* ppc-opc.c: Support optional L form mtmsr.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62
63 #include "memory-map.h"
64
65 /* The size to align memory write packets, when practical. The protocol
66 does not guarantee any alignment, and gdb will generate short
67 writes and unaligned writes, but even as a best-effort attempt this
68 can improve bulk transfers. For instance, if a write is misaligned
69 relative to the target's data bus, the stub may need to make an extra
70 round trip fetching data from the target. This doesn't make a
71 huge difference, but it's easy to do, so we try to be helpful.
72
73 The alignment chosen is arbitrary; usually data bus width is
74 important here, not the possibly larger cache line size. */
75 enum { REMOTE_ALIGN_WRITES = 16 };
76
77 /* Prototypes for local functions. */
78 static void cleanup_sigint_signal_handler (void *dummy);
79 static void initialize_sigint_signal_handler (void);
80 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
81
82 static void handle_remote_sigint (int);
83 static void handle_remote_sigint_twice (int);
84 static void async_remote_interrupt (gdb_client_data);
85 void async_remote_interrupt_twice (gdb_client_data);
86
87 static void remote_files_info (struct target_ops *ignore);
88
89 static void remote_prepare_to_store (struct regcache *regcache);
90
91 static void remote_fetch_registers (struct regcache *regcache, int regno);
92
93 static void remote_resume (ptid_t ptid, int step,
94 enum target_signal siggnal);
95 static void remote_async_resume (ptid_t ptid, int step,
96 enum target_signal siggnal);
97 static void remote_open (char *name, int from_tty);
98 static void remote_async_open (char *name, int from_tty);
99
100 static void extended_remote_open (char *name, int from_tty);
101 static void extended_remote_async_open (char *name, int from_tty);
102
103 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
104 int async_p);
105
106 static void remote_close (int quitting);
107
108 static void remote_store_registers (struct regcache *regcache, int regno);
109
110 static void remote_mourn (void);
111 static void remote_async_mourn (void);
112
113 static void extended_remote_restart (void);
114
115 static void extended_remote_mourn (void);
116
117 static void remote_mourn_1 (struct target_ops *);
118
119 static void remote_send (char **buf, long *sizeof_buf_p);
120
121 static int readchar (int timeout);
122
123 static ptid_t remote_wait (ptid_t ptid,
124 struct target_waitstatus *status);
125 static ptid_t remote_async_wait (ptid_t ptid,
126 struct target_waitstatus *status);
127
128 static void remote_kill (void);
129 static void remote_async_kill (void);
130
131 static int tohex (int nib);
132
133 static void remote_detach (char *args, int from_tty);
134
135 static void remote_interrupt (int signo);
136
137 static void remote_interrupt_twice (int signo);
138
139 static void interrupt_query (void);
140
141 static void set_thread (int, int);
142
143 static int remote_thread_alive (ptid_t);
144
145 static void get_offsets (void);
146
147 static void skip_frame (void);
148
149 static long read_frame (char **buf_p, long *sizeof_buf);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void remote_stop (void);
158
159 static int ishex (int ch, int *val);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (char *);
170
171 static unsigned long crc32 (unsigned char *, int, unsigned int);
172
173 static void compare_sections_command (char *, int);
174
175 static void packet_command (char *, int);
176
177 static int stub_unpack_int (char *buff, int fieldlength);
178
179 static ptid_t remote_current_thread (ptid_t oldptid);
180
181 static void remote_find_new_threads (void);
182
183 static void record_currthread (int currthread);
184
185 static int fromhex (int a);
186
187 static int hex2bin (const char *hex, gdb_byte *bin, int count);
188
189 static int bin2hex (const gdb_byte *bin, char *hex, int count);
190
191 static int putpkt_binary (char *buf, int cnt);
192
193 static void check_binary_download (CORE_ADDR addr);
194
195 struct packet_config;
196
197 static void show_packet_config_cmd (struct packet_config *config);
198
199 static void update_packet_config (struct packet_config *config);
200
201 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
202 struct cmd_list_element *c);
203
204 static void show_remote_protocol_packet_cmd (struct ui_file *file,
205 int from_tty,
206 struct cmd_list_element *c,
207 const char *value);
208
209 void _initialize_remote (void);
210
211 /* For "remote". */
212
213 static struct cmd_list_element *remote_cmdlist;
214
215 /* For "set remote" and "show remote". */
216
217 static struct cmd_list_element *remote_set_cmdlist;
218 static struct cmd_list_element *remote_show_cmdlist;
219
220 /* Description of the remote protocol state for the currently
221 connected target. This is per-target state, and independent of the
222 selected architecture. */
223
224 struct remote_state
225 {
226 /* A buffer to use for incoming packets, and its current size. The
227 buffer is grown dynamically for larger incoming packets.
228 Outgoing packets may also be constructed in this buffer.
229 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
230 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
231 packets. */
232 char *buf;
233 long buf_size;
234
235 /* If we negotiated packet size explicitly (and thus can bypass
236 heuristics for the largest packet size that will not overflow
237 a buffer in the stub), this will be set to that packet size.
238 Otherwise zero, meaning to use the guessed size. */
239 long explicit_packet_size;
240 };
241
242 /* This data could be associated with a target, but we do not always
243 have access to the current target when we need it, so for now it is
244 static. This will be fine for as long as only one target is in use
245 at a time. */
246 static struct remote_state remote_state;
247
248 static struct remote_state *
249 get_remote_state_raw (void)
250 {
251 return &remote_state;
252 }
253
254 /* Description of the remote protocol for a given architecture. */
255
256 struct packet_reg
257 {
258 long offset; /* Offset into G packet. */
259 long regnum; /* GDB's internal register number. */
260 LONGEST pnum; /* Remote protocol register number. */
261 int in_g_packet; /* Always part of G packet. */
262 /* long size in bytes; == register_size (current_gdbarch, regnum);
263 at present. */
264 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
265 at present. */
266 };
267
268 struct remote_arch_state
269 {
270 /* Description of the remote protocol registers. */
271 long sizeof_g_packet;
272
273 /* Description of the remote protocol registers indexed by REGNUM
274 (making an array gdbarch_num_regs in size). */
275 struct packet_reg *regs;
276
277 /* This is the size (in chars) of the first response to the ``g''
278 packet. It is used as a heuristic when determining the maximum
279 size of memory-read and memory-write packets. A target will
280 typically only reserve a buffer large enough to hold the ``g''
281 packet. The size does not include packet overhead (headers and
282 trailers). */
283 long actual_register_packet_size;
284
285 /* This is the maximum size (in chars) of a non read/write packet.
286 It is also used as a cap on the size of read/write packets. */
287 long remote_packet_size;
288 };
289
290
291 /* Handle for retreving the remote protocol data from gdbarch. */
292 static struct gdbarch_data *remote_gdbarch_data_handle;
293
294 static struct remote_arch_state *
295 get_remote_arch_state (void)
296 {
297 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
298 }
299
300 /* Fetch the global remote target state. */
301
302 static struct remote_state *
303 get_remote_state (void)
304 {
305 /* Make sure that the remote architecture state has been
306 initialized, because doing so might reallocate rs->buf. Any
307 function which calls getpkt also needs to be mindful of changes
308 to rs->buf, but this call limits the number of places which run
309 into trouble. */
310 get_remote_arch_state ();
311
312 return get_remote_state_raw ();
313 }
314
315 static int
316 compare_pnums (const void *lhs_, const void *rhs_)
317 {
318 const struct packet_reg * const *lhs = lhs_;
319 const struct packet_reg * const *rhs = rhs_;
320
321 if ((*lhs)->pnum < (*rhs)->pnum)
322 return -1;
323 else if ((*lhs)->pnum == (*rhs)->pnum)
324 return 0;
325 else
326 return 1;
327 }
328
329 static void *
330 init_remote_state (struct gdbarch *gdbarch)
331 {
332 int regnum, num_remote_regs, offset;
333 struct remote_state *rs = get_remote_state_raw ();
334 struct remote_arch_state *rsa;
335 struct packet_reg **remote_regs;
336
337 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
338
339 /* Use the architecture to build a regnum<->pnum table, which will be
340 1:1 unless a feature set specifies otherwise. */
341 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
342 gdbarch_num_regs (gdbarch),
343 struct packet_reg);
344 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
345 {
346 struct packet_reg *r = &rsa->regs[regnum];
347
348 if (register_size (gdbarch, regnum) == 0)
349 /* Do not try to fetch zero-sized (placeholder) registers. */
350 r->pnum = -1;
351 else
352 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
353
354 r->regnum = regnum;
355 }
356
357 /* Define the g/G packet format as the contents of each register
358 with a remote protocol number, in order of ascending protocol
359 number. */
360
361 remote_regs = alloca (gdbarch_num_regs (gdbarch)
362 * sizeof (struct packet_reg *));
363 for (num_remote_regs = 0, regnum = 0;
364 regnum < gdbarch_num_regs (gdbarch);
365 regnum++)
366 if (rsa->regs[regnum].pnum != -1)
367 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
368
369 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
370 compare_pnums);
371
372 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
373 {
374 remote_regs[regnum]->in_g_packet = 1;
375 remote_regs[regnum]->offset = offset;
376 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
377 }
378
379 /* Record the maximum possible size of the g packet - it may turn out
380 to be smaller. */
381 rsa->sizeof_g_packet = offset;
382
383 /* Default maximum number of characters in a packet body. Many
384 remote stubs have a hardwired buffer size of 400 bytes
385 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
386 as the maximum packet-size to ensure that the packet and an extra
387 NUL character can always fit in the buffer. This stops GDB
388 trashing stubs that try to squeeze an extra NUL into what is
389 already a full buffer (As of 1999-12-04 that was most stubs). */
390 rsa->remote_packet_size = 400 - 1;
391
392 /* This one is filled in when a ``g'' packet is received. */
393 rsa->actual_register_packet_size = 0;
394
395 /* Should rsa->sizeof_g_packet needs more space than the
396 default, adjust the size accordingly. Remember that each byte is
397 encoded as two characters. 32 is the overhead for the packet
398 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
399 (``$NN:G...#NN'') is a better guess, the below has been padded a
400 little. */
401 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
402 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
403
404 /* Make sure that the packet buffer is plenty big enough for
405 this architecture. */
406 if (rs->buf_size < rsa->remote_packet_size)
407 {
408 rs->buf_size = 2 * rsa->remote_packet_size;
409 rs->buf = xrealloc (rs->buf, rs->buf_size);
410 }
411
412 return rsa;
413 }
414
415 /* Return the current allowed size of a remote packet. This is
416 inferred from the current architecture, and should be used to
417 limit the length of outgoing packets. */
418 static long
419 get_remote_packet_size (void)
420 {
421 struct remote_state *rs = get_remote_state ();
422 struct remote_arch_state *rsa = get_remote_arch_state ();
423
424 if (rs->explicit_packet_size)
425 return rs->explicit_packet_size;
426
427 return rsa->remote_packet_size;
428 }
429
430 static struct packet_reg *
431 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
432 {
433 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
434 return NULL;
435 else
436 {
437 struct packet_reg *r = &rsa->regs[regnum];
438 gdb_assert (r->regnum == regnum);
439 return r;
440 }
441 }
442
443 static struct packet_reg *
444 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
445 {
446 int i;
447 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
448 {
449 struct packet_reg *r = &rsa->regs[i];
450 if (r->pnum == pnum)
451 return r;
452 }
453 return NULL;
454 }
455
456 /* FIXME: graces/2002-08-08: These variables should eventually be
457 bound to an instance of the target object (as in gdbarch-tdep()),
458 when such a thing exists. */
459
460 /* This is set to the data address of the access causing the target
461 to stop for a watchpoint. */
462 static CORE_ADDR remote_watch_data_address;
463
464 /* This is non-zero if target stopped for a watchpoint. */
465 static int remote_stopped_by_watchpoint_p;
466
467 static struct target_ops remote_ops;
468
469 static struct target_ops extended_remote_ops;
470
471 /* Temporary target ops. Just like the remote_ops and
472 extended_remote_ops, but with asynchronous support. */
473 static struct target_ops remote_async_ops;
474
475 static struct target_ops extended_async_remote_ops;
476
477 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
478 ``forever'' still use the normal timeout mechanism. This is
479 currently used by the ASYNC code to guarentee that target reads
480 during the initial connect always time-out. Once getpkt has been
481 modified to return a timeout indication and, in turn
482 remote_wait()/wait_for_inferior() have gained a timeout parameter
483 this can go away. */
484 static int wait_forever_enabled_p = 1;
485
486
487 /* This variable chooses whether to send a ^C or a break when the user
488 requests program interruption. Although ^C is usually what remote
489 systems expect, and that is the default here, sometimes a break is
490 preferable instead. */
491
492 static int remote_break;
493
494 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
495 remote_open knows that we don't have a file open when the program
496 starts. */
497 static struct serial *remote_desc = NULL;
498
499 /* This variable sets the number of bits in an address that are to be
