Simple cleanup removals in remote.c
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observer.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78
79 /* Per-program-space data key. */
80 static const struct program_space_data *remote_pspace_data;
81
82 /* The variable registered as the control variable used by the
83 remote exec-file commands. While the remote exec-file setting is
84 per-program-space, the set/show machinery uses this as the
85 location of the remote exec-file value. */
86 static char *remote_exec_file_var;
87
88 /* The size to align memory write packets, when practical. The protocol
89 does not guarantee any alignment, and gdb will generate short
90 writes and unaligned writes, but even as a best-effort attempt this
91 can improve bulk transfers. For instance, if a write is misaligned
92 relative to the target's data bus, the stub may need to make an extra
93 round trip fetching data from the target. This doesn't make a
94 huge difference, but it's easy to do, so we try to be helpful.
95
96 The alignment chosen is arbitrary; usually data bus width is
97 important here, not the possibly larger cache line size. */
98 enum { REMOTE_ALIGN_WRITES = 16 };
99
100 /* Prototypes for local functions. */
101 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
102 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
103 int forever, int *is_notif);
104
105 static void remote_files_info (struct target_ops *ignore);
106
107 static void remote_prepare_to_store (struct target_ops *self,
108 struct regcache *regcache);
109
110 static void remote_open_1 (const char *, int, struct target_ops *,
111 int extended_p);
112
113 static void remote_close (struct target_ops *self);
114
115 struct remote_state;
116
117 static int remote_vkill (int pid, struct remote_state *rs);
118
119 static void remote_kill_k (void);
120
121 static void remote_mourn (struct target_ops *ops);
122
123 static void extended_remote_restart (void);
124
125 static void remote_send (char **buf, long *sizeof_buf_p);
126
127 static int readchar (int timeout);
128
129 static void remote_serial_write (const char *str, int len);
130
131 static void remote_kill (struct target_ops *ops);
132
133 static int remote_can_async_p (struct target_ops *);
134
135 static int remote_is_async_p (struct target_ops *);
136
137 static void remote_async (struct target_ops *ops, int enable);
138
139 static void remote_thread_events (struct target_ops *ops, int enable);
140
141 static void interrupt_query (void);
142
143 static void set_general_thread (ptid_t ptid);
144 static void set_continue_thread (ptid_t ptid);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (struct target_ops *self, ptid_t);
159
160 static int stubhex (int ch);
161
162 static int hexnumstr (char *, ULONGEST);
163
164 static int hexnumnstr (char *, ULONGEST, int);
165
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
167
168 static void print_packet (const char *);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static int putpkt_binary (const char *buf, int cnt);
175
176 static void check_binary_download (CORE_ADDR addr);
177
178 struct packet_config;
179
180 static void show_packet_config_cmd (struct packet_config *config);
181
182 static void show_remote_protocol_packet_cmd (struct ui_file *file,
183 int from_tty,
184 struct cmd_list_element *c,
185 const char *value);
186
187 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
188 static ptid_t read_ptid (const char *buf, const char **obuf);
189
190 static void remote_set_permissions (struct target_ops *self);
191
192 static int remote_get_trace_status (struct target_ops *self,
193 struct trace_status *ts);
194
195 static int remote_upload_tracepoints (struct target_ops *self,
196 struct uploaded_tp **utpp);
197
198 static int remote_upload_trace_state_variables (struct target_ops *self,
199 struct uploaded_tsv **utsvp);
200
201 static void remote_query_supported (void);
202
203 static void remote_check_symbols (void);
204
205 struct stop_reply;
206 static void stop_reply_xfree (struct stop_reply *);
207 static void remote_parse_stop_reply (char *, struct stop_reply *);
208 static void push_stop_reply (struct stop_reply *);
209 static void discard_pending_stop_replies_in_queue (struct remote_state *);
210 static int peek_stop_reply (ptid_t ptid);
211
212 struct threads_listing_context;
213 static void remove_new_fork_children (struct threads_listing_context *);
214
215 static void remote_async_inferior_event_handler (gdb_client_data);
216
217 static void remote_terminal_ours (struct target_ops *self);
218
219 static int remote_read_description_p (struct target_ops *target);
220
221 static void remote_console_output (char *msg);
222
223 static int remote_supports_cond_breakpoints (struct target_ops *self);
224
225 static int remote_can_run_breakpoint_commands (struct target_ops *self);
226
227 static void remote_btrace_reset (void);
228
229 static void remote_btrace_maybe_reopen (void);
230
231 static int stop_reply_queue_length (void);
232
233 static void readahead_cache_invalidate (void);
234
235 static void remote_unpush_and_throw (void);
236
237 static struct remote_state *get_remote_state (void);
238
239 /* For "remote". */
240
241 static struct cmd_list_element *remote_cmdlist;
242
243 /* For "set remote" and "show remote". */
244
245 static struct cmd_list_element *remote_set_cmdlist;
246 static struct cmd_list_element *remote_show_cmdlist;
247
248 /* Stub vCont actions support.
249
250 Each field is a boolean flag indicating whether the stub reports
251 support for the corresponding action. */
252
253 struct vCont_action_support
254 {
255 /* vCont;t */
256 int t;
257
258 /* vCont;r */
259 int r;
260
261 /* vCont;s */
262 int s;
263
264 /* vCont;S */
265 int S;
266 };
267
268 /* Controls whether GDB is willing to use range stepping. */
269
270 static int use_range_stepping = 1;
271
272 #define OPAQUETHREADBYTES 8
273
274 /* a 64 bit opaque identifier */
275 typedef unsigned char threadref[OPAQUETHREADBYTES];
276
277 /* About this many threadisds fit in a packet. */
278
279 #define MAXTHREADLISTRESULTS 32
280
281 /* The max number of chars in debug output. The rest of chars are
282 omitted. */
283
284 #define REMOTE_DEBUG_MAX_CHAR 512
285
286 /* Data for the vFile:pread readahead cache. */
287
288 struct readahead_cache
289 {
290 /* The file descriptor for the file that is being cached. -1 if the
291 cache is invalid. */
292 int fd;
293
294 /* The offset into the file that the cache buffer corresponds
295 to. */
296 ULONGEST offset;
297
298 /* The buffer holding the cache contents. */
299 gdb_byte *buf;
300 /* The buffer's size. We try to read as much as fits into a packet
301 at a time. */
302 size_t bufsize;
303
304 /* Cache hit and miss counters. */
305 ULONGEST hit_count;
306 ULONGEST miss_count;
307 };
308
309 /* Description of the remote protocol state for the currently
310 connected target. This is per-target state, and independent of the
311 selected architecture. */
312
313 struct remote_state
314 {
315 /* A buffer to use for incoming packets, and its current size. The
316 buffer is grown dynamically for larger incoming packets.
317 Outgoing packets may also be constructed in this buffer.
318 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
319 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
320 packets. */
321 char *buf;
322 long buf_size;
323
324 /* True if we're going through initial connection setup (finding out
325 about the remote side's threads, relocating symbols, etc.). */
326 int starting_up;
327
328 /* If we negotiated packet size explicitly (and thus can bypass
329 heuristics for the largest packet size that will not overflow
330 a buffer in the stub), this will be set to that packet size.
331 Otherwise zero, meaning to use the guessed size. */
332 long explicit_packet_size;
333
334 /* remote_wait is normally called when the target is running and
335 waits for a stop reply packet. But sometimes we need to call it
336 when the target is already stopped. We can send a "?" packet
337 and have remote_wait read the response. Or, if we already have
338 the response, we can stash it in BUF and tell remote_wait to
339 skip calling getpkt. This flag is set when BUF contains a
340 stop reply packet and the target is not waiting. */
341 int cached_wait_status;
342
343 /* True, if in no ack mode. That is, neither GDB nor the stub will
344 expect acks from each other. The connection is assumed to be
345 reliable. */
346 int noack_mode;
347
348 /* True if we're connected in extended remote mode. */
349 int extended;
350
351 /* True if we resumed the target and we're waiting for the target to
352 stop. In the mean time, we can't start another command/query.
353 The remote server wouldn't be ready to process it, so we'd
354 timeout waiting for a reply that would never come and eventually
355 we'd close the connection. This can happen in asynchronous mode
356 because we allow GDB commands while the target is running. */
357 int waiting_for_stop_reply;
358
359 /* The status of the stub support for the various vCont actions. */
360 struct vCont_action_support supports_vCont;
361
362 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
363 responded to that. */
364 int ctrlc_pending_p;
365
366 /* True if we saw a Ctrl-C while reading or writing from/to the
367 remote descriptor. At that point it is not safe to send a remote
368 interrupt packet, so we instead remember we saw the Ctrl-C and
369 process it once we're done with sending/receiving the current
370 packet, which should be shortly. If however that takes too long,
371 and the user presses Ctrl-C again, we offer to disconnect. */
372 int got_ctrlc_during_io;
373
374 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
375 remote_open knows that we don't have a file open when the program
376 starts. */
377 struct serial *remote_desc;
378
379 /* These are the threads which we last sent to the remote system. The
380 TID member will be -1 for all or -2 for not sent yet. */
381 ptid_t general_thread;
382 ptid_t continue_thread;
383
384 /* This is the traceframe which we last selected on the remote system.
385 It will be -1 if no traceframe is selected. */
386 int remote_traceframe_number;
387
388 char *last_pass_packet;
389
390 /* The last QProgramSignals packet sent to the target. We bypass
391 sending a new program signals list down to the target if the new
392 packet is exactly the same as the last we sent. IOW, we only let
393 the target know about program signals list changes. */
394 char *last_program_signals_packet;
395
396 enum gdb_signal last_sent_signal;
397
398 int last_sent_step;
399
400 /* The execution direction of the last resume we got. */
401 enum exec_direction_kind last_resume_exec_dir;
402
403 char *finished_object;
404 char *finished_annex;
405 ULONGEST finished_offset;
406
407 /* Should we try the 'ThreadInfo' query packet?
408
409 This variable (NOT available to the user: auto-detect only!)
410 determines whether GDB will use the new, simpler "ThreadInfo"
411 query or the older, more complex syntax for thread queries.
412 This is an auto-detect variable (set to true at each connect,
413 and set to false when the target fails to recognize it). */
414 int use_threadinfo_query;
415 int use_threadextra_query;
416
417 threadref echo_nextthread;
418 threadref nextthread;
419 threadref resultthreadlist[MAXTHREADLISTRESULTS];
420
421 /* The state of remote notification. */
422 struct remote_notif_state *notif_state;
423
424 /* The branch trace configuration. */
425 struct btrace_config btrace_config;
426
427 /* The argument to the last "vFile:setfs:" packet we sent, used
428 to avoid sending repeated unnecessary "vFile:setfs:" packets.
429 Initialized to -1 to indicate that no "vFile:setfs:" packet
430 has yet been sent. */
431 int fs_pid;
432
433 /* A readahead cache for vFile:pread. Often, reading a binary
434 involves a sequence of small reads. E.g., when parsing an ELF
435 file. A readahead cache helps mostly the case of remote
436 debugging on a connection with higher latency, due to the
437 request/reply nature of the RSP. We only cache data for a single
438 file descriptor at a time. */
439 struct readahead_cache readahead_cache;
440 };
441
442 /* Private data that we'll store in (struct thread_info)->private. */
443 struct private_thread_info
444 {
445 char *extra;
446 char *name;
447 int core;
448
449 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
450 sequence of bytes. */
451 gdb::byte_vector *thread_handle;
452
453 /* Whether the target stopped for a breakpoint/watchpoint. */
454 enum target_stop_reason stop_reason;
455
456 /* This is set to the data address of the access causing the target
457 to stop for a watchpoint. */
458 CORE_ADDR watch_data_address;
459
460 /* Fields used by the vCont action coalescing implemented in
461 remote_resume / remote_commit_resume. remote_resume stores each
462 thread's last resume request in these fields, so that a later
463 remote_commit_resume knows which is the proper action for this
464 thread to include in the vCont packet. */
465
466 /* True if the last target_resume call for this thread was a step
467 request, false if a continue request. */
468 int last_resume_step;
469
470 /* The signal specified in the last target_resume call for this
471 thread. */
472 enum gdb_signal last_resume_sig;
473
474 /* Whether this thread was already vCont-resumed on the remote
475 side. */
476 int vcont_resumed;
477 };
478
479 static void
480 free_private_thread_info (struct private_thread_info *info)
481 {
482 xfree (info->extra);
483 xfree (info->name);
484 delete info->thread_handle;
485 xfree (info);
486 }
487
488 /* This data could be associated with a target, but we do not always
489 have access to the current target when we need it, so for now it is
490 static. This will be fine for as long as only one target is in use
491 at a time. */
492 static struct remote_state *remote_state;
493
494 static struct remote_state *
495 get_remote_state_raw (void)
496 {
497 return remote_state;
498 }
499
500 /* Allocate a new struct remote_state with xmalloc, initialize it, and
501 return it. */
502
503 static struct remote_state *
504 new_remote_state (void)
505 {
506 struct remote_state *result = XCNEW (struct remote_state);
507
508 /* The default buffer size is unimportant; it will be expanded
509 whenever a larger buffer is needed. */
510 result->buf_size = 400;
511 result->buf = (char *) xmalloc (result->buf_size);
512 result->remote_traceframe_number = -1;
513 result->last_sent_signal = GDB_SIGNAL_0;
514 result->last_resume_exec_dir = EXEC_FORWARD;
515 result->fs_pid = -1;
516
517 return result;
518 }
519
520 /* Description of the remote protocol for a given architecture. */
521
522 struct packet_reg
523 {
524 long offset; /* Offset into G packet. */
525 long regnum; /* GDB's internal register number. */
526 LONGEST pnum; /* Remote protocol register number. */
527 int in_g_packet; /* Always part of G packet. */
528 /* long size in bytes; == register_size (target_gdbarch (), regnum);
529 at present. */
530 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
531 at present. */
532 };
533
534 struct remote_arch_state
535 {
536 /* Description of the remote protocol registers. */
537 long sizeof_g_packet;
538
539 /* Description of the remote protocol registers indexed by REGNUM
540 (making an array gdbarch_num_regs in size). */
541 struct packet_reg *regs;
542
543 /* This is the size (in chars) of the first response to the ``g''
544 packet. It is used as a heuristic when determining the maximum
545 size of memory-read and memory-write packets. A target will
546 typically only reserve a buffer large enough to hold the ``g''
547 packet. The size does not include packet overhead (headers and
548 trailers). */
549 long actual_register_packet_size;
550
551 /* This is the maximum size (in chars) of a non read/write packet.
552 It is also used as a cap on the size of read/write packets. */
553 long remote_packet_size;
554 };
555
556 /* Utility: generate error from an incoming stub packet. */
557 static void
558 trace_error (char *buf)
559 {
560 if (*buf++ != 'E')
561 return; /* not an error msg */
562 switch (*buf)
563 {
564 case '1': /* malformed packet error */
565 if (*++buf == '0') /* general case: */
566 error (_("remote.c: error in outgoing packet."));
567 else
568 error (_("remote.c: error in outgoing packet at field #%ld."),
569 strtol (buf, NULL, 16));
570 default:
571 error (_("Target returns error code '%s'."), buf);
572 }
573 }
574
575 /* Utility: wait for reply from stub, while accepting "O" packets. */
576
577 static char *
578 remote_get_noisy_reply ()
579 {
580 struct remote_state *rs = get_remote_state ();
581
582 do /* Loop on reply from remote stub. */
583 {
584 char *buf;
585
586 QUIT; /* Allow user to bail out with ^C. */
587 getpkt (&rs->buf, &rs->buf_size, 0);
588 buf = rs->buf;
589 if (buf[0] == 'E')
590 trace_error (buf);
591 else if (startswith (buf, "qRelocInsn:"))
592 {
593 ULONGEST ul;
594 CORE_ADDR from, to, org_to;
595 const char *p, *pp;
596 int adjusted_size = 0;
597 int relocated = 0;
598
599 p = buf + strlen ("qRelocInsn:");
600 pp = unpack_varlen_hex (p, &ul);
601 if (*pp != ';')
602 error (_("invalid qRelocInsn packet: %s"), buf);
603 from = ul;
604
605 p = pp + 1;
606 unpack_varlen_hex (p, &ul);
607 to = ul;
608
609 org_to = to;
610
611 TRY
612 {
613 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
614 relocated = 1;
615 }
616 CATCH (ex, RETURN_MASK_ALL)
617 {
618 if (ex.error == MEMORY_ERROR)
619 {
620 /* Propagate memory errors silently back to the
621 target. The stub may have limited the range of
622 addresses we can write to, for example. */
623 }
624 else
625 {
626 /* Something unexpectedly bad happened. Be verbose
627 so we can tell what, and propagate the error back
628 to the stub, so it doesn't get stuck waiting for
629 a response. */
630 exception_fprintf (gdb_stderr, ex,
631 _("warning: relocating instruction: "));
632 }
633 putpkt ("E01");
634 }
635 END_CATCH
636
637 if (relocated)
638 {
639 adjusted_size = to - org_to;
640
641 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
642 putpkt (buf);
643 }
644 }
645 else if (buf[0] == 'O' && buf[1] != 'K')
646 remote_console_output (buf + 1); /* 'O' message from stub */
647 else
648 return buf; /* Here's the actual reply. */
649 }
650 while (1);
651 }
652
653 /* Handle for retreving the remote protocol data from gdbarch. */
654 static struct gdbarch_data *remote_gdbarch_data_handle;
655
656 static struct remote_arch_state *
657 get_remote_arch_state (struct gdbarch *gdbarch)
658 {
659 gdb_assert (gdbarch != NULL);
660 return ((struct remote_arch_state *)
661 gdbarch_data (gdbarch, remote_gdbarch_data_handle));
662 }
663
664 /* Fetch the global remote target state. */
665
666 static struct remote_state *
667 get_remote_state (void)
668 {
669 /* Make sure that the remote architecture state has been
670 initialized, because doing so might reallocate rs->buf. Any
671 function which calls getpkt also needs to be mindful of changes
672 to rs->buf, but this call limits the number of places which run
673 into trouble. */
674 get_remote_arch_state (target_gdbarch ());
675
676 return get_remote_state_raw ();
677 }
678
679 /* Cleanup routine for the remote module's pspace data. */
680
681 static void
682 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
683 {
684 char *remote_exec_file = (char *) arg;
685
686 xfree (remote_exec_file);
687 }
688
689 /* Fetch the remote exec-file from the current program space. */
690
691 static const char *
692 get_remote_exec_file (void)
693 {
694 char *remote_exec_file;
695
696 remote_exec_file
697 = (char *) program_space_data (current_program_space,
698 remote_pspace_data);
699 if (remote_exec_file == NULL)
700 return "";
701
702 return remote_exec_file;
703 }
704
705 /* Set the remote exec file for PSPACE. */
706
707 static void
708 set_pspace_remote_exec_file (struct program_space *pspace,
709 char *remote_exec_file)
710 {
711 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
712
713 xfree (old_file);
714 set_program_space_data (pspace, remote_pspace_data,
715 xstrdup (remote_exec_file));
716 }
717
718 /* The "set/show remote exec-file" set command hook. */
719
720 static void
721 set_remote_exec_file (char *ignored, int from_tty,
722 struct cmd_list_element *c)
723 {
724 gdb_assert (remote_exec_file_var != NULL);
725 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
726 }
727
728 /* The "set/show remote exec-file" show command hook. */
729
730 static void
731 show_remote_exec_file (struct ui_file *file, int from_tty,
732 struct cmd_list_element *cmd, const char *value)
733 {
734 fprintf_filtered (file, "%s\n", remote_exec_file_var);
735 }
736
737 static int
738 compare_pnums (const void *lhs_, const void *rhs_)
739 {
740 const struct packet_reg * const *lhs
741 = (const struct packet_reg * const *) lhs_;
742 const struct packet_reg * const *rhs
743 = (const struct packet_reg * const *) rhs_;
744
745 if ((*lhs)->pnum < (*rhs)->pnum)
746 return -1;
747 else if ((*lhs)->pnum == (*rhs)->pnum)
748 return 0;
749 else
750 return 1;
751 }
752
753 static int
754 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
755 {
756 int regnum, num_remote_regs, offset;
757 struct packet_reg **remote_regs;
758
759 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
760 {
761 struct packet_reg *r = &regs[regnum];
762
763 if (register_size (gdbarch, regnum) == 0)
764 /* Do not try to fetch zero-sized (placeholder) registers. */
765 r->pnum = -1;
766 else
767 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
768
769 r->regnum = regnum;
770 }
771
772 /* Define the g/G packet format as the contents of each register
773 with a remote protocol number, in order of ascending protocol
774 number. */
775
776 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
777 for (num_remote_regs = 0, regnum = 0;
778 regnum < gdbarch_num_regs (gdbarch);
779 regnum++)
780 if (regs[regnum].pnum != -1)
781 remote_regs[num_remote_regs++] = &regs[regnum];
782
783 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
784 compare_pnums);
785
786 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
787 {
788 remote_regs[regnum]->in_g_packet = 1;
789 remote_regs[regnum]->offset = offset;
790 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
791 }
792
793 return offset;
794 }
795
796 /* Given the architecture described by GDBARCH, return the remote
797 protocol register's number and the register's offset in the g/G
798 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
799 If the target does not have a mapping for REGNUM, return false,
800 otherwise, return true. */
801
802 int
803 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
804 int *pnum, int *poffset)
805 {
806 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
807
808 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
809
810 map_regcache_remote_table (gdbarch, regs.data ());
811
812 *pnum = regs[regnum].pnum;
813 *poffset = regs[regnum].offset;
814
815 return *pnum != -1;
816 }
817
818 static void *
819 init_remote_state (struct gdbarch *gdbarch)
820 {
821 struct remote_state *rs = get_remote_state_raw ();
822 struct remote_arch_state *rsa;
823
824 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
825
826 /* Use the architecture to build a regnum<->pnum table, which will be
827 1:1 unless a feature set specifies otherwise. */
828 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
829 gdbarch_num_regs (gdbarch),
830 struct packet_reg);
831
832 /* Record the maximum possible size of the g packet - it may turn out
833 to be smaller. */
834 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
835
836 /* Default maximum number of characters in a packet body. Many
837 remote stubs have a hardwired buffer size of 400 bytes
838 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
839 as the maximum packet-size to ensure that the packet and an extra
840 NUL character can always fit in the buffer. This stops GDB
841 trashing stubs that try to squeeze an extra NUL into what is
842 already a full buffer (As of 1999-12-04 that was most stubs). */
843 rsa->remote_packet_size = 400 - 1;
844
845 /* This one is filled in when a ``g'' packet is received. */
846 rsa->actual_register_packet_size = 0;
847
848 /* Should rsa->sizeof_g_packet needs more space than the
849 default, adjust the size accordingly. Remember that each byte is
850 encoded as two characters. 32 is the overhead for the packet
851 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
852 (``$NN:G...#NN'') is a better guess, the below has been padded a
853 little. */
854 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
855 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
856
857 /* Make sure that the packet buffer is plenty big enough for
858 this architecture. */
859 if (rs->buf_size < rsa->remote_packet_size)
860 {
861 rs->buf_size = 2 * rsa->remote_packet_size;
862 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
863 }
864
865 return rsa;
866 }
867
868 /* Return the current allowed size of a remote packet. This is
869 inferred from the current architecture, and should be used to
870 limit the length of outgoing packets. */
871 static long
872 get_remote_packet_size (void)
873 {
874 struct remote_state *rs = get_remote_state ();
875 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
876
877 if (rs->explicit_packet_size)
878 return rs->explicit_packet_size;
879
880 return rsa->remote_packet_size;
881 }
882
883 static struct packet_reg *
884 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
885 long regnum)
886 {
887 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
888 return NULL;
889 else
890 {
891 struct packet_reg *r = &rsa->regs[regnum];
892
893 gdb_assert (r->regnum == regnum);
894 return r;
895 }
896 }
897
898 static struct packet_reg *
899 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
900 LONGEST pnum)
901 {
902 int i;
903
904 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
905 {
906 struct packet_reg *r = &rsa->regs[i];
907
908 if (r->pnum == pnum)
909 return r;
910 }
911 return NULL;
912 }
913
914 static struct target_ops remote_ops;
915
916 static struct target_ops extended_remote_ops;
917
918 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
919 ``forever'' still use the normal timeout mechanism. This is
920 currently used by the ASYNC code to guarentee that target reads
921 during the initial connect always time-out. Once getpkt has been
922 modified to return a timeout indication and, in turn
923 remote_wait()/wait_for_inferior() have gained a timeout parameter
924 this can go away. */
925 static int wait_forever_enabled_p = 1;
926
927 /* Allow the user to specify what sequence to send to the remote
928 when he requests a program interruption: Although ^C is usually
929 what remote systems expect (this is the default, here), it is
930 sometimes preferable to send a break. On other systems such
931 as the Linux kernel, a break followed by g, which is Magic SysRq g
932 is required in order to interrupt the execution. */
933 const char interrupt_sequence_control_c[] = "Ctrl-C";
934 const char interrupt_sequence_break[] = "BREAK";
935 const char interrupt_sequence_break_g[] = "BREAK-g";
936 static const char *const interrupt_sequence_modes[] =
937 {
938 interrupt_sequence_control_c,
939 interrupt_sequence_break,
940 interrupt_sequence_break_g,
941 NULL
942 };
943 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
944
945 static void
946 show_interrupt_sequence (struct ui_file *file, int from_tty,
947 struct cmd_list_element *c,
948 const char *value)
949 {
950 if (interrupt_sequence_mode == interrupt_sequence_control_c)
951 fprintf_filtered (file,
952 _("Send the ASCII ETX character (Ctrl-c) "
953 "to the remote target to interrupt the "
954 "execution of the program.\n"));
955 else if (interrupt_sequence_mode == interrupt_sequence_break)
956 fprintf_filtered (file,
957 _("send a break signal to the remote target "
958 "to interrupt the execution of the program.\n"));
959 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
960 fprintf_filtered (file,
961 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
962 "the remote target to interrupt the execution "
963 "of Linux kernel.\n"));
964 else
965 internal_error (__FILE__, __LINE__,
966 _("Invalid value for interrupt_sequence_mode: %s."),
967 interrupt_sequence_mode);
968 }
969
970 /* This boolean variable specifies whether interrupt_sequence is sent
971 to the remote target when gdb connects to it.
972 This is mostly needed when you debug the Linux kernel: The Linux kernel
973 expects BREAK g which is Magic SysRq g for connecting gdb. */
974 static int interrupt_on_connect = 0;
975
976 /* This variable is used to implement the "set/show remotebreak" commands.
977 Since these commands are now deprecated in favor of "set/show remote
978 interrupt-sequence", it no longer has any effect on the code. */
979 static int remote_break;
980
981 static void
982 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
983 {
984 if (remote_break)
985 interrupt_sequence_mode = interrupt_sequence_break;
986 else
987 interrupt_sequence_mode = interrupt_sequence_control_c;
988 }
989
990 static void
991 show_remotebreak (struct ui_file *file, int from_tty,
992 struct cmd_list_element *c,
993 const char *value)
994 {
995 }
996
997 /* This variable sets the number of bits in an address that are to be
998 sent in a memory ("M" or "m") packet. Normally, after stripping
999 leading zeros, the entire address would be sent. This variable
1000 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1001 initial implementation of remote.c restricted the address sent in
1002 memory packets to ``host::sizeof long'' bytes - (typically 32
1003 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1004 address was never sent. Since fixing this bug may cause a break in
1005 some remote targets this variable is principly provided to
1006 facilitate backward compatibility. */
1007
1008 static unsigned int remote_address_size;
1009
1010 /* Temporary to track who currently owns the terminal. See
1011 remote_terminal_* for more details. */
1012
1013 static int remote_async_terminal_ours_p;
1014
1015 \f
1016 /* User configurable variables for the number of characters in a
1017 memory read/write packet. MIN (rsa->remote_packet_size,
1018 rsa->sizeof_g_packet) is the default. Some targets need smaller
1019 values (fifo overruns, et.al.) and some users need larger values
1020 (speed up transfers). The variables ``preferred_*'' (the user
1021 request), ``current_*'' (what was actually set) and ``forced_*''
1022 (Positive - a soft limit, negative - a hard limit). */
1023
1024 struct memory_packet_config
1025 {
1026 const char *name;
1027 long size;
1028 int fixed_p;
1029 };
1030
1031 /* The default max memory-write-packet-size. The 16k is historical.
1032 (It came from older GDB's using alloca for buffers and the
1033 knowledge (folklore?) that some hosts don't cope very well with
1034 large alloca calls.) */
1035 #define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1036
1037 /* The minimum remote packet size for memory transfers. Ensures we
1038 can write at least one byte. */
1039 #define MIN_MEMORY_PACKET_SIZE 20
1040
1041 /* Compute the current size of a read/write packet. Since this makes
1042 use of ``actual_register_packet_size'' the computation is dynamic. */
1043
1044 static long
1045 get_memory_packet_size (struct memory_packet_config *config)
1046 {
1047 struct remote_state *rs = get_remote_state ();
1048 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
1049
1050 long what_they_get;
1051 if (config->fixed_p)
1052 {
1053 if (config->size <= 0)
1054 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1055 else
1056 what_they_get = config->size;
1057 }
1058 else
1059 {
1060 what_they_get = get_remote_packet_size ();
1061 /* Limit the packet to the size specified by the user. */
1062 if (config->size > 0
1063 && what_they_get > config->size)
1064 what_they_get = config->size;
1065
1066 /* Limit it to the size of the targets ``g'' response unless we have
1067 permission from the stub to use a larger packet size. */
1068 if (rs->explicit_packet_size == 0
1069 && rsa->actual_register_packet_size > 0
1070 && what_they_get > rsa->actual_register_packet_size)
1071 what_they_get = rsa->actual_register_packet_size;
1072 }
1073 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1074 what_they_get = MIN_MEMORY_PACKET_SIZE;
1075
1076 /* Make sure there is room in the global buffer for this packet
1077 (including its trailing NUL byte). */
1078 if (rs->buf_size < what_they_get + 1)
1079 {
1080 rs->buf_size = 2 * what_they_get;
1081 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1082 }
1083
1084 return what_they_get;
1085 }
1086
1087 /* Update the size of a read/write packet. If they user wants
1088 something really big then do a sanity check. */
1089
1090 static void
1091 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1092 {
1093 int fixed_p = config->fixed_p;
1094 long size = config->size;
1095
1096 if (args == NULL)
1097 error (_("Argument required (integer, `fixed' or `limited')."));
1098 else if (strcmp (args, "hard") == 0
1099 || strcmp (args, "fixed") == 0)
1100 fixed_p = 1;
1101 else if (strcmp (args, "soft") == 0
1102 || strcmp (args, "limit") == 0)
1103 fixed_p = 0;
1104 else
1105 {
1106 char *end;
1107
1108 size = strtoul (args, &end, 0);
1109 if (args == end)
1110 error (_("Invalid %s (bad syntax)."), config->name);
1111
1112 /* Instead of explicitly capping the size of a packet to or
1113 disallowing it, the user is allowed to set the size to
1114 something arbitrarily large. */
1115 }
1116
1117 /* So that the query shows the correct value. */
1118 if (size <= 0)
1119 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1120
1121 /* Extra checks? */
1122 if (fixed_p && !config->fixed_p)
1123 {
1124 if (! query (_("The target may not be able to correctly handle a %s\n"
1125 "of %ld bytes. Change the packet size? "),
1126 config->name, size))
1127 error (_("Packet size not changed."));
1128 }
1129 /* Update the config. */
1130 config->fixed_p = fixed_p;
1131 config->size = size;
1132 }
1133
1134 static void
1135 show_memory_packet_size (struct memory_packet_config *config)
1136 {
1137 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1138 if (config->fixed_p)
1139 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1140 get_memory_packet_size (config));
1141 else
1142 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1143 get_memory_packet_size (config));
1144 }
1145
1146 static struct memory_packet_config memory_write_packet_config =
1147 {
1148 "memory-write-packet-size",
1149 };
1150
1151 static void
1152 set_memory_write_packet_size (const char *args, int from_tty)
1153 {
1154 set_memory_packet_size (args, &memory_write_packet_config);
1155 }
1156
1157 static void
1158 show_memory_write_packet_size (const char *args, int from_tty)
1159 {
1160 show_memory_packet_size (&memory_write_packet_config);
1161 }
1162
1163 static long
1164 get_memory_write_packet_size (void)
1165 {
1166 return get_memory_packet_size (&memory_write_packet_config);
1167 }
1168
1169 static struct memory_packet_config memory_read_packet_config =
1170 {
1171 "memory-read-packet-size",
1172 };
1173
1174 static void
1175 set_memory_read_packet_size (const char *args, int from_tty)
1176 {
1177 set_memory_packet_size (args, &memory_read_packet_config);
1178 }
1179
1180 static void
1181 show_memory_read_packet_size (const char *args, int from_tty)
1182 {
1183 show_memory_packet_size (&memory_read_packet_config);
1184 }
1185
1186 static long
1187 get_memory_read_packet_size (void)
1188 {
1189 long size = get_memory_packet_size (&memory_read_packet_config);
1190
1191 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1192 extra buffer size argument before the memory read size can be
1193 increased beyond this. */
1194 if (size > get_remote_packet_size ())
1195 size = get_remote_packet_size ();
1196 return size;
1197 }
1198
1199 \f
1200 /* Generic configuration support for packets the stub optionally
1201 supports. Allows the user to specify the use of the packet as well
1202 as allowing GDB to auto-detect support in the remote stub. */
1203
1204 enum packet_support
1205 {
1206 PACKET_SUPPORT_UNKNOWN = 0,
1207 PACKET_ENABLE,
1208 PACKET_DISABLE
1209 };
1210
1211 struct packet_config
1212 {
1213 const char *name;
1214 const char *title;
1215
1216 /* If auto, GDB auto-detects support for this packet or feature,
1217 either through qSupported, or by trying the packet and looking
1218 at the response. If true, GDB assumes the target supports this
1219 packet. If false, the packet is disabled. Configs that don't
1220 have an associated command always have this set to auto. */
1221 enum auto_boolean detect;
1222
1223 /* Does the target support this packet? */
1224 enum packet_support support;
1225 };
1226
1227 /* Analyze a packet's return value and update the packet config
1228 accordingly. */
1229
1230 enum packet_result
1231 {
1232 PACKET_ERROR,
1233 PACKET_OK,
1234 PACKET_UNKNOWN
1235 };
1236
1237 static enum packet_support packet_config_support (struct packet_config *config);
1238 static enum packet_support packet_support (int packet);
1239
1240 static void
1241 show_packet_config_cmd (struct packet_config *config)
1242 {
1243 const char *support = "internal-error";
1244
1245 switch (packet_config_support (config))
1246 {
1247 case PACKET_ENABLE:
1248 support = "enabled";
1249 break;
1250 case PACKET_DISABLE:
1251 support = "disabled";
1252 break;
1253 case PACKET_SUPPORT_UNKNOWN:
1254 support = "unknown";
1255 break;
1256 }
1257 switch (config->detect)
1258 {
1259 case AUTO_BOOLEAN_AUTO:
1260 printf_filtered (_("Support for the `%s' packet "
1261 "is auto-detected, currently %s.\n"),
1262 config->name, support);
1263 break;
1264 case AUTO_BOOLEAN_TRUE:
1265 case AUTO_BOOLEAN_FALSE:
1266 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1267 config->name, support);
1268 break;
1269 }
1270 }
1271
1272 static void
1273 add_packet_config_cmd (struct packet_config *config, const char *name,
1274 const char *title, int legacy)
1275 {
1276 char *set_doc;
1277 char *show_doc;
1278 char *cmd_name;
1279
1280 config->name = name;
1281 config->title = title;
1282 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1283 name, title);
1284 show_doc = xstrprintf ("Show current use of remote "
1285 "protocol `%s' (%s) packet",
1286 name, title);
1287 /* set/show TITLE-packet {auto,on,off} */
1288 cmd_name = xstrprintf ("%s-packet", title);
1289 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1290 &config->detect, set_doc,
1291 show_doc, NULL, /* help_doc */
1292 NULL,
1293 show_remote_protocol_packet_cmd,
1294 &remote_set_cmdlist, &remote_show_cmdlist);
1295 /* The command code copies the documentation strings. */
1296 xfree (set_doc);
1297 xfree (show_doc);
1298 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1299 if (legacy)
1300 {
1301 char *legacy_name;
1302
1303 legacy_name = xstrprintf ("%s-packet", name);
1304 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1305 &remote_set_cmdlist);
1306 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1307 &remote_show_cmdlist);
1308 }
1309 }
1310
1311 static enum packet_result
1312 packet_check_result (const char *buf)
1313 {
1314 if (buf[0] != '\0')
1315 {
1316 /* The stub recognized the packet request. Check that the
1317 operation succeeded. */
1318 if (buf[0] == 'E'
1319 && isxdigit (buf[1]) && isxdigit (buf[2])
1320 && buf[3] == '\0')
1321 /* "Enn" - definitly an error. */
1322 return PACKET_ERROR;
1323
1324 /* Always treat "E." as an error. This will be used for
1325 more verbose error messages, such as E.memtypes. */
1326 if (buf[0] == 'E' && buf[1] == '.')
1327 return PACKET_ERROR;
1328
1329 /* The packet may or may not be OK. Just assume it is. */
1330 return PACKET_OK;
1331 }
1332 else
1333 /* The stub does not support the packet. */
1334 return PACKET_UNKNOWN;
1335 }
1336
1337 static enum packet_result
1338 packet_ok (const char *buf, struct packet_config *config)
1339 {
1340 enum packet_result result;
1341
1342 if (config->detect != AUTO_BOOLEAN_TRUE
1343 && config->support == PACKET_DISABLE)
1344 internal_error (__FILE__, __LINE__,
1345 _("packet_ok: attempt to use a disabled packet"));
1346
1347 result = packet_check_result (buf);
1348 switch (result)
1349 {
1350 case PACKET_OK:
1351 case PACKET_ERROR:
1352 /* The stub recognized the packet request. */
1353 if (config->support == PACKET_SUPPORT_UNKNOWN)
1354 {
1355 if (remote_debug)
1356 fprintf_unfiltered (gdb_stdlog,
1357 "Packet %s (%s) is supported\n",
1358 config->name, config->title);
1359 config->support = PACKET_ENABLE;
1360 }
1361 break;
1362 case PACKET_UNKNOWN:
1363 /* The stub does not support the packet. */
1364 if (config->detect == AUTO_BOOLEAN_AUTO
1365 && config->support == PACKET_ENABLE)
1366 {
1367 /* If the stub previously indicated that the packet was
1368 supported then there is a protocol error. */
1369 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1370 config->name, config->title);
1371 }
1372 else if (config->detect == AUTO_BOOLEAN_TRUE)
1373 {
1374 /* The user set it wrong. */
1375 error (_("Enabled packet %s (%s) not recognized by stub"),
1376 config->name, config->title);
1377 }
1378
1379 if (remote_debug)
1380 fprintf_unfiltered (gdb_stdlog,
1381 "Packet %s (%s) is NOT supported\n",
1382 config->name, config->title);
1383 config->support = PACKET_DISABLE;
1384 break;
1385 }
1386
1387 return result;
1388 }
1389
1390 enum {
1391 PACKET_vCont = 0,
1392 PACKET_X,
1393 PACKET_qSymbol,
1394 PACKET_P,
1395 PACKET_p,
1396 PACKET_Z0,
1397 PACKET_Z1,
1398 PACKET_Z2,
1399 PACKET_Z3,
1400 PACKET_Z4,
1401 PACKET_vFile_setfs,
1402 PACKET_vFile_open,
1403 PACKET_vFile_pread,
1404 PACKET_vFile_pwrite,
1405 PACKET_vFile_close,
1406 PACKET_vFile_unlink,
1407 PACKET_vFile_readlink,
1408 PACKET_vFile_fstat,
1409 PACKET_qXfer_auxv,
1410 PACKET_qXfer_features,
1411 PACKET_qXfer_exec_file,
1412 PACKET_qXfer_libraries,
1413 PACKET_qXfer_libraries_svr4,
1414 PACKET_qXfer_memory_map,
1415 PACKET_qXfer_spu_read,
1416 PACKET_qXfer_spu_write,
1417 PACKET_qXfer_osdata,
1418 PACKET_qXfer_threads,
1419 PACKET_qXfer_statictrace_read,
1420 PACKET_qXfer_traceframe_info,
1421 PACKET_qXfer_uib,
1422 PACKET_qGetTIBAddr,
1423 PACKET_qGetTLSAddr,
1424 PACKET_qSupported,
1425 PACKET_qTStatus,
1426 PACKET_QPassSignals,
1427 PACKET_QCatchSyscalls,
1428 PACKET_QProgramSignals,
1429 PACKET_QSetWorkingDir,
1430 PACKET_QStartupWithShell,
1431 PACKET_QEnvironmentHexEncoded,
1432 PACKET_QEnvironmentReset,
1433 PACKET_QEnvironmentUnset,
1434 PACKET_qCRC,
1435 PACKET_qSearch_memory,
1436 PACKET_vAttach,
1437 PACKET_vRun,
1438 PACKET_QStartNoAckMode,
1439 PACKET_vKill,
1440 PACKET_qXfer_siginfo_read,
1441 PACKET_qXfer_siginfo_write,
1442 PACKET_qAttached,
1443
1444 /* Support for conditional tracepoints. */
1445 PACKET_ConditionalTracepoints,
1446
1447 /* Support for target-side breakpoint conditions. */
1448 PACKET_ConditionalBreakpoints,
1449
1450 /* Support for target-side breakpoint commands. */
1451 PACKET_BreakpointCommands,
1452
1453 /* Support for fast tracepoints. */
1454 PACKET_FastTracepoints,
1455
1456 /* Support for static tracepoints. */
1457 PACKET_StaticTracepoints,
1458
1459 /* Support for installing tracepoints while a trace experiment is
1460 running. */
1461 PACKET_InstallInTrace,
1462
1463 PACKET_bc,
1464 PACKET_bs,
1465 PACKET_TracepointSource,
1466 PACKET_QAllow,
1467 PACKET_qXfer_fdpic,
1468 PACKET_QDisableRandomization,
1469 PACKET_QAgent,
1470 PACKET_QTBuffer_size,
1471 PACKET_Qbtrace_off,
1472 PACKET_Qbtrace_bts,
1473 PACKET_Qbtrace_pt,
1474 PACKET_qXfer_btrace,
1475
1476 /* Support for the QNonStop packet. */
1477 PACKET_QNonStop,
1478
1479 /* Support for the QThreadEvents packet. */
1480 PACKET_QThreadEvents,
1481
1482 /* Support for multi-process extensions. */
1483 PACKET_multiprocess_feature,
1484
1485 /* Support for enabling and disabling tracepoints while a trace
1486 experiment is running. */
1487 PACKET_EnableDisableTracepoints_feature,
1488
1489 /* Support for collecting strings using the tracenz bytecode. */
1490 PACKET_tracenz_feature,
1491
1492 /* Support for continuing to run a trace experiment while GDB is
1493 disconnected. */
1494 PACKET_DisconnectedTracing_feature,
1495
1496 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1497 PACKET_augmented_libraries_svr4_read_feature,
1498
1499 /* Support for the qXfer:btrace-conf:read packet. */
1500 PACKET_qXfer_btrace_conf,
1501
1502 /* Support for the Qbtrace-conf:bts:size packet. */
1503 PACKET_Qbtrace_conf_bts_size,
1504
1505 /* Support for swbreak+ feature. */
1506 PACKET_swbreak_feature,
1507
1508 /* Support for hwbreak+ feature. */
1509 PACKET_hwbreak_feature,
1510
1511 /* Support for fork events. */
1512 PACKET_fork_event_feature,
1513
1514 /* Support for vfork events. */
1515 PACKET_vfork_event_feature,
1516
1517 /* Support for the Qbtrace-conf:pt:size packet. */
1518 PACKET_Qbtrace_conf_pt_size,
1519
1520 /* Support for exec events. */
1521 PACKET_exec_event_feature,
1522
1523 /* Support for query supported vCont actions. */
1524 PACKET_vContSupported,
1525
1526 /* Support remote CTRL-C. */
1527 PACKET_vCtrlC,
1528
1529 /* Support TARGET_WAITKIND_NO_RESUMED. */
1530 PACKET_no_resumed,
1531
1532 PACKET_MAX
1533 };
1534
1535 static struct packet_config remote_protocol_packets[PACKET_MAX];
1536
1537 /* Returns the packet's corresponding "set remote foo-packet" command
1538 state. See struct packet_config for more details. */
1539
1540 static enum auto_boolean
1541 packet_set_cmd_state (int packet)
1542 {
1543 return remote_protocol_packets[packet].detect;
1544 }
1545
1546 /* Returns whether a given packet or feature is supported. This takes
1547 into account the state of the corresponding "set remote foo-packet"
1548 command, which may be used to bypass auto-detection. */
1549
1550 static enum packet_support
1551 packet_config_support (struct packet_config *config)
1552 {
1553 switch (config->detect)
1554 {
1555 case AUTO_BOOLEAN_TRUE:
1556 return PACKET_ENABLE;
1557 case AUTO_BOOLEAN_FALSE:
1558 return PACKET_DISABLE;
1559 case AUTO_BOOLEAN_AUTO:
1560 return config->support;
1561 default:
1562 gdb_assert_not_reached (_("bad switch"));
1563 }
1564 }
1565
1566 /* Same as packet_config_support, but takes the packet's enum value as
1567 argument. */
1568
1569 static enum packet_support
1570 packet_support (int packet)
1571 {
1572 struct packet_config *config = &remote_protocol_packets[packet];
1573
1574 return packet_config_support (config);
1575 }
1576
1577 static void
1578 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1579 struct cmd_list_element *c,
1580 const char *value)
1581 {
1582 struct packet_config *packet;
1583
1584 for (packet = remote_protocol_packets;
1585 packet < &remote_protocol_packets[PACKET_MAX];
1586 packet++)
1587 {
1588 if (&packet->detect == c->var)
1589 {
1590 show_packet_config_cmd (packet);
1591 return;
1592 }
1593 }
1594 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1595 c->name);
1596 }
1597
1598 /* Should we try one of the 'Z' requests? */
1599
1600 enum Z_packet_type
1601 {
1602 Z_PACKET_SOFTWARE_BP,
1603 Z_PACKET_HARDWARE_BP,
1604 Z_PACKET_WRITE_WP,
1605 Z_PACKET_READ_WP,
1606 Z_PACKET_ACCESS_WP,
1607 NR_Z_PACKET_TYPES
1608 };
1609
1610 /* For compatibility with older distributions. Provide a ``set remote
1611 Z-packet ...'' command that updates all the Z packet types. */
1612
1613 static enum auto_boolean remote_Z_packet_detect;
1614
1615 static void
1616 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1617 struct cmd_list_element *c)
1618 {
1619 int i;
1620
1621 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1622 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1623 }
1624
1625 static void
1626 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1627 struct cmd_list_element *c,
1628 const char *value)
1629 {
1630 int i;
1631
1632 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1633 {
1634 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1635 }
1636 }
1637
1638 /* Returns true if the multi-process extensions are in effect. */
1639
1640 static int
1641 remote_multi_process_p (struct remote_state *rs)
1642 {
1643 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1644 }
1645
1646 /* Returns true if fork events are supported. */
1647
1648 static int
1649 remote_fork_event_p (struct remote_state *rs)
1650 {
1651 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1652 }
1653
1654 /* Returns true if vfork events are supported. */
1655
1656 static int
1657 remote_vfork_event_p (struct remote_state *rs)
1658 {
1659 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1660 }
1661
1662 /* Returns true if exec events are supported. */
1663
1664 static int
1665 remote_exec_event_p (struct remote_state *rs)
1666 {
1667 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1668 }
1669
1670 /* Insert fork catchpoint target routine. If fork events are enabled
1671 then return success, nothing more to do. */
1672
1673 static int
1674 remote_insert_fork_catchpoint (struct target_ops *ops, int pid)
1675 {
1676 struct remote_state *rs = get_remote_state ();
1677
1678 return !remote_fork_event_p (rs);
1679 }
1680
1681 /* Remove fork catchpoint target routine. Nothing to do, just
1682 return success. */
1683
1684 static int
1685 remote_remove_fork_catchpoint (struct target_ops *ops, int pid)
1686 {
1687 return 0;
1688 }
1689
1690 /* Insert vfork catchpoint target routine. If vfork events are enabled
1691 then return success, nothing more to do. */
1692
1693 static int
1694 remote_insert_vfork_catchpoint (struct target_ops *ops, int pid)
1695 {
1696 struct remote_state *rs = get_remote_state ();
1697
1698 return !remote_vfork_event_p (rs);
1699 }
1700
1701 /* Remove vfork catchpoint target routine. Nothing to do, just
1702 return success. */
1703
1704 static int
1705 remote_remove_vfork_catchpoint (struct target_ops *ops, int pid)
1706 {
1707 return 0;
1708 }
1709
1710 /* Insert exec catchpoint target routine. If exec events are
1711 enabled, just return success. */
1712
1713 static int
1714 remote_insert_exec_catchpoint (struct target_ops *ops, int pid)
1715 {
1716 struct remote_state *rs = get_remote_state ();
1717
1718 return !remote_exec_event_p (rs);
1719 }
1720
1721 /* Remove exec catchpoint target routine. Nothing to do, just
1722 return success. */
1723
1724 static int
1725 remote_remove_exec_catchpoint (struct target_ops *ops, int pid)
1726 {
1727 return 0;
1728 }
1729
1730 \f
1731 /* Asynchronous signal handle registered as event loop source for
1732 when we have pending events ready to be passed to the core. */
1733
1734 static struct async_event_handler *remote_async_inferior_event_token;
1735
1736 \f
1737
1738 static ptid_t magic_null_ptid;
1739 static ptid_t not_sent_ptid;
1740 static ptid_t any_thread_ptid;
1741
1742 /* Find out if the stub attached to PID (and hence GDB should offer to
1743 detach instead of killing it when bailing out). */
1744
1745 static int
1746 remote_query_attached (int pid)
1747 {
1748 struct remote_state *rs = get_remote_state ();
1749 size_t size = get_remote_packet_size ();
1750
1751 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
1752 return 0;
1753
1754 if (remote_multi_process_p (rs))
1755 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1756 else
1757 xsnprintf (rs->buf, size, "qAttached");
1758
1759 putpkt (rs->buf);
1760 getpkt (&rs->buf, &rs->buf_size, 0);
1761
1762 switch (packet_ok (rs->buf,
1763 &remote_protocol_packets[PACKET_qAttached]))
1764 {
1765 case PACKET_OK:
1766 if (strcmp (rs->buf, "1") == 0)
1767 return 1;
1768 break;
1769 case PACKET_ERROR:
1770 warning (_("Remote failure reply: %s"), rs->buf);
1771 break;
1772 case PACKET_UNKNOWN:
1773 break;
1774 }
1775
1776 return 0;
1777 }
1778
1779 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1780 has been invented by GDB, instead of reported by the target. Since
1781 we can be connected to a remote system before before knowing about
1782 any inferior, mark the target with execution when we find the first
1783 inferior. If ATTACHED is 1, then we had just attached to this
1784 inferior. If it is 0, then we just created this inferior. If it
1785 is -1, then try querying the remote stub to find out if it had
1786 attached to the inferior or not. If TRY_OPEN_EXEC is true then
1787 attempt to open this inferior's executable as the main executable
1788 if no main executable is open already. */
1789
1790 static struct inferior *
1791 remote_add_inferior (int fake_pid_p, int pid, int attached,
1792 int try_open_exec)
1793 {
1794 struct inferior *inf;
1795
1796 /* Check whether this process we're learning about is to be
1797 considered attached, or if is to be considered to have been
1798 spawned by the stub. */
1799 if (attached == -1)
1800 attached = remote_query_attached (pid);
1801
1802 if (gdbarch_has_global_solist (target_gdbarch ()))
1803 {
1804 /* If the target shares code across all inferiors, then every
1805 attach adds a new inferior. */
1806 inf = add_inferior (pid);
1807
1808 /* ... and every inferior is bound to the same program space.
1809 However, each inferior may still have its own address
1810 space. */
1811 inf->aspace = maybe_new_address_space ();
1812 inf->pspace = current_program_space;
1813 }
1814 else
1815 {
1816 /* In the traditional debugging scenario, there's a 1-1 match
1817 between program/address spaces. We simply bind the inferior
1818 to the program space's address space. */
1819 inf = current_inferior ();
1820 inferior_appeared (inf, pid);
1821 }
1822
1823 inf->attach_flag = attached;
1824 inf->fake_pid_p = fake_pid_p;
1825
1826 /* If no main executable is currently open then attempt to
1827 open the file that was executed to create this inferior. */
1828 if (try_open_exec && get_exec_file (0) == NULL)
1829 exec_file_locate_attach (pid, 0, 1);
1830
1831 return inf;
1832 }
1833
1834 static struct private_thread_info *
1835 get_private_info_thread (struct thread_info *info);
1836
1837 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1838 according to RUNNING. */
1839
1840 static void
1841 remote_add_thread (ptid_t ptid, int running, int executing)
1842 {
1843 struct remote_state *rs = get_remote_state ();
1844 struct thread_info *thread;
1845
1846 /* GDB historically didn't pull threads in the initial connection
1847 setup. If the remote target doesn't even have a concept of
1848 threads (e.g., a bare-metal target), even if internally we
1849 consider that a single-threaded target, mentioning a new thread
1850 might be confusing to the user. Be silent then, preserving the
1851 age old behavior. */
1852 if (rs->starting_up)
1853 thread = add_thread_silent (ptid);
1854 else
1855 thread = add_thread (ptid);
1856
1857 get_private_info_thread (thread)->vcont_resumed = executing;
1858 set_executing (ptid, executing);
1859 set_running (ptid, running);
1860 }
1861
1862 /* Come here when we learn about a thread id from the remote target.
1863 It may be the first time we hear about such thread, so take the
1864 opportunity to add it to GDB's thread list. In case this is the
1865 first time we're noticing its corresponding inferior, add it to
1866 GDB's inferior list as well. EXECUTING indicates whether the
1867 thread is (internally) executing or stopped. */
1868
1869 static void
1870 remote_notice_new_inferior (ptid_t currthread, int executing)
1871 {
1872 /* In non-stop mode, we assume new found threads are (externally)
1873 running until proven otherwise with a stop reply. In all-stop,
1874 we can only get here if all threads are stopped. */
1875 int running = target_is_non_stop_p () ? 1 : 0;
1876
1877 /* If this is a new thread, add it to GDB's thread list.
1878 If we leave it up to WFI to do this, bad things will happen. */
1879
1880 if (in_thread_list (currthread) && is_exited (currthread))
1881 {
1882 /* We're seeing an event on a thread id we knew had exited.
