* symtab.c (lookup_symbol_aux): Call lookup_symbol_aux to lookup
[deliverable/binutils-gdb.git] / gdb / remote-mm.c
1 /* Remote debugging interface for Am290*0 running MiniMON monitor, for GDB.
2 Copyright 1990, 1991, 1992 Free Software Foundation, Inc.
3 Originally written by Daniel Mann at AMD.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* This is like remote.c but ecpects MiniMON to be running on the Am29000
23 target hardware.
24 - David Wood (wood@lab.ultra.nyu.edu) at New York University adapted this
25 file to gdb 3.95. I was unable to get this working on sun3os4
26 with termio, only with sgtty. Because we are only attempting to
27 use this module to debug our kernel, which is already loaded when
28 gdb is started up, I did not code up the file downloading facilities.
29 As a result this module has only the stubs to download files.
30 You should get tagged at compile time if you need to make any
31 changes/additions. */
32
33 #include "defs.h"
34 #include "inferior.h"
35 #include "gdb_wait.h"
36 #include "value.h"
37 #include <ctype.h>
38 #include <fcntl.h>
39 #include <signal.h>
40 #include <errno.h>
41 #include "gdb_string.h"
42 #include "terminal.h"
43 #include "minimon.h"
44 #include "target.h"
45
46 /* Offset of member MEMBER in a struct of type TYPE. */
47 #define offsetof(TYPE, MEMBER) ((int) &((TYPE *)0)->MEMBER)
48
49 #define DRAIN_INPUT() (msg_recv_serial((union msg_t*)0))
50
51 extern int stop_soon_quietly; /* for wait_for_inferior */
52
53 static void mm_resume ();
54 static void mm_fetch_registers ();
55 static int fetch_register ();
56 static void mm_store_registers ();
57 static int store_register ();
58 static int regnum_to_srnum ();
59 static void mm_close ();
60 static char *msg_str ();
61 static char *error_msg_str ();
62 static int expect_msg ();
63 static void init_target_mm ();
64 static int mm_memory_space ();
65
66 #define FREEZE_MODE (read_register(CPS_REGNUM) && 0x400)
67 #define USE_SHADOW_PC ((processor_type == a29k_freeze_mode) && FREEZE_MODE)
68
69 /* FIXME: Replace with `set remotedebug'. */
70 #define LLOG_FILE "minimon.log"
71 #if defined (LOG_FILE)
72 FILE *log_file;
73 #endif
74
75 /*
76 * Size of message buffers. I couldn't get memory reads to work when
77 * the byte_count was larger than 512 (it may be a baud rate problem).
78 */
79 #define BUFER_SIZE 512
80 /*
81 * Size of data area in message buffer on the TARGET (remote system).
82 */
83 #define MAXDATA_T (target_config.max_msg_size - \
84 offsetof(struct write_r_msg_t,data[0]))
85 /*
86 * Size of data area in message buffer on the HOST (gdb).
87 */
88 #define MAXDATA_H (BUFER_SIZE - offsetof(struct write_r_msg_t,data[0]))
89 /*
90 * Defined as the minimum size of data areas of the two message buffers
91 */
92 #define MAXDATA (MAXDATA_H < MAXDATA_T ? MAXDATA_H : MAXDATA_T)
93
94 static char out_buf[BUFER_SIZE];
95 static char in_buf[BUFER_SIZE];
96
97 int msg_recv_serial ();
98 int msg_send_serial ();
99
100 #define MAX_RETRIES 5000
101 extern struct target_ops mm_ops; /* Forward declaration */
102 struct config_msg_t target_config; /* HIF needs this */
103 union msg_t *out_msg_buf = (union msg_t *) out_buf;
104 union msg_t *in_msg_buf = (union msg_t *) in_buf;
105
106 static int timeout = 5;
107
108 /* Descriptor for I/O to remote machine. Initialize it to -1 so that
109 mm_open knows that we don't have a file open when the program
110 starts. */
111 int mm_desc = -1;
112
113 /* stream which is fdopen'd from mm_desc. Only valid when
114 mm_desc != -1. */
115 FILE *mm_stream;
116
117 /* Called when SIGALRM signal sent due to alarm() timeout. */
118 #ifndef HAVE_TERMIO
119
120 #ifndef __STDC__
121 #ifndef volatile
122 #define volatile
123 /**/
124 # endif
125 #endif
126 volatile int n_alarms;
127
128 static void
129 mm_timer (void)
130 {
131 #if 0
132 if (kiodebug)
133 printf ("mm_timer called\n");
134 #endif
135 n_alarms++;
136 }
137 #endif /* HAVE_TERMIO */
138
139 /* malloc'd name of the program on the remote system. */
140 static char *prog_name = NULL;
141
142
143 /* Number of SIGTRAPs we need to simulate. That is, the next
144 NEED_ARTIFICIAL_TRAP calls to mm_wait should just return
145 SIGTRAP without actually waiting for anything. */
146
147 /**************************************************** REMOTE_CREATE_INFERIOR */
148 /* This is called not only when we first attach, but also when the
149 user types "run" after having attached. */
150 static void
151 mm_create_inferior (char *execfile, char *args, char **env)
152 {
153 #define MAX_TOKENS 25
154 #define BUFFER_SIZE 256
155 int token_count;
156 int result;
157 char *token[MAX_TOKENS];
158 char cmd_line[BUFFER_SIZE];
159
160 if (args && *args)
161 error ("Can't pass arguments to remote mm process (yet).");
162
163 if (execfile == 0 /* || exec_bfd == 0 */ )
164 error ("No executable file specified");
165
166 if (!mm_stream)
167 {
168 printf ("Minimon not open yet.\n");
169 return;
170 }
171
172 /* On ultra3 (NYU) we assume the kernel is already running so there is
173 no file to download.
174 FIXME: Fixed required here -> load your program, possibly with mm_load().
175 */
176 printf_filtered ("\n\
177 Assuming you are at NYU debuging a kernel, i.e., no need to download.\n\n");
178
179 /* We will get a task spawn event immediately. */
180 init_wait_for_inferior ();
181 clear_proceed_status ();
182 stop_soon_quietly = 1;
183 proceed (-1, TARGET_SIGNAL_DEFAULT, 0);
184 normal_stop ();
185 }
186 /**************************************************** REMOTE_MOURN_INFERIOR */
187 static void
188 mm_mourn (void)
189 {
190 pop_target (); /* Pop back to no-child state */
191 generic_mourn_inferior ();
192 }
193
194 /********************************************************************** damn_b
195 */
196 /* Translate baud rates from integers to damn B_codes. Unix should
197 have outgrown this crap years ago, but even POSIX wouldn't buck it. */
198
199 #ifndef B19200
200 #define B19200 EXTA
201 #endif
202 #ifndef B38400
203 #define B38400 EXTB
204 #endif
205
206 static struct
207 {
208 int rate, damn_b;
209 }
210 baudtab[] =
211 {
212 {
213 0, B0
214 }
215 ,
216 {
217 50, B50
218 }
219 ,
220 {
221 75, B75
222 }
223 ,
224 {
225 110, B110
226 }
227 ,
228 {
229 134, B134
230 }
231 ,
232 {
233 150, B150
234 }
235 ,
236 {
237 200, B200
238 }
239 ,
240 {
241 300, B300
242 }
243 ,
244 {
245 600, B600
246 }
247 ,
248 {
249 1200, B1200
250 }
251 ,
252 {
253 1800, B1800
254 }
255 ,
256 {
257 2400, B2400
258 }
259 ,
260 {
261 4800, B4800
262 }
263 ,
264 {
265 9600, B9600
266 }
267 ,
268 {
269 19200, B19200
270 }
271 ,
272 {
273 38400, B38400
274 }
275 ,
276 {
277 -1, -1
278 }
279 ,
280 };
281
282 static int
283 damn_b (int rate)
284 {
285 int i;
286
287 for (i = 0; baudtab[i].rate != -1; i++)
288 if (rate == baudtab[i].rate)
289 return baudtab[i].damn_b;
290 return B38400; /* Random */
291 }
292
293
294 /***************************************************************** REMOTE_OPEN
295 ** Open a connection to remote minimon.
296 NAME is the filename used for communication, then a space,
297 then the baud rate.
298 'target adapt /dev/ttya 9600 [prognam]' for example.