500 sent in a memory ("M" or "m") packet. Normally, after stripping
501 leading zeros, the entire address would be sent. This variable
502 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
503 initial implementation of remote.c restricted the address sent in
504 memory packets to ``host::sizeof long'' bytes - (typically 32
505 bits). Consequently, for 64 bit targets, the upper 32 bits of an
506 address was never sent. Since fixing this bug may cause a break in
507 some remote targets this variable is principly provided to
508 facilitate backward compatibility. */
509
510 static int remote_address_size;
511
512 /* Tempoary to track who currently owns the terminal. See
513 target_async_terminal_* for more details. */
514
515 static int remote_async_terminal_ours_p;
516
517 \f
518 /* User configurable variables for the number of characters in a
519 memory read/write packet. MIN (rsa->remote_packet_size,
520 rsa->sizeof_g_packet) is the default. Some targets need smaller
521 values (fifo overruns, et.al.) and some users need larger values
522 (speed up transfers). The variables ``preferred_*'' (the user
523 request), ``current_*'' (what was actually set) and ``forced_*''
524 (Positive - a soft limit, negative - a hard limit). */
525
526 struct memory_packet_config
527 {
528 char *name;
529 long size;
530 int fixed_p;
531 };
532
533 /* Compute the current size of a read/write packet. Since this makes
534 use of ``actual_register_packet_size'' the computation is dynamic. */
535
536 static long
537 get_memory_packet_size (struct memory_packet_config *config)
538 {
539 struct remote_state *rs = get_remote_state ();
540 struct remote_arch_state *rsa = get_remote_arch_state ();
541
542 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
543 law?) that some hosts don't cope very well with large alloca()
544 calls. Eventually the alloca() code will be replaced by calls to
545 xmalloc() and make_cleanups() allowing this restriction to either
546 be lifted or removed. */
547 #ifndef MAX_REMOTE_PACKET_SIZE
548 #define MAX_REMOTE_PACKET_SIZE 16384
549 #endif
550 /* NOTE: 20 ensures we can write at least one byte. */
551 #ifndef MIN_REMOTE_PACKET_SIZE
552 #define MIN_REMOTE_PACKET_SIZE 20
553 #endif
554 long what_they_get;
555 if (config->fixed_p)
556 {
557 if (config->size <= 0)
558 what_they_get = MAX_REMOTE_PACKET_SIZE;
559 else
560 what_they_get = config->size;
561 }
562 else
563 {
564 what_they_get = get_remote_packet_size ();
565 /* Limit the packet to the size specified by the user. */
566 if (config->size > 0
567 && what_they_get > config->size)
568 what_they_get = config->size;
569
570 /* Limit it to the size of the targets ``g'' response unless we have
571 permission from the stub to use a larger packet size. */
572 if (rs->explicit_packet_size == 0
573 && rsa->actual_register_packet_size > 0
574 && what_they_get > rsa->actual_register_packet_size)
575 what_they_get = rsa->actual_register_packet_size;
576 }
577 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
578 what_they_get = MAX_REMOTE_PACKET_SIZE;
579 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
580 what_they_get = MIN_REMOTE_PACKET_SIZE;
581
582 /* Make sure there is room in the global buffer for this packet
583 (including its trailing NUL byte). */
584 if (rs->buf_size < what_they_get + 1)
585 {
586 rs->buf_size = 2 * what_they_get;
587 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
588 }
589
590 return what_they_get;
591 }
592
593 /* Update the size of a read/write packet. If they user wants
594 something really big then do a sanity check. */
595
596 static void
597 set_memory_packet_size (char *args, struct memory_packet_config *config)
598 {
599 int fixed_p = config->fixed_p;
600 long size = config->size;
601 if (args == NULL)
602 error (_("Argument required (integer, `fixed' or `limited')."));
603 else if (strcmp (args, "hard") == 0
604 || strcmp (args, "fixed") == 0)
605 fixed_p = 1;
606 else if (strcmp (args, "soft") == 0
607 || strcmp (args, "limit") == 0)
608 fixed_p = 0;
609 else
610 {
611 char *end;
612 size = strtoul (args, &end, 0);
613 if (args == end)
614 error (_("Invalid %s (bad syntax)."), config->name);
615 #if 0
616 /* Instead of explicitly capping the size of a packet to
617 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
618 instead allowed to set the size to something arbitrarily
619 large. */
620 if (size > MAX_REMOTE_PACKET_SIZE)
621 error (_("Invalid %s (too large)."), config->name);
622 #endif
623 }
624 /* Extra checks? */
625 if (fixed_p && !config->fixed_p)
626 {
627 if (! query (_("The target may not be able to correctly handle a %s\n"
628 "of %ld bytes. Change the packet size? "),
629 config->name, size))
630 error (_("Packet size not changed."));
631 }
632 /* Update the config. */
633 config->fixed_p = fixed_p;
634 config->size = size;
635 }
636
637 static void
638 show_memory_packet_size (struct memory_packet_config *config)
639 {
640 printf_filtered (_("The %s is %ld. "), config->name, config->size);
641 if (config->fixed_p)
642 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
643 get_memory_packet_size (config));
644 else
645 printf_filtered (_("Packets are limited to %ld bytes.\n"),
646 get_memory_packet_size (config));
647 }
648
649 static struct memory_packet_config memory_write_packet_config =
650 {
651 "memory-write-packet-size",
652 };
653
654 static void
655 set_memory_write_packet_size (char *args, int from_tty)
656 {
657 set_memory_packet_size (args, &memory_write_packet_config);
658 }
659
660 static void
661 show_memory_write_packet_size (char *args, int from_tty)
662 {
663 show_memory_packet_size (&memory_write_packet_config);
664 }
665
666 static long
667 get_memory_write_packet_size (void)
668 {
669 return get_memory_packet_size (&memory_write_packet_config);
670 }
671
672 static struct memory_packet_config memory_read_packet_config =
673 {
674 "memory-read-packet-size",
675 };
676
677 static void
678 set_memory_read_packet_size (char *args, int from_tty)
679 {
680 set_memory_packet_size (args, &memory_read_packet_config);
681 }
682
683 static void
684 show_memory_read_packet_size (char *args, int from_tty)
685 {
686 show_memory_packet_size (&memory_read_packet_config);
687 }
688
689 static long
690 get_memory_read_packet_size (void)
691 {
692 long size = get_memory_packet_size (&memory_read_packet_config);
693 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
694 extra buffer size argument before the memory read size can be
695 increased beyond this. */
696 if (size > get_remote_packet_size ())
697 size = get_remote_packet_size ();
698 return size;
699 }
700
701 \f
702 /* Generic configuration support for packets the stub optionally
703 supports. Allows the user to specify the use of the packet as well
704 as allowing GDB to auto-detect support in the remote stub. */
705
706 enum packet_support
707 {
708 PACKET_SUPPORT_UNKNOWN = 0,
709 PACKET_ENABLE,
710 PACKET_DISABLE
711 };
712
713 struct packet_config
714 {
715 const char *name;
716 const char *title;
717 enum auto_boolean detect;
718 enum packet_support support;
719 };
720
721 /* Analyze a packet's return value and update the packet config
722 accordingly. */
723
724 enum packet_result
725 {
726 PACKET_ERROR,
727 PACKET_OK,
728 PACKET_UNKNOWN
729 };
730
731 static void
732 update_packet_config (struct packet_config *config)
733 {
734 switch (config->detect)
735 {
736 case AUTO_BOOLEAN_TRUE:
737 config->support = PACKET_ENABLE;
738 break;
739 case AUTO_BOOLEAN_FALSE:
740 config->support = PACKET_DISABLE;
741 break;
742 case AUTO_BOOLEAN_AUTO:
743 config->support = PACKET_SUPPORT_UNKNOWN;
744 break;
745 }
746 }
747
748 static void
749 show_packet_config_cmd (struct packet_config *config)
750 {
751 char *support = "internal-error";
752 switch (config->support)
753 {
754 case PACKET_ENABLE:
755 support = "enabled";
756 break;
757 case PACKET_DISABLE:
758 support = "disabled";
759 break;
760 case PACKET_SUPPORT_UNKNOWN:
761 support = "unknown";
762 break;
763 }
764 switch (config->detect)
765 {
766 case AUTO_BOOLEAN_AUTO:
767 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
768 config->name, support);
769 break;
770 case AUTO_BOOLEAN_TRUE:
771 case AUTO_BOOLEAN_FALSE:
772 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
773 config->name, support);
774 break;
775 }
776 }
777
778 static void
779 add_packet_config_cmd (struct packet_config *config, const char *name,
780 const char *title, int legacy)
781 {
782 char *set_doc;
783 char *show_doc;
784 char *cmd_name;
785
786 config->name = name;
787 config->title = title;
788 config->detect = AUTO_BOOLEAN_AUTO;
789 config->support = PACKET_SUPPORT_UNKNOWN;
790 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
791 name, title);
792 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
793 name, title);
794 /* set/show TITLE-packet {auto,on,off} */
795 cmd_name = xstrprintf ("%s-packet", title);
796 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
797 &config->detect, set_doc, show_doc, NULL, /* help_doc */
798 set_remote_protocol_packet_cmd,
799 show_remote_protocol_packet_cmd,
800 &remote_set_cmdlist, &remote_show_cmdlist);
801 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
802 if (legacy)
803 {
804 char *legacy_name;
805 legacy_name = xstrprintf ("%s-packet", name);
806 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
807 &remote_set_cmdlist);
808 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
809 &remote_show_cmdlist);
810 }
811 }
812
813 static enum packet_result
814 packet_check_result (const char *buf)
815 {
816 if (buf[0] != '\0')
817 {
818 /* The stub recognized the packet request. Check that the
819 operation succeeded. */
820 if (buf[0] == 'E'
821 && isxdigit (buf[1]) && isxdigit (buf[2])
822 && buf[3] == '\0')
823 /* "Enn" - definitly an error. */
824 return PACKET_ERROR;
825
826 /* Always treat "E." as an error. This will be used for
827 more verbose error messages, such as E.memtypes. */
828 if (buf[0] == 'E' && buf[1] == '.')
829 return PACKET_ERROR;
830
831 /* The packet may or may not be OK. Just assume it is. */
832 return PACKET_OK;
833 }
834 else
835 /* The stub does not support the packet. */
836 return PACKET_UNKNOWN;
837 }
838
839 static enum packet_result
840 packet_ok (const char *buf, struct packet_config *config)
841 {
842 enum packet_result result;
843
844 result = packet_check_result (buf);
845 switch (result)
846 {
847 case PACKET_OK:
848 case PACKET_ERROR:
849 /* The stub recognized the packet request. */
850 switch (config->support)
851 {
852 case PACKET_SUPPORT_UNKNOWN:
853 if (remote_debug)
854 fprintf_unfiltered (gdb_stdlog,
855 "Packet %s (%s) is supported\n",
856 config->name, config->title);
857 config->support = PACKET_ENABLE;
858 break;
859 case PACKET_DISABLE:
860 internal_error (__FILE__, __LINE__,
861 _("packet_ok: attempt to use a disabled packet"));
862 break;
863 case PACKET_ENABLE:
864 break;
865 }
866 break;
867 case PACKET_UNKNOWN:
868 /* The stub does not support the packet. */
869 switch (config->support)
870 {
871 case PACKET_ENABLE:
872 if (config->detect == AUTO_BOOLEAN_AUTO)
873 /* If the stub previously indicated that the packet was
874 supported then there is a protocol error.. */
875 error (_("Protocol error: %s (%s) conflicting enabled responses."),
876 config->name, config->title);
877 else
878 /* The user set it wrong. */
879 error (_("Enabled packet %s (%s) not recognized by stub"),
880 config->name, config->title);
881 break;
882 case PACKET_SUPPORT_UNKNOWN:
883 if (remote_debug)
884 fprintf_unfiltered (gdb_stdlog,
885 "Packet %s (%s) is NOT supported\n",
886 config->name, config->title);
887 config->support = PACKET_DISABLE;
888 break;
889 case PACKET_DISABLE:
890 break;
891 }
892 break;
893 }
894
895 return result;
896 }
897
898 enum {
899 PACKET_vCont = 0,
900 PACKET_X,
901 PACKET_qSymbol,
902 PACKET_P,
903 PACKET_p,
904 PACKET_Z0,
905 PACKET_Z1,
906 PACKET_Z2,
907 PACKET_Z3,
908 PACKET_Z4,
909 PACKET_vFile_open,
910 PACKET_vFile_pread,
911 PACKET_vFile_pwrite,
912 PACKET_vFile_close,
913 PACKET_vFile_unlink,
914 PACKET_qXfer_auxv,
915 PACKET_qXfer_features,
916 PACKET_qXfer_libraries,
917 PACKET_qXfer_memory_map,
918 PACKET_qXfer_spu_read,
919 PACKET_qXfer_spu_write,
920 PACKET_qGetTLSAddr,
921 PACKET_qSupported,
922 PACKET_QPassSignals,
923 PACKET_MAX
924 };
925
926 static struct packet_config remote_protocol_packets[PACKET_MAX];
927
928 static void
929 set_remote_protocol_packet_cmd (char *args, int from_tty,
930 struct cmd_list_element *c)
931 {
932 struct packet_config *packet;
933
934 for (packet = remote_protocol_packets;
935 packet < &remote_protocol_packets[PACKET_MAX];
936 packet++)
937 {
938 if (&packet->detect == c->var)
939 {
940 update_packet_config (packet);
941 return;
942 }
943 }
944 internal_error (__FILE__, __LINE__, "Could not find config for %s",
945 c->name);
946 }
947
948 static void
949 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
950 struct cmd_list_element *c,
951 const char *value)
952 {
953 struct packet_config *packet;
954
955 for (packet = remote_protocol_packets;
956 packet < &remote_protocol_packets[PACKET_MAX];
957 packet++)
958 {
959 if (&packet->detect == c->var)
960 {
961 show_packet_config_cmd (packet);
962 return;
963 }
964 }
965 internal_error (__FILE__, __LINE__, "Could not find config for %s",
966 c->name);
967 }
968
969 /* Should we try one of the 'Z' requests? */
970
971 enum Z_packet_type
972 {
973 Z_PACKET_SOFTWARE_BP,
974 Z_PACKET_HARDWARE_BP,
975 Z_PACKET_WRITE_WP,
976 Z_PACKET_READ_WP,
977 Z_PACKET_ACCESS_WP,
978 NR_Z_PACKET_TYPES
979 };
980
981 /* For compatibility with older distributions. Provide a ``set remote
982 Z-packet ...'' command that updates all the Z packet types. */
983
984 static enum auto_boolean remote_Z_packet_detect;
985
986 static void
987 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
988 struct cmd_list_element *c)
989 {
990 int i;
991 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
992 {
993 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
994 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
995 }
996 }
997
998 static void
999 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1000 struct cmd_list_element *c,
1001 const char *value)
1002 {
1003 int i;
1004 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1005 {
1006 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1007 }
1008 }
1009
1010 /* Should we try the 'ThreadInfo' query packet?