1883 This has to be a new thread reusing the old id. Add it. */
1884 remote_add_thread (currthread, running, executing);
1885 return;
1886 }
1887
1888 if (!in_thread_list (currthread))
1889 {
1890 struct inferior *inf = NULL;
1891 int pid = ptid_get_pid (currthread);
1892
1893 if (ptid_is_pid (inferior_ptid)
1894 && pid == ptid_get_pid (inferior_ptid))
1895 {
1896 /* inferior_ptid has no thread member yet. This can happen
1897 with the vAttach -> remote_wait,"TAAthread:" path if the
1898 stub doesn't support qC. This is the first stop reported
1899 after an attach, so this is the main thread. Update the
1900 ptid in the thread list. */
1901 if (in_thread_list (pid_to_ptid (pid)))
1902 thread_change_ptid (inferior_ptid, currthread);
1903 else
1904 {
1905 remote_add_thread (currthread, running, executing);
1906 inferior_ptid = currthread;
1907 }
1908 return;
1909 }
1910
1911 if (ptid_equal (magic_null_ptid, inferior_ptid))
1912 {
1913 /* inferior_ptid is not set yet. This can happen with the
1914 vRun -> remote_wait,"TAAthread:" path if the stub
1915 doesn't support qC. This is the first stop reported
1916 after an attach, so this is the main thread. Update the
1917 ptid in the thread list. */
1918 thread_change_ptid (inferior_ptid, currthread);
1919 return;
1920 }
1921
1922 /* When connecting to a target remote, or to a target
1923 extended-remote which already was debugging an inferior, we
1924 may not know about it yet. Add it before adding its child
1925 thread, so notifications are emitted in a sensible order. */
1926 if (!in_inferior_list (ptid_get_pid (currthread)))
1927 {
1928 struct remote_state *rs = get_remote_state ();
1929 int fake_pid_p = !remote_multi_process_p (rs);
1930
1931 inf = remote_add_inferior (fake_pid_p,
1932 ptid_get_pid (currthread), -1, 1);
1933 }
1934
1935 /* This is really a new thread. Add it. */
1936 remote_add_thread (currthread, running, executing);
1937
1938 /* If we found a new inferior, let the common code do whatever
1939 it needs to with it (e.g., read shared libraries, insert
1940 breakpoints), unless we're just setting up an all-stop
1941 connection. */
1942 if (inf != NULL)
1943 {
1944 struct remote_state *rs = get_remote_state ();
1945
1946 if (!rs->starting_up)
1947 notice_new_inferior (currthread, executing, 0);
1948 }
1949 }
1950 }
1951
1952 /* Return THREAD's private thread data, creating it if necessary. */
1953
1954 static struct private_thread_info *
1955 get_private_info_thread (struct thread_info *thread)
1956 {
1957 gdb_assert (thread != NULL);
1958
1959 if (thread->priv == NULL)
1960 {
1961 struct private_thread_info *priv = XNEW (struct private_thread_info);
1962
1963 thread->private_dtor = free_private_thread_info;
1964 thread->priv = priv;
1965
1966 priv->core = -1;
1967 priv->extra = NULL;
1968 priv->name = NULL;
1969 priv->name = NULL;
1970 priv->last_resume_step = 0;
1971 priv->last_resume_sig = GDB_SIGNAL_0;
1972 priv->vcont_resumed = 0;
1973 priv->thread_handle = nullptr;
1974 }
1975
1976 return thread->priv;
1977 }
1978
1979 /* Return PTID's private thread data, creating it if necessary. */
1980
1981 static struct private_thread_info *
1982 get_private_info_ptid (ptid_t ptid)
1983 {
1984 struct thread_info *info = find_thread_ptid (ptid);
1985
1986 return get_private_info_thread (info);
1987 }
1988
1989 /* Call this function as a result of
1990 1) A halt indication (T packet) containing a thread id
1991 2) A direct query of currthread
1992 3) Successful execution of set thread */
1993
1994 static void
1995 record_currthread (struct remote_state *rs, ptid_t currthread)
1996 {
1997 rs->general_thread = currthread;
1998 }
1999
2000 /* If 'QPassSignals' is supported, tell the remote stub what signals
2001 it can simply pass through to the inferior without reporting. */
2002
2003 static void
2004 remote_pass_signals (struct target_ops *self,
2005 int numsigs, unsigned char *pass_signals)
2006 {
2007 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2008 {
2009 char *pass_packet, *p;
2010 int count = 0, i;
2011 struct remote_state *rs = get_remote_state ();
2012
2013 gdb_assert (numsigs < 256);
2014 for (i = 0; i < numsigs; i++)
2015 {
2016 if (pass_signals[i])
2017 count++;
2018 }
2019 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2020 strcpy (pass_packet, "QPassSignals:");
2021 p = pass_packet + strlen (pass_packet);
2022 for (i = 0; i < numsigs; i++)
2023 {
2024 if (pass_signals[i])
2025 {
2026 if (i >= 16)
2027 *p++ = tohex (i >> 4);
2028 *p++ = tohex (i & 15);
2029 if (count)
2030 *p++ = ';';
2031 else
2032 break;
2033 count--;
2034 }
2035 }
2036 *p = 0;
2037 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2038 {
2039 putpkt (pass_packet);
2040 getpkt (&rs->buf, &rs->buf_size, 0);
2041 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2042 if (rs->last_pass_packet)
2043 xfree (rs->last_pass_packet);
2044 rs->last_pass_packet = pass_packet;
2045 }
2046 else
2047 xfree (pass_packet);
2048 }
2049 }
2050
2051 /* If 'QCatchSyscalls' is supported, tell the remote stub
2052 to report syscalls to GDB. */
2053
2054 static int
2055 remote_set_syscall_catchpoint (struct target_ops *self,
2056 int pid, int needed, int any_count,
2057 int table_size, int *table)
2058 {
2059 const char *catch_packet;
2060 enum packet_result result;
2061 int n_sysno = 0;
2062
2063 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2064 {
2065 /* Not supported. */
2066 return 1;
2067 }
2068
2069 if (needed && !any_count)
2070 {
2071 int i;
2072
2073 /* Count how many syscalls are to be caught (table[sysno] != 0). */
2074 for (i = 0; i < table_size; i++)
2075 {
2076 if (table[i] != 0)
2077 n_sysno++;
2078 }
2079 }
2080
2081 if (remote_debug)
2082 {
2083 fprintf_unfiltered (gdb_stdlog,
2084 "remote_set_syscall_catchpoint "
2085 "pid %d needed %d any_count %d n_sysno %d\n",
2086 pid, needed, any_count, n_sysno);
2087 }
2088
2089 gdb::unique_xmalloc_ptr<char> built_packet;
2090 if (needed)
2091 {
2092 /* Prepare a packet with the sysno list, assuming max 8+1
2093 characters for a sysno. If the resulting packet size is too
2094 big, fallback on the non-selective packet. */
2095 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2096
2097 built_packet.reset ((char *) xmalloc (maxpktsz));
2098 strcpy (built_packet.get (), "QCatchSyscalls:1");
2099 if (!any_count)
2100 {
2101 int i;
2102 char *p;
2103
2104 p = built_packet.get ();
2105 p += strlen (p);
2106
2107 /* Add in catch_packet each syscall to be caught (table[i] != 0). */
2108 for (i = 0; i < table_size; i++)
2109 {
2110 if (table[i] != 0)
2111 p += xsnprintf (p, built_packet.get () + maxpktsz - p,
2112 ";%x", i);
2113 }
2114 }
2115 if (strlen (built_packet.get ()) > get_remote_packet_size ())
2116 {
2117 /* catch_packet too big. Fallback to less efficient
2118 non selective mode, with GDB doing the filtering. */
2119 catch_packet = "QCatchSyscalls:1";
2120 }
2121 else
2122 catch_packet = built_packet.get ();
2123 }
2124 else
2125 catch_packet = "QCatchSyscalls:0";
2126
2127 struct remote_state *rs = get_remote_state ();
2128
2129 putpkt (catch_packet);
2130 getpkt (&rs->buf, &rs->buf_size, 0);
2131 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2132 if (result == PACKET_OK)
2133 return 0;
2134 else
2135 return -1;
2136 }
2137
2138 /* If 'QProgramSignals' is supported, tell the remote stub what
2139 signals it should pass through to the inferior when detaching. */
2140
2141 static void
2142 remote_program_signals (struct target_ops *self,
2143 int numsigs, unsigned char *signals)
2144 {
2145 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2146 {
2147 char *packet, *p;
2148 int count = 0, i;
2149 struct remote_state *rs = get_remote_state ();
2150
2151 gdb_assert (numsigs < 256);
2152 for (i = 0; i < numsigs; i++)
2153 {
2154 if (signals[i])
2155 count++;
2156 }
2157 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2158 strcpy (packet, "QProgramSignals:");
2159 p = packet + strlen (packet);
2160 for (i = 0; i < numsigs; i++)
2161 {
2162 if (signal_pass_state (i))
2163 {
2164 if (i >= 16)
2165 *p++ = tohex (i >> 4);
2166 *p++ = tohex (i & 15);
2167 if (count)
2168 *p++ = ';';
2169 else
2170 break;
2171 count--;
2172 }
2173 }
2174 *p = 0;
2175 if (!rs->last_program_signals_packet
2176 || strcmp (rs->last_program_signals_packet, packet) != 0)
2177 {
2178 putpkt (packet);
2179 getpkt (&rs->buf, &rs->buf_size, 0);
2180 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2181 xfree (rs->last_program_signals_packet);
2182 rs->last_program_signals_packet = packet;
2183 }
2184 else
2185 xfree (packet);
2186 }
2187 }
2188
2189 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2190 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2191 thread. If GEN is set, set the general thread, if not, then set
2192 the step/continue thread. */
2193 static void
2194 set_thread (ptid_t ptid, int gen)
2195 {
2196 struct remote_state *rs = get_remote_state ();
2197 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2198 char *buf = rs->buf;
2199 char *endbuf = rs->buf + get_remote_packet_size ();
2200
2201 if (ptid_equal (state, ptid))
2202 return;
2203
2204 *buf++ = 'H';
2205 *buf++ = gen ? 'g' : 'c';
2206 if (ptid_equal (ptid, magic_null_ptid))
2207 xsnprintf (buf, endbuf - buf, "0");
2208 else if (ptid_equal (ptid, any_thread_ptid))
2209 xsnprintf (buf, endbuf - buf, "0");
2210 else if (ptid_equal (ptid, minus_one_ptid))
2211 xsnprintf (buf, endbuf - buf, "-1");
2212 else
2213 write_ptid (buf, endbuf, ptid);
2214 putpkt (rs->buf);
2215 getpkt (&rs->buf, &rs->buf_size, 0);
2216 if (gen)
2217 rs->general_thread = ptid;
2218 else
2219 rs->continue_thread = ptid;
2220 }
2221
2222 static void
2223 set_general_thread (ptid_t ptid)
2224 {
2225 set_thread (ptid, 1);
2226 }
2227
2228 static void
2229 set_continue_thread (ptid_t ptid)
2230 {
2231 set_thread (ptid, 0);
2232 }
2233
2234 /* Change the remote current process. Which thread within the process
2235 ends up selected isn't important, as long as it is the same process
2236 as what INFERIOR_PTID points to.
2237
2238 This comes from that fact that there is no explicit notion of
2239 "selected process" in the protocol. The selected process for
2240 general operations is the process the selected general thread
2241 belongs to. */
2242
2243 static void
2244 set_general_process (void)
2245 {
2246 struct remote_state *rs = get_remote_state ();
2247
2248 /* If the remote can't handle multiple processes, don't bother. */
2249 if (!remote_multi_process_p (rs))
2250 return;
2251
2252 /* We only need to change the remote current thread if it's pointing
2253 at some other process. */
2254 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2255 set_general_thread (inferior_ptid);
2256 }
2257
2258 \f
2259 /* Return nonzero if this is the main thread that we made up ourselves
2260 to model non-threaded targets as single-threaded. */
2261
2262 static int
2263 remote_thread_always_alive (struct target_ops *ops, ptid_t ptid)
2264 {
2265 if (ptid_equal (ptid, magic_null_ptid))
2266 /* The main thread is always alive. */
2267 return 1;
2268
2269 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2270 /* The main thread is always alive. This can happen after a
2271 vAttach, if the remote side doesn't support
2272 multi-threading. */
2273 return 1;
2274
2275 return 0;
2276 }
2277
2278 /* Return nonzero if the thread PTID is still alive on the remote
2279 system. */
2280
2281 static int
2282 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
2283 {
2284 struct remote_state *rs = get_remote_state ();
2285 char *p, *endp;
2286
2287 /* Check if this is a thread that we made up ourselves to model
2288 non-threaded targets as single-threaded. */
2289 if (remote_thread_always_alive (ops, ptid))
2290 return 1;
2291
2292 p = rs->buf;
2293 endp = rs->buf + get_remote_packet_size ();
2294
2295 *p++ = 'T';
2296 write_ptid (p, endp, ptid);
2297
2298 putpkt (rs->buf);
2299 getpkt (&rs->buf, &rs->buf_size, 0);
2300 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2301 }
2302
2303 /* Return a pointer to a thread name if we know it and NULL otherwise.
2304 The thread_info object owns the memory for the name. */
2305
2306 static const char *
2307 remote_thread_name (struct target_ops *ops, struct thread_info *info)
2308 {
2309 if (info->priv != NULL)
2310 return info->priv->name;
2311
2312 return NULL;
2313 }
2314
2315 /* About these extended threadlist and threadinfo packets. They are
2316 variable length packets but, the fields within them are often fixed
2317 length. They are redundent enough to send over UDP as is the
2318 remote protocol in general. There is a matching unit test module
2319 in libstub. */
2320
2321 /* WARNING: This threadref data structure comes from the remote O.S.,
2322 libstub protocol encoding, and remote.c. It is not particularly
2323 changable. */
2324
2325 /* Right now, the internal structure is int. We want it to be bigger.
2326 Plan to fix this. */
2327
2328 typedef int gdb_threadref; /* Internal GDB thread reference. */
2329
2330 /* gdb_ext_thread_info is an internal GDB data structure which is
2331 equivalent to the reply of the remote threadinfo packet. */
2332
2333 struct gdb_ext_thread_info
2334 {
2335 threadref threadid; /* External form of thread reference. */
2336 int active; /* Has state interesting to GDB?
2337 regs, stack. */
2338 char display[256]; /* Brief state display, name,
2339 blocked/suspended. */
2340 char shortname[32]; /* To be used to name threads. */
2341 char more_display[256]; /* Long info, statistics, queue depth,
2342 whatever. */
2343 };
2344
2345 /* The volume of remote transfers can be limited by submitting
2346 a mask containing bits specifying the desired information.
2347 Use a union of these values as the 'selection' parameter to
2348 get_thread_info. FIXME: Make these TAG names more thread specific. */
2349
2350 #define TAG_THREADID 1
2351 #define TAG_EXISTS 2
2352 #define TAG_DISPLAY 4
2353 #define TAG_THREADNAME 8
2354 #define TAG_MOREDISPLAY 16
2355
2356 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2357
2358 static char *unpack_nibble (char *buf, int *val);
2359
2360 static char *unpack_byte (char *buf, int *value);
2361
2362 static char *pack_int (char *buf, int value);
2363
2364 static char *unpack_int (char *buf, int *value);
2365
2366 static char *unpack_string (char *src, char *dest, int length);
2367
2368 static char *pack_threadid (char *pkt, threadref *id);
2369
2370 static char *unpack_threadid (char *inbuf, threadref *id);
2371
2372 void int_to_threadref (threadref *id, int value);
2373
2374 static int threadref_to_int (threadref *ref);
2375
2376 static void copy_threadref (threadref *dest, threadref *src);
2377
2378 static int threadmatch (threadref *dest, threadref *src);
2379
2380 static char *pack_threadinfo_request (char *pkt, int mode,
2381 threadref *id);
2382
2383 static int remote_unpack_thread_info_response (char *pkt,
2384 threadref *expectedref,
2385 struct gdb_ext_thread_info
2386 *info);
2387
2388
2389 static int remote_get_threadinfo (threadref *threadid,
2390 int fieldset, /*TAG mask */
2391 struct gdb_ext_thread_info *info);
2392
2393 static char *pack_threadlist_request (char *pkt, int startflag,
2394 int threadcount,
2395 threadref *nextthread);
2396
2397 static int parse_threadlist_response (char *pkt,
2398 int result_limit,
2399 threadref *original_echo,
2400 threadref *resultlist,
2401 int *doneflag);
2402
2403 static int remote_get_threadlist (int startflag,
2404 threadref *nextthread,
2405 int result_limit,
2406 int *done,
2407 int *result_count,
2408 threadref *threadlist);
2409
2410 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2411
2412 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2413 void *context, int looplimit);
2414
2415 static int remote_newthread_step (threadref *ref, void *context);
2416
2417
2418 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2419 buffer we're allowed to write to. Returns
2420 BUF+CHARACTERS_WRITTEN. */
2421
2422 static char *
2423 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2424 {
2425 int pid, tid;
2426 struct remote_state *rs = get_remote_state ();
2427
2428 if (remote_multi_process_p (rs))
2429 {
2430 pid = ptid_get_pid (ptid);
2431 if (pid < 0)
2432 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2433 else
2434 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2435 }
2436 tid = ptid_get_lwp (ptid);
2437 if (tid < 0)
2438 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2439 else
2440 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2441
2442 return buf;
2443 }
2444
2445 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2446 last parsed char. Returns null_ptid if no thread id is found, and
2447 throws an error if the thread id has an invalid format. */
2448
2449 static ptid_t
2450 read_ptid (const char *buf, const char **obuf)
2451 {
2452 const char *p = buf;
2453 const char *pp;
2454 ULONGEST pid = 0, tid = 0;
2455
2456 if (*p == 'p')
2457 {
2458 /* Multi-process ptid. */
2459 pp = unpack_varlen_hex (p + 1, &pid);
2460 if (*pp != '.')
2461 error (_("invalid remote ptid: %s"), p);
2462
2463 p = pp;
2464 pp = unpack_varlen_hex (p + 1, &tid);
2465 if (obuf)
2466 *obuf = pp;
2467 return ptid_build (pid, tid, 0);
2468 }
2469
2470 /* No multi-process. Just a tid. */
2471 pp = unpack_varlen_hex (p, &tid);
2472
2473 /* Return null_ptid when no thread id is found. */
2474 if (p == pp)
2475 {
2476 if (obuf)
2477 *obuf = pp;
2478 return null_ptid;
2479 }
2480
2481 /* Since the stub is not sending a process id, then default to
2482 what's in inferior_ptid, unless it's null at this point. If so,
2483 then since there's no way to know the pid of the reported
2484 threads, use the magic number. */
2485 if (ptid_equal (inferior_ptid, null_ptid))
2486 pid = ptid_get_pid (magic_null_ptid);
2487 else
2488 pid = ptid_get_pid (inferior_ptid);
2489
2490 if (obuf)
2491 *obuf = pp;
2492 return ptid_build (pid, tid, 0);
2493 }
2494
2495 static int
2496 stubhex (int ch)
2497 {
2498 if (ch >= 'a' && ch <= 'f')
2499 return ch - 'a' + 10;
2500 if (ch >= '0' && ch <= '9')
2501 return ch - '0';
2502 if (ch >= 'A' && ch <= 'F')
2503 return ch - 'A' + 10;
2504 return -1;
2505 }
2506
2507 static int
2508 stub_unpack_int (char *buff, int fieldlength)
2509 {
2510 int nibble;
2511 int retval = 0;
2512
2513 while (fieldlength)
2514 {
2515 nibble = stubhex (*buff++);
2516 retval |= nibble;
2517 fieldlength--;
2518 if (fieldlength)
2519 retval = retval << 4;
2520 }
2521 return retval;
2522 }
2523
2524 static char *
2525 unpack_nibble (char *buf, int *val)
2526 {
2527 *val = fromhex (*buf++);
2528 return buf;
2529 }
2530
2531 static char *
2532 unpack_byte (char *buf, int *value)
2533 {
2534 *value = stub_unpack_int (buf, 2);
2535 return buf + 2;
2536 }
2537
2538 static char *
2539 pack_int (char *buf, int value)
2540 {
2541 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2542 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2543 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2544 buf = pack_hex_byte (buf, (value & 0xff));
2545 return buf;
2546 }
2547
2548 static char *
2549 unpack_int (char *buf, int *value)
2550 {
2551 *value = stub_unpack_int (buf, 8);
2552 return buf + 8;
2553 }
2554
2555 #if 0 /* Currently unused, uncomment when needed. */
2556 static char *pack_string (char *pkt, char *string);
2557
2558 static char *
2559 pack_string (char *pkt, char *string)
2560 {
2561 char ch;
2562 int len;
2563
2564 len = strlen (string);
2565 if (len > 200)
2566 len = 200; /* Bigger than most GDB packets, junk??? */
2567 pkt = pack_hex_byte (pkt, len);
2568 while (len-- > 0)
2569 {
2570 ch = *string++;
2571 if ((ch == '\0') || (ch == '#'))
2572 ch = '*'; /* Protect encapsulation. */
2573 *pkt++ = ch;
2574 }
2575 return pkt;
2576 }
2577 #endif /* 0 (unused) */
2578
2579 static char *
2580 unpack_string (char *src, char *dest, int length)
2581 {
2582 while (length--)
2583 *dest++ = *src++;
2584 *dest = '\0';
2585 return src;
2586 }
2587
2588 static char *
2589 pack_threadid (char *pkt, threadref *id)
2590 {
2591 char *limit;
2592 unsigned char *altid;
2593
2594 altid = (unsigned char *) id;
2595 limit = pkt + BUF_THREAD_ID_SIZE;
2596 while (pkt < limit)
2597 pkt = pack_hex_byte (pkt, *altid++);
2598 return pkt;
2599 }
2600
2601
2602 static char *
2603 unpack_threadid (char *inbuf, threadref *id)
2604 {
2605 char *altref;
2606 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2607 int x, y;
2608
2609 altref = (char *) id;
2610
2611 while (inbuf < limit)
2612 {
2613 x = stubhex (*inbuf++);
2614 y = stubhex (*inbuf++);
2615 *altref++ = (x << 4) | y;
2616 }
2617 return inbuf;
2618 }
2619
2620 /* Externally, threadrefs are 64 bits but internally, they are still
2621 ints. This is due to a mismatch of specifications. We would like
2622 to use 64bit thread references internally. This is an adapter
2623 function. */
2624
2625 void
2626 int_to_threadref (threadref *id, int value)
2627 {
2628 unsigned char *scan;
2629
2630 scan = (unsigned char *) id;
2631 {
2632 int i = 4;
2633 while (i--)
2634 *scan++ = 0;
2635 }
2636 *scan++ = (value >> 24) & 0xff;
2637 *scan++ = (value >> 16) & 0xff;
2638 *scan++ = (value >> 8) & 0xff;
2639 *scan++ = (value & 0xff);
2640 }
2641
2642 static int
2643 threadref_to_int (threadref *ref)
2644 {
2645 int i, value = 0;
2646 unsigned char *scan;
2647
2648 scan = *ref;
2649 scan += 4;
2650 i = 4;
2651 while (i-- > 0)
2652 value = (value << 8) | ((*scan++) & 0xff);
2653 return value;
2654 }
2655
2656 static void
2657 copy_threadref (threadref *dest, threadref *src)
2658 {
2659 int i;
2660 unsigned char *csrc, *cdest;
2661
2662 csrc = (unsigned char *) src;
2663 cdest = (unsigned char *) dest;
2664 i = 8;
2665 while (i--)
2666 *cdest++ = *csrc++;
2667 }
2668
2669 static int
2670 threadmatch (threadref *dest, threadref *src)
2671 {
2672 /* Things are broken right now, so just assume we got a match. */
2673 #if 0
2674 unsigned char *srcp, *destp;
2675 int i, result;
2676 srcp = (char *) src;
2677 destp = (char *) dest;
2678
2679 result = 1;
2680 while (i-- > 0)
2681 result &= (*srcp++ == *destp++) ? 1 : 0;
2682 return result;
2683 #endif
2684 return 1;
2685 }
2686
2687 /*
2688 threadid:1, # always request threadid
2689 context_exists:2,
2690 display:4,
2691 unique_name:8,
2692 more_display:16
2693 */
2694
2695 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2696
2697 static char *
2698 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2699 {
2700 *pkt++ = 'q'; /* Info Query */
2701 *pkt++ = 'P'; /* process or thread info */
2702 pkt = pack_int (pkt, mode); /* mode */
2703 pkt = pack_threadid (pkt, id); /* threadid */
2704 *pkt = '\0'; /* terminate */
2705 return pkt;
2706 }
2707
2708 /* These values tag the fields in a thread info response packet. */
2709 /* Tagging the fields allows us to request specific fields and to
2710 add more fields as time goes by. */
2711
2712 #define TAG_THREADID 1 /* Echo the thread identifier. */
2713 #define TAG_EXISTS 2 /* Is this process defined enough to
2714 fetch registers and its stack? */
2715 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2716 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2717 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2718 the process. */
2719
2720 static int
2721 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2722 struct gdb_ext_thread_info *info)
2723 {
2724 struct remote_state *rs = get_remote_state ();
2725 int mask, length;
2726 int tag;
2727 threadref ref;
2728 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2729 int retval = 1;
2730
2731 /* info->threadid = 0; FIXME: implement zero_threadref. */
2732 info->active = 0;
2733 info->display[0] = '\0';
2734 info->shortname[0] = '\0';
2735 info->more_display[0] = '\0';
2736
2737 /* Assume the characters indicating the packet type have been
2738 stripped. */
2739 pkt = unpack_int (pkt, &mask); /* arg mask */
2740 pkt = unpack_threadid (pkt, &ref);
2741
2742 if (mask == 0)
2743 warning (_("Incomplete response to threadinfo request."));
2744 if (!threadmatch (&ref, expectedref))
2745 { /* This is an answer to a different request. */
2746 warning (_("ERROR RMT Thread info mismatch."));
2747 return 0;
2748 }
2749 copy_threadref (&info->threadid, &ref);
2750
2751 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2752
2753 /* Packets are terminated with nulls. */
2754 while ((pkt < limit) && mask && *pkt)
2755 {
2756 pkt = unpack_int (pkt, &tag); /* tag */
2757 pkt = unpack_byte (pkt, &length); /* length */
2758 if (!(tag & mask)) /* Tags out of synch with mask. */
2759 {
2760 warning (_("ERROR RMT: threadinfo tag mismatch."));
2761 retval = 0;
2762 break;
2763 }
2764 if (tag == TAG_THREADID)
2765 {
2766 if (length != 16)
2767 {
2768 warning (_("ERROR RMT: length of threadid is not 16."));
2769 retval = 0;
2770 break;
2771 }
2772 pkt = unpack_threadid (pkt, &ref);
2773 mask = mask & ~TAG_THREADID;
2774 continue;
2775 }
2776 if (tag == TAG_EXISTS)
2777 {
2778 info->active = stub_unpack_int (pkt, length);
2779 pkt += length;
2780 mask = mask & ~(TAG_EXISTS);
2781 if (length > 8)
2782 {
2783 warning (_("ERROR RMT: 'exists' length too long."));
2784 retval = 0;
2785 break;
2786 }
2787 continue;
2788 }
2789 if (tag == TAG_THREADNAME)
2790 {
2791 pkt = unpack_string (pkt, &info->shortname[0], length);
2792 mask = mask & ~TAG_THREADNAME;
2793 continue;
2794 }
2795 if (tag == TAG_DISPLAY)
2796 {
2797 pkt = unpack_string (pkt, &info->display[0], length);
2798 mask = mask & ~TAG_DISPLAY;
2799 continue;
2800 }
2801 if (tag == TAG_MOREDISPLAY)
2802 {
2803 pkt = unpack_string (pkt, &info->more_display[0], length);
2804 mask = mask & ~TAG_MOREDISPLAY;
2805 continue;
2806 }
2807 warning (_("ERROR RMT: unknown thread info tag."));
2808 break; /* Not a tag we know about. */
2809 }
2810 return retval;
2811 }
2812
2813 static int
2814 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2815 struct gdb_ext_thread_info *info)
2816 {
2817 struct remote_state *rs = get_remote_state ();
2818 int result;
2819
2820 pack_threadinfo_request (rs->buf, fieldset, threadid);
2821 putpkt (rs->buf);
2822 getpkt (&rs->buf, &rs->buf_size, 0);
2823
2824 if (rs->buf[0] == '\0')
2825 return 0;
2826
2827 result = remote_unpack_thread_info_response (rs->buf + 2,
2828 threadid, info);
2829 return result;
2830 }
2831
2832 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2833
2834 static char *
2835 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2836 threadref *nextthread)
2837 {
2838 *pkt++ = 'q'; /* info query packet */
2839 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2840 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2841 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2842 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2843 *pkt = '\0';
2844 return pkt;
2845 }
2846
2847 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2848
2849 static int
2850 parse_threadlist_response (char *pkt, int result_limit,
2851 threadref *original_echo, threadref *resultlist,
2852 int *doneflag)
2853 {
2854 struct remote_state *rs = get_remote_state ();
2855 char *limit;
2856 int count, resultcount, done;
2857
2858 resultcount = 0;
2859 /* Assume the 'q' and 'M chars have been stripped. */
2860 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2861 /* done parse past here */
2862 pkt = unpack_byte (pkt, &count); /* count field */
2863 pkt = unpack_nibble (pkt, &done);
2864 /* The first threadid is the argument threadid. */
2865 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2866 while ((count-- > 0) && (pkt < limit))
2867 {
2868 pkt = unpack_threadid (pkt, resultlist++);
2869 if (resultcount++ >= result_limit)
2870 break;
2871 }
2872 if (doneflag)
2873 *doneflag = done;
2874 return resultcount;
2875 }
2876
2877 /* Fetch the next batch of threads from the remote. Returns -1 if the
2878 qL packet is not supported, 0 on error and 1 on success. */
2879
2880 static int
2881 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2882 int *done, int *result_count, threadref *threadlist)
2883 {
2884 struct remote_state *rs = get_remote_state ();
2885 int result = 1;
2886
2887 /* Trancate result limit to be smaller than the packet size. */
2888 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2889 >= get_remote_packet_size ())
2890 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2891
2892 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2893 putpkt (rs->buf);
2894 getpkt (&rs->buf, &rs->buf_size, 0);
2895 if (*rs->buf == '\0')
2896 {
2897 /* Packet not supported. */
2898 return -1;
2899 }
2900
2901 *result_count =
2902 parse_threadlist_response (rs->buf + 2, result_limit,
2903 &rs->echo_nextthread, threadlist, done);
2904
2905 if (!threadmatch (&rs->echo_nextthread, nextthread))
2906 {
2907 /* FIXME: This is a good reason to drop the packet. */
2908 /* Possably, there is a duplicate response. */
2909 /* Possabilities :
2910 retransmit immediatly - race conditions
2911 retransmit after timeout - yes
2912 exit
2913 wait for packet, then exit
2914 */
2915 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2916 return 0; /* I choose simply exiting. */
2917 }
2918 if (*result_count <= 0)
2919 {
2920 if (*done != 1)
2921 {
2922 warning (_("RMT ERROR : failed to get remote thread list."));
2923 result = 0;
2924 }
2925 return result; /* break; */
2926 }
2927 if (*result_count > result_limit)
2928 {
2929 *result_count = 0;
2930 warning (_("RMT ERROR: threadlist response longer than requested."));
2931 return 0;
2932 }
2933 return result;
2934 }
2935
2936 /* Fetch the list of remote threads, with the qL packet, and call
2937 STEPFUNCTION for each thread found. Stops iterating and returns 1
2938 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
2939 STEPFUNCTION returns false. If the packet is not supported,
2940 returns -1. */
2941
2942 static int
2943 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2944 int looplimit)
2945 {
2946 struct remote_state *rs = get_remote_state ();
2947 int done, i, result_count;
2948 int startflag = 1;
2949 int result = 1;
2950 int loopcount = 0;
2951
2952 done = 0;
2953 while (!done)
2954 {
2955 if (loopcount++ > looplimit)
2956 {
2957 result = 0;
2958 warning (_("Remote fetch threadlist -infinite loop-."));
2959 break;
2960 }
2961 result = remote_get_threadlist (startflag, &rs->nextthread,
2962 MAXTHREADLISTRESULTS,
2963 &done, &result_count,
2964 rs->resultthreadlist);
2965 if (result <= 0)
2966 break;
2967 /* Clear for later iterations. */
2968 startflag = 0;
2969 /* Setup to resume next batch of thread references, set nextthread. */
2970 if (result_count >= 1)
2971 copy_threadref (&rs->nextthread,
2972 &rs->resultthreadlist[result_count - 1]);
2973 i = 0;
2974 while (result_count--)
2975 {
2976 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
2977 {
2978 result = 0;
2979 break;
2980 }
2981 }
2982 }
2983 return result;
2984 }
2985
2986 /* A thread found on the remote target. */
2987
2988 typedef struct thread_item
2989 {
2990 /* The thread's PTID. */
2991 ptid_t ptid;
2992
2993 /* The thread's extra info. May be NULL. */
2994 char *extra;
2995
2996 /* The thread's name. May be NULL. */
2997 char *name;
2998
2999 /* The core the thread was running on. -1 if not known. */
3000 int core;
3001
3002 /* The thread handle associated with the thread. */
3003 gdb::byte_vector *thread_handle;
3004
3005 } thread_item_t;
3006 DEF_VEC_O(thread_item_t);
3007
3008 /* Context passed around to the various methods listing remote
3009 threads. As new threads are found, they're added to the ITEMS
3010 vector. */
3011
3012 struct threads_listing_context
3013 {
3014 /* The threads found on the remote target. */
3015 VEC (thread_item_t) *items;
3016 };
3017
3018 /* Discard the contents of the constructed thread listing context. */
3019
3020 static void
3021 clear_threads_listing_context (void *p)
3022 {
3023 struct threads_listing_context *context
3024 = (struct threads_listing_context *) p;
3025 int i;
3026 struct thread_item *item;
3027
3028 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
3029 {
3030 xfree (item->extra);
3031 xfree (item->name);
3032 delete item->thread_handle;
3033 }
3034
3035 VEC_free (thread_item_t, context->items);
3036 }
3037
3038 /* Remove the thread specified as the related_pid field of WS
3039 from the CONTEXT list. */
3040
3041 static void
3042 threads_listing_context_remove (struct target_waitstatus *ws,
3043 struct threads_listing_context *context)
3044 {
3045 struct thread_item *item;
3046 int i;
3047 ptid_t child_ptid = ws->value.related_pid;
3048
3049 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
3050 {
3051 if (ptid_equal (item->ptid, child_ptid))
3052 {
3053 VEC_ordered_remove (thread_item_t, context->items, i);
3054 break;
3055 }
3056 }
3057 }
3058
3059 static int
3060 remote_newthread_step (threadref *ref, void *data)
3061 {
3062 struct threads_listing_context *context
3063 = (struct threads_listing_context *) data;
3064 struct thread_item item;
3065 int pid = ptid_get_pid (inferior_ptid);
3066
3067 item.ptid = ptid_build (pid, threadref_to_int (ref), 0);
3068 item.core = -1;
3069 item.name = NULL;
3070 item.extra = NULL;
3071 item.thread_handle = nullptr;
3072
3073 VEC_safe_push (thread_item_t, context->items, &item);
3074
3075 return 1; /* continue iterator */
3076 }
3077
3078 #define CRAZY_MAX_THREADS 1000
3079
3080 static ptid_t
3081 remote_current_thread (ptid_t oldpid)
3082 {
3083 struct remote_state *rs = get_remote_state ();
3084
3085 putpkt ("qC");
3086 getpkt (&rs->buf, &rs->buf_size, 0);
3087 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3088 {
3089 const char *obuf;
3090 ptid_t result;
3091
3092 result = read_ptid (&rs->buf[2], &obuf);
3093 if (*obuf != '\0' && remote_debug)
3094 fprintf_unfiltered (gdb_stdlog,
3095 "warning: garbage in qC reply\n");
3096
3097 return result;
3098 }
3099 else
3100 return oldpid;
3101 }
3102
3103 /* List remote threads using the deprecated qL packet. */
3104
3105 static int
3106 remote_get_threads_with_ql (struct target_ops *ops,
3107 struct threads_listing_context *context)
3108 {
3109 if (remote_threadlist_iterator (remote_newthread_step, context,
3110 CRAZY_MAX_THREADS) >= 0)
3111 return 1;
3112
3113 return 0;
3114 }
3115
3116 #if defined(HAVE_LIBEXPAT)
3117
3118 static void
3119 start_thread (struct gdb_xml_parser *parser,
3120 const struct gdb_xml_element *element,
3121 void *user_data, VEC(gdb_xml_value_s) *attributes)
3122 {
3123 struct threads_listing_context *data
3124 = (struct threads_listing_context *) user_data;
3125
3126 struct thread_item item;
3127 char *id;
3128 struct gdb_xml_value *attr;
3129
3130 id = (char *) xml_find_attribute (attributes, "id")->value;
3131 item.ptid = read_ptid (id, NULL);
3132
3133 attr = xml_find_attribute (attributes, "core");
3134 if (attr != NULL)
3135 item.core = *(ULONGEST *) attr->value;
3136 else
3137 item.core = -1;
3138
3139 attr = xml_find_attribute (attributes, "name");
3140 item.name = attr != NULL ? xstrdup ((const char *) attr->value) : NULL;
3141
3142 attr = xml_find_attribute (attributes, "handle");
3143 if (attr != NULL)
3144 {
3145 item.thread_handle = new gdb::byte_vector
3146 (strlen ((const char *) attr->value) / 2);
3147 hex2bin ((const char *) attr->value, item.thread_handle->data (),
3148 item.thread_handle->size ());
3149 }
3150 else
3151 item.thread_handle = nullptr;
3152
3153 item.extra = 0;
3154
3155 VEC_safe_push (thread_item_t, data->items, &item);
3156 }
3157
3158 static void
3159 end_thread (struct gdb_xml_parser *parser,
3160 const struct gdb_xml_element *element,
3161 void *user_data, const char *body_text)
3162 {
3163 struct threads_listing_context *data
3164 = (struct threads_listing_context *) user_data;
3165
3166 if (body_text && *body_text)
3167 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
3168 }
3169
3170 const struct gdb_xml_attribute thread_attributes[] = {
3171 { "id", GDB_XML_AF_NONE, NULL, NULL },
3172 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3173 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3174 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3175 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3176 };
3177
3178 const struct gdb_xml_element thread_children[] = {
3179 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3180 };
3181
3182 const struct gdb_xml_element threads_children[] = {
3183 { "thread", thread_attributes, thread_children,
3184 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3185 start_thread, end_thread },
3186 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3187 };
3188
3189 const struct gdb_xml_element threads_elements[] = {
3190 { "threads", NULL, threads_children,
3191 GDB_XML_EF_NONE, NULL, NULL },
3192 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3193 };
3194
3195 #endif
3196
3197 /* List remote threads using qXfer:threads:read. */
3198
3199 static int
3200 remote_get_threads_with_qxfer (struct target_ops *ops,
3201 struct threads_listing_context *context)
3202 {
3203 #if defined(HAVE_LIBEXPAT)
3204 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3205 {
3206 char *xml = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3207 struct cleanup *back_to = make_cleanup (xfree, xml);
3208
3209 if (xml != NULL && *xml != '\0')
3210 {
3211 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3212 threads_elements, xml, context);
3213 }
3214
3215 do_cleanups (back_to);
3216 return 1;
3217 }
3218 #endif
3219
3220 return 0;
3221 }
3222
3223 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3224
3225 static int
3226 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3227 struct threads_listing_context *context)
3228 {
3229 struct remote_state *rs = get_remote_state ();
3230
3231 if (rs->use_threadinfo_query)
3232 {
3233 const char *bufp;
3234
3235 putpkt ("qfThreadInfo");
3236 getpkt (&rs->buf, &rs->buf_size, 0);
3237 bufp = rs->buf;
3238 if (bufp[0] != '\0') /* q packet recognized */
3239 {
3240 while (*bufp++ == 'm') /* reply contains one or more TID */
3241 {
3242 do
3243 {
3244 struct thread_item item;
3245
3246 item.ptid = read_ptid (bufp, &bufp);
3247 item.core = -1;
3248 item.name = NULL;
3249 item.extra = NULL;
3250 item.thread_handle = nullptr;
3251
3252 VEC_safe_push (thread_item_t, context->items, &item);
3253 }
3254 while (*bufp++ == ','); /* comma-separated list */
3255 putpkt ("qsThreadInfo");
3256 getpkt (&rs->buf, &rs->buf_size, 0);
3257 bufp = rs->buf;
3258 }
3259 return 1;
3260 }
3261 else
3262 {
3263 /* Packet not recognized. */
3264 rs->use_threadinfo_query = 0;
3265 }
3266 }
3267
3268 return 0;
3269 }
3270
3271 /* Implement the to_update_thread_list function for the remote
3272 targets. */
3273
3274 static void
3275 remote_update_thread_list (struct target_ops *ops)
3276 {
3277 struct threads_listing_context context;
3278 struct cleanup *old_chain;
3279 int got_list = 0;
3280
3281 context.items = NULL;
3282 old_chain = make_cleanup (clear_threads_listing_context, &context);
3283
3284 /* We have a few different mechanisms to fetch the thread list. Try
3285 them all, starting with the most preferred one first, falling
3286 back to older methods. */
3287 if (remote_get_threads_with_qxfer (ops, &context)
3288 || remote_get_threads_with_qthreadinfo (ops, &context)
3289 || remote_get_threads_with_ql (ops, &context))
3290 {
3291 int i;
3292 struct thread_item *item;
3293 struct thread_info *tp, *tmp;
3294
3295 got_list = 1;
3296
3297 if (VEC_empty (thread_item_t, context.items)
3298 && remote_thread_always_alive (ops, inferior_ptid))
3299 {
3300 /* Some targets don't really support threads, but still
3301 reply an (empty) thread list in response to the thread
3302 listing packets, instead of replying "packet not
3303 supported". Exit early so we don't delete the main
3304 thread. */
3305 do_cleanups (old_chain);
3306 return;
3307 }
3308
3309 /* CONTEXT now holds the current thread list on the remote
3310 target end. Delete GDB-side threads no longer found on the
3311 target. */
3312 ALL_THREADS_SAFE (tp, tmp)
3313 {
3314 for (i = 0;
3315 VEC_iterate (thread_item_t, context.items, i, item);
3316 ++i)
3317 {
3318 if (ptid_equal (item->ptid, tp->ptid))
3319 break;
3320 }
3321
3322 if (i == VEC_length (thread_item_t, context.items))
3323 {
3324 /* Not found. */
3325 delete_thread (tp->ptid);
3326 }
3327 }
3328
3329 /* Remove any unreported fork child threads from CONTEXT so
3330 that we don't interfere with follow fork, which is where
3331 creation of such threads is handled. */
3332 remove_new_fork_children (&context);
3333
3334 /* And now add threads we don't know about yet to our list. */
3335 for (i = 0;
3336 VEC_iterate (thread_item_t, context.items, i, item);
3337 ++i)
3338 {
3339 if (!ptid_equal (item->ptid, null_ptid))
3340 {
3341 struct private_thread_info *info;
3342 /* In non-stop mode, we assume new found threads are
3343 executing until proven otherwise with a stop reply.
3344 In all-stop, we can only get here if all threads are
3345 stopped. */
3346 int executing = target_is_non_stop_p () ? 1 : 0;
3347
3348 remote_notice_new_inferior (item->ptid, executing);
3349
3350 info = get_private_info_ptid (item->ptid);
3351 info->core = item->core;
3352 info->extra = item->extra;
3353 item->extra = NULL;
3354 info->name = item->name;
3355 item->name = NULL;
3356 info->thread_handle = item->thread_handle;
3357 item->thread_handle = nullptr;
3358 }
3359 }
3360 }
3361
3362 if (!got_list)
3363 {
3364 /* If no thread listing method is supported, then query whether
3365 each known thread is alive, one by one, with the T packet.
3366 If the target doesn't support threads at all, then this is a
3367 no-op. See remote_thread_alive. */
3368 prune_threads ();
3369 }
3370
3371 do_cleanups (old_chain);
3372 }
3373
3374 /*
3375 * Collect a descriptive string about the given thread.
3376 * The target may say anything it wants to about the thread
3377 * (typically info about its blocked / runnable state, name, etc.).
3378 * This string will appear in the info threads display.
3379 *
3380 * Optional: targets are not required to implement this function.
3381 */
3382
3383 static const char *
3384 remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
3385 {
3386 struct remote_state *rs = get_remote_state ();
3387 int result;
3388 int set;
3389 threadref id;
3390 struct gdb_ext_thread_info threadinfo;
3391 static char display_buf[100]; /* arbitrary... */
3392 int n = 0; /* position in display_buf */
3393
3394 if (rs->remote_desc == 0) /* paranoia */
3395 internal_error (__FILE__, __LINE__,
3396 _("remote_threads_extra_info"));
3397
3398 if (ptid_equal (tp->ptid, magic_null_ptid)
3399 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3400 /* This is the main thread which was added by GDB. The remote
3401 server doesn't know about it. */
3402 return NULL;
3403
3404 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3405 {
3406 struct thread_info *info = find_thread_ptid (tp->ptid);
3407
3408 if (info && info->priv)
3409 return info->priv->extra;
3410 else
3411 return NULL;
3412 }
3413
3414 if (rs->use_threadextra_query)
3415 {
3416 char *b = rs->buf;
3417 char *endb = rs->buf + get_remote_packet_size ();
3418
3419 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3420 b += strlen (b);
3421 write_ptid (b, endb, tp->ptid);
3422
3423 putpkt (rs->buf);
3424 getpkt (&rs->buf, &rs->buf_size, 0);
3425 if (rs->buf[0] != 0)
3426 {
3427 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3428 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3429 display_buf [result] = '\0';
3430 return display_buf;
3431 }
3432 }
3433
3434 /* If the above query fails, fall back to the old method. */
3435 rs->use_threadextra_query = 0;
3436 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3437 | TAG_MOREDISPLAY | TAG_DISPLAY;
3438 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3439 if (remote_get_threadinfo (&id, set, &threadinfo))
3440 if (threadinfo.active)
3441 {
3442 if (*threadinfo.shortname)
3443 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3444 " Name: %s,", threadinfo.shortname);
3445 if (*threadinfo.display)
3446 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3447 " State: %s,", threadinfo.display);
3448 if (*threadinfo.more_display)
3449 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3450 " Priority: %s", threadinfo.more_display);
3451
3452 if (n > 0)
3453 {
3454 /* For purely cosmetic reasons, clear up trailing commas. */
3455 if (',' == display_buf[n-1])
3456 display_buf[n-1] = ' ';
3457 return display_buf;
3458 }
3459 }
3460 return NULL;
3461 }
3462 \f
3463
3464 static int
3465 remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
3466 struct static_tracepoint_marker *marker)
3467 {
3468 struct remote_state *rs = get_remote_state ();
3469 char *p = rs->buf;
3470
3471 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3472 p += strlen (p);
3473 p += hexnumstr (p, addr);
3474 putpkt (rs->buf);
3475 getpkt (&rs->buf, &rs->buf_size, 0);
3476 p = rs->buf;
3477
3478 if (*p == 'E')
3479 error (_("Remote failure reply: %s"), p);
3480
3481 if (*p++ == 'm')
3482 {
3483 parse_static_tracepoint_marker_definition (p, NULL, marker);
3484 return 1;
3485 }
3486
3487 return 0;
3488 }
3489
3490 static VEC(static_tracepoint_marker_p) *
3491 remote_static_tracepoint_markers_by_strid (struct target_ops *self,
3492 const char *strid)
3493 {
3494 struct remote_state *rs = get_remote_state ();
3495 VEC(static_tracepoint_marker_p) *markers = NULL;
3496 struct static_tracepoint_marker *marker = NULL;
3497 struct cleanup *old_chain;
3498 const char *p;
3499
3500 /* Ask for a first packet of static tracepoint marker
3501 definition. */
3502 putpkt ("qTfSTM");
3503 getpkt (&rs->buf, &rs->buf_size, 0);
3504 p = rs->buf;
3505 if (*p == 'E')
3506 error (_("Remote failure reply: %s"), p);
3507
3508 old_chain = make_cleanup (free_current_marker, &marker);
3509
3510 while (*p++ == 'm')
3511 {
3512 if (marker == NULL)
3513 marker = XCNEW (struct static_tracepoint_marker);
3514
3515 do
3516 {
3517 parse_static_tracepoint_marker_definition (p, &p, marker);
3518
3519 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
3520 {
3521 VEC_safe_push (static_tracepoint_marker_p,
3522 markers, marker);
3523 marker = NULL;
3524 }
3525 else
3526 {
3527 release_static_tracepoint_marker (marker);
3528 memset (marker, 0, sizeof (*marker));
3529 }
3530 }
3531 while (*p++ == ','); /* comma-separated list */
3532 /* Ask for another packet of static tracepoint definition. */
3533 putpkt ("qTsSTM");
3534 getpkt (&rs->buf, &rs->buf_size, 0);
3535 p = rs->buf;
3536 }
3537
3538 do_cleanups (old_chain);
3539 return markers;
3540 }
3541
3542 \f
3543 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3544
3545 static ptid_t
3546 remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
3547 {
3548 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3549 }
3550 \f
3551
3552 /* Restart the remote side; this is an extended protocol operation. */
3553
3554 static void
3555 extended_remote_restart (void)
3556 {
3557 struct remote_state *rs = get_remote_state ();
3558
3559 /* Send the restart command; for reasons I don't understand the
3560 remote side really expects a number after the "R". */
3561 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3562 putpkt (rs->buf);
3563
3564 remote_fileio_reset ();
3565 }
3566 \f
3567 /* Clean up connection to a remote debugger. */
3568
3569 static void
3570 remote_close (struct target_ops *self)
3571 {
3572 struct remote_state *rs = get_remote_state ();
3573
3574 if (rs->remote_desc == NULL)
3575 return; /* already closed */
3576
3577 /* Make sure we leave stdin registered in the event loop. */
3578 remote_terminal_ours (self);
3579
3580 serial_close (rs->remote_desc);
3581 rs->remote_desc = NULL;
3582
3583 /* We don't have a connection to the remote stub anymore. Get rid
3584 of all the inferiors and their threads we were controlling.
3585 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3586 will be unable to find the thread corresponding to (pid, 0, 0). */
3587 inferior_ptid = null_ptid;
3588 discard_all_inferiors ();
3589
3590 /* We are closing the remote target, so we should discard
3591 everything of this target. */
3592 discard_pending_stop_replies_in_queue (rs);
3593
3594 if (remote_async_inferior_event_token)
3595 delete_async_event_handler (&remote_async_inferior_event_token);
3596
3597 remote_notif_state_xfree (rs->notif_state);
3598
3599 trace_reset_local_state ();
3600 }
3601
3602 /* Query the remote side for the text, data and bss offsets. */
3603
3604 static void
3605 get_offsets (void)
3606 {
3607 struct remote_state *rs = get_remote_state ();
3608 char *buf;
3609 char *ptr;
3610 int lose, num_segments = 0, do_sections, do_segments;
3611 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3612 struct section_offsets *offs;
3613 struct symfile_segment_data *data;
3614
3615 if (symfile_objfile == NULL)
3616 return;
3617
3618 putpkt ("qOffsets");
3619 getpkt (&rs->buf, &rs->buf_size, 0);
3620 buf = rs->buf;
3621
3622 if (buf[0] == '\000')
3623 return; /* Return silently. Stub doesn't support
3624 this command. */
3625 if (buf[0] == 'E')
3626 {
3627 warning (_("Remote failure reply: %s"), buf);
3628 return;
3629 }
3630
3631 /* Pick up each field in turn. This used to be done with scanf, but
3632 scanf will make trouble if CORE_ADDR size doesn't match
3633 conversion directives correctly. The following code will work
3634 with any size of CORE_ADDR. */
3635 text_addr = data_addr = bss_addr = 0;
3636 ptr = buf;
3637 lose = 0;
3638
3639 if (startswith (ptr, "Text="))
3640 {
3641 ptr += 5;
3642 /* Don't use strtol, could lose on big values. */
3643 while (*ptr && *ptr != ';')
3644 text_addr = (text_addr << 4) + fromhex (*ptr++);
3645
3646 if (startswith (ptr, ";Data="))
3647 {
3648 ptr += 6;
3649 while (*ptr && *ptr != ';')
3650 data_addr = (data_addr << 4) + fromhex (*ptr++);
3651 }
3652 else
3653 lose = 1;
3654
3655 if (!lose && startswith (ptr, ";Bss="))
3656 {
3657 ptr += 5;
3658 while (*ptr && *ptr != ';')
3659 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3660
3661 if (bss_addr != data_addr)
3662 warning (_("Target reported unsupported offsets: %s"), buf);
3663 }
3664 else
3665 lose = 1;
3666 }
3667 else if (startswith (ptr, "TextSeg="))
3668 {
3669 ptr += 8;
3670 /* Don't use strtol, could lose on big values. */
3671 while (*ptr && *ptr != ';')
3672 text_addr = (text_addr << 4) + fromhex (*ptr++);
3673 num_segments = 1;
3674
3675 if (startswith (ptr, ";DataSeg="))
3676 {
3677 ptr += 9;
3678 while (*ptr && *ptr != ';')
3679 data_addr = (data_addr << 4) + fromhex (*ptr++);
3680 num_segments++;
3681 }
3682 }
3683 else
3684 lose = 1;
3685
3686 if (lose)
3687 error (_("Malformed response to offset query, %s"), buf);
3688 else if (*ptr != '\0')
3689 warning (_("Target reported unsupported offsets: %s"), buf);
3690
3691 offs = ((struct section_offsets *)
3692 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3693 memcpy (offs, symfile_objfile->section_offsets,
3694 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3695
3696 data = get_symfile_segment_data (symfile_objfile->obfd);
3697 do_segments = (data != NULL);
3698 do_sections = num_segments == 0;
3699
3700 if (num_segments > 0)
3701 {
3702 segments[0] = text_addr;
3703 segments[1] = data_addr;
3704 }
3705 /* If we have two segments, we can still try to relocate everything
3706 by assuming that the .text and .data offsets apply to the whole
3707 text and data segments. Convert the offsets given in the packet
3708 to base addresses for symfile_map_offsets_to_segments. */
3709 else if (data && data->num_segments == 2)
3710 {
3711 segments[0] = data->segment_bases[0] + text_addr;
3712 segments[1] = data->segment_bases[1] + data_addr;
3713 num_segments = 2;
3714 }
3715 /* If the object file has only one segment, assume that it is text
3716 rather than data; main programs with no writable data are rare,
3717 but programs with no code are useless. Of course the code might
3718 have ended up in the data segment... to detect that we would need
3719 the permissions here. */
3720 else if (data && data->num_segments == 1)
3721 {
3722 segments[0] = data->segment_bases[0] + text_addr;
3723 num_segments = 1;
3724 }
3725 /* There's no way to relocate by segment. */
3726 else
3727 do_segments = 0;
3728
3729 if (do_segments)
3730 {
3731 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3732 offs, num_segments, segments);
3733
3734 if (ret == 0 && !do_sections)
3735 error (_("Can not handle qOffsets TextSeg "
3736 "response with this symbol file"));
3737
3738 if (ret > 0)
3739 do_sections = 0;
3740 }
3741
3742 if (data)
3743 free_symfile_segment_data (data);
3744
3745 if (do_sections)
3746 {
3747 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3748
3749 /* This is a temporary kludge to force data and bss to use the
3750 same offsets because that's what nlmconv does now. The real
3751 solution requires changes to the stub and remote.c that I
3752 don't have time to do right now. */
3753
3754 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3755 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3756 }
3757
3758 objfile_relocate (symfile_objfile, offs);
3759 }
3760
3761 /* Send interrupt_sequence to remote target. */
3762 static void
3763 send_interrupt_sequence (void)
3764 {
3765 struct remote_state *rs = get_remote_state ();
3766
3767 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3768 remote_serial_write ("\x03", 1);
3769 else if (interrupt_sequence_mode == interrupt_sequence_break)
3770 serial_send_break (rs->remote_desc);
3771 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3772 {
3773 serial_send_break (rs->remote_desc);
3774 remote_serial_write ("g", 1);
3775 }
3776 else
3777 internal_error (__FILE__, __LINE__,
3778 _("Invalid value for interrupt_sequence_mode: %s."),
3779 interrupt_sequence_mode);
3780 }
3781
3782
3783 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3784 and extract the PTID. Returns NULL_PTID if not found. */
3785
3786 static ptid_t
3787 stop_reply_extract_thread (char *stop_reply)
3788 {
3789 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3790 {
3791 const char *p;
3792
3793 /* Txx r:val ; r:val (...) */
3794 p = &stop_reply[3];
3795
3796 /* Look for "register" named "thread". */
3797 while (*p != '\0')
3798 {
3799 const char *p1;
3800
3801 p1 = strchr (p, ':');
3802 if (p1 == NULL)
3803 return null_ptid;
3804
3805 if (strncmp (p, "thread", p1 - p) == 0)
3806 return read_ptid (++p1, &p);
3807
3808 p1 = strchr (p, ';');
3809 if (p1 == NULL)
3810 return null_ptid;
3811 p1++;
3812
3813 p = p1;
3814 }
3815 }
3816
3817 return null_ptid;
3818 }
3819
3820 /* Determine the remote side's current thread. If we have a stop
3821 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3822 "thread" register we can extract the current thread from. If not,
3823 ask the remote which is the current thread with qC. The former
3824 method avoids a roundtrip. */
3825
3826 static ptid_t
3827 get_current_thread (char *wait_status)
3828 {
3829 ptid_t ptid = null_ptid;
3830
3831 /* Note we don't use remote_parse_stop_reply as that makes use of
3832 the target architecture, which we haven't yet fully determined at
3833 this point. */
3834 if (wait_status != NULL)
3835 ptid = stop_reply_extract_thread (wait_status);
3836 if (ptid_equal (ptid, null_ptid))
3837 ptid = remote_current_thread (inferior_ptid);
3838
3839 return ptid;
3840 }
3841
3842 /* Query the remote target for which is the current thread/process,
3843 add it to our tables, and update INFERIOR_PTID. The caller is
3844 responsible for setting the state such that the remote end is ready
3845 to return the current thread.