299 */
300
301 static char *dev_name;
302 int baudrate = 9600;
303 static void
304 mm_open (char *name, int from_tty)
305 {
306 TERMINAL sg;
307 unsigned int prl;
308 char *p;
309
310 /* Find the first whitespace character, it separates dev_name from
311 prog_name. */
312 for (p = name;
313 p && *p && !isspace (*p); p++)
314 ;
315 if (p == 0 || *p == '\0')
316 erroid:
317 error ("Usage : <command> <serial-device> <baud-rate> [progname]");
318 dev_name = (char *) xmalloc (p - name + 1);
319 strncpy (dev_name, name, p - name);
320 dev_name[p - name] = '\0';
321
322 /* Skip over the whitespace after dev_name */
323 for (; isspace (*p); p++)
324 /*EMPTY */ ;
325
326 if (1 != sscanf (p, "%d ", &baudrate))
327 goto erroid;
328
329 /* Skip the number and then the spaces */
330 for (; isdigit (*p); p++)
331 /*EMPTY */ ;
332 for (; isspace (*p); p++)
333 /*EMPTY */ ;
334
335 if (prog_name != NULL)
336 xfree (prog_name);
337 prog_name = savestring (p, strlen (p));
338
339
340 if (mm_desc >= 0)
341 close (mm_desc);
342
343 mm_desc = open (dev_name, O_RDWR);
344 if (mm_desc < 0)
345 perror_with_name (dev_name);
346 ioctl (mm_desc, TIOCGETP, &sg);
347 #ifdef HAVE_TERMIO
348 sg.c_cc[VMIN] = 0; /* read with timeout. */
349 sg.c_cc[VTIME] = timeout * 10;
350 sg.c_lflag &= ~(ICANON | ECHO);
351 sg.c_cflag = (sg.c_cflag & ~CBAUD) | damn_b (baudrate);
352 #else
353 sg.sg_ispeed = damn_b (baudrate);
354 sg.sg_ospeed = damn_b (baudrate);
355 sg.sg_flags |= RAW;
356 sg.sg_flags |= ANYP;
357 sg.sg_flags &= ~ECHO;
358 #endif
359
360
361 ioctl (mm_desc, TIOCSETP, &sg);
362 mm_stream = fdopen (mm_desc, "r+");
363
364 push_target (&mm_ops);
365
366 #ifndef HAVE_TERMIO
367 #ifndef NO_SIGINTERRUPT
368 /* Cause SIGALRM's to make reads fail with EINTR instead of resuming
369 the read. */
370 if (siginterrupt (SIGALRM, 1) != 0)
371 perror ("mm_open: error in siginterrupt");
372 #endif
373
374 /* Set up read timeout timer. */
375 if ((void (*)) signal (SIGALRM, mm_timer) == (void (*)) -1)
376 perror ("mm_open: error in signal");
377 #endif
378
379 #if defined (LOG_FILE)
380 log_file = fopen (LOG_FILE, "w");
381 if (log_file == NULL)
382 perror_with_name (LOG_FILE);
383 #endif
384 /*
385 ** Initialize target configuration structure (global)
386 */
387 DRAIN_INPUT ();
388 out_msg_buf->config_req_msg.code = CONFIG_REQ;
389 out_msg_buf->config_req_msg.length = 4 * 0;
390 msg_send_serial (out_msg_buf); /* send config request message */
391
392 expect_msg (CONFIG, in_msg_buf, 1);
393
394 a29k_get_processor_type ();
395
396 /* Print out some stuff, letting the user now what's going on */
397 printf_filtered ("Connected to MiniMon via %s.\n", dev_name);
398 /* FIXME: can this restriction be removed? */
399 printf_filtered ("Remote debugging using virtual addresses works only\n");
400 printf_filtered ("\twhen virtual addresses map 1:1 to physical addresses.\n")
401 ;
402 if (processor_type != a29k_freeze_mode)
403 {
404 fprintf_filtered (gdb_stderr,
405 "Freeze-mode debugging not available, and can only be done on an A29050.\n");
406 }
407
408 target_config.code = CONFIG;
409 target_config.length = 0;
410 target_config.processor_id = in_msg_buf->config_msg.processor_id;
411 target_config.version = in_msg_buf->config_msg.version;
412 target_config.I_mem_start = in_msg_buf->config_msg.I_mem_start;
413 target_config.I_mem_size = in_msg_buf->config_msg.I_mem_size;
414 target_config.D_mem_start = in_msg_buf->config_msg.D_mem_start;
415 target_config.D_mem_size = in_msg_buf->config_msg.D_mem_size;
416 target_config.ROM_start = in_msg_buf->config_msg.ROM_start;
417 target_config.ROM_size = in_msg_buf->config_msg.ROM_size;
418 target_config.max_msg_size = in_msg_buf->config_msg.max_msg_size;
419 target_config.max_bkpts = in_msg_buf->config_msg.max_bkpts;
420 target_config.coprocessor = in_msg_buf->config_msg.coprocessor;
421 target_config.reserved = in_msg_buf->config_msg.reserved;
422 if (from_tty)
423 {
424 printf ("Connected to MiniMON :\n");
425 printf (" Debugcore version %d.%d\n",
426 0x0f & (target_config.version >> 4),
427 0x0f & (target_config.version));
428 printf (" Configuration version %d.%d\n",
429 0x0f & (target_config.version >> 12),
430 0x0f & (target_config.version >> 8));
431 printf (" Message system version %d.%d\n",
432 0x0f & (target_config.version >> 20),
433 0x0f & (target_config.version >> 16));
434 printf (" Communication driver version %d.%d\n",
435 0x0f & (target_config.version >> 28),
436 0x0f & (target_config.version >> 24));
437 }
438
439 /* Leave the target running...
440 * The above message stopped the target in the dbg core (MiniMon),
441 * so restart the target out of MiniMon,
442 */
443 out_msg_buf->go_msg.code = GO;
444 out_msg_buf->go_msg.length = 0;
445 msg_send_serial (out_msg_buf);
446 /* No message to expect after a GO */
447 }
448
449 /**************************************************************** REMOTE_CLOSE
450 ** Close the open connection to the minimon debugger.
451 Use this when you want to detach and do something else
452 with your gdb. */
453 static void
454 mm_close ( /*FIXME: how is quitting used */
455 int quitting)
456 {
457 if (mm_desc < 0)
458 error ("Can't close remote connection: not debugging remotely.");
459
460 /* We should never get here if there isn't something valid in
461 mm_desc and mm_stream.
462
463 Due to a bug in Unix, fclose closes not only the stdio stream,
464 but also the file descriptor. So we don't actually close
465 mm_desc. */
466 DRAIN_INPUT ();
467 fclose (mm_stream);
468 /* close (mm_desc); */
469
470 /* Do not try to close mm_desc again, later in the program. */
471 mm_stream = NULL;
472 mm_desc = -1;
473
474 #if defined (LOG_FILE)
475 if (ferror (log_file))
476 printf ("Error writing log file.\n");
477 if (fclose (log_file) != 0)
478 printf ("Error closing log file.\n");
479 #endif
480
481 printf ("Ending remote debugging\n");
482 }
483
484 /************************************************************* REMOTE_ATACH */
485 /* Attach to a program that is already loaded and running
486 * Upon exiting the process's execution is stopped.
487 */
488 static void
489 mm_attach (char *args, int from_tty)
490 {
491
492 if (!mm_stream)
493 error ("MiniMon not opened yet, use the 'target minimon' command.\n");
494
495 if (from_tty)
496 printf ("Attaching to remote program %s...\n", prog_name);
497
498 /* Make sure the target is currently running, it is supposed to be. */
499 /* FIXME: is it ok to send MiniMon a BREAK if it is already stopped in
500 * the dbg core. If so, we don't need to send this GO.
501 */
502 out_msg_buf->go_msg.code = GO;
503 out_msg_buf->go_msg.length = 0;
504 msg_send_serial (out_msg_buf);
505 sleep (2); /* At the worst it will stop, receive a message, continue */
506
507 /* Send the mm a break. */
508 out_msg_buf->break_msg.code = BREAK;
509 out_msg_buf->break_msg.length = 0;
510 msg_send_serial (out_msg_buf);
511 }
512 /********************************************************** REMOTE_DETACH */
513 /* Terminate the open connection to the remote debugger.