1011
1012 This variable (NOT available to the user: auto-detect only!)
1013 determines whether GDB will use the new, simpler "ThreadInfo"
1014 query or the older, more complex syntax for thread queries.
1015 This is an auto-detect variable (set to true at each connect,
1016 and set to false when the target fails to recognize it). */
1017
1018 static int use_threadinfo_query;
1019 static int use_threadextra_query;
1020
1021 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1022 static struct async_signal_handler *sigint_remote_twice_token;
1023 static struct async_signal_handler *sigint_remote_token;
1024
1025 /* These are pointers to hook functions that may be set in order to
1026 modify resume/wait behavior for a particular architecture. */
1027
1028 void (*deprecated_target_resume_hook) (void);
1029 void (*deprecated_target_wait_loop_hook) (void);
1030 \f
1031
1032
1033 /* These are the threads which we last sent to the remote system.
1034 -1 for all or -2 for not sent yet. */
1035 static int general_thread;
1036 static int continue_thread;
1037
1038 /* Call this function as a result of
1039 1) A halt indication (T packet) containing a thread id
1040 2) A direct query of currthread
1041 3) Successful execution of set thread
1042 */
1043
1044 static void
1045 record_currthread (int currthread)
1046 {
1047 general_thread = currthread;
1048
1049 /* If this is a new thread, add it to GDB's thread list.
1050 If we leave it up to WFI to do this, bad things will happen. */
1051 if (!in_thread_list (pid_to_ptid (currthread)))
1052 add_thread (pid_to_ptid (currthread));
1053 }
1054
1055 static char *last_pass_packet;
1056
1057 /* If 'QPassSignals' is supported, tell the remote stub what signals
1058 it can simply pass through to the inferior without reporting. */
1059
1060 static void
1061 remote_pass_signals (void)
1062 {
1063 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1064 {
1065 char *pass_packet, *p;
1066 int numsigs = (int) TARGET_SIGNAL_LAST;
1067 int count = 0, i;
1068
1069 gdb_assert (numsigs < 256);
1070 for (i = 0; i < numsigs; i++)
1071 {
1072 if (signal_stop_state (i) == 0
1073 && signal_print_state (i) == 0
1074 && signal_pass_state (i) == 1)
1075 count++;
1076 }
1077 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1078 strcpy (pass_packet, "QPassSignals:");
1079 p = pass_packet + strlen (pass_packet);
1080 for (i = 0; i < numsigs; i++)
1081 {
1082 if (signal_stop_state (i) == 0
1083 && signal_print_state (i) == 0
1084 && signal_pass_state (i) == 1)
1085 {
1086 if (i >= 16)
1087 *p++ = tohex (i >> 4);
1088 *p++ = tohex (i & 15);
1089 if (count)
1090 *p++ = ';';
1091 else
1092 break;
1093 count--;
1094 }
1095 }
1096 *p = 0;
1097 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1098 {
1099 struct remote_state *rs = get_remote_state ();
1100 char *buf = rs->buf;
1101
1102 putpkt (pass_packet);
1103 getpkt (&rs->buf, &rs->buf_size, 0);
1104 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1105 if (last_pass_packet)
1106 xfree (last_pass_packet);
1107 last_pass_packet = pass_packet;
1108 }
1109 else
1110 xfree (pass_packet);
1111 }
1112 }
1113
1114 #define MAGIC_NULL_PID 42000
1115
1116 static void
1117 set_thread (int th, int gen)
1118 {
1119 struct remote_state *rs = get_remote_state ();
1120 char *buf = rs->buf;
1121 int state = gen ? general_thread : continue_thread;
1122
1123 if (state == th)
1124 return;
1125
1126 buf[0] = 'H';
1127 buf[1] = gen ? 'g' : 'c';
1128 if (th == MAGIC_NULL_PID)
1129 {
1130 buf[2] = '0';
1131 buf[3] = '\0';
1132 }
1133 else if (th < 0)
1134 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1135 else
1136 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1137 putpkt (buf);
1138 getpkt (&rs->buf, &rs->buf_size, 0);
1139 if (gen)
1140 general_thread = th;
1141 else
1142 continue_thread = th;
1143 }
1144 \f
1145 /* Return nonzero if the thread TH is still alive on the remote system. */
1146
1147 static int
1148 remote_thread_alive (ptid_t ptid)
1149 {
1150 struct remote_state *rs = get_remote_state ();
1151 int tid = PIDGET (ptid);
1152
1153 if (tid < 0)
1154 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1155 else
1156 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1157 putpkt (rs->buf);
1158 getpkt (&rs->buf, &rs->buf_size, 0);
1159 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1160 }
1161
1162 /* About these extended threadlist and threadinfo packets. They are
1163 variable length packets but, the fields within them are often fixed
1164 length. They are redundent enough to send over UDP as is the
1165 remote protocol in general. There is a matching unit test module
1166 in libstub. */
1167
1168 #define OPAQUETHREADBYTES 8
1169
1170 /* a 64 bit opaque identifier */
1171 typedef unsigned char threadref[OPAQUETHREADBYTES];
1172
1173 /* WARNING: This threadref data structure comes from the remote O.S.,
1174 libstub protocol encoding, and remote.c. it is not particularly
1175 changable. */
1176
1177 /* Right now, the internal structure is int. We want it to be bigger.
1178 Plan to fix this.
1179 */
1180
1181 typedef int gdb_threadref; /* Internal GDB thread reference. */
1182
1183 /* gdb_ext_thread_info is an internal GDB data structure which is
1184 equivalent to the reply of the remote threadinfo packet. */
1185
1186 struct gdb_ext_thread_info
1187 {
1188 threadref threadid; /* External form of thread reference. */
1189 int active; /* Has state interesting to GDB?
1190 regs, stack. */
1191 char display[256]; /* Brief state display, name,
1192 blocked/suspended. */
1193 char shortname[32]; /* To be used to name threads. */
1194 char more_display[256]; /* Long info, statistics, queue depth,
1195 whatever. */
1196 };
1197
1198 /* The volume of remote transfers can be limited by submitting
1199 a mask containing bits specifying the desired information.
1200 Use a union of these values as the 'selection' parameter to
1201 get_thread_info. FIXME: Make these TAG names more thread specific.
1202 */
1203
1204 #define TAG_THREADID 1
1205 #define TAG_EXISTS 2
1206 #define TAG_DISPLAY 4
1207 #define TAG_THREADNAME 8
1208 #define TAG_MOREDISPLAY 16
1209
1210 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1211
1212 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1213
1214 static char *unpack_nibble (char *buf, int *val);
1215
1216 static char *pack_nibble (char *buf, int nibble);
1217
1218 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1219
1220 static char *unpack_byte (char *buf, int *value);
1221
1222 static char *pack_int (char *buf, int value);
1223
1224 static char *unpack_int (char *buf, int *value);
1225
1226 static char *unpack_string (char *src, char *dest, int length);
1227
1228 static char *pack_threadid (char *pkt, threadref *id);
1229
1230 static char *unpack_threadid (char *inbuf, threadref *id);
1231
1232 void int_to_threadref (threadref *id, int value);
1233
1234 static int threadref_to_int (threadref *ref);
1235
1236 static void copy_threadref (threadref *dest, threadref *src);
1237
1238 static int threadmatch (threadref *dest, threadref *src);
1239
1240 static char *pack_threadinfo_request (char *pkt, int mode,
1241 threadref *id);
1242
1243 static int remote_unpack_thread_info_response (char *pkt,
1244 threadref *expectedref,
1245 struct gdb_ext_thread_info
1246 *info);
1247
1248
1249 static int remote_get_threadinfo (threadref *threadid,
1250 int fieldset, /*TAG mask */
1251 struct gdb_ext_thread_info *info);
1252
1253 static char *pack_threadlist_request (char *pkt, int startflag,
1254 int threadcount,
1255 threadref *nextthread);
1256
1257 static int parse_threadlist_response (char *pkt,
1258 int result_limit,
1259 threadref *original_echo,
1260 threadref *resultlist,
1261 int *doneflag);
1262
1263 static int remote_get_threadlist (int startflag,
1264 threadref *nextthread,
1265 int result_limit,
1266 int *done,
1267 int *result_count,
1268 threadref *threadlist);
1269
1270 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1271
1272 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1273 void *context, int looplimit);
1274
1275 static int remote_newthread_step (threadref *ref, void *context);
1276
1277 /* Encode 64 bits in 16 chars of hex. */
1278
1279 static const char hexchars[] = "0123456789abcdef";
1280
1281 static int
1282 ishex (int ch, int *val)
1283 {
1284 if ((ch >= 'a') && (ch <= 'f'))
1285 {
1286 *val = ch - 'a' + 10;
1287 return 1;
1288 }
1289 if ((ch >= 'A') && (ch <= 'F'))
1290 {
1291 *val = ch - 'A' + 10;
1292 return 1;
1293 }
1294 if ((ch >= '0') && (ch <= '9'))
1295 {
1296 *val = ch - '0';
1297 return 1;
1298 }
1299 return 0;
1300 }
1301
1302 static int
1303 stubhex (int ch)
1304 {
1305 if (ch >= 'a' && ch <= 'f')
1306 return ch - 'a' + 10;
1307 if (ch >= '0' && ch <= '9')
1308 return ch - '0';
1309 if (ch >= 'A' && ch <= 'F')
1310 return ch - 'A' + 10;
1311 return -1;
1312 }
1313
1314 static int
1315 stub_unpack_int (char *buff, int fieldlength)
1316 {
1317 int nibble;
1318 int retval = 0;
1319
1320 while (fieldlength)
1321 {
1322 nibble = stubhex (*buff++);
1323 retval |= nibble;
1324 fieldlength--;
1325 if (fieldlength)
1326 retval = retval << 4;
1327 }
1328 return retval;
1329 }
1330
1331 char *
1332 unpack_varlen_hex (char *buff, /* packet to parse */
1333 ULONGEST *result)
1334 {
1335 int nibble;
1336 ULONGEST retval = 0;
1337
1338 while (ishex (*buff, &nibble))
1339 {
1340 buff++;
1341 retval = retval << 4;
1342 retval |= nibble & 0x0f;
1343 }
1344 *result = retval;
1345 return buff;
1346 }
1347
1348 static char *
1349 unpack_nibble (char *buf, int *val)
1350 {
1351 *val = fromhex (*buf++);
1352 return buf;
1353 }
1354
1355 static char *
1356 pack_nibble (char *buf, int nibble)
1357 {
1358 *buf++ = hexchars[(nibble & 0x0f)];
1359 return buf;
1360 }
1361
1362 static char *
1363 pack_hex_byte (char *pkt, int byte)
1364 {
1365 *pkt++ = hexchars[(byte >> 4) & 0xf];
1366 *pkt++ = hexchars[(byte & 0xf)];
1367 return pkt;
1368 }
1369
1370 static char *
1371 unpack_byte (char *buf, int *value)
1372 {
1373 *value = stub_unpack_int (buf, 2);
1374 return buf + 2;
1375 }
1376
1377 static char *
1378 pack_int (char *buf, int value)
1379 {
1380 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1381 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1382 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1383 buf = pack_hex_byte (buf, (value & 0xff));
1384 return buf;
1385 }
1386
1387 static char *
1388 unpack_int (char *buf, int *value)
1389 {
1390 *value = stub_unpack_int (buf, 8);
1391 return buf + 8;
1392 }
1393
1394 #if 0 /* Currently unused, uncomment when needed. */
1395 static char *pack_string (char *pkt, char *string);
1396
1397 static char *
1398 pack_string (char *pkt, char *string)
1399 {
1400 char ch;
1401 int len;
1402
1403 len = strlen (string);
1404 if (len > 200)
1405 len = 200; /* Bigger than most GDB packets, junk??? */
1406 pkt = pack_hex_byte (pkt, len);
1407 while (len-- > 0)
1408 {
1409 ch = *string++;
1410 if ((ch == '\0') || (ch == '#'))
1411 ch = '*'; /* Protect encapsulation. */
1412 *pkt++ = ch;
1413 }
1414 return pkt;
1415 }
1416 #endif /* 0 (unused) */
1417
1418 static char *
1419 unpack_string (char *src, char *dest, int length)
1420 {
1421 while (length--)
1422 *dest++ = *src++;
1423 *dest = '\0';
1424 return src;
1425 }
1426
1427 static char *
1428 pack_threadid (char *pkt, threadref *id)
1429 {
1430 char *limit;
1431 unsigned char *altid;
1432
1433 altid = (unsigned char *) id;
1434 limit = pkt + BUF_THREAD_ID_SIZE;
1435 while (pkt < limit)
1436 pkt = pack_hex_byte (pkt, *altid++);
1437 return pkt;
1438 }
1439
1440
1441 static char *
1442 unpack_threadid (char *inbuf, threadref *id)
1443 {
1444 char *altref;
1445 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1446 int x, y;
1447
1448 altref = (char *) id;
1449
1450 while (inbuf < limit)
1451 {
1452 x = stubhex (*inbuf++);
1453 y = stubhex (*inbuf++);
1454 *altref++ = (x << 4) | y;
1455 }
1456 return inbuf;
1457 }
1458
1459 /* Externally, threadrefs are 64 bits but internally, they are still
1460 ints. This is due to a mismatch of specifications. We would like
1461 to use 64bit thread references internally. This is an adapter
1462 function. */
1463
1464 void
1465 int_to_threadref (threadref *id, int value)
1466 {
1467 unsigned char *scan;
1468
1469 scan = (unsigned char *) id;
1470 {
1471 int i = 4;
1472 while (i--)
1473 *scan++ = 0;
1474 }
1475 *scan++ = (value >> 24) & 0xff;
1476 *scan++ = (value >> 16) & 0xff;
1477 *scan++ = (value >> 8) & 0xff;
1478 *scan++ = (value & 0xff);
1479 }
1480
