1502
1503 /* Add the mock inferior to the inferior list so that look ups by
1504 target+ptid can find it. */
1505 scoped_restore restore_inferior_list
1506 = make_scoped_restore (&inferior_list);
1507 inferior_list = &mock_inferior;
1508
1509 /* Switch to the mock inferior. */
1510 scoped_restore_current_inferior restore_current_inferior;
1511 set_current_inferior (&mock_inferior);
1512
1513 /* Push the process_stratum target so we can mock accessing
1514 registers. */
1515 push_target (&mock_target);
1516
1517 /* Pop it again on exit (return/exception). */
1518 struct on_exit
1519 {
1520 ~on_exit ()
1521 {
1522 pop_all_targets_at_and_above (process_stratum);
1523 }
1524 } pop_targets;
1525
1526 /* Switch to the mock thread. */
1527 scoped_restore restore_inferior_ptid
1528 = make_scoped_restore (&inferior_ptid, mock_ptid);
1529
1530 /* Test that read one raw register from regcache_no_target will go
1531 to the target layer. */
1532 int regnum;
1533
1534 /* Find a raw register which size isn't zero. */
1535 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1536 {
1537 if (register_size (gdbarch, regnum) != 0)
1538 break;
1539 }
1540
1541 readwrite_regcache readwrite (gdbarch);
1542 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1543
1544 readwrite.raw_read (regnum, buf.data ());
1545
1546 /* raw_read calls target_fetch_registers. */
1547 SELF_CHECK (mock_target.fetch_registers_called > 0);
1548 mock_target.reset ();
1549
1550 /* Mark all raw registers valid, so the following raw registers
1551 accesses won't go to target. */
1552 for (auto i = 0; i < gdbarch_num_regs (gdbarch); i++)
1553 readwrite.raw_update (i);
1554
1555 mock_target.reset ();
1556 /* Then, read all raw and pseudo registers, and don't expect calling
1557 to_{fetch,store}_registers. */
1558 for (int regnum = 0;
1559 regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1560 regnum++)
1561 {
1562 if (register_size (gdbarch, regnum) == 0)
1563 continue;
1564
1565 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1566
1567 SELF_CHECK (REG_VALID == readwrite.cooked_read (regnum, buf.data ()));
1568
1569 SELF_CHECK (mock_target.fetch_registers_called == 0);
1570 SELF_CHECK (mock_target.store_registers_called == 0);
1571
1572 /* Some SPU pseudo registers are got via TARGET_OBJECT_SPU. */
1573 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1574 SELF_CHECK (mock_target.xfer_partial_called == 0);
1575
1576 mock_target.reset ();
1577 }
1578
1579 readonly_detached_regcache readonly (readwrite);
1580
1581 /* GDB may go to target layer to fetch all registers and memory for
1582 readonly regcache. */
1583 mock_target.reset ();
1584
1585 for (int regnum = 0;
1586 regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1587 regnum++)
1588 {
1589 if (register_size (gdbarch, regnum) == 0)
1590 continue;
1591
1592 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1593 enum register_status status = readonly.cooked_read (regnum,
1594 buf.data ());
1595
1596 if (regnum < gdbarch_num_regs (gdbarch))
1597 {
1598 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1599
1600 if (bfd_arch == bfd_arch_frv || bfd_arch == bfd_arch_h8300
1601 || bfd_arch == bfd_arch_m32c || bfd_arch == bfd_arch_sh
1602 || bfd_arch == bfd_arch_alpha || bfd_arch == bfd_arch_v850
1603 || bfd_arch == bfd_arch_msp430 || bfd_arch == bfd_arch_mep
1604 || bfd_arch == bfd_arch_mips || bfd_arch == bfd_arch_v850_rh850
1605 || bfd_arch == bfd_arch_tic6x || bfd_arch == bfd_arch_mn10300
1606 || bfd_arch == bfd_arch_rl78 || bfd_arch == bfd_arch_score
1607 || bfd_arch == bfd_arch_riscv)
1608 {
1609 /* Raw registers. If raw registers are not in save_reggroup,
1610 their status are unknown. */
1611 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1612 SELF_CHECK (status == REG_VALID);
1613 else
1614 SELF_CHECK (status == REG_UNKNOWN);
1615 }
1616 else
1617 SELF_CHECK (status == REG_VALID);
1618 }
1619 else
1620 {
1621 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1622 SELF_CHECK (status == REG_VALID);
1623 else
1624 {
1625 /* If pseudo registers are not in save_reggroup, some of
1626 them can be computed from saved raw registers, but some
1627 of them are unknown. */
1628 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1629
1630 if (bfd_arch == bfd_arch_frv
1631 || bfd_arch == bfd_arch_m32c
1632 || bfd_arch == bfd_arch_mep
1633 || bfd_arch == bfd_arch_sh)
1634 SELF_CHECK (status == REG_VALID || status == REG_UNKNOWN);
1635 else if (bfd_arch == bfd_arch_mips
1636 || bfd_arch == bfd_arch_h8300)
1637 SELF_CHECK (status == REG_UNKNOWN);
1638 else
1639 SELF_CHECK (status == REG_VALID);
1640 }
1641 }
1642
1643 SELF_CHECK (mock_target.fetch_registers_called == 0);
1644 SELF_CHECK (mock_target.store_registers_called == 0);
1645 SELF_CHECK (mock_target.xfer_partial_called == 0);
1646