3846
3847 This function is called after handling the '?' or 'vRun' packets,
3848 whose response is a stop reply from which we can also try
3849 extracting the thread. If the target doesn't support the explicit
3850 qC query, we infer the current thread from that stop reply, passed
3851 in in WAIT_STATUS, which may be NULL. */
3852
3853 static void
3854 add_current_inferior_and_thread (char *wait_status)
3855 {
3856 struct remote_state *rs = get_remote_state ();
3857 int fake_pid_p = 0;
3858
3859 inferior_ptid = null_ptid;
3860
3861 /* Now, if we have thread information, update inferior_ptid. */
3862 ptid_t curr_ptid = get_current_thread (wait_status);
3863
3864 if (curr_ptid != null_ptid)
3865 {
3866 if (!remote_multi_process_p (rs))
3867 fake_pid_p = 1;
3868 }
3869 else
3870 {
3871 /* Without this, some commands which require an active target
3872 (such as kill) won't work. This variable serves (at least)
3873 double duty as both the pid of the target process (if it has
3874 such), and as a flag indicating that a target is active. */
3875 curr_ptid = magic_null_ptid;
3876 fake_pid_p = 1;
3877 }
3878
3879 remote_add_inferior (fake_pid_p, ptid_get_pid (curr_ptid), -1, 1);
3880
3881 /* Add the main thread and switch to it. Don't try reading
3882 registers yet, since we haven't fetched the target description
3883 yet. */
3884 thread_info *tp = add_thread_silent (curr_ptid);
3885 switch_to_thread_no_regs (tp);
3886 }
3887
3888 /* Print info about a thread that was found already stopped on
3889 connection. */
3890
3891 static void
3892 print_one_stopped_thread (struct thread_info *thread)
3893 {
3894 struct target_waitstatus *ws = &thread->suspend.waitstatus;
3895
3896 switch_to_thread (thread->ptid);
3897 stop_pc = get_frame_pc (get_current_frame ());
3898 set_current_sal_from_frame (get_current_frame ());
3899
3900 thread->suspend.waitstatus_pending_p = 0;
3901
3902 if (ws->kind == TARGET_WAITKIND_STOPPED)
3903 {
3904 enum gdb_signal sig = ws->value.sig;
3905
3906 if (signal_print_state (sig))
3907 observer_notify_signal_received (sig);
3908 }
3909 observer_notify_normal_stop (NULL, 1);
3910 }
3911
3912 /* Process all initial stop replies the remote side sent in response
3913 to the ? packet. These indicate threads that were already stopped
3914 on initial connection. We mark these threads as stopped and print
3915 their current frame before giving the user the prompt. */
3916
3917 static void
3918 process_initial_stop_replies (int from_tty)
3919 {
3920 int pending_stop_replies = stop_reply_queue_length ();
3921 struct inferior *inf;
3922 struct thread_info *thread;
3923 struct thread_info *selected = NULL;
3924 struct thread_info *lowest_stopped = NULL;
3925 struct thread_info *first = NULL;
3926
3927 /* Consume the initial pending events. */
3928 while (pending_stop_replies-- > 0)
3929 {
3930 ptid_t waiton_ptid = minus_one_ptid;
3931 ptid_t event_ptid;
3932 struct target_waitstatus ws;
3933 int ignore_event = 0;
3934 struct thread_info *thread;
3935
3936 memset (&ws, 0, sizeof (ws));
3937 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
3938 if (remote_debug)
3939 print_target_wait_results (waiton_ptid, event_ptid, &ws);
3940
3941 switch (ws.kind)
3942 {
3943 case TARGET_WAITKIND_IGNORE:
3944 case TARGET_WAITKIND_NO_RESUMED:
3945 case TARGET_WAITKIND_SIGNALLED:
3946 case TARGET_WAITKIND_EXITED:
3947 /* We shouldn't see these, but if we do, just ignore. */
3948 if (remote_debug)
3949 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
3950 ignore_event = 1;
3951 break;
3952
3953 case TARGET_WAITKIND_EXECD:
3954 xfree (ws.value.execd_pathname);
3955 break;
3956 default:
3957 break;
3958 }
3959
3960 if (ignore_event)
3961 continue;
3962
3963 thread = find_thread_ptid (event_ptid);
3964
3965 if (ws.kind == TARGET_WAITKIND_STOPPED)
3966 {
3967 enum gdb_signal sig = ws.value.sig;
3968
3969 /* Stubs traditionally report SIGTRAP as initial signal,
3970 instead of signal 0. Suppress it. */
3971 if (sig == GDB_SIGNAL_TRAP)
3972 sig = GDB_SIGNAL_0;
3973 thread->suspend.stop_signal = sig;
3974 ws.value.sig = sig;
3975 }
3976
3977 thread->suspend.waitstatus = ws;
3978
3979 if (ws.kind != TARGET_WAITKIND_STOPPED
3980 || ws.value.sig != GDB_SIGNAL_0)
3981 thread->suspend.waitstatus_pending_p = 1;
3982
3983 set_executing (event_ptid, 0);
3984 set_running (event_ptid, 0);
3985 thread->priv->vcont_resumed = 0;
3986 }
3987
3988 /* "Notice" the new inferiors before anything related to
3989 registers/memory. */
3990 ALL_INFERIORS (inf)
3991 {
3992 if (inf->pid == 0)
3993 continue;
3994
3995 inf->needs_setup = 1;
3996
3997 if (non_stop)
3998 {
3999 thread = any_live_thread_of_process (inf->pid);
4000 notice_new_inferior (thread->ptid,
4001 thread->state == THREAD_RUNNING,
4002 from_tty);
4003 }
4004 }
4005
4006 /* If all-stop on top of non-stop, pause all threads. Note this
4007 records the threads' stop pc, so must be done after "noticing"
4008 the inferiors. */
4009 if (!non_stop)
4010 {
4011 stop_all_threads ();
4012
4013 /* If all threads of an inferior were already stopped, we
4014 haven't setup the inferior yet. */
4015 ALL_INFERIORS (inf)
4016 {
4017 if (inf->pid == 0)
4018 continue;
4019
4020 if (inf->needs_setup)
4021 {
4022 thread = any_live_thread_of_process (inf->pid);
4023 switch_to_thread_no_regs (thread);
4024 setup_inferior (0);
4025 }
4026 }
4027 }
4028
4029 /* Now go over all threads that are stopped, and print their current
4030 frame. If all-stop, then if there's a signalled thread, pick
4031 that as current. */
4032 ALL_NON_EXITED_THREADS (thread)
4033 {
4034 if (first == NULL)
4035 first = thread;
4036
4037 if (!non_stop)
4038 set_running (thread->ptid, 0);
4039 else if (thread->state != THREAD_STOPPED)
4040 continue;
4041
4042 if (selected == NULL
4043 && thread->suspend.waitstatus_pending_p)
4044 selected = thread;
4045
4046 if (lowest_stopped == NULL
4047 || thread->inf->num < lowest_stopped->inf->num
4048 || thread->per_inf_num < lowest_stopped->per_inf_num)
4049 lowest_stopped = thread;
4050
4051 if (non_stop)
4052 print_one_stopped_thread (thread);
4053 }
4054
4055 /* In all-stop, we only print the status of one thread, and leave
4056 others with their status pending. */
4057 if (!non_stop)
4058 {
4059 thread = selected;
4060 if (thread == NULL)
4061 thread = lowest_stopped;
4062 if (thread == NULL)
4063 thread = first;
4064
4065 print_one_stopped_thread (thread);
4066 }
4067
4068 /* For "info program". */
4069 thread = inferior_thread ();
4070 if (thread->state == THREAD_STOPPED)
4071 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4072 }
4073
4074 /* Start the remote connection and sync state. */
4075
4076 static void
4077 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
4078 {
4079 struct remote_state *rs = get_remote_state ();
4080 struct packet_config *noack_config;
4081 char *wait_status = NULL;
4082
4083 /* Signal other parts that we're going through the initial setup,
4084 and so things may not be stable yet. E.g., we don't try to
4085 install tracepoints until we've relocated symbols. Also, a
4086 Ctrl-C before we're connected and synced up can't interrupt the
4087 target. Instead, it offers to drop the (potentially wedged)
4088 connection. */
4089 rs->starting_up = 1;
4090
4091 QUIT;
4092
4093 if (interrupt_on_connect)
4094 send_interrupt_sequence ();
4095
4096 /* Ack any packet which the remote side has already sent. */
4097 remote_serial_write ("+", 1);
4098
4099 /* The first packet we send to the target is the optional "supported
4100 packets" request. If the target can answer this, it will tell us
4101 which later probes to skip. */
4102 remote_query_supported ();
4103
4104 /* If the stub wants to get a QAllow, compose one and send it. */
4105 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4106 remote_set_permissions (target);
4107
4108 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4109 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4110 as a reply to known packet. For packet "vFile:setfs:" it is an
4111 invalid reply and GDB would return error in
4112 remote_hostio_set_filesystem, making remote files access impossible.
4113 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4114 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4115 {
4116 const char v_mustreplyempty[] = "vMustReplyEmpty";
4117
4118 putpkt (v_mustreplyempty);
4119 getpkt (&rs->buf, &rs->buf_size, 0);
4120 if (strcmp (rs->buf, "OK") == 0)
4121 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4122 else if (strcmp (rs->buf, "") != 0)
4123 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4124 rs->buf);
4125 }
4126
4127 /* Next, we possibly activate noack mode.
4128
4129 If the QStartNoAckMode packet configuration is set to AUTO,
4130 enable noack mode if the stub reported a wish for it with
4131 qSupported.
4132
4133 If set to TRUE, then enable noack mode even if the stub didn't
4134 report it in qSupported. If the stub doesn't reply OK, the
4135 session ends with an error.
4136
4137 If FALSE, then don't activate noack mode, regardless of what the
4138 stub claimed should be the default with qSupported. */
4139
4140 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4141 if (packet_config_support (noack_config) != PACKET_DISABLE)
4142 {
4143 putpkt ("QStartNoAckMode");
4144 getpkt (&rs->buf, &rs->buf_size, 0);
4145 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4146 rs->noack_mode = 1;
4147 }
4148
4149 if (extended_p)
4150 {
4151 /* Tell the remote that we are using the extended protocol. */
4152 putpkt ("!");
4153 getpkt (&rs->buf, &rs->buf_size, 0);
4154 }
4155
4156 /* Let the target know which signals it is allowed to pass down to
4157 the program. */
4158 update_signals_program_target ();
4159
4160 /* Next, if the target can specify a description, read it. We do
4161 this before anything involving memory or registers. */
4162 target_find_description ();
4163
4164 /* Next, now that we know something about the target, update the
4165 address spaces in the program spaces. */
4166 update_address_spaces ();
4167
4168 /* On OSs where the list of libraries is global to all
4169 processes, we fetch them early. */
4170 if (gdbarch_has_global_solist (target_gdbarch ()))
4171 solib_add (NULL, from_tty, auto_solib_add);
4172
4173 if (target_is_non_stop_p ())
4174 {
4175 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4176 error (_("Non-stop mode requested, but remote "
4177 "does not support non-stop"));
4178
4179 putpkt ("QNonStop:1");
4180 getpkt (&rs->buf, &rs->buf_size, 0);
4181
4182 if (strcmp (rs->buf, "OK") != 0)
4183 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4184
4185 /* Find about threads and processes the stub is already
4186 controlling. We default to adding them in the running state.
4187 The '?' query below will then tell us about which threads are
4188 stopped. */
4189 remote_update_thread_list (target);
4190 }
4191 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4192 {
4193 /* Don't assume that the stub can operate in all-stop mode.
4194 Request it explicitly. */
4195 putpkt ("QNonStop:0");
4196 getpkt (&rs->buf, &rs->buf_size, 0);
4197
4198 if (strcmp (rs->buf, "OK") != 0)
4199 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4200 }
4201
4202 /* Upload TSVs regardless of whether the target is running or not. The
4203 remote stub, such as GDBserver, may have some predefined or builtin
4204 TSVs, even if the target is not running. */
4205 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4206 {
4207 struct uploaded_tsv *uploaded_tsvs = NULL;
4208
4209 remote_upload_trace_state_variables (target, &uploaded_tsvs);
4210 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4211 }
4212
4213 /* Check whether the target is running now. */
4214 putpkt ("?");
4215 getpkt (&rs->buf, &rs->buf_size, 0);
4216
4217 if (!target_is_non_stop_p ())
4218 {
4219 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4220 {
4221 if (!extended_p)
4222 error (_("The target is not running (try extended-remote?)"));
4223
4224 /* We're connected, but not running. Drop out before we
4225 call start_remote. */
4226 rs->starting_up = 0;
4227 return;
4228 }
4229 else
4230 {
4231 /* Save the reply for later. */
4232 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4233 strcpy (wait_status, rs->buf);
4234 }
4235
4236 /* Fetch thread list. */
4237 target_update_thread_list ();
4238
4239 /* Let the stub know that we want it to return the thread. */
4240 set_continue_thread (minus_one_ptid);
4241
4242 if (thread_count () == 0)
4243 {
4244 /* Target has no concept of threads at all. GDB treats
4245 non-threaded target as single-threaded; add a main
4246 thread. */
4247 add_current_inferior_and_thread (wait_status);
4248 }
4249 else
4250 {
4251 /* We have thread information; select the thread the target
4252 says should be current. If we're reconnecting to a
4253 multi-threaded program, this will ideally be the thread
4254 that last reported an event before GDB disconnected. */
4255 inferior_ptid = get_current_thread (wait_status);
4256 if (ptid_equal (inferior_ptid, null_ptid))
4257 {
4258 /* Odd... The target was able to list threads, but not
4259 tell us which thread was current (no "thread"
4260 register in T stop reply?). Just pick the first
4261 thread in the thread list then. */
4262
4263 if (remote_debug)
4264 fprintf_unfiltered (gdb_stdlog,
4265 "warning: couldn't determine remote "
4266 "current thread; picking first in list.\n");
4267
4268 inferior_ptid = thread_list->ptid;
4269 }
4270 }
4271
4272 /* init_wait_for_inferior should be called before get_offsets in order
4273 to manage `inserted' flag in bp loc in a correct state.
4274 breakpoint_init_inferior, called from init_wait_for_inferior, set
4275 `inserted' flag to 0, while before breakpoint_re_set, called from
4276 start_remote, set `inserted' flag to 1. In the initialization of
4277 inferior, breakpoint_init_inferior should be called first, and then
4278 breakpoint_re_set can be called. If this order is broken, state of
4279 `inserted' flag is wrong, and cause some problems on breakpoint
4280 manipulation. */
4281 init_wait_for_inferior ();
4282
4283 get_offsets (); /* Get text, data & bss offsets. */
4284
4285 /* If we could not find a description using qXfer, and we know
4286 how to do it some other way, try again. This is not
4287 supported for non-stop; it could be, but it is tricky if
4288 there are no stopped threads when we connect. */
4289 if (remote_read_description_p (target)
4290 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4291 {
4292 target_clear_description ();
4293 target_find_description ();
4294 }
4295
4296 /* Use the previously fetched status. */
4297 gdb_assert (wait_status != NULL);
4298 strcpy (rs->buf, wait_status);
4299 rs->cached_wait_status = 1;
4300
4301 start_remote (from_tty); /* Initialize gdb process mechanisms. */
4302 }
4303 else
4304 {
4305 /* Clear WFI global state. Do this before finding about new
4306 threads and inferiors, and setting the current inferior.
4307 Otherwise we would clear the proceed status of the current
4308 inferior when we want its stop_soon state to be preserved
4309 (see notice_new_inferior). */
4310 init_wait_for_inferior ();
4311
4312 /* In non-stop, we will either get an "OK", meaning that there
4313 are no stopped threads at this time; or, a regular stop
4314 reply. In the latter case, there may be more than one thread
4315 stopped --- we pull them all out using the vStopped
4316 mechanism. */
4317 if (strcmp (rs->buf, "OK") != 0)
4318 {
4319 struct notif_client *notif = &notif_client_stop;
4320
4321 /* remote_notif_get_pending_replies acks this one, and gets
4322 the rest out. */
4323 rs->notif_state->pending_event[notif_client_stop.id]
4324 = remote_notif_parse (notif, rs->buf);
4325 remote_notif_get_pending_events (notif);
4326 }
4327
4328 if (thread_count () == 0)
4329 {
4330 if (!extended_p)
4331 error (_("The target is not running (try extended-remote?)"));
4332
4333 /* We're connected, but not running. Drop out before we
4334 call start_remote. */
4335 rs->starting_up = 0;
4336 return;
4337 }
4338
4339 /* In non-stop mode, any cached wait status will be stored in
4340 the stop reply queue. */
4341 gdb_assert (wait_status == NULL);
4342
4343 /* Report all signals during attach/startup. */
4344 remote_pass_signals (target, 0, NULL);
4345
4346 /* If there are already stopped threads, mark them stopped and
4347 report their stops before giving the prompt to the user. */
4348 process_initial_stop_replies (from_tty);
4349
4350 if (target_can_async_p ())
4351 target_async (1);
4352 }
4353
4354 /* If we connected to a live target, do some additional setup. */
4355 if (target_has_execution)
4356 {
4357 if (symfile_objfile) /* No use without a symbol-file. */
4358 remote_check_symbols ();
4359 }
4360
4361 /* Possibly the target has been engaged in a trace run started
4362 previously; find out where things are at. */
4363 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4364 {
4365 struct uploaded_tp *uploaded_tps = NULL;
4366
4367 if (current_trace_status ()->running)
4368 printf_filtered (_("Trace is already running on the target.\n"));
4369
4370 remote_upload_tracepoints (target, &uploaded_tps);
4371
4372 merge_uploaded_tracepoints (&uploaded_tps);
4373 }
4374
4375 /* Possibly the target has been engaged in a btrace record started
4376 previously; find out where things are at. */
4377 remote_btrace_maybe_reopen ();
4378
4379 /* The thread and inferior lists are now synchronized with the
4380 target, our symbols have been relocated, and we're merged the
4381 target's tracepoints with ours. We're done with basic start
4382 up. */
4383 rs->starting_up = 0;
4384
4385 /* Maybe breakpoints are global and need to be inserted now. */
4386 if (breakpoints_should_be_inserted_now ())
4387 insert_breakpoints ();
4388 }
4389
4390 /* Open a connection to a remote debugger.
4391 NAME is the filename used for communication. */
4392
4393 static void
4394 remote_open (const char *name, int from_tty)
4395 {
4396 remote_open_1 (name, from_tty, &remote_ops, 0);
4397 }
4398
4399 /* Open a connection to a remote debugger using the extended
4400 remote gdb protocol. NAME is the filename used for communication. */
4401
4402 static void
4403 extended_remote_open (const char *name, int from_tty)
4404 {
4405 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
4406 }
4407
4408 /* Reset all packets back to "unknown support". Called when opening a
4409 new connection to a remote target. */
4410
4411 static void
4412 reset_all_packet_configs_support (void)
4413 {
4414 int i;
4415
4416 for (i = 0; i < PACKET_MAX; i++)
4417 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4418 }
4419
4420 /* Initialize all packet configs. */
4421
4422 static void
4423 init_all_packet_configs (void)
4424 {
4425 int i;
4426
4427 for (i = 0; i < PACKET_MAX; i++)
4428 {
4429 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4430 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4431 }
4432 }
4433
4434 /* Symbol look-up. */
4435
4436 static void
4437 remote_check_symbols (void)
4438 {
4439 struct remote_state *rs = get_remote_state ();
4440 char *msg, *reply, *tmp;
4441 int end;
4442 long reply_size;
4443 struct cleanup *old_chain;
4444
4445 /* The remote side has no concept of inferiors that aren't running
4446 yet, it only knows about running processes. If we're connected
4447 but our current inferior is not running, we should not invite the
4448 remote target to request symbol lookups related to its
4449 (unrelated) current process. */
4450 if (!target_has_execution)
4451 return;
4452
4453 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4454 return;
4455
4456 /* Make sure the remote is pointing at the right process. Note
4457 there's no way to select "no process". */
4458 set_general_process ();
4459
4460 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4461 because we need both at the same time. */
4462 msg = (char *) xmalloc (get_remote_packet_size ());
4463 old_chain = make_cleanup (xfree, msg);
4464 reply = (char *) xmalloc (get_remote_packet_size ());
4465 make_cleanup (free_current_contents, &reply);
4466 reply_size = get_remote_packet_size ();
4467
4468 /* Invite target to request symbol lookups. */
4469
4470 putpkt ("qSymbol::");
4471 getpkt (&reply, &reply_size, 0);
4472 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4473
4474 while (startswith (reply, "qSymbol:"))
4475 {
4476 struct bound_minimal_symbol sym;
4477
4478 tmp = &reply[8];
4479 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4480 msg[end] = '\0';
4481 sym = lookup_minimal_symbol (msg, NULL, NULL);
4482 if (sym.minsym == NULL)
4483 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4484 else
4485 {
4486 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4487 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4488
4489 /* If this is a function address, return the start of code
4490 instead of any data function descriptor. */
4491 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4492 sym_addr,
4493 &current_target);
4494
4495 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4496 phex_nz (sym_addr, addr_size), &reply[8]);
4497 }
4498
4499 putpkt (msg);
4500 getpkt (&reply, &reply_size, 0);
4501 }
4502
4503 do_cleanups (old_chain);
4504 }
4505
4506 static struct serial *
4507 remote_serial_open (const char *name)
4508 {
4509 static int udp_warning = 0;
4510
4511 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4512 of in ser-tcp.c, because it is the remote protocol assuming that the
4513 serial connection is reliable and not the serial connection promising
4514 to be. */
4515 if (!udp_warning && startswith (name, "udp:"))
4516 {
4517 warning (_("The remote protocol may be unreliable over UDP.\n"
4518 "Some events may be lost, rendering further debugging "
4519 "impossible."));
4520 udp_warning = 1;
4521 }
4522
4523 return serial_open (name);
4524 }
4525
4526 /* Inform the target of our permission settings. The permission flags
4527 work without this, but if the target knows the settings, it can do
4528 a couple things. First, it can add its own check, to catch cases
4529 that somehow manage to get by the permissions checks in target
4530 methods. Second, if the target is wired to disallow particular
4531 settings (for instance, a system in the field that is not set up to
4532 be able to stop at a breakpoint), it can object to any unavailable
4533 permissions. */
4534
4535 void
4536 remote_set_permissions (struct target_ops *self)
4537 {
4538 struct remote_state *rs = get_remote_state ();
4539
4540 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4541 "WriteReg:%x;WriteMem:%x;"
4542 "InsertBreak:%x;InsertTrace:%x;"
4543 "InsertFastTrace:%x;Stop:%x",
4544 may_write_registers, may_write_memory,
4545 may_insert_breakpoints, may_insert_tracepoints,
4546 may_insert_fast_tracepoints, may_stop);
4547 putpkt (rs->buf);
4548 getpkt (&rs->buf, &rs->buf_size, 0);
4549
4550 /* If the target didn't like the packet, warn the user. Do not try
4551 to undo the user's settings, that would just be maddening. */
4552 if (strcmp (rs->buf, "OK") != 0)
4553 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4554 }
4555
4556 /* This type describes each known response to the qSupported
4557 packet. */
4558 struct protocol_feature
4559 {
4560 /* The name of this protocol feature. */
4561 const char *name;
4562
4563 /* The default for this protocol feature. */
4564 enum packet_support default_support;
4565
4566 /* The function to call when this feature is reported, or after
4567 qSupported processing if the feature is not supported.
4568 The first argument points to this structure. The second
4569 argument indicates whether the packet requested support be
4570 enabled, disabled, or probed (or the default, if this function
4571 is being called at the end of processing and this feature was
4572 not reported). The third argument may be NULL; if not NULL, it
4573 is a NUL-terminated string taken from the packet following
4574 this feature's name and an equals sign. */
4575 void (*func) (const struct protocol_feature *, enum packet_support,
4576 const char *);
4577
4578 /* The corresponding packet for this feature. Only used if
4579 FUNC is remote_supported_packet. */
4580 int packet;
4581 };
4582
4583 static void
4584 remote_supported_packet (const struct protocol_feature *feature,
4585 enum packet_support support,
4586 const char *argument)
4587 {
4588 if (argument)
4589 {
4590 warning (_("Remote qSupported response supplied an unexpected value for"
4591 " \"%s\"."), feature->name);
4592 return;
4593 }
4594
4595 remote_protocol_packets[feature->packet].support = support;
4596 }
4597
4598 static void
4599 remote_packet_size (const struct protocol_feature *feature,
4600 enum packet_support support, const char *value)
4601 {
4602 struct remote_state *rs = get_remote_state ();
4603
4604 int packet_size;
4605 char *value_end;
4606
4607 if (support != PACKET_ENABLE)
4608 return;
4609
4610 if (value == NULL || *value == '\0')
4611 {
4612 warning (_("Remote target reported \"%s\" without a size."),
4613 feature->name);
4614 return;
4615 }
4616
4617 errno = 0;
4618 packet_size = strtol (value, &value_end, 16);
4619 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4620 {
4621 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4622 feature->name, value);
4623 return;
4624 }
4625
4626 /* Record the new maximum packet size. */
4627 rs->explicit_packet_size = packet_size;
4628 }
4629
4630 static const struct protocol_feature remote_protocol_features[] = {
4631 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4632 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4633 PACKET_qXfer_auxv },
4634 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4635 PACKET_qXfer_exec_file },
4636 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4637 PACKET_qXfer_features },
4638 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4639 PACKET_qXfer_libraries },
4640 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4641 PACKET_qXfer_libraries_svr4 },
4642 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4643 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4644 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4645 PACKET_qXfer_memory_map },
4646 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4647 PACKET_qXfer_spu_read },
4648 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4649 PACKET_qXfer_spu_write },
4650 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4651 PACKET_qXfer_osdata },
4652 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4653 PACKET_qXfer_threads },
4654 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4655 PACKET_qXfer_traceframe_info },
4656 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4657 PACKET_QPassSignals },
4658 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4659 PACKET_QCatchSyscalls },
4660 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4661 PACKET_QProgramSignals },
4662 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
4663 PACKET_QSetWorkingDir },
4664 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
4665 PACKET_QStartupWithShell },
4666 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
4667 PACKET_QEnvironmentHexEncoded },
4668 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
4669 PACKET_QEnvironmentReset },
4670 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
4671 PACKET_QEnvironmentUnset },
4672 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4673 PACKET_QStartNoAckMode },
4674 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4675 PACKET_multiprocess_feature },
4676 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4677 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4678 PACKET_qXfer_siginfo_read },
4679 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4680 PACKET_qXfer_siginfo_write },
4681 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4682 PACKET_ConditionalTracepoints },
4683 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4684 PACKET_ConditionalBreakpoints },
4685 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4686 PACKET_BreakpointCommands },
4687 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4688 PACKET_FastTracepoints },
4689 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4690 PACKET_StaticTracepoints },
4691 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4692 PACKET_InstallInTrace},
4693 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4694 PACKET_DisconnectedTracing_feature },
4695 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4696 PACKET_bc },
4697 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4698 PACKET_bs },
4699 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4700 PACKET_TracepointSource },
4701 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4702 PACKET_QAllow },
4703 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4704 PACKET_EnableDisableTracepoints_feature },
4705 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4706 PACKET_qXfer_fdpic },
4707 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4708 PACKET_qXfer_uib },
4709 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4710 PACKET_QDisableRandomization },
4711 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4712 { "QTBuffer:size", PACKET_DISABLE,
4713 remote_supported_packet, PACKET_QTBuffer_size},
4714 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4715 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4716 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4717 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4718 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4719 PACKET_qXfer_btrace },
4720 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4721 PACKET_qXfer_btrace_conf },
4722 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4723 PACKET_Qbtrace_conf_bts_size },
4724 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4725 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4726 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4727 PACKET_fork_event_feature },
4728 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4729 PACKET_vfork_event_feature },
4730 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4731 PACKET_exec_event_feature },
4732 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4733 PACKET_Qbtrace_conf_pt_size },
4734 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4735 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4736 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4737 };
4738
4739 static char *remote_support_xml;
4740
4741 /* Register string appended to "xmlRegisters=" in qSupported query. */
4742
4743 void
4744 register_remote_support_xml (const char *xml)
4745 {
4746 #if defined(HAVE_LIBEXPAT)
4747 if (remote_support_xml == NULL)
4748 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4749 else
4750 {
4751 char *copy = xstrdup (remote_support_xml + 13);
4752 char *p = strtok (copy, ",");
4753
4754 do
4755 {
4756 if (strcmp (p, xml) == 0)
4757 {
4758 /* already there */
4759 xfree (copy);
4760 return;
4761 }
4762 }
4763 while ((p = strtok (NULL, ",")) != NULL);
4764 xfree (copy);
4765
4766 remote_support_xml = reconcat (remote_support_xml,
4767 remote_support_xml, ",", xml,
4768 (char *) NULL);
4769 }
4770 #endif
4771 }
4772
4773 static char *
4774 remote_query_supported_append (char *msg, const char *append)
4775 {
4776 if (msg)
4777 return reconcat (msg, msg, ";", append, (char *) NULL);
4778 else
4779 return xstrdup (append);
4780 }
4781
4782 static void
4783 remote_query_supported (void)
4784 {
4785 struct remote_state *rs = get_remote_state ();
4786 char *next;
4787 int i;
4788 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4789
4790 /* The packet support flags are handled differently for this packet
4791 than for most others. We treat an error, a disabled packet, and
4792 an empty response identically: any features which must be reported
4793 to be used will be automatically disabled. An empty buffer
4794 accomplishes this, since that is also the representation for a list
4795 containing no features. */
4796
4797 rs->buf[0] = 0;
4798 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4799 {
4800 char *q = NULL;
4801 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4802
4803 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
4804 q = remote_query_supported_append (q, "multiprocess+");
4805
4806 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
4807 q = remote_query_supported_append (q, "swbreak+");
4808 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
4809 q = remote_query_supported_append (q, "hwbreak+");
4810
4811 q = remote_query_supported_append (q, "qRelocInsn+");
4812
4813 if (packet_set_cmd_state (PACKET_fork_event_feature)
4814 != AUTO_BOOLEAN_FALSE)
4815 q = remote_query_supported_append (q, "fork-events+");
4816 if (packet_set_cmd_state (PACKET_vfork_event_feature)
4817 != AUTO_BOOLEAN_FALSE)
4818 q = remote_query_supported_append (q, "vfork-events+");
4819 if (packet_set_cmd_state (PACKET_exec_event_feature)
4820 != AUTO_BOOLEAN_FALSE)
4821 q = remote_query_supported_append (q, "exec-events+");
4822
4823 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
4824 q = remote_query_supported_append (q, "vContSupported+");
4825
4826 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
4827 q = remote_query_supported_append (q, "QThreadEvents+");
4828
4829 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
4830 q = remote_query_supported_append (q, "no-resumed+");
4831
4832 /* Keep this one last to work around a gdbserver <= 7.10 bug in
4833 the qSupported:xmlRegisters=i386 handling. */
4834 if (remote_support_xml != NULL)
4835 q = remote_query_supported_append (q, remote_support_xml);
4836
4837 q = reconcat (q, "qSupported:", q, (char *) NULL);
4838 putpkt (q);
4839
4840 do_cleanups (old_chain);
4841
4842 getpkt (&rs->buf, &rs->buf_size, 0);
4843
4844 /* If an error occured, warn, but do not return - just reset the
4845 buffer to empty and go on to disable features. */
4846 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4847 == PACKET_ERROR)
4848 {
4849 warning (_("Remote failure reply: %s"), rs->buf);
4850 rs->buf[0] = 0;
4851 }
4852 }
4853
4854 memset (seen, 0, sizeof (seen));
4855
4856 next = rs->buf;
4857 while (*next)
4858 {
4859 enum packet_support is_supported;
4860 char *p, *end, *name_end, *value;
4861
4862 /* First separate out this item from the rest of the packet. If
4863 there's another item after this, we overwrite the separator
4864 (terminated strings are much easier to work with). */
4865 p = next;
4866 end = strchr (p, ';');
4867 if (end == NULL)
4868 {
4869 end = p + strlen (p);
4870 next = end;
4871 }
4872 else
4873 {
4874 *end = '\0';
4875 next = end + 1;
4876
4877 if (end == p)
4878 {
4879 warning (_("empty item in \"qSupported\" response"));
4880 continue;
4881 }
4882 }
4883
4884 name_end = strchr (p, '=');
4885 if (name_end)
4886 {
4887 /* This is a name=value entry. */
4888 is_supported = PACKET_ENABLE;
4889 value = name_end + 1;
4890 *name_end = '\0';
4891 }
4892 else
4893 {
4894 value = NULL;
4895 switch (end[-1])
4896 {
4897 case '+':
4898 is_supported = PACKET_ENABLE;
4899 break;
4900
4901 case '-':
4902 is_supported = PACKET_DISABLE;
4903 break;
4904
4905 case '?':
4906 is_supported = PACKET_SUPPORT_UNKNOWN;
4907 break;
4908
4909 default:
4910 warning (_("unrecognized item \"%s\" "
4911 "in \"qSupported\" response"), p);
4912 continue;
4913 }
4914 end[-1] = '\0';
4915 }
4916
4917 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4918 if (strcmp (remote_protocol_features[i].name, p) == 0)
4919 {
4920 const struct protocol_feature *feature;
4921
4922 seen[i] = 1;
4923 feature = &remote_protocol_features[i];
4924 feature->func (feature, is_supported, value);
4925 break;
4926 }
4927 }
4928
4929 /* If we increased the packet size, make sure to increase the global
4930 buffer size also. We delay this until after parsing the entire
4931 qSupported packet, because this is the same buffer we were
4932 parsing. */
4933 if (rs->buf_size < rs->explicit_packet_size)
4934 {
4935 rs->buf_size = rs->explicit_packet_size;
4936 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
4937 }
4938
4939 /* Handle the defaults for unmentioned features. */
4940 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4941 if (!seen[i])
4942 {
4943 const struct protocol_feature *feature;
4944
4945 feature = &remote_protocol_features[i];
4946 feature->func (feature, feature->default_support, NULL);
4947 }
4948 }
4949
4950 /* Serial QUIT handler for the remote serial descriptor.
4951
4952 Defers handling a Ctrl-C until we're done with the current
4953 command/response packet sequence, unless:
4954
4955 - We're setting up the connection. Don't send a remote interrupt
4956 request, as we're not fully synced yet. Quit immediately
4957 instead.
4958
4959 - The target has been resumed in the foreground
4960 (target_terminal::is_ours is false) with a synchronous resume
4961 packet, and we're blocked waiting for the stop reply, thus a
4962 Ctrl-C should be immediately sent to the target.
4963
4964 - We get a second Ctrl-C while still within the same serial read or
4965 write. In that case the serial is seemingly wedged --- offer to
4966 quit/disconnect.
4967
4968 - We see a second Ctrl-C without target response, after having
4969 previously interrupted the target. In that case the target/stub
4970 is probably wedged --- offer to quit/disconnect.
4971 */
4972
4973 static void
4974 remote_serial_quit_handler (void)
4975 {
4976 struct remote_state *rs = get_remote_state ();
4977
4978 if (check_quit_flag ())
4979 {
4980 /* If we're starting up, we're not fully synced yet. Quit
4981 immediately. */
4982 if (rs->starting_up)
4983 quit ();
4984 else if (rs->got_ctrlc_during_io)
4985 {
4986 if (query (_("The target is not responding to GDB commands.\n"
4987 "Stop debugging it? ")))
4988 remote_unpush_and_throw ();
4989 }
4990 /* If ^C has already been sent once, offer to disconnect. */
4991 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
4992 interrupt_query ();
4993 /* All-stop protocol, and blocked waiting for stop reply. Send
4994 an interrupt request. */
4995 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
4996 target_interrupt (inferior_ptid);
4997 else
4998 rs->got_ctrlc_during_io = 1;
4999 }
5000 }
5001
5002 /* Remove any of the remote.c targets from target stack. Upper targets depend
5003 on it so remove them first. */
5004
5005 static void
5006 remote_unpush_target (void)
5007 {
5008 pop_all_targets_at_and_above (process_stratum);
5009 }
5010
5011 static void
5012 remote_unpush_and_throw (void)
5013 {
5014 remote_unpush_target ();
5015 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5016 }
5017
5018 static void
5019 remote_open_1 (const char *name, int from_tty,
5020 struct target_ops *target, int extended_p)
5021 {
5022 struct remote_state *rs = get_remote_state ();
5023
5024 if (name == 0)
5025 error (_("To open a remote debug connection, you need to specify what\n"
5026 "serial device is attached to the remote system\n"
5027 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5028
5029 /* See FIXME above. */
5030 if (!target_async_permitted)
5031 wait_forever_enabled_p = 1;
5032
5033 /* If we're connected to a running target, target_preopen will kill it.
5034 Ask this question first, before target_preopen has a chance to kill
5035 anything. */
5036 if (rs->remote_desc != NULL && !have_inferiors ())
5037 {
5038 if (from_tty
5039 && !query (_("Already connected to a remote target. Disconnect? ")))
5040 error (_("Still connected."));
5041 }
5042
5043 /* Here the possibly existing remote target gets unpushed. */
5044 target_preopen (from_tty);
5045
5046 /* Make sure we send the passed signals list the next time we resume. */
5047 xfree (rs->last_pass_packet);
5048 rs->last_pass_packet = NULL;
5049
5050 /* Make sure we send the program signals list the next time we
5051 resume. */
5052 xfree (rs->last_program_signals_packet);
5053 rs->last_program_signals_packet = NULL;
5054
5055 remote_fileio_reset ();
5056 reopen_exec_file ();
5057 reread_symbols ();
5058
5059 rs->remote_desc = remote_serial_open (name);
5060 if (!rs->remote_desc)
5061 perror_with_name (name);
5062
5063 if (baud_rate != -1)
5064 {
5065 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5066 {
5067 /* The requested speed could not be set. Error out to
5068 top level after closing remote_desc. Take care to
5069 set remote_desc to NULL to avoid closing remote_desc
5070 more than once. */
5071 serial_close (rs->remote_desc);
5072 rs->remote_desc = NULL;
5073 perror_with_name (name);
5074 }
5075 }
5076
5077 serial_setparity (rs->remote_desc, serial_parity);
5078 serial_raw (rs->remote_desc);
5079
5080 /* If there is something sitting in the buffer we might take it as a
5081 response to a command, which would be bad. */
5082 serial_flush_input (rs->remote_desc);
5083
5084 if (from_tty)
5085 {
5086 puts_filtered ("Remote debugging using ");
5087 puts_filtered (name);
5088 puts_filtered ("\n");
5089 }
5090 push_target (target); /* Switch to using remote target now. */
5091
5092 /* Register extra event sources in the event loop. */
5093 remote_async_inferior_event_token
5094 = create_async_event_handler (remote_async_inferior_event_handler,
5095 NULL);
5096 rs->notif_state = remote_notif_state_allocate ();
5097
5098 /* Reset the target state; these things will be queried either by
5099 remote_query_supported or as they are needed. */
5100 reset_all_packet_configs_support ();
5101 rs->cached_wait_status = 0;
5102 rs->explicit_packet_size = 0;
5103 rs->noack_mode = 0;
5104 rs->extended = extended_p;
5105 rs->waiting_for_stop_reply = 0;
5106 rs->ctrlc_pending_p = 0;
5107 rs->got_ctrlc_during_io = 0;
5108
5109 rs->general_thread = not_sent_ptid;
5110 rs->continue_thread = not_sent_ptid;
5111 rs->remote_traceframe_number = -1;
5112
5113 rs->last_resume_exec_dir = EXEC_FORWARD;
5114
5115 /* Probe for ability to use "ThreadInfo" query, as required. */
5116 rs->use_threadinfo_query = 1;
5117 rs->use_threadextra_query = 1;
5118
5119 readahead_cache_invalidate ();
5120
5121 /* Start out by owning the terminal. */
5122 remote_async_terminal_ours_p = 1;
5123
5124 if (target_async_permitted)
5125 {
5126 /* FIXME: cagney/1999-09-23: During the initial connection it is
5127 assumed that the target is already ready and able to respond to
5128 requests. Unfortunately remote_start_remote() eventually calls
5129 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5130 around this. Eventually a mechanism that allows
5131 wait_for_inferior() to expect/get timeouts will be
5132 implemented. */
5133 wait_forever_enabled_p = 0;
5134 }
5135
5136 /* First delete any symbols previously loaded from shared libraries. */
5137 no_shared_libraries (NULL, 0);
5138
5139 /* Start afresh. */
5140 init_thread_list ();
5141
5142 /* Start the remote connection. If error() or QUIT, discard this
5143 target (we'd otherwise be in an inconsistent state) and then
5144 propogate the error on up the exception chain. This ensures that
5145 the caller doesn't stumble along blindly assuming that the
5146 function succeeded. The CLI doesn't have this problem but other
5147 UI's, such as MI do.
5148
5149 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5150 this function should return an error indication letting the
5151 caller restore the previous state. Unfortunately the command
5152 ``target remote'' is directly wired to this function making that
5153 impossible. On a positive note, the CLI side of this problem has
5154 been fixed - the function set_cmd_context() makes it possible for
5155 all the ``target ....'' commands to share a common callback
5156 function. See cli-dump.c. */
5157 {
5158
5159 TRY
5160 {
5161 remote_start_remote (from_tty, target, extended_p);
5162 }
5163 CATCH (ex, RETURN_MASK_ALL)
5164 {
5165 /* Pop the partially set up target - unless something else did
5166 already before throwing the exception. */
5167 if (rs->remote_desc != NULL)
5168 remote_unpush_target ();
5169 if (target_async_permitted)
5170 wait_forever_enabled_p = 1;
5171 throw_exception (ex);
5172 }
5173 END_CATCH
5174 }
5175
5176 remote_btrace_reset ();
5177
5178 if (target_async_permitted)
5179 wait_forever_enabled_p = 1;
5180 }
5181
5182 /* Detach the specified process. */
5183
5184 static void
5185 remote_detach_pid (int pid)
5186 {
5187 struct remote_state *rs = get_remote_state ();
5188
5189 if (remote_multi_process_p (rs))
5190 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5191 else
5192 strcpy (rs->buf, "D");
5193
5194 putpkt (rs->buf);
5195 getpkt (&rs->buf, &rs->buf_size, 0);
5196
5197 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5198 ;
5199 else if (rs->buf[0] == '\0')
5200 error (_("Remote doesn't know how to detach"));
5201 else
5202 error (_("Can't detach process."));
5203 }
5204
5205 /* This detaches a program to which we previously attached, using
5206 inferior_ptid to identify the process. After this is done, GDB
5207 can be used to debug some other program. We better not have left
5208 any breakpoints in the target program or it'll die when it hits
5209 one. */
5210
5211 static void
5212 remote_detach_1 (const char *args, int from_tty)
5213 {
5214 int pid = ptid_get_pid (inferior_ptid);
5215 struct remote_state *rs = get_remote_state ();
5216 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5217 int is_fork_parent;
5218
5219 if (args)
5220 error (_("Argument given to \"detach\" when remotely debugging."));
5221
5222 if (!target_has_execution)
5223 error (_("No process to detach from."));
5224
5225 target_announce_detach (from_tty);
5226
5227 /* Tell the remote target to detach. */
5228 remote_detach_pid (pid);
5229
5230 /* Exit only if this is the only active inferior. */
5231 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5232 puts_filtered (_("Ending remote debugging.\n"));
5233
5234 /* Check to see if we are detaching a fork parent. Note that if we
5235 are detaching a fork child, tp == NULL. */
5236 is_fork_parent = (tp != NULL
5237 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5238
5239 /* If doing detach-on-fork, we don't mourn, because that will delete
5240 breakpoints that should be available for the followed inferior. */
5241 if (!is_fork_parent)
5242 target_mourn_inferior (inferior_ptid);
5243 else
5244 {
5245 inferior_ptid = null_ptid;
5246 detach_inferior (pid);
5247 }
5248 }
5249
5250 static void
5251 remote_detach (struct target_ops *ops, const char *args, int from_tty)
5252 {
5253 remote_detach_1 (args, from_tty);
5254 }
5255
5256 static void
5257 extended_remote_detach (struct target_ops *ops, const char *args, int from_tty)
5258 {
5259 remote_detach_1 (args, from_tty);
5260 }
5261
5262 /* Target follow-fork function for remote targets. On entry, and
5263 at return, the current inferior is the fork parent.
5264
5265 Note that although this is currently only used for extended-remote,
5266 it is named remote_follow_fork in anticipation of using it for the
5267 remote target as well. */
5268
5269 static int
5270 remote_follow_fork (struct target_ops *ops, int follow_child,
5271 int detach_fork)
5272 {
5273 struct remote_state *rs = get_remote_state ();
5274 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5275
5276 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5277 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5278 {
5279 /* When following the parent and detaching the child, we detach
5280 the child here. For the case of following the child and
5281 detaching the parent, the detach is done in the target-
5282 independent follow fork code in infrun.c. We can't use
5283 target_detach when detaching an unfollowed child because
5284 the client side doesn't know anything about the child. */
5285 if (detach_fork && !follow_child)
5286 {
5287 /* Detach the fork child. */
5288 ptid_t child_ptid;
5289 pid_t child_pid;
5290
5291 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5292 child_pid = ptid_get_pid (child_ptid);
5293
5294 remote_detach_pid (child_pid);
5295 detach_inferior (child_pid);
5296 }
5297 }
5298 return 0;
5299 }
5300
5301 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5302 in the program space of the new inferior. On entry and at return the
5303 current inferior is the exec'ing inferior. INF is the new exec'd
5304 inferior, which may be the same as the exec'ing inferior unless
5305 follow-exec-mode is "new". */
5306
5307 static void
5308 remote_follow_exec (struct target_ops *ops,
5309 struct inferior *inf, char *execd_pathname)
5310 {
5311 /* We know that this is a target file name, so if it has the "target:"
5312 prefix we strip it off before saving it in the program space. */
5313 if (is_target_filename (execd_pathname))
5314 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5315
5316 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5317 }
5318
5319 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5320
5321 static void
5322 remote_disconnect (struct target_ops *target, const char *args, int from_tty)
5323 {
5324 if (args)
5325 error (_("Argument given to \"disconnect\" when remotely debugging."));
5326
5327 /* Make sure we unpush even the extended remote targets. Calling
5328 target_mourn_inferior won't unpush, and remote_mourn won't
5329 unpush if there is more than one inferior left. */
5330 unpush_target (target);
5331 generic_mourn_inferior ();
5332
5333 if (from_tty)
5334 puts_filtered ("Ending remote debugging.\n");
5335 }
5336
5337 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5338 be chatty about it. */
5339
5340 static void
5341 extended_remote_attach (struct target_ops *target, const char *args,
5342 int from_tty)
5343 {
5344 struct remote_state *rs = get_remote_state ();
5345 int pid;
5346 char *wait_status = NULL;
5347
5348 pid = parse_pid_to_attach (args);
5349
5350 /* Remote PID can be freely equal to getpid, do not check it here the same
5351 way as in other targets. */
5352
5353 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5354 error (_("This target does not support attaching to a process"));
5355
5356 if (from_tty)
5357 {
5358 char *exec_file = get_exec_file (0);
5359
5360 if (exec_file)
5361 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5362 target_pid_to_str (pid_to_ptid (pid)));
5363 else
5364 printf_unfiltered (_("Attaching to %s\n"),
5365 target_pid_to_str (pid_to_ptid (pid)));
5366
5367 gdb_flush (gdb_stdout);
5368 }
5369
5370 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5371 putpkt (rs->buf);
5372 getpkt (&rs->buf, &rs->buf_size, 0);
5373
5374 switch (packet_ok (rs->buf,
5375 &remote_protocol_packets[PACKET_vAttach]))
5376 {
5377 case PACKET_OK:
5378 if (!target_is_non_stop_p ())
5379 {
5380 /* Save the reply for later. */
5381 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5382 strcpy (wait_status, rs->buf);
5383 }
5384 else if (strcmp (rs->buf, "OK") != 0)
5385 error (_("Attaching to %s failed with: %s"),
5386 target_pid_to_str (pid_to_ptid (pid)),
5387 rs->buf);
5388 break;
5389 case PACKET_UNKNOWN:
5390 error (_("This target does not support attaching to a process"));
5391 default:
5392 error (_("Attaching to %s failed"),
5393 target_pid_to_str (pid_to_ptid (pid)));
5394 }
5395
5396 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5397
5398 inferior_ptid = pid_to_ptid (pid);
5399
5400 if (target_is_non_stop_p ())
5401 {
5402 struct thread_info *thread;
5403
5404 /* Get list of threads. */
5405 remote_update_thread_list (target);
5406
5407 thread = first_thread_of_process (pid);
5408 if (thread)
5409 inferior_ptid = thread->ptid;
5410 else
5411 inferior_ptid = pid_to_ptid (pid);
5412
5413 /* Invalidate our notion of the remote current thread. */
5414 record_currthread (rs, minus_one_ptid);
5415 }
5416 else
5417 {
5418 /* Now, if we have thread information, update inferior_ptid. */
5419 inferior_ptid = remote_current_thread (inferior_ptid);
5420
5421 /* Add the main thread to the thread list. */
5422 add_thread_silent (inferior_ptid);
5423 }
5424
5425 /* Next, if the target can specify a description, read it. We do
5426 this before anything involving memory or registers. */
5427 target_find_description ();
5428
5429 if (!target_is_non_stop_p ())
5430 {
5431 /* Use the previously fetched status. */
5432 gdb_assert (wait_status != NULL);
5433
5434 if (target_can_async_p ())
5435 {
5436 struct notif_event *reply
5437 = remote_notif_parse (&notif_client_stop, wait_status);
5438
5439 push_stop_reply ((struct stop_reply *) reply);
5440
5441 target_async (1);
5442 }
5443 else
5444 {
5445 gdb_assert (wait_status != NULL);
5446 strcpy (rs->buf, wait_status);
5447 rs->cached_wait_status = 1;
5448 }
5449 }
5450 else
5451 gdb_assert (wait_status == NULL);
5452 }
5453
5454 /* Implementation of the to_post_attach method. */
5455
5456 static void
5457 extended_remote_post_attach (struct target_ops *ops, int pid)
5458 {
5459 /* Get text, data & bss offsets. */
5460 get_offsets ();
5461
5462 /* In certain cases GDB might not have had the chance to start
5463 symbol lookup up until now. This could happen if the debugged
5464 binary is not using shared libraries, the vsyscall page is not
5465 present (on Linux) and the binary itself hadn't changed since the
5466 debugging process was started. */
5467 if (symfile_objfile != NULL)
5468 remote_check_symbols();
5469 }
5470
5471 \f
5472 /* Check for the availability of vCont. This function should also check
5473 the response. */
5474
5475 static void
5476 remote_vcont_probe (struct remote_state *rs)
5477 {
5478 char *buf;
5479
5480 strcpy (rs->buf, "vCont?");
5481 putpkt (rs->buf);
5482 getpkt (&rs->buf, &rs->buf_size, 0);
5483 buf = rs->buf;
5484
5485 /* Make sure that the features we assume are supported. */
5486 if (startswith (buf, "vCont"))
5487 {
5488 char *p = &buf[5];
5489 int support_c, support_C;
5490
5491 rs->supports_vCont.s = 0;
5492 rs->supports_vCont.S = 0;
5493 support_c = 0;
5494 support_C = 0;
5495 rs->supports_vCont.t = 0;
5496 rs->supports_vCont.r = 0;
5497 while (p && *p == ';')
5498 {
5499 p++;
5500 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5501 rs->supports_vCont.s = 1;
5502 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5503 rs->supports_vCont.S = 1;
5504 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5505 support_c = 1;
5506 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5507 support_C = 1;
5508 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5509 rs->supports_vCont.t = 1;
5510 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5511 rs->supports_vCont.r = 1;
5512
5513 p = strchr (p, ';');
5514 }
5515
5516 /* If c, and C are not all supported, we can't use vCont. Clearing
5517 BUF will make packet_ok disable the packet. */
5518 if (!support_c || !support_C)
5519 buf[0] = 0;
5520 }
5521
5522 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5523 }
5524
5525 /* Helper function for building "vCont" resumptions. Write a
5526 resumption to P. ENDP points to one-passed-the-end of the buffer
5527 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5528 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5529 resumed thread should be single-stepped and/or signalled. If PTID
5530 equals minus_one_ptid, then all threads are resumed; if PTID
5531 represents a process, then all threads of the process are resumed;
5532 the thread to be stepped and/or signalled is given in the global
5533 INFERIOR_PTID. */
5534
5535 static char *
5536 append_resumption (char *p, char *endp,
5537 ptid_t ptid, int step, enum gdb_signal siggnal)
5538 {
5539 struct remote_state *rs = get_remote_state ();
5540
5541 if (step && siggnal != GDB_SIGNAL_0)
5542 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5543 else if (step
5544 /* GDB is willing to range step. */
5545 && use_range_stepping
5546 /* Target supports range stepping. */
5547 && rs->supports_vCont.r
5548 /* We don't currently support range stepping multiple
5549 threads with a wildcard (though the protocol allows it,
5550 so stubs shouldn't make an active effort to forbid
5551 it). */
5552 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5553 {
5554 struct thread_info *tp;
5555
5556 if (ptid_equal (ptid, minus_one_ptid))
5557 {
5558 /* If we don't know about the target thread's tid, then
5559 we're resuming magic_null_ptid (see caller). */
5560 tp = find_thread_ptid (magic_null_ptid);
5561 }
5562 else
5563 tp = find_thread_ptid (ptid);
5564 gdb_assert (tp != NULL);
5565
5566 if (tp->control.may_range_step)
5567 {
5568 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5569
5570 p += xsnprintf (p, endp - p, ";r%s,%s",
5571 phex_nz (tp->control.step_range_start,
5572 addr_size),
5573 phex_nz (tp->control.step_range_end,
5574 addr_size));
5575 }
5576 else
5577 p += xsnprintf (p, endp - p, ";s");
5578 }
5579 else if (step)
5580 p += xsnprintf (p, endp - p, ";s");
5581 else if (siggnal != GDB_SIGNAL_0)
5582 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5583 else
5584 p += xsnprintf (p, endp - p, ";c");
5585
5586 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5587 {
5588 ptid_t nptid;
5589
5590 /* All (-1) threads of process. */
5591 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5592
5593 p += xsnprintf (p, endp - p, ":");
5594 p = write_ptid (p, endp, nptid);
5595 }
5596 else if (!ptid_equal (ptid, minus_one_ptid))
5597 {
5598 p += xsnprintf (p, endp - p, ":");
5599 p = write_ptid (p, endp, ptid);
5600 }
5601
5602 return p;
5603 }
5604
5605 /* Clear the thread's private info on resume. */
5606
5607 static void
5608 resume_clear_thread_private_info (struct thread_info *thread)
5609 {
5610 if (thread->priv != NULL)
5611 {
5612 thread->priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5613 thread->priv->watch_data_address = 0;
5614 }
5615 }
5616
5617 /* Append a vCont continue-with-signal action for threads that have a
5618 non-zero stop signal. */
5619
5620 static char *
5621 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5622 {
5623 struct thread_info *thread;
5624
5625 ALL_NON_EXITED_THREADS (thread)
5626 if (ptid_match (thread->ptid, ptid)
5627 && !ptid_equal (inferior_ptid, thread->ptid)
5628 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5629 {
5630 p = append_resumption (p, endp, thread->ptid,
5631 0, thread->suspend.stop_signal);
5632 thread->suspend.stop_signal = GDB_SIGNAL_0;
5633 resume_clear_thread_private_info (thread);
5634 }
5635
5636 return p;
5637 }
5638
5639 /* Set the target running, using the packets that use Hc
5640 (c/s/C/S). */
5641
5642 static void
5643 remote_resume_with_hc (struct target_ops *ops,
5644 ptid_t ptid, int step, enum gdb_signal siggnal)
5645 {
5646 struct remote_state *rs = get_remote_state ();
5647 struct thread_info *thread;
5648 char *buf;
5649
5650 rs->last_sent_signal = siggnal;
5651 rs->last_sent_step = step;
5652
5653 /* The c/s/C/S resume packets use Hc, so set the continue
5654 thread. */
5655 if (ptid_equal (ptid, minus_one_ptid))
5656 set_continue_thread (any_thread_ptid);
5657 else
5658 set_continue_thread (ptid);
5659
5660 ALL_NON_EXITED_THREADS (thread)
5661 resume_clear_thread_private_info (thread);
5662
5663 buf = rs->buf;
5664 if (execution_direction == EXEC_REVERSE)
5665 {
5666 /* We don't pass signals to the target in reverse exec mode. */
5667 if (info_verbose && siggnal != GDB_SIGNAL_0)
5668 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5669 siggnal);
5670
5671 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5672 error (_("Remote reverse-step not supported."));
5673 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5674 error (_("Remote reverse-continue not supported."));
5675
5676 strcpy (buf, step ? "bs" : "bc");
5677 }
5678 else if (siggnal != GDB_SIGNAL_0)
5679 {
5680 buf[0] = step ? 'S' : 'C';
5681 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5682 buf[2] = tohex (((int) siggnal) & 0xf);
5683 buf[3] = '\0';
5684 }
5685 else
5686 strcpy (buf, step ? "s" : "c");
5687
5688 putpkt (buf);
5689 }
5690
5691 /* Resume the remote inferior by using a "vCont" packet. The thread
5692 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5693 resumed thread should be single-stepped and/or signalled. If PTID
5694 equals minus_one_ptid, then all threads are resumed; the thread to
5695 be stepped and/or signalled is given in the global INFERIOR_PTID.