1481 static int
1482 threadref_to_int (threadref *ref)
1483 {
1484 int i, value = 0;
1485 unsigned char *scan;
1486
1487 scan = *ref;
1488 scan += 4;
1489 i = 4;
1490 while (i-- > 0)
1491 value = (value << 8) | ((*scan++) & 0xff);
1492 return value;
1493 }
1494
1495 static void
1496 copy_threadref (threadref *dest, threadref *src)
1497 {
1498 int i;
1499 unsigned char *csrc, *cdest;
1500
1501 csrc = (unsigned char *) src;
1502 cdest = (unsigned char *) dest;
1503 i = 8;
1504 while (i--)
1505 *cdest++ = *csrc++;
1506 }
1507
1508 static int
1509 threadmatch (threadref *dest, threadref *src)
1510 {
1511 /* Things are broken right now, so just assume we got a match. */
1512 #if 0
1513 unsigned char *srcp, *destp;
1514 int i, result;
1515 srcp = (char *) src;
1516 destp = (char *) dest;
1517
1518 result = 1;
1519 while (i-- > 0)
1520 result &= (*srcp++ == *destp++) ? 1 : 0;
1521 return result;
1522 #endif
1523 return 1;
1524 }
1525
1526 /*
1527 threadid:1, # always request threadid
1528 context_exists:2,
1529 display:4,
1530 unique_name:8,
1531 more_display:16
1532 */
1533
1534 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1535
1536 static char *
1537 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1538 {
1539 *pkt++ = 'q'; /* Info Query */
1540 *pkt++ = 'P'; /* process or thread info */
1541 pkt = pack_int (pkt, mode); /* mode */
1542 pkt = pack_threadid (pkt, id); /* threadid */
1543 *pkt = '\0'; /* terminate */
1544 return pkt;
1545 }
1546
1547 /* These values tag the fields in a thread info response packet. */
1548 /* Tagging the fields allows us to request specific fields and to
1549 add more fields as time goes by. */
1550
1551 #define TAG_THREADID 1 /* Echo the thread identifier. */
1552 #define TAG_EXISTS 2 /* Is this process defined enough to
1553 fetch registers and its stack? */
1554 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1555 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1556 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1557 the process. */
1558
1559 static int
1560 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1561 struct gdb_ext_thread_info *info)
1562 {
1563 struct remote_state *rs = get_remote_state ();
1564 int mask, length;
1565 int tag;
1566 threadref ref;
1567 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1568 int retval = 1;
1569
1570 /* info->threadid = 0; FIXME: implement zero_threadref. */
1571 info->active = 0;
1572 info->display[0] = '\0';
1573 info->shortname[0] = '\0';
1574 info->more_display[0] = '\0';
1575
1576 /* Assume the characters indicating the packet type have been
1577 stripped. */
1578 pkt = unpack_int (pkt, &mask); /* arg mask */
1579 pkt = unpack_threadid (pkt, &ref);
1580
1581 if (mask == 0)
1582 warning (_("Incomplete response to threadinfo request."));
1583 if (!threadmatch (&ref, expectedref))
1584 { /* This is an answer to a different request. */
1585 warning (_("ERROR RMT Thread info mismatch."));
1586 return 0;
1587 }
1588 copy_threadref (&info->threadid, &ref);
1589
1590 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1591
1592 /* Packets are terminated with nulls. */
1593 while ((pkt < limit) && mask && *pkt)
1594 {
1595 pkt = unpack_int (pkt, &tag); /* tag */
1596 pkt = unpack_byte (pkt, &length); /* length */
1597 if (!(tag & mask)) /* Tags out of synch with mask. */
1598 {
1599 warning (_("ERROR RMT: threadinfo tag mismatch."));
1600 retval = 0;
1601 break;
1602 }
1603 if (tag == TAG_THREADID)
1604 {
1605 if (length != 16)
1606 {
1607 warning (_("ERROR RMT: length of threadid is not 16."));
1608 retval = 0;
1609 break;
1610 }
1611 pkt = unpack_threadid (pkt, &ref);
1612 mask = mask & ~TAG_THREADID;
1613 continue;
1614 }
1615 if (tag == TAG_EXISTS)
1616 {
1617 info->active = stub_unpack_int (pkt, length);
1618 pkt += length;
1619 mask = mask & ~(TAG_EXISTS);
1620 if (length > 8)
1621 {
1622 warning (_("ERROR RMT: 'exists' length too long."));
1623 retval = 0;
1624 break;
1625 }
1626 continue;
1627 }
1628 if (tag == TAG_THREADNAME)
1629 {
1630 pkt = unpack_string (pkt, &info->shortname[0], length);
1631 mask = mask & ~TAG_THREADNAME;
1632 continue;
1633 }
1634 if (tag == TAG_DISPLAY)
1635 {
1636 pkt = unpack_string (pkt, &info->display[0], length);
1637 mask = mask & ~TAG_DISPLAY;
1638 continue;
1639 }
1640 if (tag == TAG_MOREDISPLAY)
1641 {
1642 pkt = unpack_string (pkt, &info->more_display[0], length);
1643 mask = mask & ~TAG_MOREDISPLAY;
1644 continue;
1645 }
1646 warning (_("ERROR RMT: unknown thread info tag."));
1647 break; /* Not a tag we know about. */
1648 }
1649 return retval;
1650 }
1651
1652 static int
1653 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1654 struct gdb_ext_thread_info *info)
1655 {
1656 struct remote_state *rs = get_remote_state ();
1657 int result;
1658
1659 pack_threadinfo_request (rs->buf, fieldset, threadid);
1660 putpkt (rs->buf);
1661 getpkt (&rs->buf, &rs->buf_size, 0);
1662 result = remote_unpack_thread_info_response (rs->buf + 2,
1663 threadid, info);
1664 return result;
1665 }
1666
1667 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1668
1669 static char *
1670 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1671 threadref *nextthread)
1672 {
1673 *pkt++ = 'q'; /* info query packet */
1674 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1675 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1676 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1677 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1678 *pkt = '\0';
1679 return pkt;
1680 }
1681
1682 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1683
1684 static int
1685 parse_threadlist_response (char *pkt, int result_limit,
1686 threadref *original_echo, threadref *resultlist,
1687 int *doneflag)
1688 {
1689 struct remote_state *rs = get_remote_state ();
1690 char *limit;
1691 int count, resultcount, done;
1692
1693 resultcount = 0;
1694 /* Assume the 'q' and 'M chars have been stripped. */
1695 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1696 /* done parse past here */
1697 pkt = unpack_byte (pkt, &count); /* count field */
1698 pkt = unpack_nibble (pkt, &done);
1699 /* The first threadid is the argument threadid. */
1700 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1701 while ((count-- > 0) && (pkt < limit))
1702 {
1703 pkt = unpack_threadid (pkt, resultlist++);
1704 if (resultcount++ >= result_limit)
1705 break;
1706 }
1707 if (doneflag)
1708 *doneflag = done;
1709 return resultcount;
1710 }
1711
1712 static int
1713 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1714 int *done, int *result_count, threadref *threadlist)
1715 {
1716 struct remote_state *rs = get_remote_state ();
1717 static threadref echo_nextthread;
1718 int result = 1;
1719
1720 /* Trancate result limit to be smaller than the packet size. */
1721 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1722 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1723
1724 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1725 putpkt (rs->buf);
1726 getpkt (&rs->buf, &rs->buf_size, 0);
1727
1728 *result_count =
1729 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1730 threadlist, done);
1731
1732 if (!threadmatch (&echo_nextthread, nextthread))
1733 {
1734 /* FIXME: This is a good reason to drop the packet. */
1735 /* Possably, there is a duplicate response. */
1736 /* Possabilities :
1737 retransmit immediatly - race conditions
1738 retransmit after timeout - yes
1739 exit
1740 wait for packet, then exit
1741 */
1742 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1743 return 0; /* I choose simply exiting. */
1744 }
1745 if (*result_count <= 0)
1746 {
1747 if (*done != 1)
1748 {
1749 warning (_("RMT ERROR : failed to get remote thread list."));
1750 result = 0;
1751 }
1752 return result; /* break; */
1753 }
1754 if (*result_count > result_limit)
1755 {
1756 *result_count = 0;
1757 warning (_("RMT ERROR: threadlist response longer than requested."));
1758 return 0;
1759 }
1760 return result;
1761 }
1762
1763 /* This is the interface between remote and threads, remotes upper
1764 interface. */
1765
1766 /* remote_find_new_threads retrieves the thread list and for each
1767 thread in the list, looks up the thread in GDB's internal list,
1768 ading the thread if it does not already exist. This involves
1769 getting partial thread lists from the remote target so, polling the
1770 quit_flag is required. */
1771
1772
1773 /* About this many threadisds fit in a packet. */
1774
1775 #define MAXTHREADLISTRESULTS 32
1776
1777 static int
1778 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1779 int looplimit)
1780 {
1781 int done, i, result_count;
1782 int startflag = 1;
1783 int result = 1;
1784 int loopcount = 0;
1785 static threadref nextthread;
1786 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1787
1788 done = 0;
1789 while (!done)
1790 {
1791 if (loopcount++ > looplimit)
1792 {
1793 result = 0;
1794 warning (_("Remote fetch threadlist -infinite loop-."));
1795 break;
1796 }
1797 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1798 &done, &result_count, resultthreadlist))
1799 {
1800 result = 0;
1801 break;
1802 }
1803 /* Clear for later iterations. */
1804 startflag = 0;
1805 /* Setup to resume next batch of thread references, set nextthread. */
1806 if (result_count >= 1)
1807 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1808 i = 0;
1809 while (result_count--)
1810 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1811 break;
1812 }
1813 return result;
1814 }
1815
1816 static int
1817 remote_newthread_step (threadref *ref, void *context)
1818 {
1819 ptid_t ptid;
1820
1821 ptid = pid_to_ptid (threadref_to_int (ref));
1822
1823 if (!in_thread_list (ptid))
1824 add_thread (ptid);
1825 return 1; /* continue iterator */
1826 }
1827
1828 #define CRAZY_MAX_THREADS 1000
1829
1830 static ptid_t
1831 remote_current_thread (ptid_t oldpid)
1832 {
1833 struct remote_state *rs = get_remote_state ();
1834
1835 putpkt ("qC");
1836 getpkt (&rs->buf, &rs->buf_size, 0);
1837 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1838 /* Use strtoul here, so we'll correctly parse values whose highest
1839 bit is set. The protocol carries them as a simple series of
1840 hex digits; in the absence of a sign, strtol will see such
1841 values as positive numbers out of range for signed 'long', and
1842 return LONG_MAX to indicate an overflow. */
1843 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1844 else
1845 return oldpid;
1846 }
1847
1848 /* Find new threads for info threads command.
1849 * Original version, using John Metzler's thread protocol.
1850 */
1851
1852 static void
1853 remote_find_new_threads (void)
1854 {
1855 remote_threadlist_iterator (remote_newthread_step, 0,
1856 CRAZY_MAX_THREADS);
1857 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1858 inferior_ptid = remote_current_thread (inferior_ptid);
1859 }
1860
1861 /*
1862 * Find all threads for info threads command.
1863 * Uses new thread protocol contributed by Cisco.
1864 * Falls back and attempts to use the older method (above)
1865 * if the target doesn't respond to the new method.
1866 */
1867
1868 static void
1869 remote_threads_info (void)
1870 {
1871 struct remote_state *rs = get_remote_state ();
1872 char *bufp;
1873 int tid;
1874
1875 if (remote_desc == 0) /* paranoia */
1876 error (_("Command can only be used when connected to the remote target."));
1877
1878 if (use_threadinfo_query)
1879 {
1880 putpkt ("qfThreadInfo");
1881 getpkt (&rs->buf, &rs->buf_size, 0);
1882 bufp = rs->buf;
1883 if (bufp[0] != '\0') /* q packet recognized */
1884 {
1885 while (*bufp++ == 'm') /* reply contains one or more TID */
1886 {
1887 do
1888 {
1889 /* Use strtoul here, so we'll correctly parse values
1890 whose highest bit is set. The protocol carries
1891 them as a simple series of hex digits; in the
1892 absence of a sign, strtol will see such values as
1893 positive numbers out of range for signed 'long',
1894 and return LONG_MAX to indicate an overflow. */
1895 tid = strtoul (bufp, &bufp, 16);
1896 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1897 add_thread (pid_to_ptid (tid));
1898 }
1899 while (*bufp++ == ','); /* comma-separated list */
1900 putpkt ("qsThreadInfo");
1901 getpkt (&rs->buf, &rs->buf_size, 0);
1902 bufp = rs->buf;
1903 }
1904 return; /* done */
1905 }
1906 }
1907
1908 /* Else fall back to old method based on jmetzler protocol. */
1909 use_threadinfo_query = 0;
1910 remote_find_new_threads ();
1911 return;
1912 }
1913
1914 /*
1915 * Collect a descriptive string about the given thread.
