* remote.c (remote_start_remote_dummy): Add uiout parameter.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* See the GDB User Guide for details of the GDB remote protocol. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <fcntl.h>
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42
43 #include <ctype.h>
44 #include <sys/time.h>
45 #ifdef USG
46 #include <sys/types.h>
47 #endif
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 /* Prototypes for local functions */
59 static void cleanup_sigint_signal_handler (void *dummy);
60 static void initialize_sigint_signal_handler (void);
61 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
62
63 static void handle_remote_sigint (int);
64 static void handle_remote_sigint_twice (int);
65 static void async_remote_interrupt (gdb_client_data);
66 void async_remote_interrupt_twice (gdb_client_data);
67
68 static void build_remote_gdbarch_data (void);
69
70 static int remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len);
71
72 static int remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len);
73
74 static void remote_files_info (struct target_ops *ignore);
75
76 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
77 int len, int should_write,
78 struct mem_attrib *attrib,
79 struct target_ops *target);
80
81 static void remote_prepare_to_store (void);
82
83 static void remote_fetch_registers (int regno);
84
85 static void remote_resume (ptid_t ptid, int step,
86 enum target_signal siggnal);
87 static void remote_async_resume (ptid_t ptid, int step,
88 enum target_signal siggnal);
89 static int remote_start_remote (struct ui_out *uiout, void *dummy);
90
91 static void remote_open (char *name, int from_tty);
92 static void remote_async_open (char *name, int from_tty);
93
94 static void extended_remote_open (char *name, int from_tty);
95 static void extended_remote_async_open (char *name, int from_tty);
96
97 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
98 static void remote_async_open_1 (char *, int, struct target_ops *,
99 int extended_p);
100
101 static void remote_close (int quitting);
102
103 static void remote_store_registers (int regno);
104
105 static void remote_mourn (void);
106 static void remote_async_mourn (void);
107
108 static void extended_remote_restart (void);
109
110 static void extended_remote_mourn (void);
111
112 static void extended_remote_create_inferior (char *, char *, char **);
113 static void extended_remote_async_create_inferior (char *, char *, char **);
114
115 static void remote_mourn_1 (struct target_ops *);
116
117 static void remote_send (char *buf, long sizeof_buf);
118
119 static int readchar (int timeout);
120
121 static ptid_t remote_wait (ptid_t ptid,
122 struct target_waitstatus *status);
123 static ptid_t remote_async_wait (ptid_t ptid,
124 struct target_waitstatus *status);
125
126 static void remote_kill (void);
127 static void remote_async_kill (void);
128
129 static int tohex (int nib);
130
131 static void remote_detach (char *args, int from_tty);
132 static void remote_async_detach (char *args, int from_tty);
133
134 static void remote_interrupt (int signo);
135
136 static void remote_interrupt_twice (int signo);
137
138 static void interrupt_query (void);
139
140 static void set_thread (int, int);
141
142 static int remote_thread_alive (ptid_t);
143
144 static void get_offsets (void);
145
146 static long read_frame (char *buf, long sizeof_buf);
147
148 static int remote_insert_breakpoint (CORE_ADDR, char *);
149
150 static int remote_remove_breakpoint (CORE_ADDR, char *);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void init_remote_cisco_ops (void);
159
160 static struct target_ops remote_cisco_ops;
161
162 static void remote_stop (void);
163
164 static int ishex (int ch, int *val);
165
166 static int stubhex (int ch);
167
168 static int remote_query (int /*char */ , char *, char *, int *);
169
170 static int hexnumstr (char *, ULONGEST);
171
172 static int hexnumnstr (char *, ULONGEST, int);
173
174 static CORE_ADDR remote_address_masked (CORE_ADDR);
175
176 static void print_packet (char *);
177
178 static unsigned long crc32 (unsigned char *, int, unsigned int);
179
180 static void compare_sections_command (char *, int);
181
182 static void packet_command (char *, int);
183
184 static int stub_unpack_int (char *buff, int fieldlength);
185
186 static ptid_t remote_current_thread (ptid_t oldptid);
187
188 static void remote_find_new_threads (void);
189
190 static void record_currthread (int currthread);
191
192 static int fromhex (int a);
193
194 static int hex2bin (const char *hex, char *bin, int count);
195
196 static int bin2hex (const char *bin, char *hex, int count);
197
198 static int putpkt_binary (char *buf, int cnt);
199
200 static void check_binary_download (CORE_ADDR addr);
201
202 struct packet_config;
203
204 static void show_packet_config_cmd (struct packet_config *config);
205
206 static void update_packet_config (struct packet_config *config);
207
208 /* Define the target subroutine names */
209
210 void open_remote_target (char *, int, struct target_ops *, int);
211
212 void _initialize_remote (void);
213
214 /* Description of the remote protocol. Strictly speaking, when the
215 target is open()ed, remote.c should create a per-target description
216 of the remote protocol using that target's architecture.
217 Unfortunatly, the target stack doesn't include local state. For
218 the moment keep the information in the target's architecture
219 object. Sigh.. */
220
221 struct packet_reg
222 {
223 long offset; /* Offset into G packet. */
224 long regnum; /* GDB's internal register number. */
225 LONGEST pnum; /* Remote protocol register number. */
226 int in_g_packet; /* Always part of G packet. */
227 /* long size in bytes; == REGISTER_RAW_SIZE (regnum); at present. */
228 /* char *name; == REGISTER_NAME (regnum); at present. */
229 };
230
231 struct remote_state
232 {
233 /* Description of the remote protocol registers. */
234 long sizeof_g_packet;
235
236 /* Description of the remote protocol registers indexed by REGNUM
237 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
238 struct packet_reg *regs;
239
240 /* This is the size (in chars) of the first response to the ``g''
241 packet. It is used as a heuristic when determining the maximum
242 size of memory-read and memory-write packets. A target will
243 typically only reserve a buffer large enough to hold the ``g''
244 packet. The size does not include packet overhead (headers and
245 trailers). */
246 long actual_register_packet_size;
247
248 /* This is the maximum size (in chars) of a non read/write packet.
249 It is also used as a cap on the size of read/write packets. */
250 long remote_packet_size;
251 };
252
253 /* Handle for retreving the remote protocol data from gdbarch. */
254 static struct gdbarch_data *remote_gdbarch_data_handle;
255
256 static struct remote_state *
257 get_remote_state ()
258 {
259 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
260 }
261
262 static void *
263 init_remote_state (struct gdbarch *gdbarch)
264 {
265 int regnum;
266 struct remote_state *rs = xmalloc (sizeof (struct remote_state));
267
268 /* Start out by having the remote protocol mimic the existing
269 behavour - just copy in the description of the register cache. */
270 rs->sizeof_g_packet = REGISTER_BYTES; /* OK use. */
271
272 /* Assume a 1:1 regnum<->pnum table. */
273 rs->regs = xcalloc (NUM_REGS + NUM_PSEUDO_REGS, sizeof (struct packet_reg));
274 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
275 {
276 struct packet_reg *r = &rs->regs[regnum];
277 r->pnum = regnum;
278 r->regnum = regnum;
279 r->offset = REGISTER_BYTE (regnum);
280 r->in_g_packet = (regnum < NUM_REGS);
281 /* ...size = REGISTER_RAW_SIZE (regnum); */
282 /* ...name = REGISTER_NAME (regnum); */
283 }
284
285 /* Default maximum number of characters in a packet body. Many
286 remote stubs have a hardwired buffer size of 400 bytes
287 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
288 as the maximum packet-size to ensure that the packet and an extra
289 NUL character can always fit in the buffer. This stops GDB
290 trashing stubs that try to squeeze an extra NUL into what is
291 already a full buffer (As of 1999-12-04 that was most stubs. */
292 rs->remote_packet_size = 400 - 1;
293
294 /* Should rs->sizeof_g_packet needs more space than the
295 default, adjust the size accordingly. Remember that each byte is
296 encoded as two characters. 32 is the overhead for the packet
297 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
298 (``$NN:G...#NN'') is a better guess, the below has been padded a
299 little. */
300 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
301 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
302
303 /* This one is filled in when a ``g'' packet is received. */
304 rs->actual_register_packet_size = 0;
305
306 return rs;
307 }
308
309 static void
310 free_remote_state (struct gdbarch *gdbarch, void *pointer)
311 {
312 struct remote_state *data = pointer;
313 xfree (data->regs);
314 xfree (data);
315 }
316
317 static struct packet_reg *
318 packet_reg_from_regnum (struct remote_state *rs, long regnum)
319 {
320 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
321 return NULL;
322 else
323 {
324 struct packet_reg *r = &rs->regs[regnum];
325 gdb_assert (r->regnum == regnum);
326 return r;
327 }
328 }
329
330 static struct packet_reg *
331 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
332 {
333 int i;
334 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
335 {
336 struct packet_reg *r = &rs->regs[i];
337 if (r->pnum == pnum)
338 return r;
339 }
340 return NULL;
341 }
342
343 /* */
344
345 static struct target_ops remote_ops;
346
347 static struct target_ops extended_remote_ops;
348
349 /* Temporary target ops. Just like the remote_ops and
350 extended_remote_ops, but with asynchronous support. */
351 static struct target_ops remote_async_ops;
352
353 static struct target_ops extended_async_remote_ops;
354
355 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
356 ``forever'' still use the normal timeout mechanism. This is
357 currently used by the ASYNC code to guarentee that target reads
358 during the initial connect always time-out. Once getpkt has been
359 modified to return a timeout indication and, in turn
360 remote_wait()/wait_for_inferior() have gained a timeout parameter
361 this can go away. */
362 static int wait_forever_enabled_p = 1;
363
364
365 /* This variable chooses whether to send a ^C or a break when the user
366 requests program interruption. Although ^C is usually what remote
367 systems expect, and that is the default here, sometimes a break is
368 preferable instead. */
369
370 static int remote_break;
371
372 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
373 remote_open knows that we don't have a file open when the program
374 starts. */
375 static struct serial *remote_desc = NULL;
376
377 /* This is set by the target (thru the 'S' message)
378 to denote that the target is in kernel mode. */
379 static int cisco_kernel_mode = 0;
380
381 /* This variable sets the number of bits in an address that are to be
382 sent in a memory ("M" or "m") packet. Normally, after stripping
383 leading zeros, the entire address would be sent. This variable
384 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
385 initial implementation of remote.c restricted the address sent in
386 memory packets to ``host::sizeof long'' bytes - (typically 32
387 bits). Consequently, for 64 bit targets, the upper 32 bits of an
388 address was never sent. Since fixing this bug may cause a break in
389 some remote targets this variable is principly provided to
390 facilitate backward compatibility. */
391
392 static int remote_address_size;
393
394 /* Tempoary to track who currently owns the terminal. See
395 target_async_terminal_* for more details. */
396
397 static int remote_async_terminal_ours_p;
398
399 \f
400 /* User configurable variables for the number of characters in a
401 memory read/write packet. MIN ((rs->remote_packet_size),
402 rs->sizeof_g_packet) is the default. Some targets need smaller
403 values (fifo overruns, et.al.) and some users need larger values
404 (speed up transfers). The variables ``preferred_*'' (the user
405 request), ``current_*'' (what was actually set) and ``forced_*''
406 (Positive - a soft limit, negative - a hard limit). */
407
408 struct memory_packet_config
409 {
410 char *name;
411 long size;
412 int fixed_p;
413 };
414
415 /* Compute the current size of a read/write packet. Since this makes
416 use of ``actual_register_packet_size'' the computation is dynamic. */
417
418 static long
419 get_memory_packet_size (struct memory_packet_config *config)
420 {
421 struct remote_state *rs = get_remote_state ();
422 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
423 law?) that some hosts don't cope very well with large alloca()
424 calls. Eventually the alloca() code will be replaced by calls to
425 xmalloc() and make_cleanups() allowing this restriction to either
426 be lifted or removed. */
427 #ifndef MAX_REMOTE_PACKET_SIZE
428 #define MAX_REMOTE_PACKET_SIZE 16384
429 #endif
430 /* NOTE: 16 is just chosen at random. */
431 #ifndef MIN_REMOTE_PACKET_SIZE
432 #define MIN_REMOTE_PACKET_SIZE 16
433 #endif
434 long what_they_get;
435 if (config->fixed_p)
436 {
437 if (config->size <= 0)
438 what_they_get = MAX_REMOTE_PACKET_SIZE;
439 else
440 what_they_get = config->size;
441 }
442 else
443 {
444 what_they_get = (rs->remote_packet_size);
445 /* Limit the packet to the size specified by the user. */
446 if (config->size > 0
447 && what_they_get > config->size)
448 what_they_get = config->size;
449 /* Limit it to the size of the targets ``g'' response. */
450 if ((rs->actual_register_packet_size) > 0
451 && what_they_get > (rs->actual_register_packet_size))
452 what_they_get = (rs->actual_register_packet_size);
453 }
454 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
455 what_they_get = MAX_REMOTE_PACKET_SIZE;
456 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
457 what_they_get = MIN_REMOTE_PACKET_SIZE;
458 return what_they_get;
459 }
460
461 /* Update the size of a read/write packet. If they user wants
462 something really big then do a sanity check. */
463
464 static void
465 set_memory_packet_size (char *args, struct memory_packet_config *config)
466 {
467 int fixed_p = config->fixed_p;
468 long size = config->size;
469 if (args == NULL)
470 error ("Argument required (integer, `fixed' or `limited').");
471 else if (strcmp (args, "hard") == 0
472 || strcmp (args, "fixed") == 0)
473 fixed_p = 1;
474 else if (strcmp (args, "soft") == 0
475 || strcmp (args, "limit") == 0)
476 fixed_p = 0;
477 else
478 {
479 char *end;
480 size = strtoul (args, &end, 0);
481 if (args == end)
482 error ("Invalid %s (bad syntax).", config->name);
483 #if 0
484 /* Instead of explicitly capping the size of a packet to
485 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
486 instead allowed to set the size to something arbitrarily
487 large. */
488 if (size > MAX_REMOTE_PACKET_SIZE)
489 error ("Invalid %s (too large).", config->name);
490 #endif
491 }
492 /* Extra checks? */
493 if (fixed_p && !config->fixed_p)
494 {
495 if (! query ("The target may not be able to correctly handle a %s\n"
496 "of %ld bytes. Change the packet size? ",
497 config->name, size))
498 error ("Packet size not changed.");
499 }
500 /* Update the config. */
501 config->fixed_p = fixed_p;
502 config->size = size;
503 }
504
505 static void
506 show_memory_packet_size (struct memory_packet_config *config)
507 {
508 printf_filtered ("The %s is %ld. ", config->name, config->size);
509 if (config->fixed_p)
510 printf_filtered ("Packets are fixed at %ld bytes.\n",
511 get_memory_packet_size (config));
512 else
513 printf_filtered ("Packets are limited to %ld bytes.\n",
514 get_memory_packet_size (config));
515 }
516
517 static struct memory_packet_config memory_write_packet_config =
518 {
519 "memory-write-packet-size",
520 };
521
522 static void
523 set_memory_write_packet_size (char *args, int from_tty)
524 {
525 set_memory_packet_size (args, &memory_write_packet_config);
526 }
527
528 static void
529 show_memory_write_packet_size (char *args, int from_tty)
530 {
531 show_memory_packet_size (&memory_write_packet_config);
532 }
533
534 static long
535 get_memory_write_packet_size (void)
536 {
537 return get_memory_packet_size (&memory_write_packet_config);
538 }
539
540 static struct memory_packet_config memory_read_packet_config =
541 {
542 "memory-read-packet-size",
543 };
544
545 static void
546 set_memory_read_packet_size (char *args, int from_tty)
547 {
548 set_memory_packet_size (args, &memory_read_packet_config);
549 }
550
551 static void
552 show_memory_read_packet_size (char *args, int from_tty)
553 {
554 show_memory_packet_size (&memory_read_packet_config);
555 }
556
557 static long
558 get_memory_read_packet_size (void)
559 {
560 struct remote_state *rs = get_remote_state ();
561 long size = get_memory_packet_size (&memory_read_packet_config);
562 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
563 extra buffer size argument before the memory read size can be
564 increased beyond (rs->remote_packet_size). */
565 if (size > (rs->remote_packet_size))
566 size = (rs->remote_packet_size);
567 return size;
568 }
569
570 \f
571 /* Generic configuration support for packets the stub optionally
572 supports. Allows the user to specify the use of the packet as well
573 as allowing GDB to auto-detect support in the remote stub. */
574
575 enum packet_support
576 {
577 PACKET_SUPPORT_UNKNOWN = 0,
578 PACKET_ENABLE,
579 PACKET_DISABLE
580 };
581
582 struct packet_config
583 {
584 char *name;
585 char *title;
586 enum cmd_auto_boolean detect;
587 enum packet_support support;
588 };
589
590 /* Analyze a packet's return value and update the packet config
591 accordingly. */
592
593 enum packet_result
594 {
595 PACKET_ERROR,
596 PACKET_OK,
597 PACKET_UNKNOWN
598 };
599
600 static void
601 update_packet_config (struct packet_config *config)
602 {
603 switch (config->detect)
604 {
605 case CMD_AUTO_BOOLEAN_TRUE:
606 config->support = PACKET_ENABLE;
607 break;
608 case CMD_AUTO_BOOLEAN_FALSE:
609 config->support = PACKET_DISABLE;
610 break;
611 case CMD_AUTO_BOOLEAN_AUTO:
612 config->support = PACKET_SUPPORT_UNKNOWN;
613 break;
614 }
615 }
616
617 static void
618 show_packet_config_cmd (struct packet_config *config)
619 {
620 char *support = "internal-error";
621 switch (config->support)
622 {
623 case PACKET_ENABLE:
624 support = "enabled";
625 break;
626 case PACKET_DISABLE:
627 support = "disabled";
628 break;
629 case PACKET_SUPPORT_UNKNOWN:
630 support = "unknown";
631 break;
632 }
633 switch (config->detect)
634 {
635 case CMD_AUTO_BOOLEAN_AUTO:
636 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
637 config->name, config->title, support);
638 break;
639 case CMD_AUTO_BOOLEAN_TRUE:
640 case CMD_AUTO_BOOLEAN_FALSE:
641 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
642 config->name, config->title, support);
643 break;
644 }
645 }
646
647 static void
648 add_packet_config_cmd (struct packet_config *config,
649 char *name,
650 char *title,
651 void (*set_func) (char *args, int from_tty,
652 struct cmd_list_element *
653 c),
654 void (*show_func) (char *name,
655 int from_tty),
656 struct cmd_list_element **set_remote_list,
657 struct cmd_list_element **show_remote_list,
658 int legacy)
659 {
660 struct cmd_list_element *set_cmd;
661 struct cmd_list_element *show_cmd;
662 char *set_doc;
663 char *show_doc;
664 char *cmd_name;
665 config->name = name;
666 config->title = title;
667 config->detect = CMD_AUTO_BOOLEAN_AUTO;
668 config->support = PACKET_SUPPORT_UNKNOWN;
669 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
670 name, title);
671 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
672 name, title);
673 /* set/show TITLE-packet {auto,on,off} */
674 xasprintf (&cmd_name, "%s-packet", title);
675 set_cmd = add_set_auto_boolean_cmd (cmd_name, class_obscure,
676 &config->detect, set_doc,
677 set_remote_list);
678 set_cmd_sfunc (set_cmd, set_func);
679 show_cmd = add_cmd (cmd_name, class_obscure, show_func, show_doc,
680 show_remote_list);
681 /* set/show remote NAME-packet {auto,on,off} -- legacy */
682 if (legacy)
683 {
684 char *legacy_name;
685 xasprintf (&legacy_name, "%s-packet", name);
686 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
687 set_remote_list);
688 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
689 show_remote_list);
690 }
691 }
692
693 static enum packet_result
694 packet_ok (const char *buf, struct packet_config *config)
695 {
696 if (buf[0] != '\0')
697 {
698 /* The stub recognized the packet request. Check that the
699 operation succeeded. */
700 switch (config->support)
701 {
702 case PACKET_SUPPORT_UNKNOWN:
703 if (remote_debug)
704 fprintf_unfiltered (gdb_stdlog,
705 "Packet %s (%s) is supported\n",
706 config->name, config->title);
707 config->support = PACKET_ENABLE;
708 break;
709 case PACKET_DISABLE:
710 internal_error (__FILE__, __LINE__,
711 "packet_ok: attempt to use a disabled packet");
712 break;
713 case PACKET_ENABLE:
714 break;
715 }
716 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
717 /* "OK" - definitly OK. */
718 return PACKET_OK;
719 if (buf[0] == 'E'
720 && isxdigit (buf[1]) && isxdigit (buf[2])
721 && buf[3] == '\0')
722 /* "Enn" - definitly an error. */
723 return PACKET_ERROR;
724 /* The packet may or may not be OK. Just assume it is */
725 return PACKET_OK;
726 }
727 else
728 {
729 /* The stub does not support the packet. */
730 switch (config->support)
731 {
732 case PACKET_ENABLE:
733 if (config->detect == CMD_AUTO_BOOLEAN_AUTO)
734 /* If the stub previously indicated that the packet was
735 supported then there is a protocol error.. */
736 error ("Protocol error: %s (%s) conflicting enabled responses.",
737 config->name, config->title);
738 else
739 /* The user set it wrong. */
740 error ("Enabled packet %s (%s) not recognized by stub",
741 config->name, config->title);
742 break;
743 case PACKET_SUPPORT_UNKNOWN:
744 if (remote_debug)
745 fprintf_unfiltered (gdb_stdlog,
746 "Packet %s (%s) is NOT supported\n",
747 config->name, config->title);
748 config->support = PACKET_DISABLE;
749 break;
750 case PACKET_DISABLE:
751 break;
752 }
753 return PACKET_UNKNOWN;
754 }
755 }
756
757 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
758 static struct packet_config remote_protocol_qSymbol;
759
760 static void
761 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
762 struct cmd_list_element *c)
763 {
764 update_packet_config (&remote_protocol_qSymbol);
765 }
766
767 static void
768 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty)
769 {
770 show_packet_config_cmd (&remote_protocol_qSymbol);
771 }
772
773 /* Should we try the 'e' (step over range) request? */
774 static struct packet_config remote_protocol_e;
775
776 static void
777 set_remote_protocol_e_packet_cmd (char *args, int from_tty,
778 struct cmd_list_element *c)
779 {
780 update_packet_config (&remote_protocol_e);
781 }
782
783 static void
784 show_remote_protocol_e_packet_cmd (char *args, int from_tty)
785 {
786 show_packet_config_cmd (&remote_protocol_e);
787 }
788
789
790 /* Should we try the 'E' (step over range / w signal #) request? */
791 static struct packet_config remote_protocol_E;
792
793 static void
794 set_remote_protocol_E_packet_cmd (char *args, int from_tty,
795 struct cmd_list_element *c)
796 {
797 update_packet_config (&remote_protocol_E);
798 }
799
800 static void
801 show_remote_protocol_E_packet_cmd (char *args, int from_tty)
802 {
803 show_packet_config_cmd (&remote_protocol_E);
804 }
805
806
807 /* Should we try the 'P' (set register) request? */
808
809 static struct packet_config remote_protocol_P;
810
811 static void
812 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
813 struct cmd_list_element *c)
814 {
815 update_packet_config (&remote_protocol_P);
816 }
817
818 static void
819 show_remote_protocol_P_packet_cmd (char *args, int from_tty)
820 {
821 show_packet_config_cmd (&remote_protocol_P);
822 }
823
824 /* Should we try one of the 'Z' requests? */
825
826 enum Z_packet_type
827 {
828 Z_PACKET_SOFTWARE_BP,
829 Z_PACKET_HARDWARE_BP,
830 Z_PACKET_WRITE_WP,
831 Z_PACKET_READ_WP,
832 Z_PACKET_ACCESS_WP,
833 NR_Z_PACKET_TYPES
834 };
835
836 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
837
838 /* FIXME: Instead of having all these boiler plate functions, the
839 command callback should include a context argument. */
840
841 static void
842 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
843 struct cmd_list_element *c)
844 {
845 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
846 }
847
848 static void
849 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty)
850 {
851 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
852 }
853
854 static void
855 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
856 struct cmd_list_element *c)
857 {
858 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
859 }
860
861 static void
862 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty)
863 {
864 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
865 }
866
867 static void
868 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
869 struct cmd_list_element *c)
870 {
871 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
872 }
873
874 static void
875 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty)
876 {
877 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
878 }
879
880 static void
881 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
882 struct cmd_list_element *c)
883 {
884 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
885 }
886
887 static void
888 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty)
889 {
890 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
891 }
892
893 static void
894 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
895 struct cmd_list_element *c)
896 {
897 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
898 }
899
900 static void
901 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty)
902 {
903 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
904 }
905
906 /* For compatibility with older distributions. Provide a ``set remote
907 Z-packet ...'' command that updates all the Z packet types. */
908
909 static enum cmd_auto_boolean remote_Z_packet_detect;
910
911 static void
912 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
913 struct cmd_list_element *c)
914 {
915 int i;
916 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
917 {
918 remote_protocol_Z[i].detect = remote_Z_packet_detect;
919 update_packet_config (&remote_protocol_Z[i]);
920 }
921 }
922
923 static void
924 show_remote_protocol_Z_packet_cmd (char *args, int from_tty)
925 {
926 int i;
927 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
928 {
929 show_packet_config_cmd (&remote_protocol_Z[i]);
930 }
931 }
932
933 /* Should we try the 'X' (remote binary download) packet?