5696 This function returns non-zero iff it resumes the inferior.
5697
5698 This function issues a strict subset of all possible vCont commands
5699 at the moment. */
5700
5701 static int
5702 remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5703 {
5704 struct remote_state *rs = get_remote_state ();
5705 char *p;
5706 char *endp;
5707
5708 /* No reverse execution actions defined for vCont. */
5709 if (execution_direction == EXEC_REVERSE)
5710 return 0;
5711
5712 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5713 remote_vcont_probe (rs);
5714
5715 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5716 return 0;
5717
5718 p = rs->buf;
5719 endp = rs->buf + get_remote_packet_size ();
5720
5721 /* If we could generate a wider range of packets, we'd have to worry
5722 about overflowing BUF. Should there be a generic
5723 "multi-part-packet" packet? */
5724
5725 p += xsnprintf (p, endp - p, "vCont");
5726
5727 if (ptid_equal (ptid, magic_null_ptid))
5728 {
5729 /* MAGIC_NULL_PTID means that we don't have any active threads,
5730 so we don't have any TID numbers the inferior will
5731 understand. Make sure to only send forms that do not specify
5732 a TID. */
5733 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5734 }
5735 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5736 {
5737 /* Resume all threads (of all processes, or of a single
5738 process), with preference for INFERIOR_PTID. This assumes
5739 inferior_ptid belongs to the set of all threads we are about
5740 to resume. */
5741 if (step || siggnal != GDB_SIGNAL_0)
5742 {
5743 /* Step inferior_ptid, with or without signal. */
5744 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5745 }
5746
5747 /* Also pass down any pending signaled resumption for other
5748 threads not the current. */
5749 p = append_pending_thread_resumptions (p, endp, ptid);
5750
5751 /* And continue others without a signal. */
5752 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5753 }
5754 else
5755 {
5756 /* Scheduler locking; resume only PTID. */
5757 append_resumption (p, endp, ptid, step, siggnal);
5758 }
5759
5760 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5761 putpkt (rs->buf);
5762
5763 if (target_is_non_stop_p ())
5764 {
5765 /* In non-stop, the stub replies to vCont with "OK". The stop
5766 reply will be reported asynchronously by means of a `%Stop'
5767 notification. */
5768 getpkt (&rs->buf, &rs->buf_size, 0);
5769 if (strcmp (rs->buf, "OK") != 0)
5770 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5771 }
5772
5773 return 1;
5774 }
5775
5776 /* Tell the remote machine to resume. */
5777
5778 static void
5779 remote_resume (struct target_ops *ops,
5780 ptid_t ptid, int step, enum gdb_signal siggnal)
5781 {
5782 struct remote_state *rs = get_remote_state ();
5783
5784 /* When connected in non-stop mode, the core resumes threads
5785 individually. Resuming remote threads directly in target_resume
5786 would thus result in sending one packet per thread. Instead, to
5787 minimize roundtrip latency, here we just store the resume
5788 request; the actual remote resumption will be done in
5789 target_commit_resume / remote_commit_resume, where we'll be able
5790 to do vCont action coalescing. */
5791 if (target_is_non_stop_p () && execution_direction != EXEC_REVERSE)
5792 {
5793 struct private_thread_info *remote_thr;
5794
5795 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
5796 remote_thr = get_private_info_ptid (inferior_ptid);
5797 else
5798 remote_thr = get_private_info_ptid (ptid);
5799 remote_thr->last_resume_step = step;
5800 remote_thr->last_resume_sig = siggnal;
5801 return;
5802 }
5803
5804 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
5805 (explained in remote-notif.c:handle_notification) so
5806 remote_notif_process is not called. We need find a place where
5807 it is safe to start a 'vNotif' sequence. It is good to do it
5808 before resuming inferior, because inferior was stopped and no RSP
5809 traffic at that moment. */
5810 if (!target_is_non_stop_p ())
5811 remote_notif_process (rs->notif_state, &notif_client_stop);
5812
5813 rs->last_resume_exec_dir = execution_direction;
5814
5815 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
5816 if (!remote_resume_with_vcont (ptid, step, siggnal))
5817 remote_resume_with_hc (ops, ptid, step, siggnal);
5818
5819 /* We are about to start executing the inferior, let's register it
5820 with the event loop. NOTE: this is the one place where all the
5821 execution commands end up. We could alternatively do this in each
5822 of the execution commands in infcmd.c. */
5823 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5824 into infcmd.c in order to allow inferior function calls to work
5825 NOT asynchronously. */
5826 if (target_can_async_p ())
5827 target_async (1);
5828
5829 /* We've just told the target to resume. The remote server will
5830 wait for the inferior to stop, and then send a stop reply. In
5831 the mean time, we can't start another command/query ourselves
5832 because the stub wouldn't be ready to process it. This applies
5833 only to the base all-stop protocol, however. In non-stop (which
5834 only supports vCont), the stub replies with an "OK", and is
5835 immediate able to process further serial input. */
5836 if (!target_is_non_stop_p ())
5837 rs->waiting_for_stop_reply = 1;
5838 }
5839
5840 static void check_pending_events_prevent_wildcard_vcont
5841 (int *may_global_wildcard_vcont);
5842 static int is_pending_fork_parent_thread (struct thread_info *thread);
5843
5844 /* Private per-inferior info for target remote processes. */
5845
5846 struct private_inferior
5847 {
5848 /* Whether we can send a wildcard vCont for this process. */
5849 int may_wildcard_vcont;
5850 };
5851
5852 /* Structure used to track the construction of a vCont packet in the
5853 outgoing packet buffer. This is used to send multiple vCont
5854 packets if we have more actions than would fit a single packet. */
5855
5856 struct vcont_builder
5857 {
5858 /* Pointer to the first action. P points here if no action has been
5859 appended yet. */
5860 char *first_action;
5861
5862 /* Where the next action will be appended. */
5863 char *p;
5864
5865 /* The end of the buffer. Must never write past this. */
5866 char *endp;
5867 };
5868
5869 /* Prepare the outgoing buffer for a new vCont packet. */
5870
5871 static void
5872 vcont_builder_restart (struct vcont_builder *builder)
5873 {
5874 struct remote_state *rs = get_remote_state ();
5875
5876 builder->p = rs->buf;
5877 builder->endp = rs->buf + get_remote_packet_size ();
5878 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
5879 builder->first_action = builder->p;
5880 }
5881
5882 /* If the vCont packet being built has any action, send it to the
5883 remote end. */
5884
5885 static void
5886 vcont_builder_flush (struct vcont_builder *builder)
5887 {
5888 struct remote_state *rs;
5889
5890 if (builder->p == builder->first_action)
5891 return;
5892
5893 rs = get_remote_state ();
5894 putpkt (rs->buf);
5895 getpkt (&rs->buf, &rs->buf_size, 0);
5896 if (strcmp (rs->buf, "OK") != 0)
5897 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5898 }
5899
5900 /* The largest action is range-stepping, with its two addresses. This
5901 is more than sufficient. If a new, bigger action is created, it'll
5902 quickly trigger a failed assertion in append_resumption (and we'll
5903 just bump this). */
5904 #define MAX_ACTION_SIZE 200
5905
5906 /* Append a new vCont action in the outgoing packet being built. If
5907 the action doesn't fit the packet along with previous actions, push
5908 what we've got so far to the remote end and start over a new vCont
5909 packet (with the new action). */
5910
5911 static void
5912 vcont_builder_push_action (struct vcont_builder *builder,
5913 ptid_t ptid, int step, enum gdb_signal siggnal)
5914 {
5915 char buf[MAX_ACTION_SIZE + 1];
5916 char *endp;
5917 size_t rsize;
5918
5919 endp = append_resumption (buf, buf + sizeof (buf),
5920 ptid, step, siggnal);
5921
5922 /* Check whether this new action would fit in the vCont packet along
5923 with previous actions. If not, send what we've got so far and
5924 start a new vCont packet. */
5925 rsize = endp - buf;
5926 if (rsize > builder->endp - builder->p)
5927 {
5928 vcont_builder_flush (builder);
5929 vcont_builder_restart (builder);
5930
5931 /* Should now fit. */
5932 gdb_assert (rsize <= builder->endp - builder->p);
5933 }
5934
5935 memcpy (builder->p, buf, rsize);
5936 builder->p += rsize;
5937 *builder->p = '\0';
5938 }
5939
5940 /* to_commit_resume implementation. */
5941
5942 static void
5943 remote_commit_resume (struct target_ops *ops)
5944 {
5945 struct remote_state *rs = get_remote_state ();
5946 struct inferior *inf;
5947 struct thread_info *tp;
5948 int any_process_wildcard;
5949 int may_global_wildcard_vcont;
5950 struct vcont_builder vcont_builder;
5951
5952 /* If connected in all-stop mode, we'd send the remote resume
5953 request directly from remote_resume. Likewise if
5954 reverse-debugging, as there are no defined vCont actions for
5955 reverse execution. */
5956 if (!target_is_non_stop_p () || execution_direction == EXEC_REVERSE)
5957 return;
5958
5959 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
5960 instead of resuming all threads of each process individually.
5961 However, if any thread of a process must remain halted, we can't
5962 send wildcard resumes and must send one action per thread.
5963
5964 Care must be taken to not resume threads/processes the server
5965 side already told us are stopped, but the core doesn't know about
5966 yet, because the events are still in the vStopped notification
5967 queue. For example:
5968
5969 #1 => vCont s:p1.1;c
5970 #2 <= OK
5971 #3 <= %Stopped T05 p1.1
5972 #4 => vStopped
5973 #5 <= T05 p1.2
5974 #6 => vStopped
5975 #7 <= OK
5976 #8 (infrun handles the stop for p1.1 and continues stepping)
5977 #9 => vCont s:p1.1;c
5978
5979 The last vCont above would resume thread p1.2 by mistake, because
5980 the server has no idea that the event for p1.2 had not been
5981 handled yet.
5982
5983 The server side must similarly ignore resume actions for the
5984 thread that has a pending %Stopped notification (and any other
5985 threads with events pending), until GDB acks the notification
5986 with vStopped. Otherwise, e.g., the following case is
5987 mishandled:
5988
5989 #1 => g (or any other packet)
5990 #2 <= [registers]
5991 #3 <= %Stopped T05 p1.2
5992 #4 => vCont s:p1.1;c
5993 #5 <= OK
5994
5995 Above, the server must not resume thread p1.2. GDB can't know
5996 that p1.2 stopped until it acks the %Stopped notification, and
5997 since from GDB's perspective all threads should be running, it
5998 sends a "c" action.
5999
6000 Finally, special care must also be given to handling fork/vfork
6001 events. A (v)fork event actually tells us that two processes
6002 stopped -- the parent and the child. Until we follow the fork,
6003 we must not resume the child. Therefore, if we have a pending
6004 fork follow, we must not send a global wildcard resume action
6005 (vCont;c). We can still send process-wide wildcards though. */
6006
6007 /* Start by assuming a global wildcard (vCont;c) is possible. */
6008 may_global_wildcard_vcont = 1;
6009
6010 /* And assume every process is individually wildcard-able too. */
6011 ALL_NON_EXITED_INFERIORS (inf)
6012 {
6013 if (inf->priv == NULL)
6014 inf->priv = XNEW (struct private_inferior);
6015 inf->priv->may_wildcard_vcont = 1;
6016 }
6017
6018 /* Check for any pending events (not reported or processed yet) and
6019 disable process and global wildcard resumes appropriately. */
6020 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6021
6022 ALL_NON_EXITED_THREADS (tp)
6023 {
6024 /* If a thread of a process is not meant to be resumed, then we
6025 can't wildcard that process. */
6026 if (!tp->executing)
6027 {
6028 tp->inf->priv->may_wildcard_vcont = 0;
6029
6030 /* And if we can't wildcard a process, we can't wildcard
6031 everything either. */
6032 may_global_wildcard_vcont = 0;
6033 continue;
6034 }
6035
6036 /* If a thread is the parent of an unfollowed fork, then we
6037 can't do a global wildcard, as that would resume the fork
6038 child. */
6039 if (is_pending_fork_parent_thread (tp))
6040 may_global_wildcard_vcont = 0;
6041 }
6042
6043 /* Now let's build the vCont packet(s). Actions must be appended
6044 from narrower to wider scopes (thread -> process -> global). If
6045 we end up with too many actions for a single packet vcont_builder
6046 flushes the current vCont packet to the remote side and starts a
6047 new one. */
6048 vcont_builder_restart (&vcont_builder);
6049
6050 /* Threads first. */
6051 ALL_NON_EXITED_THREADS (tp)
6052 {
6053 struct private_thread_info *remote_thr = tp->priv;
6054
6055 if (!tp->executing || remote_thr->vcont_resumed)
6056 continue;
6057
6058 gdb_assert (!thread_is_in_step_over_chain (tp));
6059
6060 if (!remote_thr->last_resume_step
6061 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6062 && tp->inf->priv->may_wildcard_vcont)
6063 {
6064 /* We'll send a wildcard resume instead. */
6065 remote_thr->vcont_resumed = 1;
6066 continue;
6067 }
6068
6069 vcont_builder_push_action (&vcont_builder, tp->ptid,
6070 remote_thr->last_resume_step,
6071 remote_thr->last_resume_sig);
6072 remote_thr->vcont_resumed = 1;
6073 }
6074
6075 /* Now check whether we can send any process-wide wildcard. This is
6076 to avoid sending a global wildcard in the case nothing is
6077 supposed to be resumed. */
6078 any_process_wildcard = 0;
6079
6080 ALL_NON_EXITED_INFERIORS (inf)
6081 {
6082 if (inf->priv->may_wildcard_vcont)
6083 {
6084 any_process_wildcard = 1;
6085 break;
6086 }
6087 }
6088
6089 if (any_process_wildcard)
6090 {
6091 /* If all processes are wildcard-able, then send a single "c"
6092 action, otherwise, send an "all (-1) threads of process"
6093 continue action for each running process, if any. */
6094 if (may_global_wildcard_vcont)
6095 {
6096 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6097 0, GDB_SIGNAL_0);
6098 }
6099 else
6100 {
6101 ALL_NON_EXITED_INFERIORS (inf)
6102 {
6103 if (inf->priv->may_wildcard_vcont)
6104 {
6105 vcont_builder_push_action (&vcont_builder,
6106 pid_to_ptid (inf->pid),
6107 0, GDB_SIGNAL_0);
6108 }
6109 }
6110 }
6111 }
6112
6113 vcont_builder_flush (&vcont_builder);
6114 }
6115
6116 \f
6117
6118 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6119 thread, all threads of a remote process, or all threads of all
6120 processes. */
6121
6122 static void
6123 remote_stop_ns (ptid_t ptid)
6124 {
6125 struct remote_state *rs = get_remote_state ();
6126 char *p = rs->buf;
6127 char *endp = rs->buf + get_remote_packet_size ();
6128
6129 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6130 remote_vcont_probe (rs);
6131
6132 if (!rs->supports_vCont.t)
6133 error (_("Remote server does not support stopping threads"));
6134
6135 if (ptid_equal (ptid, minus_one_ptid)
6136 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6137 p += xsnprintf (p, endp - p, "vCont;t");
6138 else
6139 {
6140 ptid_t nptid;
6141
6142 p += xsnprintf (p, endp - p, "vCont;t:");
6143
6144 if (ptid_is_pid (ptid))
6145 /* All (-1) threads of process. */
6146 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6147 else
6148 {
6149 /* Small optimization: if we already have a stop reply for
6150 this thread, no use in telling the stub we want this
6151 stopped. */
6152 if (peek_stop_reply (ptid))
6153 return;
6154
6155 nptid = ptid;
6156 }
6157
6158 write_ptid (p, endp, nptid);
6159 }
6160
6161 /* In non-stop, we get an immediate OK reply. The stop reply will
6162 come in asynchronously by notification. */
6163 putpkt (rs->buf);
6164 getpkt (&rs->buf, &rs->buf_size, 0);
6165 if (strcmp (rs->buf, "OK") != 0)
6166 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6167 }
6168
6169 /* All-stop version of target_interrupt. Sends a break or a ^C to
6170 interrupt the remote target. It is undefined which thread of which
6171 process reports the interrupt. */
6172
6173 static void
6174 remote_interrupt_as (void)
6175 {
6176 struct remote_state *rs = get_remote_state ();
6177
6178 rs->ctrlc_pending_p = 1;
6179
6180 /* If the inferior is stopped already, but the core didn't know
6181 about it yet, just ignore the request. The cached wait status
6182 will be collected in remote_wait. */
6183 if (rs->cached_wait_status)
6184 return;
6185
6186 /* Send interrupt_sequence to remote target. */
6187 send_interrupt_sequence ();
6188 }
6189
6190 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6191 the remote target. It is undefined which thread of which process
6192 reports the interrupt. Throws an error if the packet is not
6193 supported by the server. */
6194
6195 static void
6196 remote_interrupt_ns (void)
6197 {
6198 struct remote_state *rs = get_remote_state ();
6199 char *p = rs->buf;
6200 char *endp = rs->buf + get_remote_packet_size ();
6201
6202 xsnprintf (p, endp - p, "vCtrlC");
6203
6204 /* In non-stop, we get an immediate OK reply. The stop reply will
6205 come in asynchronously by notification. */
6206 putpkt (rs->buf);
6207 getpkt (&rs->buf, &rs->buf_size, 0);
6208
6209 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6210 {
6211 case PACKET_OK:
6212 break;
6213 case PACKET_UNKNOWN:
6214 error (_("No support for interrupting the remote target."));
6215 case PACKET_ERROR:
6216 error (_("Interrupting target failed: %s"), rs->buf);
6217 }
6218 }
6219
6220 /* Implement the to_stop function for the remote targets. */
6221
6222 static void
6223 remote_stop (struct target_ops *self, ptid_t ptid)
6224 {
6225 if (remote_debug)
6226 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6227
6228 if (target_is_non_stop_p ())
6229 remote_stop_ns (ptid);
6230 else
6231 {
6232 /* We don't currently have a way to transparently pause the
6233 remote target in all-stop mode. Interrupt it instead. */
6234 remote_interrupt_as ();
6235 }
6236 }
6237
6238 /* Implement the to_interrupt function for the remote targets. */
6239
6240 static void
6241 remote_interrupt (struct target_ops *self, ptid_t ptid)
6242 {
6243 struct remote_state *rs = get_remote_state ();
6244
6245 if (remote_debug)
6246 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6247
6248 if (target_is_non_stop_p ())
6249 remote_interrupt_ns ();
6250 else
6251 remote_interrupt_as ();
6252 }
6253
6254 /* Implement the to_pass_ctrlc function for the remote targets. */
6255
6256 static void
6257 remote_pass_ctrlc (struct target_ops *self)
6258 {
6259 struct remote_state *rs = get_remote_state ();
6260
6261 if (remote_debug)
6262 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6263
6264 /* If we're starting up, we're not fully synced yet. Quit
6265 immediately. */
6266 if (rs->starting_up)
6267 quit ();
6268 /* If ^C has already been sent once, offer to disconnect. */
6269 else if (rs->ctrlc_pending_p)
6270 interrupt_query ();
6271 else
6272 target_interrupt (inferior_ptid);
6273 }
6274
6275 /* Ask the user what to do when an interrupt is received. */
6276
6277 static void
6278 interrupt_query (void)
6279 {
6280 struct remote_state *rs = get_remote_state ();
6281
6282 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6283 {
6284 if (query (_("The target is not responding to interrupt requests.\n"
6285 "Stop debugging it? ")))
6286 {
6287 remote_unpush_target ();
6288 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6289 }
6290 }
6291 else
6292 {
6293 if (query (_("Interrupted while waiting for the program.\n"
6294 "Give up waiting? ")))
6295 quit ();
6296 }
6297 }
6298
6299 /* Enable/disable target terminal ownership. Most targets can use
6300 terminal groups to control terminal ownership. Remote targets are
6301 different in that explicit transfer of ownership to/from GDB/target
6302 is required. */
6303
6304 static void
6305 remote_terminal_inferior (struct target_ops *self)
6306 {
6307 /* FIXME: cagney/1999-09-27: Make calls to target_terminal::*()
6308 idempotent. The event-loop GDB talking to an asynchronous target
6309 with a synchronous command calls this function from both
6310 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
6311 transfer the terminal to the target when it shouldn't this guard
6312 can go away. */
6313 if (!remote_async_terminal_ours_p)
6314 return;
6315 remote_async_terminal_ours_p = 0;
6316 /* NOTE: At this point we could also register our selves as the
6317 recipient of all input. Any characters typed could then be
6318 passed on down to the target. */
6319 }
6320
6321 static void
6322 remote_terminal_ours (struct target_ops *self)
6323 {
6324 /* See FIXME in remote_terminal_inferior. */
6325 if (remote_async_terminal_ours_p)
6326 return;
6327 remote_async_terminal_ours_p = 1;
6328 }
6329
6330 static void
6331 remote_console_output (char *msg)
6332 {
6333 char *p;
6334
6335 for (p = msg; p[0] && p[1]; p += 2)
6336 {
6337 char tb[2];
6338 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6339
6340 tb[0] = c;
6341 tb[1] = 0;
6342 fputs_unfiltered (tb, gdb_stdtarg);
6343 }
6344 gdb_flush (gdb_stdtarg);
6345 }
6346
6347 DEF_VEC_O(cached_reg_t);
6348
6349 typedef struct stop_reply
6350 {
6351 struct notif_event base;
6352
6353 /* The identifier of the thread about this event */
6354 ptid_t ptid;
6355
6356 /* The remote state this event is associated with. When the remote
6357 connection, represented by a remote_state object, is closed,
6358 all the associated stop_reply events should be released. */
6359 struct remote_state *rs;
6360
6361 struct target_waitstatus ws;
6362
6363 /* The architecture associated with the expedited registers. */
6364 gdbarch *arch;
6365
6366 /* Expedited registers. This makes remote debugging a bit more
6367 efficient for those targets that provide critical registers as
6368 part of their normal status mechanism (as another roundtrip to
6369 fetch them is avoided). */
6370 VEC(cached_reg_t) *regcache;
6371
6372 enum target_stop_reason stop_reason;
6373
6374 CORE_ADDR watch_data_address;
6375
6376 int core;
6377 } *stop_reply_p;
6378
6379 DECLARE_QUEUE_P (stop_reply_p);
6380 DEFINE_QUEUE_P (stop_reply_p);
6381 /* The list of already fetched and acknowledged stop events. This
6382 queue is used for notification Stop, and other notifications
6383 don't need queue for their events, because the notification events
6384 of Stop can't be consumed immediately, so that events should be
6385 queued first, and be consumed by remote_wait_{ns,as} one per
6386 time. Other notifications can consume their events immediately,
6387 so queue is not needed for them. */
6388 static QUEUE (stop_reply_p) *stop_reply_queue;
6389
6390 static void
6391 stop_reply_xfree (struct stop_reply *r)
6392 {
6393 notif_event_xfree ((struct notif_event *) r);
6394 }
6395
6396 /* Return the length of the stop reply queue. */
6397
6398 static int
6399 stop_reply_queue_length (void)
6400 {
6401 return QUEUE_length (stop_reply_p, stop_reply_queue);
6402 }
6403
6404 static void
6405 remote_notif_stop_parse (struct notif_client *self, char *buf,
6406 struct notif_event *event)
6407 {
6408 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6409 }
6410
6411 static void
6412 remote_notif_stop_ack (struct notif_client *self, char *buf,
6413 struct notif_event *event)
6414 {
6415 struct stop_reply *stop_reply = (struct stop_reply *) event;
6416
6417 /* acknowledge */
6418 putpkt (self->ack_command);
6419
6420 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6421 /* We got an unknown stop reply. */
6422 error (_("Unknown stop reply"));
6423
6424 push_stop_reply (stop_reply);
6425 }
6426
6427 static int
6428 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6429 {
6430 /* We can't get pending events in remote_notif_process for
6431 notification stop, and we have to do this in remote_wait_ns
6432 instead. If we fetch all queued events from stub, remote stub
6433 may exit and we have no chance to process them back in
6434 remote_wait_ns. */
6435 mark_async_event_handler (remote_async_inferior_event_token);
6436 return 0;
6437 }
6438
6439 static void
6440 stop_reply_dtr (struct notif_event *event)
6441 {
6442 struct stop_reply *r = (struct stop_reply *) event;
6443 cached_reg_t *reg;
6444 int ix;
6445
6446 for (ix = 0;
6447 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6448 ix++)
6449 xfree (reg->data);
6450
6451 VEC_free (cached_reg_t, r->regcache);
6452 }
6453
6454 static struct notif_event *
6455 remote_notif_stop_alloc_reply (void)
6456 {
6457 /* We cast to a pointer to the "base class". */
6458 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6459
6460 r->dtr = stop_reply_dtr;
6461
6462 return r;
6463 }
6464
6465 /* A client of notification Stop. */
6466
6467 struct notif_client notif_client_stop =
6468 {
6469 "Stop",
6470 "vStopped",
6471 remote_notif_stop_parse,
6472 remote_notif_stop_ack,
6473 remote_notif_stop_can_get_pending_events,
6474 remote_notif_stop_alloc_reply,
6475 REMOTE_NOTIF_STOP,
6476 };
6477
6478 /* A parameter to pass data in and out. */
6479
6480 struct queue_iter_param
6481 {
6482 void *input;
6483 struct stop_reply *output;
6484 };
6485
6486 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6487 the pid of the process that owns the threads we want to check, or
6488 -1 if we want to check all threads. */
6489
6490 static int
6491 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6492 ptid_t thread_ptid)
6493 {
6494 if (ws->kind == TARGET_WAITKIND_FORKED
6495 || ws->kind == TARGET_WAITKIND_VFORKED)
6496 {
6497 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6498 return 1;
6499 }
6500
6501 return 0;
6502 }
6503
6504 /* Return the thread's pending status used to determine whether the
6505 thread is a fork parent stopped at a fork event. */
6506
6507 static struct target_waitstatus *
6508 thread_pending_fork_status (struct thread_info *thread)
6509 {
6510 if (thread->suspend.waitstatus_pending_p)
6511 return &thread->suspend.waitstatus;
6512 else
6513 return &thread->pending_follow;
6514 }
6515
6516 /* Determine if THREAD is a pending fork parent thread. */
6517
6518 static int
6519 is_pending_fork_parent_thread (struct thread_info *thread)
6520 {
6521 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6522 int pid = -1;
6523
6524 return is_pending_fork_parent (ws, pid, thread->ptid);
6525 }
6526
6527 /* Check whether EVENT is a fork event, and if it is, remove the
6528 fork child from the context list passed in DATA. */
6529
6530 static int
6531 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6532 QUEUE_ITER (stop_reply_p) *iter,
6533 stop_reply_p event,
6534 void *data)
6535 {
6536 struct queue_iter_param *param = (struct queue_iter_param *) data;
6537 struct threads_listing_context *context
6538 = (struct threads_listing_context *) param->input;
6539
6540 if (event->ws.kind == TARGET_WAITKIND_FORKED
6541 || event->ws.kind == TARGET_WAITKIND_VFORKED
6542 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6543 threads_listing_context_remove (&event->ws, context);
6544
6545 return 1;
6546 }
6547
6548 /* If CONTEXT contains any fork child threads that have not been
6549 reported yet, remove them from the CONTEXT list. If such a
6550 thread exists it is because we are stopped at a fork catchpoint
6551 and have not yet called follow_fork, which will set up the
6552 host-side data structures for the new process. */
6553
6554 static void
6555 remove_new_fork_children (struct threads_listing_context *context)
6556 {
6557 struct thread_info * thread;
6558 int pid = -1;
6559 struct notif_client *notif = &notif_client_stop;
6560 struct queue_iter_param param;
6561
6562 /* For any threads stopped at a fork event, remove the corresponding
6563 fork child threads from the CONTEXT list. */
6564 ALL_NON_EXITED_THREADS (thread)
6565 {
6566 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6567
6568 if (is_pending_fork_parent (ws, pid, thread->ptid))
6569 {
6570 threads_listing_context_remove (ws, context);
6571 }
6572 }
6573
6574 /* Check for any pending fork events (not reported or processed yet)
6575 in process PID and remove those fork child threads from the
6576 CONTEXT list as well. */
6577 remote_notif_get_pending_events (notif);
6578 param.input = context;
6579 param.output = NULL;
6580 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6581 remove_child_of_pending_fork, &param);
6582 }
6583
6584 /* Check whether EVENT would prevent a global or process wildcard
6585 vCont action. */
6586
6587 static int
6588 check_pending_event_prevents_wildcard_vcont_callback
6589 (QUEUE (stop_reply_p) *q,
6590 QUEUE_ITER (stop_reply_p) *iter,
6591 stop_reply_p event,
6592 void *data)
6593 {
6594 struct inferior *inf;
6595 int *may_global_wildcard_vcont = (int *) data;
6596
6597 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6598 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6599 return 1;
6600
6601 if (event->ws.kind == TARGET_WAITKIND_FORKED
6602 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6603 *may_global_wildcard_vcont = 0;
6604
6605 inf = find_inferior_ptid (event->ptid);
6606
6607 /* This may be the first time we heard about this process.
6608 Regardless, we must not do a global wildcard resume, otherwise
6609 we'd resume this process too. */
6610 *may_global_wildcard_vcont = 0;
6611 if (inf != NULL)
6612 inf->priv->may_wildcard_vcont = 0;
6613
6614 return 1;
6615 }
6616
6617 /* Check whether any event pending in the vStopped queue would prevent
6618 a global or process wildcard vCont action. Clear
6619 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6620 and clear the event inferior's may_wildcard_vcont flag if we can't
6621 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6622
6623 static void
6624 check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6625 {
6626 struct notif_client *notif = &notif_client_stop;
6627
6628 remote_notif_get_pending_events (notif);
6629 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6630 check_pending_event_prevents_wildcard_vcont_callback,
6631 may_global_wildcard);
6632 }
6633
6634 /* Remove stop replies in the queue if its pid is equal to the given
6635 inferior's pid. */
6636
6637 static int
6638 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6639 QUEUE_ITER (stop_reply_p) *iter,
6640 stop_reply_p event,
6641 void *data)
6642 {
6643 struct queue_iter_param *param = (struct queue_iter_param *) data;
6644 struct inferior *inf = (struct inferior *) param->input;
6645
6646 if (ptid_get_pid (event->ptid) == inf->pid)
6647 {
6648 stop_reply_xfree (event);
6649 QUEUE_remove_elem (stop_reply_p, q, iter);
6650 }
6651
6652 return 1;
6653 }
6654
6655 /* Discard all pending stop replies of inferior INF. */
6656
6657 static void
6658 discard_pending_stop_replies (struct inferior *inf)
6659 {
6660 struct queue_iter_param param;
6661 struct stop_reply *reply;
6662 struct remote_state *rs = get_remote_state ();
6663 struct remote_notif_state *rns = rs->notif_state;
6664
6665 /* This function can be notified when an inferior exists. When the
6666 target is not remote, the notification state is NULL. */
6667 if (rs->remote_desc == NULL)
6668 return;
6669
6670 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6671
6672 /* Discard the in-flight notification. */
6673 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6674 {
6675 stop_reply_xfree (reply);
6676 rns->pending_event[notif_client_stop.id] = NULL;
6677 }
6678
6679 param.input = inf;
6680 param.output = NULL;
6681 /* Discard the stop replies we have already pulled with
6682 vStopped. */
6683 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6684 remove_stop_reply_for_inferior, &param);
6685 }
6686
6687 /* If its remote state is equal to the given remote state,
6688 remove EVENT from the stop reply queue. */
6689
6690 static int
6691 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6692 QUEUE_ITER (stop_reply_p) *iter,
6693 stop_reply_p event,
6694 void *data)
6695 {
6696 struct queue_iter_param *param = (struct queue_iter_param *) data;
6697 struct remote_state *rs = (struct remote_state *) param->input;
6698
6699 if (event->rs == rs)
6700 {
6701 stop_reply_xfree (event);
6702 QUEUE_remove_elem (stop_reply_p, q, iter);
6703 }
6704
6705 return 1;
6706 }
6707
6708 /* Discard the stop replies for RS in stop_reply_queue. */
6709
6710 static void
6711 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6712 {
6713 struct queue_iter_param param;
6714
6715 param.input = rs;
6716 param.output = NULL;
6717 /* Discard the stop replies we have already pulled with
6718 vStopped. */
6719 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6720 remove_stop_reply_of_remote_state, &param);
6721 }
6722
6723 /* A parameter to pass data in and out. */
6724
6725 static int
6726 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6727 QUEUE_ITER (stop_reply_p) *iter,
6728 stop_reply_p event,
6729 void *data)
6730 {
6731 struct queue_iter_param *param = (struct queue_iter_param *) data;
6732 ptid_t *ptid = (ptid_t *) param->input;
6733
6734 if (ptid_match (event->ptid, *ptid))
6735 {
6736 param->output = event;
6737 QUEUE_remove_elem (stop_reply_p, q, iter);
6738 return 0;
6739 }
6740
6741 return 1;
6742 }
6743
6744 /* Remove the first reply in 'stop_reply_queue' which matches
6745 PTID. */
6746
6747 static struct stop_reply *
6748 remote_notif_remove_queued_reply (ptid_t ptid)
6749 {
6750 struct queue_iter_param param;
6751
6752 param.input = &ptid;
6753 param.output = NULL;
6754
6755 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6756 remote_notif_remove_once_on_match, &param);
6757 if (notif_debug)
6758 fprintf_unfiltered (gdb_stdlog,
6759 "notif: discard queued event: 'Stop' in %s\n",
6760 target_pid_to_str (ptid));
6761
6762 return param.output;
6763 }
6764
6765 /* Look for a queued stop reply belonging to PTID. If one is found,
6766 remove it from the queue, and return it. Returns NULL if none is
6767 found. If there are still queued events left to process, tell the
6768 event loop to get back to target_wait soon. */
6769
6770 static struct stop_reply *
6771 queued_stop_reply (ptid_t ptid)
6772 {
6773 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6774
6775 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6776 /* There's still at least an event left. */
6777 mark_async_event_handler (remote_async_inferior_event_token);
6778
6779 return r;
6780 }
6781
6782 /* Push a fully parsed stop reply in the stop reply queue. Since we
6783 know that we now have at least one queued event left to pass to the
6784 core side, tell the event loop to get back to target_wait soon. */
6785
6786 static void
6787 push_stop_reply (struct stop_reply *new_event)
6788 {
6789 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6790
6791 if (notif_debug)
6792 fprintf_unfiltered (gdb_stdlog,
6793 "notif: push 'Stop' %s to queue %d\n",
6794 target_pid_to_str (new_event->ptid),
6795 QUEUE_length (stop_reply_p,
6796 stop_reply_queue));
6797
6798 mark_async_event_handler (remote_async_inferior_event_token);
6799 }
6800
6801 static int
6802 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
6803 QUEUE_ITER (stop_reply_p) *iter,
6804 struct stop_reply *event,
6805 void *data)
6806 {
6807 ptid_t *ptid = (ptid_t *) data;
6808
6809 return !(ptid_equal (*ptid, event->ptid)
6810 && event->ws.kind == TARGET_WAITKIND_STOPPED);
6811 }
6812
6813 /* Returns true if we have a stop reply for PTID. */
6814
6815 static int
6816 peek_stop_reply (ptid_t ptid)
6817 {
6818 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
6819 stop_reply_match_ptid_and_ws, &ptid);
6820 }
6821
6822 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
6823 starting with P and ending with PEND matches PREFIX. */
6824
6825 static int
6826 strprefix (const char *p, const char *pend, const char *prefix)
6827 {
6828 for ( ; p < pend; p++, prefix++)
6829 if (*p != *prefix)
6830 return 0;
6831 return *prefix == '\0';
6832 }
6833
6834 /* Parse the stop reply in BUF. Either the function succeeds, and the
6835 result is stored in EVENT, or throws an error. */
6836
6837 static void
6838 remote_parse_stop_reply (char *buf, struct stop_reply *event)
6839 {
6840 remote_arch_state *rsa = NULL;
6841 ULONGEST addr;
6842 const char *p;
6843 int skipregs = 0;
6844
6845 event->ptid = null_ptid;
6846 event->rs = get_remote_state ();
6847 event->ws.kind = TARGET_WAITKIND_IGNORE;
6848 event->ws.value.integer = 0;
6849 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6850 event->regcache = NULL;
6851 event->core = -1;
6852
6853 switch (buf[0])
6854 {
6855 case 'T': /* Status with PC, SP, FP, ... */
6856 /* Expedited reply, containing Signal, {regno, reg} repeat. */
6857 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
6858 ss = signal number
6859 n... = register number
6860 r... = register contents
6861 */
6862
6863 p = &buf[3]; /* after Txx */
6864 while (*p)
6865 {
6866 const char *p1;
6867 int fieldsize;
6868
6869 p1 = strchr (p, ':');
6870 if (p1 == NULL)
6871 error (_("Malformed packet(a) (missing colon): %s\n\
6872 Packet: '%s'\n"),
6873 p, buf);
6874 if (p == p1)
6875 error (_("Malformed packet(a) (missing register number): %s\n\
6876 Packet: '%s'\n"),
6877 p, buf);
6878
6879 /* Some "registers" are actually extended stop information.
6880 Note if you're adding a new entry here: GDB 7.9 and
6881 earlier assume that all register "numbers" that start
6882 with an hex digit are real register numbers. Make sure
6883 the server only sends such a packet if it knows the
6884 client understands it. */
6885
6886 if (strprefix (p, p1, "thread"))
6887 event->ptid = read_ptid (++p1, &p);
6888 else if (strprefix (p, p1, "syscall_entry"))
6889 {
6890 ULONGEST sysno;
6891
6892 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
6893 p = unpack_varlen_hex (++p1, &sysno);
6894 event->ws.value.syscall_number = (int) sysno;
6895 }
6896 else if (strprefix (p, p1, "syscall_return"))
6897 {
6898 ULONGEST sysno;
6899
6900 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
6901 p = unpack_varlen_hex (++p1, &sysno);
6902 event->ws.value.syscall_number = (int) sysno;
6903 }
6904 else if (strprefix (p, p1, "watch")
6905 || strprefix (p, p1, "rwatch")
6906 || strprefix (p, p1, "awatch"))
6907 {
6908 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
6909 p = unpack_varlen_hex (++p1, &addr);
6910 event->watch_data_address = (CORE_ADDR) addr;
6911 }
6912 else if (strprefix (p, p1, "swbreak"))
6913 {
6914 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
6915
6916 /* Make sure the stub doesn't forget to indicate support
6917 with qSupported. */
6918 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
6919 error (_("Unexpected swbreak stop reason"));
6920
6921 /* The value part is documented as "must be empty",
6922 though we ignore it, in case we ever decide to make
6923 use of it in a backward compatible way. */
6924 p = strchrnul (p1 + 1, ';');
6925 }
6926 else if (strprefix (p, p1, "hwbreak"))
6927 {
6928 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
6929
6930 /* Make sure the stub doesn't forget to indicate support
6931 with qSupported. */
6932 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
6933 error (_("Unexpected hwbreak stop reason"));
6934
6935 /* See above. */
6936 p = strchrnul (p1 + 1, ';');
6937 }
6938 else if (strprefix (p, p1, "library"))
6939 {
6940 event->ws.kind = TARGET_WAITKIND_LOADED;
6941 p = strchrnul (p1 + 1, ';');
6942 }
6943 else if (strprefix (p, p1, "replaylog"))
6944 {
6945 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
6946 /* p1 will indicate "begin" or "end", but it makes
6947 no difference for now, so ignore it. */
6948 p = strchrnul (p1 + 1, ';');
6949 }
6950 else if (strprefix (p, p1, "core"))
6951 {
6952 ULONGEST c;
6953
6954 p = unpack_varlen_hex (++p1, &c);
6955 event->core = c;
6956 }
6957 else if (strprefix (p, p1, "fork"))
6958 {
6959 event->ws.value.related_pid = read_ptid (++p1, &p);
6960 event->ws.kind = TARGET_WAITKIND_FORKED;
6961 }
6962 else if (strprefix (p, p1, "vfork"))
6963 {
6964 event->ws.value.related_pid = read_ptid (++p1, &p);
6965 event->ws.kind = TARGET_WAITKIND_VFORKED;
6966 }
6967 else if (strprefix (p, p1, "vforkdone"))
6968 {
6969 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
6970 p = strchrnul (p1 + 1, ';');
6971 }
6972 else if (strprefix (p, p1, "exec"))
6973 {
6974 ULONGEST ignored;
6975 char pathname[PATH_MAX];
6976 int pathlen;
6977
6978 /* Determine the length of the execd pathname. */
6979 p = unpack_varlen_hex (++p1, &ignored);
6980 pathlen = (p - p1) / 2;
6981
6982 /* Save the pathname for event reporting and for
6983 the next run command. */
6984 hex2bin (p1, (gdb_byte *) pathname, pathlen);
6985 pathname[pathlen] = '\0';
6986
6987 /* This is freed during event handling. */
6988 event->ws.value.execd_pathname = xstrdup (pathname);
6989 event->ws.kind = TARGET_WAITKIND_EXECD;
6990
6991 /* Skip the registers included in this packet, since
6992 they may be for an architecture different from the
6993 one used by the original program. */
6994 skipregs = 1;
6995 }
6996 else if (strprefix (p, p1, "create"))
6997 {
6998 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
6999 p = strchrnul (p1 + 1, ';');
7000 }
7001 else
7002 {
7003 ULONGEST pnum;
7004 const char *p_temp;
7005
7006 if (skipregs)
7007 {
7008 p = strchrnul (p1 + 1, ';');
7009 p++;
7010 continue;
7011 }
7012
7013 /* Maybe a real ``P'' register number. */
7014 p_temp = unpack_varlen_hex (p, &pnum);
7015 /* If the first invalid character is the colon, we got a
7016 register number. Otherwise, it's an unknown stop
7017 reason. */
7018 if (p_temp == p1)
7019 {
7020 /* If we haven't parsed the event's thread yet, find
7021 it now, in order to find the architecture of the
7022 reported expedited registers. */
7023 if (event->ptid == null_ptid)
7024 {
7025 const char *thr = strstr (p1 + 1, ";thread:");
7026 if (thr != NULL)
7027 event->ptid = read_ptid (thr + strlen (";thread:"),
7028 NULL);
7029 else
7030 event->ptid = magic_null_ptid;
7031 }
7032
7033 if (rsa == NULL)
7034 {
7035 inferior *inf = (event->ptid == null_ptid
7036 ? NULL
7037 : find_inferior_ptid (event->ptid));
7038 /* If this is the first time we learn anything
7039 about this process, skip the registers
7040 included in this packet, since we don't yet
7041 know which architecture to use to parse them.
7042 We'll determine the architecture later when
7043 we process the stop reply and retrieve the
7044 target description, via
7045 remote_notice_new_inferior ->
7046 post_create_inferior. */
7047 if (inf == NULL)
7048 {
7049 p = strchrnul (p1 + 1, ';');
7050 p++;
7051 continue;
7052 }
7053
7054 event->arch = inf->gdbarch;
7055 rsa = get_remote_arch_state (event->arch);
7056 }
7057
7058 packet_reg *reg
7059 = packet_reg_from_pnum (event->arch, rsa, pnum);
7060 cached_reg_t cached_reg;
7061
7062 if (reg == NULL)
7063 error (_("Remote sent bad register number %s: %s\n\
7064 Packet: '%s'\n"),
7065 hex_string (pnum), p, buf);
7066
7067 cached_reg.num = reg->regnum;
7068 cached_reg.data = (gdb_byte *)
7069 xmalloc (register_size (event->arch, reg->regnum));
7070
7071 p = p1 + 1;
7072 fieldsize = hex2bin (p, cached_reg.data,
7073 register_size (event->arch, reg->regnum));
7074 p += 2 * fieldsize;
7075 if (fieldsize < register_size (event->arch, reg->regnum))
7076 warning (_("Remote reply is too short: %s"), buf);
7077
7078 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
7079 }
7080 else
7081 {
7082 /* Not a number. Silently skip unknown optional
7083 info. */
7084 p = strchrnul (p1 + 1, ';');
7085 }
7086 }
7087
7088 if (*p != ';')
7089 error (_("Remote register badly formatted: %s\nhere: %s"),
7090 buf, p);
7091 ++p;
7092 }
7093
7094 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7095 break;
7096
7097 /* fall through */
7098 case 'S': /* Old style status, just signal only. */
7099 {
7100 int sig;
7101
7102 event->ws.kind = TARGET_WAITKIND_STOPPED;
7103 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7104 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7105 event->ws.value.sig = (enum gdb_signal) sig;
7106 else
7107 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7108 }
7109 break;
7110 case 'w': /* Thread exited. */
7111 {
7112 const char *p;
7113 ULONGEST value;
7114
7115 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7116 p = unpack_varlen_hex (&buf[1], &value);
7117 event->ws.value.integer = value;
7118 if (*p != ';')
7119 error (_("stop reply packet badly formatted: %s"), buf);
7120 event->ptid = read_ptid (++p, NULL);
7121 break;
7122 }
7123 case 'W': /* Target exited. */
7124 case 'X':
7125 {
7126 const char *p;
7127 int pid;
7128 ULONGEST value;
7129
7130 /* GDB used to accept only 2 hex chars here. Stubs should
7131 only send more if they detect GDB supports multi-process
7132 support. */
7133 p = unpack_varlen_hex (&buf[1], &value);
7134
7135 if (buf[0] == 'W')
7136 {
7137 /* The remote process exited. */
7138 event->ws.kind = TARGET_WAITKIND_EXITED;
7139 event->ws.value.integer = value;
7140 }
7141 else
7142 {
7143 /* The remote process exited with a signal. */
7144 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7145 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7146 event->ws.value.sig = (enum gdb_signal) value;
7147 else
7148 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7149 }
7150
7151 /* If no process is specified, assume inferior_ptid. */
7152 pid = ptid_get_pid (inferior_ptid);
7153 if (*p == '\0')
7154 ;
7155 else if (*p == ';')
7156 {
7157 p++;
7158
7159 if (*p == '\0')
7160 ;
7161 else if (startswith (p, "process:"))
7162 {
7163 ULONGEST upid;
7164
7165 p += sizeof ("process:") - 1;
7166 unpack_varlen_hex (p, &upid);
7167 pid = upid;
7168 }
7169 else
7170 error (_("unknown stop reply packet: %s"), buf);
7171 }
7172 else
7173 error (_("unknown stop reply packet: %s"), buf);
7174 event->ptid = pid_to_ptid (pid);
7175 }
7176 break;
7177 case 'N':
7178 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7179 event->ptid = minus_one_ptid;
7180 break;
7181 }
7182
7183 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7184 error (_("No process or thread specified in stop reply: %s"), buf);
7185 }
7186
7187 /* When the stub wants to tell GDB about a new notification reply, it
7188 sends a notification (%Stop, for example). Those can come it at
7189 any time, hence, we have to make sure that any pending
7190 putpkt/getpkt sequence we're making is finished, before querying
7191 the stub for more events with the corresponding ack command
7192 (vStopped, for example). E.g., if we started a vStopped sequence
7193 immediately upon receiving the notification, something like this
7194 could happen:
7195
7196 1.1) --> Hg 1
7197 1.2) <-- OK
7198 1.3) --> g
7199 1.4) <-- %Stop
7200 1.5) --> vStopped
7201 1.6) <-- (registers reply to step #1.3)
7202
7203 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7204 query.
7205
7206 To solve this, whenever we parse a %Stop notification successfully,
7207 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7208 doing whatever we were doing:
7209
7210 2.1) --> Hg 1
7211 2.2) <-- OK
7212 2.3) --> g
7213 2.4) <-- %Stop
7214 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7215 2.5) <-- (registers reply to step #2.3)
7216
7217 Eventualy after step #2.5, we return to the event loop, which
7218 notices there's an event on the
7219 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7220 associated callback --- the function below. At this point, we're
7221 always safe to start a vStopped sequence. :
7222
7223 2.6) --> vStopped
7224 2.7) <-- T05 thread:2
7225 2.8) --> vStopped
7226 2.9) --> OK
7227 */
7228
7229 void
7230 remote_notif_get_pending_events (struct notif_client *nc)
7231 {
7232 struct remote_state *rs = get_remote_state ();
7233
7234 if (rs->notif_state->pending_event[nc->id] != NULL)
7235 {
7236 if (notif_debug)
7237 fprintf_unfiltered (gdb_stdlog,
7238 "notif: process: '%s' ack pending event\n",
7239 nc->name);
7240
7241 /* acknowledge */
7242 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7243 rs->notif_state->pending_event[nc->id] = NULL;
7244
7245 while (1)
7246 {
7247 getpkt (&rs->buf, &rs->buf_size, 0);
7248 if (strcmp (rs->buf, "OK") == 0)
7249 break;
7250 else
7251 remote_notif_ack (nc, rs->buf);
7252 }
7253 }
7254 else
7255 {
7256 if (notif_debug)
7257 fprintf_unfiltered (gdb_stdlog,
7258 "notif: process: '%s' no pending reply\n",
7259 nc->name);
7260 }
7261 }
7262
7263 /* Called when it is decided that STOP_REPLY holds the info of the
7264 event that is to be returned to the core. This function always
7265 destroys STOP_REPLY. */
7266
7267 static ptid_t
7268 process_stop_reply (struct stop_reply *stop_reply,
7269 struct target_waitstatus *status)
7270 {
7271 ptid_t ptid;
7272
7273 *status = stop_reply->ws;
7274 ptid = stop_reply->ptid;
7275
7276 /* If no thread/process was reported by the stub, assume the current
7277 inferior. */
7278 if (ptid_equal (ptid, null_ptid))
7279 ptid = inferior_ptid;
7280
7281 if (status->kind != TARGET_WAITKIND_EXITED
7282 && status->kind != TARGET_WAITKIND_SIGNALLED
7283 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7284 {
7285 struct private_thread_info *remote_thr;
7286
7287 /* Expedited registers. */
7288 if (stop_reply->regcache)
7289 {
7290 struct regcache *regcache
7291 = get_thread_arch_regcache (ptid, stop_reply->arch);
7292 cached_reg_t *reg;
7293 int ix;
7294
7295 for (ix = 0;
7296 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7297 ix++)
7298 {
7299 regcache_raw_supply (regcache, reg->num, reg->data);
7300 xfree (reg->data);
7301 }
7302
7303 VEC_free (cached_reg_t, stop_reply->regcache);
7304 }
7305
7306 remote_notice_new_inferior (ptid, 0);
7307 remote_thr = get_private_info_ptid (ptid);
7308 remote_thr->core = stop_reply->core;
7309 remote_thr->stop_reason = stop_reply->stop_reason;
7310 remote_thr->watch_data_address = stop_reply->watch_data_address;
7311 remote_thr->vcont_resumed = 0;
7312 }
7313
7314 stop_reply_xfree (stop_reply);
7315 return ptid;
7316 }
7317
7318 /* The non-stop mode version of target_wait. */
7319
7320 static ptid_t
7321 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7322 {
7323 struct remote_state *rs = get_remote_state ();
7324 struct stop_reply *stop_reply;
7325 int ret;
7326 int is_notif = 0;
7327
7328 /* If in non-stop mode, get out of getpkt even if a
7329 notification is received. */
7330
7331 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7332 0 /* forever */, &is_notif);
7333 while (1)
7334 {
7335 if (ret != -1 && !is_notif)
7336 switch (rs->buf[0])
7337 {
7338 case 'E': /* Error of some sort. */
7339 /* We're out of sync with the target now. Did it continue
7340 or not? We can't tell which thread it was in non-stop,
7341 so just ignore this. */
7342 warning (_("Remote failure reply: %s"), rs->buf);
7343 break;
7344 case 'O': /* Console output. */
7345 remote_console_output (rs->buf + 1);
7346 break;
7347 default:
7348 warning (_("Invalid remote reply: %s"), rs->buf);
7349 break;
7350 }
7351
7352 /* Acknowledge a pending stop reply that may have arrived in the
7353 mean time. */
7354 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7355 remote_notif_get_pending_events (&notif_client_stop);
7356
7357 /* If indeed we noticed a stop reply, we're done. */
7358 stop_reply = queued_stop_reply (ptid);
7359 if (stop_reply != NULL)
7360 return process_stop_reply (stop_reply, status);
7361
7362 /* Still no event. If we're just polling for an event, then
7363 return to the event loop. */
7364 if (options & TARGET_WNOHANG)
7365 {
7366 status->kind = TARGET_WAITKIND_IGNORE;
7367 return minus_one_ptid;
7368 }
7369
7370 /* Otherwise do a blocking wait. */
7371 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7372 1 /* forever */, &is_notif);
7373 }
7374 }
7375
7376 /* Wait until the remote machine stops, then return, storing status in
7377 STATUS just as `wait' would. */
7378
7379 static ptid_t
7380 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7381 {
7382 struct remote_state *rs = get_remote_state ();
7383 ptid_t event_ptid = null_ptid;
7384 char *buf;
7385 struct stop_reply *stop_reply;
7386
7387 again:
7388
7389 status->kind = TARGET_WAITKIND_IGNORE;
7390 status->value.integer = 0;
7391
7392 stop_reply = queued_stop_reply (ptid);
7393 if (stop_reply != NULL)
7394 return process_stop_reply (stop_reply, status);
7395
7396 if (rs->cached_wait_status)
7397 /* Use the cached wait status, but only once. */
7398 rs->cached_wait_status = 0;
7399 else
7400 {
7401 int ret;
7402 int is_notif;
7403 int forever = ((options & TARGET_WNOHANG) == 0
7404 && wait_forever_enabled_p);
7405
7406 if (!rs->waiting_for_stop_reply)
7407 {
7408 status->kind = TARGET_WAITKIND_NO_RESUMED;
7409 return minus_one_ptid;
7410 }
7411
7412 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7413 _never_ wait for ever -> test on target_is_async_p().