1916 * The target may say anything it wants to about the thread
1917 * (typically info about its blocked / runnable state, name, etc.).
1918 * This string will appear in the info threads display.
1919 *
1920 * Optional: targets are not required to implement this function.
1921 */
1922
1923 static char *
1924 remote_threads_extra_info (struct thread_info *tp)
1925 {
1926 struct remote_state *rs = get_remote_state ();
1927 int result;
1928 int set;
1929 threadref id;
1930 struct gdb_ext_thread_info threadinfo;
1931 static char display_buf[100]; /* arbitrary... */
1932 int n = 0; /* position in display_buf */
1933
1934 if (remote_desc == 0) /* paranoia */
1935 internal_error (__FILE__, __LINE__,
1936 _("remote_threads_extra_info"));
1937
1938 if (use_threadextra_query)
1939 {
1940 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1941 PIDGET (tp->ptid));
1942 putpkt (rs->buf);
1943 getpkt (&rs->buf, &rs->buf_size, 0);
1944 if (rs->buf[0] != 0)
1945 {
1946 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1947 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1948 display_buf [result] = '\0';
1949 return display_buf;
1950 }
1951 }
1952
1953 /* If the above query fails, fall back to the old method. */
1954 use_threadextra_query = 0;
1955 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1956 | TAG_MOREDISPLAY | TAG_DISPLAY;
1957 int_to_threadref (&id, PIDGET (tp->ptid));
1958 if (remote_get_threadinfo (&id, set, &threadinfo))
1959 if (threadinfo.active)
1960 {
1961 if (*threadinfo.shortname)
1962 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1963 " Name: %s,", threadinfo.shortname);
1964 if (*threadinfo.display)
1965 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1966 " State: %s,", threadinfo.display);
1967 if (*threadinfo.more_display)
1968 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1969 " Priority: %s", threadinfo.more_display);
1970
1971 if (n > 0)
1972 {
1973 /* For purely cosmetic reasons, clear up trailing commas. */
1974 if (',' == display_buf[n-1])
1975 display_buf[n-1] = ' ';
1976 return display_buf;
1977 }
1978 }
1979 return NULL;
1980 }
1981 \f
1982
1983 /* Restart the remote side; this is an extended protocol operation. */
1984
1985 static void
1986 extended_remote_restart (void)
1987 {
1988 struct remote_state *rs = get_remote_state ();
1989
1990 /* Send the restart command; for reasons I don't understand the
1991 remote side really expects a number after the "R". */
1992 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1993 putpkt (rs->buf);
1994
1995 remote_fileio_reset ();
1996
1997 /* Now query for status so this looks just like we restarted
1998 gdbserver from scratch. */
1999 putpkt ("?");
2000 getpkt (&rs->buf, &rs->buf_size, 0);
2001 }
2002 \f
2003 /* Clean up connection to a remote debugger. */
2004
2005 static void
2006 remote_close (int quitting)
2007 {
2008 if (remote_desc)
2009 serial_close (remote_desc);
2010 remote_desc = NULL;
2011 }
2012
2013 /* Query the remote side for the text, data and bss offsets. */
2014
2015 static void
2016 get_offsets (void)
2017 {
2018 struct remote_state *rs = get_remote_state ();
2019 char *buf;
2020 char *ptr;
2021 int lose, num_segments = 0, do_sections, do_segments;
2022 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2023 struct section_offsets *offs;
2024 struct symfile_segment_data *data;
2025
2026 if (symfile_objfile == NULL)
2027 return;
2028
2029 putpkt ("qOffsets");
2030 getpkt (&rs->buf, &rs->buf_size, 0);
2031 buf = rs->buf;
2032
2033 if (buf[0] == '\000')
2034 return; /* Return silently. Stub doesn't support
2035 this command. */
2036 if (buf[0] == 'E')
2037 {
2038 warning (_("Remote failure reply: %s"), buf);
2039 return;
2040 }
2041
2042 /* Pick up each field in turn. This used to be done with scanf, but
2043 scanf will make trouble if CORE_ADDR size doesn't match
2044 conversion directives correctly. The following code will work
2045 with any size of CORE_ADDR. */
2046 text_addr = data_addr = bss_addr = 0;
2047 ptr = buf;
2048 lose = 0;
2049
2050 if (strncmp (ptr, "Text=", 5) == 0)
2051 {
2052 ptr += 5;
2053 /* Don't use strtol, could lose on big values. */
2054 while (*ptr && *ptr != ';')
2055 text_addr = (text_addr << 4) + fromhex (*ptr++);
2056
2057 if (strncmp (ptr, ";Data=", 6) == 0)
2058 {
2059 ptr += 6;
2060 while (*ptr && *ptr != ';')
2061 data_addr = (data_addr << 4) + fromhex (*ptr++);
2062 }
2063 else
2064 lose = 1;
2065
2066 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2067 {
2068 ptr += 5;
2069 while (*ptr && *ptr != ';')
2070 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2071
2072 if (bss_addr != data_addr)
2073 warning (_("Target reported unsupported offsets: %s"), buf);
2074 }
2075 else
2076 lose = 1;
2077 }
2078 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2079 {
2080 ptr += 8;
2081 /* Don't use strtol, could lose on big values. */
2082 while (*ptr && *ptr != ';')
2083 text_addr = (text_addr << 4) + fromhex (*ptr++);
2084 num_segments = 1;
2085
2086 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2087 {
2088 ptr += 9;
2089 while (*ptr && *ptr != ';')
2090 data_addr = (data_addr << 4) + fromhex (*ptr++);
2091 num_segments++;
2092 }
2093 }
2094 else
2095 lose = 1;
2096
2097 if (lose)
2098 error (_("Malformed response to offset query, %s"), buf);
2099 else if (*ptr != '\0')
2100 warning (_("Target reported unsupported offsets: %s"), buf);
2101
2102 offs = ((struct section_offsets *)
2103 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2104 memcpy (offs, symfile_objfile->section_offsets,
2105 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2106
2107 data = get_symfile_segment_data (symfile_objfile->obfd);
2108 do_segments = (data != NULL);
2109 do_sections = num_segments == 0;
2110
2111 if (num_segments > 0)
2112 {
2113 segments[0] = text_addr;
2114 segments[1] = data_addr;
2115 }
2116 /* If we have two segments, we can still try to relocate everything
2117 by assuming that the .text and .data offsets apply to the whole
2118 text and data segments. Convert the offsets given in the packet
2119 to base addresses for symfile_map_offsets_to_segments. */
2120 else if (data && data->num_segments == 2)
2121 {
2122 segments[0] = data->segment_bases[0] + text_addr;
2123 segments[1] = data->segment_bases[1] + data_addr;
2124 num_segments = 2;
2125 }
2126 /* There's no way to relocate by segment. */
2127 else
2128 do_segments = 0;
2129
2130 if (do_segments)
2131 {
2132 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2133 offs, num_segments, segments);
2134
2135 if (ret == 0 && !do_sections)
2136 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2137
2138 if (ret > 0)
2139 do_sections = 0;
2140 }
2141
2142 if (data)
2143 free_symfile_segment_data (data);
2144
2145 if (do_sections)
2146 {
2147 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2148
2149 /* This is a temporary kludge to force data and bss to use the same offsets
2150 because that's what nlmconv does now. The real solution requires changes
2151 to the stub and remote.c that I don't have time to do right now. */
2152
2153 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2154 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2155 }
2156
2157 objfile_relocate (symfile_objfile, offs);
2158 }
2159
2160 /* Stub for catch_exception. */
2161
2162 static void
2163 remote_start_remote (struct ui_out *uiout, void *from_tty_p)
2164 {
2165 int from_tty = * (int *) from_tty_p;
2166
2167 immediate_quit++; /* Allow user to interrupt it. */
2168
2169 /* Ack any packet which the remote side has already sent. */
2170 serial_write (remote_desc, "+", 1);
2171
2172 /* Let the stub know that we want it to return the thread. */
2173 set_thread (-1, 0);
2174
2175 inferior_ptid = remote_current_thread (inferior_ptid);
2176
2177 get_offsets (); /* Get text, data & bss offsets. */
2178
2179 putpkt ("?"); /* Initiate a query from remote machine. */
2180 immediate_quit--;
2181
2182 start_remote (from_tty); /* Initialize gdb process mechanisms. */
2183 }
2184
2185 /* Open a connection to a remote debugger.
2186 NAME is the filename used for communication. */
2187
2188 static void
2189 remote_open (char *name, int from_tty)
2190 {
2191 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2192 }
2193
2194 /* Just like remote_open, but with asynchronous support. */
2195 static void
2196 remote_async_open (char *name, int from_tty)
2197 {
2198 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2199 }
2200
2201 /* Open a connection to a remote debugger using the extended
2202 remote gdb protocol. NAME is the filename used for communication. */
2203
2204 static void
2205 extended_remote_open (char *name, int from_tty)
2206 {
2207 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2208 0 /* async_p */);
2209 }
2210
2211 /* Just like extended_remote_open, but with asynchronous support. */
2212 static void
2213 extended_remote_async_open (char *name, int from_tty)
2214 {
2215 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2216 1 /*extended_p */, 1 /* async_p */);
2217 }
2218
2219 /* Generic code for opening a connection to a remote target. */
2220
2221 static void
2222 init_all_packet_configs (void)
2223 {
2224 int i;
2225 for (i = 0; i < PACKET_MAX; i++)
2226 update_packet_config (&remote_protocol_packets[i]);
2227 }
2228
2229 /* Symbol look-up. */
2230
2231 static void
2232 remote_check_symbols (struct objfile *objfile)
2233 {
2234 struct remote_state *rs = get_remote_state ();
2235 char *msg, *reply, *tmp;
2236 struct minimal_symbol *sym;
2237 int end;
2238
2239 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2240 return;
2241
2242 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2243 because we need both at the same time. */
2244 msg = alloca (get_remote_packet_size ());
2245
2246 /* Invite target to request symbol lookups. */
2247
2248 putpkt ("qSymbol::");
2249 getpkt (&rs->buf, &rs->buf_size, 0);
2250 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2251 reply = rs->buf;
2252
2253 while (strncmp (reply, "qSymbol:", 8) == 0)
2254 {
2255 tmp = &reply[8];
2256 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2257 msg[end] = '\0';
2258 sym = lookup_minimal_symbol (msg, NULL, NULL);
2259 if (sym == NULL)
2260 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2261 else
2262 {
2263 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2264
2265 /* If this is a function address, return the start of code
2266 instead of any data function descriptor. */
2267 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
2268 sym_addr,
2269 &current_target);
2270
2271 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2272 paddr_nz (sym_addr), &reply[8]);
2273 }
2274
2275 putpkt (msg);
2276 getpkt (&rs->buf, &rs->buf_size, 0);
2277 reply = rs->buf;
2278 }
2279 }
2280
2281 static struct serial *
2282 remote_serial_open (char *name)
2283 {
2284 static int udp_warning = 0;
2285
2286 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2287 of in ser-tcp.c, because it is the remote protocol assuming that the
2288 serial connection is reliable and not the serial connection promising
2289 to be. */
2290 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2291 {
2292 warning (_("\
2293 The remote protocol may be unreliable over UDP.\n\
2294 Some events may be lost, rendering further debugging impossible."));
2295 udp_warning = 1;
2296 }
2297
2298 return serial_open (name);
2299 }
2300
2301 /* This type describes each known response to the qSupported
2302 packet. */
2303 struct protocol_feature
2304 {
2305 /* The name of this protocol feature. */
2306 const char *name;
2307
2308 /* The default for this protocol feature. */
2309 enum packet_support default_support;
2310
2311 /* The function to call when this feature is reported, or after
2312 qSupported processing if the feature is not supported.