514 Use this when you want to detach and do something else
515 with your gdb. Leave remote process running (with no breakpoints set). */
516 static void
517 mm_detach (char *args, int from_tty)
518 {
519 remove_breakpoints (); /* Just in case there were any left in */
520 out_msg_buf->go_msg.code = GO;
521 out_msg_buf->go_msg.length = 0;
522 msg_send_serial (out_msg_buf);
523 pop_target (); /* calls mm_close to do the real work */
524 }
525
526
527 /*************************************************************** REMOTE_RESUME
528 ** Tell the remote machine to resume. */
529
530 static void
531 mm_resume (int pid, int step, enum target_signal sig)
532 {
533 if (sig != TARGET_SIGNAL_0)
534 warning ("Can't send signals to a remote MiniMon system.");
535
536 if (step)
537 {
538 out_msg_buf->step_msg.code = STEP;
539 out_msg_buf->step_msg.length = 1 * 4;
540 out_msg_buf->step_msg.count = 1; /* step 1 instruction */
541 msg_send_serial (out_msg_buf);
542 }
543 else
544 {
545 out_msg_buf->go_msg.code = GO;
546 out_msg_buf->go_msg.length = 0;
547 msg_send_serial (out_msg_buf);
548 }
549 }
550
551 /***************************************************************** REMOTE_WAIT
552 ** Wait until the remote machine stops, then return,
553 storing status in STATUS just as `wait' would. */
554
555 static int
556 mm_wait (struct target_waitstatus *status)
557 {
558 int i, result;
559 int old_timeout = timeout;
560 int old_immediate_quit = immediate_quit;
561
562 status->kind = TARGET_WAITKIND_EXITED;
563 status->value.integer = 0;
564
565 /* wait for message to arrive. It should be:
566 - A HIF service request.
567 - A HIF exit service request.
568 - A CHANNEL0_ACK.
569 - A CHANNEL1 request.
570 - a debugcore HALT message.
571 HIF services must be responded too, and while-looping continued.
572 If the target stops executing, mm_wait() should return.
573 */
574 timeout = 0; /* Wait indefinetly for a message */
575 immediate_quit = 1; /* Helps ability to QUIT */
576 while (1)
577 {
578 while (msg_recv_serial (in_msg_buf))
579 {
580 QUIT; /* Let user quit if they want */
581 }
582 switch (in_msg_buf->halt_msg.code)
583 {
584 case HIF_CALL:
585 i = in_msg_buf->hif_call_rtn_msg.service_number;
586 result = service_HIF (in_msg_buf);
587 if (i == 1) /* EXIT */
588 goto exit;
589 if (result)
590 printf ("Warning: failure during HIF service %d\n", i);
591 break;
592 case CHANNEL0_ACK:
593 service_HIF (in_msg_buf);
594 break;
595 case CHANNEL1:
596 i = in_msg_buf->channel1_msg.length;
597 in_msg_buf->channel1_msg.data[i] = '\0';
598 printf ("%s", in_msg_buf->channel1_msg.data);
599 gdb_flush (gdb_stdout);
600 /* Send CHANNEL1_ACK message */
601 out_msg_buf->channel1_ack_msg.code = CHANNEL1_ACK;
602 out_msg_buf->channel1_ack_msg.length = 0;
603 result = msg_send_serial (out_msg_buf);
604 break;
605 case HALT:
606 goto halted;
607 default:
608 goto halted;
609 }
610 }
611 halted:
612 /* FIXME, these printfs should not be here. This is a source level
613 debugger, guys! */
614 if (in_msg_buf->halt_msg.trap_number == 0)
615 {
616 printf ("Am290*0 received vector number %d (break point)\n",
617 in_msg_buf->halt_msg.trap_number);
618 status->kind = TARGET_WAITKIND_STOPPED;
619 status->value.sig = TARGET_SIGNAL_TRAP;
620 }
621 else if (in_msg_buf->halt_msg.trap_number == 1)
622 {
623 printf ("Am290*0 received vector number %d\n",
624 in_msg_buf->halt_msg.trap_number);
625 status->kind = TARGET_WAITKIND_STOPPED;
626 status->value.sig = TARGET_SIGNAL_BUS;
627 }
628 else if (in_msg_buf->halt_msg.trap_number == 3
629 || in_msg_buf->halt_msg.trap_number == 4)
630 {
631 printf ("Am290*0 received vector number %d\n",
632 in_msg_buf->halt_msg.trap_number);
633 status->kind = TARGET_WAITKIND_STOPPED;
634 status->value.sig = TARGET_SIGNAL_FPE;
635 }
636 else if (in_msg_buf->halt_msg.trap_number == 5)
637 {
638 printf ("Am290*0 received vector number %d\n",
639 in_msg_buf->halt_msg.trap_number);
640 status->kind = TARGET_WAITKIND_STOPPED;
641 status->value.sig = TARGET_SIGNAL_ILL;
642 }
643 else if (in_msg_buf->halt_msg.trap_number >= 6
644 && in_msg_buf->halt_msg.trap_number <= 11)
645 {
646 printf ("Am290*0 received vector number %d\n",
647 in_msg_buf->halt_msg.trap_number);
648 status->kind = TARGET_WAITKIND_STOPPED;
649 status->value.sig = TARGET_SIGNAL_SEGV;
650 }
651 else if (in_msg_buf->halt_msg.trap_number == 12
652 || in_msg_buf->halt_msg.trap_number == 13)
653 {
654 printf ("Am290*0 received vector number %d\n",
655 in_msg_buf->halt_msg.trap_number);
656 status->kind = TARGET_WAITKIND_STOPPED;
657 status->value.sig = TARGET_SIGNAL_ILL;
658 }
659 else if (in_msg_buf->halt_msg.trap_number == 14)
660 {
661 printf ("Am290*0 received vector number %d\n",
662 in_msg_buf->halt_msg.trap_number);
663 status->kind = TARGET_WAITKIND_STOPPED;
664 status->value.sig = TARGET_SIGNAL_ALRM;
665 }
666 else if (in_msg_buf->halt_msg.trap_number == 15)
667 {
668 status->kind = TARGET_WAITKIND_STOPPED;
669 status->value.sig = TARGET_SIGNAL_TRAP;
670 }
671 else if (in_msg_buf->halt_msg.trap_number >= 16
672 && in_msg_buf->halt_msg.trap_number <= 21)
673 {
674 printf ("Am290*0 received vector number %d\n",
675 in_msg_buf->halt_msg.trap_number);
676 status->kind = TARGET_WAITKIND_STOPPED;
677 status->value.sig = TARGET_SIGNAL_INT;
678 }
679 else if (in_msg_buf->halt_msg.trap_number == 22)
680 {
681 printf ("Am290*0 received vector number %d\n",
682 in_msg_buf->halt_msg.trap_number);
683 status->kind = TARGET_WAITKIND_STOPPED;
684 status->value.sig = TARGET_SIGNAL_ILL;
685 } /* BREAK message was sent */
686 else if (in_msg_buf->halt_msg.trap_number == 75)
687 {
688 status->kind = TARGET_WAITKIND_STOPPED;
689 status->value.sig = TARGET_SIGNAL_TRAP;
690 }
691 else
692 exit:
693 {
694 status->kind = TARGET_WAITKIND_EXITED;
695 status->value.integer = 0;
696 }
697
698 timeout = old_timeout; /* Restore original timeout value */
699 immediate_quit = old_immediate_quit;
700 return 0;
701 }
702
703 /******************************************************* REMOTE_FETCH_REGISTERS
704 * Read a remote register 'regno'.
705 * If regno==-1 then read all the registers.