7414 However, before we do that we need to ensure that the caller
7415 knows how to take the target into/out of async mode. */
7416 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7417 forever, &is_notif);
7418
7419 /* GDB gets a notification. Return to core as this event is
7420 not interesting. */
7421 if (ret != -1 && is_notif)
7422 return minus_one_ptid;
7423
7424 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7425 return minus_one_ptid;
7426 }
7427
7428 buf = rs->buf;
7429
7430 /* Assume that the target has acknowledged Ctrl-C unless we receive
7431 an 'F' or 'O' packet. */
7432 if (buf[0] != 'F' && buf[0] != 'O')
7433 rs->ctrlc_pending_p = 0;
7434
7435 switch (buf[0])
7436 {
7437 case 'E': /* Error of some sort. */
7438 /* We're out of sync with the target now. Did it continue or
7439 not? Not is more likely, so report a stop. */
7440 rs->waiting_for_stop_reply = 0;
7441
7442 warning (_("Remote failure reply: %s"), buf);
7443 status->kind = TARGET_WAITKIND_STOPPED;
7444 status->value.sig = GDB_SIGNAL_0;
7445 break;
7446 case 'F': /* File-I/O request. */
7447 /* GDB may access the inferior memory while handling the File-I/O
7448 request, but we don't want GDB accessing memory while waiting
7449 for a stop reply. See the comments in putpkt_binary. Set
7450 waiting_for_stop_reply to 0 temporarily. */
7451 rs->waiting_for_stop_reply = 0;
7452 remote_fileio_request (buf, rs->ctrlc_pending_p);
7453 rs->ctrlc_pending_p = 0;
7454 /* GDB handled the File-I/O request, and the target is running
7455 again. Keep waiting for events. */
7456 rs->waiting_for_stop_reply = 1;
7457 break;
7458 case 'N': case 'T': case 'S': case 'X': case 'W':
7459 {
7460 struct stop_reply *stop_reply;
7461
7462 /* There is a stop reply to handle. */
7463 rs->waiting_for_stop_reply = 0;
7464
7465 stop_reply
7466 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7467 rs->buf);
7468
7469 event_ptid = process_stop_reply (stop_reply, status);
7470 break;
7471 }
7472 case 'O': /* Console output. */
7473 remote_console_output (buf + 1);
7474 break;
7475 case '\0':
7476 if (rs->last_sent_signal != GDB_SIGNAL_0)
7477 {
7478 /* Zero length reply means that we tried 'S' or 'C' and the
7479 remote system doesn't support it. */
7480 target_terminal::ours_for_output ();
7481 printf_filtered
7482 ("Can't send signals to this remote system. %s not sent.\n",
7483 gdb_signal_to_name (rs->last_sent_signal));
7484 rs->last_sent_signal = GDB_SIGNAL_0;
7485 target_terminal::inferior ();
7486
7487 strcpy (buf, rs->last_sent_step ? "s" : "c");
7488 putpkt (buf);
7489 break;
7490 }
7491 /* else fallthrough */
7492 default:
7493 warning (_("Invalid remote reply: %s"), buf);
7494 break;
7495 }
7496
7497 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7498 return minus_one_ptid;
7499 else if (status->kind == TARGET_WAITKIND_IGNORE)
7500 {
7501 /* Nothing interesting happened. If we're doing a non-blocking
7502 poll, we're done. Otherwise, go back to waiting. */
7503 if (options & TARGET_WNOHANG)
7504 return minus_one_ptid;
7505 else
7506 goto again;
7507 }
7508 else if (status->kind != TARGET_WAITKIND_EXITED
7509 && status->kind != TARGET_WAITKIND_SIGNALLED)
7510 {
7511 if (!ptid_equal (event_ptid, null_ptid))
7512 record_currthread (rs, event_ptid);
7513 else
7514 event_ptid = inferior_ptid;
7515 }
7516 else
7517 /* A process exit. Invalidate our notion of current thread. */
7518 record_currthread (rs, minus_one_ptid);
7519
7520 return event_ptid;
7521 }
7522
7523 /* Wait until the remote machine stops, then return, storing status in
7524 STATUS just as `wait' would. */
7525
7526 static ptid_t
7527 remote_wait (struct target_ops *ops,
7528 ptid_t ptid, struct target_waitstatus *status, int options)
7529 {
7530 ptid_t event_ptid;
7531
7532 if (target_is_non_stop_p ())
7533 event_ptid = remote_wait_ns (ptid, status, options);
7534 else
7535 event_ptid = remote_wait_as (ptid, status, options);
7536
7537 if (target_is_async_p ())
7538 {
7539 /* If there are are events left in the queue tell the event loop
7540 to return here. */
7541 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7542 mark_async_event_handler (remote_async_inferior_event_token);
7543 }
7544
7545 return event_ptid;
7546 }
7547
7548 /* Fetch a single register using a 'p' packet. */
7549
7550 static int
7551 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7552 {
7553 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7554 struct remote_state *rs = get_remote_state ();
7555 char *buf, *p;
7556 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7557 int i;
7558
7559 if (packet_support (PACKET_p) == PACKET_DISABLE)
7560 return 0;
7561
7562 if (reg->pnum == -1)
7563 return 0;
7564
7565 p = rs->buf;
7566 *p++ = 'p';
7567 p += hexnumstr (p, reg->pnum);
7568 *p++ = '\0';
7569 putpkt (rs->buf);
7570 getpkt (&rs->buf, &rs->buf_size, 0);
7571
7572 buf = rs->buf;
7573
7574 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7575 {
7576 case PACKET_OK:
7577 break;
7578 case PACKET_UNKNOWN:
7579 return 0;
7580 case PACKET_ERROR:
7581 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7582 gdbarch_register_name (get_regcache_arch (regcache),
7583 reg->regnum),
7584 buf);
7585 }
7586
7587 /* If this register is unfetchable, tell the regcache. */
7588 if (buf[0] == 'x')
7589 {
7590 regcache_raw_supply (regcache, reg->regnum, NULL);
7591 return 1;
7592 }
7593
7594 /* Otherwise, parse and supply the value. */
7595 p = buf;
7596 i = 0;
7597 while (p[0] != 0)
7598 {
7599 if (p[1] == 0)
7600 error (_("fetch_register_using_p: early buf termination"));
7601
7602 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7603 p += 2;
7604 }
7605 regcache_raw_supply (regcache, reg->regnum, regp);
7606 return 1;
7607 }
7608
7609 /* Fetch the registers included in the target's 'g' packet. */
7610
7611 static int
7612 send_g_packet (void)
7613 {
7614 struct remote_state *rs = get_remote_state ();
7615 int buf_len;
7616
7617 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7618 remote_send (&rs->buf, &rs->buf_size);
7619
7620 /* We can get out of synch in various cases. If the first character
7621 in the buffer is not a hex character, assume that has happened
7622 and try to fetch another packet to read. */
7623 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7624 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7625 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7626 && rs->buf[0] != 'x') /* New: unavailable register value. */
7627 {
7628 if (remote_debug)
7629 fprintf_unfiltered (gdb_stdlog,
7630 "Bad register packet; fetching a new packet\n");
7631 getpkt (&rs->buf, &rs->buf_size, 0);
7632 }
7633
7634 buf_len = strlen (rs->buf);
7635
7636 /* Sanity check the received packet. */
7637 if (buf_len % 2 != 0)
7638 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7639
7640 return buf_len / 2;
7641 }
7642
7643 static void
7644 process_g_packet (struct regcache *regcache)
7645 {
7646 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7647 struct remote_state *rs = get_remote_state ();
7648 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7649 int i, buf_len;
7650 char *p;
7651 char *regs;
7652
7653 buf_len = strlen (rs->buf);
7654
7655 /* Further sanity checks, with knowledge of the architecture. */
7656 if (buf_len > 2 * rsa->sizeof_g_packet)
7657 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7658 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
7659
7660 /* Save the size of the packet sent to us by the target. It is used
7661 as a heuristic when determining the max size of packets that the
7662 target can safely receive. */
7663 if (rsa->actual_register_packet_size == 0)
7664 rsa->actual_register_packet_size = buf_len;
7665
7666 /* If this is smaller than we guessed the 'g' packet would be,
7667 update our records. A 'g' reply that doesn't include a register's
7668 value implies either that the register is not available, or that
7669 the 'p' packet must be used. */
7670 if (buf_len < 2 * rsa->sizeof_g_packet)
7671 {
7672 long sizeof_g_packet = buf_len / 2;
7673
7674 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7675 {
7676 long offset = rsa->regs[i].offset;
7677 long reg_size = register_size (gdbarch, i);
7678
7679 if (rsa->regs[i].pnum == -1)
7680 continue;
7681
7682 if (offset >= sizeof_g_packet)
7683 rsa->regs[i].in_g_packet = 0;
7684 else if (offset + reg_size > sizeof_g_packet)
7685 error (_("Truncated register %d in remote 'g' packet"), i);
7686 else
7687 rsa->regs[i].in_g_packet = 1;
7688 }
7689
7690 /* Looks valid enough, we can assume this is the correct length
7691 for a 'g' packet. It's important not to adjust
7692 rsa->sizeof_g_packet if we have truncated registers otherwise
7693 this "if" won't be run the next time the method is called
7694 with a packet of the same size and one of the internal errors
7695 below will trigger instead. */
7696 rsa->sizeof_g_packet = sizeof_g_packet;
7697 }
7698
7699 regs = (char *) alloca (rsa->sizeof_g_packet);
7700
7701 /* Unimplemented registers read as all bits zero. */
7702 memset (regs, 0, rsa->sizeof_g_packet);
7703
7704 /* Reply describes registers byte by byte, each byte encoded as two
7705 hex characters. Suck them all up, then supply them to the
7706 register cacheing/storage mechanism. */
7707
7708 p = rs->buf;
7709 for (i = 0; i < rsa->sizeof_g_packet; i++)
7710 {
7711 if (p[0] == 0 || p[1] == 0)
7712 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7713 internal_error (__FILE__, __LINE__,
7714 _("unexpected end of 'g' packet reply"));
7715
7716 if (p[0] == 'x' && p[1] == 'x')
7717 regs[i] = 0; /* 'x' */
7718 else
7719 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7720 p += 2;
7721 }
7722
7723 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7724 {
7725 struct packet_reg *r = &rsa->regs[i];
7726 long reg_size = register_size (gdbarch, i);
7727
7728 if (r->in_g_packet)
7729 {
7730 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7731 /* This shouldn't happen - we adjusted in_g_packet above. */
7732 internal_error (__FILE__, __LINE__,
7733 _("unexpected end of 'g' packet reply"));
7734 else if (rs->buf[r->offset * 2] == 'x')
7735 {
7736 gdb_assert (r->offset * 2 < strlen (rs->buf));
7737 /* The register isn't available, mark it as such (at
7738 the same time setting the value to zero). */
7739 regcache_raw_supply (regcache, r->regnum, NULL);
7740 }
7741 else
7742 regcache_raw_supply (regcache, r->regnum,
7743 regs + r->offset);
7744 }
7745 }
7746 }
7747
7748 static void
7749 fetch_registers_using_g (struct regcache *regcache)
7750 {
7751 send_g_packet ();
7752 process_g_packet (regcache);
7753 }
7754
7755 /* Make the remote selected traceframe match GDB's selected
7756 traceframe. */
7757
7758 static void
7759 set_remote_traceframe (void)
7760 {
7761 int newnum;
7762 struct remote_state *rs = get_remote_state ();
7763
7764 if (rs->remote_traceframe_number == get_traceframe_number ())
7765 return;
7766
7767 /* Avoid recursion, remote_trace_find calls us again. */
7768 rs->remote_traceframe_number = get_traceframe_number ();
7769
7770 newnum = target_trace_find (tfind_number,
7771 get_traceframe_number (), 0, 0, NULL);
7772
7773 /* Should not happen. If it does, all bets are off. */
7774 if (newnum != get_traceframe_number ())
7775 warning (_("could not set remote traceframe"));
7776 }
7777
7778 static void
7779 remote_fetch_registers (struct target_ops *ops,
7780 struct regcache *regcache, int regnum)
7781 {
7782 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7783 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7784 int i;
7785
7786 set_remote_traceframe ();
7787 set_general_thread (regcache_get_ptid (regcache));
7788
7789 if (regnum >= 0)
7790 {
7791 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7792
7793 gdb_assert (reg != NULL);
7794
7795 /* If this register might be in the 'g' packet, try that first -
7796 we are likely to read more than one register. If this is the
7797 first 'g' packet, we might be overly optimistic about its
7798 contents, so fall back to 'p'. */
7799 if (reg->in_g_packet)
7800 {
7801 fetch_registers_using_g (regcache);
7802 if (reg->in_g_packet)
7803 return;
7804 }
7805
7806 if (fetch_register_using_p (regcache, reg))
7807 return;
7808
7809 /* This register is not available. */
7810 regcache_raw_supply (regcache, reg->regnum, NULL);
7811
7812 return;
7813 }
7814
7815 fetch_registers_using_g (regcache);
7816
7817 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7818 if (!rsa->regs[i].in_g_packet)
7819 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
7820 {
7821 /* This register is not available. */
7822 regcache_raw_supply (regcache, i, NULL);
7823 }
7824 }
7825
7826 /* Prepare to store registers. Since we may send them all (using a
7827 'G' request), we have to read out the ones we don't want to change
7828 first. */
7829
7830 static void
7831 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
7832 {
7833 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7834 int i;
7835
7836 /* Make sure the entire registers array is valid. */
7837 switch (packet_support (PACKET_P))
7838 {
7839 case PACKET_DISABLE:
7840 case PACKET_SUPPORT_UNKNOWN:
7841 /* Make sure all the necessary registers are cached. */
7842 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7843 if (rsa->regs[i].in_g_packet)
7844 regcache_raw_update (regcache, rsa->regs[i].regnum);
7845 break;
7846 case PACKET_ENABLE:
7847 break;
7848 }
7849 }
7850
7851 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
7852 packet was not recognized. */
7853
7854 static int
7855 store_register_using_P (const struct regcache *regcache,
7856 struct packet_reg *reg)
7857 {
7858 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7859 struct remote_state *rs = get_remote_state ();
7860 /* Try storing a single register. */
7861 char *buf = rs->buf;
7862 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7863 char *p;
7864
7865 if (packet_support (PACKET_P) == PACKET_DISABLE)
7866 return 0;
7867
7868 if (reg->pnum == -1)
7869 return 0;
7870
7871 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
7872 p = buf + strlen (buf);
7873 regcache_raw_collect (regcache, reg->regnum, regp);
7874 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
7875 putpkt (rs->buf);
7876 getpkt (&rs->buf, &rs->buf_size, 0);
7877
7878 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
7879 {
7880 case PACKET_OK:
7881 return 1;
7882 case PACKET_ERROR:
7883 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
7884 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
7885 case PACKET_UNKNOWN:
7886 return 0;
7887 default:
7888 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
7889 }
7890 }
7891
7892 /* Store register REGNUM, or all registers if REGNUM == -1, from the
7893 contents of the register cache buffer. FIXME: ignores errors. */
7894
7895 static void
7896 store_registers_using_G (const struct regcache *regcache)
7897 {
7898 struct remote_state *rs = get_remote_state ();
7899 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7900 gdb_byte *regs;
7901 char *p;
7902
7903 /* Extract all the registers in the regcache copying them into a
7904 local buffer. */
7905 {
7906 int i;
7907
7908 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
7909 memset (regs, 0, rsa->sizeof_g_packet);
7910 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7911 {
7912 struct packet_reg *r = &rsa->regs[i];
7913
7914 if (r->in_g_packet)
7915 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
7916 }
7917 }
7918
7919 /* Command describes registers byte by byte,
7920 each byte encoded as two hex characters. */
7921 p = rs->buf;
7922 *p++ = 'G';
7923 bin2hex (regs, p, rsa->sizeof_g_packet);
7924 putpkt (rs->buf);
7925 getpkt (&rs->buf, &rs->buf_size, 0);
7926 if (packet_check_result (rs->buf) == PACKET_ERROR)
7927 error (_("Could not write registers; remote failure reply '%s'"),
7928 rs->buf);
7929 }
7930
7931 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
7932 of the register cache buffer. FIXME: ignores errors. */
7933
7934 static void
7935 remote_store_registers (struct target_ops *ops,
7936 struct regcache *regcache, int regnum)
7937 {
7938 struct gdbarch *gdbarch = regcache->arch ();
7939 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7940 int i;
7941
7942 set_remote_traceframe ();
7943 set_general_thread (regcache_get_ptid (regcache));
7944
7945 if (regnum >= 0)
7946 {
7947 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7948
7949 gdb_assert (reg != NULL);
7950
7951 /* Always prefer to store registers using the 'P' packet if
7952 possible; we often change only a small number of registers.
7953 Sometimes we change a larger number; we'd need help from a
7954 higher layer to know to use 'G'. */
7955 if (store_register_using_P (regcache, reg))
7956 return;
7957
7958 /* For now, don't complain if we have no way to write the
7959 register. GDB loses track of unavailable registers too
7960 easily. Some day, this may be an error. We don't have
7961 any way to read the register, either... */
7962 if (!reg->in_g_packet)
7963 return;
7964
7965 store_registers_using_G (regcache);
7966 return;
7967 }
7968
7969 store_registers_using_G (regcache);
7970
7971 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7972 if (!rsa->regs[i].in_g_packet)
7973 if (!store_register_using_P (regcache, &rsa->regs[i]))
7974 /* See above for why we do not issue an error here. */
7975 continue;
7976 }
7977 \f
7978
7979 /* Return the number of hex digits in num. */
7980
7981 static int
7982 hexnumlen (ULONGEST num)
7983 {
7984 int i;
7985
7986 for (i = 0; num != 0; i++)
7987 num >>= 4;
7988
7989 return std::max (i, 1);
7990 }
7991
7992 /* Set BUF to the minimum number of hex digits representing NUM. */
7993
7994 static int
7995 hexnumstr (char *buf, ULONGEST num)
7996 {
7997 int len = hexnumlen (num);
7998
7999 return hexnumnstr (buf, num, len);
8000 }
8001
8002
8003 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8004
8005 static int
8006 hexnumnstr (char *buf, ULONGEST num, int width)
8007 {
8008 int i;
8009
8010 buf[width] = '\0';
8011
8012 for (i = width - 1; i >= 0; i--)
8013 {
8014 buf[i] = "0123456789abcdef"[(num & 0xf)];
8015 num >>= 4;
8016 }
8017
8018 return width;
8019 }
8020
8021 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8022
8023 static CORE_ADDR
8024 remote_address_masked (CORE_ADDR addr)
8025 {
8026 unsigned int address_size = remote_address_size;
8027
8028 /* If "remoteaddresssize" was not set, default to target address size. */
8029 if (!address_size)
8030 address_size = gdbarch_addr_bit (target_gdbarch ());
8031
8032 if (address_size > 0
8033 && address_size < (sizeof (ULONGEST) * 8))
8034 {
8035 /* Only create a mask when that mask can safely be constructed
8036 in a ULONGEST variable. */
8037 ULONGEST mask = 1;
8038
8039 mask = (mask << address_size) - 1;
8040 addr &= mask;
8041 }
8042 return addr;
8043 }
8044
8045 /* Determine whether the remote target supports binary downloading.
8046 This is accomplished by sending a no-op memory write of zero length
8047 to the target at the specified address. It does not suffice to send
8048 the whole packet, since many stubs strip the eighth bit and
8049 subsequently compute a wrong checksum, which causes real havoc with
8050 remote_write_bytes.
8051
8052 NOTE: This can still lose if the serial line is not eight-bit
8053 clean. In cases like this, the user should clear "remote
8054 X-packet". */
8055
8056 static void
8057 check_binary_download (CORE_ADDR addr)
8058 {
8059 struct remote_state *rs = get_remote_state ();
8060
8061 switch (packet_support (PACKET_X))
8062 {
8063 case PACKET_DISABLE:
8064 break;
8065 case PACKET_ENABLE:
8066 break;
8067 case PACKET_SUPPORT_UNKNOWN:
8068 {
8069 char *p;
8070
8071 p = rs->buf;
8072 *p++ = 'X';
8073 p += hexnumstr (p, (ULONGEST) addr);
8074 *p++ = ',';
8075 p += hexnumstr (p, (ULONGEST) 0);
8076 *p++ = ':';
8077 *p = '\0';
8078
8079 putpkt_binary (rs->buf, (int) (p - rs->buf));
8080 getpkt (&rs->buf, &rs->buf_size, 0);
8081
8082 if (rs->buf[0] == '\0')
8083 {
8084 if (remote_debug)
8085 fprintf_unfiltered (gdb_stdlog,
8086 "binary downloading NOT "
8087 "supported by target\n");
8088 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8089 }
8090 else
8091 {
8092 if (remote_debug)
8093 fprintf_unfiltered (gdb_stdlog,
8094 "binary downloading supported by target\n");
8095 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8096 }
8097 break;
8098 }
8099 }
8100 }
8101
8102 /* Helper function to resize the payload in order to try to get a good
8103 alignment. We try to write an amount of data such that the next write will
8104 start on an address aligned on REMOTE_ALIGN_WRITES. */
8105
8106 static int
8107 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8108 {
8109 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8110 }
8111
8112 /* Write memory data directly to the remote machine.
8113 This does not inform the data cache; the data cache uses this.
8114 HEADER is the starting part of the packet.
8115 MEMADDR is the address in the remote memory space.
8116 MYADDR is the address of the buffer in our space.
8117 LEN_UNITS is the number of addressable units to write.
8118 UNIT_SIZE is the length in bytes of an addressable unit.
8119 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8120 should send data as binary ('X'), or hex-encoded ('M').
8121
8122 The function creates packet of the form
8123 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8124
8125 where encoding of <DATA> is terminated by PACKET_FORMAT.
8126
8127 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8128 are omitted.
8129
8130 Return the transferred status, error or OK (an
8131 'enum target_xfer_status' value). Save the number of addressable units
8132 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8133
8134 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8135 exchange between gdb and the stub could look like (?? in place of the
8136 checksum):
8137
8138 -> $m1000,4#??
8139 <- aaaabbbbccccdddd
8140
8141 -> $M1000,3:eeeeffffeeee#??
8142 <- OK
8143
8144 -> $m1000,4#??
8145 <- eeeeffffeeeedddd */
8146
8147 static enum target_xfer_status
8148 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8149 const gdb_byte *myaddr, ULONGEST len_units,
8150 int unit_size, ULONGEST *xfered_len_units,
8151 char packet_format, int use_length)
8152 {
8153 struct remote_state *rs = get_remote_state ();
8154 char *p;
8155 char *plen = NULL;
8156 int plenlen = 0;
8157 int todo_units;
8158 int units_written;
8159 int payload_capacity_bytes;
8160 int payload_length_bytes;
8161
8162 if (packet_format != 'X' && packet_format != 'M')
8163 internal_error (__FILE__, __LINE__,
8164 _("remote_write_bytes_aux: bad packet format"));
8165
8166 if (len_units == 0)
8167 return TARGET_XFER_EOF;
8168
8169 payload_capacity_bytes = get_memory_write_packet_size ();
8170
8171 /* The packet buffer will be large enough for the payload;
8172 get_memory_packet_size ensures this. */
8173 rs->buf[0] = '\0';
8174
8175 /* Compute the size of the actual payload by subtracting out the
8176 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8177
8178 payload_capacity_bytes -= strlen ("$,:#NN");
8179 if (!use_length)
8180 /* The comma won't be used. */
8181 payload_capacity_bytes += 1;
8182 payload_capacity_bytes -= strlen (header);
8183 payload_capacity_bytes -= hexnumlen (memaddr);
8184
8185 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8186
8187 strcat (rs->buf, header);
8188 p = rs->buf + strlen (header);
8189
8190 /* Compute a best guess of the number of bytes actually transfered. */
8191 if (packet_format == 'X')
8192 {
8193 /* Best guess at number of bytes that will fit. */
8194 todo_units = std::min (len_units,
8195 (ULONGEST) payload_capacity_bytes / unit_size);
8196 if (use_length)
8197 payload_capacity_bytes -= hexnumlen (todo_units);
8198 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8199 }
8200 else
8201 {
8202 /* Number of bytes that will fit. */
8203 todo_units
8204 = std::min (len_units,
8205 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8206 if (use_length)
8207 payload_capacity_bytes -= hexnumlen (todo_units);
8208 todo_units = std::min (todo_units,
8209 (payload_capacity_bytes / unit_size) / 2);
8210 }
8211
8212 if (todo_units <= 0)
8213 internal_error (__FILE__, __LINE__,
8214 _("minimum packet size too small to write data"));
8215
8216 /* If we already need another packet, then try to align the end
8217 of this packet to a useful boundary. */
8218 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8219 todo_units = align_for_efficient_write (todo_units, memaddr);
8220
8221 /* Append "<memaddr>". */
8222 memaddr = remote_address_masked (memaddr);
8223 p += hexnumstr (p, (ULONGEST) memaddr);
8224
8225 if (use_length)
8226 {
8227 /* Append ",". */
8228 *p++ = ',';
8229
8230 /* Append the length and retain its location and size. It may need to be
8231 adjusted once the packet body has been created. */
8232 plen = p;
8233 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8234 p += plenlen;
8235 }
8236
8237 /* Append ":". */
8238 *p++ = ':';
8239 *p = '\0';
8240
8241 /* Append the packet body. */
8242 if (packet_format == 'X')
8243 {
8244 /* Binary mode. Send target system values byte by byte, in
8245 increasing byte addresses. Only escape certain critical
8246 characters. */
8247 payload_length_bytes =
8248 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8249 &units_written, payload_capacity_bytes);
8250
8251 /* If not all TODO units fit, then we'll need another packet. Make
8252 a second try to keep the end of the packet aligned. Don't do
8253 this if the packet is tiny. */
8254 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8255 {
8256 int new_todo_units;
8257
8258 new_todo_units = align_for_efficient_write (units_written, memaddr);
8259
8260 if (new_todo_units != units_written)
8261 payload_length_bytes =
8262 remote_escape_output (myaddr, new_todo_units, unit_size,
8263 (gdb_byte *) p, &units_written,
8264 payload_capacity_bytes);
8265 }
8266
8267 p += payload_length_bytes;
8268 if (use_length && units_written < todo_units)
8269 {
8270 /* Escape chars have filled up the buffer prematurely,
8271 and we have actually sent fewer units than planned.
8272 Fix-up the length field of the packet. Use the same
8273 number of characters as before. */
8274 plen += hexnumnstr (plen, (ULONGEST) units_written,
8275 plenlen);
8276 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8277 }
8278 }
8279 else
8280 {
8281 /* Normal mode: Send target system values byte by byte, in
8282 increasing byte addresses. Each byte is encoded as a two hex
8283 value. */
8284 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8285 units_written = todo_units;
8286 }
8287
8288 putpkt_binary (rs->buf, (int) (p - rs->buf));
8289 getpkt (&rs->buf, &rs->buf_size, 0);
8290
8291 if (rs->buf[0] == 'E')
8292 return TARGET_XFER_E_IO;
8293
8294 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8295 send fewer units than we'd planned. */
8296 *xfered_len_units = (ULONGEST) units_written;
8297 return TARGET_XFER_OK;
8298 }
8299
8300 /* Write memory data directly to the remote machine.
8301 This does not inform the data cache; the data cache uses this.
8302 MEMADDR is the address in the remote memory space.
8303 MYADDR is the address of the buffer in our space.
8304 LEN is the number of bytes.
8305
8306 Return the transferred status, error or OK (an
8307 'enum target_xfer_status' value). Save the number of bytes
8308 transferred in *XFERED_LEN. Only transfer a single packet. */
8309
8310 static enum target_xfer_status
8311 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8312 int unit_size, ULONGEST *xfered_len)
8313 {
8314 const char *packet_format = NULL;
8315
8316 /* Check whether the target supports binary download. */
8317 check_binary_download (memaddr);
8318
8319 switch (packet_support (PACKET_X))
8320 {
8321 case PACKET_ENABLE:
8322 packet_format = "X";
8323 break;
8324 case PACKET_DISABLE:
8325 packet_format = "M";
8326 break;
8327 case PACKET_SUPPORT_UNKNOWN:
8328 internal_error (__FILE__, __LINE__,
8329 _("remote_write_bytes: bad internal state"));
8330 default:
8331 internal_error (__FILE__, __LINE__, _("bad switch"));
8332 }
8333
8334 return remote_write_bytes_aux (packet_format,
8335 memaddr, myaddr, len, unit_size, xfered_len,
8336 packet_format[0], 1);
8337 }
8338
8339 /* Read memory data directly from the remote machine.
8340 This does not use the data cache; the data cache uses this.
8341 MEMADDR is the address in the remote memory space.
8342 MYADDR is the address of the buffer in our space.
8343 LEN_UNITS is the number of addressable memory units to read..
8344 UNIT_SIZE is the length in bytes of an addressable unit.
8345
8346 Return the transferred status, error or OK (an
8347 'enum target_xfer_status' value). Save the number of bytes
8348 transferred in *XFERED_LEN_UNITS.
8349
8350 See the comment of remote_write_bytes_aux for an example of
8351 memory read/write exchange between gdb and the stub. */
8352
8353 static enum target_xfer_status
8354 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8355 int unit_size, ULONGEST *xfered_len_units)
8356 {
8357 struct remote_state *rs = get_remote_state ();
8358 int buf_size_bytes; /* Max size of packet output buffer. */
8359 char *p;
8360 int todo_units;
8361 int decoded_bytes;
8362
8363 buf_size_bytes = get_memory_read_packet_size ();
8364 /* The packet buffer will be large enough for the payload;
8365 get_memory_packet_size ensures this. */
8366
8367 /* Number of units that will fit. */
8368 todo_units = std::min (len_units,
8369 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8370
8371 /* Construct "m"<memaddr>","<len>". */
8372 memaddr = remote_address_masked (memaddr);
8373 p = rs->buf;
8374 *p++ = 'm';
8375 p += hexnumstr (p, (ULONGEST) memaddr);
8376 *p++ = ',';
8377 p += hexnumstr (p, (ULONGEST) todo_units);
8378 *p = '\0';
8379 putpkt (rs->buf);
8380 getpkt (&rs->buf, &rs->buf_size, 0);
8381 if (rs->buf[0] == 'E'
8382 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8383 && rs->buf[3] == '\0')
8384 return TARGET_XFER_E_IO;
8385 /* Reply describes memory byte by byte, each byte encoded as two hex
8386 characters. */
8387 p = rs->buf;
8388 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8389 /* Return what we have. Let higher layers handle partial reads. */
8390 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8391 return TARGET_XFER_OK;
8392 }
8393
8394 /* Using the set of read-only target sections of remote, read live
8395 read-only memory.
8396
8397 For interface/parameters/return description see target.h,
8398 to_xfer_partial. */
8399
8400 static enum target_xfer_status
8401 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8402 ULONGEST memaddr, ULONGEST len,
8403 int unit_size, ULONGEST *xfered_len)
8404 {
8405 struct target_section *secp;
8406 struct target_section_table *table;
8407
8408 secp = target_section_by_addr (ops, memaddr);
8409 if (secp != NULL
8410 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8411 secp->the_bfd_section)
8412 & SEC_READONLY))
8413 {
8414 struct target_section *p;
8415 ULONGEST memend = memaddr + len;
8416
8417 table = target_get_section_table (ops);
8418
8419 for (p = table->sections; p < table->sections_end; p++)
8420 {
8421 if (memaddr >= p->addr)
8422 {
8423 if (memend <= p->endaddr)
8424 {
8425 /* Entire transfer is within this section. */
8426 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8427 xfered_len);
8428 }
8429 else if (memaddr >= p->endaddr)
8430 {
8431 /* This section ends before the transfer starts. */
8432 continue;
8433 }
8434 else
8435 {
8436 /* This section overlaps the transfer. Just do half. */
8437 len = p->endaddr - memaddr;
8438 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8439 xfered_len);
8440 }
8441 }
8442 }
8443 }
8444
8445 return TARGET_XFER_EOF;
8446 }
8447
8448 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8449 first if the requested memory is unavailable in traceframe.
8450 Otherwise, fall back to remote_read_bytes_1. */
8451
8452 static enum target_xfer_status
8453 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8454 gdb_byte *myaddr, ULONGEST len, int unit_size,
8455 ULONGEST *xfered_len)
8456 {
8457 if (len == 0)
8458 return TARGET_XFER_EOF;
8459
8460 if (get_traceframe_number () != -1)
8461 {
8462 std::vector<mem_range> available;
8463
8464 /* If we fail to get the set of available memory, then the
8465 target does not support querying traceframe info, and so we
8466 attempt reading from the traceframe anyway (assuming the
8467 target implements the old QTro packet then). */
8468 if (traceframe_available_memory (&available, memaddr, len))
8469 {
8470 if (available.empty () || available[0].start != memaddr)
8471 {
8472 enum target_xfer_status res;
8473
8474 /* Don't read into the traceframe's available
8475 memory. */
8476 if (!available.empty ())
8477 {
8478 LONGEST oldlen = len;
8479
8480 len = available[0].start - memaddr;
8481 gdb_assert (len <= oldlen);
8482 }
8483
8484 /* This goes through the topmost target again. */
8485 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8486 len, unit_size, xfered_len);
8487 if (res == TARGET_XFER_OK)
8488 return TARGET_XFER_OK;
8489 else
8490 {
8491 /* No use trying further, we know some memory starting
8492 at MEMADDR isn't available. */
8493 *xfered_len = len;
8494 return TARGET_XFER_UNAVAILABLE;
8495 }
8496 }
8497
8498 /* Don't try to read more than how much is available, in
8499 case the target implements the deprecated QTro packet to
8500 cater for older GDBs (the target's knowledge of read-only
8501 sections may be outdated by now). */
8502 len = available[0].length;
8503 }
8504 }
8505
8506 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8507 }
8508
8509 \f
8510
8511 /* Sends a packet with content determined by the printf format string
8512 FORMAT and the remaining arguments, then gets the reply. Returns
8513 whether the packet was a success, a failure, or unknown. */
8514
8515 static enum packet_result remote_send_printf (const char *format, ...)
8516 ATTRIBUTE_PRINTF (1, 2);
8517
8518 static enum packet_result
8519 remote_send_printf (const char *format, ...)
8520 {
8521 struct remote_state *rs = get_remote_state ();
8522 int max_size = get_remote_packet_size ();
8523 va_list ap;
8524
8525 va_start (ap, format);
8526
8527 rs->buf[0] = '\0';
8528 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8529 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8530
8531 if (putpkt (rs->buf) < 0)
8532 error (_("Communication problem with target."));
8533
8534 rs->buf[0] = '\0';
8535 getpkt (&rs->buf, &rs->buf_size, 0);
8536
8537 return packet_check_result (rs->buf);
8538 }
8539
8540 /* Flash writing can take quite some time. We'll set
8541 effectively infinite timeout for flash operations.
8542 In future, we'll need to decide on a better approach. */
8543 static const int remote_flash_timeout = 1000;
8544
8545 static void
8546 remote_flash_erase (struct target_ops *ops,
8547 ULONGEST address, LONGEST length)
8548 {
8549 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8550 enum packet_result ret;
8551 scoped_restore restore_timeout
8552 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8553
8554 ret = remote_send_printf ("vFlashErase:%s,%s",
8555 phex (address, addr_size),
8556 phex (length, 4));
8557 switch (ret)
8558 {
8559 case PACKET_UNKNOWN:
8560 error (_("Remote target does not support flash erase"));
8561 case PACKET_ERROR:
8562 error (_("Error erasing flash with vFlashErase packet"));
8563 default:
8564 break;
8565 }
8566 }
8567
8568 static enum target_xfer_status
8569 remote_flash_write (struct target_ops *ops, ULONGEST address,
8570 ULONGEST length, ULONGEST *xfered_len,
8571 const gdb_byte *data)
8572 {
8573 scoped_restore restore_timeout
8574 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8575 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8576 xfered_len,'X', 0);
8577 }
8578
8579 static void
8580 remote_flash_done (struct target_ops *ops)
8581 {
8582 int ret;
8583
8584 scoped_restore restore_timeout
8585 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8586
8587 ret = remote_send_printf ("vFlashDone");
8588
8589 switch (ret)
8590 {
8591 case PACKET_UNKNOWN:
8592 error (_("Remote target does not support vFlashDone"));
8593 case PACKET_ERROR:
8594 error (_("Error finishing flash operation"));
8595 default:
8596 break;
8597 }
8598 }
8599
8600 static void
8601 remote_files_info (struct target_ops *ignore)
8602 {
8603 puts_filtered ("Debugging a target over a serial line.\n");
8604 }
8605 \f
8606 /* Stuff for dealing with the packets which are part of this protocol.
8607 See comment at top of file for details. */
8608
8609 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8610 error to higher layers. Called when a serial error is detected.
8611 The exception message is STRING, followed by a colon and a blank,
8612 the system error message for errno at function entry and final dot
8613 for output compatibility with throw_perror_with_name. */
8614
8615 static void
8616 unpush_and_perror (const char *string)
8617 {
8618 int saved_errno = errno;
8619
8620 remote_unpush_target ();
8621 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8622 safe_strerror (saved_errno));
8623 }
8624
8625 /* Read a single character from the remote end. The current quit
8626 handler is overridden to avoid quitting in the middle of packet
8627 sequence, as that would break communication with the remote server.
8628 See remote_serial_quit_handler for more detail. */
8629
8630 static int
8631 readchar (int timeout)
8632 {
8633 int ch;
8634 struct remote_state *rs = get_remote_state ();
8635
8636 {
8637 scoped_restore restore_quit
8638 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8639
8640 rs->got_ctrlc_during_io = 0;
8641
8642 ch = serial_readchar (rs->remote_desc, timeout);
8643
8644 if (rs->got_ctrlc_during_io)
8645 set_quit_flag ();
8646 }
8647
8648 if (ch >= 0)
8649 return ch;
8650
8651 switch ((enum serial_rc) ch)
8652 {
8653 case SERIAL_EOF:
8654 remote_unpush_target ();
8655 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8656 /* no return */
8657 case SERIAL_ERROR:
8658 unpush_and_perror (_("Remote communication error. "
8659 "Target disconnected."));
8660 /* no return */
8661 case SERIAL_TIMEOUT:
8662 break;
8663 }
8664 return ch;
8665 }
8666
8667 /* Wrapper for serial_write that closes the target and throws if
8668 writing fails. The current quit handler is overridden to avoid
8669 quitting in the middle of packet sequence, as that would break
8670 communication with the remote server. See
8671 remote_serial_quit_handler for more detail. */
8672
8673 static void
8674 remote_serial_write (const char *str, int len)
8675 {
8676 struct remote_state *rs = get_remote_state ();
8677
8678 scoped_restore restore_quit
8679 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8680
8681 rs->got_ctrlc_during_io = 0;
8682
8683 if (serial_write (rs->remote_desc, str, len))
8684 {
8685 unpush_and_perror (_("Remote communication error. "
8686 "Target disconnected."));
8687 }
8688
8689 if (rs->got_ctrlc_during_io)
8690 set_quit_flag ();
8691 }
8692
8693 /* Send the command in *BUF to the remote machine, and read the reply
8694 into *BUF. Report an error if we get an error reply. Resize
8695 *BUF using xrealloc if necessary to hold the result, and update
8696 *SIZEOF_BUF. */
8697
8698 static void
8699 remote_send (char **buf,
8700 long *sizeof_buf)
8701 {
8702 putpkt (*buf);
8703 getpkt (buf, sizeof_buf, 0);
8704
8705 if ((*buf)[0] == 'E')
8706 error (_("Remote failure reply: %s"), *buf);
8707 }
8708
8709 /* Return a string representing an escaped version of BUF, of len N.
8710 E.g. \n is converted to \\n, \t to \\t, etc. */
8711
8712 static std::string
8713 escape_buffer (const char *buf, int n)
8714 {
8715 string_file stb;
8716
8717 stb.putstrn (buf, n, '\\');
8718 return std::move (stb.string ());
8719 }
8720
8721 /* Display a null-terminated packet on stdout, for debugging, using C
8722 string notation. */
8723
8724 static void
8725 print_packet (const char *buf)
8726 {
8727 puts_filtered ("\"");
8728 fputstr_filtered (buf, '"', gdb_stdout);
8729 puts_filtered ("\"");
8730 }
8731
8732 int
8733 putpkt (const char *buf)
8734 {
8735 return putpkt_binary (buf, strlen (buf));
8736 }
8737
8738 /* Send a packet to the remote machine, with error checking. The data
8739 of the packet is in BUF. The string in BUF can be at most
8740 get_remote_packet_size () - 5 to account for the $, # and checksum,
8741 and for a possible /0 if we are debugging (remote_debug) and want
8742 to print the sent packet as a string. */
8743
8744 static int
8745 putpkt_binary (const char *buf, int cnt)
8746 {
8747 struct remote_state *rs = get_remote_state ();
8748 int i;
8749 unsigned char csum = 0;
8750 gdb::def_vector<char> data (cnt + 6);
8751 char *buf2 = data.data ();
8752
8753 int ch;
8754 int tcount = 0;
8755 char *p;
8756
8757 /* Catch cases like trying to read memory or listing threads while
8758 we're waiting for a stop reply. The remote server wouldn't be
8759 ready to handle this request, so we'd hang and timeout. We don't
8760 have to worry about this in synchronous mode, because in that
8761 case it's not possible to issue a command while the target is
8762 running. This is not a problem in non-stop mode, because in that
8763 case, the stub is always ready to process serial input. */
8764 if (!target_is_non_stop_p ()
8765 && target_is_async_p ()
8766 && rs->waiting_for_stop_reply)
8767 {
8768 error (_("Cannot execute this command while the target is running.\n"
8769 "Use the \"interrupt\" command to stop the target\n"
8770 "and then try again."));
8771 }
8772
8773 /* We're sending out a new packet. Make sure we don't look at a
8774 stale cached response. */
8775 rs->cached_wait_status = 0;
8776
8777 /* Copy the packet into buffer BUF2, encapsulating it
8778 and giving it a checksum. */
8779
8780 p = buf2;
8781 *p++ = '$';
8782
8783 for (i = 0; i < cnt; i++)
8784 {
8785 csum += buf[i];
8786 *p++ = buf[i];
8787 }
8788 *p++ = '#';
8789 *p++ = tohex ((csum >> 4) & 0xf);
8790 *p++ = tohex (csum & 0xf);
8791
8792 /* Send it over and over until we get a positive ack. */
8793
8794 while (1)
8795 {
8796 int started_error_output = 0;
8797
8798 if (remote_debug)
8799 {
8800 *p = '\0';
8801
8802 int len = (int) (p - buf2);
8803
8804 std::string str
8805 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
8806
8807 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
8808
8809 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
8810 {
8811 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
8812 str.length () - REMOTE_DEBUG_MAX_CHAR);
8813 }
8814
8815 fprintf_unfiltered (gdb_stdlog, "...");
8816
8817 gdb_flush (gdb_stdlog);
8818 }
8819 remote_serial_write (buf2, p - buf2);
8820
8821 /* If this is a no acks version of the remote protocol, send the
8822 packet and move on. */
8823 if (rs->noack_mode)
8824 break;
8825
8826 /* Read until either a timeout occurs (-2) or '+' is read.
8827 Handle any notification that arrives in the mean time. */
8828 while (1)
8829 {
8830 ch = readchar (remote_timeout);
8831
8832 if (remote_debug)
8833 {
8834 switch (ch)
8835 {
8836 case '+':
8837 case '-':
8838 case SERIAL_TIMEOUT:
8839 case '$':
8840 case '%':
8841 if (started_error_output)
8842 {
8843 putchar_unfiltered ('\n');
8844 started_error_output = 0;
8845 }
8846 }
8847 }
8848
8849 switch (ch)
8850 {
8851 case '+':
8852 if (remote_debug)
8853 fprintf_unfiltered (gdb_stdlog, "Ack\n");
8854 return 1;
8855 case '-':
8856 if (remote_debug)
8857 fprintf_unfiltered (gdb_stdlog, "Nak\n");
8858 /* FALLTHROUGH */
8859 case SERIAL_TIMEOUT:
8860 tcount++;
8861 if (tcount > 3)
8862 return 0;
8863 break; /* Retransmit buffer. */
8864 case '$':
8865 {
8866 if (remote_debug)
8867 fprintf_unfiltered (gdb_stdlog,
8868 "Packet instead of Ack, ignoring it\n");
8869 /* It's probably an old response sent because an ACK
8870 was lost. Gobble up the packet and ack it so it
8871 doesn't get retransmitted when we resend this
8872 packet. */
8873 skip_frame ();
8874 remote_serial_write ("+", 1);
8875 continue; /* Now, go look for +. */
8876 }
8877
8878 case '%':
8879 {
8880 int val;
8881
8882 /* If we got a notification, handle it, and go back to looking
8883 for an ack. */
8884 /* We've found the start of a notification. Now
8885 collect the data. */
8886 val = read_frame (&rs->buf, &rs->buf_size);
8887 if (val >= 0)
8888 {
8889 if (remote_debug)
8890 {
8891 std::string str = escape_buffer (rs->buf, val);
8892
8893 fprintf_unfiltered (gdb_stdlog,
8894 " Notification received: %s\n",
8895 str.c_str ());
8896 }
8897 handle_notification (rs->notif_state, rs->buf);
8898 /* We're in sync now, rewait for the ack. */
8899 tcount = 0;
8900 }
8901 else
8902 {
8903 if (remote_debug)
8904 {
8905 if (!started_error_output)
8906 {
8907 started_error_output = 1;
8908 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8909 }
8910 fputc_unfiltered (ch & 0177, gdb_stdlog);
8911 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
8912 }
8913 }
8914 continue;
8915 }
8916 /* fall-through */
8917 default:
8918 if (remote_debug)
8919 {
8920 if (!started_error_output)
8921 {
8922 started_error_output = 1;
8923 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8924 }
8925 fputc_unfiltered (ch & 0177, gdb_stdlog);
8926 }
8927 continue;
8928 }
8929 break; /* Here to retransmit. */
8930 }
8931
8932 #if 0
8933 /* This is wrong. If doing a long backtrace, the user should be
8934 able to get out next time we call QUIT, without anything as
8935 violent as interrupt_query. If we want to provide a way out of
8936 here without getting to the next QUIT, it should be based on
8937 hitting ^C twice as in remote_wait. */
8938 if (quit_flag)
8939 {
8940 quit_flag = 0;
8941 interrupt_query ();
8942 }
8943 #endif
8944 }
8945
8946 return 0;
8947 }
8948
8949 /* Come here after finding the start of a frame when we expected an
8950 ack. Do our best to discard the rest of this packet. */
8951
8952 static void
8953 skip_frame (void)
8954 {
8955 int c;
8956
8957 while (1)
8958 {
8959 c = readchar (remote_timeout);
8960 switch (c)
8961 {
8962 case SERIAL_TIMEOUT:
8963 /* Nothing we can do. */
8964 return;
8965 case '#':
8966 /* Discard the two bytes of checksum and stop. */
8967 c = readchar (remote_timeout);
8968 if (c >= 0)
8969 c = readchar (remote_timeout);
8970
8971 return;
8972 case '*': /* Run length encoding. */
8973 /* Discard the repeat count. */
8974 c = readchar (remote_timeout);
8975 if (c < 0)
8976 return;
8977 break;
8978 default:
8979 /* A regular character. */
8980 break;
8981 }
8982 }
8983 }
8984
8985 /* Come here after finding the start of the frame. Collect the rest
8986 into *BUF, verifying the checksum, length, and handling run-length
8987 compression. NUL terminate the buffer. If there is not enough room,
8988 expand *BUF using xrealloc.
8989
8990 Returns -1 on error, number of characters in buffer (ignoring the
8991 trailing NULL) on success. (could be extended to return one of the
8992 SERIAL status indications). */
8993
8994 static long
8995 read_frame (char **buf_p,
8996 long *sizeof_buf)
8997 {
8998 unsigned char csum;
8999 long bc;
9000 int c;
9001 char *buf = *buf_p;
9002 struct remote_state *rs = get_remote_state ();
9003
9004 csum = 0;
9005 bc = 0;
9006
9007 while (1)
9008 {
9009 c = readchar (remote_timeout);
9010 switch (c)
9011 {
9012 case SERIAL_TIMEOUT:
9013 if (remote_debug)
9014 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9015 return -1;
9016 case '$':
9017 if (remote_debug)
9018 fputs_filtered ("Saw new packet start in middle of old one\n",
9019 gdb_stdlog);
9020 return -1; /* Start a new packet, count retries. */
9021 case '#':
9022 {
9023 unsigned char pktcsum;
9024 int check_0 = 0;
9025 int check_1 = 0;
9026
9027 buf[bc] = '\0';
9028
9029 check_0 = readchar (remote_timeout);
9030 if (check_0 >= 0)
9031 check_1 = readchar (remote_timeout);
9032
9033 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9034 {
9035 if (remote_debug)
9036 fputs_filtered ("Timeout in checksum, retrying\n",
9037 gdb_stdlog);
9038 return -1;
9039 }
9040 else if (check_0 < 0 || check_1 < 0)
9041 {
9042 if (remote_debug)
9043 fputs_filtered ("Communication error in checksum\n",
9044 gdb_stdlog);
9045 return -1;
9046 }
9047
9048 /* Don't recompute the checksum; with no ack packets we
9049 don't have any way to indicate a packet retransmission
9050 is necessary. */
9051 if (rs->noack_mode)
9052 return bc;
9053
9054 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9055 if (csum == pktcsum)
9056 return bc;
9057
9058 if (remote_debug)
9059 {
9060 std::string str = escape_buffer (buf, bc);
9061
9062 fprintf_unfiltered (gdb_stdlog,
9063 "Bad checksum, sentsum=0x%x, "
9064 "csum=0x%x, buf=%s\n",
9065 pktcsum, csum, str.c_str ());
9066 }
9067 /* Number of characters in buffer ignoring trailing
9068 NULL. */
9069 return -1;
9070 }
9071 case '*': /* Run length encoding. */
9072 {
9073 int repeat;
9074
9075 csum += c;
9076 c = readchar (remote_timeout);
9077 csum += c;
9078 repeat = c - ' ' + 3; /* Compute repeat count. */
9079
9080 /* The character before ``*'' is repeated. */
9081
9082 if (repeat > 0 && repeat <= 255 && bc > 0)
9083 {
9084 if (bc + repeat - 1 >= *sizeof_buf - 1)
9085 {
9086 /* Make some more room in the buffer. */
9087 *sizeof_buf += repeat;
9088 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9089 buf = *buf_p;
9090 }
9091
9092 memset (&buf[bc], buf[bc - 1], repeat);
9093 bc += repeat;
9094 continue;
9095 }
9096
9097 buf[bc] = '\0';
9098 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9099 return -1;
9100 }
9101 default:
9102 if (bc >= *sizeof_buf - 1)
9103 {
9104 /* Make some more room in the buffer. */
9105 *sizeof_buf *= 2;
9106 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9107 buf = *buf_p;
9108 }
9109
9110 buf[bc++] = c;
9111 csum += c;
9112 continue;
9113 }
9114 }
9115 }
9116
9117 /* Read a packet from the remote machine, with error checking, and
9118 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9119 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9120 rather than timing out; this is used (in synchronous mode) to wait
9121 for a target that is is executing user code to stop. */
9122 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9123 don't have to change all the calls to getpkt to deal with the
9124 return value, because at the moment I don't know what the right
9125 thing to do it for those. */
9126 void
9127 getpkt (char **buf,
9128 long *sizeof_buf,
9129 int forever)
9130 {
9131 getpkt_sane (buf, sizeof_buf, forever);
9132 }
9133
9134
9135 /* Read a packet from the remote machine, with error checking, and
9136 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9137 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9138 rather than timing out; this is used (in synchronous mode) to wait
9139 for a target that is is executing user code to stop. If FOREVER ==
9140 0, this function is allowed to time out gracefully and return an
9141 indication of this to the caller. Otherwise return the number of
9142 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9143 enough reason to return to the caller. *IS_NOTIF is an output
9144 boolean that indicates whether *BUF holds a notification or not
9145 (a regular packet). */
9146
9147 static int
9148 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9149 int expecting_notif, int *is_notif)
9150 {
9151 struct remote_state *rs = get_remote_state ();
9152 int c;
9153 int tries;
9154 int timeout;
9155 int val = -1;
9156
9157 /* We're reading a new response. Make sure we don't look at a
9158 previously cached response. */
9159 rs->cached_wait_status = 0;
9160
9161 strcpy (*buf, "timeout");
9162
9163 if (forever)
9164 timeout = watchdog > 0 ? watchdog : -1;
9165 else if (expecting_notif)
9166 timeout = 0; /* There should already be a char in the buffer. If
9167 not, bail out. */
9168 else
9169 timeout = remote_timeout;
9170
9171 #define MAX_TRIES 3
9172
9173 /* Process any number of notifications, and then return when
9174 we get a packet. */
9175 for (;;)
9176 {
9177 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9178 times. */
9179 for (tries = 1; tries <= MAX_TRIES; tries++)
9180 {
9181 /* This can loop forever if the remote side sends us
9182 characters continuously, but if it pauses, we'll get
9183 SERIAL_TIMEOUT from readchar because of timeout. Then
9184 we'll count that as a retry.