2313 The first argument points to this structure. The second
2314 argument indicates whether the packet requested support be
2315 enabled, disabled, or probed (or the default, if this function
2316 is being called at the end of processing and this feature was
2317 not reported). The third argument may be NULL; if not NULL, it
2318 is a NUL-terminated string taken from the packet following
2319 this feature's name and an equals sign. */
2320 void (*func) (const struct protocol_feature *, enum packet_support,
2321 const char *);
2322
2323 /* The corresponding packet for this feature. Only used if
2324 FUNC is remote_supported_packet. */
2325 int packet;
2326 };
2327
2328 static void
2329 remote_supported_packet (const struct protocol_feature *feature,
2330 enum packet_support support,
2331 const char *argument)
2332 {
2333 if (argument)
2334 {
2335 warning (_("Remote qSupported response supplied an unexpected value for"
2336 " \"%s\"."), feature->name);
2337 return;
2338 }
2339
2340 if (remote_protocol_packets[feature->packet].support
2341 == PACKET_SUPPORT_UNKNOWN)
2342 remote_protocol_packets[feature->packet].support = support;
2343 }
2344
2345 static void
2346 remote_packet_size (const struct protocol_feature *feature,
2347 enum packet_support support, const char *value)
2348 {
2349 struct remote_state *rs = get_remote_state ();
2350
2351 int packet_size;
2352 char *value_end;
2353
2354 if (support != PACKET_ENABLE)
2355 return;
2356
2357 if (value == NULL || *value == '\0')
2358 {
2359 warning (_("Remote target reported \"%s\" without a size."),
2360 feature->name);
2361 return;
2362 }
2363
2364 errno = 0;
2365 packet_size = strtol (value, &value_end, 16);
2366 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2367 {
2368 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2369 feature->name, value);
2370 return;
2371 }
2372
2373 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2374 {
2375 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2376 packet_size, MAX_REMOTE_PACKET_SIZE);
2377 packet_size = MAX_REMOTE_PACKET_SIZE;
2378 }
2379
2380 /* Record the new maximum packet size. */
2381 rs->explicit_packet_size = packet_size;
2382 }
2383
2384 static struct protocol_feature remote_protocol_features[] = {
2385 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2386 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2387 PACKET_qXfer_auxv },
2388 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2389 PACKET_qXfer_features },
2390 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2391 PACKET_qXfer_libraries },
2392 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2393 PACKET_qXfer_memory_map },
2394 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2395 PACKET_qXfer_spu_read },
2396 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2397 PACKET_qXfer_spu_write },
2398 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2399 PACKET_QPassSignals },
2400 };
2401
2402 static void
2403 remote_query_supported (void)
2404 {
2405 struct remote_state *rs = get_remote_state ();
2406 char *next;
2407 int i;
2408 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2409
2410 /* The packet support flags are handled differently for this packet
2411 than for most others. We treat an error, a disabled packet, and
2412 an empty response identically: any features which must be reported
2413 to be used will be automatically disabled. An empty buffer
2414 accomplishes this, since that is also the representation for a list
2415 containing no features. */
2416
2417 rs->buf[0] = 0;
2418 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2419 {
2420 putpkt ("qSupported");
2421 getpkt (&rs->buf, &rs->buf_size, 0);
2422
2423 /* If an error occured, warn, but do not return - just reset the
2424 buffer to empty and go on to disable features. */
2425 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2426 == PACKET_ERROR)
2427 {
2428 warning (_("Remote failure reply: %s"), rs->buf);
2429 rs->buf[0] = 0;
2430 }
2431 }
2432
2433 memset (seen, 0, sizeof (seen));
2434
2435 next = rs->buf;
2436 while (*next)
2437 {
2438 enum packet_support is_supported;
2439 char *p, *end, *name_end, *value;
2440
2441 /* First separate out this item from the rest of the packet. If
2442 there's another item after this, we overwrite the separator
2443 (terminated strings are much easier to work with). */
2444 p = next;
2445 end = strchr (p, ';');
2446 if (end == NULL)
2447 {
2448 end = p + strlen (p);
2449 next = end;
2450 }
2451 else
2452 {
2453 *end = '\0';
2454 next = end + 1;
2455
2456 if (end == p)
2457 {
2458 warning (_("empty item in \"qSupported\" response"));
2459 continue;
2460 }
2461 }
2462
2463 name_end = strchr (p, '=');
2464 if (name_end)
2465 {
2466 /* This is a name=value entry. */
2467 is_supported = PACKET_ENABLE;
2468 value = name_end + 1;
2469 *name_end = '\0';
2470 }
2471 else
2472 {
2473 value = NULL;
2474 switch (end[-1])
2475 {
2476 case '+':
2477 is_supported = PACKET_ENABLE;
2478 break;
2479
2480 case '-':
2481 is_supported = PACKET_DISABLE;
2482 break;
2483
2484 case '?':
2485 is_supported = PACKET_SUPPORT_UNKNOWN;
2486 break;
2487
2488 default:
2489 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2490 continue;
2491 }
2492 end[-1] = '\0';
2493 }
2494
2495 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2496 if (strcmp (remote_protocol_features[i].name, p) == 0)
2497 {
2498 const struct protocol_feature *feature;
2499
2500 seen[i] = 1;
2501 feature = &remote_protocol_features[i];
2502 feature->func (feature, is_supported, value);
2503 break;
2504 }
2505 }
2506
2507 /* If we increased the packet size, make sure to increase the global
2508 buffer size also. We delay this until after parsing the entire
2509 qSupported packet, because this is the same buffer we were
2510 parsing. */
2511 if (rs->buf_size < rs->explicit_packet_size)
2512 {
2513 rs->buf_size = rs->explicit_packet_size;
2514 rs->buf = xrealloc (rs->buf, rs->buf_size);
2515 }
2516
2517 /* Handle the defaults for unmentioned features. */
2518 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2519 if (!seen[i])
2520 {
2521 const struct protocol_feature *feature;
2522
2523 feature = &remote_protocol_features[i];
2524 feature->func (feature, feature->default_support, NULL);
2525 }
2526 }
2527
2528
2529 static void
2530 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2531 int extended_p, int async_p)
2532 {
2533 struct remote_state *rs = get_remote_state ();
2534 if (name == 0)
2535 error (_("To open a remote debug connection, you need to specify what\n"
2536 "serial device is attached to the remote system\n"
2537 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2538
2539 /* See FIXME above. */
2540 if (!async_p)
2541 wait_forever_enabled_p = 1;
2542
2543 target_preopen (from_tty);
2544
2545 unpush_target (target);
2546
2547 /* Make sure we send the passed signals list the next time we resume. */
2548 xfree (last_pass_packet);
2549 last_pass_packet = NULL;
2550
2551 remote_fileio_reset ();
2552 reopen_exec_file ();
2553 reread_symbols ();
2554
2555 remote_desc = remote_serial_open (name);
2556 if (!remote_desc)
2557 perror_with_name (name);
2558
2559 if (baud_rate != -1)
2560 {
2561 if (serial_setbaudrate (remote_desc, baud_rate))
2562 {
2563 /* The requested speed could not be set. Error out to
2564 top level after closing remote_desc. Take care to
2565 set remote_desc to NULL to avoid closing remote_desc
2566 more than once. */
2567 serial_close (remote_desc);
2568 remote_desc = NULL;
2569 perror_with_name (name);
2570 }
2571 }
2572
2573 serial_raw (remote_desc);
2574
2575 /* If there is something sitting in the buffer we might take it as a
2576 response to a command, which would be bad. */
2577 serial_flush_input (remote_desc);
2578
2579 if (from_tty)
2580 {
2581 puts_filtered ("Remote debugging using ");
2582 puts_filtered (name);
2583 puts_filtered ("\n");
2584 }
2585 push_target (target); /* Switch to using remote target now. */
2586
2587 /* Reset the target state; these things will be queried either by
2588 remote_query_supported or as they are needed. */
2589 init_all_packet_configs ();
2590 rs->explicit_packet_size = 0;
2591
2592 general_thread = -2;
2593 continue_thread = -2;
2594
2595 /* Probe for ability to use "ThreadInfo" query, as required. */
2596 use_threadinfo_query = 1;
2597 use_threadextra_query = 1;
2598
2599 /* The first packet we send to the target is the optional "supported
2600 packets" request. If the target can answer this, it will tell us
2601 which later probes to skip. */
2602 remote_query_supported ();
2603
2604 /* Next, if the target can specify a description, read it. We do
2605 this before anything involving memory or registers. */
2606 target_find_description ();
2607
2608 /* Without this, some commands which require an active target (such
2609 as kill) won't work. This variable serves (at least) double duty
2610 as both the pid of the target process (if it has such), and as a
2611 flag indicating that a target is active. These functions should
2612 be split out into seperate variables, especially since GDB will
2613 someday have a notion of debugging several processes. */
2614
2615 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2616
2617 if (async_p)
2618 {
2619 /* With this target we start out by owning the terminal. */
2620 remote_async_terminal_ours_p = 1;
2621
2622 /* FIXME: cagney/1999-09-23: During the initial connection it is
2623 assumed that the target is already ready and able to respond to
2624 requests. Unfortunately remote_start_remote() eventually calls
2625 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2626 around this. Eventually a mechanism that allows
2627 wait_for_inferior() to expect/get timeouts will be
2628 implemented. */
2629 wait_forever_enabled_p = 0;
2630 }
2631
2632 /* First delete any symbols previously loaded from shared libraries. */
2633 no_shared_libraries (NULL, 0);
2634
2635 /* Start the remote connection. If error() or QUIT, discard this
2636 target (we'd otherwise be in an inconsistent state) and then
2637 propogate the error on up the exception chain. This ensures that
2638 the caller doesn't stumble along blindly assuming that the
2639 function succeeded. The CLI doesn't have this problem but other
2640 UI's, such as MI do.
2641
2642 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2643 this function should return an error indication letting the
2644 caller restore the previous state. Unfortunately the command
2645 ``target remote'' is directly wired to this function making that
2646 impossible. On a positive note, the CLI side of this problem has
2647 been fixed - the function set_cmd_context() makes it possible for
2648 all the ``target ....'' commands to share a common callback
2649 function. See cli-dump.c. */
2650 {
2651 struct gdb_exception ex
2652 = catch_exception (uiout, remote_start_remote, &from_tty,
2653 RETURN_MASK_ALL);
2654 if (ex.reason < 0)
2655 {
2656 pop_target ();
2657 if (async_p)
2658 wait_forever_enabled_p = 1;
2659 throw_exception (ex);
2660 }
2661 }
2662
2663 if (async_p)
2664 wait_forever_enabled_p = 1;
2665
2666 if (extended_p)
2667 {
2668 /* Tell the remote that we are using the extended protocol. */
2669 putpkt ("!");
2670 getpkt (&rs->buf, &rs->buf_size, 0);
2671 }
2672
2673 if (exec_bfd) /* No use without an exec file. */
2674 remote_check_symbols (symfile_objfile);
2675 }
2676
2677 /* This takes a program previously attached to and detaches it. After
2678 this is done, GDB can be used to debug some other program. We
2679 better not have left any breakpoints in the target program or it'll
2680 die when it hits one. */
2681
2682 static void
2683 remote_detach (char *args, int from_tty)
2684 {
2685 struct remote_state *rs = get_remote_state ();
2686
2687 if (args)
2688 error (_("Argument given to \"detach\" when remotely debugging."));
2689
2690 /* Tell the remote target to detach. */
2691 strcpy (rs->buf, "D");
2692 putpkt (rs->buf);
2693 getpkt (&rs->buf, &rs->buf_size, 0);
2694
2695 if (rs->buf[0] == 'E')
2696 error (_("Can't detach process."));
2697
2698 /* Unregister the file descriptor from the event loop. */
2699 if (target_is_async_p ())
2700 serial_async (remote_desc, NULL, 0);
2701
2702 target_mourn_inferior ();
2703 if (from_tty)
2704 puts_filtered ("Ending remote debugging.\n");
2705 }
2706
2707 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2708
2709 static void
2710 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2711 {
2712 if (args)
2713 error (_("Argument given to \"detach\" when remotely debugging."));
2714
2715 /* Unregister the file descriptor from the event loop. */
2716 if (target_is_async_p ())
2717 serial_async (remote_desc, NULL, 0);
2718
2719 target_mourn_inferior ();
2720 if (from_tty)
2721 puts_filtered ("Ending remote debugging.\n");
2722 }
2723
2724 /* Convert hex digit A to a number. */
2725
2726 static int
2727 fromhex (int a)
2728 {
2729 if (a >= '0' && a <= '9')
2730 return a - '0';
2731 else if (a >= 'a' && a <= 'f')
2732 return a - 'a' + 10;
2733 else if (a >= 'A' && a <= 'F')
2734 return a - 'A' + 10;
2735 else
2736 error (_("Reply contains invalid hex digit %d"), a);
2737 }
2738
2739 static int
2740 hex2bin (const char *hex, gdb_byte *bin, int count)
2741 {
2742 int i;
2743
2744 for (i = 0; i < count; i++)
2745 {
2746 if (hex[0] == 0 || hex[1] == 0)
2747 {
2748 /* Hex string is short, or of uneven length.
2749 Return the count that has been converted so far. */
2750 return i;
2751 }
2752 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2753 hex += 2;
2754 }
2755 return i;
2756 }
2757
2758 /* Convert number NIB to a hex digit. */
2759
2760 static int
2761 tohex (int nib)
2762 {
2763 if (nib < 10)
2764 return '0' + nib;
2765 else
2766 return 'a' + nib - 10;
2767 }
2768
2769 static int
2770 bin2hex (const gdb_byte *bin, char *hex, int count)
2771 {
2772 int i;
2773 /* May use a length, or a nul-terminated string as input. */
2774 if (count == 0)
2775 count = strlen ((char *) bin);
2776
2777 for (i = 0; i < count; i++)
2778 {
2779 *hex++ = tohex ((*bin >> 4) & 0xf);
2780 *hex++ = tohex (*bin++ & 0xf);
2781 }
2782 *hex = 0;
2783 return i;
2784 }
2785 \f
2786 /* Check for the availability of vCont. This function should also check
2787 the response. */
2788
2789 static void
2790 remote_vcont_probe (struct remote_state *rs)
2791 {
2792 char *buf;
2793
2794 strcpy (rs->buf, "vCont?");
2795 putpkt (rs->buf);
2796 getpkt (&rs->buf, &rs->buf_size, 0);
2797 buf = rs->buf;
2798
2799 /* Make sure that the features we assume are supported. */
2800 if (strncmp (buf, "vCont", 5) == 0)
2801 {
2802 char *p = &buf[5];
2803 int support_s, support_S, support_c, support_C;
2804
2805 support_s = 0;
2806 support_S = 0;
2807 support_c = 0;
2808 support_C = 0;
2809 while (p && *p == ';')
2810 {
2811 p++;
2812 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2813 support_s = 1;
2814 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2815 support_S = 1;
2816 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2817 support_c = 1;
2818 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2819 support_C = 1;
2820
2821 p = strchr (p, ';');
2822 }
2823
2824 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2825 BUF will make packet_ok disable the packet. */
2826 if (!support_s || !support_S || !support_c || !support_C)
2827 buf[0] = 0;
2828 }
2829
2830 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2831 }
2832
2833 /* Resume the remote inferior by using a "vCont" packet. The thread
2834 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2835 resumed thread should be single-stepped and/or signalled. If PTID's
2836 PID is -1, then all threads are resumed; the thread to be stepped and/or
2837 signalled is given in the global INFERIOR_PTID. This function returns
2838 non-zero iff it resumes the inferior.