934
935 This variable (available to the user via "set remote X-packet")
936 dictates whether downloads are sent in binary (via the 'X' packet).
937 We assume that the stub can, and attempt to do it. This will be
938 cleared if the stub does not understand it. This switch is still
939 needed, though in cases when the packet is supported in the stub,
940 but the connection does not allow it (i.e., 7-bit serial connection
941 only). */
942
943 static struct packet_config remote_protocol_binary_download;
944
945 /* Should we try the 'ThreadInfo' query packet?
946
947 This variable (NOT available to the user: auto-detect only!)
948 determines whether GDB will use the new, simpler "ThreadInfo"
949 query or the older, more complex syntax for thread queries.
950 This is an auto-detect variable (set to true at each connect,
951 and set to false when the target fails to recognize it). */
952
953 static int use_threadinfo_query;
954 static int use_threadextra_query;
955
956 static void
957 set_remote_protocol_binary_download_cmd (char *args,
958 int from_tty,
959 struct cmd_list_element *c)
960 {
961 update_packet_config (&remote_protocol_binary_download);
962 }
963
964 static void
965 show_remote_protocol_binary_download_cmd (char *args,
966 int from_tty)
967 {
968 show_packet_config_cmd (&remote_protocol_binary_download);
969 }
970
971
972 /* Tokens for use by the asynchronous signal handlers for SIGINT */
973 static void *sigint_remote_twice_token;
974 static void *sigint_remote_token;
975
976 /* These are pointers to hook functions that may be set in order to
977 modify resume/wait behavior for a particular architecture. */
978
979 void (*target_resume_hook) (void);
980 void (*target_wait_loop_hook) (void);
981 \f
982
983
984 /* These are the threads which we last sent to the remote system.
985 -1 for all or -2 for not sent yet. */
986 static int general_thread;
987 static int continue_thread;
988
989 /* Call this function as a result of
990 1) A halt indication (T packet) containing a thread id
991 2) A direct query of currthread
992 3) Successful execution of set thread
993 */
994
995 static void
996 record_currthread (int currthread)
997 {
998 general_thread = currthread;
999
1000 /* If this is a new thread, add it to GDB's thread list.
1001 If we leave it up to WFI to do this, bad things will happen. */
1002 if (!in_thread_list (pid_to_ptid (currthread)))
1003 {
1004 add_thread (pid_to_ptid (currthread));
1005 ui_out_text (uiout, "[New ");
1006 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1007 ui_out_text (uiout, "]\n");
1008 }
1009 }
1010
1011 #define MAGIC_NULL_PID 42000
1012
1013 static void
1014 set_thread (int th, int gen)
1015 {
1016 struct remote_state *rs = get_remote_state ();
1017 char *buf = alloca (rs->remote_packet_size);
1018 int state = gen ? general_thread : continue_thread;
1019
1020 if (state == th)
1021 return;
1022
1023 buf[0] = 'H';
1024 buf[1] = gen ? 'g' : 'c';
1025 if (th == MAGIC_NULL_PID)
1026 {
1027 buf[2] = '0';
1028 buf[3] = '\0';
1029 }
1030 else if (th < 0)
1031 sprintf (&buf[2], "-%x", -th);
1032 else
1033 sprintf (&buf[2], "%x", th);
1034 putpkt (buf);
1035 getpkt (buf, (rs->remote_packet_size), 0);
1036 if (gen)
1037 general_thread = th;
1038 else
1039 continue_thread = th;
1040 }
1041 \f
1042 /* Return nonzero if the thread TH is still alive on the remote system. */
1043
1044 static int
1045 remote_thread_alive (ptid_t ptid)
1046 {
1047 int tid = PIDGET (ptid);
1048 char buf[16];
1049
1050 if (tid < 0)
1051 sprintf (buf, "T-%08x", -tid);
1052 else
1053 sprintf (buf, "T%08x", tid);
1054 putpkt (buf);
1055 getpkt (buf, sizeof (buf), 0);
1056 return (buf[0] == 'O' && buf[1] == 'K');
1057 }
1058
1059 /* About these extended threadlist and threadinfo packets. They are
1060 variable length packets but, the fields within them are often fixed
1061 length. They are redundent enough to send over UDP as is the
1062 remote protocol in general. There is a matching unit test module
1063 in libstub. */
1064
1065 #define OPAQUETHREADBYTES 8
1066
1067 /* a 64 bit opaque identifier */
1068 typedef unsigned char threadref[OPAQUETHREADBYTES];
1069
1070 /* WARNING: This threadref data structure comes from the remote O.S., libstub
1071 protocol encoding, and remote.c. it is not particularly changable */
1072
1073 /* Right now, the internal structure is int. We want it to be bigger.
1074 Plan to fix this.
1075 */
1076
1077 typedef int gdb_threadref; /* internal GDB thread reference */
1078
1079 /* gdb_ext_thread_info is an internal GDB data structure which is
1080 equivalint to the reply of the remote threadinfo packet */
1081
1082 struct gdb_ext_thread_info
1083 {
1084 threadref threadid; /* External form of thread reference */
1085 int active; /* Has state interesting to GDB? , regs, stack */
1086 char display[256]; /* Brief state display, name, blocked/syspended */
1087 char shortname[32]; /* To be used to name threads */
1088 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1089 };
1090
1091 /* The volume of remote transfers can be limited by submitting
1092 a mask containing bits specifying the desired information.
1093 Use a union of these values as the 'selection' parameter to
1094 get_thread_info. FIXME: Make these TAG names more thread specific.
1095 */
1096
1097 #define TAG_THREADID 1
1098 #define TAG_EXISTS 2
1099 #define TAG_DISPLAY 4
1100 #define TAG_THREADNAME 8
1101 #define TAG_MOREDISPLAY 16
1102
1103 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1104
1105 char *unpack_varlen_hex (char *buff, int *result);
1106
1107 static char *unpack_nibble (char *buf, int *val);
1108
1109 static char *pack_nibble (char *buf, int nibble);
1110
1111 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1112
1113 static char *unpack_byte (char *buf, int *value);
1114
1115 static char *pack_int (char *buf, int value);
1116
1117 static char *unpack_int (char *buf, int *value);
1118
1119 static char *unpack_string (char *src, char *dest, int length);
1120
1121 static char *pack_threadid (char *pkt, threadref * id);
1122
1123 static char *unpack_threadid (char *inbuf, threadref * id);
1124
1125 void int_to_threadref (threadref * id, int value);
1126
1127 static int threadref_to_int (threadref * ref);
1128
1129 static void copy_threadref (threadref * dest, threadref * src);
1130
1131 static int threadmatch (threadref * dest, threadref * src);
1132
1133 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1134
1135 static int remote_unpack_thread_info_response (char *pkt,
1136 threadref * expectedref,
1137 struct gdb_ext_thread_info
1138 *info);
1139
1140
1141 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1142 struct gdb_ext_thread_info *info);
1143
1144 static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1145 int selection,
1146 struct gdb_ext_thread_info *info);
1147
1148 static char *pack_threadlist_request (char *pkt, int startflag,
1149 int threadcount,
1150 threadref * nextthread);
1151
1152 static int parse_threadlist_response (char *pkt,
1153 int result_limit,
1154 threadref * original_echo,
1155 threadref * resultlist, int *doneflag);
1156
1157 static int remote_get_threadlist (int startflag,
1158 threadref * nextthread,
1159 int result_limit,
1160 int *done,
1161 int *result_count, threadref * threadlist);
1162
1163 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1164
1165 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1166 void *context, int looplimit);
1167
1168 static int remote_newthread_step (threadref * ref, void *context);
1169
1170 /* encode 64 bits in 16 chars of hex */
1171
1172 static const char hexchars[] = "0123456789abcdef";
1173
1174 static int
1175 ishex (int ch, int *val)
1176 {
1177 if ((ch >= 'a') && (ch <= 'f'))
1178 {
1179 *val = ch - 'a' + 10;
1180 return 1;
1181 }
1182 if ((ch >= 'A') && (ch <= 'F'))
1183 {
1184 *val = ch - 'A' + 10;
1185 return 1;
1186 }
1187 if ((ch >= '0') && (ch <= '9'))
1188 {
1189 *val = ch - '0';
1190 return 1;
1191 }
1192 return 0;
1193 }
1194
1195 static int
1196 stubhex (int ch)
1197 {
1198 if (ch >= 'a' && ch <= 'f')
1199 return ch - 'a' + 10;
1200 if (ch >= '0' && ch <= '9')
1201 return ch - '0';
1202 if (ch >= 'A' && ch <= 'F')
1203 return ch - 'A' + 10;
1204 return -1;
1205 }
1206
1207 static int
1208 stub_unpack_int (char *buff, int fieldlength)
1209 {
1210 int nibble;
1211 int retval = 0;
1212
1213 while (fieldlength)
1214 {
1215 nibble = stubhex (*buff++);
1216 retval |= nibble;
1217 fieldlength--;
1218 if (fieldlength)
1219 retval = retval << 4;
1220 }
1221 return retval;
1222 }
1223
1224 char *
1225 unpack_varlen_hex (char *buff, /* packet to parse */
1226 int *result)
1227 {
1228 int nibble;
1229 int retval = 0;
1230
1231 while (ishex (*buff, &nibble))
1232 {
1233 buff++;
1234 retval = retval << 4;
1235 retval |= nibble & 0x0f;
1236 }
1237 *result = retval;
1238 return buff;
1239 }
1240
1241 static char *
1242 unpack_nibble (char *buf, int *val)
1243 {
1244 ishex (*buf++, val);
1245 return buf;
1246 }
1247
1248 static char *
1249 pack_nibble (char *buf, int nibble)
1250 {
1251 *buf++ = hexchars[(nibble & 0x0f)];
1252 return buf;
1253 }
1254
1255 static char *
1256 pack_hex_byte (char *pkt, int byte)
1257 {
1258 *pkt++ = hexchars[(byte >> 4) & 0xf];
1259 *pkt++ = hexchars[(byte & 0xf)];
1260 return pkt;
1261 }
1262
1263 static char *
1264 unpack_byte (char *buf, int *value)
1265 {
1266 *value = stub_unpack_int (buf, 2);
1267 return buf + 2;
1268 }
1269
1270 static char *
1271 pack_int (char *buf, int value)
1272 {
1273 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1274 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1275 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1276 buf = pack_hex_byte (buf, (value & 0xff));
1277 return buf;
1278 }
1279
1280 static char *
1281 unpack_int (char *buf, int *value)
1282 {
1283 *value = stub_unpack_int (buf, 8);
1284 return buf + 8;
1285 }
1286
1287 #if 0 /* currently unused, uncomment when needed */
1288 static char *pack_string (char *pkt, char *string);
1289
1290 static char *
1291 pack_string (char *pkt, char *string)
1292 {
1293 char ch;
1294 int len;
1295
1296 len = strlen (string);
1297 if (len > 200)
1298 len = 200; /* Bigger than most GDB packets, junk??? */
1299 pkt = pack_hex_byte (pkt, len);
1300 while (len-- > 0)
1301 {
1302 ch = *string++;
1303 if ((ch == '\0') || (ch == '#'))
1304 ch = '*'; /* Protect encapsulation */
1305 *pkt++ = ch;
1306 }
1307 return pkt;
1308 }
1309 #endif /* 0 (unused) */
1310
1311 static char *
1312 unpack_string (char *src, char *dest, int length)
1313 {
1314 while (length--)
1315 *dest++ = *src++;
1316 *dest = '\0';
1317 return src;
1318 }
1319
1320 static char *
1321 pack_threadid (char *pkt, threadref *id)
1322 {
1323 char *limit;
1324 unsigned char *altid;
1325
1326 altid = (unsigned char *) id;
1327 limit = pkt + BUF_THREAD_ID_SIZE;
1328 while (pkt < limit)
1329 pkt = pack_hex_byte (pkt, *altid++);
1330 return pkt;
1331 }
1332
1333
1334 static char *
1335 unpack_threadid (char *inbuf, threadref *id)
1336 {
1337 char *altref;
1338 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1339 int x, y;
1340
1341 altref = (char *) id;
1342
1343 while (inbuf < limit)
1344 {
1345 x = stubhex (*inbuf++);
1346 y = stubhex (*inbuf++);
1347 *altref++ = (x << 4) | y;
1348 }
1349 return inbuf;
1350 }
1351
1352 /* Externally, threadrefs are 64 bits but internally, they are still
1353 ints. This is due to a mismatch of specifications. We would like
1354 to use 64bit thread references internally. This is an adapter
1355 function. */
1356
1357 void
1358 int_to_threadref (threadref *id, int value)
1359 {
1360 unsigned char *scan;
1361
1362 scan = (unsigned char *) id;
1363 {
1364 int i = 4;
1365 while (i--)
1366 *scan++ = 0;
1367 }
1368 *scan++ = (value >> 24) & 0xff;
1369 *scan++ = (value >> 16) & 0xff;
1370 *scan++ = (value >> 8) & 0xff;
1371 *scan++ = (value & 0xff);
1372 }
1373
1374 static int
1375 threadref_to_int (threadref *ref)
1376 {
1377 int i, value = 0;
1378 unsigned char *scan;
1379
1380 scan = (char *) ref;
1381 scan += 4;
1382 i = 4;
1383 while (i-- > 0)
1384 value = (value << 8) | ((*scan++) & 0xff);
1385 return value;
1386 }
1387
1388 static void
1389 copy_threadref (threadref *dest, threadref *src)
1390 {
1391 int i;
1392 unsigned char *csrc, *cdest;
1393
1394 csrc = (unsigned char *) src;
1395 cdest = (unsigned char *) dest;
1396 i = 8;
1397 while (i--)
1398 *cdest++ = *csrc++;
1399 }
1400
1401 static int
1402 threadmatch (threadref *dest, threadref *src)
1403 {
1404 /* things are broken right now, so just assume we got a match */
1405 #if 0
1406 unsigned char *srcp, *destp;
1407 int i, result;
1408 srcp = (char *) src;
1409 destp = (char *) dest;
1410
1411 result = 1;
1412 while (i-- > 0)
1413 result &= (*srcp++ == *destp++) ? 1 : 0;
1414 return result;
1415 #endif
1416 return 1;
1417 }
1418
1419 /*
1420 threadid:1, # always request threadid
1421 context_exists:2,
1422 display:4,
1423 unique_name:8,
1424 more_display:16
1425 */
1426
1427 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1428
1429 static char *
1430 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1431 {
1432 *pkt++ = 'q'; /* Info Query */
1433 *pkt++ = 'P'; /* process or thread info */
1434 pkt = pack_int (pkt, mode); /* mode */
1435 pkt = pack_threadid (pkt, id); /* threadid */
1436 *pkt = '\0'; /* terminate */
1437 return pkt;
1438 }
1439
1440 /* These values tag the fields in a thread info response packet */
1441 /* Tagging the fields allows us to request specific fields and to
1442 add more fields as time goes by */
1443
1444 #define TAG_THREADID 1 /* Echo the thread identifier */
1445 #define TAG_EXISTS 2 /* Is this process defined enough to
1446 fetch registers and its stack */
1447 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1448 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1449 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1450 the process */
1451
1452 static int
1453 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1454 struct gdb_ext_thread_info *info)
1455 {
1456 struct remote_state *rs = get_remote_state ();
1457 int mask, length;
1458 unsigned int tag;
1459 threadref ref;
1460 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1461 int retval = 1;
1462
1463 /* info->threadid = 0; FIXME: implement zero_threadref */
1464 info->active = 0;
1465 info->display[0] = '\0';
1466 info->shortname[0] = '\0';
1467 info->more_display[0] = '\0';
1468
1469 /* Assume the characters indicating the packet type have been stripped */
1470 pkt = unpack_int (pkt, &mask); /* arg mask */
1471 pkt = unpack_threadid (pkt, &ref);
1472
1473 if (mask == 0)
1474 warning ("Incomplete response to threadinfo request\n");
1475 if (!threadmatch (&ref, expectedref))
1476 { /* This is an answer to a different request */
1477 warning ("ERROR RMT Thread info mismatch\n");
1478 return 0;
1479 }
1480 copy_threadref (&info->threadid, &ref);
1481
1482 /* Loop on tagged fields , try to bail if somthing goes wrong */
1483
1484 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1485 {
1486 pkt = unpack_int (pkt, &tag); /* tag */
1487 pkt = unpack_byte (pkt, &length); /* length */
1488 if (!(tag & mask)) /* tags out of synch with mask */
1489 {
1490 warning ("ERROR RMT: threadinfo tag mismatch\n");
1491 retval = 0;
1492 break;
1493 }
1494 if (tag == TAG_THREADID)
1495 {
1496 if (length != 16)
1497 {
1498 warning ("ERROR RMT: length of threadid is not 16\n");
1499 retval = 0;
1500 break;
1501 }
1502 pkt = unpack_threadid (pkt, &ref);
1503 mask = mask & ~TAG_THREADID;
1504 continue;
1505 }
1506 if (tag == TAG_EXISTS)
1507 {
1508 info->active = stub_unpack_int (pkt, length);
1509 pkt += length;
1510 mask = mask & ~(TAG_EXISTS);
1511 if (length > 8)
1512 {
1513 warning ("ERROR RMT: 'exists' length too long\n");
1514 retval = 0;
1515 break;
1516 }
1517 continue;
1518 }
1519 if (tag == TAG_THREADNAME)
1520 {
1521 pkt = unpack_string (pkt, &info->shortname[0], length);
1522 mask = mask & ~TAG_THREADNAME;
1523 continue;
1524 }
1525 if (tag == TAG_DISPLAY)
1526 {
1527 pkt = unpack_string (pkt, &info->display[0], length);
1528 mask = mask & ~TAG_DISPLAY;
1529 continue;
1530 }
1531 if (tag == TAG_MOREDISPLAY)
1532 {
1533 pkt = unpack_string (pkt, &info->more_display[0], length);
1534 mask = mask & ~TAG_MOREDISPLAY;
1535 continue;
1536 }
1537 warning ("ERROR RMT: unknown thread info tag\n");
1538 break; /* Not a tag we know about */
1539 }
1540 return retval;
1541 }
1542
1543 static int
1544 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1545 struct gdb_ext_thread_info *info)
1546 {
1547 struct remote_state *rs = get_remote_state ();
1548 int result;
1549 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1550
1551 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1552 putpkt (threadinfo_pkt);
1553 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1554 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1555 info);
1556 return result;
1557 }
1558
1559 /* Unfortunately, 61 bit thread-ids are bigger than the internal
1560 representation of a threadid. */
1561
1562 static int
1563 adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1564 struct gdb_ext_thread_info *info)
1565 {
1566 threadref lclref;
1567
1568 int_to_threadref (&lclref, *ref);
1569 return remote_get_threadinfo (&lclref, selection, info);
1570 }
1571
1572 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1573
1574 static char *
1575 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1576 threadref *nextthread)
1577 {
1578 *pkt++ = 'q'; /* info query packet */
1579 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1580 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1581 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1582 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1583 *pkt = '\0';
1584 return pkt;
1585 }
1586
1587 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1588
1589 static int
1590 parse_threadlist_response (char *pkt, int result_limit,
1591 threadref *original_echo, threadref *resultlist,
1592 int *doneflag)
1593 {
1594 struct remote_state *rs = get_remote_state ();
1595 char *limit;
1596 int count, resultcount, done;
1597
1598 resultcount = 0;
1599 /* Assume the 'q' and 'M chars have been stripped. */
1600 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1601 pkt = unpack_byte (pkt, &count); /* count field */
1602 pkt = unpack_nibble (pkt, &done);
1603 /* The first threadid is the argument threadid. */
1604 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1605 while ((count-- > 0) && (pkt < limit))
1606 {
1607 pkt = unpack_threadid (pkt, resultlist++);
1608 if (resultcount++ >= result_limit)
1609 break;
1610 }
1611 if (doneflag)
1612 *doneflag = done;
1613 return resultcount;
1614 }
1615
1616 static int
1617 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1618 int *done, int *result_count, threadref *threadlist)
1619 {
1620 struct remote_state *rs = get_remote_state ();
1621 static threadref echo_nextthread;
1622 char *threadlist_packet = alloca (rs->remote_packet_size);
1623 char *t_response = alloca (rs->remote_packet_size);
1624 int result = 1;
1625
1626 /* Trancate result limit to be smaller than the packet size */
1627 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1628 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1629
1630 pack_threadlist_request (threadlist_packet,
1631 startflag, result_limit, nextthread);
1632 putpkt (threadlist_packet);
1633 getpkt (t_response, (rs->remote_packet_size), 0);
1634
1635 *result_count =
1636 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1637 threadlist, done);
1638
1639 if (!threadmatch (&echo_nextthread, nextthread))
1640 {
1641 /* FIXME: This is a good reason to drop the packet */
1642 /* Possably, there is a duplicate response */
1643 /* Possabilities :
1644 retransmit immediatly - race conditions
1645 retransmit after timeout - yes
1646 exit
1647 wait for packet, then exit
1648 */
1649 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1650 return 0; /* I choose simply exiting */
1651 }
1652 if (*result_count <= 0)
1653 {
1654 if (*done != 1)
1655 {
1656 warning ("RMT ERROR : failed to get remote thread list\n");
1657 result = 0;
1658 }
1659 return result; /* break; */
1660 }
1661 if (*result_count > result_limit)
1662 {
1663 *result_count = 0;
1664 warning ("RMT ERROR: threadlist response longer than requested\n");
1665 return 0;
1666 }
1667 return result;
1668 }
1669
1670 /* This is the interface between remote and threads, remotes upper interface */
1671
1672 /* remote_find_new_threads retrieves the thread list and for each
1673 thread in the list, looks up the thread in GDB's internal list,
1674 ading the thread if it does not already exist. This involves
1675 getting partial thread lists from the remote target so, polling the
1676 quit_flag is required. */
1677
1678
1679 /* About this many threadisds fit in a packet. */
1680
1681 #define MAXTHREADLISTRESULTS 32
1682
1683 static int
1684 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1685 int looplimit)
1686 {
1687 int done, i, result_count;
1688 int startflag = 1;
1689 int result = 1;
1690 int loopcount = 0;
1691 static threadref nextthread;
1692 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1693
1694 done = 0;
1695 while (!done)
1696 {
1697 if (loopcount++ > looplimit)
1698 {
1699 result = 0;
1700 warning ("Remote fetch threadlist -infinite loop-\n");
1701 break;
1702 }
1703 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1704 &done, &result_count, resultthreadlist))
1705 {
1706 result = 0;
1707 break;
1708 }
1709 /* clear for later iterations */
1710 startflag = 0;
1711 /* Setup to resume next batch of thread references, set nextthread. */
1712 if (result_count >= 1)
1713 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1714 i = 0;
1715 while (result_count--)
1716 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1717 break;
1718 }
1719 return result;
1720 }
1721
1722 static int
1723 remote_newthread_step (threadref *ref, void *context)
1724 {
1725 ptid_t ptid;
1726
1727 ptid = pid_to_ptid (threadref_to_int (ref));
1728
1729 if (!in_thread_list (ptid))
1730 add_thread (ptid);
1731 return 1; /* continue iterator */
1732 }
1733
1734 #define CRAZY_MAX_THREADS 1000
1735
1736 static ptid_t
1737 remote_current_thread (ptid_t oldpid)
1738 {
1739 struct remote_state *rs = get_remote_state ();
1740 char *buf = alloca (rs->remote_packet_size);
1741
1742 putpkt ("qC");
1743 getpkt (buf, (rs->remote_packet_size), 0);
1744 if (buf[0] == 'Q' && buf[1] == 'C')
1745 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1746 else
1747 return oldpid;
1748 }
1749
1750 /* Find new threads for info threads command.