1647 mock_target.reset ();
1648 }
1649 }
1650
1651 /* Test regcache::cooked_write by writing some expected contents to
1652 registers, and checking that contents read from registers and the
1653 expected contents are the same. */
1654
1655 static void
1656 cooked_write_test (struct gdbarch *gdbarch)
1657 {
1658 /* Error out if debugging something, because we're going to push the
1659 test target, which would pop any existing target. */
1660 if (target_stack->to_stratum >= process_stratum)
1661 error (_("target already pushed"));
1662
1663 /* Create a mock environment. A process_stratum target pushed. */
1664
1665 target_ops_no_register mock_target;
1666
1667 /* Push the process_stratum target so we can mock accessing
1668 registers. */
1669 push_target (&mock_target);
1670
1671 /* Pop it again on exit (return/exception). */
1672 struct on_exit
1673 {
1674 ~on_exit ()
1675 {
1676 pop_all_targets_at_and_above (process_stratum);
1677 }
1678 } pop_targets;
1679
1680 readwrite_regcache readwrite (gdbarch);
1681
1682 const int num_regs = (gdbarch_num_regs (gdbarch)
1683 + gdbarch_num_pseudo_regs (gdbarch));
1684
1685 for (auto regnum = 0; regnum < num_regs; regnum++)
1686 {
1687 if (register_size (gdbarch, regnum) == 0
1688 || gdbarch_cannot_store_register (gdbarch, regnum))
1689 continue;
1690
1691 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1692
1693 if ((bfd_arch == bfd_arch_sparc
1694 /* SPARC64_CWP_REGNUM, SPARC64_PSTATE_REGNUM,
1695 SPARC64_ASI_REGNUM and SPARC64_CCR_REGNUM are hard to test. */
1696 && gdbarch_ptr_bit (gdbarch) == 64
1697 && (regnum >= gdbarch_num_regs (gdbarch)
1698 && regnum <= gdbarch_num_regs (gdbarch) + 4))
1699 || (bfd_arch == bfd_arch_spu
1700 /* SPU pseudo registers except SPU_SP_REGNUM are got by
1701 TARGET_OBJECT_SPU. */
1702 && regnum >= gdbarch_num_regs (gdbarch) && regnum != 130))
1703 continue;
1704
1705 std::vector<gdb_byte> expected (register_size (gdbarch, regnum), 0);
1706 std::vector<gdb_byte> buf (register_size (gdbarch, regnum), 0);
1707 const auto type = register_type (gdbarch, regnum);
1708
1709 if (TYPE_CODE (type) == TYPE_CODE_FLT
1710 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1711 {
1712 /* Generate valid float format. */
1713 target_float_from_string (expected.data (), type, "1.25");
1714 }
1715 else if (TYPE_CODE (type) == TYPE_CODE_INT
1716 || TYPE_CODE (type) == TYPE_CODE_ARRAY
1717 || TYPE_CODE (type) == TYPE_CODE_PTR
1718 || TYPE_CODE (type) == TYPE_CODE_UNION
1719 || TYPE_CODE (type) == TYPE_CODE_STRUCT)
1720 {
1721 if (bfd_arch == bfd_arch_ia64
1722 || (regnum >= gdbarch_num_regs (gdbarch)
1723 && (bfd_arch == bfd_arch_xtensa
1724 || bfd_arch == bfd_arch_bfin
1725 || bfd_arch == bfd_arch_m32c
1726 /* m68hc11 pseudo registers are in memory. */
1727 || bfd_arch == bfd_arch_m68hc11
1728 || bfd_arch == bfd_arch_m68hc12
1729 || bfd_arch == bfd_arch_s390))
1730 || (bfd_arch == bfd_arch_frv
1731 /* FRV pseudo registers except iacc0. */
1732 && regnum > gdbarch_num_regs (gdbarch)))
1733 {
1734 /* Skip setting the expected values for some architecture
1735 registers. */
1736 }
1737 else if (bfd_arch == bfd_arch_rl78 && regnum == 40)
1738 {
1739 /* RL78_PC_REGNUM */
1740 for (auto j = 0; j < register_size (gdbarch, regnum) - 1; j++)
1741 expected[j] = j;
1742 }
1743 else
1744 {
1745 for (auto j = 0; j < register_size (gdbarch, regnum); j++)
1746 expected[j] = j;
1747 }
1748 }
1749 else if (TYPE_CODE (type) == TYPE_CODE_FLAGS)
1750 {
1751 /* No idea how to test flags. */
1752 continue;
1753 }
1754 else
1755 {
1756 /* If we don't know how to create the expected value for the
1757 this type, make it fail. */
1758 SELF_CHECK (0);
1759 }
1760
1761 readwrite.cooked_write (regnum, expected.data ());
1762
1763 SELF_CHECK (readwrite.cooked_read (regnum, buf.data ()) == REG_VALID);
1764 SELF_CHECK (expected == buf);
1765 }
1766 }
1767
1768 } // namespace selftests
1769 #endif /* GDB_SELF_TEST */
1770
1771 void
1772 _initialize_regcache (void)
1773 {
1774 regcache_descr_handle
1775 = gdbarch_data_register_post_init (init_regcache_descr);
1776
1777 gdb::observers::target_changed.attach (regcache_observer_target_changed);
1778 gdb::observers::thread_ptid_changed.attach
1779 (regcache::regcache_thread_ptid_changed);
1780
1781 add_com ("flushregs", class_maintenance, reg_flush_command,
1782 _("Force gdb to flush its register cache (maintainer command)"));
1783
1784 #if GDB_SELF_TEST
1785 selftests::register_test ("current_regcache", selftests::current_regcache_test);
1786
1787 selftests::register_test_foreach_arch ("regcache::cooked_read_test",
1788 selftests::cooked_read_test);
1789 selftests::register_test_foreach_arch ("regcache::cooked_write_test",
1790 selftests::cooked_write_test);
1791 #endif
1792 }
This page took 0.067367 seconds and 5 git commands to generate.