706 */
707 static void
708 mm_fetch_registers (int regno)
709 {
710 INT32 *data_p;
711
712 if (regno >= 0)
713 {
714 fetch_register (regno);
715 return;
716 }
717
718 /* Gr1/rsp */
719 out_msg_buf->read_req_msg.byte_count = 4 * 1;
720 out_msg_buf->read_req_msg.memory_space = GLOBAL_REG;
721 out_msg_buf->read_req_msg.address = 1;
722 msg_send_serial (out_msg_buf);
723 expect_msg (READ_ACK, in_msg_buf, 1);
724 data_p = &(in_msg_buf->read_r_ack_msg.data[0]);
725 supply_register (GR1_REGNUM, data_p);
726
727 #if defined(GR64_REGNUM) /* Read gr64-127 */
728 /* Global Registers gr64-gr95 */
729 out_msg_buf->read_req_msg.code = READ_REQ;
730 out_msg_buf->read_req_msg.length = 4 * 3;
731 out_msg_buf->read_req_msg.byte_count = 4 * 32;
732 out_msg_buf->read_req_msg.memory_space = GLOBAL_REG;
733 out_msg_buf->read_req_msg.address = 64;
734 msg_send_serial (out_msg_buf);
735 expect_msg (READ_ACK, in_msg_buf, 1);
736 data_p = &(in_msg_buf->read_r_ack_msg.data[0]);
737
738 for (regno = GR64_REGNUM; regno < GR64_REGNUM + 32; regno++)
739 {
740 supply_register (regno, data_p++);
741 }
742 #endif /* GR64_REGNUM */
743
744 /* Global Registers gr96-gr127 */
745 out_msg_buf->read_req_msg.code = READ_REQ;
746 out_msg_buf->read_req_msg.length = 4 * 3;
747 out_msg_buf->read_req_msg.byte_count = 4 * 32;
748 out_msg_buf->read_req_msg.memory_space = GLOBAL_REG;
749 out_msg_buf->read_req_msg.address = 96;
750 msg_send_serial (out_msg_buf);
751 expect_msg (READ_ACK, in_msg_buf, 1);
752 data_p = &(in_msg_buf->read_r_ack_msg.data[0]);
753
754 for (regno = GR96_REGNUM; regno < GR96_REGNUM + 32; regno++)
755 {
756 supply_register (regno, data_p++);
757 }
758
759 /* Local Registers */
760 out_msg_buf->read_req_msg.byte_count = 4 * (128);
761 out_msg_buf->read_req_msg.memory_space = LOCAL_REG;
762 out_msg_buf->read_req_msg.address = 0;
763 msg_send_serial (out_msg_buf);
764 expect_msg (READ_ACK, in_msg_buf, 1);
765 data_p = &(in_msg_buf->read_r_ack_msg.data[0]);
766
767 for (regno = LR0_REGNUM; regno < LR0_REGNUM + 128; regno++)
768 {
769 supply_register (regno, data_p++);
770 }
771
772 /* Protected Special Registers */
773 out_msg_buf->read_req_msg.byte_count = 4 * 15;
774 out_msg_buf->read_req_msg.memory_space = SPECIAL_REG;
775 out_msg_buf->read_req_msg.address = 0;
776 msg_send_serial (out_msg_buf);
777 expect_msg (READ_ACK, in_msg_buf, 1);
778 data_p = &(in_msg_buf->read_r_ack_msg.data[0]);
779
780 for (regno = 0; regno <= 14; regno++)
781 {
782 supply_register (SR_REGNUM (regno), data_p++);
783 }
784 if (USE_SHADOW_PC)
785 { /* Let regno_to_srnum() handle the register number */
786 fetch_register (NPC_REGNUM);
787 fetch_register (PC_REGNUM);
788 fetch_register (PC2_REGNUM);
789 }
790
791 /* Unprotected Special Registers */
792 out_msg_buf->read_req_msg.byte_count = 4 * 8;
793 out_msg_buf->read_req_msg.memory_space = SPECIAL_REG;
794 out_msg_buf->read_req_msg.address = 128;
795 msg_send_serial (out_msg_buf);
796 expect_msg (READ_ACK, in_msg_buf, 1);
797 data_p = &(in_msg_buf->read_r_ack_msg.data[0]);
798
799 for (regno = 128; regno <= 135; regno++)
800 {
801 supply_register (SR_REGNUM (regno), data_p++);
802 }
803
804 /* There doesn't seem to be any way to get these. */
805 {
806 int val = -1;
807 supply_register (FPE_REGNUM, &val);
808 supply_register (INTE_REGNUM, &val);
809 supply_register (FPS_REGNUM, &val);
810 supply_register (EXO_REGNUM, &val);
811 }
812 }
813
814
815 /****************************************************** REMOTE_STORE_REGISTERS
816 * Store register regno into the target.
817 * If regno==-1 then store all the registers.
818 * Result is 0 for success, -1 for failure.
819 */
820
821 static void
822 mm_store_registers (int regno)
823 {
824 int result;
825
826 if (regno >= 0)
827 {
828 store_register (regno);
829 return;
830 }
831
832 result = 0;
833
834 out_msg_buf->write_r_msg.code = WRITE_REQ;
835
836 /* Gr1/rsp */
837 out_msg_buf->write_r_msg.byte_count = 4 * 1;
838 out_msg_buf->write_r_msg.length = 3 * 4 + out_msg_buf->write_r_msg.byte_count;
839 out_msg_buf->write_r_msg.memory_space = GLOBAL_REG;
840 out_msg_buf->write_r_msg.address = 1;
841 out_msg_buf->write_r_msg.data[0] = read_register (GR1_REGNUM);
842
843 msg_send_serial (out_msg_buf);
844 if (!expect_msg (WRITE_ACK, in_msg_buf, 1))
845 {
846 result = -1;
847 }
848
849 #if defined(GR64_REGNUM)
850 /* Global registers gr64-gr95 */
851 out_msg_buf->write_r_msg.byte_count = 4 * (32);
852 out_msg_buf->write_r_msg.length = 3 * 4 + out_msg_buf->write_r_msg.byte_count;
853 out_msg_buf->write_r_msg.address = 64;
854
855 for (regno = GR64_REGNUM; regno < GR64_REGNUM + 32; regno++)
856 {
857 out_msg_buf->write_r_msg.data[regno - GR64_REGNUM] = read_register (regno);
858 }
859 msg_send_serial (out_msg_buf);
860 if (!expect_msg (WRITE_ACK, in_msg_buf, 1))
861 {
862 result = -1;
863 }
864 #endif /* GR64_REGNUM */
865
866 /* Global registers gr96-gr127 */
867 out_msg_buf->write_r_msg.byte_count = 4 * (32);
868 out_msg_buf->write_r_msg.length = 3 * 4 + out_msg_buf->write_r_msg.byte_count;
869 out_msg_buf->write_r_msg.address = 96;
870 for (regno = GR96_REGNUM; regno < GR96_REGNUM + 32; regno++)
871 {
872 out_msg_buf->write_r_msg.data[regno - GR96_REGNUM] = read_register (regno);
873 }
874 msg_send_serial (out_msg_buf);
875 if (!expect_msg (WRITE_ACK, in_msg_buf, 1))
876 {
877 result = -1;
878 }
879
880 /* Local Registers */
881 out_msg_buf->write_r_msg.memory_space = LOCAL_REG;
882 out_msg_buf->write_r_msg.byte_count = 4 * 128;
883 out_msg_buf->write_r_msg.length = 3 * 4 + out_msg_buf->write_r_msg.byte_count;
884 out_msg_buf->write_r_msg.address = 0;
885
886 for (regno = LR0_REGNUM; regno < LR0_REGNUM + 128; regno++)
887 {
888 out_msg_buf->write_r_msg.data[regno - LR0_REGNUM] = read_register (regno);
889 }
890 msg_send_serial (out_msg_buf);
891 if (!expect_msg (WRITE_ACK, in_msg_buf, 1))
892 {
893 result = -1;
894 }
895
896 /* Protected Special Registers */
897 /* VAB through TMR */
898 out_msg_buf->write_r_msg.memory_space = SPECIAL_REG;
899 out_msg_buf->write_r_msg.byte_count = 4 * 10;
900 out_msg_buf->write_r_msg.length = 3 * 4 + out_msg_buf->write_r_msg.byte_count;
901 out_msg_buf->write_r_msg.address = 0;
902 for (regno = 0; regno <= 9; regno++) /* VAB through TMR */
903 out_msg_buf->write_r_msg.data[regno] = read_register (SR_REGNUM (regno));
904 msg_send_serial (out_msg_buf);
905 if (!expect_msg (WRITE_ACK, in_msg_buf, 1))
906 {
907 result = -1;
908 }
909
910 /* PC0, PC1, PC2 possibly as shadow registers */
911 out_msg_buf->write_r_msg.byte_count = 4 * 3;
912 out_msg_buf->write_r_msg.length = 3 * 4 + out_msg_buf->write_r_msg.byte_count;
913 for (regno = 10; regno <= 12; regno++) /* LRU and MMU */
914 out_msg_buf->write_r_msg.data[regno - 10] = read_register (SR_REGNUM (regno));
915 if (USE_SHADOW_PC)
916 out_msg_buf->write_r_msg.address = 20; /* SPC0 */
917 else
918 out_msg_buf->write_r_msg.address = 10; /* PC0 */
919 msg_send_serial (out_msg_buf);
920 if (!expect_msg (WRITE_ACK, in_msg_buf, 1))
921 {
922 result = -1;
923 }
924
925 /* LRU and MMU */
926 out_msg_buf->write_r_msg.byte_count = 4 * 2;
927 out_msg_buf->write_r_msg.length = 3 * 4 + out_msg_buf->write_r_msg.byte_count;
928 out_msg_buf->write_r_msg.address = 13;
929 for (regno = 13; regno <= 14; regno++) /* LRU and MMU */
930 out_msg_buf->write_r_msg.data[regno - 13] = read_register (SR_REGNUM (regno));
931 msg_send_serial (out_msg_buf);
932 if (!expect_msg (WRITE_ACK, in_msg_buf, 1))
933 {
934 result = -1;
935 }
936
937 /* Unprotected Special Registers */
938 out_msg_buf->write_r_msg.byte_count = 4 * 8;
939 out_msg_buf->write_r_msg.length = 3 * 4 + out_msg_buf->write_r_msg.byte_count;