1751 * Original version, using John Metzler's thread protocol.
1752 */
1753
1754 static void
1755 remote_find_new_threads (void)
1756 {
1757 remote_threadlist_iterator (remote_newthread_step, 0,
1758 CRAZY_MAX_THREADS);
1759 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1760 inferior_ptid = remote_current_thread (inferior_ptid);
1761 }
1762
1763 /*
1764 * Find all threads for info threads command.
1765 * Uses new thread protocol contributed by Cisco.
1766 * Falls back and attempts to use the older method (above)
1767 * if the target doesn't respond to the new method.
1768 */
1769
1770 static void
1771 remote_threads_info (void)
1772 {
1773 struct remote_state *rs = get_remote_state ();
1774 char *buf = alloca (rs->remote_packet_size);
1775 char *bufp;
1776 int tid;
1777
1778 if (remote_desc == 0) /* paranoia */
1779 error ("Command can only be used when connected to the remote target.");
1780
1781 if (use_threadinfo_query)
1782 {
1783 putpkt ("qfThreadInfo");
1784 bufp = buf;
1785 getpkt (bufp, (rs->remote_packet_size), 0);
1786 if (bufp[0] != '\0') /* q packet recognized */
1787 {
1788 while (*bufp++ == 'm') /* reply contains one or more TID */
1789 {
1790 do
1791 {
1792 tid = strtol (bufp, &bufp, 16);
1793 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1794 add_thread (pid_to_ptid (tid));
1795 }
1796 while (*bufp++ == ','); /* comma-separated list */
1797 putpkt ("qsThreadInfo");
1798 bufp = buf;
1799 getpkt (bufp, (rs->remote_packet_size), 0);
1800 }
1801 return; /* done */
1802 }
1803 }
1804
1805 /* Else fall back to old method based on jmetzler protocol. */
1806 use_threadinfo_query = 0;
1807 remote_find_new_threads ();
1808 return;
1809 }
1810
1811 /*
1812 * Collect a descriptive string about the given thread.
1813 * The target may say anything it wants to about the thread
1814 * (typically info about its blocked / runnable state, name, etc.).
1815 * This string will appear in the info threads display.
1816 *
1817 * Optional: targets are not required to implement this function.
1818 */
1819
1820 static char *
1821 remote_threads_extra_info (struct thread_info *tp)
1822 {
1823 struct remote_state *rs = get_remote_state ();
1824 int result;
1825 int set;
1826 threadref id;
1827 struct gdb_ext_thread_info threadinfo;
1828 static char display_buf[100]; /* arbitrary... */
1829 char *bufp = alloca (rs->remote_packet_size);
1830 int n = 0; /* position in display_buf */
1831
1832 if (remote_desc == 0) /* paranoia */
1833 internal_error (__FILE__, __LINE__,
1834 "remote_threads_extra_info");
1835
1836 if (use_threadextra_query)
1837 {
1838 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1839 putpkt (bufp);
1840 getpkt (bufp, (rs->remote_packet_size), 0);
1841 if (bufp[0] != 0)
1842 {
1843 n = min (strlen (bufp) / 2, sizeof (display_buf));
1844 result = hex2bin (bufp, display_buf, n);
1845 display_buf [result] = '\0';
1846 return display_buf;
1847 }
1848 }
1849
1850 /* If the above query fails, fall back to the old method. */
1851 use_threadextra_query = 0;
1852 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1853 | TAG_MOREDISPLAY | TAG_DISPLAY;
1854 int_to_threadref (&id, PIDGET (tp->ptid));
1855 if (remote_get_threadinfo (&id, set, &threadinfo))
1856 if (threadinfo.active)
1857 {
1858 if (*threadinfo.shortname)
1859 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1860 if (*threadinfo.display)
1861 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1862 if (*threadinfo.more_display)
1863 n += sprintf(&display_buf[n], " Priority: %s",
1864 threadinfo.more_display);
1865
1866 if (n > 0)
1867 {
1868 /* for purely cosmetic reasons, clear up trailing commas */
1869 if (',' == display_buf[n-1])
1870 display_buf[n-1] = ' ';
1871 return display_buf;
1872 }
1873 }
1874 return NULL;
1875 }
1876
1877 \f
1878
1879 /* Restart the remote side; this is an extended protocol operation. */
1880
1881 static void
1882 extended_remote_restart (void)
1883 {
1884 struct remote_state *rs = get_remote_state ();
1885 char *buf = alloca (rs->remote_packet_size);
1886
1887 /* Send the restart command; for reasons I don't understand the
1888 remote side really expects a number after the "R". */
1889 buf[0] = 'R';
1890 sprintf (&buf[1], "%x", 0);
1891 putpkt (buf);
1892
1893 /* Now query for status so this looks just like we restarted
1894 gdbserver from scratch. */
1895 putpkt ("?");
1896 getpkt (buf, (rs->remote_packet_size), 0);
1897 }
1898 \f
1899 /* Clean up connection to a remote debugger. */
1900
1901 /* ARGSUSED */
1902 static void
1903 remote_close (int quitting)
1904 {
1905 if (remote_desc)
1906 serial_close (remote_desc);
1907 remote_desc = NULL;
1908 }
1909
1910 /* Query the remote side for the text, data and bss offsets. */
1911
1912 static void
1913 get_offsets (void)
1914 {
1915 struct remote_state *rs = get_remote_state ();
1916 char *buf = alloca (rs->remote_packet_size);
1917 char *ptr;
1918 int lose;
1919 CORE_ADDR text_addr, data_addr, bss_addr;
1920 struct section_offsets *offs;
1921
1922 putpkt ("qOffsets");
1923
1924 getpkt (buf, (rs->remote_packet_size), 0);
1925
1926 if (buf[0] == '\000')
1927 return; /* Return silently. Stub doesn't support
1928 this command. */
1929 if (buf[0] == 'E')
1930 {
1931 warning ("Remote failure reply: %s", buf);
1932 return;
1933 }
1934
1935 /* Pick up each field in turn. This used to be done with scanf, but
1936 scanf will make trouble if CORE_ADDR size doesn't match
1937 conversion directives correctly. The following code will work
1938 with any size of CORE_ADDR. */
1939 text_addr = data_addr = bss_addr = 0;
1940 ptr = buf;
1941 lose = 0;
1942
1943 if (strncmp (ptr, "Text=", 5) == 0)
1944 {
1945 ptr += 5;
1946 /* Don't use strtol, could lose on big values. */
1947 while (*ptr && *ptr != ';')
1948 text_addr = (text_addr << 4) + fromhex (*ptr++);
1949 }
1950 else
1951 lose = 1;
1952
1953 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1954 {
1955 ptr += 6;
1956 while (*ptr && *ptr != ';')
1957 data_addr = (data_addr << 4) + fromhex (*ptr++);
1958 }
1959 else
1960 lose = 1;
1961
1962 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1963 {
1964 ptr += 5;
1965 while (*ptr && *ptr != ';')
1966 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1967 }
1968 else
1969 lose = 1;
1970
1971 if (lose)
1972 error ("Malformed response to offset query, %s", buf);
1973
1974 if (symfile_objfile == NULL)
1975 return;
1976
1977 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1978 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1979
1980 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1981
1982 /* This is a temporary kludge to force data and bss to use the same offsets
1983 because that's what nlmconv does now. The real solution requires changes
1984 to the stub and remote.c that I don't have time to do right now. */
1985
1986 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1987 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1988
1989 objfile_relocate (symfile_objfile, offs);
1990 }
1991
1992 /*
1993 * Cisco version of section offsets:
1994 *
1995 * Instead of having GDB query the target for the section offsets,
1996 * Cisco lets the target volunteer the information! It's also in
1997 * a different format, so here are the functions that will decode
1998 * a section offset packet from a Cisco target.
1999 */
2000
2001 /*
2002 * Function: remote_cisco_section_offsets
2003 *
2004 * Returns: zero for success, non-zero for failure
2005 */
2006
2007 static int
2008 remote_cisco_section_offsets (bfd_vma text_addr,
2009 bfd_vma data_addr,
2010 bfd_vma bss_addr,
2011 bfd_signed_vma *text_offs,
2012 bfd_signed_vma *data_offs,
2013 bfd_signed_vma *bss_offs)
2014 {
2015 bfd_vma text_base, data_base, bss_base;
2016 struct minimal_symbol *start;
2017 asection *sect;
2018 bfd *abfd;
2019 int len;
2020
2021 if (symfile_objfile == NULL)
2022 return -1; /* no can do nothin' */
2023
2024 start = lookup_minimal_symbol ("_start", NULL, NULL);
2025 if (start == NULL)
2026 return -1; /* Can't find "_start" symbol */
2027
2028 data_base = bss_base = 0;
2029 text_base = SYMBOL_VALUE_ADDRESS (start);
2030
2031 abfd = symfile_objfile->obfd;
2032 for (sect = abfd->sections;
2033 sect != 0;
2034 sect = sect->next)
2035 {
2036 const char *p = bfd_get_section_name (abfd, sect);
2037 len = strlen (p);
2038 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
2039 if (data_base == 0 ||
2040 data_base > bfd_get_section_vma (abfd, sect))
2041 data_base = bfd_get_section_vma (abfd, sect);
2042 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
2043 if (bss_base == 0 ||
2044 bss_base > bfd_get_section_vma (abfd, sect))
2045 bss_base = bfd_get_section_vma (abfd, sect);
2046 }
2047 *text_offs = text_addr - text_base;
2048 *data_offs = data_addr - data_base;
2049 *bss_offs = bss_addr - bss_base;
2050 if (remote_debug)
2051 {
2052 char tmp[128];
2053
2054 sprintf (tmp, "VMA: text = 0x");
2055 sprintf_vma (tmp + strlen (tmp), text_addr);
2056 sprintf (tmp + strlen (tmp), " data = 0x");
2057 sprintf_vma (tmp + strlen (tmp), data_addr);
2058 sprintf (tmp + strlen (tmp), " bss = 0x");
2059 sprintf_vma (tmp + strlen (tmp), bss_addr);
2060 fprintf_filtered (gdb_stdlog, tmp);
2061 fprintf_filtered (gdb_stdlog,
2062 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
2063 paddr_nz (*text_offs),
2064 paddr_nz (*data_offs),
2065 paddr_nz (*bss_offs));
2066 }
2067
2068 return 0;
2069 }
2070
2071 /*
2072 * Function: remote_cisco_objfile_relocate
2073 *
2074 * Relocate the symbol file for a remote target.
2075 */
2076
2077 void
2078 remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
2079 bfd_signed_vma bss_off)
2080 {
2081 struct section_offsets *offs;
2082
2083 if (text_off != 0 || data_off != 0 || bss_off != 0)
2084 {
2085 /* FIXME: This code assumes gdb-stabs.h is being used; it's
2086 broken for xcoff, dwarf, sdb-coff, etc. But there is no
2087 simple canonical representation for this stuff. */
2088
2089 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
2090 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
2091
2092 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
2093 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
2094 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
2095
2096 /* First call the standard objfile_relocate. */
2097 objfile_relocate (symfile_objfile, offs);
2098
2099 /* Now we need to fix up the section entries already attached to
2100 the exec target. These entries will control memory transfers
2101 from the exec file. */
2102
2103 exec_set_section_offsets (text_off, data_off, bss_off);
2104 }
2105 }
2106
2107 /* Stub for catch_errors. */
2108
2109 static int
2110 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
2111 {
2112 start_remote (); /* Initialize gdb process mechanisms */
2113 /* NOTE: Return something >=0. A -ve value is reserved for
2114 catch_exceptions. */
2115 return 1;
2116 }
2117
2118 static int
2119 remote_start_remote (struct ui_out *uiout, void *dummy)
2120 {
2121 immediate_quit++; /* Allow user to interrupt it */
2122
2123 /* Ack any packet which the remote side has already sent. */
2124 serial_write (remote_desc, "+", 1);
2125
2126 /* Let the stub know that we want it to return the thread. */
2127 set_thread (-1, 0);
2128
2129 inferior_ptid = remote_current_thread (inferior_ptid);
2130
2131 get_offsets (); /* Get text, data & bss offsets */
2132
2133 putpkt ("?"); /* initiate a query from remote machine */
2134 immediate_quit--;
2135
2136 /* NOTE: See comment above in remote_start_remote_dummy(). This
2137 function returns something >=0. */
2138 return remote_start_remote_dummy (uiout, dummy);
2139 }
2140
2141 /* Open a connection to a remote debugger.
2142 NAME is the filename used for communication. */
2143
2144 static void
2145 remote_open (char *name, int from_tty)
2146 {
2147 remote_open_1 (name, from_tty, &remote_ops, 0);
2148 }
2149
2150 /* Just like remote_open, but with asynchronous support. */
2151 static void
2152 remote_async_open (char *name, int from_tty)
2153 {
2154 remote_async_open_1 (name, from_tty, &remote_async_ops, 0);
2155 }
2156
2157 /* Open a connection to a remote debugger using the extended
2158 remote gdb protocol. NAME is the filename used for communication. */
2159
2160 static void
2161 extended_remote_open (char *name, int from_tty)
2162 {
2163 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */ );
2164 }
2165
2166 /* Just like extended_remote_open, but with asynchronous support. */
2167 static void
2168 extended_remote_async_open (char *name, int from_tty)
2169 {
2170 remote_async_open_1 (name, from_tty, &extended_async_remote_ops, 1 /*extended_p */ );
2171 }
2172
2173 /* Generic code for opening a connection to a remote target. */
2174
2175 static void
2176 init_all_packet_configs (void)
2177 {
2178 int i;
2179 update_packet_config (&remote_protocol_e);
2180 update_packet_config (&remote_protocol_E);
2181 update_packet_config (&remote_protocol_P);
2182 update_packet_config (&remote_protocol_qSymbol);
2183 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2184 update_packet_config (&remote_protocol_Z[i]);
2185 /* Force remote_write_bytes to check whether target supports binary
2186 downloading. */
2187 update_packet_config (&remote_protocol_binary_download);
2188 }
2189
2190 /* Symbol look-up. */
2191
2192 static void
2193 remote_check_symbols (struct objfile *objfile)
2194 {
2195 struct remote_state *rs = get_remote_state ();
2196 char *msg, *reply, *tmp;
2197 struct minimal_symbol *sym;
2198 int end;
2199
2200 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2201 return;
2202
2203 msg = alloca (rs->remote_packet_size);
2204 reply = alloca (rs->remote_packet_size);
2205
2206 /* Invite target to request symbol lookups. */
2207
2208 putpkt ("qSymbol::");
2209 getpkt (reply, (rs->remote_packet_size), 0);
2210 packet_ok (reply, &remote_protocol_qSymbol);
2211
2212 while (strncmp (reply, "qSymbol:", 8) == 0)
2213 {
2214 tmp = &reply[8];
2215 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2216 msg[end] = '\0';
2217 sym = lookup_minimal_symbol (msg, NULL, NULL);
2218 if (sym == NULL)
2219 sprintf (msg, "qSymbol::%s", &reply[8]);
2220 else
2221 sprintf (msg, "qSymbol:%s:%s",
2222 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2223 &reply[8]);
2224 putpkt (msg);
2225 getpkt (reply, (rs->remote_packet_size), 0);
2226 }
2227 }
2228
2229 static struct serial *
2230 remote_serial_open (char *name)
2231 {
2232 static int udp_warning = 0;
2233
2234 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2235 of in ser-tcp.c, because it is the remote protocol assuming that the
2236 serial connection is reliable and not the serial connection promising
2237 to be. */
2238 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2239 {
2240 warning ("The remote protocol may be unreliable over UDP.");
2241 warning ("Some events may be lost, rendering further debugging "
2242 "impossible.");
2243 udp_warning = 1;
2244 }
2245
2246 return serial_open (name);
2247 }
2248
2249 static void
2250 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2251 int extended_p)
2252 {
2253 int ex;
2254 struct remote_state *rs = get_remote_state ();
2255 if (name == 0)
2256 error ("To open a remote debug connection, you need to specify what\n"
2257 "serial device is attached to the remote system\n"
2258 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2259
2260 /* See FIXME above */
2261 wait_forever_enabled_p = 1;
2262
2263 target_preopen (from_tty);
2264
2265 unpush_target (target);
2266
2267 remote_desc = remote_serial_open (name);
2268 if (!remote_desc)
2269 perror_with_name (name);
2270
2271 if (baud_rate != -1)
2272 {
2273 if (serial_setbaudrate (remote_desc, baud_rate))
2274 {
2275 serial_close (remote_desc);
2276 perror_with_name (name);
2277 }
2278 }
2279
2280 serial_raw (remote_desc);
2281
2282 /* If there is something sitting in the buffer we might take it as a
2283 response to a command, which would be bad. */
2284 serial_flush_input (remote_desc);
2285
2286 if (from_tty)
2287 {
2288 puts_filtered ("Remote debugging using ");
2289 puts_filtered (name);
2290 puts_filtered ("\n");
2291 }
2292 push_target (target); /* Switch to using remote target now */
2293
2294 init_all_packet_configs ();
2295
2296 general_thread = -2;
2297 continue_thread = -2;
2298
2299 /* Probe for ability to use "ThreadInfo" query, as required. */
2300 use_threadinfo_query = 1;
2301 use_threadextra_query = 1;
2302
2303 /* Without this, some commands which require an active target (such
2304 as kill) won't work. This variable serves (at least) double duty
2305 as both the pid of the target process (if it has such), and as a
2306 flag indicating that a target is active. These functions should
2307 be split out into seperate variables, especially since GDB will
2308 someday have a notion of debugging several processes. */
2309
2310 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2311 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2312 /* First delete any symbols previously loaded from shared libraries. */
2313 no_shared_libraries (NULL, 0);
2314 #endif
2315
2316 /* Start the remote connection. If error() or QUIT, discard this
2317 target (we'd otherwise be in an inconsistent state).
2318
2319 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2320 this function should return an error indication letting the
2321 caller restore the previous state. Unfortunatly the command
2322 ``target remote'' is directly wired to this function making that
2323 impossible. On a positive note, the CLI side of this problem has
2324 been fixed - the function set_cmd_context() makes it possible for
2325 all the ``target ....'' commands to share a common callback
2326 function. See cli-dump.c. */
2327 ex = catch_exceptions (uiout,
2328 remote_start_remote, NULL,
2329 "Couldn't establish connection to remote"
2330 " target\n",
2331 RETURN_MASK_ALL);
2332 if (ex < 0)
2333 {
2334 pop_target ();
2335 return;
2336 }
2337
2338 if (extended_p)
2339 {
2340 /* Tell the remote that we are using the extended protocol. */
2341 char *buf = alloca (rs->remote_packet_size);
2342 putpkt ("!");
2343 getpkt (buf, (rs->remote_packet_size), 0);
2344 }
2345 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2346 /* FIXME: need a master target_open vector from which all
2347 remote_opens can be called, so that stuff like this can
2348 go there. Failing that, the following code must be copied
2349 to the open function for any remote target that wants to
2350 support svr4 shared libraries. */
2351
2352 /* Set up to detect and load shared libraries. */
2353 if (exec_bfd) /* No use without an exec file. */
2354 {
2355 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2356 remote_check_symbols (symfile_objfile);
2357 }
2358 #endif
2359 }
2360
2361 /* Just like remote_open but with asynchronous support. */
2362 static void
2363 remote_async_open_1 (char *name, int from_tty, struct target_ops *target,
2364 int extended_p)
2365 {
2366 int ex;
2367 struct remote_state *rs = get_remote_state ();
2368 if (name == 0)
2369 error ("To open a remote debug connection, you need to specify what\n"
2370 "serial device is attached to the remote system\n"
2371 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2372
2373 target_preopen (from_tty);
2374
2375 unpush_target (target);
2376
2377 remote_desc = remote_serial_open (name);
2378 if (!remote_desc)
2379 perror_with_name (name);
2380
2381 if (baud_rate != -1)
2382 {
2383 if (serial_setbaudrate (remote_desc, baud_rate))
2384 {
2385 serial_close (remote_desc);
2386 perror_with_name (name);
2387 }
2388 }
2389
2390 serial_raw (remote_desc);
2391
2392 /* If there is something sitting in the buffer we might take it as a
2393 response to a command, which would be bad. */
2394 serial_flush_input (remote_desc);
2395
2396 if (from_tty)
2397 {
2398 puts_filtered ("Remote debugging using ");
2399 puts_filtered (name);
2400 puts_filtered ("\n");
2401 }
2402
2403 push_target (target); /* Switch to using remote target now */
2404
2405 init_all_packet_configs ();
2406
2407 general_thread = -2;
2408 continue_thread = -2;
2409
2410 /* Probe for ability to use "ThreadInfo" query, as required. */
2411 use_threadinfo_query = 1;
2412 use_threadextra_query = 1;
2413
2414 /* Without this, some commands which require an active target (such
2415 as kill) won't work. This variable serves (at least) double duty
2416 as both the pid of the target process (if it has such), and as a
2417 flag indicating that a target is active. These functions should
2418 be split out into seperate variables, especially since GDB will
2419 someday have a notion of debugging several processes. */
2420 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2421
2422 /* With this target we start out by owning the terminal. */
2423 remote_async_terminal_ours_p = 1;
2424
2425 /* FIXME: cagney/1999-09-23: During the initial connection it is
2426 assumed that the target is already ready and able to respond to
2427 requests. Unfortunately remote_start_remote() eventually calls
2428 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2429 around this. Eventually a mechanism that allows
2430 wait_for_inferior() to expect/get timeouts will be
2431 implemented. */
2432 wait_forever_enabled_p = 0;
2433
2434 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2435 /* First delete any symbols previously loaded from shared libraries. */
2436 no_shared_libraries (NULL, 0);
2437 #endif
2438
2439 /* Start the remote connection; if error, discard this target. See
2440 the comments in remote_open_1() for further details. */
2441 ex = catch_exceptions (uiout,
2442 remote_start_remote, NULL,
2443 "Couldn't establish connection to remote"
2444 " target\n",
2445 RETURN_MASK_ALL);
2446 if (ex < 0)
2447 {
2448 pop_target ();
2449 wait_forever_enabled_p = 1;
2450 return;
2451 }
2452
2453 wait_forever_enabled_p = 1;
2454
2455 if (extended_p)
2456 {
2457 /* Tell the remote that we are using the extended protocol. */
2458 char *buf = alloca (rs->remote_packet_size);
2459 putpkt ("!");
2460 getpkt (buf, (rs->remote_packet_size), 0);
2461 }
2462 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2463 /* FIXME: need a master target_open vector from which all
2464 remote_opens can be called, so that stuff like this can
2465 go there. Failing that, the following code must be copied
2466 to the open function for any remote target that wants to
2467 support svr4 shared libraries. */
2468
2469 /* Set up to detect and load shared libraries. */
2470 if (exec_bfd) /* No use without an exec file. */
2471 {
2472 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2473 remote_check_symbols (symfile_objfile);
2474 }
2475 #endif
2476 }
2477
2478 /* This takes a program previously attached to and detaches it. After
2479 this is done, GDB can be used to debug some other program. We
2480 better not have left any breakpoints in the target program or it'll
2481 die when it hits one. */
2482
2483 static void
2484 remote_detach (char *args, int from_tty)
2485 {
2486 struct remote_state *rs = get_remote_state ();
2487 char *buf = alloca (rs->remote_packet_size);
2488
2489 if (args)
2490 error ("Argument given to \"detach\" when remotely debugging.");
2491
2492 /* Tell the remote target to detach. */
2493 strcpy (buf, "D");
2494 remote_send (buf, (rs->remote_packet_size));
2495
2496 target_mourn_inferior ();
2497 if (from_tty)
2498 puts_filtered ("Ending remote debugging.\n");
2499
2500 }
2501
2502 /* Same as remote_detach, but with async support. */
2503 static void
2504 remote_async_detach (char *args, int from_tty)
2505 {
2506 struct remote_state *rs = get_remote_state ();
2507 char *buf = alloca (rs->remote_packet_size);
2508
2509 if (args)
2510 error ("Argument given to \"detach\" when remotely debugging.");
2511
2512 /* Tell the remote target to detach. */
2513 strcpy (buf, "D");
2514 remote_send (buf, (rs->remote_packet_size));
2515
2516 /* Unregister the file descriptor from the event loop. */
2517 if (target_is_async_p ())
2518 serial_async (remote_desc, NULL, 0);
2519
2520 target_mourn_inferior ();
2521 if (from_tty)
2522 puts_filtered ("Ending remote debugging.\n");
2523 }
2524
2525 /* Convert hex digit A to a number. */
2526
2527 static int
2528 fromhex (int a)
2529 {
2530 if (a >= '0' && a <= '9')
2531 return a - '0';
2532 else if (a >= 'a' && a <= 'f')
2533 return a - 'a' + 10;
2534 else if (a >= 'A' && a <= 'F')
2535 return a - 'A' + 10;
2536 else
2537 error ("Reply contains invalid hex digit %d", a);
2538 }
2539
2540 static int
2541 hex2bin (const char *hex, char *bin, int count)
2542 {
2543 int i;
2544
2545 for (i = 0; i < count; i++)
2546 {
2547 if (hex[0] == 0 || hex[1] == 0)
2548 {
2549 /* Hex string is short, or of uneven length.