2839
2840 This function issues a strict subset of all possible vCont commands at the
2841 moment. */
2842
2843 static int
2844 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2845 {
2846 struct remote_state *rs = get_remote_state ();
2847 int pid = PIDGET (ptid);
2848 char *buf = NULL, *outbuf;
2849 struct cleanup *old_cleanup;
2850
2851 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2852 remote_vcont_probe (rs);
2853
2854 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2855 return 0;
2856
2857 /* If we could generate a wider range of packets, we'd have to worry
2858 about overflowing BUF. Should there be a generic
2859 "multi-part-packet" packet? */
2860
2861 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2862 {
2863 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2864 don't have any PID numbers the inferior will understand. Make sure
2865 to only send forms that do not specify a PID. */
2866 if (step && siggnal != TARGET_SIGNAL_0)
2867 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2868 else if (step)
2869 outbuf = xstrprintf ("vCont;s");
2870 else if (siggnal != TARGET_SIGNAL_0)
2871 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2872 else
2873 outbuf = xstrprintf ("vCont;c");
2874 }
2875 else if (pid == -1)
2876 {
2877 /* Resume all threads, with preference for INFERIOR_PTID. */
2878 if (step && siggnal != TARGET_SIGNAL_0)
2879 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2880 PIDGET (inferior_ptid));
2881 else if (step)
2882 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2883 else if (siggnal != TARGET_SIGNAL_0)
2884 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2885 PIDGET (inferior_ptid));
2886 else
2887 outbuf = xstrprintf ("vCont;c");
2888 }
2889 else
2890 {
2891 /* Scheduler locking; resume only PTID. */
2892 if (step && siggnal != TARGET_SIGNAL_0)
2893 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2894 else if (step)
2895 outbuf = xstrprintf ("vCont;s:%x", pid);
2896 else if (siggnal != TARGET_SIGNAL_0)
2897 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2898 else
2899 outbuf = xstrprintf ("vCont;c:%x", pid);
2900 }
2901
2902 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2903 old_cleanup = make_cleanup (xfree, outbuf);
2904
2905 putpkt (outbuf);
2906
2907 do_cleanups (old_cleanup);
2908
2909 return 1;
2910 }
2911
2912 /* Tell the remote machine to resume. */
2913
2914 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2915
2916 static int last_sent_step;
2917
2918 static void
2919 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2920 {
2921 struct remote_state *rs = get_remote_state ();
2922 char *buf;
2923 int pid = PIDGET (ptid);
2924
2925 last_sent_signal = siggnal;
2926 last_sent_step = step;
2927
2928 /* A hook for when we need to do something at the last moment before
2929 resumption. */
2930 if (deprecated_target_resume_hook)
2931 (*deprecated_target_resume_hook) ();
2932
2933 /* Update the inferior on signals to silently pass, if they've changed. */
2934 remote_pass_signals ();
2935
2936 /* The vCont packet doesn't need to specify threads via Hc. */
2937 if (remote_vcont_resume (ptid, step, siggnal))
2938 return;
2939
2940 /* All other supported resume packets do use Hc, so call set_thread. */
2941 if (pid == -1)
2942 set_thread (0, 0); /* Run any thread. */
2943 else
2944 set_thread (pid, 0); /* Run this thread. */
2945
2946 buf = rs->buf;
2947 if (siggnal != TARGET_SIGNAL_0)
2948 {
2949 buf[0] = step ? 'S' : 'C';
2950 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2951 buf[2] = tohex (((int) siggnal) & 0xf);
2952 buf[3] = '\0';
2953 }
2954 else
2955 strcpy (buf, step ? "s" : "c");
2956
2957 putpkt (buf);
2958 }
2959
2960 /* Same as remote_resume, but with async support. */
2961 static void
2962 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2963 {
2964 remote_resume (ptid, step, siggnal);
2965
2966 /* We are about to start executing the inferior, let's register it
2967 with the event loop. NOTE: this is the one place where all the
2968 execution commands end up. We could alternatively do this in each
2969 of the execution commands in infcmd.c. */
2970 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2971 into infcmd.c in order to allow inferior function calls to work
2972 NOT asynchronously. */
2973 if (target_can_async_p ())
2974 target_async (inferior_event_handler, 0);
2975 /* Tell the world that the target is now executing. */
2976 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2977 this? Instead, should the client of target just assume (for
2978 async targets) that the target is going to start executing? Is
2979 this information already found in the continuation block? */
2980 if (target_is_async_p ())
2981 target_executing = 1;
2982 }
2983 \f
2984
2985 /* Set up the signal handler for SIGINT, while the target is
2986 executing, ovewriting the 'regular' SIGINT signal handler. */
2987 static void
2988 initialize_sigint_signal_handler (void)
2989 {
2990 sigint_remote_token =
2991 create_async_signal_handler (async_remote_interrupt, NULL);
2992 signal (SIGINT, handle_remote_sigint);
2993 }
2994
2995 /* Signal handler for SIGINT, while the target is executing. */
2996 static void
2997 handle_remote_sigint (int sig)
2998 {
2999 signal (sig, handle_remote_sigint_twice);
3000 sigint_remote_twice_token =
3001 create_async_signal_handler (async_remote_interrupt_twice, NULL);
3002 mark_async_signal_handler_wrapper (sigint_remote_token);
3003 }
3004
3005 /* Signal handler for SIGINT, installed after SIGINT has already been
3006 sent once. It will take effect the second time that the user sends
3007 a ^C. */
3008 static void
3009 handle_remote_sigint_twice (int sig)
3010 {
3011 signal (sig, handle_sigint);
3012 sigint_remote_twice_token =
3013 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
3014 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3015 }
3016
3017 /* Perform the real interruption of the target execution, in response
3018 to a ^C. */
3019 static void
3020 async_remote_interrupt (gdb_client_data arg)
3021 {
3022 if (remote_debug)
3023 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3024
3025 target_stop ();
3026 }
3027
3028 /* Perform interrupt, if the first attempt did not succeed. Just give
3029 up on the target alltogether. */
3030 void
3031 async_remote_interrupt_twice (gdb_client_data arg)
3032 {
3033 if (remote_debug)
3034 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3035 /* Do something only if the target was not killed by the previous
3036 cntl-C. */
3037 if (target_executing)
3038 {
3039 interrupt_query ();
3040 signal (SIGINT, handle_remote_sigint);
3041 }
3042 }
3043
3044 /* Reinstall the usual SIGINT handlers, after the target has
3045 stopped. */
3046 static void
3047 cleanup_sigint_signal_handler (void *dummy)
3048 {
3049 signal (SIGINT, handle_sigint);
3050 if (sigint_remote_twice_token)
3051 delete_async_signal_handler (&sigint_remote_twice_token);
3052 if (sigint_remote_token)
3053 delete_async_signal_handler (&sigint_remote_token);
3054 }
3055
3056 /* Send ^C to target to halt it. Target will respond, and send us a
3057 packet. */
3058 static void (*ofunc) (int);
3059
3060 /* The command line interface's stop routine. This function is installed
3061 as a signal handler for SIGINT. The first time a user requests a
3062 stop, we call remote_stop to send a break or ^C. If there is no
3063 response from the target (it didn't stop when the user requested it),
3064 we ask the user if he'd like to detach from the target. */
3065 static void
3066 remote_interrupt (int signo)
3067 {
3068 /* If this doesn't work, try more severe steps. */
3069 signal (signo, remote_interrupt_twice);
3070
3071 if (remote_debug)
3072 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3073
3074 target_stop ();
3075 }
3076
3077 /* The user typed ^C twice. */
3078
3079 static void
3080 remote_interrupt_twice (int signo)
3081 {
3082 signal (signo, ofunc);
3083 interrupt_query ();
3084 signal (signo, remote_interrupt);
3085 }
3086
3087 /* This is the generic stop called via the target vector. When a target
3088 interrupt is requested, either by the command line or the GUI, we
3089 will eventually end up here. */
3090 static void
3091 remote_stop (void)
3092 {
3093 /* Send a break or a ^C, depending on user preference. */
3094 if (remote_debug)
3095 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3096
3097 if (remote_break)
3098 serial_send_break (remote_desc);
3099 else
3100 serial_write (remote_desc, "\003", 1);
3101 }
3102
3103 /* Ask the user what to do when an interrupt is received. */
3104
3105 static void
3106 interrupt_query (void)
3107 {
3108 target_terminal_ours ();
3109
3110 if (query ("Interrupted while waiting for the program.\n\
3111 Give up (and stop debugging it)? "))
3112 {
3113 target_mourn_inferior ();
3114 deprecated_throw_reason (RETURN_QUIT);
3115 }
3116
3117 target_terminal_inferior ();
3118 }
3119
3120 /* Enable/disable target terminal ownership. Most targets can use
3121 terminal groups to control terminal ownership. Remote targets are
3122 different in that explicit transfer of ownership to/from GDB/target
3123 is required. */
3124
3125 static void
3126 remote_async_terminal_inferior (void)
3127 {
3128 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3129 sync_execution here. This function should only be called when
3130 GDB is resuming the inferior in the forground. A background
3131 resume (``run&'') should leave GDB in control of the terminal and
3132 consequently should not call this code. */
3133 if (!sync_execution)
3134 return;
3135 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3136 calls target_terminal_*() idenpotent. The event-loop GDB talking
3137 to an asynchronous target with a synchronous command calls this
3138 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3139 stops trying to transfer the terminal to the target when it
3140 shouldn't this guard can go away. */
3141 if (!remote_async_terminal_ours_p)
3142 return;
3143 delete_file_handler (input_fd);
3144 remote_async_terminal_ours_p = 0;
3145 initialize_sigint_signal_handler ();
3146 /* NOTE: At this point we could also register our selves as the
3147 recipient of all input. Any characters typed could then be
3148 passed on down to the target. */
3149 }
3150
3151 static void
3152 remote_async_terminal_ours (void)
3153 {
3154 /* See FIXME in remote_async_terminal_inferior. */
3155 if (!sync_execution)
3156 return;
3157 /* See FIXME in remote_async_terminal_inferior. */
3158 if (remote_async_terminal_ours_p)
3159 return;
3160 cleanup_sigint_signal_handler (NULL);
3161 add_file_handler (input_fd, stdin_event_handler, 0);
3162 remote_async_terminal_ours_p = 1;
3163 }
3164
3165 /* If nonzero, ignore the next kill. */
3166
3167 int kill_kludge;
3168
3169 void
3170 remote_console_output (char *msg)
3171 {
3172 char *p;
3173
3174 for (p = msg; p[0] && p[1]; p += 2)
3175 {
3176 char tb[2];
3177 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3178 tb[0] = c;
3179 tb[1] = 0;
3180 fputs_unfiltered (tb, gdb_stdtarg);
3181 }
3182 gdb_flush (gdb_stdtarg);
3183 }
3184
3185 /* Wait until the remote machine stops, then return,
3186 storing status in STATUS just as `wait' would.