940 out_msg_buf->write_r_msg.address = 128;
941 for (regno = 128; regno <= 135; regno++)
942 out_msg_buf->write_r_msg.data[regno - 128] = read_register (SR_REGNUM (regno));
943 msg_send_serial (out_msg_buf);
944 if (!expect_msg (WRITE_ACK, in_msg_buf, 1))
945 {
946 result = -1;
947 }
948
949 registers_changed ();
950 }
951
952 /*************************************************** REMOTE_PREPARE_TO_STORE */
953 /* Get ready to modify the registers array. On machines which store
954 individual registers, this doesn't need to do anything. On machines
955 which store all the registers in one fell swoop, this makes sure
956 that registers contains all the registers from the program being
957 debugged. */
958
959 static void
960 mm_prepare_to_store (void)
961 {
962 /* Do nothing, since we can store individual regs */
963 }
964
965 /******************************************************* REMOTE_XFER_MEMORY */
966 static CORE_ADDR
967 translate_addr (CORE_ADDR addr)
968 {
969 #if defined(KERNEL_DEBUGGING)
970 /* Check for a virtual address in the kernel */
971 /* Assume physical address of ublock is in paddr_u register */
972 /* FIXME: doesn't work for user virtual addresses */
973 if (addr >= UVADDR)
974 {
975 /* PADDR_U register holds the physical address of the ublock */
976 CORE_ADDR i = (CORE_ADDR) read_register (PADDR_U_REGNUM);
977 return (i + addr - (CORE_ADDR) UVADDR);
978 }
979 else
980 {
981 return (addr);
982 }
983 #else
984 return (addr);
985 #endif
986 }
987
988 /******************************************************* REMOTE_FILES_INFO */
989 static void
990 mm_files_info (void)
991 {
992 printf ("\tAttached to %s at %d baud and running program %s.\n",
993 dev_name, baudrate, prog_name);
994 }
995
996 /************************************************* REMOTE_INSERT_BREAKPOINT */
997 static int
998 mm_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
999 {
1000 out_msg_buf->bkpt_set_msg.code = BKPT_SET;
1001 out_msg_buf->bkpt_set_msg.length = 4 * 4;
1002 out_msg_buf->bkpt_set_msg.memory_space = I_MEM;
1003 out_msg_buf->bkpt_set_msg.bkpt_addr = (ADDR32) addr;
1004 out_msg_buf->bkpt_set_msg.pass_count = 1;
1005 out_msg_buf->bkpt_set_msg.bkpt_type = -1; /* use illop for 29000 */
1006 msg_send_serial (out_msg_buf);
1007 if (expect_msg (BKPT_SET_ACK, in_msg_buf, 1))
1008 {
1009 return 0; /* Success */
1010 }
1011 else
1012 {
1013 return 1; /* Failure */
1014 }
1015 }
1016
1017 /************************************************* REMOTE_DELETE_BREAKPOINT */
1018 static int
1019 mm_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
1020 {
1021 out_msg_buf->bkpt_rm_msg.code = BKPT_RM;
1022 out_msg_buf->bkpt_rm_msg.length = 4 * 3;
1023 out_msg_buf->bkpt_rm_msg.memory_space = I_MEM;
1024 out_msg_buf->bkpt_rm_msg.bkpt_addr = (ADDR32) addr;
1025 msg_send_serial (out_msg_buf);
1026 if (expect_msg (BKPT_RM_ACK, in_msg_buf, 1))
1027 {
1028 return 0; /* Success */
1029 }
1030 else
1031 {
1032 return 1; /* Failure */
1033 }
1034 }
1035
1036
1037 /******************************************************* REMOTE_KILL */
1038 static void
1039 mm_kill (char *arg, int from_tty)
1040 {
1041 char buf[4];
1042
1043 #if defined(KERNEL_DEBUGGING)
1044 /* We don't ever kill the kernel */
1045 if (from_tty)
1046 {
1047 printf ("Kernel not killed, but left in current state.\n");
1048 printf ("Use detach to leave kernel running.\n");
1049 }
1050 #else
1051 out_msg_buf->break_msg.code = BREAK;
1052 out_msg_buf->bkpt_set_msg.length = 4 * 0;
1053 expect_msg (HALT, in_msg_buf, from_tty);
1054 if (from_tty)
1055 {
1056 printf ("Target has been stopped.");
1057 printf ("Would you like to do a hardware reset (y/n) [n] ");
1058 fgets (buf, 3, stdin);
1059 if (buf[0] == 'y')
1060 {
1061 out_msg_buf->reset_msg.code = RESET;
1062 out_msg_buf->bkpt_set_msg.length = 4 * 0;
1063 expect_msg (RESET_ACK, in_msg_buf, from_tty);
1064 printf ("Target has been reset.");
1065 }
1066 }
1067 pop_target ();
1068 #endif
1069 }
1070
1071
1072
1073 /***************************************************************************/
1074 /*
1075 * Load a program into the target.
1076 */
1077 static void
1078 mm_load (char *arg_string, int from_tty)
1079 {
1080 dont_repeat ();
1081
1082 #if defined(KERNEL_DEBUGGING)
1083 printf ("The kernel had better be loaded already! Loading not done.\n");
1084 #else
1085 if (arg_string == 0)
1086 error ("The load command takes a file name");
1087
1088 arg_string = tilde_expand (arg_string);
1089 make_cleanup (xfree, arg_string);
1090 QUIT;
1091 immediate_quit++;
1092 error ("File loading is not yet supported for MiniMon.");
1093 /* FIXME, code to load your file here... */
1094 /* You may need to do an init_target_mm() */
1095 /* init_target_mm(?,?,?,?,?,?,?,?); */
1096 immediate_quit--;
1097 /* symbol_file_add (arg_string, from_tty, text_addr, 0, 0); */
1098 #endif
1099
1100 }
1101
1102 /************************************************ REMOTE_WRITE_INFERIOR_MEMORY
1103 ** Copy LEN bytes of data from debugger memory at MYADDR
1104 to inferior's memory at MEMADDR. Returns number of bytes written. */
1105 static int
1106 mm_write_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
1107 {
1108 int i, nwritten;
1109
1110 out_msg_buf->write_req_msg.code = WRITE_REQ;
1111 out_msg_buf->write_req_msg.memory_space = mm_memory_space (memaddr);
1112
1113 nwritten = 0;
1114 while (nwritten < len)
1115 {
1116 int num_to_write = len - nwritten;
1117 if (num_to_write > MAXDATA)
1118 num_to_write = MAXDATA;
1119 for (i = 0; i < num_to_write; i++)
1120 out_msg_buf->write_req_msg.data[i] = myaddr[i + nwritten];
1121 out_msg_buf->write_req_msg.byte_count = num_to_write;
1122 out_msg_buf->write_req_msg.length = 3 * 4 + num_to_write;
1123 out_msg_buf->write_req_msg.address = memaddr + nwritten;
1124 msg_send_serial (out_msg_buf);
1125
1126 if (expect_msg (WRITE_ACK, in_msg_buf, 1))
1127 {
1128 nwritten += in_msg_buf->write_ack_msg.byte_count;
1129 }
1130 else
1131 {
1132 break;
1133 }
1134 }
1135 return (nwritten);
1136 }
1137
1138 /************************************************* REMOTE_READ_INFERIOR_MEMORY
1139 ** Read LEN bytes from inferior memory at MEMADDR. Put the result
1140 at debugger address MYADDR. Returns number of bytes read. */
1141 static int
1142 mm_read_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
1143 {
1144 int i, nread;
1145
1146 out_msg_buf->read_req_msg.code = READ_REQ;
1147 out_msg_buf->read_req_msg.memory_space = mm_memory_space (memaddr);
1148
1149 nread = 0;
1150 while (nread < len)
1151 {
1152 int num_to_read = (len - nread);
1153 if (num_to_read > MAXDATA)
1154 num_to_read = MAXDATA;
1155 out_msg_buf->read_req_msg.byte_count = num_to_read;
1156 out_msg_buf->read_req_msg.length = 3 * 4 + num_to_read;
1157 out_msg_buf->read_req_msg.address = memaddr + nread;
1158 msg_send_serial (out_msg_buf);
1159
1160 if (expect_msg (READ_ACK, in_msg_buf, 1))
1161 {
1162 for (i = 0; i < in_msg_buf->read_ack_msg.byte_count; i++)
1163 myaddr[i + nread] = in_msg_buf->read_ack_msg.data[i];
1164 nread += in_msg_buf->read_ack_msg.byte_count;
1165 }
1166 else
1167 {
1168 break;
1169 }
1170 }
1171 return (nread);
1172 }
1173
1174 /* FIXME! Merge these two. */
1175 static int
1176 mm_xfer_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len, int write)
1177 {
1178
1179 memaddr = translate_addr (memaddr);
1180
1181 if (write)
1182 return mm_write_inferior_memory (memaddr, myaddr, len);
1183 else
1184 return mm_read_inferior_memory (memaddr, myaddr, len);
1185 }
1186
1187
1188 /********************************************************** MSG_SEND_SERIAL
1189 ** This function is used to send a message over the
1190 ** serial line.