2550 Return the count that has been converted so far. */
2551 return i;
2552 }
2553 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2554 hex += 2;
2555 }
2556 return i;
2557 }
2558
2559 /* Convert number NIB to a hex digit. */
2560
2561 static int
2562 tohex (int nib)
2563 {
2564 if (nib < 10)
2565 return '0' + nib;
2566 else
2567 return 'a' + nib - 10;
2568 }
2569
2570 static int
2571 bin2hex (const char *bin, char *hex, int count)
2572 {
2573 int i;
2574 /* May use a length, or a nul-terminated string as input. */
2575 if (count == 0)
2576 count = strlen (bin);
2577
2578 for (i = 0; i < count; i++)
2579 {
2580 *hex++ = tohex ((*bin >> 4) & 0xf);
2581 *hex++ = tohex (*bin++ & 0xf);
2582 }
2583 *hex = 0;
2584 return i;
2585 }
2586 \f
2587 /* Tell the remote machine to resume. */
2588
2589 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2590
2591 static int last_sent_step;
2592
2593 static void
2594 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2595 {
2596 struct remote_state *rs = get_remote_state ();
2597 char *buf = alloca (rs->remote_packet_size);
2598 int pid = PIDGET (ptid);
2599 char *p;
2600
2601 if (pid == -1)
2602 set_thread (0, 0); /* run any thread */
2603 else
2604 set_thread (pid, 0); /* run this thread */
2605
2606 last_sent_signal = siggnal;
2607 last_sent_step = step;
2608
2609 /* A hook for when we need to do something at the last moment before
2610 resumption. */
2611 if (target_resume_hook)
2612 (*target_resume_hook) ();
2613
2614
2615 /* The s/S/c/C packets do not return status. So if the target does
2616 not support the S or C packets, the debug agent returns an empty
2617 string which is detected in remote_wait(). This protocol defect
2618 is fixed in the e/E packets. */
2619
2620 if (step && step_range_end)
2621 {
2622 /* If the target does not support the 'E' packet, we try the 'S'
2623 packet. Ideally we would fall back to the 'e' packet if that
2624 too is not supported. But that would require another copy of
2625 the code to issue the 'e' packet (and fall back to 's' if not
2626 supported) in remote_wait(). */
2627
2628 if (siggnal != TARGET_SIGNAL_0)
2629 {
2630 if (remote_protocol_E.support != PACKET_DISABLE)
2631 {
2632 p = buf;
2633 *p++ = 'E';
2634 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2635 *p++ = tohex (((int) siggnal) & 0xf);
2636 *p++ = ',';
2637 p += hexnumstr (p, (ULONGEST) step_range_start);
2638 *p++ = ',';
2639 p += hexnumstr (p, (ULONGEST) step_range_end);
2640 *p++ = 0;
2641
2642 putpkt (buf);
2643 getpkt (buf, (rs->remote_packet_size), 0);
2644
2645 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2646 return;
2647 }
2648 }
2649 else
2650 {
2651 if (remote_protocol_e.support != PACKET_DISABLE)
2652 {
2653 p = buf;
2654 *p++ = 'e';
2655 p += hexnumstr (p, (ULONGEST) step_range_start);
2656 *p++ = ',';
2657 p += hexnumstr (p, (ULONGEST) step_range_end);
2658 *p++ = 0;
2659
2660 putpkt (buf);
2661 getpkt (buf, (rs->remote_packet_size), 0);
2662
2663 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2664 return;
2665 }
2666 }
2667 }
2668
2669 if (siggnal != TARGET_SIGNAL_0)
2670 {
2671 buf[0] = step ? 'S' : 'C';
2672 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2673 buf[2] = tohex (((int) siggnal) & 0xf);
2674 buf[3] = '\0';
2675 }
2676 else
2677 strcpy (buf, step ? "s" : "c");
2678
2679 putpkt (buf);
2680 }
2681
2682 /* Same as remote_resume, but with async support. */
2683 static void
2684 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2685 {
2686 struct remote_state *rs = get_remote_state ();
2687 char *buf = alloca (rs->remote_packet_size);
2688 int pid = PIDGET (ptid);
2689 char *p;
2690
2691 if (pid == -1)
2692 set_thread (0, 0); /* run any thread */
2693 else
2694 set_thread (pid, 0); /* run this thread */
2695
2696 last_sent_signal = siggnal;
2697 last_sent_step = step;
2698
2699 /* A hook for when we need to do something at the last moment before
2700 resumption. */
2701 if (target_resume_hook)
2702 (*target_resume_hook) ();
2703
2704 /* The s/S/c/C packets do not return status. So if the target does
2705 not support the S or C packets, the debug agent returns an empty
2706 string which is detected in remote_wait(). This protocol defect
2707 is fixed in the e/E packets. */
2708
2709 if (step && step_range_end)
2710 {
2711 /* If the target does not support the 'E' packet, we try the 'S'
2712 packet. Ideally we would fall back to the 'e' packet if that
2713 too is not supported. But that would require another copy of
2714 the code to issue the 'e' packet (and fall back to 's' if not
2715 supported) in remote_wait(). */
2716
2717 if (siggnal != TARGET_SIGNAL_0)
2718 {
2719 if (remote_protocol_E.support != PACKET_DISABLE)
2720 {
2721 p = buf;
2722 *p++ = 'E';
2723 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2724 *p++ = tohex (((int) siggnal) & 0xf);
2725 *p++ = ',';
2726 p += hexnumstr (p, (ULONGEST) step_range_start);
2727 *p++ = ',';
2728 p += hexnumstr (p, (ULONGEST) step_range_end);
2729 *p++ = 0;
2730
2731 putpkt (buf);
2732 getpkt (buf, (rs->remote_packet_size), 0);
2733
2734 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2735 goto register_event_loop;
2736 }
2737 }
2738 else
2739 {
2740 if (remote_protocol_e.support != PACKET_DISABLE)
2741 {
2742 p = buf;
2743 *p++ = 'e';
2744 p += hexnumstr (p, (ULONGEST) step_range_start);
2745 *p++ = ',';
2746 p += hexnumstr (p, (ULONGEST) step_range_end);
2747 *p++ = 0;
2748
2749 putpkt (buf);
2750 getpkt (buf, (rs->remote_packet_size), 0);
2751
2752 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2753 goto register_event_loop;
2754 }
2755 }
2756 }
2757
2758 if (siggnal != TARGET_SIGNAL_0)
2759 {
2760 buf[0] = step ? 'S' : 'C';
2761 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2762 buf[2] = tohex ((int) siggnal & 0xf);
2763 buf[3] = '\0';
2764 }
2765 else
2766 strcpy (buf, step ? "s" : "c");
2767
2768 putpkt (buf);
2769
2770 register_event_loop:
2771 /* We are about to start executing the inferior, let's register it
2772 with the event loop. NOTE: this is the one place where all the
2773 execution commands end up. We could alternatively do this in each
2774 of the execution commands in infcmd.c.*/
2775 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2776 into infcmd.c in order to allow inferior function calls to work
2777 NOT asynchronously. */
2778 if (event_loop_p && target_can_async_p ())
2779 target_async (inferior_event_handler, 0);
2780 /* Tell the world that the target is now executing. */
2781 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2782 this? Instead, should the client of target just assume (for
2783 async targets) that the target is going to start executing? Is
2784 this information already found in the continuation block? */
2785 if (target_is_async_p ())
2786 target_executing = 1;
2787 }
2788 \f
2789
2790 /* Set up the signal handler for SIGINT, while the target is
2791 executing, ovewriting the 'regular' SIGINT signal handler. */
2792 static void
2793 initialize_sigint_signal_handler (void)
2794 {
2795 sigint_remote_token =
2796 create_async_signal_handler (async_remote_interrupt, NULL);
2797 signal (SIGINT, handle_remote_sigint);
2798 }
2799
2800 /* Signal handler for SIGINT, while the target is executing. */
2801 static void
2802 handle_remote_sigint (int sig)
2803 {
2804 signal (sig, handle_remote_sigint_twice);
2805 sigint_remote_twice_token =
2806 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2807 mark_async_signal_handler_wrapper (sigint_remote_token);
2808 }
2809
2810 /* Signal handler for SIGINT, installed after SIGINT has already been
2811 sent once. It will take effect the second time that the user sends
2812 a ^C. */
2813 static void
2814 handle_remote_sigint_twice (int sig)
2815 {
2816 signal (sig, handle_sigint);
2817 sigint_remote_twice_token =
2818 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2819 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2820 }
2821
2822 /* Perform the real interruption of the target execution, in response
2823 to a ^C. */
2824 static void
2825 async_remote_interrupt (gdb_client_data arg)
2826 {
2827 if (remote_debug)
2828 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2829
2830 target_stop ();
2831 }
2832
2833 /* Perform interrupt, if the first attempt did not succeed. Just give
2834 up on the target alltogether. */
2835 void
2836 async_remote_interrupt_twice (gdb_client_data arg)
2837 {
2838 if (remote_debug)
2839 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2840 /* Do something only if the target was not killed by the previous
2841 cntl-C. */
2842 if (target_executing)
2843 {
2844 interrupt_query ();
2845 signal (SIGINT, handle_remote_sigint);
2846 }
2847 }
2848
2849 /* Reinstall the usual SIGINT handlers, after the target has
2850 stopped. */
2851 static void
2852 cleanup_sigint_signal_handler (void *dummy)
2853 {
2854 signal (SIGINT, handle_sigint);
2855 if (sigint_remote_twice_token)
2856 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2857 if (sigint_remote_token)
2858 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2859 }
2860
2861 /* Send ^C to target to halt it. Target will respond, and send us a
2862 packet. */
2863 static void (*ofunc) (int);
2864
2865 /* The command line interface's stop routine. This function is installed
2866 as a signal handler for SIGINT. The first time a user requests a
2867 stop, we call remote_stop to send a break or ^C. If there is no
2868 response from the target (it didn't stop when the user requested it),
2869 we ask the user if he'd like to detach from the target. */
2870 static void
2871 remote_interrupt (int signo)
2872 {
2873 /* If this doesn't work, try more severe steps. */
2874 signal (signo, remote_interrupt_twice);
2875
2876 if (remote_debug)
2877 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2878
2879 target_stop ();
2880 }
2881
2882 /* The user typed ^C twice. */
2883
2884 static void
2885 remote_interrupt_twice (int signo)
2886 {
2887 signal (signo, ofunc);
2888 interrupt_query ();
2889 signal (signo, remote_interrupt);
2890 }
2891
2892 /* This is the generic stop called via the target vector. When a target
2893 interrupt is requested, either by the command line or the GUI, we
2894 will eventually end up here. */
2895 static void
2896 remote_stop (void)
2897 {
2898 /* Send a break or a ^C, depending on user preference. */
2899 if (remote_debug)
2900 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2901
2902 if (remote_break)
2903 serial_send_break (remote_desc);
2904 else
2905 serial_write (remote_desc, "\003", 1);
2906 }
2907
2908 /* Ask the user what to do when an interrupt is received. */
2909
2910 static void
2911 interrupt_query (void)
2912 {
2913 target_terminal_ours ();
2914
2915 if (query ("Interrupted while waiting for the program.\n\
2916 Give up (and stop debugging it)? "))
2917 {
2918 target_mourn_inferior ();
2919 throw_exception (RETURN_QUIT);
2920 }
2921
2922 target_terminal_inferior ();
2923 }
2924
2925 /* Enable/disable target terminal ownership. Most targets can use
2926 terminal groups to control terminal ownership. Remote targets are
2927 different in that explicit transfer of ownership to/from GDB/target
2928 is required. */
2929
2930 static void
2931 remote_async_terminal_inferior (void)
2932 {
2933 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2934 sync_execution here. This function should only be called when
2935 GDB is resuming the inferior in the forground. A background
2936 resume (``run&'') should leave GDB in control of the terminal and
2937 consequently should not call this code. */
2938 if (!sync_execution)
2939 return;
2940 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2941 calls target_terminal_*() idenpotent. The event-loop GDB talking
2942 to an asynchronous target with a synchronous command calls this
2943 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2944 stops trying to transfer the terminal to the target when it
2945 shouldn't this guard can go away. */
2946 if (!remote_async_terminal_ours_p)
2947 return;
2948 delete_file_handler (input_fd);
2949 remote_async_terminal_ours_p = 0;
2950 initialize_sigint_signal_handler ();
2951 /* NOTE: At this point we could also register our selves as the
2952 recipient of all input. Any characters typed could then be
2953 passed on down to the target. */
2954 }
2955
2956 static void
2957 remote_async_terminal_ours (void)
2958 {
2959 /* See FIXME in remote_async_terminal_inferior. */
2960 if (!sync_execution)
2961 return;
2962 /* See FIXME in remote_async_terminal_inferior. */
2963 if (remote_async_terminal_ours_p)
2964 return;
2965 cleanup_sigint_signal_handler (NULL);
2966 add_file_handler (input_fd, stdin_event_handler, 0);
2967 remote_async_terminal_ours_p = 1;
2968 }
2969
2970 /* If nonzero, ignore the next kill. */
2971
2972 int kill_kludge;
2973
2974 void
2975 remote_console_output (char *msg)
2976 {
2977 char *p;
2978
2979 for (p = msg; p[0] && p[1]; p += 2)
2980 {
2981 char tb[2];
2982 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2983 tb[0] = c;
2984 tb[1] = 0;
2985 fputs_unfiltered (tb, gdb_stdtarg);
2986 }
2987 gdb_flush (gdb_stdtarg);
2988 }
2989
2990 /* Wait until the remote machine stops, then return,
2991 storing status in STATUS just as `wait' would.
2992 Returns "pid", which in the case of a multi-threaded
2993 remote OS, is the thread-id. */
2994
2995 static ptid_t
2996 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2997 {
2998 struct remote_state *rs = get_remote_state ();
2999 unsigned char *buf = alloca (rs->remote_packet_size);
3000 int thread_num = -1;
3001
3002 status->kind = TARGET_WAITKIND_EXITED;
3003 status->value.integer = 0;
3004
3005 while (1)
3006 {
3007 unsigned char *p;
3008
3009 ofunc = signal (SIGINT, remote_interrupt);
3010 getpkt (buf, (rs->remote_packet_size), 1);
3011 signal (SIGINT, ofunc);
3012
3013 /* This is a hook for when we need to do something (perhaps the
3014 collection of trace data) every time the target stops. */
3015 if (target_wait_loop_hook)
3016 (*target_wait_loop_hook) ();
3017
3018 switch (buf[0])
3019 {
3020 case 'E': /* Error of some sort */
3021 warning ("Remote failure reply: %s", buf);
3022 continue;
3023 case 'T': /* Status with PC, SP, FP, ... */
3024 {
3025 int i;
3026 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
3027
3028 /* Expedited reply, containing Signal, {regno, reg} repeat */
3029 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3030 ss = signal number
3031 n... = register number
3032 r... = register contents
3033 */
3034 p = &buf[3]; /* after Txx */
3035
3036 while (*p)
3037 {
3038 unsigned char *p1;
3039 char *p_temp;
3040 int fieldsize;
3041
3042 /* Read the ``P'' register number. */
3043 LONGEST pnum = strtol ((const char *) p, &p_temp, 16);
3044 p1 = (unsigned char *) p_temp;
3045
3046 if (p1 == p) /* No register number present here */
3047 {
3048 p1 = (unsigned char *) strchr ((const char *) p, ':');
3049 if (p1 == NULL)
3050 warning ("Malformed packet(a) (missing colon): %s\n\
3051 Packet: '%s'\n",
3052 p, buf);
3053 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
3054 {
3055 p_temp = unpack_varlen_hex (++p1, &thread_num);
3056 record_currthread (thread_num);
3057 p = (unsigned char *) p_temp;
3058 }
3059 }
3060 else
3061 {
3062 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3063 p = p1;
3064
3065 if (*p++ != ':')
3066 warning ("Malformed packet(b) (missing colon): %s\n\
3067 Packet: '%s'\n",
3068 p, buf);
3069
3070 if (reg == NULL)
3071 warning ("Remote sent bad register number %s: %s\n\
3072 Packet: '%s'\n",
3073 phex_nz (pnum, 0), p, buf);
3074
3075 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3076 p += 2 * fieldsize;
3077 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3078 warning ("Remote reply is too short: %s", buf);
3079 supply_register (reg->regnum, regs);
3080 }
3081
3082 if (*p++ != ';')
3083 {
3084 warning ("Remote register badly formatted: %s", buf);
3085 warning (" here: %s", p);
3086 }
3087 }
3088 }
3089 /* fall through */
3090 case 'S': /* Old style status, just signal only */
3091 status->kind = TARGET_WAITKIND_STOPPED;
3092 status->value.sig = (enum target_signal)
3093 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3094
3095 if (buf[3] == 'p')
3096 {
3097 /* Export Cisco kernel mode as a convenience variable
3098 (so that it can be used in the GDB prompt if desired). */
3099
3100 if (cisco_kernel_mode == 1)
3101 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3102 value_from_string ("PDEBUG-"));
3103 cisco_kernel_mode = 0;
3104 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3105 record_currthread (thread_num);
3106 }
3107 else if (buf[3] == 'k')
3108 {
3109 /* Export Cisco kernel mode as a convenience variable
3110 (so that it can be used in the GDB prompt if desired). */
3111
3112 if (cisco_kernel_mode == 1)
3113 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3114 value_from_string ("KDEBUG-"));
3115 cisco_kernel_mode = 1;
3116 }
3117 goto got_status;
3118 case 'N': /* Cisco special: status and offsets */
3119 {
3120 bfd_vma text_addr, data_addr, bss_addr;
3121 bfd_signed_vma text_off, data_off, bss_off;
3122 unsigned char *p1;
3123
3124 status->kind = TARGET_WAITKIND_STOPPED;
3125 status->value.sig = (enum target_signal)
3126 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3127
3128 if (symfile_objfile == NULL)
3129 {
3130 warning ("Relocation packet received with no symbol file. \
3131 Packet Dropped");
3132 goto got_status;
3133 }
3134
3135 /* Relocate object file. Buffer format is NAATT;DD;BB
3136 * where AA is the signal number, TT is the new text
3137 * address, DD * is the new data address, and BB is the
3138 * new bss address. */
3139
3140 p = &buf[3];
3141 text_addr = strtoul (p, (char **) &p1, 16);
3142 if (p1 == p || *p1 != ';')
3143 warning ("Malformed relocation packet: Packet '%s'", buf);
3144 p = p1 + 1;
3145 data_addr = strtoul (p, (char **) &p1, 16);
3146 if (p1 == p || *p1 != ';')
3147 warning ("Malformed relocation packet: Packet '%s'", buf);
3148 p = p1 + 1;
3149 bss_addr = strtoul (p, (char **) &p1, 16);
3150 if (p1 == p)
3151 warning ("Malformed relocation packet: Packet '%s'", buf);
3152
3153 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3154 &text_off, &data_off, &bss_off)
3155 == 0)
3156 if (text_off != 0 || data_off != 0 || bss_off != 0)
3157 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3158
3159 goto got_status;
3160 }
3161 case 'W': /* Target exited */
3162 {
3163 /* The remote process exited. */
3164 status->kind = TARGET_WAITKIND_EXITED;
3165 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3166 goto got_status;
3167 }
3168 case 'X':
3169 status->kind = TARGET_WAITKIND_SIGNALLED;
3170 status->value.sig = (enum target_signal)
3171 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3172 kill_kludge = 1;
3173
3174 goto got_status;
3175 case 'O': /* Console output */
3176 remote_console_output (buf + 1);
3177 continue;
3178 case '\0':
3179 if (last_sent_signal != TARGET_SIGNAL_0)
3180 {
3181 /* Zero length reply means that we tried 'S' or 'C' and
3182 the remote system doesn't support it. */
3183 target_terminal_ours_for_output ();
3184 printf_filtered
3185 ("Can't send signals to this remote system. %s not sent.\n",
3186 target_signal_to_name (last_sent_signal));
3187 last_sent_signal = TARGET_SIGNAL_0;
3188 target_terminal_inferior ();
3189
3190 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3191 putpkt ((char *) buf);
3192 continue;
3193 }
3194 /* else fallthrough */
3195 default:
3196 warning ("Invalid remote reply: %s", buf);
3197 continue;
3198 }
3199 }
3200 got_status:
3201 if (thread_num != -1)
3202 {
3203 return pid_to_ptid (thread_num);
3204 }
3205 return inferior_ptid;
3206 }
3207
3208 /* Async version of remote_wait. */
3209 static ptid_t
3210 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3211 {
3212 struct remote_state *rs = get_remote_state ();
3213 unsigned char *buf = alloca (rs->remote_packet_size);
3214 int thread_num = -1;
3215
3216 status->kind = TARGET_WAITKIND_EXITED;
3217 status->value.integer = 0;
3218
3219 while (1)
3220 {
3221 unsigned char *p;
3222
3223 if (!target_is_async_p ())
3224 ofunc = signal (SIGINT, remote_interrupt);
3225 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3226 _never_ wait for ever -> test on target_is_async_p().