9185
9186 Note that even when forever is set, we will only wait
9187 forever prior to the start of a packet. After that, we
9188 expect characters to arrive at a brisk pace. They should
9189 show up within remote_timeout intervals. */
9190 do
9191 c = readchar (timeout);
9192 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9193
9194 if (c == SERIAL_TIMEOUT)
9195 {
9196 if (expecting_notif)
9197 return -1; /* Don't complain, it's normal to not get
9198 anything in this case. */
9199
9200 if (forever) /* Watchdog went off? Kill the target. */
9201 {
9202 remote_unpush_target ();
9203 throw_error (TARGET_CLOSE_ERROR,
9204 _("Watchdog timeout has expired. "
9205 "Target detached."));
9206 }
9207 if (remote_debug)
9208 fputs_filtered ("Timed out.\n", gdb_stdlog);
9209 }
9210 else
9211 {
9212 /* We've found the start of a packet or notification.
9213 Now collect the data. */
9214 val = read_frame (buf, sizeof_buf);
9215 if (val >= 0)
9216 break;
9217 }
9218
9219 remote_serial_write ("-", 1);
9220 }
9221
9222 if (tries > MAX_TRIES)
9223 {
9224 /* We have tried hard enough, and just can't receive the
9225 packet/notification. Give up. */
9226 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9227
9228 /* Skip the ack char if we're in no-ack mode. */
9229 if (!rs->noack_mode)
9230 remote_serial_write ("+", 1);
9231 return -1;
9232 }
9233
9234 /* If we got an ordinary packet, return that to our caller. */
9235 if (c == '$')
9236 {
9237 if (remote_debug)
9238 {
9239 std::string str
9240 = escape_buffer (*buf,
9241 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9242
9243 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9244 str.c_str ());
9245
9246 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
9247 {
9248 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
9249 str.length () - REMOTE_DEBUG_MAX_CHAR);
9250 }
9251
9252 fprintf_unfiltered (gdb_stdlog, "\n");
9253 }
9254
9255 /* Skip the ack char if we're in no-ack mode. */
9256 if (!rs->noack_mode)
9257 remote_serial_write ("+", 1);
9258 if (is_notif != NULL)
9259 *is_notif = 0;
9260 return val;
9261 }
9262
9263 /* If we got a notification, handle it, and go back to looking
9264 for a packet. */
9265 else
9266 {
9267 gdb_assert (c == '%');
9268
9269 if (remote_debug)
9270 {
9271 std::string str = escape_buffer (*buf, val);
9272
9273 fprintf_unfiltered (gdb_stdlog,
9274 " Notification received: %s\n",
9275 str.c_str ());
9276 }
9277 if (is_notif != NULL)
9278 *is_notif = 1;
9279
9280 handle_notification (rs->notif_state, *buf);
9281
9282 /* Notifications require no acknowledgement. */
9283
9284 if (expecting_notif)
9285 return val;
9286 }
9287 }
9288 }
9289
9290 static int
9291 getpkt_sane (char **buf, long *sizeof_buf, int forever)
9292 {
9293 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9294 }
9295
9296 static int
9297 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9298 int *is_notif)
9299 {
9300 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9301 is_notif);
9302 }
9303
9304 /* Check whether EVENT is a fork event for the process specified
9305 by the pid passed in DATA, and if it is, kill the fork child. */
9306
9307 static int
9308 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9309 QUEUE_ITER (stop_reply_p) *iter,
9310 stop_reply_p event,
9311 void *data)
9312 {
9313 struct queue_iter_param *param = (struct queue_iter_param *) data;
9314 int parent_pid = *(int *) param->input;
9315
9316 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9317 {
9318 struct remote_state *rs = get_remote_state ();
9319 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9320 int res;
9321
9322 res = remote_vkill (child_pid, rs);
9323 if (res != 0)
9324 error (_("Can't kill fork child process %d"), child_pid);
9325 }
9326
9327 return 1;
9328 }
9329
9330 /* Kill any new fork children of process PID that haven't been
9331 processed by follow_fork. */
9332
9333 static void
9334 kill_new_fork_children (int pid, struct remote_state *rs)
9335 {
9336 struct thread_info *thread;
9337 struct notif_client *notif = &notif_client_stop;
9338 struct queue_iter_param param;
9339
9340 /* Kill the fork child threads of any threads in process PID
9341 that are stopped at a fork event. */
9342 ALL_NON_EXITED_THREADS (thread)
9343 {
9344 struct target_waitstatus *ws = &thread->pending_follow;
9345
9346 if (is_pending_fork_parent (ws, pid, thread->ptid))
9347 {
9348 struct remote_state *rs = get_remote_state ();
9349 int child_pid = ptid_get_pid (ws->value.related_pid);
9350 int res;
9351
9352 res = remote_vkill (child_pid, rs);
9353 if (res != 0)
9354 error (_("Can't kill fork child process %d"), child_pid);
9355 }
9356 }
9357
9358 /* Check for any pending fork events (not reported or processed yet)
9359 in process PID and kill those fork child threads as well. */
9360 remote_notif_get_pending_events (notif);
9361 param.input = &pid;
9362 param.output = NULL;
9363 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9364 kill_child_of_pending_fork, &param);
9365 }
9366
9367 \f
9368 /* Target hook to kill the current inferior. */
9369
9370 static void
9371 remote_kill (struct target_ops *ops)
9372 {
9373 int res = -1;
9374 int pid = ptid_get_pid (inferior_ptid);
9375 struct remote_state *rs = get_remote_state ();
9376
9377 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9378 {
9379 /* If we're stopped while forking and we haven't followed yet,
9380 kill the child task. We need to do this before killing the
9381 parent task because if this is a vfork then the parent will
9382 be sleeping. */
9383 kill_new_fork_children (pid, rs);
9384
9385 res = remote_vkill (pid, rs);
9386 if (res == 0)
9387 {
9388 target_mourn_inferior (inferior_ptid);
9389 return;
9390 }
9391 }
9392
9393 /* If we are in 'target remote' mode and we are killing the only
9394 inferior, then we will tell gdbserver to exit and unpush the
9395 target. */
9396 if (res == -1 && !remote_multi_process_p (rs)
9397 && number_of_live_inferiors () == 1)
9398 {
9399 remote_kill_k ();
9400
9401 /* We've killed the remote end, we get to mourn it. If we are
9402 not in extended mode, mourning the inferior also unpushes
9403 remote_ops from the target stack, which closes the remote
9404 connection. */
9405 target_mourn_inferior (inferior_ptid);
9406
9407 return;
9408 }
9409
9410 error (_("Can't kill process"));
9411 }
9412
9413 /* Send a kill request to the target using the 'vKill' packet. */
9414
9415 static int
9416 remote_vkill (int pid, struct remote_state *rs)
9417 {
9418 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9419 return -1;
9420
9421 /* Tell the remote target to detach. */
9422 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9423 putpkt (rs->buf);
9424 getpkt (&rs->buf, &rs->buf_size, 0);
9425
9426 switch (packet_ok (rs->buf,
9427 &remote_protocol_packets[PACKET_vKill]))
9428 {
9429 case PACKET_OK:
9430 return 0;
9431 case PACKET_ERROR:
9432 return 1;
9433 case PACKET_UNKNOWN:
9434 return -1;
9435 default:
9436 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9437 }
9438 }
9439
9440 /* Send a kill request to the target using the 'k' packet. */
9441
9442 static void
9443 remote_kill_k (void)
9444 {
9445 /* Catch errors so the user can quit from gdb even when we
9446 aren't on speaking terms with the remote system. */
9447 TRY
9448 {
9449 putpkt ("k");
9450 }
9451 CATCH (ex, RETURN_MASK_ERROR)
9452 {
9453 if (ex.error == TARGET_CLOSE_ERROR)
9454 {
9455 /* If we got an (EOF) error that caused the target
9456 to go away, then we're done, that's what we wanted.
9457 "k" is susceptible to cause a premature EOF, given
9458 that the remote server isn't actually required to
9459 reply to "k", and it can happen that it doesn't
9460 even get to reply ACK to the "k". */
9461 return;
9462 }
9463
9464 /* Otherwise, something went wrong. We didn't actually kill
9465 the target. Just propagate the exception, and let the
9466 user or higher layers decide what to do. */
9467 throw_exception (ex);
9468 }
9469 END_CATCH
9470 }
9471
9472 static void
9473 remote_mourn (struct target_ops *target)
9474 {
9475 struct remote_state *rs = get_remote_state ();
9476
9477 /* In 'target remote' mode with one inferior, we close the connection. */
9478 if (!rs->extended && number_of_live_inferiors () <= 1)
9479 {
9480 unpush_target (target);
9481
9482 /* remote_close takes care of doing most of the clean up. */
9483 generic_mourn_inferior ();
9484 return;
9485 }
9486
9487 /* In case we got here due to an error, but we're going to stay
9488 connected. */
9489 rs->waiting_for_stop_reply = 0;
9490
9491 /* If the current general thread belonged to the process we just
9492 detached from or has exited, the remote side current general
9493 thread becomes undefined. Considering a case like this:
9494
9495 - We just got here due to a detach.
9496 - The process that we're detaching from happens to immediately
9497 report a global breakpoint being hit in non-stop mode, in the
9498 same thread we had selected before.
9499 - GDB attaches to this process again.
9500 - This event happens to be the next event we handle.
9501
9502 GDB would consider that the current general thread didn't need to
9503 be set on the stub side (with Hg), since for all it knew,
9504 GENERAL_THREAD hadn't changed.
9505
9506 Notice that although in all-stop mode, the remote server always
9507 sets the current thread to the thread reporting the stop event,
9508 that doesn't happen in non-stop mode; in non-stop, the stub *must
9509 not* change the current thread when reporting a breakpoint hit,
9510 due to the decoupling of event reporting and event handling.
9511
9512 To keep things simple, we always invalidate our notion of the
9513 current thread. */
9514 record_currthread (rs, minus_one_ptid);
9515
9516 /* Call common code to mark the inferior as not running. */
9517 generic_mourn_inferior ();
9518
9519 if (!have_inferiors ())
9520 {
9521 if (!remote_multi_process_p (rs))
9522 {
9523 /* Check whether the target is running now - some remote stubs
9524 automatically restart after kill. */
9525 putpkt ("?");
9526 getpkt (&rs->buf, &rs->buf_size, 0);
9527
9528 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9529 {
9530 /* Assume that the target has been restarted. Set
9531 inferior_ptid so that bits of core GDB realizes
9532 there's something here, e.g., so that the user can
9533 say "kill" again. */
9534 inferior_ptid = magic_null_ptid;
9535 }
9536 }
9537 }
9538 }
9539
9540 static int
9541 extended_remote_supports_disable_randomization (struct target_ops *self)
9542 {
9543 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9544 }
9545
9546 static void
9547 extended_remote_disable_randomization (int val)
9548 {
9549 struct remote_state *rs = get_remote_state ();
9550 char *reply;
9551
9552 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9553 val);
9554 putpkt (rs->buf);
9555 reply = remote_get_noisy_reply ();
9556 if (*reply == '\0')
9557 error (_("Target does not support QDisableRandomization."));
9558 if (strcmp (reply, "OK") != 0)
9559 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9560 }
9561
9562 static int
9563 extended_remote_run (const std::string &args)
9564 {
9565 struct remote_state *rs = get_remote_state ();
9566 int len;
9567 const char *remote_exec_file = get_remote_exec_file ();
9568
9569 /* If the user has disabled vRun support, or we have detected that
9570 support is not available, do not try it. */
9571 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9572 return -1;
9573
9574 strcpy (rs->buf, "vRun;");
9575 len = strlen (rs->buf);
9576
9577 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9578 error (_("Remote file name too long for run packet"));
9579 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9580 strlen (remote_exec_file));
9581
9582 if (!args.empty ())
9583 {
9584 int i;
9585
9586 gdb_argv argv (args.c_str ());
9587 for (i = 0; argv[i] != NULL; i++)
9588 {
9589 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9590 error (_("Argument list too long for run packet"));
9591 rs->buf[len++] = ';';
9592 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9593 strlen (argv[i]));
9594 }
9595 }
9596
9597 rs->buf[len++] = '\0';
9598
9599 putpkt (rs->buf);
9600 getpkt (&rs->buf, &rs->buf_size, 0);
9601
9602 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9603 {
9604 case PACKET_OK:
9605 /* We have a wait response. All is well. */
9606 return 0;
9607 case PACKET_UNKNOWN:
9608 return -1;
9609 case PACKET_ERROR:
9610 if (remote_exec_file[0] == '\0')
9611 error (_("Running the default executable on the remote target failed; "
9612 "try \"set remote exec-file\"?"));
9613 else
9614 error (_("Running \"%s\" on the remote target failed"),
9615 remote_exec_file);
9616 default:
9617 gdb_assert_not_reached (_("bad switch"));
9618 }
9619 }
9620
9621 /* Helper function to send set/unset environment packets. ACTION is
9622 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9623 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9624 sent. */
9625
9626 static void
9627 send_environment_packet (struct remote_state *rs,
9628 const char *action,
9629 const char *packet,
9630 const char *value)
9631 {
9632 /* Convert the environment variable to an hex string, which
9633 is the best format to be transmitted over the wire. */
9634 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9635 strlen (value));
9636
9637 xsnprintf (rs->buf, get_remote_packet_size (),
9638 "%s:%s", packet, encoded_value.c_str ());
9639
9640 putpkt (rs->buf);
9641 getpkt (&rs->buf, &rs->buf_size, 0);
9642 if (strcmp (rs->buf, "OK") != 0)
9643 warning (_("Unable to %s environment variable '%s' on remote."),
9644 action, value);
9645 }
9646
9647 /* Helper function to handle the QEnvironment* packets. */
9648
9649 static void
9650 extended_remote_environment_support (struct remote_state *rs)
9651 {
9652 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9653 {
9654 putpkt ("QEnvironmentReset");
9655 getpkt (&rs->buf, &rs->buf_size, 0);
9656 if (strcmp (rs->buf, "OK") != 0)
9657 warning (_("Unable to reset environment on remote."));
9658 }
9659
9660 gdb_environ *e = &current_inferior ()->environment;
9661
9662 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9663 for (const std::string &el : e->user_set_env ())
9664 send_environment_packet (rs, "set", "QEnvironmentHexEncoded",
9665 el.c_str ());
9666
9667 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9668 for (const std::string &el : e->user_unset_env ())
9669 send_environment_packet (rs, "unset", "QEnvironmentUnset", el.c_str ());
9670 }
9671
9672 /* Helper function to set the current working directory for the
9673 inferior in the remote target. */
9674
9675 static void
9676 extended_remote_set_inferior_cwd (struct remote_state *rs)
9677 {
9678 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
9679 {
9680 const char *inferior_cwd = get_inferior_cwd ();
9681
9682 if (inferior_cwd != NULL)
9683 {
9684 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
9685 strlen (inferior_cwd));
9686
9687 xsnprintf (rs->buf, get_remote_packet_size (),
9688 "QSetWorkingDir:%s", hexpath.c_str ());
9689 }
9690 else
9691 {
9692 /* An empty inferior_cwd means that the user wants us to
9693 reset the remote server's inferior's cwd. */
9694 xsnprintf (rs->buf, get_remote_packet_size (),
9695 "QSetWorkingDir:");
9696 }
9697
9698 putpkt (rs->buf);
9699 getpkt (&rs->buf, &rs->buf_size, 0);
9700 if (packet_ok (rs->buf,
9701 &remote_protocol_packets[PACKET_QSetWorkingDir])
9702 != PACKET_OK)
9703 error (_("\
9704 Remote replied unexpectedly while setting the inferior's working\n\
9705 directory: %s"),
9706 rs->buf);
9707
9708 }
9709 }
9710
9711 /* In the extended protocol we want to be able to do things like
9712 "run" and have them basically work as expected. So we need
9713 a special create_inferior function. We support changing the
9714 executable file and the command line arguments, but not the
9715 environment. */
9716
9717 static void
9718 extended_remote_create_inferior (struct target_ops *ops,
9719 const char *exec_file,
9720 const std::string &args,
9721 char **env, int from_tty)
9722 {
9723 int run_worked;
9724 char *stop_reply;
9725 struct remote_state *rs = get_remote_state ();
9726 const char *remote_exec_file = get_remote_exec_file ();
9727
9728 /* If running asynchronously, register the target file descriptor
9729 with the event loop. */
9730 if (target_can_async_p ())
9731 target_async (1);
9732
9733 /* Disable address space randomization if requested (and supported). */
9734 if (extended_remote_supports_disable_randomization (ops))
9735 extended_remote_disable_randomization (disable_randomization);
9736
9737 /* If startup-with-shell is on, we inform gdbserver to start the
9738 remote inferior using a shell. */
9739 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
9740 {
9741 xsnprintf (rs->buf, get_remote_packet_size (),
9742 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
9743 putpkt (rs->buf);
9744 getpkt (&rs->buf, &rs->buf_size, 0);
9745 if (strcmp (rs->buf, "OK") != 0)
9746 error (_("\
9747 Remote replied unexpectedly while setting startup-with-shell: %s"),
9748 rs->buf);
9749 }
9750
9751 extended_remote_environment_support (rs);
9752
9753 extended_remote_set_inferior_cwd (rs);
9754
9755 /* Now restart the remote server. */
9756 run_worked = extended_remote_run (args) != -1;
9757 if (!run_worked)
9758 {
9759 /* vRun was not supported. Fail if we need it to do what the
9760 user requested. */
9761 if (remote_exec_file[0])
9762 error (_("Remote target does not support \"set remote exec-file\""));
9763 if (!args.empty ())
9764 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9765
9766 /* Fall back to "R". */
9767 extended_remote_restart ();
9768 }
9769
9770 if (!have_inferiors ())
9771 {
9772 /* Clean up from the last time we ran, before we mark the target
9773 running again. This will mark breakpoints uninserted, and
9774 get_offsets may insert breakpoints. */
9775 init_thread_list ();
9776 init_wait_for_inferior ();
9777 }
9778
9779 /* vRun's success return is a stop reply. */
9780 stop_reply = run_worked ? rs->buf : NULL;
9781 add_current_inferior_and_thread (stop_reply);
9782
9783 /* Get updated offsets, if the stub uses qOffsets. */
9784 get_offsets ();
9785 }
9786 \f
9787
9788 /* Given a location's target info BP_TGT and the packet buffer BUF, output
9789 the list of conditions (in agent expression bytecode format), if any, the
9790 target needs to evaluate. The output is placed into the packet buffer
9791 started from BUF and ended at BUF_END. */
9792
9793 static int
9794 remote_add_target_side_condition (struct gdbarch *gdbarch,
9795 struct bp_target_info *bp_tgt, char *buf,
9796 char *buf_end)
9797 {
9798 if (bp_tgt->conditions.empty ())
9799 return 0;
9800
9801 buf += strlen (buf);
9802 xsnprintf (buf, buf_end - buf, "%s", ";");
9803 buf++;
9804
9805 /* Send conditions to the target. */
9806 for (agent_expr *aexpr : bp_tgt->conditions)
9807 {
9808 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
9809 buf += strlen (buf);
9810 for (int i = 0; i < aexpr->len; ++i)
9811 buf = pack_hex_byte (buf, aexpr->buf[i]);
9812 *buf = '\0';
9813 }
9814 return 0;
9815 }
9816
9817 static void
9818 remote_add_target_side_commands (struct gdbarch *gdbarch,
9819 struct bp_target_info *bp_tgt, char *buf)
9820 {
9821 if (bp_tgt->tcommands.empty ())
9822 return;
9823
9824 buf += strlen (buf);
9825
9826 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
9827 buf += strlen (buf);
9828
9829 /* Concatenate all the agent expressions that are commands into the
9830 cmds parameter. */
9831 for (agent_expr *aexpr : bp_tgt->tcommands)
9832 {
9833 sprintf (buf, "X%x,", aexpr->len);
9834 buf += strlen (buf);
9835 for (int i = 0; i < aexpr->len; ++i)
9836 buf = pack_hex_byte (buf, aexpr->buf[i]);
9837 *buf = '\0';
9838 }
9839 }
9840
9841 /* Insert a breakpoint. On targets that have software breakpoint
9842 support, we ask the remote target to do the work; on targets
9843 which don't, we insert a traditional memory breakpoint. */
9844
9845 static int
9846 remote_insert_breakpoint (struct target_ops *ops,
9847 struct gdbarch *gdbarch,
9848 struct bp_target_info *bp_tgt)
9849 {
9850 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
9851 If it succeeds, then set the support to PACKET_ENABLE. If it
9852 fails, and the user has explicitly requested the Z support then
9853 report an error, otherwise, mark it disabled and go on. */
9854
9855 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9856 {
9857 CORE_ADDR addr = bp_tgt->reqstd_address;
9858 struct remote_state *rs;
9859 char *p, *endbuf;
9860 int bpsize;
9861
9862 /* Make sure the remote is pointing at the right process, if
9863 necessary. */
9864 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9865 set_general_process ();
9866
9867 rs = get_remote_state ();
9868 p = rs->buf;
9869 endbuf = rs->buf + get_remote_packet_size ();
9870
9871 *(p++) = 'Z';
9872 *(p++) = '0';
9873 *(p++) = ',';
9874 addr = (ULONGEST) remote_address_masked (addr);
9875 p += hexnumstr (p, addr);
9876 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9877
9878 if (remote_supports_cond_breakpoints (ops))
9879 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
9880
9881 if (remote_can_run_breakpoint_commands (ops))
9882 remote_add_target_side_commands (gdbarch, bp_tgt, p);
9883
9884 putpkt (rs->buf);
9885 getpkt (&rs->buf, &rs->buf_size, 0);
9886
9887 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
9888 {
9889 case PACKET_ERROR:
9890 return -1;
9891 case PACKET_OK:
9892 return 0;
9893 case PACKET_UNKNOWN:
9894 break;
9895 }
9896 }
9897
9898 /* If this breakpoint has target-side commands but this stub doesn't
9899 support Z0 packets, throw error. */
9900 if (!bp_tgt->tcommands.empty ())
9901 throw_error (NOT_SUPPORTED_ERROR, _("\
9902 Target doesn't support breakpoints that have target side commands."));
9903
9904 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
9905 }
9906
9907 static int
9908 remote_remove_breakpoint (struct target_ops *ops,
9909 struct gdbarch *gdbarch,
9910 struct bp_target_info *bp_tgt,
9911 enum remove_bp_reason reason)
9912 {
9913 CORE_ADDR addr = bp_tgt->placed_address;
9914 struct remote_state *rs = get_remote_state ();
9915
9916 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9917 {
9918 char *p = rs->buf;
9919 char *endbuf = rs->buf + get_remote_packet_size ();
9920
9921 /* Make sure the remote is pointing at the right process, if
9922 necessary. */
9923 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9924 set_general_process ();
9925
9926 *(p++) = 'z';
9927 *(p++) = '0';
9928 *(p++) = ',';
9929
9930 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
9931 p += hexnumstr (p, addr);
9932 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9933
9934 putpkt (rs->buf);
9935 getpkt (&rs->buf, &rs->buf_size, 0);
9936
9937 return (rs->buf[0] == 'E');
9938 }
9939
9940 return memory_remove_breakpoint (ops, gdbarch, bp_tgt, reason);
9941 }
9942
9943 static enum Z_packet_type
9944 watchpoint_to_Z_packet (int type)
9945 {
9946 switch (type)
9947 {
9948 case hw_write:
9949 return Z_PACKET_WRITE_WP;
9950 break;
9951 case hw_read:
9952 return Z_PACKET_READ_WP;
9953 break;
9954 case hw_access:
9955 return Z_PACKET_ACCESS_WP;
9956 break;
9957 default:
9958 internal_error (__FILE__, __LINE__,
9959 _("hw_bp_to_z: bad watchpoint type %d"), type);
9960 }
9961 }
9962
9963 static int
9964 remote_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9965 enum target_hw_bp_type type, struct expression *cond)
9966 {
9967 struct remote_state *rs = get_remote_state ();
9968 char *endbuf = rs->buf + get_remote_packet_size ();
9969 char *p;
9970 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9971
9972 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9973 return 1;
9974
9975 /* Make sure the remote is pointing at the right process, if
9976 necessary. */
9977 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9978 set_general_process ();
9979
9980 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
9981 p = strchr (rs->buf, '\0');
9982 addr = remote_address_masked (addr);
9983 p += hexnumstr (p, (ULONGEST) addr);
9984 xsnprintf (p, endbuf - p, ",%x", len);
9985
9986 putpkt (rs->buf);
9987 getpkt (&rs->buf, &rs->buf_size, 0);
9988
9989 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9990 {
9991 case PACKET_ERROR:
9992 return -1;
9993 case PACKET_UNKNOWN:
9994 return 1;
9995 case PACKET_OK:
9996 return 0;
9997 }
9998 internal_error (__FILE__, __LINE__,
9999 _("remote_insert_watchpoint: reached end of function"));
10000 }
10001
10002 static int
10003 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
10004 CORE_ADDR start, int length)
10005 {
10006 CORE_ADDR diff = remote_address_masked (addr - start);
10007
10008 return diff < length;
10009 }
10010
10011
10012 static int
10013 remote_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
10014 enum target_hw_bp_type type, struct expression *cond)
10015 {
10016 struct remote_state *rs = get_remote_state ();
10017 char *endbuf = rs->buf + get_remote_packet_size ();
10018 char *p;
10019 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10020
10021 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10022 return -1;
10023
10024 /* Make sure the remote is pointing at the right process, if
10025 necessary. */
10026 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10027 set_general_process ();
10028
10029 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
10030 p = strchr (rs->buf, '\0');
10031 addr = remote_address_masked (addr);
10032 p += hexnumstr (p, (ULONGEST) addr);
10033 xsnprintf (p, endbuf - p, ",%x", len);
10034 putpkt (rs->buf);
10035 getpkt (&rs->buf, &rs->buf_size, 0);
10036
10037 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10038 {
10039 case PACKET_ERROR:
10040 case PACKET_UNKNOWN:
10041 return -1;
10042 case PACKET_OK:
10043 return 0;
10044 }
10045 internal_error (__FILE__, __LINE__,
10046 _("remote_remove_watchpoint: reached end of function"));
10047 }
10048
10049
10050 int remote_hw_watchpoint_limit = -1;
10051 int remote_hw_watchpoint_length_limit = -1;
10052 int remote_hw_breakpoint_limit = -1;
10053
10054 static int
10055 remote_region_ok_for_hw_watchpoint (struct target_ops *self,
10056 CORE_ADDR addr, int len)
10057 {
10058 if (remote_hw_watchpoint_length_limit == 0)
10059 return 0;
10060 else if (remote_hw_watchpoint_length_limit < 0)
10061 return 1;
10062 else if (len <= remote_hw_watchpoint_length_limit)
10063 return 1;
10064 else
10065 return 0;
10066 }
10067
10068 static int
10069 remote_check_watch_resources (struct target_ops *self,
10070 enum bptype type, int cnt, int ot)
10071 {
10072 if (type == bp_hardware_breakpoint)
10073 {
10074 if (remote_hw_breakpoint_limit == 0)
10075 return 0;
10076 else if (remote_hw_breakpoint_limit < 0)
10077 return 1;
10078 else if (cnt <= remote_hw_breakpoint_limit)
10079 return 1;
10080 }
10081 else
10082 {
10083 if (remote_hw_watchpoint_limit == 0)
10084 return 0;
10085 else if (remote_hw_watchpoint_limit < 0)
10086 return 1;
10087 else if (ot)
10088 return -1;
10089 else if (cnt <= remote_hw_watchpoint_limit)
10090 return 1;
10091 }
10092 return -1;
10093 }
10094
10095 /* The to_stopped_by_sw_breakpoint method of target remote. */
10096
10097 static int
10098 remote_stopped_by_sw_breakpoint (struct target_ops *ops)
10099 {
10100 struct thread_info *thread = inferior_thread ();
10101
10102 return (thread->priv != NULL
10103 && thread->priv->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
10104 }
10105
10106 /* The to_supports_stopped_by_sw_breakpoint method of target
10107 remote. */
10108
10109 static int
10110 remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
10111 {
10112 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10113 }
10114
10115 /* The to_stopped_by_hw_breakpoint method of target remote. */
10116
10117 static int
10118 remote_stopped_by_hw_breakpoint (struct target_ops *ops)
10119 {
10120 struct thread_info *thread = inferior_thread ();
10121
10122 return (thread->priv != NULL
10123 && thread->priv->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
10124 }
10125
10126 /* The to_supports_stopped_by_hw_breakpoint method of target
10127 remote. */
10128
10129 static int
10130 remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
10131 {
10132 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10133 }
10134
10135 static int
10136 remote_stopped_by_watchpoint (struct target_ops *ops)
10137 {
10138 struct thread_info *thread = inferior_thread ();
10139
10140 return (thread->priv != NULL
10141 && thread->priv->stop_reason == TARGET_STOPPED_BY_WATCHPOINT);
10142 }
10143
10144 static int
10145 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
10146 {
10147 struct thread_info *thread = inferior_thread ();
10148
10149 if (thread->priv != NULL
10150 && thread->priv->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
10151 {
10152 *addr_p = thread->priv->watch_data_address;
10153 return 1;
10154 }
10155
10156 return 0;
10157 }
10158
10159
10160 static int
10161 remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10162 struct bp_target_info *bp_tgt)
10163 {
10164 CORE_ADDR addr = bp_tgt->reqstd_address;
10165 struct remote_state *rs;
10166 char *p, *endbuf;
10167 char *message;
10168
10169 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10170 return -1;
10171
10172 /* Make sure the remote is pointing at the right process, if
10173 necessary. */
10174 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10175 set_general_process ();
10176
10177 rs = get_remote_state ();
10178 p = rs->buf;
10179 endbuf = rs->buf + get_remote_packet_size ();
10180
10181 *(p++) = 'Z';
10182 *(p++) = '1';
10183 *(p++) = ',';
10184
10185 addr = remote_address_masked (addr);
10186 p += hexnumstr (p, (ULONGEST) addr);
10187 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10188
10189 if (remote_supports_cond_breakpoints (self))
10190 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10191
10192 if (remote_can_run_breakpoint_commands (self))
10193 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10194
10195 putpkt (rs->buf);
10196 getpkt (&rs->buf, &rs->buf_size, 0);
10197
10198 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10199 {
10200 case PACKET_ERROR:
10201 if (rs->buf[1] == '.')
10202 {
10203 message = strchr (rs->buf + 2, '.');
10204 if (message)
10205 error (_("Remote failure reply: %s"), message + 1);
10206 }
10207 return -1;
10208 case PACKET_UNKNOWN:
10209 return -1;
10210 case PACKET_OK:
10211 return 0;
10212 }
10213 internal_error (__FILE__, __LINE__,
10214 _("remote_insert_hw_breakpoint: reached end of function"));
10215 }
10216
10217
10218 static int
10219 remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10220 struct bp_target_info *bp_tgt)
10221 {
10222 CORE_ADDR addr;
10223 struct remote_state *rs = get_remote_state ();
10224 char *p = rs->buf;
10225 char *endbuf = rs->buf + get_remote_packet_size ();
10226
10227 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10228 return -1;
10229
10230 /* Make sure the remote is pointing at the right process, if
10231 necessary. */
10232 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10233 set_general_process ();
10234
10235 *(p++) = 'z';
10236 *(p++) = '1';
10237 *(p++) = ',';
10238
10239 addr = remote_address_masked (bp_tgt->placed_address);
10240 p += hexnumstr (p, (ULONGEST) addr);
10241 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10242
10243 putpkt (rs->buf);
10244 getpkt (&rs->buf, &rs->buf_size, 0);
10245
10246 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10247 {
10248 case PACKET_ERROR:
10249 case PACKET_UNKNOWN:
10250 return -1;
10251 case PACKET_OK:
10252 return 0;
10253 }
10254 internal_error (__FILE__, __LINE__,
10255 _("remote_remove_hw_breakpoint: reached end of function"));
10256 }
10257
10258 /* Verify memory using the "qCRC:" request. */
10259
10260 static int
10261 remote_verify_memory (struct target_ops *ops,
10262 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10263 {
10264 struct remote_state *rs = get_remote_state ();
10265 unsigned long host_crc, target_crc;
10266 char *tmp;
10267
10268 /* It doesn't make sense to use qCRC if the remote target is
10269 connected but not running. */
10270 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10271 {
10272 enum packet_result result;
10273
10274 /* Make sure the remote is pointing at the right process. */
10275 set_general_process ();
10276
10277 /* FIXME: assumes lma can fit into long. */
10278 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10279 (long) lma, (long) size);
10280 putpkt (rs->buf);
10281
10282 /* Be clever; compute the host_crc before waiting for target
10283 reply. */
10284 host_crc = xcrc32 (data, size, 0xffffffff);
10285
10286 getpkt (&rs->buf, &rs->buf_size, 0);
10287
10288 result = packet_ok (rs->buf,
10289 &remote_protocol_packets[PACKET_qCRC]);
10290 if (result == PACKET_ERROR)
10291 return -1;
10292 else if (result == PACKET_OK)
10293 {
10294 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10295 target_crc = target_crc * 16 + fromhex (*tmp);
10296
10297 return (host_crc == target_crc);
10298 }
10299 }
10300
10301 return simple_verify_memory (ops, data, lma, size);
10302 }
10303
10304 /* compare-sections command
10305
10306 With no arguments, compares each loadable section in the exec bfd
10307 with the same memory range on the target, and reports mismatches.
10308 Useful for verifying the image on the target against the exec file. */
10309
10310 static void
10311 compare_sections_command (const char *args, int from_tty)
10312 {
10313 asection *s;
10314 gdb_byte *sectdata;
10315 const char *sectname;
10316 bfd_size_type size;
10317 bfd_vma lma;
10318 int matched = 0;
10319 int mismatched = 0;
10320 int res;
10321 int read_only = 0;
10322
10323 if (!exec_bfd)
10324 error (_("command cannot be used without an exec file"));
10325
10326 /* Make sure the remote is pointing at the right process. */
10327 set_general_process ();
10328
10329 if (args != NULL && strcmp (args, "-r") == 0)
10330 {
10331 read_only = 1;
10332 args = NULL;
10333 }
10334
10335 for (s = exec_bfd->sections; s; s = s->next)
10336 {
10337 if (!(s->flags & SEC_LOAD))
10338 continue; /* Skip non-loadable section. */
10339
10340 if (read_only && (s->flags & SEC_READONLY) == 0)
10341 continue; /* Skip writeable sections */
10342
10343 size = bfd_get_section_size (s);
10344 if (size == 0)
10345 continue; /* Skip zero-length section. */
10346
10347 sectname = bfd_get_section_name (exec_bfd, s);
10348 if (args && strcmp (args, sectname) != 0)
10349 continue; /* Not the section selected by user. */
10350
10351 matched = 1; /* Do this section. */
10352 lma = s->lma;
10353
10354 gdb::byte_vector sectdata (size);
10355 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10356
10357 res = target_verify_memory (sectdata.data (), lma, size);
10358
10359 if (res == -1)
10360 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10361 paddress (target_gdbarch (), lma),
10362 paddress (target_gdbarch (), lma + size));
10363
10364 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10365 paddress (target_gdbarch (), lma),
10366 paddress (target_gdbarch (), lma + size));
10367 if (res)
10368 printf_filtered ("matched.\n");
10369 else
10370 {
10371 printf_filtered ("MIS-MATCHED!\n");
10372 mismatched++;
10373 }
10374 }
10375 if (mismatched > 0)
10376 warning (_("One or more sections of the target image does not match\n\
10377 the loaded file\n"));
10378 if (args && !matched)
10379 printf_filtered (_("No loaded section named '%s'.\n"), args);
10380 }
10381
10382 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10383 into remote target. The number of bytes written to the remote
10384 target is returned, or -1 for error. */
10385
10386 static enum target_xfer_status
10387 remote_write_qxfer (struct target_ops *ops, const char *object_name,
10388 const char *annex, const gdb_byte *writebuf,
10389 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10390 struct packet_config *packet)
10391 {
10392 int i, buf_len;
10393 ULONGEST n;
10394 struct remote_state *rs = get_remote_state ();
10395 int max_size = get_memory_write_packet_size ();
10396
10397 if (packet->support == PACKET_DISABLE)
10398 return TARGET_XFER_E_IO;
10399
10400 /* Insert header. */
10401 i = snprintf (rs->buf, max_size,
10402 "qXfer:%s:write:%s:%s:",
10403 object_name, annex ? annex : "",
10404 phex_nz (offset, sizeof offset));
10405 max_size -= (i + 1);
10406
10407 /* Escape as much data as fits into rs->buf. */
10408 buf_len = remote_escape_output
10409 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10410
10411 if (putpkt_binary (rs->buf, i + buf_len) < 0
10412 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10413 || packet_ok (rs->buf, packet) != PACKET_OK)
10414 return TARGET_XFER_E_IO;
10415
10416 unpack_varlen_hex (rs->buf, &n);
10417
10418 *xfered_len = n;
10419 return TARGET_XFER_OK;
10420 }
10421
10422 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10423 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10424 number of bytes read is returned, or 0 for EOF, or -1 for error.
10425 The number of bytes read may be less than LEN without indicating an
10426 EOF. PACKET is checked and updated to indicate whether the remote
10427 target supports this object. */
10428
10429 static enum target_xfer_status
10430 remote_read_qxfer (struct target_ops *ops, const char *object_name,
10431 const char *annex,
10432 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10433 ULONGEST *xfered_len,
10434 struct packet_config *packet)
10435 {
10436 struct remote_state *rs = get_remote_state ();
10437 LONGEST i, n, packet_len;
10438
10439 if (packet->support == PACKET_DISABLE)
10440 return TARGET_XFER_E_IO;
10441
10442 /* Check whether we've cached an end-of-object packet that matches
10443 this request. */
10444 if (rs->finished_object)
10445 {
10446 if (strcmp (object_name, rs->finished_object) == 0
10447 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10448 && offset == rs->finished_offset)
10449 return TARGET_XFER_EOF;
10450
10451
10452 /* Otherwise, we're now reading something different. Discard
10453 the cache. */
10454 xfree (rs->finished_object);
10455 xfree (rs->finished_annex);
10456 rs->finished_object = NULL;
10457 rs->finished_annex = NULL;
10458 }
10459
10460 /* Request only enough to fit in a single packet. The actual data
10461 may not, since we don't know how much of it will need to be escaped;
10462 the target is free to respond with slightly less data. We subtract
10463 five to account for the response type and the protocol frame. */
10464 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10465 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10466 object_name, annex ? annex : "",
10467 phex_nz (offset, sizeof offset),
10468 phex_nz (n, sizeof n));
10469 i = putpkt (rs->buf);
10470 if (i < 0)
10471 return TARGET_XFER_E_IO;
10472
10473 rs->buf[0] = '\0';
10474 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10475 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10476 return TARGET_XFER_E_IO;
10477
10478 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10479 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10480
10481 /* 'm' means there is (or at least might be) more data after this
10482 batch. That does not make sense unless there's at least one byte
10483 of data in this reply. */
10484 if (rs->buf[0] == 'm' && packet_len == 1)
10485 error (_("Remote qXfer reply contained no data."));
10486
10487 /* Got some data. */
10488 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10489 packet_len - 1, readbuf, n);
10490
10491 /* 'l' is an EOF marker, possibly including a final block of data,
10492 or possibly empty. If we have the final block of a non-empty
10493 object, record this fact to bypass a subsequent partial read. */
10494 if (rs->buf[0] == 'l' && offset + i > 0)
10495 {
10496 rs->finished_object = xstrdup (object_name);
10497 rs->finished_annex = xstrdup (annex ? annex : "");
10498 rs->finished_offset = offset + i;
10499 }
10500
10501 if (i == 0)
10502 return TARGET_XFER_EOF;
10503 else
10504 {
10505 *xfered_len = i;
10506 return TARGET_XFER_OK;
10507 }
10508 }
10509
10510 static enum target_xfer_status
10511 remote_xfer_partial (struct target_ops *ops, enum target_object object,
10512 const char *annex, gdb_byte *readbuf,
10513 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10514 ULONGEST *xfered_len)
10515 {
10516 struct remote_state *rs;
10517 int i;
10518 char *p2;
10519 char query_type;
10520 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10521
10522 set_remote_traceframe ();
10523 set_general_thread (inferior_ptid);
10524
10525 rs = get_remote_state ();
10526
10527 /* Handle memory using the standard memory routines. */
10528 if (object == TARGET_OBJECT_MEMORY)
10529 {
10530 /* If the remote target is connected but not running, we should
10531 pass this request down to a lower stratum (e.g. the executable
10532 file). */
10533 if (!target_has_execution)
10534 return TARGET_XFER_EOF;
10535
10536 if (writebuf != NULL)
10537 return remote_write_bytes (offset, writebuf, len, unit_size,
10538 xfered_len);
10539 else
10540 return remote_read_bytes (ops, offset, readbuf, len, unit_size,
10541 xfered_len);
10542 }
10543
10544 /* Handle SPU memory using qxfer packets. */
10545 if (object == TARGET_OBJECT_SPU)
10546 {
10547 if (readbuf)
10548 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
10549 xfered_len, &remote_protocol_packets
10550 [PACKET_qXfer_spu_read]);
10551 else
10552 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
10553 xfered_len, &remote_protocol_packets
10554 [PACKET_qXfer_spu_write]);
10555 }
10556
10557 /* Handle extra signal info using qxfer packets. */
10558 if (object == TARGET_OBJECT_SIGNAL_INFO)
10559 {
10560 if (readbuf)
10561 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
10562 xfered_len, &remote_protocol_packets
10563 [PACKET_qXfer_siginfo_read]);
10564 else
10565 return remote_write_qxfer (ops, "siginfo", annex,
10566 writebuf, offset, len, xfered_len,
10567 &remote_protocol_packets
10568 [PACKET_qXfer_siginfo_write]);
10569 }
10570
10571 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10572 {
10573 if (readbuf)
10574 return remote_read_qxfer (ops, "statictrace", annex,
10575 readbuf, offset, len, xfered_len,
10576 &remote_protocol_packets
10577 [PACKET_qXfer_statictrace_read]);
10578 else
10579 return TARGET_XFER_E_IO;
10580 }
10581
10582 /* Only handle flash writes. */
10583 if (writebuf != NULL)
10584 {
10585 switch (object)
10586 {
10587 case TARGET_OBJECT_FLASH:
10588 return remote_flash_write (ops, offset, len, xfered_len,
10589 writebuf);
10590
10591 default:
10592 return TARGET_XFER_E_IO;
10593 }
10594 }
10595
10596 /* Map pre-existing objects onto letters. DO NOT do this for new
10597 objects!!! Instead specify new query packets. */
10598 switch (object)
10599 {
10600 case TARGET_OBJECT_AVR:
10601 query_type = 'R';
10602 break;
10603
10604 case TARGET_OBJECT_AUXV:
10605 gdb_assert (annex == NULL);
10606 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
10607 xfered_len,
10608 &remote_protocol_packets[PACKET_qXfer_auxv]);
10609
10610 case TARGET_OBJECT_AVAILABLE_FEATURES:
10611 return remote_read_qxfer
10612 (ops, "features", annex, readbuf, offset, len, xfered_len,
10613 &remote_protocol_packets[PACKET_qXfer_features]);
10614
10615 case TARGET_OBJECT_LIBRARIES:
10616 return remote_read_qxfer
10617 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
10618 &remote_protocol_packets[PACKET_qXfer_libraries]);
10619
10620 case TARGET_OBJECT_LIBRARIES_SVR4:
10621 return remote_read_qxfer
10622 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
10623 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10624
10625 case TARGET_OBJECT_MEMORY_MAP:
10626 gdb_assert (annex == NULL);
10627 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
10628 xfered_len,
10629 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10630
10631 case TARGET_OBJECT_OSDATA:
10632 /* Should only get here if we're connected. */
10633 gdb_assert (rs->remote_desc);
10634 return remote_read_qxfer
10635 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
10636 &remote_protocol_packets[PACKET_qXfer_osdata]);
10637
10638 case TARGET_OBJECT_THREADS:
10639 gdb_assert (annex == NULL);
10640 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
10641 xfered_len,
10642 &remote_protocol_packets[PACKET_qXfer_threads]);
10643
10644 case TARGET_OBJECT_TRACEFRAME_INFO:
10645 gdb_assert (annex == NULL);
10646 return remote_read_qxfer
10647 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
10648 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10649
10650 case TARGET_OBJECT_FDPIC:
10651 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
10652 xfered_len,
10653 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10654
10655 case TARGET_OBJECT_OPENVMS_UIB:
10656 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
10657 xfered_len,
10658 &remote_protocol_packets[PACKET_qXfer_uib]);
10659
10660 case TARGET_OBJECT_BTRACE:
10661 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
10662 xfered_len,
10663 &remote_protocol_packets[PACKET_qXfer_btrace]);
10664
10665 case TARGET_OBJECT_BTRACE_CONF:
10666 return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset,
10667 len, xfered_len,
10668 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10669
10670 case TARGET_OBJECT_EXEC_FILE:
10671 return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset,
10672 len, xfered_len,
10673 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10674
10675 default:
10676 return TARGET_XFER_E_IO;
10677 }
10678
10679 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10680 large enough let the caller deal with it. */
10681 if (len < get_remote_packet_size ())
10682 return TARGET_XFER_E_IO;
10683 len = get_remote_packet_size ();
10684
10685 /* Except for querying the minimum buffer size, target must be open. */
10686 if (!rs->remote_desc)
10687 error (_("remote query is only available after target open"));
10688
10689 gdb_assert (annex != NULL);
10690 gdb_assert (readbuf != NULL);
10691
10692 p2 = rs->buf;
10693 *p2++ = 'q';
10694 *p2++ = query_type;
10695
10696 /* We used one buffer char for the remote protocol q command and
10697 another for the query type. As the remote protocol encapsulation
10698 uses 4 chars plus one extra in case we are debugging
10699 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10700 string. */
10701 i = 0;
10702 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10703 {
10704 /* Bad caller may have sent forbidden characters. */
10705 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10706 *p2++ = annex[i];
10707 i++;
10708 }
10709 *p2 = '\0';
10710 gdb_assert (annex[i] == '\0');
10711
10712 i = putpkt (rs->buf);
10713 if (i < 0)
10714 return TARGET_XFER_E_IO;
10715
10716 getpkt (&rs->buf, &rs->buf_size, 0);
10717 strcpy ((char *) readbuf, rs->buf);
10718
10719 *xfered_len = strlen ((char *) readbuf);
10720 return TARGET_XFER_OK;
10721 }
10722
10723 /* Implementation of to_get_memory_xfer_limit. */
10724
10725 static ULONGEST
10726 remote_get_memory_xfer_limit (struct target_ops *ops)
10727 {
10728 return get_memory_write_packet_size ();
10729 }
10730
10731 static int
10732 remote_search_memory (struct target_ops* ops,
10733 CORE_ADDR start_addr, ULONGEST search_space_len,
10734 const gdb_byte *pattern, ULONGEST pattern_len,
10735 CORE_ADDR *found_addrp)
10736 {
10737 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10738 struct remote_state *rs = get_remote_state ();
10739 int max_size = get_memory_write_packet_size ();
10740 struct packet_config *packet =
10741 &remote_protocol_packets[PACKET_qSearch_memory];
10742 /* Number of packet bytes used to encode the pattern;
10743 this could be more than PATTERN_LEN due to escape characters. */
10744 int escaped_pattern_len;
10745 /* Amount of pattern that was encodable in the packet. */
10746 int used_pattern_len;
10747 int i;
10748 int found;
10749 ULONGEST found_addr;
10750
10751 /* Don't go to the target if we don't have to.
10752 This is done before checking packet->support to avoid the possibility that
10753 a success for this edge case means the facility works in general. */
10754 if (pattern_len > search_space_len)
10755 return 0;
10756 if (pattern_len == 0)
10757 {
10758 *found_addrp = start_addr;
10759 return 1;
10760 }
10761
10762 /* If we already know the packet isn't supported, fall back to the simple
10763 way of searching memory. */
10764
10765 if (packet_config_support (packet) == PACKET_DISABLE)
10766 {
10767 /* Target doesn't provided special support, fall back and use the
10768 standard support (copy memory and do the search here). */
10769 return simple_search_memory (ops, start_addr, search_space_len,
10770 pattern, pattern_len, found_addrp);
10771 }
10772
10773 /* Make sure the remote is pointing at the right process. */
10774 set_general_process ();
10775
10776 /* Insert header. */
10777 i = snprintf (rs->buf, max_size,
10778 "qSearch:memory:%s;%s;",
10779 phex_nz (start_addr, addr_size),
10780 phex_nz (search_space_len, sizeof (search_space_len)));
10781 max_size -= (i + 1);
10782
10783 /* Escape as much data as fits into rs->buf. */
10784 escaped_pattern_len =
10785 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10786 &used_pattern_len, max_size);
10787
10788 /* Bail if the pattern is too large. */
10789 if (used_pattern_len != pattern_len)
10790 error (_("Pattern is too large to transmit to remote target."));
10791
10792 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10793 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10794 || packet_ok (rs->buf, packet) != PACKET_OK)
10795 {
10796 /* The request may not have worked because the command is not
10797 supported. If so, fall back to the simple way. */
10798 if (packet->support == PACKET_DISABLE)
10799 {
10800 return simple_search_memory (ops, start_addr, search_space_len,
10801 pattern, pattern_len, found_addrp);
10802 }
10803 return -1;
10804 }
10805
10806 if (rs->buf[0] == '0')
10807 found = 0;
10808 else if (rs->buf[0] == '1')
10809 {
10810 found = 1;
10811 if (rs->buf[1] != ',')
10812 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10813 unpack_varlen_hex (rs->buf + 2, &found_addr);
10814 *found_addrp = found_addr;
10815 }
10816 else
10817 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10818
10819 return found;
10820 }
10821
10822 static void
10823 remote_rcmd (struct target_ops *self, const char *command,
10824 struct ui_file *outbuf)
10825 {
10826 struct remote_state *rs = get_remote_state ();
10827 char *p = rs->buf;
10828
10829 if (!rs->remote_desc)
10830 error (_("remote rcmd is only available after target open"));
10831
10832 /* Send a NULL command across as an empty command. */
10833 if (command == NULL)
10834 command = "";
10835
10836 /* The query prefix. */
10837 strcpy (rs->buf, "qRcmd,");
10838 p = strchr (rs->buf, '\0');
10839
10840 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
10841 > get_remote_packet_size ())
10842 error (_("\"monitor\" command ``%s'' is too long."), command);
10843
10844 /* Encode the actual command. */
10845 bin2hex ((const gdb_byte *) command, p, strlen (command));
10846
10847 if (putpkt (rs->buf) < 0)
10848 error (_("Communication problem with target."));
10849
10850 /* get/display the response */
10851 while (1)
10852 {
10853 char *buf;
10854
10855 /* XXX - see also remote_get_noisy_reply(). */
10856 QUIT; /* Allow user to bail out with ^C. */
10857 rs->buf[0] = '\0';
10858 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
10859 {
10860 /* Timeout. Continue to (try to) read responses.
10861 This is better than stopping with an error, assuming the stub
10862 is still executing the (long) monitor command.