1191 **
1192 ** If the message is successfully sent, a zero is
1193 ** returned. If the message was not sendable, a -1
1194 ** is returned. This function blocks. That is, it
1195 ** does not return until the message is completely
1196 ** sent, or until an error is encountered.
1197 **
1198 */
1199
1200 int
1201 msg_send_serial (union msg_t *msg_ptr)
1202 {
1203 INT32 message_size;
1204 int byte_count;
1205 int result;
1206 char c;
1207
1208 /* Send message header */
1209 byte_count = 0;
1210 message_size = msg_ptr->generic_msg.length + (2 * sizeof (INT32));
1211 do
1212 {
1213 c = *((char *) msg_ptr + byte_count);
1214 result = write (mm_desc, &c, 1);
1215 if (result == 1)
1216 {
1217 byte_count = byte_count + 1;
1218 }
1219 }
1220 while ((byte_count < message_size));
1221
1222 return (0);
1223 } /* end msg_send_serial() */
1224
1225 /********************************************************** MSG_RECV_SERIAL
1226 ** This function is used to receive a message over a
1227 ** serial line.
1228 **
1229 ** If the message is waiting in the buffer, a zero is
1230 ** returned and the buffer pointed to by msg_ptr is filled
1231 ** in. If no message was available, a -1 is returned.
1232 ** If timeout==0, wait indefinetly for a character.
1233 **
1234 */
1235
1236 int
1237 msg_recv_serial (union msg_t *msg_ptr)
1238 {
1239 static INT32 length = 0;
1240 static INT32 byte_count = 0;
1241 int result;
1242 char c;
1243 if (msg_ptr == 0) /* re-sync request */
1244 {
1245 length = 0;
1246 byte_count = 0;
1247 #ifdef HAVE_TERMIO
1248 /* The timeout here is the prevailing timeout set with VTIME */
1249 ->"timeout==0 semantics not supported"
1250 read (mm_desc, in_buf, BUFER_SIZE);
1251 #else
1252 alarm (1);
1253 read (mm_desc, in_buf, BUFER_SIZE);
1254 alarm (0);
1255 #endif
1256 return (0);
1257 }
1258 /* Receive message */
1259 #ifdef HAVE_TERMIO
1260 /* Timeout==0, help support the mm_wait() routine */
1261 ->"timeout==0 semantics not supported (and its nice if they are)"
1262 result = read (mm_desc, &c, 1);
1263 #else
1264 alarm (timeout);
1265 result = read (mm_desc, &c, 1);
1266 alarm (0);
1267 #endif
1268 if (result < 0)
1269 {
1270 if (errno == EINTR)
1271 {
1272 error ("Timeout reading from remote system.");
1273 }
1274 else
1275 perror_with_name ("remote");
1276 }
1277 else if (result == 1)
1278 {
1279 *((char *) msg_ptr + byte_count) = c;
1280 byte_count = byte_count + 1;
1281 }
1282
1283 /* Message header received. Save message length. */
1284 if (byte_count == (2 * sizeof (INT32)))
1285 length = msg_ptr->generic_msg.length;
1286
1287 if (byte_count >= (length + (2 * sizeof (INT32))))
1288 {
1289 /* Message received */
1290 byte_count = 0;
1291 return (0);
1292 }
1293 else
1294 return (-1);
1295
1296 } /* end msg_recv_serial() */
1297
1298 /********************************************************************* KBD_RAW
1299 ** This function is used to put the keyboard in "raw"
1300 ** mode for BSD Unix. The original status is saved
1301 ** so that it may be restored later.
1302 */
1303 TERMINAL kbd_tbuf;
1304
1305 int
1306 kbd_raw (void)
1307 {
1308 int result;
1309 TERMINAL tbuf;
1310
1311 /* Get keyboard termio (to save to restore original modes) */
1312 #ifdef HAVE_TERMIO
1313 result = ioctl (0, TCGETA, &kbd_tbuf);
1314 #else
1315 result = ioctl (0, TIOCGETP, &kbd_tbuf);
1316 #endif
1317 if (result == -1)
1318 return (errno);
1319
1320 /* Get keyboard TERMINAL (for modification) */
1321 #ifdef HAVE_TERMIO
1322 result = ioctl (0, TCGETA, &tbuf);
1323 #else
1324 result = ioctl (0, TIOCGETP, &tbuf);
1325 #endif
1326 if (result == -1)
1327 return (errno);
1328
1329 /* Set up new parameters */
1330 #ifdef HAVE_TERMIO
1331 tbuf.c_iflag = tbuf.c_iflag &
1332 ~(INLCR | ICRNL | IUCLC | ISTRIP | IXON | BRKINT);
1333 tbuf.c_lflag = tbuf.c_lflag & ~(ICANON | ISIG | ECHO);
1334 tbuf.c_cc[4] = 0; /* MIN */
1335 tbuf.c_cc[5] = 0; /* TIME */
1336 #else
1337 /* FIXME: not sure if this is correct (matches HAVE_TERMIO). */
1338 tbuf.sg_flags |= RAW;
1339 tbuf.sg_flags |= ANYP;
1340 tbuf.sg_flags &= ~ECHO;
1341 #endif
1342
1343 /* Set keyboard termio to new mode (RAW) */
1344 #ifdef HAVE_TERMIO
1345 result = ioctl (0, TCSETAF, &tbuf);
1346 #else
1347 result = ioctl (0, TIOCSETP, &tbuf);
1348 #endif
1349 if (result == -1)
1350 return (errno);
1351
1352 return (0);
1353 } /* end kbd_raw() */
1354
1355
1356
1357 /***************************************************************** KBD_RESTORE
1358 ** This function is used to put the keyboard back in the
1359 ** mode it was in before kbk_raw was called. Note that
1360 ** kbk_raw() must have been called at least once before
1361 ** kbd_restore() is called.
1362 */
1363
1364 int
1365 kbd_restore (void)
1366 {
1367 int result;
1368
1369 /* Set keyboard termio to original mode */
1370 #ifdef HAVE_TERMIO
1371 result = ioctl (0, TCSETAF, &kbd_tbuf);
1372 #else
1373 result = ioctl (0, TIOCGETP, &kbd_tbuf);
1374 #endif
1375
1376 if (result == -1)
1377 return (errno);
1378
1379 return (0);
1380 } /* end kbd_cooked() */
1381
1382
1383 /*****************************************************************************/
1384 /* Fetch a single register indicatated by 'regno'.
1385 * Returns 0/-1 on success/failure.
1386 */
1387 static int
1388 fetch_register (int regno)
1389 {
1390 int result;
1391 out_msg_buf->read_req_msg.code = READ_REQ;
1392 out_msg_buf->read_req_msg.length = 4 * 3;
1393 out_msg_buf->read_req_msg.byte_count = 4;
1394
1395 if (regno == GR1_REGNUM)
1396 {
1397 out_msg_buf->read_req_msg.memory_space = GLOBAL_REG;
1398 out_msg_buf->read_req_msg.address = 1;
1399 }
1400 else if (regno >= GR96_REGNUM && regno < GR96_REGNUM + 32)
1401 {
1402 out_msg_buf->read_req_msg.memory_space = GLOBAL_REG;
1403 out_msg_buf->read_req_msg.address = (regno - GR96_REGNUM) + 96;
1404 }
1405 #if defined(GR64_REGNUM)
1406 else if (regno >= GR64_REGNUM && regno < GR64_REGNUM + 32)
1407 {
1408 out_msg_buf->read_req_msg.memory_space = GLOBAL_REG;
1409 out_msg_buf->read_req_msg.address = (regno - GR64_REGNUM) + 64;
1410 }
1411 #endif /* GR64_REGNUM */
1412 else if (regno >= LR0_REGNUM && regno < LR0_REGNUM + 128)
1413 {
1414 out_msg_buf->read_req_msg.memory_space = LOCAL_REG;
1415 out_msg_buf->read_req_msg.address = (regno - LR0_REGNUM);
1416 }
1417 else if (regno >= FPE_REGNUM && regno <= EXO_REGNUM)
1418 {
1419 int val = -1;
1420 supply_register (160 + (regno - FPE_REGNUM), &val);
1421 return 0; /* Pretend Success */
1422 }
1423 else
1424 {
1425 out_msg_buf->read_req_msg.memory_space = SPECIAL_REG;
1426 out_msg_buf->read_req_msg.address = regnum_to_srnum (regno);
1427 }
1428
1429 msg_send_serial (out_msg_buf);
1430
1431 if (expect_msg (READ_ACK, in_msg_buf, 1))
1432 {
1433 supply_register (regno, &(in_msg_buf->read_r_ack_msg.data[0]));
1434 result = 0;
1435 }
1436 else
1437 {
1438 result = -1;
1439 }
1440 return result;
1441 }
1442 /*****************************************************************************/
1443 /* Store a single register indicated by 'regno'.