3227 However, before we do that we need to ensure that the caller
3228 knows how to take the target into/out of async mode. */
3229 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3230 if (!target_is_async_p ())
3231 signal (SIGINT, ofunc);
3232
3233 /* This is a hook for when we need to do something (perhaps the
3234 collection of trace data) every time the target stops. */
3235 if (target_wait_loop_hook)
3236 (*target_wait_loop_hook) ();
3237
3238 switch (buf[0])
3239 {
3240 case 'E': /* Error of some sort */
3241 warning ("Remote failure reply: %s", buf);
3242 continue;
3243 case 'T': /* Status with PC, SP, FP, ... */
3244 {
3245 int i;
3246 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
3247
3248 /* Expedited reply, containing Signal, {regno, reg} repeat */
3249 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3250 ss = signal number
3251 n... = register number
3252 r... = register contents
3253 */
3254 p = &buf[3]; /* after Txx */
3255
3256 while (*p)
3257 {
3258 unsigned char *p1;
3259 char *p_temp;
3260 int fieldsize;
3261
3262 /* Read the register number */
3263 long pnum = strtol ((const char *) p, &p_temp, 16);
3264 p1 = (unsigned char *) p_temp;
3265
3266 if (p1 == p) /* No register number present here */
3267 {
3268 p1 = (unsigned char *) strchr ((const char *) p, ':');
3269 if (p1 == NULL)
3270 warning ("Malformed packet(a) (missing colon): %s\n\
3271 Packet: '%s'\n",
3272 p, buf);
3273 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
3274 {
3275 p_temp = unpack_varlen_hex (++p1, &thread_num);
3276 record_currthread (thread_num);
3277 p = (unsigned char *) p_temp;
3278 }
3279 }
3280 else
3281 {
3282 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3283 p = p1;
3284 if (*p++ != ':')
3285 warning ("Malformed packet(b) (missing colon): %s\n\
3286 Packet: '%s'\n",
3287 p, buf);
3288
3289 if (reg == NULL)
3290 warning ("Remote sent bad register number %ld: %s\n\
3291 Packet: '%s'\n",
3292 pnum, p, buf);
3293
3294 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3295 p += 2 * fieldsize;
3296 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3297 warning ("Remote reply is too short: %s", buf);
3298 supply_register (reg->regnum, regs);
3299 }
3300
3301 if (*p++ != ';')
3302 {
3303 warning ("Remote register badly formatted: %s", buf);
3304 warning (" here: %s", p);
3305 }
3306 }
3307 }
3308 /* fall through */
3309 case 'S': /* Old style status, just signal only */
3310 status->kind = TARGET_WAITKIND_STOPPED;
3311 status->value.sig = (enum target_signal)
3312 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3313
3314 if (buf[3] == 'p')
3315 {
3316 /* Export Cisco kernel mode as a convenience variable
3317 (so that it can be used in the GDB prompt if desired). */
3318
3319 if (cisco_kernel_mode == 1)
3320 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3321 value_from_string ("PDEBUG-"));
3322 cisco_kernel_mode = 0;
3323 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3324 record_currthread (thread_num);
3325 }
3326 else if (buf[3] == 'k')
3327 {
3328 /* Export Cisco kernel mode as a convenience variable
3329 (so that it can be used in the GDB prompt if desired). */
3330
3331 if (cisco_kernel_mode == 1)
3332 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3333 value_from_string ("KDEBUG-"));
3334 cisco_kernel_mode = 1;
3335 }
3336 goto got_status;
3337 case 'N': /* Cisco special: status and offsets */
3338 {
3339 bfd_vma text_addr, data_addr, bss_addr;
3340 bfd_signed_vma text_off, data_off, bss_off;
3341 unsigned char *p1;
3342
3343 status->kind = TARGET_WAITKIND_STOPPED;
3344 status->value.sig = (enum target_signal)
3345 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3346
3347 if (symfile_objfile == NULL)
3348 {
3349 warning ("Relocation packet recieved with no symbol file. \
3350 Packet Dropped");
3351 goto got_status;
3352 }
3353
3354 /* Relocate object file. Buffer format is NAATT;DD;BB
3355 * where AA is the signal number, TT is the new text
3356 * address, DD * is the new data address, and BB is the
3357 * new bss address. */
3358
3359 p = &buf[3];
3360 text_addr = strtoul (p, (char **) &p1, 16);
3361 if (p1 == p || *p1 != ';')
3362 warning ("Malformed relocation packet: Packet '%s'", buf);
3363 p = p1 + 1;
3364 data_addr = strtoul (p, (char **) &p1, 16);
3365 if (p1 == p || *p1 != ';')
3366 warning ("Malformed relocation packet: Packet '%s'", buf);
3367 p = p1 + 1;
3368 bss_addr = strtoul (p, (char **) &p1, 16);
3369 if (p1 == p)
3370 warning ("Malformed relocation packet: Packet '%s'", buf);
3371
3372 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3373 &text_off, &data_off, &bss_off)
3374 == 0)
3375 if (text_off != 0 || data_off != 0 || bss_off != 0)
3376 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3377
3378 goto got_status;
3379 }
3380 case 'W': /* Target exited */
3381 {
3382 /* The remote process exited. */
3383 status->kind = TARGET_WAITKIND_EXITED;
3384 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3385 goto got_status;
3386 }
3387 case 'X':
3388 status->kind = TARGET_WAITKIND_SIGNALLED;
3389 status->value.sig = (enum target_signal)
3390 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3391 kill_kludge = 1;
3392
3393 goto got_status;
3394 case 'O': /* Console output */
3395 remote_console_output (buf + 1);
3396 /* Return immediately to the event loop. The event loop will
3397 still be waiting on the inferior afterwards. */
3398 status->kind = TARGET_WAITKIND_IGNORE;
3399 goto got_status;
3400 case '\0':
3401 if (last_sent_signal != TARGET_SIGNAL_0)
3402 {
3403 /* Zero length reply means that we tried 'S' or 'C' and
3404 the remote system doesn't support it. */
3405 target_terminal_ours_for_output ();
3406 printf_filtered
3407 ("Can't send signals to this remote system. %s not sent.\n",
3408 target_signal_to_name (last_sent_signal));
3409 last_sent_signal = TARGET_SIGNAL_0;
3410 target_terminal_inferior ();
3411
3412 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3413 putpkt ((char *) buf);
3414 continue;
3415 }
3416 /* else fallthrough */
3417 default:
3418 warning ("Invalid remote reply: %s", buf);
3419 continue;
3420 }
3421 }
3422 got_status:
3423 if (thread_num != -1)
3424 {
3425 return pid_to_ptid (thread_num);
3426 }
3427 return inferior_ptid;
3428 }
3429
3430 /* Number of bytes of registers this stub implements. */
3431
3432 static int register_bytes_found;
3433
3434 /* Read the remote registers into the block REGS. */
3435 /* Currently we just read all the registers, so we don't use regnum. */
3436
3437 /* ARGSUSED */
3438 static void
3439 remote_fetch_registers (int regnum)
3440 {
3441 struct remote_state *rs = get_remote_state ();
3442 char *buf = alloca (rs->remote_packet_size);
3443 int i;
3444 char *p;
3445 char *regs = alloca (rs->sizeof_g_packet);
3446
3447 set_thread (PIDGET (inferior_ptid), 1);
3448
3449 if (regnum >= 0)
3450 {
3451 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3452 gdb_assert (reg != NULL);
3453 if (!reg->in_g_packet)
3454 internal_error (__FILE__, __LINE__,
3455 "Attempt to fetch a non G-packet register when this "
3456 "remote.c does not support the p-packet.");
3457 }
3458
3459 sprintf (buf, "g");
3460 remote_send (buf, (rs->remote_packet_size));
3461
3462 /* Save the size of the packet sent to us by the target. Its used
3463 as a heuristic when determining the max size of packets that the
3464 target can safely receive. */
3465 if ((rs->actual_register_packet_size) == 0)
3466 (rs->actual_register_packet_size) = strlen (buf);
3467
3468 /* Unimplemented registers read as all bits zero. */
3469 memset (regs, 0, rs->sizeof_g_packet);
3470
3471 /* We can get out of synch in various cases. If the first character
3472 in the buffer is not a hex character, assume that has happened
3473 and try to fetch another packet to read. */
3474 while ((buf[0] < '0' || buf[0] > '9')
3475 && (buf[0] < 'a' || buf[0] > 'f')
3476 && buf[0] != 'x') /* New: unavailable register value */
3477 {
3478 if (remote_debug)
3479 fprintf_unfiltered (gdb_stdlog,
3480 "Bad register packet; fetching a new packet\n");
3481 getpkt (buf, (rs->remote_packet_size), 0);
3482 }
3483
3484 /* Reply describes registers byte by byte, each byte encoded as two
3485 hex characters. Suck them all up, then supply them to the
3486 register cacheing/storage mechanism. */
3487
3488 p = buf;
3489 for (i = 0; i < rs->sizeof_g_packet; i++)
3490 {
3491 if (p[0] == 0)
3492 break;
3493 if (p[1] == 0)
3494 {
3495 warning ("Remote reply is of odd length: %s", buf);
3496 /* Don't change register_bytes_found in this case, and don't
3497 print a second warning. */
3498 goto supply_them;
3499 }
3500 if (p[0] == 'x' && p[1] == 'x')
3501 regs[i] = 0; /* 'x' */
3502 else
3503 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3504 p += 2;
3505 }
3506
3507 if (i != register_bytes_found)
3508 {
3509 register_bytes_found = i;
3510 if (REGISTER_BYTES_OK_P ()
3511 && !REGISTER_BYTES_OK (i))
3512 warning ("Remote reply is too short: %s", buf);
3513 }
3514
3515 supply_them:
3516 {
3517 int i;
3518 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3519 {
3520 struct packet_reg *r = &rs->regs[i];
3521 if (r->in_g_packet)
3522 {
3523 supply_register (r->regnum, regs + r->offset);
3524 if (buf[r->offset * 2] == 'x')
3525 set_register_cached (i, -1);
3526 }
3527 }
3528 }
3529 }
3530
3531 /* Prepare to store registers. Since we may send them all (using a
3532 'G' request), we have to read out the ones we don't want to change
3533 first. */
3534
3535 static void
3536 remote_prepare_to_store (void)
3537 {
3538 /* Make sure the entire registers array is valid. */
3539 switch (remote_protocol_P.support)
3540 {
3541 case PACKET_DISABLE:
3542 case PACKET_SUPPORT_UNKNOWN:
3543 /* NOTE: This isn't rs->sizeof_g_packet because here, we are
3544 forcing the register cache to read its and not the target
3545 registers. */
3546 read_register_bytes (0, (char *) NULL, REGISTER_BYTES); /* OK use. */
3547 break;
3548 case PACKET_ENABLE:
3549 break;
3550 }
3551 }
3552
3553 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3554 packet was not recognized. */
3555
3556 static int
3557 store_register_using_P (int regnum)
3558 {
3559 struct remote_state *rs = get_remote_state ();
3560 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3561 /* Try storing a single register. */
3562 char *buf = alloca (rs->remote_packet_size);
3563 char *regp = alloca (MAX_REGISTER_RAW_SIZE);
3564 char *p;
3565 int i;
3566
3567 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3568 p = buf + strlen (buf);
3569 regcache_collect (reg->regnum, regp);
3570 bin2hex (regp, p, REGISTER_RAW_SIZE (reg->regnum));
3571 remote_send (buf, rs->remote_packet_size);
3572
3573 return buf[0] != '\0';
3574 }
3575
3576
3577 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3578 of the register cache buffer. FIXME: ignores errors. */
3579
3580 static void
3581 remote_store_registers (int regnum)
3582 {
3583 struct remote_state *rs = get_remote_state ();
3584 char *buf;
3585 char *regs;
3586 int i;
3587 char *p;
3588
3589 set_thread (PIDGET (inferior_ptid), 1);
3590
3591 if (regnum >= 0)
3592 {
3593 switch (remote_protocol_P.support)
3594 {
3595 case PACKET_DISABLE:
3596 break;
3597 case PACKET_ENABLE:
3598 if (store_register_using_P (regnum))
3599 return;
3600 else
3601 error ("Protocol error: P packet not recognized by stub");
3602 case PACKET_SUPPORT_UNKNOWN:
3603 if (store_register_using_P (regnum))
3604 {
3605 /* The stub recognized the 'P' packet. Remember this. */
3606 remote_protocol_P.support = PACKET_ENABLE;
3607 return;
3608 }
3609 else
3610 {
3611 /* The stub does not support the 'P' packet. Use 'G'
3612 instead, and don't try using 'P' in the future (it
3613 will just waste our time). */
3614 remote_protocol_P.support = PACKET_DISABLE;
3615 break;
3616 }
3617 }
3618 }
3619
3620 /* Extract all the registers in the regcache copying them into a
3621 local buffer. */
3622 {
3623 int i;
3624 regs = alloca (rs->sizeof_g_packet);
3625 memset (regs, rs->sizeof_g_packet, 0);
3626 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3627 {
3628 struct packet_reg *r = &rs->regs[i];
3629 if (r->in_g_packet)
3630 regcache_collect (r->regnum, regs + r->offset);
3631 }
3632 }
3633
3634 /* Command describes registers byte by byte,
3635 each byte encoded as two hex characters. */
3636 buf = alloca (rs->remote_packet_size);
3637 p = buf;
3638 *p++ = 'G';
3639 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3640 bin2hex (regs, p, register_bytes_found);
3641 remote_send (buf, (rs->remote_packet_size));
3642 }
3643 \f
3644
3645 /* Return the number of hex digits in num. */
3646
3647 static int
3648 hexnumlen (ULONGEST num)
3649 {
3650 int i;
3651
3652 for (i = 0; num != 0; i++)
3653 num >>= 4;
3654
3655 return max (i, 1);
3656 }
3657
3658 /* Set BUF to the minimum number of hex digits representing NUM. */
3659
3660 static int
3661 hexnumstr (char *buf, ULONGEST num)
3662 {
3663 int len = hexnumlen (num);
3664 return hexnumnstr (buf, num, len);
3665 }
3666
3667
3668 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3669
3670 static int
3671 hexnumnstr (char *buf, ULONGEST num, int width)
3672 {
3673 int i;
3674
3675 buf[width] = '\0';
3676
3677 for (i = width - 1; i >= 0; i--)
3678 {
3679 buf[i] = "0123456789abcdef"[(num & 0xf)];
3680 num >>= 4;
3681 }
3682
3683 return width;
3684 }
3685
3686 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3687
3688 static CORE_ADDR
3689 remote_address_masked (CORE_ADDR addr)
3690 {
3691 if (remote_address_size > 0
3692 && remote_address_size < (sizeof (ULONGEST) * 8))
3693 {
3694 /* Only create a mask when that mask can safely be constructed
3695 in a ULONGEST variable. */
3696 ULONGEST mask = 1;
3697 mask = (mask << remote_address_size) - 1;
3698 addr &= mask;
3699 }
3700 return addr;
3701 }
3702
3703 /* Determine whether the remote target supports binary downloading.
3704 This is accomplished by sending a no-op memory write of zero length
3705 to the target at the specified address. It does not suffice to send
3706 the whole packet, since many stubs strip the eighth bit and subsequently
3707 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3708
3709 NOTE: This can still lose if the serial line is not eight-bit
3710 clean. In cases like this, the user should clear "remote
3711 X-packet". */
3712
3713 static void
3714 check_binary_download (CORE_ADDR addr)
3715 {
3716 struct remote_state *rs = get_remote_state ();
3717 switch (remote_protocol_binary_download.support)
3718 {
3719 case PACKET_DISABLE:
3720 break;
3721 case PACKET_ENABLE:
3722 break;
3723 case PACKET_SUPPORT_UNKNOWN:
3724 {
3725 char *buf = alloca (rs->remote_packet_size);
3726 char *p;
3727
3728 p = buf;
3729 *p++ = 'X';
3730 p += hexnumstr (p, (ULONGEST) addr);
3731 *p++ = ',';
3732 p += hexnumstr (p, (ULONGEST) 0);
3733 *p++ = ':';
3734 *p = '\0';
3735
3736 putpkt_binary (buf, (int) (p - buf));
3737 getpkt (buf, (rs->remote_packet_size), 0);
3738
3739 if (buf[0] == '\0')
3740 {
3741 if (remote_debug)
3742 fprintf_unfiltered (gdb_stdlog,
3743 "binary downloading NOT suppported by target\n");
3744 remote_protocol_binary_download.support = PACKET_DISABLE;
3745 }
3746 else
3747 {
3748 if (remote_debug)
3749 fprintf_unfiltered (gdb_stdlog,
3750 "binary downloading suppported by target\n");
3751 remote_protocol_binary_download.support = PACKET_ENABLE;
3752 }
3753 break;
3754 }
3755 }
3756 }
3757
3758 /* Write memory data directly to the remote machine.
3759 This does not inform the data cache; the data cache uses this.
3760 MEMADDR is the address in the remote memory space.
3761 MYADDR is the address of the buffer in our space.
3762 LEN is the number of bytes.
3763
3764 Returns number of bytes transferred, or 0 (setting errno) for
3765 error. Only transfer a single packet. */
3766
3767 static int
3768 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3769 {
3770 unsigned char *buf;
3771 int max_buf_size; /* Max size of packet output buffer */
3772 unsigned char *p;
3773 unsigned char *plen;
3774 long sizeof_buf;
3775 int plenlen;
3776 int todo;
3777 int nr_bytes;
3778
3779 /* Verify that the target can support a binary download */
3780 check_binary_download (memaddr);
3781
3782 /* Determine the max packet size. */
3783 max_buf_size = get_memory_write_packet_size ();
3784 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3785 buf = alloca (sizeof_buf);
3786
3787 /* Subtract header overhead from max payload size - $M<memaddr>,<len>:#nn */
3788 max_buf_size -= 2 + hexnumlen (memaddr + len - 1) + 1 + hexnumlen (len) + 4;
3789
3790 /* construct "M"<memaddr>","<len>":" */
3791 /* sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, todo); */
3792 p = buf;
3793
3794 /* Append [XM]. Compute a best guess of the number of bytes
3795 actually transfered. */
3796 switch (remote_protocol_binary_download.support)
3797 {
3798 case PACKET_ENABLE:
3799 *p++ = 'X';
3800 /* Best guess at number of bytes that will fit. */
3801 todo = min (len, max_buf_size);
3802 break;
3803 case PACKET_DISABLE:
3804 *p++ = 'M';
3805 /* num bytes that will fit */
3806 todo = min (len, max_buf_size / 2);
3807 break;
3808 case PACKET_SUPPORT_UNKNOWN:
3809 internal_error (__FILE__, __LINE__,
3810 "remote_write_bytes: bad internal state");
3811 default:
3812 internal_error (__FILE__, __LINE__, "bad switch");
3813 }
3814
3815 /* Append <memaddr> */
3816 memaddr = remote_address_masked (memaddr);
3817 p += hexnumstr (p, (ULONGEST) memaddr);
3818 *p++ = ',';
3819
3820 /* Append <len>. Retain the location/size of <len>. It may
3821 need to be adjusted once the packet body has been created. */
3822 plen = p;
3823 plenlen = hexnumstr (p, (ULONGEST) todo);
3824 p += plenlen;
3825 *p++ = ':';
3826 *p = '\0';
3827
3828 /* Append the packet body. */
3829 switch (remote_protocol_binary_download.support)
3830 {
3831 case PACKET_ENABLE:
3832 /* Binary mode. Send target system values byte by byte, in
3833 increasing byte addresses. Only escape certain critical
3834 characters. */
3835 for (nr_bytes = 0;
3836 (nr_bytes < todo) && (p - buf) < (max_buf_size - 2);
3837 nr_bytes++)
3838 {
3839 switch (myaddr[nr_bytes] & 0xff)
3840 {
3841 case '$':
3842 case '#':
3843 case 0x7d:
3844 /* These must be escaped */
3845 *p++ = 0x7d;
3846 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3847 break;
3848 default:
3849 *p++ = myaddr[nr_bytes] & 0xff;
3850 break;
3851 }
3852 }
3853 if (nr_bytes < todo)
3854 {
3855 /* Escape chars have filled up the buffer prematurely,
3856 and we have actually sent fewer bytes than planned.
3857 Fix-up the length field of the packet. Use the same
3858 number of characters as before. */
3859
3860 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3861 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3862 }
3863 break;
3864 case PACKET_DISABLE:
3865 /* Normal mode: Send target system values byte by byte, in
3866 increasing byte addresses. Each byte is encoded as a two hex
3867 value. */
3868 nr_bytes = bin2hex (myaddr, p, todo);
3869 p += 2 * nr_bytes;
3870 break;
3871 case PACKET_SUPPORT_UNKNOWN:
3872 internal_error (__FILE__, __LINE__,
3873 "remote_write_bytes: bad internal state");
3874 default:
3875 internal_error (__FILE__, __LINE__, "bad switch");
3876 }
3877
3878 putpkt_binary (buf, (int) (p - buf));
3879 getpkt (buf, sizeof_buf, 0);
3880
3881 if (buf[0] == 'E')
3882 {
3883 /* There is no correspondance between what the remote protocol
3884 uses for errors and errno codes. We would like a cleaner way
3885 of representing errors (big enough to include errno codes,
3886 bfd_error codes, and others). But for now just return EIO. */
3887 errno = EIO;
3888 return 0;
3889 }
3890
3891 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3892 bytes than we'd planned. */
3893 return nr_bytes;
3894 }
3895
3896 /* Read memory data directly from the remote machine.
3897 This does not use the data cache; the data cache uses this.
3898 MEMADDR is the address in the remote memory space.
3899 MYADDR is the address of the buffer in our space.
3900 LEN is the number of bytes.
3901
3902 Returns number of bytes transferred, or 0 for error. */
3903
3904 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3905 remote targets) shouldn't attempt to read the entire buffer.