10863 If needed, the user can interrupt gdb using C-c, obtaining
10864 an effect similar to stop on timeout. */
10865 continue;
10866 }
10867 buf = rs->buf;
10868 if (buf[0] == '\0')
10869 error (_("Target does not support this command."));
10870 if (buf[0] == 'O' && buf[1] != 'K')
10871 {
10872 remote_console_output (buf + 1); /* 'O' message from stub. */
10873 continue;
10874 }
10875 if (strcmp (buf, "OK") == 0)
10876 break;
10877 if (strlen (buf) == 3 && buf[0] == 'E'
10878 && isdigit (buf[1]) && isdigit (buf[2]))
10879 {
10880 error (_("Protocol error with Rcmd"));
10881 }
10882 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
10883 {
10884 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
10885
10886 fputc_unfiltered (c, outbuf);
10887 }
10888 break;
10889 }
10890 }
10891
10892 static VEC(mem_region_s) *
10893 remote_memory_map (struct target_ops *ops)
10894 {
10895 VEC(mem_region_s) *result = NULL;
10896 char *text = target_read_stralloc (&current_target,
10897 TARGET_OBJECT_MEMORY_MAP, NULL);
10898
10899 if (text)
10900 {
10901 struct cleanup *back_to = make_cleanup (xfree, text);
10902
10903 result = parse_memory_map (text);
10904 do_cleanups (back_to);
10905 }
10906
10907 return result;
10908 }
10909
10910 static void
10911 packet_command (const char *args, int from_tty)
10912 {
10913 struct remote_state *rs = get_remote_state ();
10914
10915 if (!rs->remote_desc)
10916 error (_("command can only be used with remote target"));
10917
10918 if (!args)
10919 error (_("remote-packet command requires packet text as argument"));
10920
10921 puts_filtered ("sending: ");
10922 print_packet (args);
10923 puts_filtered ("\n");
10924 putpkt (args);
10925
10926 getpkt (&rs->buf, &rs->buf_size, 0);
10927 puts_filtered ("received: ");
10928 print_packet (rs->buf);
10929 puts_filtered ("\n");
10930 }
10931
10932 #if 0
10933 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
10934
10935 static void display_thread_info (struct gdb_ext_thread_info *info);
10936
10937 static void threadset_test_cmd (char *cmd, int tty);
10938
10939 static void threadalive_test (char *cmd, int tty);
10940
10941 static void threadlist_test_cmd (char *cmd, int tty);
10942
10943 int get_and_display_threadinfo (threadref *ref);
10944
10945 static void threadinfo_test_cmd (char *cmd, int tty);
10946
10947 static int thread_display_step (threadref *ref, void *context);
10948
10949 static void threadlist_update_test_cmd (char *cmd, int tty);
10950
10951 static void init_remote_threadtests (void);
10952
10953 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
10954
10955 static void
10956 threadset_test_cmd (char *cmd, int tty)
10957 {
10958 int sample_thread = SAMPLE_THREAD;
10959
10960 printf_filtered (_("Remote threadset test\n"));
10961 set_general_thread (sample_thread);
10962 }
10963
10964
10965 static void
10966 threadalive_test (char *cmd, int tty)
10967 {
10968 int sample_thread = SAMPLE_THREAD;
10969 int pid = ptid_get_pid (inferior_ptid);
10970 ptid_t ptid = ptid_build (pid, sample_thread, 0);
10971
10972 if (remote_thread_alive (ptid))
10973 printf_filtered ("PASS: Thread alive test\n");
10974 else
10975 printf_filtered ("FAIL: Thread alive test\n");
10976 }
10977
10978 void output_threadid (char *title, threadref *ref);
10979
10980 void
10981 output_threadid (char *title, threadref *ref)
10982 {
10983 char hexid[20];
10984
10985 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
10986 hexid[16] = 0;
10987 printf_filtered ("%s %s\n", title, (&hexid[0]));
10988 }
10989
10990 static void
10991 threadlist_test_cmd (char *cmd, int tty)
10992 {
10993 int startflag = 1;
10994 threadref nextthread;
10995 int done, result_count;
10996 threadref threadlist[3];
10997
10998 printf_filtered ("Remote Threadlist test\n");
10999 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11000 &result_count, &threadlist[0]))
11001 printf_filtered ("FAIL: threadlist test\n");
11002 else
11003 {
11004 threadref *scan = threadlist;
11005 threadref *limit = scan + result_count;
11006
11007 while (scan < limit)
11008 output_threadid (" thread ", scan++);
11009 }
11010 }
11011
11012 void
11013 display_thread_info (struct gdb_ext_thread_info *info)
11014 {
11015 output_threadid ("Threadid: ", &info->threadid);
11016 printf_filtered ("Name: %s\n ", info->shortname);
11017 printf_filtered ("State: %s\n", info->display);
11018 printf_filtered ("other: %s\n\n", info->more_display);
11019 }
11020
11021 int
11022 get_and_display_threadinfo (threadref *ref)
11023 {
11024 int result;
11025 int set;
11026 struct gdb_ext_thread_info threadinfo;
11027
11028 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11029 | TAG_MOREDISPLAY | TAG_DISPLAY;
11030 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11031 display_thread_info (&threadinfo);
11032 return result;
11033 }
11034
11035 static void
11036 threadinfo_test_cmd (char *cmd, int tty)
11037 {
11038 int athread = SAMPLE_THREAD;
11039 threadref thread;
11040 int set;
11041
11042 int_to_threadref (&thread, athread);
11043 printf_filtered ("Remote Threadinfo test\n");
11044 if (!get_and_display_threadinfo (&thread))
11045 printf_filtered ("FAIL cannot get thread info\n");
11046 }
11047
11048 static int
11049 thread_display_step (threadref *ref, void *context)
11050 {
11051 /* output_threadid(" threadstep ",ref); *//* simple test */
11052 return get_and_display_threadinfo (ref);
11053 }
11054
11055 static void
11056 threadlist_update_test_cmd (char *cmd, int tty)
11057 {
11058 printf_filtered ("Remote Threadlist update test\n");
11059 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11060 }
11061
11062 static void
11063 init_remote_threadtests (void)
11064 {
11065 add_com ("tlist", class_obscure, threadlist_test_cmd,
11066 _("Fetch and print the remote list of "
11067 "thread identifiers, one pkt only"));
11068 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11069 _("Fetch and display info about one thread"));
11070 add_com ("tset", class_obscure, threadset_test_cmd,
11071 _("Test setting to a different thread"));
11072 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11073 _("Iterate through updating all remote thread info"));
11074 add_com ("talive", class_obscure, threadalive_test,
11075 _(" Remote thread alive test "));
11076 }
11077
11078 #endif /* 0 */
11079
11080 /* Convert a thread ID to a string. Returns the string in a static
11081 buffer. */
11082
11083 static const char *
11084 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
11085 {
11086 static char buf[64];
11087 struct remote_state *rs = get_remote_state ();
11088
11089 if (ptid_equal (ptid, null_ptid))
11090 return normal_pid_to_str (ptid);
11091 else if (ptid_is_pid (ptid))
11092 {
11093 /* Printing an inferior target id. */
11094
11095 /* When multi-process extensions are off, there's no way in the
11096 remote protocol to know the remote process id, if there's any
11097 at all. There's one exception --- when we're connected with
11098 target extended-remote, and we manually attached to a process
11099 with "attach PID". We don't record anywhere a flag that
11100 allows us to distinguish that case from the case of
11101 connecting with extended-remote and the stub already being
11102 attached to a process, and reporting yes to qAttached, hence
11103 no smart special casing here. */
11104 if (!remote_multi_process_p (rs))
11105 {
11106 xsnprintf (buf, sizeof buf, "Remote target");
11107 return buf;
11108 }
11109
11110 return normal_pid_to_str (ptid);
11111 }
11112 else
11113 {
11114 if (ptid_equal (magic_null_ptid, ptid))
11115 xsnprintf (buf, sizeof buf, "Thread <main>");
11116 else if (remote_multi_process_p (rs))
11117 if (ptid_get_lwp (ptid) == 0)
11118 return normal_pid_to_str (ptid);
11119 else
11120 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11121 ptid_get_pid (ptid), ptid_get_lwp (ptid));
11122 else
11123 xsnprintf (buf, sizeof buf, "Thread %ld",
11124 ptid_get_lwp (ptid));
11125 return buf;
11126 }
11127 }
11128
11129 /* Get the address of the thread local variable in OBJFILE which is
11130 stored at OFFSET within the thread local storage for thread PTID. */
11131
11132 static CORE_ADDR
11133 remote_get_thread_local_address (struct target_ops *ops,
11134 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
11135 {
11136 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11137 {
11138 struct remote_state *rs = get_remote_state ();
11139 char *p = rs->buf;
11140 char *endp = rs->buf + get_remote_packet_size ();
11141 enum packet_result result;
11142
11143 strcpy (p, "qGetTLSAddr:");
11144 p += strlen (p);
11145 p = write_ptid (p, endp, ptid);
11146 *p++ = ',';
11147 p += hexnumstr (p, offset);
11148 *p++ = ',';
11149 p += hexnumstr (p, lm);
11150 *p++ = '\0';
11151
11152 putpkt (rs->buf);
11153 getpkt (&rs->buf, &rs->buf_size, 0);
11154 result = packet_ok (rs->buf,
11155 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11156 if (result == PACKET_OK)
11157 {
11158 ULONGEST result;
11159
11160 unpack_varlen_hex (rs->buf, &result);
11161 return result;
11162 }
11163 else if (result == PACKET_UNKNOWN)
11164 throw_error (TLS_GENERIC_ERROR,
11165 _("Remote target doesn't support qGetTLSAddr packet"));
11166 else
11167 throw_error (TLS_GENERIC_ERROR,
11168 _("Remote target failed to process qGetTLSAddr request"));
11169 }
11170 else
11171 throw_error (TLS_GENERIC_ERROR,
11172 _("TLS not supported or disabled on this target"));
11173 /* Not reached. */
11174 return 0;
11175 }
11176
11177 /* Provide thread local base, i.e. Thread Information Block address.
11178 Returns 1 if ptid is found and thread_local_base is non zero. */
11179
11180 static int
11181 remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
11182 {
11183 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11184 {
11185 struct remote_state *rs = get_remote_state ();
11186 char *p = rs->buf;
11187 char *endp = rs->buf + get_remote_packet_size ();
11188 enum packet_result result;
11189
11190 strcpy (p, "qGetTIBAddr:");
11191 p += strlen (p);
11192 p = write_ptid (p, endp, ptid);
11193 *p++ = '\0';
11194
11195 putpkt (rs->buf);
11196 getpkt (&rs->buf, &rs->buf_size, 0);
11197 result = packet_ok (rs->buf,
11198 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11199 if (result == PACKET_OK)
11200 {
11201 ULONGEST result;
11202
11203 unpack_varlen_hex (rs->buf, &result);
11204 if (addr)
11205 *addr = (CORE_ADDR) result;
11206 return 1;
11207 }
11208 else if (result == PACKET_UNKNOWN)
11209 error (_("Remote target doesn't support qGetTIBAddr packet"));
11210 else
11211 error (_("Remote target failed to process qGetTIBAddr request"));
11212 }
11213 else
11214 error (_("qGetTIBAddr not supported or disabled on this target"));
11215 /* Not reached. */
11216 return 0;
11217 }
11218
11219 /* Support for inferring a target description based on the current
11220 architecture and the size of a 'g' packet. While the 'g' packet
11221 can have any size (since optional registers can be left off the
11222 end), some sizes are easily recognizable given knowledge of the
11223 approximate architecture. */
11224
11225 struct remote_g_packet_guess
11226 {
11227 int bytes;
11228 const struct target_desc *tdesc;
11229 };
11230 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11231 DEF_VEC_O(remote_g_packet_guess_s);
11232
11233 struct remote_g_packet_data
11234 {
11235 VEC(remote_g_packet_guess_s) *guesses;
11236 };
11237
11238 static struct gdbarch_data *remote_g_packet_data_handle;
11239
11240 static void *
11241 remote_g_packet_data_init (struct obstack *obstack)
11242 {
11243 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11244 }
11245
11246 void
11247 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11248 const struct target_desc *tdesc)
11249 {
11250 struct remote_g_packet_data *data
11251 = ((struct remote_g_packet_data *)
11252 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11253 struct remote_g_packet_guess new_guess, *guess;
11254 int ix;
11255
11256 gdb_assert (tdesc != NULL);
11257
11258 for (ix = 0;
11259 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11260 ix++)
11261 if (guess->bytes == bytes)
11262 internal_error (__FILE__, __LINE__,
11263 _("Duplicate g packet description added for size %d"),
11264 bytes);
11265
11266 new_guess.bytes = bytes;
11267 new_guess.tdesc = tdesc;
11268 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11269 }
11270
11271 /* Return 1 if remote_read_description would do anything on this target
11272 and architecture, 0 otherwise. */
11273
11274 static int
11275 remote_read_description_p (struct target_ops *target)
11276 {
11277 struct remote_g_packet_data *data
11278 = ((struct remote_g_packet_data *)
11279 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11280
11281 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11282 return 1;
11283
11284 return 0;
11285 }
11286
11287 static const struct target_desc *
11288 remote_read_description (struct target_ops *target)
11289 {
11290 struct remote_g_packet_data *data
11291 = ((struct remote_g_packet_data *)
11292 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11293
11294 /* Do not try this during initial connection, when we do not know
11295 whether there is a running but stopped thread. */
11296 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11297 return target->beneath->to_read_description (target->beneath);
11298
11299 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11300 {
11301 struct remote_g_packet_guess *guess;
11302 int ix;
11303 int bytes = send_g_packet ();
11304
11305 for (ix = 0;
11306 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11307 ix++)
11308 if (guess->bytes == bytes)
11309 return guess->tdesc;
11310
11311 /* We discard the g packet. A minor optimization would be to
11312 hold on to it, and fill the register cache once we have selected
11313 an architecture, but it's too tricky to do safely. */
11314 }
11315
11316 return target->beneath->to_read_description (target->beneath);
11317 }
11318
11319 /* Remote file transfer support. This is host-initiated I/O, not
11320 target-initiated; for target-initiated, see remote-fileio.c. */
11321
11322 /* If *LEFT is at least the length of STRING, copy STRING to
11323 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11324 decrease *LEFT. Otherwise raise an error. */
11325
11326 static void
11327 remote_buffer_add_string (char **buffer, int *left, const char *string)
11328 {
11329 int len = strlen (string);
11330
11331 if (len > *left)
11332 error (_("Packet too long for target."));
11333
11334 memcpy (*buffer, string, len);
11335 *buffer += len;
11336 *left -= len;
11337
11338 /* NUL-terminate the buffer as a convenience, if there is
11339 room. */
11340 if (*left)
11341 **buffer = '\0';
11342 }
11343
11344 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11345 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11346 decrease *LEFT. Otherwise raise an error. */
11347
11348 static void
11349 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11350 int len)
11351 {
11352 if (2 * len > *left)
11353 error (_("Packet too long for target."));
11354
11355 bin2hex (bytes, *buffer, len);
11356 *buffer += 2 * len;
11357 *left -= 2 * len;
11358
11359 /* NUL-terminate the buffer as a convenience, if there is
11360 room. */
11361 if (*left)
11362 **buffer = '\0';
11363 }
11364
11365 /* If *LEFT is large enough, convert VALUE to hex and add it to
11366 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11367 decrease *LEFT. Otherwise raise an error. */
11368
11369 static void
11370 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11371 {
11372 int len = hexnumlen (value);
11373
11374 if (len > *left)
11375 error (_("Packet too long for target."));
11376
11377 hexnumstr (*buffer, value);
11378 *buffer += len;
11379 *left -= len;
11380
11381 /* NUL-terminate the buffer as a convenience, if there is
11382 room. */
11383 if (*left)
11384 **buffer = '\0';
11385 }
11386
11387 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11388 value, *REMOTE_ERRNO to the remote error number or zero if none
11389 was included, and *ATTACHMENT to point to the start of the annex
11390 if any. The length of the packet isn't needed here; there may
11391 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11392
11393 Return 0 if the packet could be parsed, -1 if it could not. If
11394 -1 is returned, the other variables may not be initialized. */
11395
11396 static int
11397 remote_hostio_parse_result (char *buffer, int *retcode,
11398 int *remote_errno, char **attachment)
11399 {
11400 char *p, *p2;
11401
11402 *remote_errno = 0;
11403 *attachment = NULL;
11404
11405 if (buffer[0] != 'F')
11406 return -1;
11407
11408 errno = 0;
11409 *retcode = strtol (&buffer[1], &p, 16);
11410 if (errno != 0 || p == &buffer[1])
11411 return -1;
11412
11413 /* Check for ",errno". */
11414 if (*p == ',')
11415 {
11416 errno = 0;
11417 *remote_errno = strtol (p + 1, &p2, 16);
11418 if (errno != 0 || p + 1 == p2)
11419 return -1;
11420 p = p2;
11421 }
11422
11423 /* Check for ";attachment". If there is no attachment, the
11424 packet should end here. */
11425 if (*p == ';')
11426 {
11427 *attachment = p + 1;
11428 return 0;
11429 }
11430 else if (*p == '\0')
11431 return 0;
11432 else
11433 return -1;
11434 }
11435
11436 /* Send a prepared I/O packet to the target and read its response.
11437 The prepared packet is in the global RS->BUF before this function
11438 is called, and the answer is there when we return.
11439
11440 COMMAND_BYTES is the length of the request to send, which may include
11441 binary data. WHICH_PACKET is the packet configuration to check
11442 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11443 is set to the error number and -1 is returned. Otherwise the value
11444 returned by the function is returned.
11445
11446 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11447 attachment is expected; an error will be reported if there's a
11448 mismatch. If one is found, *ATTACHMENT will be set to point into
11449 the packet buffer and *ATTACHMENT_LEN will be set to the
11450 attachment's length. */
11451
11452 static int
11453 remote_hostio_send_command (int command_bytes, int which_packet,
11454 int *remote_errno, char **attachment,
11455 int *attachment_len)
11456 {
11457 struct remote_state *rs = get_remote_state ();
11458 int ret, bytes_read;
11459 char *attachment_tmp;
11460
11461 if (!rs->remote_desc
11462 || packet_support (which_packet) == PACKET_DISABLE)
11463 {
11464 *remote_errno = FILEIO_ENOSYS;
11465 return -1;
11466 }
11467
11468 putpkt_binary (rs->buf, command_bytes);
11469 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11470
11471 /* If it timed out, something is wrong. Don't try to parse the
11472 buffer. */
11473 if (bytes_read < 0)
11474 {
11475 *remote_errno = FILEIO_EINVAL;
11476 return -1;
11477 }
11478
11479 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11480 {
11481 case PACKET_ERROR:
11482 *remote_errno = FILEIO_EINVAL;
11483 return -1;
11484 case PACKET_UNKNOWN:
11485 *remote_errno = FILEIO_ENOSYS;
11486 return -1;
11487 case PACKET_OK:
11488 break;
11489 }
11490
11491 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11492 &attachment_tmp))
11493 {
11494 *remote_errno = FILEIO_EINVAL;
11495 return -1;
11496 }
11497
11498 /* Make sure we saw an attachment if and only if we expected one. */
11499 if ((attachment_tmp == NULL && attachment != NULL)
11500 || (attachment_tmp != NULL && attachment == NULL))
11501 {
11502 *remote_errno = FILEIO_EINVAL;
11503 return -1;
11504 }
11505
11506 /* If an attachment was found, it must point into the packet buffer;
11507 work out how many bytes there were. */
11508 if (attachment_tmp != NULL)
11509 {
11510 *attachment = attachment_tmp;
11511 *attachment_len = bytes_read - (*attachment - rs->buf);
11512 }
11513
11514 return ret;
11515 }
11516
11517 /* Invalidate the readahead cache. */
11518
11519 static void
11520 readahead_cache_invalidate (void)
11521 {
11522 struct remote_state *rs = get_remote_state ();
11523
11524 rs->readahead_cache.fd = -1;
11525 }
11526
11527 /* Invalidate the readahead cache if it is holding data for FD. */
11528
11529 static void
11530 readahead_cache_invalidate_fd (int fd)
11531 {
11532 struct remote_state *rs = get_remote_state ();
11533
11534 if (rs->readahead_cache.fd == fd)
11535 rs->readahead_cache.fd = -1;
11536 }
11537
11538 /* Set the filesystem remote_hostio functions that take FILENAME
11539 arguments will use. Return 0 on success, or -1 if an error
11540 occurs (and set *REMOTE_ERRNO). */
11541
11542 static int
11543 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11544 {
11545 struct remote_state *rs = get_remote_state ();
11546 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11547 char *p = rs->buf;
11548 int left = get_remote_packet_size () - 1;
11549 char arg[9];
11550 int ret;
11551
11552 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11553 return 0;
11554
11555 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11556 return 0;
11557
11558 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11559
11560 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11561 remote_buffer_add_string (&p, &left, arg);
11562
11563 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11564 remote_errno, NULL, NULL);
11565
11566 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11567 return 0;
11568
11569 if (ret == 0)
11570 rs->fs_pid = required_pid;
11571
11572 return ret;
11573 }
11574
11575 /* Implementation of to_fileio_open. */
11576
11577 static int
11578 remote_hostio_open (struct target_ops *self,
11579 struct inferior *inf, const char *filename,
11580 int flags, int mode, int warn_if_slow,
11581 int *remote_errno)
11582 {
11583 struct remote_state *rs = get_remote_state ();
11584 char *p = rs->buf;
11585 int left = get_remote_packet_size () - 1;
11586
11587 if (warn_if_slow)
11588 {
11589 static int warning_issued = 0;
11590
11591 printf_unfiltered (_("Reading %s from remote target...\n"),
11592 filename);
11593
11594 if (!warning_issued)
11595 {
11596 warning (_("File transfers from remote targets can be slow."
11597 " Use \"set sysroot\" to access files locally"
11598 " instead."));
11599 warning_issued = 1;
11600 }
11601 }
11602
11603 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11604 return -1;
11605
11606 remote_buffer_add_string (&p, &left, "vFile:open:");
11607
11608 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11609 strlen (filename));
11610 remote_buffer_add_string (&p, &left, ",");
11611
11612 remote_buffer_add_int (&p, &left, flags);
11613 remote_buffer_add_string (&p, &left, ",");
11614
11615 remote_buffer_add_int (&p, &left, mode);
11616
11617 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11618 remote_errno, NULL, NULL);
11619 }
11620
11621 /* Implementation of to_fileio_pwrite. */
11622
11623 static int
11624 remote_hostio_pwrite (struct target_ops *self,
11625 int fd, const gdb_byte *write_buf, int len,
11626 ULONGEST offset, int *remote_errno)
11627 {
11628 struct remote_state *rs = get_remote_state ();
11629 char *p = rs->buf;
11630 int left = get_remote_packet_size ();
11631 int out_len;
11632
11633 readahead_cache_invalidate_fd (fd);
11634
11635 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11636
11637 remote_buffer_add_int (&p, &left, fd);
11638 remote_buffer_add_string (&p, &left, ",");
11639
11640 remote_buffer_add_int (&p, &left, offset);
11641 remote_buffer_add_string (&p, &left, ",");
11642
11643 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11644 get_remote_packet_size () - (p - rs->buf));
11645
11646 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11647 remote_errno, NULL, NULL);
11648 }
11649
11650 /* Helper for the implementation of to_fileio_pread. Read the file
11651 from the remote side with vFile:pread. */
11652
11653 static int
11654 remote_hostio_pread_vFile (struct target_ops *self,
11655 int fd, gdb_byte *read_buf, int len,
11656 ULONGEST offset, int *remote_errno)
11657 {
11658 struct remote_state *rs = get_remote_state ();
11659 char *p = rs->buf;
11660 char *attachment;
11661 int left = get_remote_packet_size ();
11662 int ret, attachment_len;
11663 int read_len;
11664
11665 remote_buffer_add_string (&p, &left, "vFile:pread:");
11666
11667 remote_buffer_add_int (&p, &left, fd);
11668 remote_buffer_add_string (&p, &left, ",");
11669
11670 remote_buffer_add_int (&p, &left, len);
11671 remote_buffer_add_string (&p, &left, ",");
11672
11673 remote_buffer_add_int (&p, &left, offset);
11674
11675 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11676 remote_errno, &attachment,
11677 &attachment_len);
11678
11679 if (ret < 0)
11680 return ret;
11681
11682 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11683 read_buf, len);
11684 if (read_len != ret)
11685 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11686
11687 return ret;
11688 }
11689
11690 /* Serve pread from the readahead cache. Returns number of bytes
11691 read, or 0 if the request can't be served from the cache. */
11692
11693 static int
11694 remote_hostio_pread_from_cache (struct remote_state *rs,
11695 int fd, gdb_byte *read_buf, size_t len,
11696 ULONGEST offset)
11697 {
11698 struct readahead_cache *cache = &rs->readahead_cache;
11699
11700 if (cache->fd == fd
11701 && cache->offset <= offset
11702 && offset < cache->offset + cache->bufsize)
11703 {
11704 ULONGEST max = cache->offset + cache->bufsize;
11705
11706 if (offset + len > max)
11707 len = max - offset;
11708
11709 memcpy (read_buf, cache->buf + offset - cache->offset, len);
11710 return len;
11711 }
11712
11713 return 0;
11714 }
11715
11716 /* Implementation of to_fileio_pread. */
11717
11718 static int
11719 remote_hostio_pread (struct target_ops *self,
11720 int fd, gdb_byte *read_buf, int len,
11721 ULONGEST offset, int *remote_errno)
11722 {
11723 int ret;
11724 struct remote_state *rs = get_remote_state ();
11725 struct readahead_cache *cache = &rs->readahead_cache;
11726
11727 ret = remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11728 if (ret > 0)
11729 {
11730 cache->hit_count++;
11731
11732 if (remote_debug)
11733 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11734 pulongest (cache->hit_count));
11735 return ret;
11736 }
11737
11738 cache->miss_count++;
11739 if (remote_debug)
11740 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11741 pulongest (cache->miss_count));
11742
11743 cache->fd = fd;
11744 cache->offset = offset;
11745 cache->bufsize = get_remote_packet_size ();
11746 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11747
11748 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11749 cache->offset, remote_errno);
11750 if (ret <= 0)
11751 {
11752 readahead_cache_invalidate_fd (fd);
11753 return ret;
11754 }
11755
11756 cache->bufsize = ret;
11757 return remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11758 }
11759
11760 /* Implementation of to_fileio_close. */
11761
11762 static int
11763 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11764 {
11765 struct remote_state *rs = get_remote_state ();
11766 char *p = rs->buf;
11767 int left = get_remote_packet_size () - 1;
11768
11769 readahead_cache_invalidate_fd (fd);
11770
11771 remote_buffer_add_string (&p, &left, "vFile:close:");
11772
11773 remote_buffer_add_int (&p, &left, fd);
11774
11775 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11776 remote_errno, NULL, NULL);
11777 }
11778
11779 /* Implementation of to_fileio_unlink. */
11780
11781 static int
11782 remote_hostio_unlink (struct target_ops *self,
11783 struct inferior *inf, const char *filename,
11784 int *remote_errno)
11785 {
11786 struct remote_state *rs = get_remote_state ();
11787 char *p = rs->buf;
11788 int left = get_remote_packet_size () - 1;
11789
11790 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11791 return -1;
11792
11793 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11794
11795 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11796 strlen (filename));
11797
11798 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
11799 remote_errno, NULL, NULL);
11800 }
11801
11802 /* Implementation of to_fileio_readlink. */
11803
11804 static char *
11805 remote_hostio_readlink (struct target_ops *self,
11806 struct inferior *inf, const char *filename,
11807 int *remote_errno)
11808 {
11809 struct remote_state *rs = get_remote_state ();
11810 char *p = rs->buf;
11811 char *attachment;
11812 int left = get_remote_packet_size ();
11813 int len, attachment_len;
11814 int read_len;
11815 char *ret;
11816
11817 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11818 return NULL;
11819
11820 remote_buffer_add_string (&p, &left, "vFile:readlink:");
11821
11822 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11823 strlen (filename));
11824
11825 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
11826 remote_errno, &attachment,
11827 &attachment_len);
11828
11829 if (len < 0)
11830 return NULL;
11831
11832 ret = (char *) xmalloc (len + 1);
11833
11834 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11835 (gdb_byte *) ret, len);
11836 if (read_len != len)
11837 error (_("Readlink returned %d, but %d bytes."), len, read_len);
11838
11839 ret[len] = '\0';
11840 return ret;
11841 }
11842
11843 /* Implementation of to_fileio_fstat. */
11844
11845 static int
11846 remote_hostio_fstat (struct target_ops *self,
11847 int fd, struct stat *st,
11848 int *remote_errno)
11849 {
11850 struct remote_state *rs = get_remote_state ();
11851 char *p = rs->buf;
11852 int left = get_remote_packet_size ();
11853 int attachment_len, ret;
11854 char *attachment;
11855 struct fio_stat fst;
11856 int read_len;
11857
11858 remote_buffer_add_string (&p, &left, "vFile:fstat:");
11859
11860 remote_buffer_add_int (&p, &left, fd);
11861
11862 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
11863 remote_errno, &attachment,
11864 &attachment_len);
11865 if (ret < 0)
11866 {
11867 if (*remote_errno != FILEIO_ENOSYS)
11868 return ret;
11869
11870 /* Strictly we should return -1, ENOSYS here, but when
11871 "set sysroot remote:" was implemented in August 2008
11872 BFD's need for a stat function was sidestepped with
11873 this hack. This was not remedied until March 2015
11874 so we retain the previous behavior to avoid breaking
11875 compatibility.
11876
11877 Note that the memset is a March 2015 addition; older
11878 GDBs set st_size *and nothing else* so the structure
11879 would have garbage in all other fields. This might
11880 break something but retaining the previous behavior
11881 here would be just too wrong. */
11882
11883 memset (st, 0, sizeof (struct stat));
11884 st->st_size = INT_MAX;
11885 return 0;
11886 }
11887
11888 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11889 (gdb_byte *) &fst, sizeof (fst));
11890
11891 if (read_len != ret)
11892 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
11893
11894 if (read_len != sizeof (fst))
11895 error (_("vFile:fstat returned %d bytes, but expecting %d."),
11896 read_len, (int) sizeof (fst));
11897
11898 remote_fileio_to_host_stat (&fst, st);
11899
11900 return 0;
11901 }
11902
11903 /* Implementation of to_filesystem_is_local. */
11904
11905 static int
11906 remote_filesystem_is_local (struct target_ops *self)
11907 {
11908 /* Valgrind GDB presents itself as a remote target but works
11909 on the local filesystem: it does not implement remote get
11910 and users are not expected to set a sysroot. To handle
11911 this case we treat the remote filesystem as local if the
11912 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
11913 does not support vFile:open. */
11914 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
11915 {
11916 enum packet_support ps = packet_support (PACKET_vFile_open);
11917
11918 if (ps == PACKET_SUPPORT_UNKNOWN)
11919 {
11920 int fd, remote_errno;
11921
11922 /* Try opening a file to probe support. The supplied
11923 filename is irrelevant, we only care about whether
11924 the stub recognizes the packet or not. */
11925 fd = remote_hostio_open (self, NULL, "just probing",
11926 FILEIO_O_RDONLY, 0700, 0,
11927 &remote_errno);
11928
11929 if (fd >= 0)
11930 remote_hostio_close (self, fd, &remote_errno);
11931
11932 ps = packet_support (PACKET_vFile_open);
11933 }
11934
11935 if (ps == PACKET_DISABLE)
11936 {
11937 static int warning_issued = 0;
11938
11939 if (!warning_issued)
11940 {
11941 warning (_("remote target does not support file"
11942 " transfer, attempting to access files"
11943 " from local filesystem."));
11944 warning_issued = 1;
11945 }
11946
11947 return 1;
11948 }
11949 }
11950
11951 return 0;
11952 }
11953
11954 static int
11955 remote_fileio_errno_to_host (int errnum)
11956 {
11957 switch (errnum)
11958 {
11959 case FILEIO_EPERM:
11960 return EPERM;
11961 case FILEIO_ENOENT:
11962 return ENOENT;
11963 case FILEIO_EINTR:
11964 return EINTR;
11965 case FILEIO_EIO:
11966 return EIO;
11967 case FILEIO_EBADF:
11968 return EBADF;
11969 case FILEIO_EACCES:
11970 return EACCES;
11971 case FILEIO_EFAULT:
11972 return EFAULT;
11973 case FILEIO_EBUSY:
11974 return EBUSY;
11975 case FILEIO_EEXIST:
11976 return EEXIST;
11977 case FILEIO_ENODEV:
11978 return ENODEV;
11979 case FILEIO_ENOTDIR:
11980 return ENOTDIR;
11981 case FILEIO_EISDIR:
11982 return EISDIR;
11983 case FILEIO_EINVAL:
11984 return EINVAL;
11985 case FILEIO_ENFILE:
11986 return ENFILE;
11987 case FILEIO_EMFILE:
11988 return EMFILE;
11989 case FILEIO_EFBIG:
11990 return EFBIG;
11991 case FILEIO_ENOSPC:
11992 return ENOSPC;
11993 case FILEIO_ESPIPE:
11994 return ESPIPE;
11995 case FILEIO_EROFS:
11996 return EROFS;
11997 case FILEIO_ENOSYS:
11998 return ENOSYS;
11999 case FILEIO_ENAMETOOLONG:
12000 return ENAMETOOLONG;
12001 }
12002 return -1;
12003 }
12004
12005 static char *
12006 remote_hostio_error (int errnum)
12007 {
12008 int host_error = remote_fileio_errno_to_host (errnum);
12009
12010 if (host_error == -1)
12011 error (_("Unknown remote I/O error %d"), errnum);
12012 else
12013 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12014 }
12015
12016 static void
12017 remote_hostio_close_cleanup (void *opaque)
12018 {
12019 int fd = *(int *) opaque;
12020 int remote_errno;
12021
12022 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
12023 }
12024
12025 void
12026 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12027 {
12028 struct cleanup *back_to, *close_cleanup;
12029 int retcode, fd, remote_errno, bytes, io_size;
12030 gdb_byte *buffer;
12031 int bytes_in_buffer;
12032 int saw_eof;
12033 ULONGEST offset;
12034 struct remote_state *rs = get_remote_state ();
12035
12036 if (!rs->remote_desc)
12037 error (_("command can only be used with remote target"));
12038
12039 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12040 if (file == NULL)
12041 perror_with_name (local_file);
12042
12043 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
12044 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12045 | FILEIO_O_TRUNC),
12046 0700, 0, &remote_errno);
12047 if (fd == -1)
12048 remote_hostio_error (remote_errno);
12049
12050 /* Send up to this many bytes at once. They won't all fit in the
12051 remote packet limit, so we'll transfer slightly fewer. */
12052 io_size = get_remote_packet_size ();
12053 buffer = (gdb_byte *) xmalloc (io_size);
12054 back_to = make_cleanup (xfree, buffer);
12055
12056 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
12057
12058 bytes_in_buffer = 0;
12059 saw_eof = 0;
12060 offset = 0;
12061 while (bytes_in_buffer || !saw_eof)
12062 {
12063 if (!saw_eof)
12064 {
12065 bytes = fread (buffer + bytes_in_buffer, 1,
12066 io_size - bytes_in_buffer,
12067 file.get ());
12068 if (bytes == 0)
12069 {
12070 if (ferror (file.get ()))
12071 error (_("Error reading %s."), local_file);
12072 else
12073 {
12074 /* EOF. Unless there is something still in the
12075 buffer from the last iteration, we are done. */
12076 saw_eof = 1;
12077 if (bytes_in_buffer == 0)
12078 break;
12079 }
12080 }
12081 }
12082 else
12083 bytes = 0;
12084
12085 bytes += bytes_in_buffer;
12086 bytes_in_buffer = 0;
12087
12088 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
12089 fd, buffer, bytes,
12090 offset, &remote_errno);
12091
12092 if (retcode < 0)
12093 remote_hostio_error (remote_errno);
12094 else if (retcode == 0)
12095 error (_("Remote write of %d bytes returned 0!"), bytes);
12096 else if (retcode < bytes)
12097 {
12098 /* Short write. Save the rest of the read data for the next
12099 write. */
12100 bytes_in_buffer = bytes - retcode;
12101 memmove (buffer, buffer + retcode, bytes_in_buffer);
12102 }
12103
12104 offset += retcode;
12105 }
12106
12107 discard_cleanups (close_cleanup);
12108 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12109 remote_hostio_error (remote_errno);
12110
12111 if (from_tty)
12112 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12113 do_cleanups (back_to);
12114 }
12115
12116 void
12117 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12118 {
12119 struct cleanup *back_to, *close_cleanup;
12120 int fd, remote_errno, bytes, io_size;
12121 gdb_byte *buffer;
12122 ULONGEST offset;
12123 struct remote_state *rs = get_remote_state ();
12124
12125 if (!rs->remote_desc)
12126 error (_("command can only be used with remote target"));
12127
12128 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
12129 remote_file, FILEIO_O_RDONLY, 0, 0,
12130 &remote_errno);
12131 if (fd == -1)
12132 remote_hostio_error (remote_errno);
12133
12134 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12135 if (file == NULL)
12136 perror_with_name (local_file);
12137
12138 /* Send up to this many bytes at once. They won't all fit in the
12139 remote packet limit, so we'll transfer slightly fewer. */
12140 io_size = get_remote_packet_size ();
12141 buffer = (gdb_byte *) xmalloc (io_size);
12142 back_to = make_cleanup (xfree, buffer);
12143
12144 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
12145
12146 offset = 0;
12147 while (1)
12148 {
12149 bytes = remote_hostio_pread (find_target_at (process_stratum),
12150 fd, buffer, io_size, offset, &remote_errno);
12151 if (bytes == 0)
12152 /* Success, but no bytes, means end-of-file. */
12153 break;
12154 if (bytes == -1)
12155 remote_hostio_error (remote_errno);
12156
12157 offset += bytes;
12158
12159 bytes = fwrite (buffer, 1, bytes, file.get ());
12160 if (bytes == 0)
12161 perror_with_name (local_file);
12162 }
12163
12164 discard_cleanups (close_cleanup);
12165 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12166 remote_hostio_error (remote_errno);
12167
12168 if (from_tty)
12169 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12170 do_cleanups (back_to);
12171 }
12172
12173 void
12174 remote_file_delete (const char *remote_file, int from_tty)
12175 {
12176 int retcode, remote_errno;
12177 struct remote_state *rs = get_remote_state ();
12178
12179 if (!rs->remote_desc)
12180 error (_("command can only be used with remote target"));
12181
12182 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12183 NULL, remote_file, &remote_errno);
12184 if (retcode == -1)
12185 remote_hostio_error (remote_errno);
12186
12187 if (from_tty)
12188 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12189 }
12190
12191 static void
12192 remote_put_command (const char *args, int from_tty)
12193 {
12194 if (args == NULL)
12195 error_no_arg (_("file to put"));
12196
12197 gdb_argv argv (args);
12198 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12199 error (_("Invalid parameters to remote put"));
12200
12201 remote_file_put (argv[0], argv[1], from_tty);
12202 }
12203
12204 static void
12205 remote_get_command (const char *args, int from_tty)
12206 {
12207 if (args == NULL)
12208 error_no_arg (_("file to get"));
12209
12210 gdb_argv argv (args);
12211 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12212 error (_("Invalid parameters to remote get"));
12213
12214 remote_file_get (argv[0], argv[1], from_tty);
12215 }
12216
12217 static void
12218 remote_delete_command (const char *args, int from_tty)
12219 {
12220 if (args == NULL)
12221 error_no_arg (_("file to delete"));
12222
12223 gdb_argv argv (args);
12224 if (argv[0] == NULL || argv[1] != NULL)
12225 error (_("Invalid parameters to remote delete"));
12226
12227 remote_file_delete (argv[0], from_tty);
12228 }
12229
12230 static void
12231 remote_command (const char *args, int from_tty)
12232 {
12233 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12234 }
12235
12236 static int
12237 remote_can_execute_reverse (struct target_ops *self)
12238 {
12239 if (packet_support (PACKET_bs) == PACKET_ENABLE
12240 || packet_support (PACKET_bc) == PACKET_ENABLE)
12241 return 1;
12242 else
12243 return 0;
12244 }
12245
12246 static int
12247 remote_supports_non_stop (struct target_ops *self)
12248 {
12249 return 1;
12250 }
12251
12252 static int
12253 remote_supports_disable_randomization (struct target_ops *self)
12254 {
12255 /* Only supported in extended mode. */
12256 return 0;
12257 }
12258
12259 static int
12260 remote_supports_multi_process (struct target_ops *self)
12261 {
12262 struct remote_state *rs = get_remote_state ();
12263
12264 return remote_multi_process_p (rs);
12265 }
12266
12267 static int
12268 remote_supports_cond_tracepoints (void)
12269 {
12270 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12271 }
12272
12273 static int
12274 remote_supports_cond_breakpoints (struct target_ops *self)
12275 {
12276 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12277 }
12278
12279 static int
12280 remote_supports_fast_tracepoints (void)
12281 {
12282 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12283 }
12284
12285 static int
12286 remote_supports_static_tracepoints (void)
12287 {
12288 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12289 }
12290
12291 static int
12292 remote_supports_install_in_trace (void)
12293 {
12294 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12295 }
12296
12297 static int
12298 remote_supports_enable_disable_tracepoint (struct target_ops *self)
12299 {
12300 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12301 == PACKET_ENABLE);
12302 }
12303
12304 static int
12305 remote_supports_string_tracing (struct target_ops *self)
12306 {
12307 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12308 }
12309
12310 static int
12311 remote_can_run_breakpoint_commands (struct target_ops *self)
12312 {
12313 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12314 }
12315
12316 static void
12317 remote_trace_init (struct target_ops *self)
12318 {
12319 struct remote_state *rs = get_remote_state ();
12320
12321 putpkt ("QTinit");
12322 remote_get_noisy_reply ();
12323 if (strcmp (rs->buf, "OK") != 0)
12324 error (_("Target does not support this command."));
12325 }
12326
12327 static void free_actions_list (char **actions_list);
12328 static void free_actions_list_cleanup_wrapper (void *);
12329 static void
12330 free_actions_list_cleanup_wrapper (void *al)
12331 {
12332 free_actions_list ((char **) al);
12333 }
12334
12335 static void
12336 free_actions_list (char **actions_list)
12337 {
12338 int ndx;
12339
12340 if (actions_list == 0)
12341 return;
12342
12343 for (ndx = 0; actions_list[ndx]; ndx++)
12344 xfree (actions_list[ndx]);
12345
12346 xfree (actions_list);
12347 }
12348
12349 /* Recursive routine to walk through command list including loops, and
12350 download packets for each command. */
12351
12352 static void
12353 remote_download_command_source (int num, ULONGEST addr,
12354 struct command_line *cmds)
12355 {
12356 struct remote_state *rs = get_remote_state ();
12357 struct command_line *cmd;
12358
12359 for (cmd = cmds; cmd; cmd = cmd->next)
12360 {
12361 QUIT; /* Allow user to bail out with ^C. */
12362 strcpy (rs->buf, "QTDPsrc:");
12363 encode_source_string (num, addr, "cmd", cmd->line,
12364 rs->buf + strlen (rs->buf),
12365 rs->buf_size - strlen (rs->buf));
12366 putpkt (rs->buf);
12367 remote_get_noisy_reply ();
12368 if (strcmp (rs->buf, "OK"))
12369 warning (_("Target does not support source download."));
12370
12371 if (cmd->control_type == while_control
12372 || cmd->control_type == while_stepping_control)
12373 {
12374 remote_download_command_source (num, addr, *cmd->body_list);
12375
12376 QUIT; /* Allow user to bail out with ^C. */
12377 strcpy (rs->buf, "QTDPsrc:");
12378 encode_source_string (num, addr, "cmd", "end",
12379 rs->buf + strlen (rs->buf),
12380 rs->buf_size - strlen (rs->buf));
12381 putpkt (rs->buf);
12382 remote_get_noisy_reply ();
12383 if (strcmp (rs->buf, "OK"))
12384 warning (_("Target does not support source download."));
12385 }
12386 }
12387 }
12388
12389 static void
12390 remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
12391 {
12392 #define BUF_SIZE 2048
12393
12394 CORE_ADDR tpaddr;
12395 char addrbuf[40];
12396 char buf[BUF_SIZE];
12397 char **tdp_actions;
12398 char **stepping_actions;
12399 int ndx;
12400 struct cleanup *old_chain = NULL;
12401 char *pkt;
12402 struct breakpoint *b = loc->owner;
12403 struct tracepoint *t = (struct tracepoint *) b;
12404 struct remote_state *rs = get_remote_state ();
12405
12406 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12407 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
12408 tdp_actions);
12409 (void) make_cleanup (free_actions_list_cleanup_wrapper,
12410 stepping_actions);
12411
12412 tpaddr = loc->address;
12413 sprintf_vma (addrbuf, tpaddr);
12414 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12415 addrbuf, /* address */
12416 (b->enable_state == bp_enabled ? 'E' : 'D'),
12417 t->step_count, t->pass_count);
12418 /* Fast tracepoints are mostly handled by the target, but we can
12419 tell the target how big of an instruction block should be moved
12420 around. */
12421 if (b->type == bp_fast_tracepoint)
12422 {
12423 /* Only test for support at download time; we may not know
12424 target capabilities at definition time. */
12425 if (remote_supports_fast_tracepoints ())
12426 {
12427 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12428 NULL))
12429 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12430 gdb_insn_length (loc->gdbarch, tpaddr));
12431 else
12432 /* If it passed validation at definition but fails now,
12433 something is very wrong. */
12434 internal_error (__FILE__, __LINE__,
12435 _("Fast tracepoint not "
12436 "valid during download"));
12437 }
12438 else
12439 /* Fast tracepoints are functionally identical to regular
12440 tracepoints, so don't take lack of support as a reason to
12441 give up on the trace run. */
12442 warning (_("Target does not support fast tracepoints, "
12443 "downloading %d as regular tracepoint"), b->number);
12444 }
12445 else if (b->type == bp_static_tracepoint)
12446 {
12447 /* Only test for support at download time; we may not know
12448 target capabilities at definition time. */
12449 if (remote_supports_static_tracepoints ())
12450 {
12451 struct static_tracepoint_marker marker;
12452
12453 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12454 strcat (buf, ":S");
12455 else
12456 error (_("Static tracepoint not valid during download"));
12457 }
12458 else
12459 /* Fast tracepoints are functionally identical to regular
12460 tracepoints, so don't take lack of support as a reason
12461 to give up on the trace run. */
12462 error (_("Target does not support static tracepoints"));
12463 }
12464 /* If the tracepoint has a conditional, make it into an agent
12465 expression and append to the definition. */
12466 if (loc->cond)
12467 {
12468 /* Only test support at download time, we may not know target
12469 capabilities at definition time. */
12470 if (remote_supports_cond_tracepoints ())
12471 {
12472 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12473 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12474 aexpr->len);
12475 pkt = buf + strlen (buf);
12476 for (ndx = 0; ndx < aexpr->len; ++ndx)
12477 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12478 *pkt = '\0';
12479 }
12480 else
12481 warning (_("Target does not support conditional tracepoints, "
12482 "ignoring tp %d cond"), b->number);
12483 }
12484
12485 if (b->commands || *default_collect)
12486 strcat (buf, "-");
12487 putpkt (buf);
12488 remote_get_noisy_reply ();
12489 if (strcmp (rs->buf, "OK"))
12490 error (_("Target does not support tracepoints."));
12491
12492 /* do_single_steps (t); */
12493 if (tdp_actions)
12494 {
12495 for (ndx = 0; tdp_actions[ndx]; ndx++)
12496 {
12497 QUIT; /* Allow user to bail out with ^C. */
12498 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12499 b->number, addrbuf, /* address */
12500 tdp_actions[ndx],
12501 ((tdp_actions[ndx + 1] || stepping_actions)
12502 ? '-' : 0));
12503 putpkt (buf);
12504 remote_get_noisy_reply ();
12505 if (strcmp (rs->buf, "OK"))
12506 error (_("Error on target while setting tracepoints."));
12507 }
12508 }
12509 if (stepping_actions)
12510 {
12511 for (ndx = 0; stepping_actions[ndx]; ndx++)
12512 {
12513 QUIT; /* Allow user to bail out with ^C. */
12514 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12515 b->number, addrbuf, /* address */
12516 ((ndx == 0) ? "S" : ""),
12517 stepping_actions[ndx],
12518 (stepping_actions[ndx + 1] ? "-" : ""));
12519 putpkt (buf);
12520 remote_get_noisy_reply ();
12521 if (strcmp (rs->buf, "OK"))
12522 error (_("Error on target while setting tracepoints."));
12523 }
12524 }
12525
12526 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12527 {
12528 if (b->location != NULL)
12529 {
12530 strcpy (buf, "QTDPsrc:");
12531 encode_source_string (b->number, loc->address, "at",
12532 event_location_to_string (b->location.get ()),
12533 buf + strlen (buf), 2048 - strlen (buf));
12534 putpkt (buf);
12535 remote_get_noisy_reply ();
12536 if (strcmp (rs->buf, "OK"))
12537 warning (_("Target does not support source download."));
12538 }
12539 if (b->cond_string)
12540 {
12541 strcpy (buf, "QTDPsrc:");
12542 encode_source_string (b->number, loc->address,
12543 "cond", b->cond_string, buf + strlen (buf),
12544 2048 - strlen (buf));
12545 putpkt (buf);
12546 remote_get_noisy_reply ();
12547 if (strcmp (rs->buf, "OK"))
12548 warning (_("Target does not support source download."));
12549 }
12550 remote_download_command_source (b->number, loc->address,
12551 breakpoint_commands (b));
12552 }
12553
12554 do_cleanups (old_chain);
12555 }
12556
12557 static int
12558 remote_can_download_tracepoint (struct target_ops *self)
12559 {
12560 struct remote_state *rs = get_remote_state ();
12561 struct trace_status *ts;
12562 int status;
12563
12564 /* Don't try to install tracepoints until we've relocated our
12565 symbols, and fetched and merged the target's tracepoint list with
12566 ours. */
12567 if (rs->starting_up)
12568 return 0;
12569
12570 ts = current_trace_status ();
12571 status = remote_get_trace_status (self, ts);
12572
12573 if (status == -1 || !ts->running_known || !ts->running)
12574 return 0;
12575
12576 /* If we are in a tracing experiment, but remote stub doesn't support
12577 installing tracepoint in trace, we have to return. */
12578 if (!remote_supports_install_in_trace ())
12579 return 0;
12580
12581 return 1;
12582 }
12583
12584
12585 static void
12586 remote_download_trace_state_variable (struct target_ops *self,
12587 struct trace_state_variable *tsv)
12588 {
12589 struct remote_state *rs = get_remote_state ();
12590 char *p;
12591
12592 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12593 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
12594 tsv->builtin);
12595 p = rs->buf + strlen (rs->buf);
12596 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
12597 error (_("Trace state variable name too long for tsv definition packet"));
12598 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, strlen (tsv->name));
12599 *p++ = '\0';
12600 putpkt (rs->buf);
12601 remote_get_noisy_reply ();
12602 if (*rs->buf == '\0')
12603 error (_("Target does not support this command."));
12604 if (strcmp (rs->buf, "OK") != 0)
12605 error (_("Error on target while downloading trace state variable."));
12606 }
12607
12608 static void
12609 remote_enable_tracepoint (struct target_ops *self,
12610 struct bp_location *location)
12611 {
12612 struct remote_state *rs = get_remote_state ();
12613 char addr_buf[40];
12614
12615 sprintf_vma (addr_buf, location->address);
12616 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12617 location->owner->number, addr_buf);
12618 putpkt (rs->buf);
12619 remote_get_noisy_reply ();
12620 if (*rs->buf == '\0')
12621 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12622 if (strcmp (rs->buf, "OK") != 0)
12623 error (_("Error on target while enabling tracepoint."));
12624 }
12625
12626 static void
12627 remote_disable_tracepoint (struct target_ops *self,
12628 struct bp_location *location)
12629 {
12630 struct remote_state *rs = get_remote_state ();
12631 char addr_buf[40];
12632
12633 sprintf_vma (addr_buf, location->address);
12634 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12635 location->owner->number, addr_buf);
12636 putpkt (rs->buf);
12637 remote_get_noisy_reply ();
12638 if (*rs->buf == '\0')
12639 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12640 if (strcmp (rs->buf, "OK") != 0)
12641 error (_("Error on target while disabling tracepoint."));
12642 }
12643
12644 static void
12645 remote_trace_set_readonly_regions (struct target_ops *self)
12646 {
12647 asection *s;
12648 bfd *abfd = NULL;
12649 bfd_size_type size;
12650 bfd_vma vma;
12651 int anysecs = 0;
12652 int offset = 0;
12653
12654 if (!exec_bfd)
12655 return; /* No information to give. */
12656
12657 struct remote_state *rs = get_remote_state ();
12658
12659 strcpy (rs->buf, "QTro");
12660 offset = strlen (rs->buf);
12661 for (s = exec_bfd->sections; s; s = s->next)
12662 {
12663 char tmp1[40], tmp2[40];
12664 int sec_length;
12665
12666 if ((s->flags & SEC_LOAD) == 0 ||
12667 /* (s->flags & SEC_CODE) == 0 || */
12668 (s->flags & SEC_READONLY) == 0)
12669 continue;
12670
12671 anysecs = 1;
12672 vma = bfd_get_section_vma (abfd, s);
12673 size = bfd_get_section_size (s);
12674 sprintf_vma (tmp1, vma);
12675 sprintf_vma (tmp2, vma + size);
12676 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12677 if (offset + sec_length + 1 > rs->buf_size)
12678 {
12679 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12680 warning (_("\
12681 Too many sections for read-only sections definition packet."));
12682 break;
12683 }
12684 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
12685 tmp1, tmp2);
12686 offset += sec_length;
12687 }
12688 if (anysecs)
12689 {
12690 putpkt (rs->buf);
12691 getpkt (&rs->buf, &rs->buf_size, 0);
12692 }
12693 }
12694
12695 static void
12696 remote_trace_start (struct target_ops *self)
12697 {
12698 struct remote_state *rs = get_remote_state ();
12699
12700 putpkt ("QTStart");
12701 remote_get_noisy_reply ();
12702 if (*rs->buf == '\0')
12703 error (_("Target does not support this command."));
12704 if (strcmp (rs->buf, "OK") != 0)
12705 error (_("Bogus reply from target: %s"), rs->buf);
12706 }
12707
12708 static int
12709 remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
12710 {
12711 /* Initialize it just to avoid a GCC false warning. */
12712 char *p = NULL;
12713 /* FIXME we need to get register block size some other way. */
12714 extern int trace_regblock_size;
12715 enum packet_result result;
12716 struct remote_state *rs = get_remote_state ();
12717
12718 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12719 return -1;
12720
12721 trace_regblock_size
12722 = get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
12723
12724 putpkt ("qTStatus");
12725
12726 TRY
12727 {
12728 p = remote_get_noisy_reply ();
12729 }
12730 CATCH (ex, RETURN_MASK_ERROR)
12731 {
12732 if (ex.error != TARGET_CLOSE_ERROR)
12733 {
12734 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12735 return -1;
12736 }
12737 throw_exception (ex);
12738 }
12739 END_CATCH
12740
12741 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12742
12743 /* If the remote target doesn't do tracing, flag it. */
12744 if (result == PACKET_UNKNOWN)
12745 return -1;
12746
12747 /* We're working with a live target. */
12748 ts->filename = NULL;
12749
12750 if (*p++ != 'T')
12751 error (_("Bogus trace status reply from target: %s"), rs->buf);
12752
12753 /* Function 'parse_trace_status' sets default value of each field of
12754 'ts' at first, so we don't have to do it here. */
12755 parse_trace_status (p, ts);
12756
12757 return ts->running;
12758 }
12759
12760 static void
12761 remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
12762 struct uploaded_tp *utp)
12763 {
12764 struct remote_state *rs = get_remote_state ();
12765 char *reply;
12766 struct bp_location *loc;
12767 struct tracepoint *tp = (struct tracepoint *) bp;
12768 size_t size = get_remote_packet_size ();
12769
12770 if (tp)
12771 {
12772 tp->hit_count = 0;
12773 tp->traceframe_usage = 0;
12774 for (loc = tp->loc; loc; loc = loc->next)
12775 {
12776 /* If the tracepoint was never downloaded, don't go asking for
12777 any status. */
12778 if (tp->number_on_target == 0)
12779 continue;
12780 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12781 phex_nz (loc->address, 0));
12782 putpkt (rs->buf);
12783 reply = remote_get_noisy_reply ();
12784 if (reply && *reply)
12785 {
12786 if (*reply == 'V')
12787 parse_tracepoint_status (reply + 1, bp, utp);
12788 }
12789 }
12790 }
12791 else if (utp)
12792 {
12793 utp->hit_count = 0;
12794 utp->traceframe_usage = 0;
12795 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
12796 phex_nz (utp->addr, 0));
12797 putpkt (rs->buf);
12798 reply = remote_get_noisy_reply ();
12799 if (reply && *reply)
12800 {
12801 if (*reply == 'V')
12802 parse_tracepoint_status (reply + 1, bp, utp);
12803 }
12804 }
12805 }
12806
12807 static void
12808 remote_trace_stop (struct target_ops *self)
12809 {
12810 struct remote_state *rs = get_remote_state ();
12811
12812 putpkt ("QTStop");
12813 remote_get_noisy_reply ();
12814 if (*rs->buf == '\0')
12815 error (_("Target does not support this command."));
12816 if (strcmp (rs->buf, "OK") != 0)
12817 error (_("Bogus reply from target: %s"), rs->buf);
12818 }
12819
12820 static int
12821 remote_trace_find (struct target_ops *self,
12822 enum trace_find_type type, int num,
12823 CORE_ADDR addr1, CORE_ADDR addr2,
12824 int *tpp)
12825 {
12826 struct remote_state *rs = get_remote_state ();
12827 char *endbuf = rs->buf + get_remote_packet_size ();
12828 char *p, *reply;
12829 int target_frameno = -1, target_tracept = -1;
12830
12831 /* Lookups other than by absolute frame number depend on the current
12832 trace selected, so make sure it is correct on the remote end
12833 first. */
12834 if (type != tfind_number)
12835 set_remote_traceframe ();
12836
12837 p = rs->buf;
12838 strcpy (p, "QTFrame:");
12839 p = strchr (p, '\0');
12840 switch (type)
12841 {
12842 case tfind_number:
12843 xsnprintf (p, endbuf - p, "%x", num);
12844 break;
12845 case tfind_pc:
12846 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
12847 break;
12848 case tfind_tp:
12849 xsnprintf (p, endbuf - p, "tdp:%x", num);
12850 break;
12851 case tfind_range:
12852 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
12853 phex_nz (addr2, 0));
12854 break;
12855 case tfind_outside:
12856 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
12857 phex_nz (addr2, 0));
12858 break;
12859 default:
12860 error (_("Unknown trace find type %d"), type);
12861 }
12862
12863 putpkt (rs->buf);
12864 reply = remote_get_noisy_reply ();
12865 if (*reply == '\0')
12866 error (_("Target does not support this command."));
12867
12868 while (reply && *reply)
12869 switch (*reply)
12870 {
12871 case 'F':
12872 p = ++reply;
12873 target_frameno = (int) strtol (p, &reply, 16);
12874 if (reply == p)
12875 error (_("Unable to parse trace frame number"));
12876 /* Don't update our remote traceframe number cache on failure
12877 to select a remote traceframe. */
12878 if (target_frameno == -1)
12879 return -1;
12880 break;
12881 case 'T':
12882 p = ++reply;
12883 target_tracept = (int) strtol (p, &reply, 16);
12884 if (reply == p)
12885 error (_("Unable to parse tracepoint number"));
12886 break;
12887 case 'O': /* "OK"? */
12888 if (reply[1] == 'K' && reply[2] == '\0')
12889 reply += 2;
12890 else
12891 error (_("Bogus reply from target: %s"), reply);
12892 break;
12893 default:
12894 error (_("Bogus reply from target: %s"), reply);
12895 }
12896 if (tpp)
12897 *tpp = target_tracept;
12898
12899 rs->remote_traceframe_number = target_frameno;
12900 return target_frameno;
12901 }
12902
12903 static int
12904 remote_get_trace_state_variable_value (struct target_ops *self,
12905 int tsvnum, LONGEST *val)
12906 {
12907 struct remote_state *rs = get_remote_state ();
12908 char *reply;
12909 ULONGEST uval;
12910
12911 set_remote_traceframe ();
12912
12913 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
12914 putpkt (rs->buf);
12915 reply = remote_get_noisy_reply ();
12916 if (reply && *reply)
12917 {
12918 if (*reply == 'V')
12919 {
12920 unpack_varlen_hex (reply + 1, &uval);
12921 *val = (LONGEST) uval;
12922 return 1;
12923 }
12924 }
12925 return 0;
12926 }
12927
12928 static int
12929 remote_save_trace_data (struct target_ops *self, const char *filename)
12930 {
12931 struct remote_state *rs = get_remote_state ();
12932 char *p, *reply;
12933
12934 p = rs->buf;
12935 strcpy (p, "QTSave:");
12936 p += strlen (p);
12937 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
12938 error (_("Remote file name too long for trace save packet"));
12939 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
12940 *p++ = '\0';
12941 putpkt (rs->buf);
12942 reply = remote_get_noisy_reply ();
12943 if (*reply == '\0')
12944 error (_("Target does not support this command."));
12945 if (strcmp (reply, "OK") != 0)
12946 error (_("Bogus reply from target: %s"), reply);
12947 return 0;
12948 }
12949
12950 /* This is basically a memory transfer, but needs to be its own packet
12951 because we don't know how the target actually organizes its trace
12952 memory, plus we want to be able to ask for as much as possible, but
12953 not be unhappy if we don't get as much as we ask for. */
12954
12955 static LONGEST
12956 remote_get_raw_trace_data (struct target_ops *self,
12957 gdb_byte *buf, ULONGEST offset, LONGEST len)
12958 {
12959 struct remote_state *rs = get_remote_state ();
12960 char *reply;
12961 char *p;
12962 int rslt;
12963
12964 p = rs->buf;
12965 strcpy (p, "qTBuffer:");
12966 p += strlen (p);
12967 p += hexnumstr (p, offset);
12968 *p++ = ',';
12969 p += hexnumstr (p, len);
12970 *p++ = '\0';
12971
12972 putpkt (rs->buf);
12973 reply = remote_get_noisy_reply ();
12974 if (reply && *reply)
12975 {
12976 /* 'l' by itself means we're at the end of the buffer and
12977 there is nothing more to get. */
12978 if (*reply == 'l')
12979 return 0;
12980
12981 /* Convert the reply into binary. Limit the number of bytes to
12982 convert according to our passed-in buffer size, rather than
12983 what was returned in the packet; if the target is
12984 unexpectedly generous and gives us a bigger reply than we
12985 asked for, we don't want to crash. */
12986 rslt = hex2bin (reply, buf, len);
12987 return rslt;
12988 }
12989
12990 /* Something went wrong, flag as an error. */
12991 return -1;
12992 }
12993
12994 static void
12995 remote_set_disconnected_tracing (struct target_ops *self, int val)
12996 {
12997 struct remote_state *rs = get_remote_state ();
12998
12999 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13000 {
13001 char *reply;
13002
13003 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
13004 putpkt (rs->buf);
13005 reply = remote_get_noisy_reply ();
13006 if (*reply == '\0')
13007 error (_("Target does not support this command."));
13008 if (strcmp (reply, "OK") != 0)
13009 error (_("Bogus reply from target: %s"), reply);
13010 }
13011 else if (val)
13012 warning (_("Target does not support disconnected tracing."));
13013 }
13014
13015 static int
13016 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
13017 {
13018 struct thread_info *info = find_thread_ptid (ptid);
13019
13020 if (info && info->priv)
13021 return info->priv->core;
13022 return -1;
13023 }
13024
13025 static void
13026 remote_set_circular_trace_buffer (struct target_ops *self, int val)
13027 {
13028 struct remote_state *rs = get_remote_state ();
13029 char *reply;
13030
13031 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
13032 putpkt (rs->buf);
13033 reply = remote_get_noisy_reply ();
13034 if (*reply == '\0')
13035 error (_("Target does not support this command."));
13036 if (strcmp (reply, "OK") != 0)
13037 error (_("Bogus reply from target: %s"), reply);
13038 }
13039
13040 static traceframe_info_up
13041 remote_traceframe_info (struct target_ops *self)
13042 {
13043 char *text;
13044
13045 text = target_read_stralloc (&current_target,
13046 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
13047 if (text != NULL)
13048 {
13049 struct cleanup *back_to = make_cleanup (xfree, text);
13050 traceframe_info_up info = parse_traceframe_info (text);
13051
13052 do_cleanups (back_to);
13053 return info;
13054 }
13055
13056 return NULL;
13057 }
13058
13059 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13060 instruction on which a fast tracepoint may be placed. Returns -1
13061 if the packet is not supported, and 0 if the minimum instruction
13062 length is unknown. */
13063
13064 static int
13065 remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
13066 {
13067 struct remote_state *rs = get_remote_state ();
13068 char *reply;
13069
13070 /* If we're not debugging a process yet, the IPA can't be
13071 loaded. */
13072 if (!target_has_execution)
13073 return 0;
13074
13075 /* Make sure the remote is pointing at the right process. */
13076 set_general_process ();
13077
13078 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
13079 putpkt (rs->buf);
13080 reply = remote_get_noisy_reply ();
13081 if (*reply == '\0')
13082 return -1;
13083 else
13084 {
13085 ULONGEST min_insn_len;
13086
13087 unpack_varlen_hex (reply, &min_insn_len);
13088
13089 return (int) min_insn_len;
13090 }
13091 }
13092
13093 static void
13094 remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
13095 {
13096 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13097 {
13098 struct remote_state *rs = get_remote_state ();
13099 char *buf = rs->buf;
13100 char *endbuf = rs->buf + get_remote_packet_size ();
13101 enum packet_result result;
13102
13103 gdb_assert (val >= 0 || val == -1);
13104 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13105 /* Send -1 as literal "-1" to avoid host size dependency. */
13106 if (val < 0)
13107 {
13108 *buf++ = '-';
13109 buf += hexnumstr (buf, (ULONGEST) -val);
13110 }
13111 else
13112 buf += hexnumstr (buf, (ULONGEST) val);
13113
13114 putpkt (rs->buf);
13115 remote_get_noisy_reply ();
13116 result = packet_ok (rs->buf,
13117 &remote_protocol_packets[PACKET_QTBuffer_size]);
13118
13119 if (result != PACKET_OK)
13120 warning (_("Bogus reply from target: %s"), rs->buf);
13121 }
13122 }
13123
13124 static int
13125 remote_set_trace_notes (struct target_ops *self,
13126 const char *user, const char *notes,
13127 const char *stop_notes)
13128 {
13129 struct remote_state *rs = get_remote_state ();
13130 char *reply;
13131 char *buf = rs->buf;
13132 char *endbuf = rs->buf + get_remote_packet_size ();
13133 int nbytes;
13134
13135 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13136 if (user)
13137 {
13138 buf += xsnprintf (buf, endbuf - buf, "user:");
13139 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13140 buf += 2 * nbytes;
13141 *buf++ = ';';
13142 }
13143 if (notes)
13144 {
13145 buf += xsnprintf (buf, endbuf - buf, "notes:");
13146 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13147 buf += 2 * nbytes;
13148 *buf++ = ';';
13149 }
13150 if (stop_notes)
13151 {
13152 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13153 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13154 buf += 2 * nbytes;
13155 *buf++ = ';';
13156 }
13157 /* Ensure the buffer is terminated. */
13158 *buf = '\0';
13159
13160 putpkt (rs->buf);
13161 reply = remote_get_noisy_reply ();
13162 if (*reply == '\0')
13163 return 0;
13164
13165 if (strcmp (reply, "OK") != 0)
13166 error (_("Bogus reply from target: %s"), reply);
13167
13168 return 1;
13169 }
13170
13171 static int
13172 remote_use_agent (struct target_ops *self, int use)
13173 {
13174 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13175 {
13176 struct remote_state *rs = get_remote_state ();
13177
13178 /* If the stub supports QAgent. */
13179 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13180 putpkt (rs->buf);
13181 getpkt (&rs->buf, &rs->buf_size, 0);
13182
13183 if (strcmp (rs->buf, "OK") == 0)
13184 {
13185 use_agent = use;
13186 return 1;
13187 }
13188 }
13189
13190 return 0;
13191 }
13192
13193 static int
13194 remote_can_use_agent (struct target_ops *self)
13195 {
13196 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13197 }
13198
13199 struct btrace_target_info
13200 {
13201 /* The ptid of the traced thread. */
13202 ptid_t ptid;
13203
13204 /* The obtained branch trace configuration. */
13205 struct btrace_config conf;
13206 };
13207
13208 /* Reset our idea of our target's btrace configuration. */
13209
13210 static void
13211 remote_btrace_reset (void)
13212 {
13213 struct remote_state *rs = get_remote_state ();
13214
13215 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13216 }
13217
13218 /* Check whether the target supports branch tracing. */
13219
13220 static int
13221 remote_supports_btrace (struct target_ops *self, enum btrace_format format)
13222 {
13223 if (packet_support (PACKET_Qbtrace_off) != PACKET_ENABLE)
13224 return 0;
13225 if (packet_support (PACKET_qXfer_btrace) != PACKET_ENABLE)
13226 return 0;
13227
13228 switch (format)
13229 {
13230 case BTRACE_FORMAT_NONE:
13231 return 0;
13232
13233 case BTRACE_FORMAT_BTS:
13234 return (packet_support (PACKET_Qbtrace_bts) == PACKET_ENABLE);
13235
13236 case BTRACE_FORMAT_PT:
13237 /* The trace is decoded on the host. Even if our target supports it,
13238 we still need to have libipt to decode the trace. */
13239 #if defined (HAVE_LIBIPT)
13240 return (packet_support (PACKET_Qbtrace_pt) == PACKET_ENABLE);
13241 #else /* !defined (HAVE_LIBIPT) */
13242 return 0;
13243 #endif /* !defined (HAVE_LIBIPT) */
13244 }
13245
13246 internal_error (__FILE__, __LINE__, _("Unknown branch trace format"));
13247 }
13248
13249 /* Synchronize the configuration with the target. */
13250
13251 static void
13252 btrace_sync_conf (const struct btrace_config *conf)
13253 {
13254 struct packet_config *packet;
13255 struct remote_state *rs;
13256 char *buf, *pos, *endbuf;
13257
13258 rs = get_remote_state ();
13259 buf = rs->buf;
13260 endbuf = buf + get_remote_packet_size ();
13261
13262 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13263 if (packet_config_support (packet) == PACKET_ENABLE
13264 && conf->bts.size != rs->btrace_config.bts.size)
13265 {
13266 pos = buf;
13267 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13268 conf->bts.size);
13269
13270 putpkt (buf);
13271 getpkt (&buf, &rs->buf_size, 0);
13272
13273 if (packet_ok (buf, packet) == PACKET_ERROR)
13274 {
13275 if (buf[0] == 'E' && buf[1] == '.')