1444 * Returns 0/-1 on success/failure.
1445 */
1446 static int
1447 store_register (int regno)
1448 {
1449 int result;
1450
1451 out_msg_buf->write_req_msg.code = WRITE_REQ;
1452 out_msg_buf->write_req_msg.length = 4 * 4;
1453 out_msg_buf->write_req_msg.byte_count = 4;
1454 out_msg_buf->write_r_msg.data[0] = read_register (regno);
1455
1456 if (regno == GR1_REGNUM)
1457 {
1458 out_msg_buf->write_req_msg.memory_space = GLOBAL_REG;
1459 out_msg_buf->write_req_msg.address = 1;
1460 /* Setting GR1 changes the numbers of all the locals, so invalidate the
1461 * register cache. Do this *after* calling read_register, because we want
1462 * read_register to return the value that write_register has just stuffed
1463 * into the registers array, not the value of the register fetched from
1464 * the inferior.
1465 */
1466 registers_changed ();
1467 }
1468 #if defined(GR64_REGNUM)
1469 else if (regno >= GR64_REGNUM && regno < GR64_REGNUM + 32)
1470 {
1471 out_msg_buf->write_req_msg.memory_space = GLOBAL_REG;
1472 out_msg_buf->write_req_msg.address = (regno - GR64_REGNUM) + 64;
1473 }
1474 #endif /* GR64_REGNUM */
1475 else if (regno >= GR96_REGNUM && regno < GR96_REGNUM + 32)
1476 {
1477 out_msg_buf->write_req_msg.memory_space = GLOBAL_REG;
1478 out_msg_buf->write_req_msg.address = (regno - GR96_REGNUM) + 96;
1479 }
1480 else if (regno >= LR0_REGNUM && regno < LR0_REGNUM + 128)
1481 {
1482 out_msg_buf->write_req_msg.memory_space = LOCAL_REG;
1483 out_msg_buf->write_req_msg.address = (regno - LR0_REGNUM);
1484 }
1485 else if (regno >= FPE_REGNUM && regno <= EXO_REGNUM)
1486 {
1487 return 0; /* Pretend Success */
1488 }
1489 else
1490 /* An unprotected or protected special register */
1491 {
1492 out_msg_buf->write_req_msg.memory_space = SPECIAL_REG;
1493 out_msg_buf->write_req_msg.address = regnum_to_srnum (regno);
1494 }
1495
1496 msg_send_serial (out_msg_buf);
1497
1498 if (expect_msg (WRITE_ACK, in_msg_buf, 1))
1499 {
1500 result = 0;
1501 }
1502 else
1503 {
1504 result = -1;
1505 }
1506 return result;
1507 }
1508 /****************************************************************************/
1509 /*
1510 * Convert a gdb special register number to a 29000 special register number.
1511 */
1512 static int
1513 regnum_to_srnum (int regno)
1514 {
1515 switch (regno)
1516 {
1517 case VAB_REGNUM:
1518 return (0);
1519 case OPS_REGNUM:
1520 return (1);
1521 case CPS_REGNUM:
1522 return (2);
1523 case CFG_REGNUM:
1524 return (3);
1525 case CHA_REGNUM:
1526 return (4);
1527 case CHD_REGNUM:
1528 return (5);
1529 case CHC_REGNUM:
1530 return (6);
1531 case RBP_REGNUM:
1532 return (7);
1533 case TMC_REGNUM:
1534 return (8);
1535 case TMR_REGNUM:
1536 return (9);
1537 case NPC_REGNUM:
1538 return (USE_SHADOW_PC ? (20) : (10));
1539 case PC_REGNUM:
1540 return (USE_SHADOW_PC ? (21) : (11));
1541 case PC2_REGNUM:
1542 return (USE_SHADOW_PC ? (22) : (12));
1543 case MMU_REGNUM:
1544 return (13);
1545 case LRU_REGNUM:
1546 return (14);
1547 case IPC_REGNUM:
1548 return (128);
1549 case IPA_REGNUM:
1550 return (129);
1551 case IPB_REGNUM:
1552 return (130);
1553 case Q_REGNUM:
1554 return (131);
1555 case ALU_REGNUM:
1556 return (132);
1557 case BP_REGNUM:
1558 return (133);
1559 case FC_REGNUM:
1560 return (134);
1561 case CR_REGNUM:
1562 return (135);
1563 case FPE_REGNUM:
1564 return (160);
1565 case INTE_REGNUM:
1566 return (161);
1567 case FPS_REGNUM:
1568 return (162);
1569 case EXO_REGNUM:
1570 return (164);
1571 default:
1572 return (255); /* Failure ? */
1573 }
1574 }
1575 /****************************************************************************/
1576 /*
1577 * Initialize the target debugger (minimon only).
1578 */
1579 static void
1580 init_target_mm (ADDR32 tstart, ADDR32 tend, ADDR32 dstart, ADDR32 dend,
1581 ADDR32 entry, INT32 ms_size, INT32 rs_size, ADDR32 arg_start)
1582 {
1583 out_msg_buf->init_msg.code = INIT;
1584 out_msg_buf->init_msg.length = sizeof (struct init_msg_t) - 2 * sizeof (INT32);
1585 out_msg_buf->init_msg.text_start = tstart;
1586 out_msg_buf->init_msg.text_end = tend;
1587 out_msg_buf->init_msg.data_start = dstart;
1588 out_msg_buf->init_msg.data_end = dend;
1589 out_msg_buf->init_msg.entry_point = entry;
1590 out_msg_buf->init_msg.mem_stack_size = ms_size;
1591 out_msg_buf->init_msg.reg_stack_size = rs_size;
1592 out_msg_buf->init_msg.arg_start = arg_start;
1593 msg_send_serial (out_msg_buf);
1594 expect_msg (INIT_ACK, in_msg_buf, 1);
1595 }
1596 /****************************************************************************/
1597 /*
1598 * Return a pointer to a string representing the given message code.
1599 * Not all messages are represented here, only the ones that we expect
1600 * to be called with.
1601 */
1602 static char *
1603 msg_str (INT32 code)
1604 {
1605 static char cbuf[32];
1606
1607 switch (code)
1608 {
1609 case BKPT_SET_ACK:
1610 sprintf (cbuf, "%s (%d)", "BKPT_SET_ACK", code);
1611 break;
1612 case BKPT_RM_ACK:
1613 sprintf (cbuf, "%s (%d)", "BKPT_RM_ACK", code);
1614 break;
1615 case INIT_ACK:
1616 sprintf (cbuf, "%s (%d)", "INIT_ACK", code);
1617 break;
1618 case READ_ACK:
1619 sprintf (cbuf, "%s (%d)", "READ_ACK", code);
1620 break;
1621 case WRITE_ACK:
1622 sprintf (cbuf, "%s (%d)", "WRITE_ACK", code);
1623 break;
1624 case ERROR:
1625 sprintf (cbuf, "%s (%d)", "ERROR", code);
1626 break;
1627 case HALT:
1628 sprintf (cbuf, "%s (%d)", "HALT", code);
1629 break;
1630 default:
1631 sprintf (cbuf, "UNKNOWN (%d)", code);
1632 break;
1633 }
1634 return (cbuf);
1635 }
1636 /****************************************************************************/
1637 /*
1638 * Selected (not all of them) error codes that we might get.