3906 Instead it should read a single packet worth of data and then
3907 return the byte size of that packet to the caller. The caller (its
3908 caller and its callers caller ;-) already contains code for
3909 handling partial reads. */
3910
3911 static int
3912 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3913 {
3914 char *buf;
3915 int max_buf_size; /* Max size of packet output buffer */
3916 long sizeof_buf;
3917 int origlen;
3918
3919 /* Create a buffer big enough for this packet. */
3920 max_buf_size = get_memory_read_packet_size ();
3921 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3922 buf = alloca (sizeof_buf);
3923
3924 origlen = len;
3925 while (len > 0)
3926 {
3927 char *p;
3928 int todo;
3929 int i;
3930
3931 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3932
3933 /* construct "m"<memaddr>","<len>" */
3934 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3935 memaddr = remote_address_masked (memaddr);
3936 p = buf;
3937 *p++ = 'm';
3938 p += hexnumstr (p, (ULONGEST) memaddr);
3939 *p++ = ',';
3940 p += hexnumstr (p, (ULONGEST) todo);
3941 *p = '\0';
3942
3943 putpkt (buf);
3944 getpkt (buf, sizeof_buf, 0);
3945
3946 if (buf[0] == 'E')
3947 {
3948 /* There is no correspondance between what the remote protocol uses
3949 for errors and errno codes. We would like a cleaner way of
3950 representing errors (big enough to include errno codes, bfd_error
3951 codes, and others). But for now just return EIO. */
3952 errno = EIO;
3953 return 0;
3954 }
3955
3956 /* Reply describes memory byte by byte,
3957 each byte encoded as two hex characters. */
3958
3959 p = buf;
3960 if ((i = hex2bin (p, myaddr, todo)) < todo)
3961 {
3962 /* Reply is short. This means that we were able to read
3963 only part of what we wanted to. */
3964 return i + (origlen - len);
3965 }
3966 myaddr += todo;
3967 memaddr += todo;
3968 len -= todo;
3969 }
3970 return origlen;
3971 }
3972 \f
3973 /* Read or write LEN bytes from inferior memory at MEMADDR,
3974 transferring to or from debugger address BUFFER. Write to inferior if
3975 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3976 for error. TARGET is unused. */
3977
3978 /* ARGSUSED */
3979 static int
3980 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3981 int should_write, struct mem_attrib *attrib,
3982 struct target_ops *target)
3983 {
3984 CORE_ADDR targ_addr;
3985 int targ_len;
3986 int res;
3987
3988 REMOTE_TRANSLATE_XFER_ADDRESS (mem_addr, mem_len, &targ_addr, &targ_len);
3989 if (targ_len <= 0)
3990 return 0;
3991
3992 if (should_write)
3993 res = remote_write_bytes (targ_addr, buffer, targ_len);
3994 else
3995 res = remote_read_bytes (targ_addr, buffer, targ_len);
3996
3997 return res;
3998 }
3999
4000
4001 #if 0
4002 /* Enable after 4.12. */
4003
4004 void
4005 remote_search (int len, char *data, char *mask, CORE_ADDR startaddr,
4006 int increment, CORE_ADDR lorange, CORE_ADDR hirange,
4007 CORE_ADDR *addr_found, char *data_found)
4008 {
4009 if (increment == -4 && len == 4)
4010 {
4011 long mask_long, data_long;
4012 long data_found_long;
4013 CORE_ADDR addr_we_found;
4014 char *buf = alloca (rs->remote_packet_size);
4015 long returned_long[2];
4016 char *p;
4017
4018 mask_long = extract_unsigned_integer (mask, len);
4019 data_long = extract_unsigned_integer (data, len);
4020 sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
4021 putpkt (buf);
4022 getpkt (buf, (rs->remote_packet_size), 0);
4023 if (buf[0] == '\0')
4024 {
4025 /* The stub doesn't support the 't' request. We might want to
4026 remember this fact, but on the other hand the stub could be
4027 switched on us. Maybe we should remember it only until
4028 the next "target remote". */
4029 generic_search (len, data, mask, startaddr, increment, lorange,
4030 hirange, addr_found, data_found);
4031 return;
4032 }
4033
4034 if (buf[0] == 'E')
4035 /* There is no correspondance between what the remote protocol uses
4036 for errors and errno codes. We would like a cleaner way of
4037 representing errors (big enough to include errno codes, bfd_error
4038 codes, and others). But for now just use EIO. */
4039 memory_error (EIO, startaddr);
4040 p = buf;
4041 addr_we_found = 0;
4042 while (*p != '\0' && *p != ',')
4043 addr_we_found = (addr_we_found << 4) + fromhex (*p++);
4044 if (*p == '\0')
4045 error ("Protocol error: short return for search");
4046
4047 data_found_long = 0;
4048 while (*p != '\0' && *p != ',')
4049 data_found_long = (data_found_long << 4) + fromhex (*p++);
4050 /* Ignore anything after this comma, for future extensions. */
4051
4052 if (addr_we_found < lorange || addr_we_found >= hirange)
4053 {
4054 *addr_found = 0;
4055 return;
4056 }
4057
4058 *addr_found = addr_we_found;
4059 *data_found = store_unsigned_integer (data_we_found, len);
4060 return;
4061 }
4062 generic_search (len, data, mask, startaddr, increment, lorange,
4063 hirange, addr_found, data_found);
4064 }
4065 #endif /* 0 */
4066 \f
4067 static void
4068 remote_files_info (struct target_ops *ignore)
4069 {
4070 puts_filtered ("Debugging a target over a serial line.\n");
4071 }
4072 \f
4073 /* Stuff for dealing with the packets which are part of this protocol.
4074 See comment at top of file for details. */
4075
4076 /* Read a single character from the remote end, masking it down to 7 bits. */
4077
4078 static int
4079 readchar (int timeout)
4080 {
4081 int ch;
4082
4083 ch = serial_readchar (remote_desc, timeout);
4084
4085 if (ch >= 0)
4086 return (ch & 0x7f);
4087
4088 switch ((enum serial_rc) ch)
4089 {
4090 case SERIAL_EOF:
4091 target_mourn_inferior ();
4092 error ("Remote connection closed");
4093 /* no return */
4094 case SERIAL_ERROR:
4095 perror_with_name ("Remote communication error");
4096 /* no return */
4097 case SERIAL_TIMEOUT:
4098 break;
4099 }
4100 return ch;
4101 }
4102
4103 /* Send the command in BUF to the remote machine, and read the reply
4104 into BUF. Report an error if we get an error reply. */
4105
4106 static void
4107 remote_send (char *buf,
4108 long sizeof_buf)
4109 {
4110 putpkt (buf);
4111 getpkt (buf, sizeof_buf, 0);
4112
4113 if (buf[0] == 'E')
4114 error ("Remote failure reply: %s", buf);
4115 }
4116
4117 /* Display a null-terminated packet on stdout, for debugging, using C
4118 string notation. */
4119
4120 static void
4121 print_packet (char *buf)
4122 {
4123 puts_filtered ("\"");
4124 fputstr_filtered (buf, '"', gdb_stdout);
4125 puts_filtered ("\"");
4126 }
4127
4128 int
4129 putpkt (char *buf)
4130 {
4131 return putpkt_binary (buf, strlen (buf));
4132 }
4133
4134 /* Send a packet to the remote machine, with error checking. The data
4135 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
4136 to account for the $, # and checksum, and for a possible /0 if we are
4137 debugging (remote_debug) and want to print the sent packet as a string */
4138
4139 static int
4140 putpkt_binary (char *buf, int cnt)
4141 {
4142 struct remote_state *rs = get_remote_state ();
4143 int i;
4144 unsigned char csum = 0;
4145 char *buf2 = alloca (cnt + 6);
4146 long sizeof_junkbuf = (rs->remote_packet_size);
4147 char *junkbuf = alloca (sizeof_junkbuf);
4148
4149 int ch;
4150 int tcount = 0;
4151 char *p;
4152
4153 /* Copy the packet into buffer BUF2, encapsulating it
4154 and giving it a checksum. */
4155
4156 p = buf2;
4157 *p++ = '$';
4158
4159 for (i = 0; i < cnt; i++)
4160 {
4161 csum += buf[i];
4162 *p++ = buf[i];
4163 }
4164 *p++ = '#';
4165 *p++ = tohex ((csum >> 4) & 0xf);
4166 *p++ = tohex (csum & 0xf);
4167
4168 /* Send it over and over until we get a positive ack. */
4169
4170 while (1)
4171 {
4172 int started_error_output = 0;
4173
4174 if (remote_debug)
4175 {
4176 *p = '\0';
4177 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4178 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4179 fprintf_unfiltered (gdb_stdlog, "...");
4180 gdb_flush (gdb_stdlog);
4181 }
4182 if (serial_write (remote_desc, buf2, p - buf2))
4183 perror_with_name ("putpkt: write failed");
4184
4185 /* read until either a timeout occurs (-2) or '+' is read */
4186 while (1)
4187 {
4188 ch = readchar (remote_timeout);
4189
4190 if (remote_debug)
4191 {
4192 switch (ch)
4193 {
4194 case '+':
4195 case '-':
4196 case SERIAL_TIMEOUT:
4197 case '$':
4198 if (started_error_output)
4199 {
4200 putchar_unfiltered ('\n');
4201 started_error_output = 0;
4202 }
4203 }
4204 }
4205
4206 switch (ch)
4207 {
4208 case '+':
4209 if (remote_debug)
4210 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4211 return 1;
4212 case '-':
4213 if (remote_debug)
4214 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4215 case SERIAL_TIMEOUT:
4216 tcount++;
4217 if (tcount > 3)
4218 return 0;
4219 break; /* Retransmit buffer */
4220 case '$':
4221 {
4222 if (remote_debug)
4223 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
4224 /* It's probably an old response, and we're out of sync.
4225 Just gobble up the packet and ignore it. */
4226 read_frame (junkbuf, sizeof_junkbuf);
4227 continue; /* Now, go look for + */
4228 }
4229 default:
4230 if (remote_debug)
4231 {
4232 if (!started_error_output)
4233 {
4234 started_error_output = 1;
4235 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4236 }
4237 fputc_unfiltered (ch & 0177, gdb_stdlog);
4238 }
4239 continue;
4240 }
4241 break; /* Here to retransmit */
4242 }
4243
4244 #if 0
4245 /* This is wrong. If doing a long backtrace, the user should be
4246 able to get out next time we call QUIT, without anything as
4247 violent as interrupt_query. If we want to provide a way out of
4248 here without getting to the next QUIT, it should be based on
4249 hitting ^C twice as in remote_wait. */
4250 if (quit_flag)
4251 {
4252 quit_flag = 0;
4253 interrupt_query ();
4254 }
4255 #endif
4256 }
4257 }
4258
4259 static int remote_cisco_mode;
4260
4261 /* Come here after finding the start of the frame. Collect the rest
4262 into BUF, verifying the checksum, length, and handling run-length
4263 compression. No more than sizeof_buf-1 characters are read so that
4264 the buffer can be NUL terminated.
4265
4266 Returns -1 on error, number of characters in buffer (ignoring the
4267 trailing NULL) on success. (could be extended to return one of the
4268 SERIAL status indications). */
4269
4270 static long
4271 read_frame (char *buf,
4272 long sizeof_buf)
4273 {
4274 unsigned char csum;
4275 long bc;
4276 int c;
4277
4278 csum = 0;
4279 bc = 0;
4280
4281 while (1)
4282 {
4283 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4284 c = readchar (remote_timeout);
4285 switch (c)
4286 {
4287 case SERIAL_TIMEOUT:
4288 if (remote_debug)
4289 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4290 return -1;
4291 case '$':
4292 if (remote_debug)
4293 fputs_filtered ("Saw new packet start in middle of old one\n",
4294 gdb_stdlog);
4295 return -1; /* Start a new packet, count retries */
4296 case '#':
4297 {
4298 unsigned char pktcsum;
4299 int check_0 = 0;
4300 int check_1 = 0;
4301
4302 buf[bc] = '\0';
4303
4304 check_0 = readchar (remote_timeout);
4305 if (check_0 >= 0)
4306 check_1 = readchar (remote_timeout);
4307
4308 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4309 {
4310 if (remote_debug)
4311 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4312 return -1;
4313 }
4314 else if (check_0 < 0 || check_1 < 0)
4315 {
4316 if (remote_debug)
4317 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4318 return -1;
4319 }
4320
4321 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4322 if (csum == pktcsum)
4323 return bc;
4324
4325 if (remote_debug)
4326 {
4327 fprintf_filtered (gdb_stdlog,
4328 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4329 pktcsum, csum);
4330 fputs_filtered (buf, gdb_stdlog);
4331 fputs_filtered ("\n", gdb_stdlog);
4332 }
4333 /* Number of characters in buffer ignoring trailing
4334 NUL. */
4335 return -1;
4336 }
4337 case '*': /* Run length encoding */
4338 {
4339 int repeat;
4340 csum += c;
4341
4342 if (remote_cisco_mode == 0)
4343 {
4344 c = readchar (remote_timeout);
4345 csum += c;
4346 repeat = c - ' ' + 3; /* Compute repeat count */
4347 }
4348 else
4349 {
4350 /* Cisco's run-length encoding variant uses two
4351 hex chars to represent the repeat count. */
4352
4353 c = readchar (remote_timeout);
4354 csum += c;
4355 repeat = fromhex (c) << 4;
4356 c = readchar (remote_timeout);
4357 csum += c;
4358 repeat += fromhex (c);
4359 }
4360
4361 /* The character before ``*'' is repeated. */
4362
4363 if (repeat > 0 && repeat <= 255
4364 && bc > 0
4365 && bc + repeat - 1 < sizeof_buf - 1)
4366 {
4367 memset (&buf[bc], buf[bc - 1], repeat);
4368 bc += repeat;
4369 continue;
4370 }
4371
4372 buf[bc] = '\0';
4373 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4374 puts_filtered (buf);
4375 puts_filtered ("\n");
4376 return -1;
4377 }
4378 default:
4379 if (bc < sizeof_buf - 1)
4380 {
4381 buf[bc++] = c;
4382 csum += c;
4383 continue;
4384 }
4385
4386 buf[bc] = '\0';
4387 puts_filtered ("Remote packet too long: ");
4388 puts_filtered (buf);
4389 puts_filtered ("\n");
4390
4391 return -1;
4392 }
4393 }
4394 }
4395
4396 /* Read a packet from the remote machine, with error checking, and
4397 store it in BUF. If FOREVER, wait forever rather than timing out;
4398 this is used (in synchronous mode) to wait for a target that is is
4399 executing user code to stop. */
4400 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4401 don't have to change all the calls to getpkt to deal with the
4402 return value, because at the moment I don't know what the right
4403 thing to do it for those. */
4404 void
4405 getpkt (char *buf,
4406 long sizeof_buf,
4407 int forever)
4408 {
4409 int timed_out;
4410
4411 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4412 }
4413
4414
4415 /* Read a packet from the remote machine, with error checking, and
4416 store it in BUF. If FOREVER, wait forever rather than timing out;
4417 this is used (in synchronous mode) to wait for a target that is is
4418 executing user code to stop. If FOREVER == 0, this function is
4419 allowed to time out gracefully and return an indication of this to
4420 the caller. */
4421 static int
4422 getpkt_sane (char *buf,
4423 long sizeof_buf,
4424 int forever)
4425 {
4426 int c;
4427 int tries;
4428 int timeout;
4429 int val;
4430
4431 strcpy (buf, "timeout");
4432
4433 if (forever)
4434 {
4435 timeout = watchdog > 0 ? watchdog : -1;
4436 }
4437
4438 else
4439 timeout = remote_timeout;
4440
4441 #define MAX_TRIES 3
4442
4443 for (tries = 1; tries <= MAX_TRIES; tries++)
4444 {
4445 /* This can loop forever if the remote side sends us characters
4446 continuously, but if it pauses, we'll get a zero from readchar
4447 because of timeout. Then we'll count that as a retry. */
4448
4449 /* Note that we will only wait forever prior to the start of a packet.
4450 After that, we expect characters to arrive at a brisk pace. They
4451 should show up within remote_timeout intervals. */
4452
4453 do
4454 {
4455 c = readchar (timeout);
4456
4457 if (c == SERIAL_TIMEOUT)
4458 {
4459 if (forever) /* Watchdog went off? Kill the target. */
4460 {
4461 QUIT;
4462 target_mourn_inferior ();
4463 error ("Watchdog has expired. Target detached.\n");
4464 }
4465 if (remote_debug)
4466 fputs_filtered ("Timed out.\n", gdb_stdlog);
4467 goto retry;
4468 }
4469 }
4470 while (c != '$');
4471
4472 /* We've found the start of a packet, now collect the data. */
4473
4474 val = read_frame (buf, sizeof_buf);
4475
4476 if (val >= 0)
4477 {
4478 if (remote_debug)
4479 {
4480 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4481 fputstr_unfiltered (buf, 0, gdb_stdlog);
4482 fprintf_unfiltered (gdb_stdlog, "\n");
4483 }
4484 serial_write (remote_desc, "+", 1);
4485 return 0;
4486 }
4487
4488 /* Try the whole thing again. */
4489 retry:
4490 serial_write (remote_desc, "-", 1);
4491 }
4492
4493 /* We have tried hard enough, and just can't receive the packet. Give up. */
4494
4495 printf_unfiltered ("Ignoring packet error, continuing...\n");
4496 serial_write (remote_desc, "+", 1);
4497 return 1;
4498 }
4499 \f
4500 static void
4501 remote_kill (void)
4502 {
4503 /* For some mysterious reason, wait_for_inferior calls kill instead of
4504 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4505 if (kill_kludge)
4506 {
4507 kill_kludge = 0;
4508 target_mourn_inferior ();
4509 return;
4510 }
4511
4512 /* Use catch_errors so the user can quit from gdb even when we aren't on
4513 speaking terms with the remote system. */
4514 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4515
4516 /* Don't wait for it to die. I'm not really sure it matters whether
4517 we do or not. For the existing stubs, kill is a noop. */
4518 target_mourn_inferior ();
4519 }
4520
4521 /* Async version of remote_kill. */
4522 static void
4523 remote_async_kill (void)
4524 {
4525 /* Unregister the file descriptor from the event loop. */
4526 if (target_is_async_p ())
4527 serial_async (remote_desc, NULL, 0);
4528
4529 /* For some mysterious reason, wait_for_inferior calls kill instead of
4530 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4531 if (kill_kludge)
4532 {
4533 kill_kludge = 0;
4534 target_mourn_inferior ();
4535 return;
4536 }
4537
4538 /* Use catch_errors so the user can quit from gdb even when we aren't on
4539 speaking terms with the remote system. */
4540 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4541
4542 /* Don't wait for it to die. I'm not really sure it matters whether
4543 we do or not. For the existing stubs, kill is a noop. */
4544 target_mourn_inferior ();
4545 }
4546
4547 static void
4548 remote_mourn (void)
4549 {
4550 remote_mourn_1 (&remote_ops);
4551 }
4552
4553 static void
4554 remote_async_mourn (void)
4555 {
4556 remote_mourn_1 (&remote_async_ops);
4557 }
4558
4559 static void
4560 extended_remote_mourn (void)
4561 {
4562 /* We do _not_ want to mourn the target like this; this will
4563 remove the extended remote target from the target stack,
4564 and the next time the user says "run" it'll fail.
4565
4566 FIXME: What is the right thing to do here? */
4567 #if 0
4568 remote_mourn_1 (&extended_remote_ops);
4569 #endif
4570 }
4571
4572 /* Worker function for remote_mourn. */
4573 static void
4574 remote_mourn_1 (struct target_ops *target)
4575 {
4576 unpush_target (target);
4577 generic_mourn_inferior ();
4578 }
4579
4580 /* In the extended protocol we want to be able to do things like
4581 "run" and have them basically work as expected. So we need
4582 a special create_inferior function.
4583
4584 FIXME: One day add support for changing the exec file
4585 we're debugging, arguments and an environment. */
4586
4587 static void
4588 extended_remote_create_inferior (char *exec_file, char *args, char **env)
4589 {
4590 /* Rip out the breakpoints; we'll reinsert them after restarting
4591 the remote server. */
4592 remove_breakpoints ();
4593
4594 /* Now restart the remote server. */
4595 extended_remote_restart ();
4596
4597 /* Now put the breakpoints back in. This way we're safe if the
4598 restart function works via a unix fork on the remote side. */
4599 insert_breakpoints ();
4600
4601 /* Clean up from the last time we were running. */
4602 clear_proceed_status ();
4603
4604 /* Let the remote process run. */
4605 proceed (-1, TARGET_SIGNAL_0, 0);
4606 }
4607
4608 /* Async version of extended_remote_create_inferior. */
4609 static void
4610 extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4611 {
4612 /* Rip out the breakpoints; we'll reinsert them after restarting
4613 the remote server. */
4614 remove_breakpoints ();
4615
4616 /* If running asynchronously, register the target file descriptor
4617 with the event loop. */
4618 if (event_loop_p && target_can_async_p ())
4619 target_async (inferior_event_handler, 0);
4620
4621 /* Now restart the remote server. */
4622 extended_remote_restart ();
4623
4624 /* Now put the breakpoints back in. This way we're safe if the
4625 restart function works via a unix fork on the remote side. */
4626 insert_breakpoints ();
4627
4628 /* Clean up from the last time we were running. */
4629 clear_proceed_status ();
4630
4631 /* Let the remote process run. */
4632 proceed (-1, TARGET_SIGNAL_0, 0);
4633 }
4634 \f
4635
4636 /* On some machines, e.g. 68k, we may use a different breakpoint instruction
4637 than other targets; in those use REMOTE_BREAKPOINT instead of just
4638 BREAKPOINT. Also, bi-endian targets may define LITTLE_REMOTE_BREAKPOINT
4639 and BIG_REMOTE_BREAKPOINT. If none of these are defined, we just call
4640 the standard routines that are in mem-break.c. */
4641
4642 /* FIXME, these ought to be done in a more dynamic fashion. For instance,
4643 the choice of breakpoint instruction affects target program design and
4644 vice versa, and by making it user-tweakable, the special code here
4645 goes away and we need fewer special GDB configurations. */
4646
4647 #if defined (LITTLE_REMOTE_BREAKPOINT) && defined (BIG_REMOTE_BREAKPOINT) && !defined(REMOTE_BREAKPOINT)
4648 #define REMOTE_BREAKPOINT
4649 #endif
4650
4651 #ifdef REMOTE_BREAKPOINT
4652
4653 /* If the target isn't bi-endian, just pretend it is. */
4654 #if !defined (LITTLE_REMOTE_BREAKPOINT) && !defined (BIG_REMOTE_BREAKPOINT)
4655 #define LITTLE_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4656 #define BIG_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4657 #endif
4658
4659 static unsigned char big_break_insn[] = BIG_REMOTE_BREAKPOINT;
4660 static unsigned char little_break_insn[] = LITTLE_REMOTE_BREAKPOINT;
4661
4662 #endif /* REMOTE_BREAKPOINT */
4663
4664 /* Insert a breakpoint on targets that don't have any better breakpoint
4665 support. We read the contents of the target location and stash it,
4666 then overwrite it with a breakpoint instruction. ADDR is the target
4667 location in the target machine. CONTENTS_CACHE is a pointer to
4668 memory allocated for saving the target contents. It is guaranteed
4669 by the caller to be long enough to save sizeof BREAKPOINT bytes (this
4670 is accomplished via BREAKPOINT_MAX). */
4671
4672 static int
4673 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4674 {
4675 struct remote_state *rs = get_remote_state ();
4676 #ifdef REMOTE_BREAKPOINT
4677 int val;
4678 #endif
4679 int bp_size;
4680
4681 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4682 If it succeeds, then set the support to PACKET_ENABLE. If it
4683 fails, and the user has explicitly requested the Z support then
4684 report an error, otherwise, mark it disabled and go on. */
4685
4686 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4687 {
4688 char *buf = alloca (rs->remote_packet_size);
4689 char *p = buf;
4690
4691 addr = remote_address_masked (addr);
4692 *(p++) = 'Z';
4693 *(p++) = '0';
4694 *(p++) = ',';
4695 p += hexnumstr (p, (ULONGEST) addr);
4696 BREAKPOINT_FROM_PC (&addr, &bp_size);
4697 sprintf (p, ",%d", bp_size);
4698
4699 putpkt (buf);
4700 getpkt (buf, (rs->remote_packet_size), 0);
4701
4702 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4703 {
4704 case PACKET_ERROR:
4705 return -1;
4706 case PACKET_OK:
4707 return 0;
4708 case PACKET_UNKNOWN:
4709 break;
4710 }
4711 }
4712
4713 #ifdef REMOTE_BREAKPOINT
4714 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4715
4716 if (val == 0)
4717 {
4718 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4719 val = target_write_memory (addr, (char *) big_break_insn,
4720 sizeof big_break_insn);
4721 else
4722 val = target_write_memory (addr, (char *) little_break_insn,
4723 sizeof little_break_insn);
4724 }
4725
4726 return val;
4727 #else
4728 return memory_insert_breakpoint (addr, contents_cache);
4729 #endif /* REMOTE_BREAKPOINT */
4730 }
4731
4732 static int
4733 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4734 {
4735 struct remote_state *rs = get_remote_state ();
4736 int bp_size;
4737
4738 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4739 {
4740 char *buf = alloca (rs->remote_packet_size);
4741 char *p = buf;
4742
4743 *(p++) = 'z';
4744 *(p++) = '0';
4745 *(p++) = ',';
4746
4747 addr = remote_address_masked (addr);
4748 p += hexnumstr (p, (ULONGEST) addr);
4749 BREAKPOINT_FROM_PC (&addr, &bp_size);
4750 sprintf (p, ",%d", bp_size);
4751
4752 putpkt (buf);
4753 getpkt (buf, (rs->remote_packet_size), 0);
4754
4755 return (buf[0] == 'E');
4756 }
4757
4758 #ifdef REMOTE_BREAKPOINT
4759 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4760 #else
4761 return memory_remove_breakpoint (addr, contents_cache);
4762 #endif /* REMOTE_BREAKPOINT */
4763 }
4764
4765 static int
4766 watchpoint_to_Z_packet (int type)
4767 {
4768 switch (type)
4769 {
4770 case hw_write:
4771 return 2;
4772 break;
4773 case hw_read:
4774 return 3;
4775 break;
4776 case hw_access:
4777 return 4;
4778 break;
4779 default:
4780 internal_error (__FILE__, __LINE__,
4781 "hw_bp_to_z: bad watchpoint type %d", type);
4782 }
4783 }
4784
4785 /* FIXME: This function should be static and a member of the remote
4786 target vector. */
4787
4788 int
4789 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4790 {
4791 struct remote_state *rs = get_remote_state ();
4792 char *buf = alloca (rs->remote_packet_size);
4793 char *p;
4794 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4795
4796 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4797 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4798 remote_protocol_Z[packet].name,
4799 remote_protocol_Z[packet].title);
4800
4801 sprintf (buf, "Z%x,", packet);
4802 p = strchr (buf, '\0');
4803 addr = remote_address_masked (addr);
4804 p += hexnumstr (p, (ULONGEST) addr);
4805 sprintf (p, ",%x", len);
4806
4807 putpkt (buf);
4808 getpkt (buf, (rs->remote_packet_size), 0);
4809
4810 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4811 {
4812 case PACKET_ERROR:
4813 case PACKET_UNKNOWN:
4814 return -1;
4815 case PACKET_OK:
4816 return 0;
4817 }
4818 internal_error (__FILE__, __LINE__,
4819 "remote_insert_watchpoint: reached end of function");
4820 }
4821
4822 /* FIXME: This function should be static and a member of the remote
4823 target vector. */
4824
4825 int
4826 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4827 {
4828 struct remote_state *rs = get_remote_state ();
4829 char *buf = alloca (rs->remote_packet_size);
4830 char *p;
4831 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4832
4833 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4834 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4835 remote_protocol_Z[packet].name,
4836 remote_protocol_Z[packet].title);
4837
4838 sprintf (buf, "z%x,", packet);
4839 p = strchr (buf, '\0');
4840 addr = remote_address_masked (addr);
4841 p += hexnumstr (p, (ULONGEST) addr);
4842 sprintf (p, ",%x", len);
4843 putpkt (buf);
4844 getpkt (buf, (rs->remote_packet_size), 0);
4845
4846 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4847 {
4848 case PACKET_ERROR:
4849 case PACKET_UNKNOWN:
4850 return -1;
4851 case PACKET_OK:
4852 return 0;
4853 }
4854 internal_error (__FILE__, __LINE__,
4855 "remote_remove_watchpoint: reached end of function");
4856 }
4857
4858 /* FIXME: This function should be static and a member of the remote
4859 target vector. */
4860
4861 int
4862 remote_insert_hw_breakpoint (CORE_ADDR addr, int len)
4863 {
4864 struct remote_state *rs = get_remote_state ();
4865 char *buf = alloca (rs->remote_packet_size);
4866 char *p = buf;
4867
4868 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4869 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4870 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4871 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4872
4873 *(p++) = 'Z';
4874 *(p++) = '1';
4875 *(p++) = ',';
4876
4877 addr = remote_address_masked (addr);
4878 p += hexnumstr (p, (ULONGEST) addr);
4879 sprintf (p, ",%x", len);
4880
4881 putpkt (buf);
4882 getpkt (buf, (rs->remote_packet_size), 0);
4883
4884 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4885 {
4886 case PACKET_ERROR:
4887 case PACKET_UNKNOWN:
4888 return -1;
4889 case PACKET_OK:
4890 return 0;
4891 }
4892 internal_error (__FILE__, __LINE__,
4893 "remote_remove_watchpoint: reached end of function");
4894 }
4895
4896 /* FIXME: This function should be static and a member of the remote
4897 target vector. */
4898
4899 int
4900 remote_remove_hw_breakpoint (CORE_ADDR addr, int len)
4901 {
4902 struct remote_state *rs = get_remote_state ();
4903 char *buf = alloca (rs->remote_packet_size);
4904 char *p = buf;
4905
4906 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4907 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4908 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4909 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4910
4911 *(p++) = 'z';
4912 *(p++) = '1';
4913 *(p++) = ',';
4914
4915 addr = remote_address_masked (addr);
4916 p += hexnumstr (p, (ULONGEST) addr);
4917 sprintf (p, ",%x", len);
4918
4919 putpkt(buf);
4920 getpkt (buf, (rs->remote_packet_size), 0);
4921
4922 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4923 {
4924 case PACKET_ERROR:
4925 case PACKET_UNKNOWN:
4926 return -1;
4927 case PACKET_OK:
4928 return 0;
4929 }
4930 internal_error (__FILE__, __LINE__,
4931 "remote_remove_watchpoint: reached end of function");
4932 }
4933
4934 /* Some targets are only capable of doing downloads, and afterwards
4935 they switch to the remote serial protocol. This function provides
4936 a clean way to get from the download target to the remote target.