13276 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13277 else
13278 error (_("Failed to configure the BTS buffer size."));
13279 }
13280
13281 rs->btrace_config.bts.size = conf->bts.size;
13282 }
13283
13284 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13285 if (packet_config_support (packet) == PACKET_ENABLE
13286 && conf->pt.size != rs->btrace_config.pt.size)
13287 {
13288 pos = buf;
13289 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13290 conf->pt.size);
13291
13292 putpkt (buf);
13293 getpkt (&buf, &rs->buf_size, 0);
13294
13295 if (packet_ok (buf, packet) == PACKET_ERROR)
13296 {
13297 if (buf[0] == 'E' && buf[1] == '.')
13298 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13299 else
13300 error (_("Failed to configure the trace buffer size."));
13301 }
13302
13303 rs->btrace_config.pt.size = conf->pt.size;
13304 }
13305 }
13306
13307 /* Read the current thread's btrace configuration from the target and
13308 store it into CONF. */
13309
13310 static void
13311 btrace_read_config (struct btrace_config *conf)
13312 {
13313 char *xml;
13314
13315 xml = target_read_stralloc (&current_target,
13316 TARGET_OBJECT_BTRACE_CONF, "");
13317 if (xml != NULL)
13318 {
13319 struct cleanup *cleanup;
13320
13321 cleanup = make_cleanup (xfree, xml);
13322 parse_xml_btrace_conf (conf, xml);
13323 do_cleanups (cleanup);
13324 }
13325 }
13326
13327 /* Maybe reopen target btrace. */
13328
13329 static void
13330 remote_btrace_maybe_reopen (void)
13331 {
13332 struct remote_state *rs = get_remote_state ();
13333 struct thread_info *tp;
13334 int btrace_target_pushed = 0;
13335 int warned = 0;
13336
13337 scoped_restore_current_thread restore_thread;
13338
13339 ALL_NON_EXITED_THREADS (tp)
13340 {
13341 set_general_thread (tp->ptid);
13342
13343 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13344 btrace_read_config (&rs->btrace_config);
13345
13346 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13347 continue;
13348
13349 #if !defined (HAVE_LIBIPT)
13350 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13351 {
13352 if (!warned)
13353 {
13354 warned = 1;
13355 warning (_("GDB does not support Intel Processor Trace. "
13356 "\"record\" will not work in this session."));
13357 }
13358
13359 continue;
13360 }
13361 #endif /* !defined (HAVE_LIBIPT) */
13362
13363 /* Push target, once, but before anything else happens. This way our
13364 changes to the threads will be cleaned up by unpushing the target
13365 in case btrace_read_config () throws. */
13366 if (!btrace_target_pushed)
13367 {
13368 btrace_target_pushed = 1;
13369 record_btrace_push_target ();
13370 printf_filtered (_("Target is recording using %s.\n"),
13371 btrace_format_string (rs->btrace_config.format));
13372 }
13373
13374 tp->btrace.target = XCNEW (struct btrace_target_info);
13375 tp->btrace.target->ptid = tp->ptid;
13376 tp->btrace.target->conf = rs->btrace_config;
13377 }
13378 }
13379
13380 /* Enable branch tracing. */
13381
13382 static struct btrace_target_info *
13383 remote_enable_btrace (struct target_ops *self, ptid_t ptid,
13384 const struct btrace_config *conf)
13385 {
13386 struct btrace_target_info *tinfo = NULL;
13387 struct packet_config *packet = NULL;
13388 struct remote_state *rs = get_remote_state ();
13389 char *buf = rs->buf;
13390 char *endbuf = rs->buf + get_remote_packet_size ();
13391
13392 switch (conf->format)
13393 {
13394 case BTRACE_FORMAT_BTS:
13395 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13396 break;
13397
13398 case BTRACE_FORMAT_PT:
13399 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13400 break;
13401 }
13402
13403 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13404 error (_("Target does not support branch tracing."));
13405
13406 btrace_sync_conf (conf);
13407
13408 set_general_thread (ptid);
13409
13410 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13411 putpkt (rs->buf);
13412 getpkt (&rs->buf, &rs->buf_size, 0);
13413
13414 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13415 {
13416 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13417 error (_("Could not enable branch tracing for %s: %s"),
13418 target_pid_to_str (ptid), rs->buf + 2);
13419 else
13420 error (_("Could not enable branch tracing for %s."),
13421 target_pid_to_str (ptid));
13422 }
13423
13424 tinfo = XCNEW (struct btrace_target_info);
13425 tinfo->ptid = ptid;
13426
13427 /* If we fail to read the configuration, we lose some information, but the
13428 tracing itself is not impacted. */
13429 TRY
13430 {
13431 btrace_read_config (&tinfo->conf);
13432 }
13433 CATCH (err, RETURN_MASK_ERROR)
13434 {
13435 if (err.message != NULL)
13436 warning ("%s", err.message);
13437 }
13438 END_CATCH
13439
13440 return tinfo;
13441 }
13442
13443 /* Disable branch tracing. */
13444
13445 static void
13446 remote_disable_btrace (struct target_ops *self,
13447 struct btrace_target_info *tinfo)
13448 {
13449 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13450 struct remote_state *rs = get_remote_state ();
13451 char *buf = rs->buf;
13452 char *endbuf = rs->buf + get_remote_packet_size ();
13453
13454 if (packet_config_support (packet) != PACKET_ENABLE)
13455 error (_("Target does not support branch tracing."));
13456
13457 set_general_thread (tinfo->ptid);
13458
13459 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13460 putpkt (rs->buf);
13461 getpkt (&rs->buf, &rs->buf_size, 0);
13462
13463 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13464 {
13465 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13466 error (_("Could not disable branch tracing for %s: %s"),
13467 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13468 else
13469 error (_("Could not disable branch tracing for %s."),
13470 target_pid_to_str (tinfo->ptid));
13471 }
13472
13473 xfree (tinfo);
13474 }
13475
13476 /* Teardown branch tracing. */
13477
13478 static void
13479 remote_teardown_btrace (struct target_ops *self,
13480 struct btrace_target_info *tinfo)
13481 {
13482 /* We must not talk to the target during teardown. */
13483 xfree (tinfo);
13484 }
13485
13486 /* Read the branch trace. */
13487
13488 static enum btrace_error
13489 remote_read_btrace (struct target_ops *self,
13490 struct btrace_data *btrace,
13491 struct btrace_target_info *tinfo,
13492 enum btrace_read_type type)
13493 {
13494 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13495 struct cleanup *cleanup;
13496 const char *annex;
13497 char *xml;
13498
13499 if (packet_config_support (packet) != PACKET_ENABLE)
13500 error (_("Target does not support branch tracing."));
13501
13502 #if !defined(HAVE_LIBEXPAT)
13503 error (_("Cannot process branch tracing result. XML parsing not supported."));
13504 #endif
13505
13506 switch (type)
13507 {
13508 case BTRACE_READ_ALL:
13509 annex = "all";
13510 break;
13511 case BTRACE_READ_NEW:
13512 annex = "new";
13513 break;
13514 case BTRACE_READ_DELTA:
13515 annex = "delta";
13516 break;
13517 default:
13518 internal_error (__FILE__, __LINE__,
13519 _("Bad branch tracing read type: %u."),
13520 (unsigned int) type);
13521 }
13522
13523 xml = target_read_stralloc (&current_target,
13524 TARGET_OBJECT_BTRACE, annex);
13525 if (xml == NULL)
13526 return BTRACE_ERR_UNKNOWN;
13527
13528 cleanup = make_cleanup (xfree, xml);
13529 parse_xml_btrace (btrace, xml);
13530 do_cleanups (cleanup);
13531
13532 return BTRACE_ERR_NONE;
13533 }
13534
13535 static const struct btrace_config *
13536 remote_btrace_conf (struct target_ops *self,
13537 const struct btrace_target_info *tinfo)
13538 {
13539 return &tinfo->conf;
13540 }
13541
13542 static int
13543 remote_augmented_libraries_svr4_read (struct target_ops *self)
13544 {
13545 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13546 == PACKET_ENABLE);
13547 }
13548
13549 /* Implementation of to_load. */
13550
13551 static void
13552 remote_load (struct target_ops *self, const char *name, int from_tty)
13553 {
13554 generic_load (name, from_tty);
13555 }
13556
13557 /* Accepts an integer PID; returns a string representing a file that
13558 can be opened on the remote side to get the symbols for the child
13559 process. Returns NULL if the operation is not supported. */
13560
13561 static char *
13562 remote_pid_to_exec_file (struct target_ops *self, int pid)
13563 {
13564 static char *filename = NULL;
13565 struct inferior *inf;
13566 char *annex = NULL;
13567
13568 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13569 return NULL;
13570
13571 if (filename != NULL)
13572 xfree (filename);
13573
13574 inf = find_inferior_pid (pid);
13575 if (inf == NULL)
13576 internal_error (__FILE__, __LINE__,
13577 _("not currently attached to process %d"), pid);
13578
13579 if (!inf->fake_pid_p)
13580 {
13581 const int annex_size = 9;
13582
13583 annex = (char *) alloca (annex_size);
13584 xsnprintf (annex, annex_size, "%x", pid);
13585 }
13586
13587 filename = target_read_stralloc (&current_target,
13588 TARGET_OBJECT_EXEC_FILE, annex);
13589
13590 return filename;
13591 }
13592
13593 /* Implement the to_can_do_single_step target_ops method. */
13594
13595 static int
13596 remote_can_do_single_step (struct target_ops *ops)
13597 {
13598 /* We can only tell whether target supports single step or not by
13599 supported s and S vCont actions if the stub supports vContSupported
13600 feature. If the stub doesn't support vContSupported feature,
13601 we have conservatively to think target doesn't supports single
13602 step. */
13603 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13604 {
13605 struct remote_state *rs = get_remote_state ();
13606
13607 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13608 remote_vcont_probe (rs);
13609
13610 return rs->supports_vCont.s && rs->supports_vCont.S;
13611 }
13612 else
13613 return 0;
13614 }
13615
13616 /* Implementation of the to_execution_direction method for the remote
13617 target. */
13618
13619 static enum exec_direction_kind
13620 remote_execution_direction (struct target_ops *self)
13621 {
13622 struct remote_state *rs = get_remote_state ();
13623
13624 return rs->last_resume_exec_dir;
13625 }
13626
13627 /* Return pointer to the thread_info struct which corresponds to
13628 THREAD_HANDLE (having length HANDLE_LEN). */
13629
13630 static struct thread_info *
13631 remote_thread_handle_to_thread_info (struct target_ops *ops,
13632 const gdb_byte *thread_handle,
13633 int handle_len,
13634 struct inferior *inf)
13635 {
13636 struct thread_info *tp;
13637
13638 ALL_NON_EXITED_THREADS (tp)
13639 {
13640 struct private_thread_info *priv = get_private_info_thread (tp);
13641
13642 if (tp->inf == inf && priv != NULL)
13643 {
13644 if (handle_len != priv->thread_handle->size ())
13645 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13646 handle_len, priv->thread_handle->size ());
13647 if (memcmp (thread_handle, priv->thread_handle->data (),
13648 handle_len) == 0)
13649 return tp;
13650 }
13651 }
13652
13653 return NULL;
13654 }
13655
13656 static void
13657 init_remote_ops (void)
13658 {
13659 remote_ops.to_shortname = "remote";
13660 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
13661 remote_ops.to_doc =
13662 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13663 Specify the serial device it is connected to\n\
13664 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
13665 remote_ops.to_open = remote_open;
13666 remote_ops.to_close = remote_close;
13667 remote_ops.to_detach = remote_detach;
13668 remote_ops.to_disconnect = remote_disconnect;
13669 remote_ops.to_resume = remote_resume;
13670 remote_ops.to_commit_resume = remote_commit_resume;
13671 remote_ops.to_wait = remote_wait;
13672 remote_ops.to_fetch_registers = remote_fetch_registers;
13673 remote_ops.to_store_registers = remote_store_registers;
13674 remote_ops.to_prepare_to_store = remote_prepare_to_store;
13675 remote_ops.to_files_info = remote_files_info;
13676 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
13677 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
13678 remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint;
13679 remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint;
13680 remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint;
13681 remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint;
13682 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
13683 remote_ops.to_stopped_data_address = remote_stopped_data_address;
13684 remote_ops.to_watchpoint_addr_within_range =
13685 remote_watchpoint_addr_within_range;
13686 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
13687 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
13688 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
13689 remote_ops.to_region_ok_for_hw_watchpoint
13690 = remote_region_ok_for_hw_watchpoint;
13691 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
13692 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
13693 remote_ops.to_kill = remote_kill;
13694 remote_ops.to_load = remote_load;
13695 remote_ops.to_mourn_inferior = remote_mourn;
13696 remote_ops.to_pass_signals = remote_pass_signals;
13697 remote_ops.to_set_syscall_catchpoint = remote_set_syscall_catchpoint;
13698 remote_ops.to_program_signals = remote_program_signals;
13699 remote_ops.to_thread_alive = remote_thread_alive;
13700 remote_ops.to_thread_name = remote_thread_name;
13701 remote_ops.to_update_thread_list = remote_update_thread_list;
13702 remote_ops.to_pid_to_str = remote_pid_to_str;
13703 remote_ops.to_extra_thread_info = remote_threads_extra_info;
13704 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
13705 remote_ops.to_stop = remote_stop;
13706 remote_ops.to_interrupt = remote_interrupt;
13707 remote_ops.to_pass_ctrlc = remote_pass_ctrlc;
13708 remote_ops.to_xfer_partial = remote_xfer_partial;
13709 remote_ops.to_get_memory_xfer_limit = remote_get_memory_xfer_limit;
13710 remote_ops.to_rcmd = remote_rcmd;
13711 remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file;
13712 remote_ops.to_log_command = serial_log_command;
13713 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
13714 remote_ops.to_stratum = process_stratum;
13715 remote_ops.to_has_all_memory = default_child_has_all_memory;
13716 remote_ops.to_has_memory = default_child_has_memory;
13717 remote_ops.to_has_stack = default_child_has_stack;
13718 remote_ops.to_has_registers = default_child_has_registers;
13719 remote_ops.to_has_execution = default_child_has_execution;
13720 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
13721 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
13722 remote_ops.to_magic = OPS_MAGIC;
13723 remote_ops.to_memory_map = remote_memory_map;
13724 remote_ops.to_flash_erase = remote_flash_erase;
13725 remote_ops.to_flash_done = remote_flash_done;
13726 remote_ops.to_read_description = remote_read_description;
13727 remote_ops.to_search_memory = remote_search_memory;
13728 remote_ops.to_can_async_p = remote_can_async_p;
13729 remote_ops.to_is_async_p = remote_is_async_p;
13730 remote_ops.to_async = remote_async;
13731 remote_ops.to_thread_events = remote_thread_events;
13732 remote_ops.to_can_do_single_step = remote_can_do_single_step;
13733 remote_ops.to_terminal_inferior = remote_terminal_inferior;
13734 remote_ops.to_terminal_ours = remote_terminal_ours;
13735 remote_ops.to_supports_non_stop = remote_supports_non_stop;
13736 remote_ops.to_supports_multi_process = remote_supports_multi_process;
13737 remote_ops.to_supports_disable_randomization
13738 = remote_supports_disable_randomization;
13739 remote_ops.to_filesystem_is_local = remote_filesystem_is_local;
13740 remote_ops.to_fileio_open = remote_hostio_open;
13741 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
13742 remote_ops.to_fileio_pread = remote_hostio_pread;
13743 remote_ops.to_fileio_fstat = remote_hostio_fstat;
13744 remote_ops.to_fileio_close = remote_hostio_close;
13745 remote_ops.to_fileio_unlink = remote_hostio_unlink;
13746 remote_ops.to_fileio_readlink = remote_hostio_readlink;
13747 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
13748 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
13749 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
13750 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
13751 remote_ops.to_trace_init = remote_trace_init;
13752 remote_ops.to_download_tracepoint = remote_download_tracepoint;
13753 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
13754 remote_ops.to_download_trace_state_variable
13755 = remote_download_trace_state_variable;
13756 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
13757 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
13758 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
13759 remote_ops.to_trace_start = remote_trace_start;
13760 remote_ops.to_get_trace_status = remote_get_trace_status;
13761 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
13762 remote_ops.to_trace_stop = remote_trace_stop;
13763 remote_ops.to_trace_find = remote_trace_find;
13764 remote_ops.to_get_trace_state_variable_value
13765 = remote_get_trace_state_variable_value;
13766 remote_ops.to_save_trace_data = remote_save_trace_data;
13767 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
13768 remote_ops.to_upload_trace_state_variables
13769 = remote_upload_trace_state_variables;
13770 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
13771 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
13772 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
13773 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
13774 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
13775 remote_ops.to_set_trace_notes = remote_set_trace_notes;
13776 remote_ops.to_core_of_thread = remote_core_of_thread;
13777 remote_ops.to_verify_memory = remote_verify_memory;
13778 remote_ops.to_get_tib_address = remote_get_tib_address;
13779 remote_ops.to_set_permissions = remote_set_permissions;
13780 remote_ops.to_static_tracepoint_marker_at
13781 = remote_static_tracepoint_marker_at;
13782 remote_ops.to_static_tracepoint_markers_by_strid
13783 = remote_static_tracepoint_markers_by_strid;
13784 remote_ops.to_traceframe_info = remote_traceframe_info;
13785 remote_ops.to_use_agent = remote_use_agent;
13786 remote_ops.to_can_use_agent = remote_can_use_agent;
13787 remote_ops.to_supports_btrace = remote_supports_btrace;
13788 remote_ops.to_enable_btrace = remote_enable_btrace;
13789 remote_ops.to_disable_btrace = remote_disable_btrace;
13790 remote_ops.to_teardown_btrace = remote_teardown_btrace;
13791 remote_ops.to_read_btrace = remote_read_btrace;
13792 remote_ops.to_btrace_conf = remote_btrace_conf;
13793 remote_ops.to_augmented_libraries_svr4_read =
13794 remote_augmented_libraries_svr4_read;
13795 remote_ops.to_follow_fork = remote_follow_fork;
13796 remote_ops.to_follow_exec = remote_follow_exec;
13797 remote_ops.to_insert_fork_catchpoint = remote_insert_fork_catchpoint;
13798 remote_ops.to_remove_fork_catchpoint = remote_remove_fork_catchpoint;
13799 remote_ops.to_insert_vfork_catchpoint = remote_insert_vfork_catchpoint;
13800 remote_ops.to_remove_vfork_catchpoint = remote_remove_vfork_catchpoint;
13801 remote_ops.to_insert_exec_catchpoint = remote_insert_exec_catchpoint;
13802 remote_ops.to_remove_exec_catchpoint = remote_remove_exec_catchpoint;
13803 remote_ops.to_execution_direction = remote_execution_direction;
13804 remote_ops.to_thread_handle_to_thread_info =
13805 remote_thread_handle_to_thread_info;
13806 }
13807
13808 /* Set up the extended remote vector by making a copy of the standard
13809 remote vector and adding to it. */
13810
13811 static void
13812 init_extended_remote_ops (void)
13813 {
13814 extended_remote_ops = remote_ops;
13815
13816 extended_remote_ops.to_shortname = "extended-remote";
13817 extended_remote_ops.to_longname =
13818 "Extended remote serial target in gdb-specific protocol";
13819 extended_remote_ops.to_doc =
13820 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13821 Specify the serial device it is connected to (e.g. /dev/ttya).";
13822 extended_remote_ops.to_open = extended_remote_open;
13823 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
13824 extended_remote_ops.to_detach = extended_remote_detach;
13825 extended_remote_ops.to_attach = extended_remote_attach;
13826 extended_remote_ops.to_post_attach = extended_remote_post_attach;
13827 extended_remote_ops.to_supports_disable_randomization
13828 = extended_remote_supports_disable_randomization;
13829 }
13830
13831 static int
13832 remote_can_async_p (struct target_ops *ops)
13833 {
13834 struct remote_state *rs = get_remote_state ();
13835
13836 /* We don't go async if the user has explicitly prevented it with the
13837 "maint set target-async" command. */
13838 if (!target_async_permitted)
13839 return 0;
13840
13841 /* We're async whenever the serial device is. */
13842 return serial_can_async_p (rs->remote_desc);
13843 }
13844
13845 static int
13846 remote_is_async_p (struct target_ops *ops)
13847 {
13848 struct remote_state *rs = get_remote_state ();
13849
13850 if (!target_async_permitted)
13851 /* We only enable async when the user specifically asks for it. */
13852 return 0;
13853
13854 /* We're async whenever the serial device is. */
13855 return serial_is_async_p (rs->remote_desc);
13856 }
13857
13858 /* Pass the SERIAL event on and up to the client. One day this code
13859 will be able to delay notifying the client of an event until the
13860 point where an entire packet has been received. */
13861
13862 static serial_event_ftype remote_async_serial_handler;
13863
13864 static void
13865 remote_async_serial_handler (struct serial *scb, void *context)
13866 {
13867 /* Don't propogate error information up to the client. Instead let
13868 the client find out about the error by querying the target. */
13869 inferior_event_handler (INF_REG_EVENT, NULL);
13870 }
13871
13872 static void
13873 remote_async_inferior_event_handler (gdb_client_data data)
13874 {
13875 inferior_event_handler (INF_REG_EVENT, NULL);
13876 }
13877
13878 static void
13879 remote_async (struct target_ops *ops, int enable)
13880 {
13881 struct remote_state *rs = get_remote_state ();
13882
13883 if (enable)
13884 {
13885 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13886
13887 /* If there are pending events in the stop reply queue tell the
13888 event loop to process them. */
13889 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13890 mark_async_event_handler (remote_async_inferior_event_token);
13891 /* For simplicity, below we clear the pending events token
13892 without remembering whether it is marked, so here we always
13893 mark it. If there's actually no pending notification to
13894 process, this ends up being a no-op (other than a spurious
13895 event-loop wakeup). */
13896 if (target_is_non_stop_p ())
13897 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13898 }
13899 else
13900 {
13901 serial_async (rs->remote_desc, NULL, NULL);
13902 /* If the core is disabling async, it doesn't want to be
13903 disturbed with target events. Clear all async event sources
13904 too. */
13905 clear_async_event_handler (remote_async_inferior_event_token);
13906 if (target_is_non_stop_p ())
13907 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13908 }
13909 }
13910
13911 /* Implementation of the to_thread_events method. */
13912
13913 static void
13914 remote_thread_events (struct target_ops *ops, int enable)
13915 {
13916 struct remote_state *rs = get_remote_state ();
13917 size_t size = get_remote_packet_size ();
13918
13919 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13920 return;
13921
13922 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13923 putpkt (rs->buf);
13924 getpkt (&rs->buf, &rs->buf_size, 0);
13925
13926 switch (packet_ok (rs->buf,
13927 &remote_protocol_packets[PACKET_QThreadEvents]))
13928 {
13929 case PACKET_OK:
13930 if (strcmp (rs->buf, "OK") != 0)
13931 error (_("Remote refused setting thread events: %s"), rs->buf);
13932 break;
13933 case PACKET_ERROR:
13934 warning (_("Remote failure reply: %s"), rs->buf);
13935 break;
13936 case PACKET_UNKNOWN:
13937 break;
13938 }
13939 }
13940
13941 static void
13942 set_remote_cmd (const char *args, int from_tty)
13943 {
13944 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13945 }
13946
13947 static void
13948 show_remote_cmd (const char *args, int from_tty)
13949 {
13950 /* We can't just use cmd_show_list here, because we want to skip
13951 the redundant "show remote Z-packet" and the legacy aliases. */
13952 struct cmd_list_element *list = remote_show_cmdlist;
13953 struct ui_out *uiout = current_uiout;
13954
13955 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
13956 for (; list != NULL; list = list->next)
13957 if (strcmp (list->name, "Z-packet") == 0)
13958 continue;
13959 else if (list->type == not_set_cmd)
13960 /* Alias commands are exactly like the original, except they
13961 don't have the normal type. */
13962 continue;
13963 else
13964 {
13965 ui_out_emit_tuple option_emitter (uiout, "option");
13966
13967 uiout->field_string ("name", list->name);
13968 uiout->text (": ");
13969 if (list->type == show_cmd)
13970 do_show_command (NULL, from_tty, list);
13971 else
13972 cmd_func (list, NULL, from_tty);
13973 }
13974 }
13975
13976
13977 /* Function to be called whenever a new objfile (shlib) is detected. */
13978 static void
13979 remote_new_objfile (struct objfile *objfile)
13980 {
13981 struct remote_state *rs = get_remote_state ();
13982
13983 if (rs->remote_desc != 0) /* Have a remote connection. */
13984 remote_check_symbols ();
13985 }
13986
13987 /* Pull all the tracepoints defined on the target and create local
13988 data structures representing them. We don't want to create real
13989 tracepoints yet, we don't want to mess up the user's existing
13990 collection. */
13991
13992 static int
13993 remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
13994 {
13995 struct remote_state *rs = get_remote_state ();
13996 char *p;
13997
13998 /* Ask for a first packet of tracepoint definition. */
13999 putpkt ("qTfP");
14000 getpkt (&rs->buf, &rs->buf_size, 0);
14001 p = rs->buf;
14002 while (*p && *p != 'l')
14003 {
14004 parse_tracepoint_definition (p, utpp);
14005 /* Ask for another packet of tracepoint definition. */
14006 putpkt ("qTsP");
14007 getpkt (&rs->buf, &rs->buf_size, 0);
14008 p = rs->buf;
14009 }
14010 return 0;
14011 }
14012
14013 static int
14014 remote_upload_trace_state_variables (struct target_ops *self,
14015 struct uploaded_tsv **utsvp)
14016 {
14017 struct remote_state *rs = get_remote_state ();
14018 char *p;
14019
14020 /* Ask for a first packet of variable definition. */
14021 putpkt ("qTfV");
14022 getpkt (&rs->buf, &rs->buf_size, 0);
14023 p = rs->buf;
14024 while (*p && *p != 'l')
14025 {
14026 parse_tsv_definition (p, utsvp);
14027 /* Ask for another packet of variable definition. */
14028 putpkt ("qTsV");
14029 getpkt (&rs->buf, &rs->buf_size, 0);
14030 p = rs->buf;
14031 }
14032 return 0;
14033 }
14034
14035 /* The "set/show range-stepping" show hook. */
14036
14037 static void
14038 show_range_stepping (struct ui_file *file, int from_tty,
14039 struct cmd_list_element *c,
14040 const char *value)
14041 {
14042 fprintf_filtered (file,
14043 _("Debugger's willingness to use range stepping "
14044 "is %s.\n"), value);
14045 }
14046
14047 /* The "set/show range-stepping" set hook. */
14048
14049 static void
14050 set_range_stepping (char *ignore_args, int from_tty,
14051 struct cmd_list_element *c)
14052 {
14053 struct remote_state *rs = get_remote_state ();
14054
14055 /* Whene enabling, check whether range stepping is actually
14056 supported by the target, and warn if not. */
14057 if (use_range_stepping)
14058 {
14059 if (rs->remote_desc != NULL)
14060 {
14061 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14062 remote_vcont_probe (rs);
14063
14064 if (packet_support (PACKET_vCont) == PACKET_ENABLE
14065 && rs->supports_vCont.r)
14066 return;
14067 }
14068
14069 warning (_("Range stepping is not supported by the current target"));
14070 }
14071 }
14072
14073 void
14074 _initialize_remote (void)
14075 {
14076 struct cmd_list_element *cmd;
14077 const char *cmd_name;
14078
14079 /* architecture specific data */
14080 remote_gdbarch_data_handle =
14081 gdbarch_data_register_post_init (init_remote_state);
14082 remote_g_packet_data_handle =
14083 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14084
14085 remote_pspace_data
14086 = register_program_space_data_with_cleanup (NULL,
14087 remote_pspace_data_cleanup);
14088
14089 /* Initialize the per-target state. At the moment there is only one
14090 of these, not one per target. Only one target is active at a
14091 time. */
14092 remote_state = new_remote_state ();
14093
14094 init_remote_ops ();
14095 add_target (&remote_ops);
14096
14097 init_extended_remote_ops ();
14098 add_target (&extended_remote_ops);
14099
14100 /* Hook into new objfile notification. */
14101 observer_attach_new_objfile (remote_new_objfile);
14102 /* We're no longer interested in notification events of an inferior
14103 when it exits. */
14104 observer_attach_inferior_exit (discard_pending_stop_replies);
14105
14106 #if 0
14107 init_remote_threadtests ();
14108 #endif
14109
14110 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
14111 /* set/show remote ... */
14112
14113 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14114 Remote protocol specific variables\n\
14115 Configure various remote-protocol specific variables such as\n\
14116 the packets being used"),
14117 &remote_set_cmdlist, "set remote ",
14118 0 /* allow-unknown */, &setlist);
14119 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14120 Remote protocol specific variables\n\
14121 Configure various remote-protocol specific variables such as\n\
14122 the packets being used"),
14123 &remote_show_cmdlist, "show remote ",
14124 0 /* allow-unknown */, &showlist);
14125
14126 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14127 Compare section data on target to the exec file.\n\
14128 Argument is a single section name (default: all loaded sections).\n\
14129 To compare only read-only loaded sections, specify the -r option."),
14130 &cmdlist);
14131
14132 add_cmd ("packet", class_maintenance, packet_command, _("\
14133 Send an arbitrary packet to a remote target.\n\
14134 maintenance packet TEXT\n\
14135 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14136 this command sends the string TEXT to the inferior, and displays the\n\
14137 response packet. GDB supplies the initial `$' character, and the\n\
14138 terminating `#' character and checksum."),
14139 &maintenancelist);
14140
14141 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14142 Set whether to send break if interrupted."), _("\
14143 Show whether to send break if interrupted."), _("\
14144 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14145 set_remotebreak, show_remotebreak,
14146 &setlist, &showlist);
14147 cmd_name = "remotebreak";
14148 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14149 deprecate_cmd (cmd, "set remote interrupt-sequence");
14150 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14151 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14152 deprecate_cmd (cmd, "show remote interrupt-sequence");
14153
14154 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14155 interrupt_sequence_modes, &interrupt_sequence_mode,
14156 _("\
14157 Set interrupt sequence to remote target."), _("\
14158 Show interrupt sequence to remote target."), _("\
14159 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14160 NULL, show_interrupt_sequence,
14161 &remote_set_cmdlist,
14162 &remote_show_cmdlist);
14163
14164 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14165 &interrupt_on_connect, _("\
14166 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14167 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14168 If set, interrupt sequence is sent to remote target."),
14169 NULL, NULL,
14170 &remote_set_cmdlist, &remote_show_cmdlist);
14171
14172 /* Install commands for configuring memory read/write packets. */
14173
14174 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14175 Set the maximum number of bytes per memory write packet (deprecated)."),
14176 &setlist);
14177 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14178 Show the maximum number of bytes per memory write packet (deprecated)."),
14179 &showlist);
14180 add_cmd ("memory-write-packet-size", no_class,
14181 set_memory_write_packet_size, _("\
14182 Set the maximum number of bytes per memory-write packet.\n\
14183 Specify the number of bytes in a packet or 0 (zero) for the\n\
14184 default packet size. The actual limit is further reduced\n\
14185 dependent on the target. Specify ``fixed'' to disable the\n\
14186 further restriction and ``limit'' to enable that restriction."),
14187 &remote_set_cmdlist);
14188 add_cmd ("memory-read-packet-size", no_class,
14189 set_memory_read_packet_size, _("\
14190 Set the maximum number of bytes per memory-read packet.\n\
14191 Specify the number of bytes in a packet or 0 (zero) for the\n\
14192 default packet size. The actual limit is further reduced\n\
14193 dependent on the target. Specify ``fixed'' to disable the\n\
14194 further restriction and ``limit'' to enable that restriction."),
14195 &remote_set_cmdlist);
14196 add_cmd ("memory-write-packet-size", no_class,
14197 show_memory_write_packet_size,
14198 _("Show the maximum number of bytes per memory-write packet."),
14199 &remote_show_cmdlist);
14200 add_cmd ("memory-read-packet-size", no_class,
14201 show_memory_read_packet_size,
14202 _("Show the maximum number of bytes per memory-read packet."),
14203 &remote_show_cmdlist);
14204
14205 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14206 &remote_hw_watchpoint_limit, _("\
14207 Set the maximum number of target hardware watchpoints."), _("\
14208 Show the maximum number of target hardware watchpoints."), _("\
14209 Specify a negative limit for unlimited."),
14210 NULL, NULL, /* FIXME: i18n: The maximum
14211 number of target hardware
14212 watchpoints is %s. */
14213 &remote_set_cmdlist, &remote_show_cmdlist);
14214 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14215 &remote_hw_watchpoint_length_limit, _("\
14216 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14217 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14218 Specify a negative limit for unlimited."),
14219 NULL, NULL, /* FIXME: i18n: The maximum
14220 length (in bytes) of a target
14221 hardware watchpoint is %s. */
14222 &remote_set_cmdlist, &remote_show_cmdlist);
14223 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14224 &remote_hw_breakpoint_limit, _("\
14225 Set the maximum number of target hardware breakpoints."), _("\
14226 Show the maximum number of target hardware breakpoints."), _("\
14227 Specify a negative limit for unlimited."),
14228 NULL, NULL, /* FIXME: i18n: The maximum
14229 number of target hardware
14230 breakpoints is %s. */
14231 &remote_set_cmdlist, &remote_show_cmdlist);
14232
14233 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14234 &remote_address_size, _("\
14235 Set the maximum size of the address (in bits) in a memory packet."), _("\
14236 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14237 NULL,
14238 NULL, /* FIXME: i18n: */
14239 &setlist, &showlist);
14240
14241 init_all_packet_configs ();
14242
14243 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14244 "X", "binary-download", 1);
14245
14246 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14247 "vCont", "verbose-resume", 0);
14248
14249 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14250 "QPassSignals", "pass-signals", 0);
14251
14252 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14253 "QCatchSyscalls", "catch-syscalls", 0);
14254
14255 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14256 "QProgramSignals", "program-signals", 0);
14257
14258 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14259 "QSetWorkingDir", "set-working-dir", 0);
14260
14261 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14262 "QStartupWithShell", "startup-with-shell", 0);
14263
14264 add_packet_config_cmd (&remote_protocol_packets
14265 [PACKET_QEnvironmentHexEncoded],
14266 "QEnvironmentHexEncoded", "environment-hex-encoded",
14267 0);
14268
14269 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14270 "QEnvironmentReset", "environment-reset",
14271 0);
14272
14273 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14274 "QEnvironmentUnset", "environment-unset",
14275 0);
14276
14277 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14278 "qSymbol", "symbol-lookup", 0);
14279
14280 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14281 "P", "set-register", 1);
14282
14283 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14284 "p", "fetch-register", 1);
14285
14286 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14287 "Z0", "software-breakpoint", 0);
14288
14289 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14290 "Z1", "hardware-breakpoint", 0);
14291
14292 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14293 "Z2", "write-watchpoint", 0);
14294
14295 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14296 "Z3", "read-watchpoint", 0);
14297
14298 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14299 "Z4", "access-watchpoint", 0);
14300
14301 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14302 "qXfer:auxv:read", "read-aux-vector", 0);
14303
14304 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14305 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14306
14307 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14308 "qXfer:features:read", "target-features", 0);
14309
14310 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14311 "qXfer:libraries:read", "library-info", 0);
14312
14313 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14314 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14315
14316 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14317 "qXfer:memory-map:read", "memory-map", 0);
14318
14319 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14320 "qXfer:spu:read", "read-spu-object", 0);
14321
14322 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14323 "qXfer:spu:write", "write-spu-object", 0);
14324
14325 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14326 "qXfer:osdata:read", "osdata", 0);
14327
14328 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14329 "qXfer:threads:read", "threads", 0);
14330
14331 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14332 "qXfer:siginfo:read", "read-siginfo-object", 0);
14333
14334 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14335 "qXfer:siginfo:write", "write-siginfo-object", 0);
14336
14337 add_packet_config_cmd
14338 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14339 "qXfer:traceframe-info:read", "traceframe-info", 0);
14340
14341 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14342 "qXfer:uib:read", "unwind-info-block", 0);
14343
14344 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14345 "qGetTLSAddr", "get-thread-local-storage-address",
14346 0);
14347
14348 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14349 "qGetTIBAddr", "get-thread-information-block-address",
14350 0);
14351
14352 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14353 "bc", "reverse-continue", 0);
14354
14355 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14356 "bs", "reverse-step", 0);
14357
14358 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14359 "qSupported", "supported-packets", 0);
14360
14361 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14362 "qSearch:memory", "search-memory", 0);
14363
14364 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14365 "qTStatus", "trace-status", 0);
14366
14367 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14368 "vFile:setfs", "hostio-setfs", 0);
14369
14370 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14371 "vFile:open", "hostio-open", 0);
14372
14373 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14374 "vFile:pread", "hostio-pread", 0);
14375
14376 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14377 "vFile:pwrite", "hostio-pwrite", 0);
14378
14379 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14380 "vFile:close", "hostio-close", 0);
14381
14382 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14383 "vFile:unlink", "hostio-unlink", 0);
14384
14385 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14386 "vFile:readlink", "hostio-readlink", 0);
14387
14388 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14389 "vFile:fstat", "hostio-fstat", 0);
14390
14391 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14392 "vAttach", "attach", 0);
14393
14394 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14395 "vRun", "run", 0);
14396
14397 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14398 "QStartNoAckMode", "noack", 0);
14399
14400 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14401 "vKill", "kill", 0);
14402
14403 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14404 "qAttached", "query-attached", 0);
14405
14406 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14407 "ConditionalTracepoints",
14408 "conditional-tracepoints", 0);
14409
14410 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14411 "ConditionalBreakpoints",
14412 "conditional-breakpoints", 0);
14413
14414 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14415 "BreakpointCommands",
14416 "breakpoint-commands", 0);
14417
14418 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14419 "FastTracepoints", "fast-tracepoints", 0);
14420
14421 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14422 "TracepointSource", "TracepointSource", 0);
14423
14424 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14425 "QAllow", "allow", 0);
14426
14427 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14428 "StaticTracepoints", "static-tracepoints", 0);
14429
14430 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14431 "InstallInTrace", "install-in-trace", 0);
14432
14433 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14434 "qXfer:statictrace:read", "read-sdata-object", 0);
14435
14436 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14437 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14438
14439 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14440 "QDisableRandomization", "disable-randomization", 0);
14441
14442 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14443 "QAgent", "agent", 0);
14444
14445 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14446 "QTBuffer:size", "trace-buffer-size", 0);
14447
14448 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14449 "Qbtrace:off", "disable-btrace", 0);
14450
14451 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14452 "Qbtrace:bts", "enable-btrace-bts", 0);
14453
14454 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14455 "Qbtrace:pt", "enable-btrace-pt", 0);
14456
14457 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14458 "qXfer:btrace", "read-btrace", 0);
14459
14460 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14461 "qXfer:btrace-conf", "read-btrace-conf", 0);
14462
14463 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14464 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14465
14466 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14467 "multiprocess-feature", "multiprocess-feature", 0);
14468
14469 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14470 "swbreak-feature", "swbreak-feature", 0);
14471
14472 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14473 "hwbreak-feature", "hwbreak-feature", 0);
14474
14475 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14476 "fork-event-feature", "fork-event-feature", 0);
14477
14478 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14479 "vfork-event-feature", "vfork-event-feature", 0);
14480
14481 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14482 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14483
14484 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14485 "vContSupported", "verbose-resume-supported", 0);
14486
14487 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14488 "exec-event-feature", "exec-event-feature", 0);
14489
14490 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14491 "vCtrlC", "ctrl-c", 0);
14492
14493 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14494 "QThreadEvents", "thread-events", 0);
14495
14496 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14497 "N stop reply", "no-resumed-stop-reply", 0);
14498
14499 /* Assert that we've registered "set remote foo-packet" commands
14500 for all packet configs. */
14501 {
14502 int i;
14503
14504 for (i = 0; i < PACKET_MAX; i++)
14505 {
14506 /* Ideally all configs would have a command associated. Some
14507 still don't though. */
14508 int excepted;
14509
14510 switch (i)
14511 {
14512 case PACKET_QNonStop:
14513 case PACKET_EnableDisableTracepoints_feature:
14514 case PACKET_tracenz_feature:
14515 case PACKET_DisconnectedTracing_feature:
14516 case PACKET_augmented_libraries_svr4_read_feature:
14517 case PACKET_qCRC:
14518 /* Additions to this list need to be well justified:
14519 pre-existing packets are OK; new packets are not. */
14520 excepted = 1;
14521 break;
14522 default:
14523 excepted = 0;
14524 break;
14525 }
14526
14527 /* This catches both forgetting to add a config command, and
14528 forgetting to remove a packet from the exception list. */
14529 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14530 }
14531 }
14532
14533 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14534 Z sub-packet has its own set and show commands, but users may
14535 have sets to this variable in their .gdbinit files (or in their
14536 documentation). */
14537 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14538 &remote_Z_packet_detect, _("\
14539 Set use of remote protocol `Z' packets"), _("\
14540 Show use of remote protocol `Z' packets "), _("\
14541 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14542 packets."),
14543 set_remote_protocol_Z_packet_cmd,
14544 show_remote_protocol_Z_packet_cmd,
14545 /* FIXME: i18n: Use of remote protocol
14546 `Z' packets is %s. */
14547 &remote_set_cmdlist, &remote_show_cmdlist);
14548
14549 add_prefix_cmd ("remote", class_files, remote_command, _("\
14550 Manipulate files on the remote system\n\
14551 Transfer files to and from the remote target system."),
14552 &remote_cmdlist, "remote ",
14553 0 /* allow-unknown */, &cmdlist);
14554
14555 add_cmd ("put", class_files, remote_put_command,
14556 _("Copy a local file to the remote system."),
14557 &remote_cmdlist);
14558
14559 add_cmd ("get", class_files, remote_get_command,
14560 _("Copy a remote file to the local system."),
14561 &remote_cmdlist);
14562
14563 add_cmd ("delete", class_files, remote_delete_command,
14564 _("Delete a remote file."),
14565 &remote_cmdlist);
14566
14567 add_setshow_string_noescape_cmd ("exec-file", class_files,
14568 &remote_exec_file_var, _("\
14569 Set the remote pathname for \"run\""), _("\
14570 Show the remote pathname for \"run\""), NULL,
14571 set_remote_exec_file,
14572 show_remote_exec_file,
14573 &remote_set_cmdlist,
14574 &remote_show_cmdlist);
14575
14576 add_setshow_boolean_cmd ("range-stepping", class_run,
14577 &use_range_stepping, _("\
14578 Enable or disable range stepping."), _("\
14579 Show whether target-assisted range stepping is enabled."), _("\
14580 If on, and the target supports it, when stepping a source line, GDB\n\
14581 tells the target to step the corresponding range of addresses itself instead\n\
14582 of issuing multiple single-steps. This speeds up source level\n\
14583 stepping. If off, GDB always issues single-steps, even if range\n\
14584 stepping is supported by the target. The default is on."),
14585 set_range_stepping,
14586 show_range_stepping,
14587 &setlist,
14588 &showlist);
14589
14590 /* Eventually initialize fileio. See fileio.c */
14591 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14592
14593 /* Take advantage of the fact that the TID field is not used, to tag
14594 special ptids with it set to != 0. */
14595 magic_null_ptid = ptid_build (42000, -1, 1);
14596 not_sent_ptid = ptid_build (42000, -2, 1);
14597 any_thread_ptid = ptid_build (42000, 0, 1);
14598 }
This page took 0.3455 seconds and 4 git commands to generate.