1639 */
1640 static char *
1641 error_msg_str (INT32 code)
1642 {
1643 static char cbuf[50];
1644
1645 switch (code)
1646 {
1647 case EMFAIL:
1648 return ("EMFAIL: unrecoverable error");
1649 case EMBADADDR:
1650 return ("EMBADADDR: Illegal address");
1651 case EMBADREG:
1652 return ("EMBADREG: Illegal register ");
1653 case EMACCESS:
1654 return ("EMACCESS: Could not access memory");
1655 case EMBADMSG:
1656 return ("EMBADMSG: Unknown message type");
1657 case EMMSG2BIG:
1658 return ("EMMSG2BIG: Message to large");
1659 case EMNOSEND:
1660 return ("EMNOSEND: Could not send message");
1661 case EMNORECV:
1662 return ("EMNORECV: Could not recv message");
1663 case EMRESET:
1664 return ("EMRESET: Could not RESET target");
1665 case EMCONFIG:
1666 return ("EMCONFIG: Could not get target CONFIG");
1667 case EMSTATUS:
1668 return ("EMSTATUS: Could not get target STATUS");
1669 case EMREAD:
1670 return ("EMREAD: Could not READ target memory");
1671 case EMWRITE:
1672 return ("EMWRITE: Could not WRITE target memory");
1673 case EMBKPTSET:
1674 return ("EMBKPTSET: Could not set breakpoint");
1675 case EMBKPTRM:
1676 return ("EMBKPTRM: Could not remove breakpoint");
1677 case EMBKPTSTAT:
1678 return ("EMBKPTSTAT: Could not get breakpoint status");
1679 case EMBKPTNONE:
1680 return ("EMBKPTNONE: All breakpoints in use");
1681 case EMBKPTUSED:
1682 return ("EMBKPTUSED: Breakpoints already in use");
1683 case EMINIT:
1684 return ("EMINIT: Could not init target memory");
1685 case EMGO:
1686 return ("EMGO: Could not start execution");
1687 case EMSTEP:
1688 return ("EMSTEP: Could not single step");
1689 case EMBREAK:
1690 return ("EMBREAK: Could not BREAK");
1691 case EMCOMMERR:
1692 return ("EMCOMMERR: Communication error");
1693 default:
1694 sprintf (cbuf, "error number %d", code);
1695 break;
1696 } /* end switch */
1697
1698 return (cbuf);
1699 }
1700 /****************************************************************************/
1701
1702 /* Receive a message, placing it in MSG_BUF, and expect it to be of
1703 type MSGCODE. If an error occurs, a non-zero FROM_TTY indicates
1704 that the message should be printed.
1705
1706 Return 0 for failure, 1 for success. */
1707
1708 static int
1709 expect_msg (INT32 msgcode, union msg_t *msg_buf, int from_tty)
1710 {
1711 int retries = 0;
1712 while (msg_recv_serial (msg_buf) && (retries++ < MAX_RETRIES));
1713 if (retries >= MAX_RETRIES)
1714 {
1715 printf ("Expected msg %s, ", msg_str (msgcode));
1716 printf ("no message received!\n");
1717 return (0); /* Failure */
1718 }
1719
1720 if (msg_buf->generic_msg.code != msgcode)
1721 {
1722 if (from_tty)
1723 {
1724 printf ("Expected msg %s, ", msg_str (msgcode));
1725 printf ("got msg %s\n", msg_str (msg_buf->generic_msg.code));
1726 if (msg_buf->generic_msg.code == ERROR)
1727 printf ("%s\n", error_msg_str (msg_buf->error_msg.error_code));
1728 }
1729 return (0); /* Failure */
1730 }
1731 return (1); /* Success */
1732 }
1733 /****************************************************************************/
1734 /*
1735 * Determine the MiniMon memory space qualifier based on the addr.
1736 * FIXME: Can't distinguis I_ROM/D_ROM.
1737 * FIXME: Doesn't know anything about I_CACHE/D_CACHE.
1738 */
1739 static int
1740 mm_memory_space (CORE_ADDR *addr)
1741 {
1742 ADDR32 tstart = target_config.I_mem_start;
1743 ADDR32 tend = tstart + target_config.I_mem_size;
1744 ADDR32 dstart = target_config.D_mem_start;
1745 ADDR32 dend = tstart + target_config.D_mem_size;
1746 ADDR32 rstart = target_config.ROM_start;
1747 ADDR32 rend = tstart + target_config.ROM_size;
1748
1749 if (((ADDR32) addr >= tstart) && ((ADDR32) addr < tend))
1750 {
1751 return I_MEM;
1752 }
1753 else if (((ADDR32) addr >= dstart) && ((ADDR32) addr < dend))
1754 {
1755 return D_MEM;
1756 }
1757 else if (((ADDR32) addr >= rstart) && ((ADDR32) addr < rend))
1758 {
1759 /* FIXME: how do we determine between D_ROM and I_ROM */
1760 return D_ROM;
1761 }
1762 else /* FIXME: what do me do now? */
1763 return D_MEM; /* Hmmm! */
1764 }
1765
1766 /****************************************************************************/
1767 /*
1768 * Define the target subroutine names
1769 */
1770 struct target_ops mm_ops;
1771
1772 static void
1773 init_mm_ops (void)
1774 {
1775 mm_ops.to_shortname = "minimon";
1776 mm_ops.to_longname = "Remote AMD/Minimon target";
1777 mm_ops.to_doc = "Remote debug an AMD 290*0 using the MiniMon dbg core on the target";
1778 mm_ops.to_open = mm_open;
1779 mm_ops.to_close = mm_close;
1780 mm_ops.to_attach = mm_attach;
1781 mm_ops.to_post_attach = NULL;
1782 mm_ops.to_require_attach = NULL;
1783 mm_ops.to_detach = mm_detach;
1784 mm_ops.to_require_detach = NULL;
1785 mm_ops.to_resume = mm_resume;
1786 mm_ops.to_wait = mm_wait;
1787 mm_ops.to_post_wait = NULL;
1788 mm_ops.to_fetch_registers = mm_fetch_registers;
1789 mm_ops.to_store_registers = mm_store_registers;
1790 mm_ops.to_prepare_to_store = mm_prepare_to_store;
1791 mm_ops.to_xfer_memory = mm_xfer_inferior_memory;
1792 mm_ops.to_files_info = mm_files_info;
1793 mm_ops.to_insert_breakpoint = mm_insert_breakpoint;
1794 mm_ops.to_remove_breakpoint = mm_remove_breakpoint;
1795 mm_ops.to_terminal_init = 0;
1796 mm_ops.to_terminal_inferior = 0;
1797 mm_ops.to_terminal_ours_for_output = 0;
1798 mm_ops.to_terminal_ours = 0;
1799 mm_ops.to_terminal_info = 0;
1800 mm_ops.to_kill = mm_kill;
1801 mm_ops.to_load = mm_load;
1802 mm_ops.to_lookup_symbol = 0;
1803 mm_ops.to_create_inferior = mm_create_inferior;
1804 mm_ops.to_post_startup_inferior = NULL;
1805 mm_ops.to_acknowledge_created_inferior = NULL;
1806 mm_ops.to_clone_and_follow_inferior = NULL;
1807 mm_ops.to_post_follow_inferior_by_clone = NULL;
1808 mm_ops.to_insert_fork_catchpoint = NULL;
1809 mm_ops.to_remove_fork_catchpoint = NULL;
1810 mm_ops.to_insert_vfork_catchpoint = NULL;
1811 mm_ops.to_remove_vfork_catchpoint = NULL;
1812 mm_ops.to_has_forked = NULL;
1813 mm_ops.to_has_vforked = NULL;
1814 mm_ops.to_can_follow_vfork_prior_to_exec = NULL;
1815 mm_ops.to_post_follow_vfork = NULL;
1816 mm_ops.to_insert_exec_catchpoint = NULL;
1817 mm_ops.to_remove_exec_catchpoint = NULL;
1818 mm_ops.to_has_execd = NULL;
1819 mm_ops.to_reported_exec_events_per_exec_call = NULL;
1820 mm_ops.to_has_exited = NULL;
1821 mm_ops.to_mourn_inferior = mm_mourn;
1822 mm_ops.to_can_run = 0;
1823 mm_ops.to_notice_signals = 0;
1824 mm_ops.to_thread_alive = 0;
1825 mm_ops.to_stop = 0;
1826 mm_ops.to_pid_to_exec_file = NULL;
1827 mm_ops.to_core_file_to_sym_file = NULL;
1828 mm_ops.to_stratum = process_stratum;
1829 mm_ops.DONT_USE = 0;
1830 mm_ops.to_has_all_memory = 1;
1831 mm_ops.to_has_memory = 1;
1832 mm_ops.to_has_stack = 1;
1833 mm_ops.to_has_registers = 1;
1834 mm_ops.to_has_execution = 1;
1835 mm_ops.to_sections = 0;
1836 mm_ops.to_sections_end = 0;
1837 mm_ops.to_magic = OPS_MAGIC;
1838 };
1839
1840 void
1841 _initialize_remote_mm (void)
1842 {
1843 init_mm_ops ();
1844 add_target (&mm_ops);
1845 }
1846
1847 #ifdef NO_HIF_SUPPORT
1848 service_HIF (union msg_t *msg)
1849 {
1850 return (0); /* Emulate a failure */
1851 }
1852 #endif
This page took 0.067793 seconds and 4 git commands to generate.