4937 It's basically just a wrapper so that we don't have to expose any
4938 of the internal workings of remote.c.
4939
4940 Prior to calling this routine, you should shutdown the current
4941 target code, else you will get the "A program is being debugged
4942 already..." message. Usually a call to pop_target() suffices. */
4943
4944 void
4945 push_remote_target (char *name, int from_tty)
4946 {
4947 printf_filtered ("Switching to remote protocol\n");
4948 remote_open (name, from_tty);
4949 }
4950
4951 /* Other targets want to use the entire remote serial module but with
4952 certain remote_ops overridden. */
4953
4954 void
4955 open_remote_target (char *name, int from_tty, struct target_ops *target,
4956 int extended_p)
4957 {
4958 printf_filtered ("Selecting the %sremote protocol\n",
4959 (extended_p ? "extended-" : ""));
4960 remote_open_1 (name, from_tty, target, extended_p);
4961 }
4962
4963 /* Table used by the crc32 function to calcuate the checksum. */
4964
4965 static unsigned long crc32_table[256] =
4966 {0, 0};
4967
4968 static unsigned long
4969 crc32 (unsigned char *buf, int len, unsigned int crc)
4970 {
4971 if (!crc32_table[1])
4972 {
4973 /* Initialize the CRC table and the decoding table. */
4974 int i, j;
4975 unsigned int c;
4976
4977 for (i = 0; i < 256; i++)
4978 {
4979 for (c = i << 24, j = 8; j > 0; --j)
4980 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4981 crc32_table[i] = c;
4982 }
4983 }
4984
4985 while (len--)
4986 {
4987 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4988 buf++;
4989 }
4990 return crc;
4991 }
4992
4993 /* compare-sections command
4994
4995 With no arguments, compares each loadable section in the exec bfd
4996 with the same memory range on the target, and reports mismatches.
4997 Useful for verifying the image on the target against the exec file.
4998 Depends on the target understanding the new "qCRC:" request. */
4999
5000 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5001 target method (target verify memory) and generic version of the
5002 actual command. This will allow other high-level code (especially
5003 generic_load()) to make use of this target functionality. */
5004
5005 static void
5006 compare_sections_command (char *args, int from_tty)
5007 {
5008 struct remote_state *rs = get_remote_state ();
5009 asection *s;
5010 unsigned long host_crc, target_crc;
5011 extern bfd *exec_bfd;
5012 struct cleanup *old_chain;
5013 char *tmp;
5014 char *sectdata;
5015 const char *sectname;
5016 char *buf = alloca (rs->remote_packet_size);
5017 bfd_size_type size;
5018 bfd_vma lma;
5019 int matched = 0;
5020 int mismatched = 0;
5021
5022 if (!exec_bfd)
5023 error ("command cannot be used without an exec file");
5024 if (!current_target.to_shortname ||
5025 strcmp (current_target.to_shortname, "remote") != 0)
5026 error ("command can only be used with remote target");
5027
5028 for (s = exec_bfd->sections; s; s = s->next)
5029 {
5030 if (!(s->flags & SEC_LOAD))
5031 continue; /* skip non-loadable section */
5032
5033 size = bfd_get_section_size_before_reloc (s);
5034 if (size == 0)
5035 continue; /* skip zero-length section */
5036
5037 sectname = bfd_get_section_name (exec_bfd, s);
5038 if (args && strcmp (args, sectname) != 0)
5039 continue; /* not the section selected by user */
5040
5041 matched = 1; /* do this section */
5042 lma = s->lma;
5043 /* FIXME: assumes lma can fit into long */
5044 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
5045 putpkt (buf);
5046
5047 /* be clever; compute the host_crc before waiting for target reply */
5048 sectdata = xmalloc (size);
5049 old_chain = make_cleanup (xfree, sectdata);
5050 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5051 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5052
5053 getpkt (buf, (rs->remote_packet_size), 0);
5054 if (buf[0] == 'E')
5055 error ("target memory fault, section %s, range 0x%s -- 0x%s",
5056 sectname, paddr (lma), paddr (lma + size));
5057 if (buf[0] != 'C')
5058 error ("remote target does not support this operation");
5059
5060 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
5061 target_crc = target_crc * 16 + fromhex (*tmp);
5062
5063 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5064 sectname, paddr (lma), paddr (lma + size));
5065 if (host_crc == target_crc)
5066 printf_filtered ("matched.\n");
5067 else
5068 {
5069 printf_filtered ("MIS-MATCHED!\n");
5070 mismatched++;
5071 }
5072
5073 do_cleanups (old_chain);
5074 }
5075 if (mismatched > 0)
5076 warning ("One or more sections of the remote executable does not match\n\
5077 the loaded file\n");
5078 if (args && !matched)
5079 printf_filtered ("No loaded section named '%s'.\n", args);
5080 }
5081
5082 static int
5083 remote_query (int query_type, char *buf, char *outbuf, int *bufsiz)
5084 {
5085 struct remote_state *rs = get_remote_state ();
5086 int i;
5087 char *buf2 = alloca (rs->remote_packet_size);
5088 char *p2 = &buf2[0];
5089
5090 if (!bufsiz)
5091 error ("null pointer to remote bufer size specified");
5092
5093 /* minimum outbuf size is (rs->remote_packet_size) - if bufsiz is not large enough let
5094 the caller know and return what the minimum size is */
5095 /* Note: a zero bufsiz can be used to query the minimum buffer size */
5096 if (*bufsiz < (rs->remote_packet_size))
5097 {
5098 *bufsiz = (rs->remote_packet_size);
5099 return -1;
5100 }
5101
5102 /* except for querying the minimum buffer size, target must be open */
5103 if (!remote_desc)
5104 error ("remote query is only available after target open");
5105
5106 /* we only take uppercase letters as query types, at least for now */
5107 if ((query_type < 'A') || (query_type > 'Z'))
5108 error ("invalid remote query type");
5109
5110 if (!buf)
5111 error ("null remote query specified");
5112
5113 if (!outbuf)
5114 error ("remote query requires a buffer to receive data");
5115
5116 outbuf[0] = '\0';
5117
5118 *p2++ = 'q';
5119 *p2++ = query_type;
5120
5121 /* we used one buffer char for the remote protocol q command and another
5122 for the query type. As the remote protocol encapsulation uses 4 chars
5123 plus one extra in case we are debugging (remote_debug),
5124 we have PBUFZIZ - 7 left to pack the query string */
5125 i = 0;
5126 while (buf[i] && (i < ((rs->remote_packet_size) - 8)))
5127 {
5128 /* bad caller may have sent forbidden characters */
5129 if ((!isprint (buf[i])) || (buf[i] == '$') || (buf[i] == '#'))
5130 error ("illegal characters in query string");
5131
5132 *p2++ = buf[i];
5133 i++;
5134 }
5135 *p2 = buf[i];
5136
5137 if (buf[i])
5138 error ("query larger than available buffer");
5139
5140 i = putpkt (buf2);
5141 if (i < 0)
5142 return i;
5143
5144 getpkt (outbuf, *bufsiz, 0);
5145
5146 return 0;
5147 }
5148
5149 static void
5150 remote_rcmd (char *command,
5151 struct ui_file *outbuf)
5152 {
5153 struct remote_state *rs = get_remote_state ();
5154 int i;
5155 char *buf = alloca (rs->remote_packet_size);
5156 char *p = buf;
5157
5158 if (!remote_desc)
5159 error ("remote rcmd is only available after target open");
5160
5161 /* Send a NULL command across as an empty command */
5162 if (command == NULL)
5163 command = "";
5164
5165 /* The query prefix */
5166 strcpy (buf, "qRcmd,");
5167 p = strchr (buf, '\0');
5168
5169 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5170 error ("\"monitor\" command ``%s'' is too long\n", command);
5171
5172 /* Encode the actual command */
5173 bin2hex (command, p, 0);
5174
5175 if (putpkt (buf) < 0)
5176 error ("Communication problem with target\n");
5177
5178 /* get/display the response */
5179 while (1)
5180 {
5181 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
5182 buf[0] = '\0';
5183 getpkt (buf, (rs->remote_packet_size), 0);
5184 if (buf[0] == '\0')
5185 error ("Target does not support this command\n");
5186 if (buf[0] == 'O' && buf[1] != 'K')
5187 {
5188 remote_console_output (buf + 1); /* 'O' message from stub */
5189 continue;
5190 }
5191 if (strcmp (buf, "OK") == 0)
5192 break;
5193 if (strlen (buf) == 3 && buf[0] == 'E'
5194 && isdigit (buf[1]) && isdigit (buf[2]))
5195 {
5196 error ("Protocol error with Rcmd");
5197 }
5198 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5199 {
5200 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5201 fputc_unfiltered (c, outbuf);
5202 }
5203 break;
5204 }
5205 }
5206
5207 static void
5208 packet_command (char *args, int from_tty)
5209 {
5210 struct remote_state *rs = get_remote_state ();
5211 char *buf = alloca (rs->remote_packet_size);
5212
5213 if (!remote_desc)
5214 error ("command can only be used with remote target");
5215
5216 if (!args)
5217 error ("remote-packet command requires packet text as argument");
5218
5219 puts_filtered ("sending: ");
5220 print_packet (args);
5221 puts_filtered ("\n");
5222 putpkt (args);
5223
5224 getpkt (buf, (rs->remote_packet_size), 0);
5225 puts_filtered ("received: ");
5226 print_packet (buf);
5227 puts_filtered ("\n");
5228 }
5229
5230 #if 0
5231 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
5232
5233 static void display_thread_info (struct gdb_ext_thread_info *info);
5234
5235 static void threadset_test_cmd (char *cmd, int tty);
5236
5237 static void threadalive_test (char *cmd, int tty);
5238
5239 static void threadlist_test_cmd (char *cmd, int tty);
5240
5241 int get_and_display_threadinfo (threadref * ref);
5242
5243 static void threadinfo_test_cmd (char *cmd, int tty);
5244
5245 static int thread_display_step (threadref * ref, void *context);
5246
5247 static void threadlist_update_test_cmd (char *cmd, int tty);
5248
5249 static void init_remote_threadtests (void);
5250
5251 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
5252
5253 static void
5254 threadset_test_cmd (char *cmd, int tty)
5255 {
5256 int sample_thread = SAMPLE_THREAD;
5257
5258 printf_filtered ("Remote threadset test\n");
5259 set_thread (sample_thread, 1);
5260 }
5261
5262
5263 static void
5264 threadalive_test (char *cmd, int tty)
5265 {
5266 int sample_thread = SAMPLE_THREAD;
5267
5268 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5269 printf_filtered ("PASS: Thread alive test\n");
5270 else
5271 printf_filtered ("FAIL: Thread alive test\n");
5272 }
5273
5274 void output_threadid (char *title, threadref * ref);
5275
5276 void
5277 output_threadid (char *title, threadref *ref)
5278 {
5279 char hexid[20];
5280
5281 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5282 hexid[16] = 0;
5283 printf_filtered ("%s %s\n", title, (&hexid[0]));
5284 }
5285
5286 static void
5287 threadlist_test_cmd (char *cmd, int tty)
5288 {
5289 int startflag = 1;
5290 threadref nextthread;
5291 int done, result_count;
5292 threadref threadlist[3];
5293
5294 printf_filtered ("Remote Threadlist test\n");
5295 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5296 &result_count, &threadlist[0]))
5297 printf_filtered ("FAIL: threadlist test\n");
5298 else
5299 {
5300 threadref *scan = threadlist;
5301 threadref *limit = scan + result_count;
5302
5303 while (scan < limit)
5304 output_threadid (" thread ", scan++);
5305 }
5306 }
5307
5308 void
5309 display_thread_info (struct gdb_ext_thread_info *info)
5310 {
5311 output_threadid ("Threadid: ", &info->threadid);
5312 printf_filtered ("Name: %s\n ", info->shortname);
5313 printf_filtered ("State: %s\n", info->display);
5314 printf_filtered ("other: %s\n\n", info->more_display);
5315 }
5316
5317 int
5318 get_and_display_threadinfo (threadref *ref)
5319 {
5320 int result;
5321 int set;
5322 struct gdb_ext_thread_info threadinfo;
5323
5324 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5325 | TAG_MOREDISPLAY | TAG_DISPLAY;
5326 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5327 display_thread_info (&threadinfo);
5328 return result;
5329 }
5330
5331 static void
5332 threadinfo_test_cmd (char *cmd, int tty)
5333 {
5334 int athread = SAMPLE_THREAD;
5335 threadref thread;
5336 int set;
5337
5338 int_to_threadref (&thread, athread);
5339 printf_filtered ("Remote Threadinfo test\n");
5340 if (!get_and_display_threadinfo (&thread))
5341 printf_filtered ("FAIL cannot get thread info\n");
5342 }
5343
5344 static int
5345 thread_display_step (threadref *ref, void *context)
5346 {
5347 /* output_threadid(" threadstep ",ref); *//* simple test */
5348 return get_and_display_threadinfo (ref);
5349 }
5350
5351 static void
5352 threadlist_update_test_cmd (char *cmd, int tty)
5353 {
5354 printf_filtered ("Remote Threadlist update test\n");
5355 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5356 }
5357
5358 static void
5359 init_remote_threadtests (void)
5360 {
5361 add_com ("tlist", class_obscure, threadlist_test_cmd,
5362 "Fetch and print the remote list of thread identifiers, one pkt only");
5363 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5364 "Fetch and display info about one thread");
5365 add_com ("tset", class_obscure, threadset_test_cmd,
5366 "Test setting to a different thread");
5367 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5368 "Iterate through updating all remote thread info");
5369 add_com ("talive", class_obscure, threadalive_test,
5370 " Remote thread alive test ");
5371 }
5372
5373 #endif /* 0 */
5374
5375 /* Convert a thread ID to a string. Returns the string in a static
5376 buffer. */
5377
5378 static char *
5379 remote_pid_to_str (ptid_t ptid)
5380 {
5381 static char buf[30];
5382
5383 sprintf (buf, "Thread %d", PIDGET (ptid));
5384 return buf;
5385 }
5386
5387 static void
5388 init_remote_ops (void)
5389 {
5390 remote_ops.to_shortname = "remote";
5391 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5392 remote_ops.to_doc =
5393 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5394 Specify the serial device it is connected to\n\
5395 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5396 remote_ops.to_open = remote_open;
5397 remote_ops.to_close = remote_close;
5398 remote_ops.to_detach = remote_detach;
5399 remote_ops.to_resume = remote_resume;
5400 remote_ops.to_wait = remote_wait;
5401 remote_ops.to_fetch_registers = remote_fetch_registers;
5402 remote_ops.to_store_registers = remote_store_registers;
5403 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5404 remote_ops.to_xfer_memory = remote_xfer_memory;
5405 remote_ops.to_files_info = remote_files_info;
5406 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5407 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5408 remote_ops.to_kill = remote_kill;
5409 remote_ops.to_load = generic_load;
5410 remote_ops.to_mourn_inferior = remote_mourn;
5411 remote_ops.to_thread_alive = remote_thread_alive;
5412 remote_ops.to_find_new_threads = remote_threads_info;
5413 remote_ops.to_pid_to_str = remote_pid_to_str;
5414 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5415 remote_ops.to_stop = remote_stop;
5416 remote_ops.to_query = remote_query;
5417 remote_ops.to_rcmd = remote_rcmd;
5418 remote_ops.to_stratum = process_stratum;
5419 remote_ops.to_has_all_memory = 1;
5420 remote_ops.to_has_memory = 1;
5421 remote_ops.to_has_stack = 1;
5422 remote_ops.to_has_registers = 1;
5423 remote_ops.to_has_execution = 1;
5424 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5425 remote_ops.to_magic = OPS_MAGIC;
5426 }
5427
5428 /* Set up the extended remote vector by making a copy of the standard
5429 remote vector and adding to it. */
5430
5431 static void
5432 init_extended_remote_ops (void)
5433 {
5434 extended_remote_ops = remote_ops;
5435
5436 extended_remote_ops.to_shortname = "extended-remote";
5437 extended_remote_ops.to_longname =
5438 "Extended remote serial target in gdb-specific protocol";
5439 extended_remote_ops.to_doc =
5440 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5441 Specify the serial device it is connected to (e.g. /dev/ttya).",
5442 extended_remote_ops.to_open = extended_remote_open;
5443 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5444 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5445 }
5446
5447 /*
5448 * Command: info remote-process
5449 *
5450 * This implements Cisco's version of the "info proc" command.
5451 *
5452 * This query allows the target stub to return an arbitrary string
5453 * (or strings) giving arbitrary information about the target process.
5454 * This is optional; the target stub isn't required to implement it.
5455 *
5456 * Syntax: qfProcessInfo request first string
5457 * qsProcessInfo request subsequent string
5458 * reply: 'O'<hex-encoded-string>
5459 * 'l' last reply (empty)
5460 */
5461
5462 static void
5463 remote_info_process (char *args, int from_tty)
5464 {
5465 struct remote_state *rs = get_remote_state ();
5466 char *buf = alloca (rs->remote_packet_size);
5467
5468 if (remote_desc == 0)
5469 error ("Command can only be used when connected to the remote target.");
5470
5471 putpkt ("qfProcessInfo");
5472 getpkt (buf, (rs->remote_packet_size), 0);
5473 if (buf[0] == 0)
5474 return; /* Silently: target does not support this feature. */
5475
5476 if (buf[0] == 'E')
5477 error ("info proc: target error.");
5478
5479 while (buf[0] == 'O') /* Capitol-O packet */
5480 {
5481 remote_console_output (&buf[1]);
5482 putpkt ("qsProcessInfo");
5483 getpkt (buf, (rs->remote_packet_size), 0);
5484 }
5485 }
5486
5487 /*
5488 * Target Cisco
5489 */
5490
5491 static void
5492 remote_cisco_open (char *name, int from_tty)
5493 {
5494 int ex;
5495 if (name == 0)
5496 error ("To open a remote debug connection, you need to specify what \n"
5497 "device is attached to the remote system (e.g. host:port).");
5498
5499 /* See FIXME above */
5500 wait_forever_enabled_p = 1;
5501
5502 target_preopen (from_tty);
5503
5504 unpush_target (&remote_cisco_ops);
5505
5506 remote_desc = remote_serial_open (name);
5507 if (!remote_desc)
5508 perror_with_name (name);
5509
5510 /*
5511 * If a baud rate was specified on the gdb command line it will
5512 * be greater than the initial value of -1. If it is, use it otherwise
5513 * default to 9600
5514 */
5515
5516 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5517 if (serial_setbaudrate (remote_desc, baud_rate))
5518 {
5519 serial_close (remote_desc);
5520 perror_with_name (name);
5521 }
5522
5523 serial_raw (remote_desc);
5524
5525 /* If there is something sitting in the buffer we might take it as a
5526 response to a command, which would be bad. */
5527 serial_flush_input (remote_desc);
5528
5529 if (from_tty)
5530 {
5531 puts_filtered ("Remote debugging using ");
5532 puts_filtered (name);
5533 puts_filtered ("\n");
5534 }
5535
5536 remote_cisco_mode = 1;
5537
5538 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5539
5540 init_all_packet_configs ();
5541
5542 general_thread = -2;
5543 continue_thread = -2;
5544
5545 /* Probe for ability to use "ThreadInfo" query, as required. */
5546 use_threadinfo_query = 1;
5547 use_threadextra_query = 1;
5548
5549 /* Without this, some commands which require an active target (such
5550 as kill) won't work. This variable serves (at least) double duty
5551 as both the pid of the target process (if it has such), and as a
5552 flag indicating that a target is active. These functions should
5553 be split out into seperate variables, especially since GDB will
5554 someday have a notion of debugging several processes. */
5555 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5556
5557 /* Start the remote connection; if error, discard this target. See
5558 the comments in remote_open_1() for further details. */
5559 ex = catch_exceptions (uiout,
5560 remote_start_remote_dummy, NULL,
5561 "Couldn't establish connection to remote"
5562 " target\n",
5563 RETURN_MASK_ALL);
5564 if (ex < 0)
5565 {
5566 pop_target ();
5567 return;
5568 }
5569 }
5570
5571 static void
5572 remote_cisco_close (int quitting)
5573 {
5574 remote_cisco_mode = 0;
5575 remote_close (quitting);
5576 }
5577
5578 static void
5579 remote_cisco_mourn (void)
5580 {
5581 remote_mourn_1 (&remote_cisco_ops);
5582 }
5583
5584 enum
5585 {
5586 READ_MORE,
5587 FATAL_ERROR,
5588 ENTER_DEBUG,
5589 DISCONNECT_TELNET
5590 }
5591 minitelnet_return;
5592
5593 /* Shared between readsocket() and readtty(). The size is arbitrary,
5594 however all targets are known to support a 400 character packet. */
5595 static char tty_input[400];
5596
5597 static int escape_count;
5598 static int echo_check;
5599 extern int quit_flag;
5600
5601 static int
5602 readsocket (void)
5603 {
5604 int data;
5605
5606 /* Loop until the socket doesn't have any more data */
5607
5608 while ((data = readchar (0)) >= 0)
5609 {
5610 /* Check for the escape sequence */
5611 if (data == '|')
5612 {
5613 /* If this is the fourth escape, get out */
5614 if (++escape_count == 4)
5615 {
5616 return ENTER_DEBUG;
5617 }
5618 else
5619 { /* This is a '|', but not the fourth in a row.
5620 Continue without echoing it. If it isn't actually
5621 one of four in a row, it'll be echoed later. */
5622 continue;
5623 }
5624 }
5625 else
5626 /* Not a '|' */
5627 {
5628 /* Ensure any pending '|'s are flushed. */
5629
5630 for (; escape_count > 0; escape_count--)
5631 putchar ('|');
5632 }
5633
5634 if (data == '\r') /* If this is a return character, */
5635 continue; /* - just supress it. */
5636
5637 if (echo_check != -1) /* Check for echo of user input. */
5638 {
5639 if (tty_input[echo_check] == data)
5640 {
5641 gdb_assert (echo_check <= sizeof (tty_input));
5642 echo_check++; /* Character matched user input: */
5643 continue; /* Continue without echoing it. */
5644 }
5645 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5646 { /* End of the line (and of echo checking). */
5647 echo_check = -1; /* No more echo supression */
5648 continue; /* Continue without echoing. */
5649 }
5650 else
5651 { /* Failed check for echo of user input.
5652 We now have some suppressed output to flush! */
5653 int j;
5654
5655 for (j = 0; j < echo_check; j++)
5656 putchar (tty_input[j]);
5657 echo_check = -1;
5658 }
5659 }
5660 putchar (data); /* Default case: output the char. */
5661 }
5662
5663 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5664 return READ_MORE; /* Try to read some more */
5665 else
5666 return FATAL_ERROR; /* Trouble, bail out */
5667 }
5668
5669 static int
5670 readtty (void)
5671 {
5672 int tty_bytecount;
5673
5674 /* First, read a buffer full from the terminal */
5675 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5676 if (tty_bytecount == -1)
5677 {
5678 perror ("readtty: read failed");
5679 return FATAL_ERROR;
5680 }
5681
5682 /* Remove a quoted newline. */
5683 if (tty_input[tty_bytecount - 1] == '\n' &&
5684 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5685 {
5686 tty_input[--tty_bytecount] = 0; /* remove newline */
5687 tty_input[--tty_bytecount] = 0; /* remove backslash */
5688 }
5689
5690 /* Turn trailing newlines into returns */
5691 if (tty_input[tty_bytecount - 1] == '\n')
5692 tty_input[tty_bytecount - 1] = '\r';
5693
5694 /* If the line consists of a ~, enter debugging mode. */
5695 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5696 return ENTER_DEBUG;
5697
5698 /* Make this a zero terminated string and write it out */
5699 tty_input[tty_bytecount] = 0;
5700 if (serial_write (remote_desc, tty_input, tty_bytecount))
5701 {
5702 perror_with_name ("readtty: write failed");
5703 return FATAL_ERROR;
5704 }
5705
5706 return READ_MORE;
5707 }
5708
5709 static int
5710 minitelnet (void)
5711 {
5712 fd_set input; /* file descriptors for select */
5713 int tablesize; /* max number of FDs for select */
5714 int status;
5715 int quit_count = 0;
5716
5717 extern int escape_count; /* global shared by readsocket */
5718 extern int echo_check; /* ditto */
5719
5720 escape_count = 0;
5721 echo_check = -1;
5722
5723 tablesize = 8 * sizeof (input);
5724
5725 for (;;)
5726 {
5727 /* Check for anything from our socket - doesn't block. Note that
5728 this must be done *before* the select as there may be
5729 buffered I/O waiting to be processed. */
5730
5731 if ((status = readsocket ()) == FATAL_ERROR)
5732 {
5733 error ("Debugging terminated by communications error");
5734 }
5735 else if (status != READ_MORE)
5736 {
5737 return (status);
5738 }
5739
5740 fflush (stdout); /* Flush output before blocking */
5741
5742 /* Now block on more socket input or TTY input */
5743
5744 FD_ZERO (&input);
5745 FD_SET (fileno (stdin), &input);
5746 FD_SET (deprecated_serial_fd (remote_desc), &input);
5747
5748 status = select (tablesize, &input, 0, 0, 0);
5749 if ((status == -1) && (errno != EINTR))
5750 {
5751 error ("Communications error on select %d", errno);
5752 }
5753
5754 /* Handle Control-C typed */
5755
5756 if (quit_flag)
5757 {
5758 if ((++quit_count) == 2)
5759 {
5760 if (query ("Interrupt GDB? "))
5761 {
5762 printf_filtered ("Interrupted by user.\n");
5763 throw_exception (RETURN_QUIT);
5764 }
5765 quit_count = 0;
5766 }
5767 quit_flag = 0;
5768
5769 if (remote_break)
5770 serial_send_break (remote_desc);
5771 else
5772 serial_write (remote_desc, "\003", 1);
5773
5774 continue;
5775 }
5776
5777 /* Handle console input */
5778
5779 if (FD_ISSET (fileno (stdin), &input))
5780 {
5781 quit_count = 0;
5782 echo_check = 0;
5783 status = readtty ();
5784 if (status == READ_MORE)
5785 continue;
5786
5787 return status; /* telnet session ended */
5788 }
5789 }
5790 }
5791
5792 static ptid_t
5793 remote_cisco_wait (ptid_t ptid, struct target_waitstatus *status)
5794 {
5795 if (minitelnet () != ENTER_DEBUG)
5796 {
5797 error ("Debugging session terminated by protocol error");
5798 }
5799 putpkt ("?");
5800 return remote_wait (ptid, status);
5801 }
5802
5803 static void
5804 init_remote_cisco_ops (void)
5805 {
5806 remote_cisco_ops.to_shortname = "cisco";
5807 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5808 remote_cisco_ops.to_doc =
5809 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5810 Specify the serial device it is connected to (e.g. host:2020).";
5811 remote_cisco_ops.to_open = remote_cisco_open;
5812 remote_cisco_ops.to_close = remote_cisco_close;
5813 remote_cisco_ops.to_detach = remote_detach;
5814 remote_cisco_ops.to_resume = remote_resume;
5815 remote_cisco_ops.to_wait = remote_cisco_wait;
5816 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5817 remote_cisco_ops.to_store_registers = remote_store_registers;
5818 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5819 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5820 remote_cisco_ops.to_files_info = remote_files_info;
5821 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5822 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5823 remote_cisco_ops.to_kill = remote_kill;
5824 remote_cisco_ops.to_load = generic_load;
5825 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5826 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5827 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5828 remote_cisco_ops.to_pid_to_str = remote_pid_to_str;
5829 remote_cisco_ops.to_extra_thread_info = remote_threads_extra_info;
5830 remote_cisco_ops.to_stratum = process_stratum;
5831 remote_cisco_ops.to_has_all_memory = 1;
5832 remote_cisco_ops.to_has_memory = 1;
5833 remote_cisco_ops.to_has_stack = 1;
5834 remote_cisco_ops.to_has_registers = 1;
5835 remote_cisco_ops.to_has_execution = 1;
5836 remote_cisco_ops.to_magic = OPS_MAGIC;
5837 }
5838
5839 static int
5840 remote_can_async_p (void)
5841 {
5842 /* We're async whenever the serial device is. */
5843 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5844 }
5845
5846 static int
5847 remote_is_async_p (void)
5848 {
5849 /* We're async whenever the serial device is. */
5850 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5851 }
5852
5853 /* Pass the SERIAL event on and up to the client. One day this code
5854 will be able to delay notifying the client of an event until the
5855 point where an entire packet has been received. */
5856
5857 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5858 static void *async_client_context;
5859 static serial_event_ftype remote_async_serial_handler;
5860
5861 static void
5862 remote_async_serial_handler (struct serial *scb, void *context)
5863 {
5864 /* Don't propogate error information up to the client. Instead let
5865 the client find out about the error by querying the target. */
5866 async_client_callback (INF_REG_EVENT, async_client_context);
5867 }
5868
5869 static void
5870 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5871 {
5872 if (current_target.to_async_mask_value == 0)
5873 internal_error (__FILE__, __LINE__,
5874 "Calling remote_async when async is masked");
5875
5876 if (callback != NULL)
5877 {
5878 serial_async (remote_desc, remote_async_serial_handler, NULL);
5879 async_client_callback = callback;
5880 async_client_context = context;
5881 }
5882 else
5883 serial_async (remote_desc, NULL, NULL);
5884 }
5885
5886 /* Target async and target extended-async.
5887
5888 This are temporary targets, until it is all tested. Eventually
5889 async support will be incorporated int the usual 'remote'
5890 target. */
5891
5892 static void
5893 init_remote_async_ops (void)
5894 {
5895 remote_async_ops.to_shortname = "async";
5896 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5897 remote_async_ops.to_doc =
5898 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5899 Specify the serial device it is connected to (e.g. /dev/ttya).";
5900 remote_async_ops.to_open = remote_async_open;
5901 remote_async_ops.to_close = remote_close;
5902 remote_async_ops.to_detach = remote_async_detach;
5903 remote_async_ops.to_resume = remote_async_resume;
5904 remote_async_ops.to_wait = remote_async_wait;
5905 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5906 remote_async_ops.to_store_registers = remote_store_registers;
5907 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5908 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5909 remote_async_ops.to_files_info = remote_files_info;
5910 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5911 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5912 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5913 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5914 remote_async_ops.to_kill = remote_async_kill;
5915 remote_async_ops.to_load = generic_load;
5916 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5917 remote_async_ops.to_thread_alive = remote_thread_alive;
5918 remote_async_ops.to_find_new_threads = remote_threads_info;
5919 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5920 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5921 remote_async_ops.to_stop = remote_stop;
5922 remote_async_ops.to_query = remote_query;
5923 remote_async_ops.to_rcmd = remote_rcmd;
5924 remote_async_ops.to_stratum = process_stratum;
5925 remote_async_ops.to_has_all_memory = 1;
5926 remote_async_ops.to_has_memory = 1;
5927 remote_async_ops.to_has_stack = 1;
5928 remote_async_ops.to_has_registers = 1;
5929 remote_async_ops.to_has_execution = 1;
5930 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5931 remote_async_ops.to_can_async_p = remote_can_async_p;
5932 remote_async_ops.to_is_async_p = remote_is_async_p;
5933 remote_async_ops.to_async = remote_async;
5934 remote_async_ops.to_async_mask_value = 1;
5935 remote_async_ops.to_magic = OPS_MAGIC;
5936 }
5937
5938 /* Set up the async extended remote vector by making a copy of the standard
5939 remote vector and adding to it. */
5940
5941 static void
5942 init_extended_async_remote_ops (void)
5943 {
5944 extended_async_remote_ops = remote_async_ops;
5945
5946 extended_async_remote_ops.to_shortname = "extended-async";
5947 extended_async_remote_ops.to_longname =
5948 "Extended remote serial target in async gdb-specific protocol";
5949 extended_async_remote_ops.to_doc =
5950 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5951 Specify the serial device it is connected to (e.g. /dev/ttya).",
5952 extended_async_remote_ops.to_open = extended_remote_async_open;
5953 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5954 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5955 }
5956
5957 static void
5958 set_remote_cmd (char *args, int from_tty)
5959 {
5960 }
5961
5962 static void
5963 show_remote_cmd (char *args, int from_tty)
5964 {
5965
5966 show_remote_protocol_Z_packet_cmd (args, from_tty);
5967 show_remote_protocol_e_packet_cmd (args, from_tty);
5968 show_remote_protocol_E_packet_cmd (args, from_tty);
5969 show_remote_protocol_P_packet_cmd (args, from_tty);
5970 show_remote_protocol_qSymbol_packet_cmd (args, from_tty);
5971 show_remote_protocol_binary_download_cmd (args, from_tty);
5972 }
5973
5974 static void
5975 build_remote_gdbarch_data (void)
5976 {
5977 remote_address_size = TARGET_ADDR_BIT;
5978 }
5979
5980 /* Saved pointer to previous owner of the new_objfile event. */
5981 static void (*remote_new_objfile_chain) (struct objfile *);
5982
5983 /* Function to be called whenever a new objfile (shlib) is detected. */
5984 static void
5985 remote_new_objfile (struct objfile *objfile)
5986 {
5987 if (remote_desc != 0) /* Have a remote connection */
5988 {
5989 remote_check_symbols (objfile);
5990 }
5991 /* Call predecessor on chain, if any. */
5992 if (remote_new_objfile_chain != 0 &&
5993 remote_desc == 0)
5994 remote_new_objfile_chain (objfile);
5995 }
5996
5997 void
5998 _initialize_remote (void)
5999 {
6000 static struct cmd_list_element *remote_set_cmdlist;
6001 static struct cmd_list_element *remote_show_cmdlist;
6002 struct cmd_list_element *tmpcmd;
6003
6004 /* architecture specific data */
6005 remote_gdbarch_data_handle = register_gdbarch_data (init_remote_state,
6006 free_remote_state);
6007
6008 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6009 that the remote protocol has been initialized. */
6010 register_gdbarch_swap (&remote_address_size,
6011 sizeof (&remote_address_size), NULL);
6012 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6013
6014 init_remote_ops ();
6015 add_target (&remote_ops);
6016
6017 init_extended_remote_ops ();
6018 add_target (&extended_remote_ops);
6019
6020 init_remote_async_ops ();
6021 add_target (&remote_async_ops);
6022
6023 init_extended_async_remote_ops ();
6024 add_target (&extended_async_remote_ops);
6025
6026 init_remote_cisco_ops ();
6027 add_target (&remote_cisco_ops);
6028
6029 /* Hook into new objfile notification. */
6030 remote_new_objfile_chain = target_new_objfile_hook;
6031 target_new_objfile_hook = remote_new_objfile;
6032
6033 #if 0
6034 init_remote_threadtests ();
6035 #endif
6036
6037 /* set/show remote ... */
6038
6039 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
6040 Remote protocol specific variables\n\
6041 Configure various remote-protocol specific variables such as\n\
6042 the packets being used",
6043 &remote_set_cmdlist, "set remote ",
6044 0/*allow-unknown*/, &setlist);
6045 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
6046 Remote protocol specific variables\n\
6047 Configure various remote-protocol specific variables such as\n\
6048 the packets being used",
6049 &remote_show_cmdlist, "show remote ",
6050 0/*allow-unknown*/, &showlist);
6051
6052 add_cmd ("compare-sections", class_obscure, compare_sections_command,
6053 "Compare section data on target to the exec file.\n\
6054 Argument is a single section name (default: all loaded sections).",
6055 &cmdlist);
6056
6057 add_cmd ("packet", class_maintenance, packet_command,
6058 "Send an arbitrary packet to a remote target.\n\
6059 maintenance packet TEXT\n\
6060 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6061 this command sends the string TEXT to the inferior, and displays the\n\
6062 response packet. GDB supplies the initial `$' character, and the\n\
6063 terminating `#' character and checksum.",
6064 &maintenancelist);
6065
6066 add_show_from_set
6067 (add_set_boolean_cmd ("remotebreak", no_class, &remote_break,
6068 "Set whether to send break if interrupted.\n",
6069 &setlist),
6070 &showlist);
6071
6072 /* Install commands for configuring memory read/write packets. */
6073
6074 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
6075 "Set the maximum number of bytes per memory write packet (deprecated).\n",
6076 &setlist);
6077 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
6078 "Show the maximum number of bytes per memory write packet (deprecated).\n",
6079 &showlist);
6080 add_cmd ("memory-write-packet-size", no_class,
6081 set_memory_write_packet_size,
6082 "Set the maximum number of bytes per memory-write packet.\n"
6083 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6084 "default packet size. The actual limit is further reduced\n"
6085 "dependent on the target. Specify ``fixed'' to disable the\n"
6086 "further restriction and ``limit'' to enable that restriction\n",
6087 &remote_set_cmdlist);
6088 add_cmd ("memory-read-packet-size", no_class,
6089 set_memory_read_packet_size,
6090 "Set the maximum number of bytes per memory-read packet.\n"
6091 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6092 "default packet size. The actual limit is further reduced\n"
6093 "dependent on the target. Specify ``fixed'' to disable the\n"
6094 "further restriction and ``limit'' to enable that restriction\n",
6095 &remote_set_cmdlist);
6096 add_cmd ("memory-write-packet-size", no_class,
6097 show_memory_write_packet_size,
6098 "Show the maximum number of bytes per memory-write packet.\n",
6099 &remote_show_cmdlist);
6100 add_cmd ("memory-read-packet-size", no_class,
6101 show_memory_read_packet_size,
6102 "Show the maximum number of bytes per memory-read packet.\n",
6103 &remote_show_cmdlist);
6104
6105 add_show_from_set
6106 (add_set_cmd ("remoteaddresssize", class_obscure,
6107 var_integer, (char *) &remote_address_size,
6108 "Set the maximum size of the address (in bits) \
6109 in a memory packet.\n",
6110 &setlist),
6111 &showlist);
6112
6113 add_packet_config_cmd (&remote_protocol_binary_download,
6114 "X", "binary-download",
6115 set_remote_protocol_binary_download_cmd,
6116 show_remote_protocol_binary_download_cmd,
6117 &remote_set_cmdlist, &remote_show_cmdlist,
6118 1);
6119 #if 0
6120 /* XXXX - should ``set remotebinarydownload'' be retained for
6121 compatibility. */
6122 add_show_from_set
6123 (add_set_cmd ("remotebinarydownload", no_class,
6124 var_boolean, (char *) &remote_binary_download,
6125 "Set binary downloads.\n", &setlist),
6126 &showlist);
6127 #endif
6128
6129 add_info ("remote-process", remote_info_process,
6130 "Query the remote system for process info.");
6131
6132 add_packet_config_cmd (&remote_protocol_qSymbol,
6133 "qSymbol", "symbol-lookup",
6134 set_remote_protocol_qSymbol_packet_cmd,
6135 show_remote_protocol_qSymbol_packet_cmd,
6136 &remote_set_cmdlist, &remote_show_cmdlist,
6137 0);
6138
6139 add_packet_config_cmd (&remote_protocol_e,
6140 "e", "step-over-range",
6141 set_remote_protocol_e_packet_cmd,
6142 show_remote_protocol_e_packet_cmd,
6143 &remote_set_cmdlist, &remote_show_cmdlist,
6144 0);
6145 /* Disable by default. The ``e'' packet has nasty interactions with
6146 the threading code - it relies on global state. */
6147 remote_protocol_e.detect = CMD_AUTO_BOOLEAN_FALSE;
6148 update_packet_config (&remote_protocol_e);
6149
6150 add_packet_config_cmd (&remote_protocol_E,
6151 "E", "step-over-range-w-signal",
6152 set_remote_protocol_E_packet_cmd,
6153 show_remote_protocol_E_packet_cmd,
6154 &remote_set_cmdlist, &remote_show_cmdlist,
6155 0);
6156 /* Disable by default. The ``e'' packet has nasty interactions with
6157 the threading code - it relies on global state. */
6158 remote_protocol_E.detect = CMD_AUTO_BOOLEAN_FALSE;
6159 update_packet_config (&remote_protocol_E);
6160
6161 add_packet_config_cmd (&remote_protocol_P,
6162 "P", "set-register",
6163 set_remote_protocol_P_packet_cmd,
6164 show_remote_protocol_P_packet_cmd,
6165 &remote_set_cmdlist, &remote_show_cmdlist,
6166 1);
6167
6168 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
6169 "Z0", "software-breakpoint",
6170 set_remote_protocol_Z_software_bp_packet_cmd,
6171 show_remote_protocol_Z_software_bp_packet_cmd,
6172 &remote_set_cmdlist, &remote_show_cmdlist,
6173 0);
6174
6175 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
6176 "Z1", "hardware-breakpoint",
6177 set_remote_protocol_Z_hardware_bp_packet_cmd,
6178 show_remote_protocol_Z_hardware_bp_packet_cmd,
6179 &remote_set_cmdlist, &remote_show_cmdlist,
6180 0);
6181
6182 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
6183 "Z2", "write-watchpoint",
6184 set_remote_protocol_Z_write_wp_packet_cmd,
6185 show_remote_protocol_Z_write_wp_packet_cmd,
6186 &remote_set_cmdlist, &remote_show_cmdlist,
6187 0);
6188
6189 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
6190 "Z3", "read-watchpoint",
6191 set_remote_protocol_Z_read_wp_packet_cmd,
6192 show_remote_protocol_Z_read_wp_packet_cmd,
6193 &remote_set_cmdlist, &remote_show_cmdlist,
6194 0);
6195
6196 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
6197 "Z4", "access-watchpoint",
6198 set_remote_protocol_Z_access_wp_packet_cmd,
6199 show_remote_protocol_Z_access_wp_packet_cmd,
6200 &remote_set_cmdlist, &remote_show_cmdlist,
6201 0);
6202
6203 /* Keep the old ``set remote Z-packet ...'' working. */
6204 tmpcmd = add_set_auto_boolean_cmd ("Z-packet", class_obscure,
6205 &remote_Z_packet_detect,
6206 "\
6207 Set use of remote protocol `Z' packets", &remote_set_cmdlist);
6208 set_cmd_sfunc (tmpcmd, set_remote_protocol_Z_packet_cmd);
6209 add_cmd ("Z-packet", class_obscure, show_remote_protocol_Z_packet_cmd,
6210 "Show use of remote protocol `Z' packets ",
6211 &remote_show_cmdlist);
6212 }
This page took 0.240816 seconds and 4 git commands to generate.