3187 Returns "pid", which in the case of a multi-threaded
3188 remote OS, is the thread-id. */
3189
3190 static ptid_t
3191 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3192 {
3193 struct remote_state *rs = get_remote_state ();
3194 struct remote_arch_state *rsa = get_remote_arch_state ();
3195 ULONGEST thread_num = -1;
3196 ULONGEST addr;
3197 int solibs_changed = 0;
3198
3199 status->kind = TARGET_WAITKIND_EXITED;
3200 status->value.integer = 0;
3201
3202 while (1)
3203 {
3204 char *buf, *p;
3205
3206 ofunc = signal (SIGINT, remote_interrupt);
3207 /* If the user hit C-c before this packet, or between packets,
3208 pretend that it was hit right here. */
3209 if (quit_flag)
3210 {
3211 quit_flag = 0;
3212 remote_interrupt (SIGINT);
3213 }
3214 getpkt (&rs->buf, &rs->buf_size, 1);
3215 signal (SIGINT, ofunc);
3216
3217 buf = rs->buf;
3218
3219 /* This is a hook for when we need to do something (perhaps the
3220 collection of trace data) every time the target stops. */
3221 if (deprecated_target_wait_loop_hook)
3222 (*deprecated_target_wait_loop_hook) ();
3223
3224 remote_stopped_by_watchpoint_p = 0;
3225
3226 switch (buf[0])
3227 {
3228 case 'E': /* Error of some sort. */
3229 warning (_("Remote failure reply: %s"), buf);
3230 continue;
3231 case 'F': /* File-I/O request. */
3232 remote_fileio_request (buf);
3233 continue;
3234 case 'T': /* Status with PC, SP, FP, ... */
3235 {
3236 gdb_byte regs[MAX_REGISTER_SIZE];
3237
3238 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3239 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3240 ss = signal number
3241 n... = register number
3242 r... = register contents
3243 */
3244 p = &buf[3]; /* after Txx */
3245
3246 while (*p)
3247 {
3248 char *p1;
3249 char *p_temp;
3250 int fieldsize;
3251 LONGEST pnum = 0;
3252
3253 /* If the packet contains a register number save it in
3254 pnum and set p1 to point to the character following
3255 it. Otherwise p1 points to p. */
3256
3257 /* If this packet is an awatch packet, don't parse the
3258 'a' as a register number. */
3259
3260 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3261 {
3262 /* Read the ``P'' register number. */
3263 pnum = strtol (p, &p_temp, 16);
3264 p1 = p_temp;
3265 }
3266 else
3267 p1 = p;
3268
3269 if (p1 == p) /* No register number present here. */
3270 {
3271 p1 = strchr (p, ':');
3272 if (p1 == NULL)
3273 error (_("Malformed packet(a) (missing colon): %s\n\
3274 Packet: '%s'\n"),
3275 p, buf);
3276 if (strncmp (p, "thread", p1 - p) == 0)
3277 {
3278 p_temp = unpack_varlen_hex (++p1, &thread_num);
3279 record_currthread (thread_num);
3280 p = p_temp;
3281 }
3282 else if ((strncmp (p, "watch", p1 - p) == 0)
3283 || (strncmp (p, "rwatch", p1 - p) == 0)
3284 || (strncmp (p, "awatch", p1 - p) == 0))
3285 {
3286 remote_stopped_by_watchpoint_p = 1;
3287 p = unpack_varlen_hex (++p1, &addr);
3288 remote_watch_data_address = (CORE_ADDR)addr;
3289 }
3290 else if (strncmp (p, "library", p1 - p) == 0)
3291 {
3292 p1++;
3293 p_temp = p1;
3294 while (*p_temp && *p_temp != ';')
3295 p_temp++;
3296
3297 solibs_changed = 1;
3298 p = p_temp;
3299 }
3300 else
3301 {
3302 /* Silently skip unknown optional info. */
3303 p_temp = strchr (p1 + 1, ';');
3304 if (p_temp)
3305 p = p_temp;
3306 }
3307 }
3308 else
3309 {
3310 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3311 p = p1;
3312
3313 if (*p++ != ':')
3314 error (_("Malformed packet(b) (missing colon): %s\n\
3315 Packet: '%s'\n"),
3316 p, buf);
3317
3318 if (reg == NULL)
3319 error (_("Remote sent bad register number %s: %s\n\
3320 Packet: '%s'\n"),
3321 phex_nz (pnum, 0), p, buf);
3322
3323 fieldsize = hex2bin (p, regs,
3324 register_size (current_gdbarch,
3325 reg->regnum));
3326 p += 2 * fieldsize;
3327 if (fieldsize < register_size (current_gdbarch,
3328 reg->regnum))
3329 warning (_("Remote reply is too short: %s"), buf);
3330 regcache_raw_supply (get_current_regcache (),
3331 reg->regnum, regs);
3332 }
3333
3334 if (*p++ != ';')
3335 error (_("Remote register badly formatted: %s\nhere: %s"),
3336 buf, p);
3337 }
3338 }
3339 /* fall through */
3340 case 'S': /* Old style status, just signal only. */
3341 if (solibs_changed)
3342 status->kind = TARGET_WAITKIND_LOADED;
3343 else
3344 {
3345 status->kind = TARGET_WAITKIND_STOPPED;
3346 status->value.sig = (enum target_signal)
3347 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3348 }
3349
3350 if (buf[3] == 'p')
3351 {
3352 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3353 record_currthread (thread_num);
3354 }
3355 goto got_status;
3356 case 'W': /* Target exited. */
3357 {
3358 /* The remote process exited. */
3359 status->kind = TARGET_WAITKIND_EXITED;
3360 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3361 goto got_status;
3362 }
3363 case 'X':
3364 status->kind = TARGET_WAITKIND_SIGNALLED;
3365 status->value.sig = (enum target_signal)
3366 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3367 kill_kludge = 1;
3368
3369 goto got_status;
3370 case 'O': /* Console output. */
3371 remote_console_output (buf + 1);
3372 continue;
3373 case '\0':
3374 if (last_sent_signal != TARGET_SIGNAL_0)
3375 {
3376 /* Zero length reply means that we tried 'S' or 'C' and
3377 the remote system doesn't support it. */
3378 target_terminal_ours_for_output ();
3379 printf_filtered
3380 ("Can't send signals to this remote system. %s not sent.\n",
3381 target_signal_to_name (last_sent_signal));
3382 last_sent_signal = TARGET_SIGNAL_0;
3383 target_terminal_inferior ();
3384
3385 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3386 putpkt ((char *) buf);
3387 continue;
3388 }
3389 /* else fallthrough */
3390 default:
3391 warning (_("Invalid remote reply: %s"), buf);
3392 continue;
3393 }
3394 }
3395 got_status:
3396 if (thread_num != -1)
3397 {
3398 return pid_to_ptid (thread_num);
3399 }
3400 return inferior_ptid;
3401 }
3402
3403 /* Async version of remote_wait. */
3404 static ptid_t
3405 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3406 {
3407 struct remote_state *rs = get_remote_state ();
3408 struct remote_arch_state *rsa = get_remote_arch_state ();
3409 ULONGEST thread_num = -1;
3410 ULONGEST addr;
3411 int solibs_changed = 0;
3412
3413 status->kind = TARGET_WAITKIND_EXITED;
3414 status->value.integer = 0;
3415
3416 remote_stopped_by_watchpoint_p = 0;
3417
3418 while (1)
3419 {
3420 char *buf, *p;
3421
3422 if (!target_is_async_p ())
3423 {
3424 ofunc = signal (SIGINT, remote_interrupt);
3425 /* If the user hit C-c before this packet, or between packets,
3426 pretend that it was hit right here. */
3427 if (quit_flag)
3428 {
3429 quit_flag = 0;
3430 remote_interrupt (SIGINT);
3431 }
3432 }
3433 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3434 _never_ wait for ever -> test on target_is_async_p().
3435 However, before we do that we need to ensure that the caller
3436 knows how to take the target into/out of async mode. */
3437 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3438 if (!target_is_async_p ())
3439 signal (SIGINT, ofunc);
3440
3441 buf = rs->buf;
3442
3443 /* This is a hook for when we need to do something (perhaps the
3444 collection of trace data) every time the target stops. */
3445 if (deprecated_target_wait_loop_hook)
3446 (*deprecated_target_wait_loop_hook) ();
3447
3448 switch (buf[0])
3449 {
3450 case 'E': /* Error of some sort. */
3451 warning (_("Remote failure reply: %s"), buf);
3452 continue;
3453 case 'F': /* File-I/O request. */
3454 remote_fileio_request (buf);
3455 continue;
3456 case 'T': /* Status with PC, SP, FP, ... */
3457 {
3458 gdb_byte regs[MAX_REGISTER_SIZE];
3459
3460 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3461 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3462 ss = signal number
3463 n... = register number
3464 r... = register contents
3465 */
3466 p = &buf[3]; /* after Txx */
3467
3468 while (*p)
3469 {
3470 char *p1;
3471 char *p_temp;
3472 int fieldsize;
3473 long pnum = 0;
3474
3475 /* If the packet contains a register number, save it
3476 in pnum and set p1 to point to the character
3477 following it. Otherwise p1 points to p. */
3478
3479 /* If this packet is an awatch packet, don't parse the 'a'
3480 as a register number. */
3481
3482 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3483 {
3484 /* Read the register number. */
3485 pnum = strtol (p, &p_temp, 16);
3486 p1 = p_temp;
3487 }
3488 else
3489 p1 = p;
3490
3491 if (p1 == p) /* No register number present here. */
3492 {
3493 p1 = strchr (p, ':');
3494 if (p1 == NULL)
3495 error (_("Malformed packet(a) (missing colon): %s\n\
3496 Packet: '%s'\n"),
3497 p, buf);
3498 if (strncmp (p, "thread", p1 - p) == 0)
3499 {
3500 p_temp = unpack_varlen_hex (++p1, &thread_num);
3501 record_currthread (thread_num);
3502 p = p_temp;
3503 }
3504 else if ((strncmp (p, "watch", p1 - p) == 0)
3505 || (strncmp (p, "rwatch", p1 - p) == 0)
3506 || (strncmp (p, "awatch", p1 - p) == 0))
3507 {
3508 remote_stopped_by_watchpoint_p = 1;
3509 p = unpack_varlen_hex (++p1, &addr);
3510 remote_watch_data_address = (CORE_ADDR)addr;
3511 }
3512 else if (strncmp (p, "library", p1 - p) == 0)
3513 {
3514 p1++;
3515 p_temp = p1;
3516 while (*p_temp && *p_temp != ';')
3517 p_temp++;
3518
3519 solibs_changed = 1;
3520 p = p_temp;
3521 }
3522 else
3523 {
3524 /* Silently skip unknown optional info. */
3525 p_temp = strchr (p1 + 1, ';');
3526 if (p_temp)
3527 p = p_temp;
3528 }
3529 }
3530
3531 else
3532 {
3533 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3534 p = p1;
3535 if (*p++ != ':')
3536 error (_("Malformed packet(b) (missing colon): %s\n\
3537 Packet: '%s'\n"),
3538 p, buf);
3539
3540 if (reg == NULL)
3541 error (_("Remote sent bad register number %ld: %s\n\
3542 Packet: '%s'\n"),
3543 pnum, p, buf);
3544
3545 fieldsize = hex2bin (p, regs,
3546 register_size (current_gdbarch,
3547 reg->regnum));
3548 p += 2 * fieldsize;
3549 if (fieldsize < register_size (current_gdbarch,
3550 reg->regnum))
3551 warning (_("Remote reply is too short: %s"), buf);
3552 regcache_raw_supply (get_current_regcache (),
3553 reg->regnum, regs);
3554 }
3555
3556 if (*p++ != ';')
3557 error (_("Remote register badly formatted: %s\nhere: %s"),
3558 buf, p);
3559 }
3560 }
3561 /* fall through */
3562 case 'S': /* Old style status, just signal only. */
3563 if (solibs_changed)
3564 status->kind = TARGET_WAITKIND_LOADED;
3565 else
3566 {
3567 status->kind = TARGET_WAITKIND_STOPPED;
3568 status->value.sig = (enum target_signal)
3569 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3570 }
3571
3572 if (buf[3] == 'p')
3573 {
3574 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3575 record_currthread (thread_num);
3576 }
3577 goto got_status;
3578 case 'W': /* Target exited. */
3579 {
3580 /* The remote process exited. */
3581 status->kind = TARGET_WAITKIND_EXITED;
3582 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3583 goto got_status;
3584 }
3585 case 'X':
3586 status->kind = TARGET_WAITKIND_SIGNALLED;
3587 status->value.sig = (enum target_signal)
3588 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3589 kill_kludge = 1;
3590
3591 goto got_status;
3592 case 'O': /* Console output. */
3593 remote_console_output (buf + 1);
3594 /* Return immediately to the event loop. The event loop will
3595 still be waiting on the inferior afterwards. */
3596 status->kind = TARGET_WAITKIND_IGNORE;
3597 goto got_status;
3598 case '\0':
3599 if (last_sent_signal != TARGET_SIGNAL_0)
3600 {
3601 /* Zero length reply means that we tried 'S' or 'C' and
3602 the remote system doesn't support it. */
3603 target_terminal_ours_for_output ();
3604 printf_filtered
3605 ("Can't send signals to this remote system. %s not sent.\n",
3606 target_signal_to_name (last_sent_signal));
3607 last_sent_signal = TARGET_SIGNAL_0;
3608 target_terminal_inferior ();
3609
3610 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3611 putpkt ((char *) buf);
3612 continue;
3613 }
3614 /* else fallthrough */
3615 default:
3616 warning (_("Invalid remote reply: %s"), buf);
3617 continue;
3618 }
3619 }
3620 got_status:
3621 if (thread_num != -1)
3622 {
3623 return pid_to_ptid (thread_num);
3624 }
3625 return inferior_ptid;
3626 }
3627
3628 /* Fetch a single register using a 'p' packet. */
3629
3630 static int
3631 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3632 {
3633 struct remote_state *rs = get_remote_state ();
3634 char *buf, *p;
3635 char regp[MAX_REGISTER_SIZE];
3636 int i;
3637
3638 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3639 return 0;
3640
3641 if (reg->pnum == -1)
3642 return 0;
3643
3644 p = rs->buf;
3645 *p++ = 'p';
3646 p += hexnumstr (p, reg->pnum);
3647 *p++ = '\0';
3648 remote_send (&rs->buf, &rs->buf_size);
3649
3650 buf = rs->buf;
3651
3652 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3653 {
3654 case PACKET_OK:
3655 break;
3656 case PACKET_UNKNOWN:
3657 return 0;
3658 case PACKET_ERROR:
3659 error (_("Could not fetch register \"%s\""),
3660 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
3661 }
3662
3663 /* If this register is unfetchable, tell the regcache. */
3664 if (buf[0] == 'x')
3665 {
3666 regcache_raw_supply (regcache, reg->regnum, NULL);
3667 return 1;
3668 }
3669
3670 /* Otherwise, parse and supply the value. */
3671 p = buf;
3672 i = 0;
3673 while (p[0] != 0)
3674 {
3675 if (p[1] == 0)
3676 error (_("fetch_register_using_p: early buf termination"));
3677
3678 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3679 p += 2;
3680 }
3681 regcache_raw_supply (regcache, reg->regnum, regp);
3682 return 1;
3683 }
3684
3685 /* Fetch the registers included in the target's 'g' packet. */
3686
3687 static int
3688 send_g_packet (void)
3689 {
3690 struct remote_state *rs = get_remote_state ();
3691 int i, buf_len;
3692 char *p;
3693 char *regs;
3694
3695 sprintf (rs->buf, "g");
3696 remote_send (&rs->buf, &rs->buf_size);
3697
3698 /* We can get out of synch in various cases. If the first character
3699 in the buffer is not a hex character, assume that has happened
3700 and try to fetch another packet to read. */
3701 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3702 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3703 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3704 && rs->buf[0] != 'x') /* New: unavailable register value. */
3705 {
3706 if (remote_debug)
3707 fprintf_unfiltered (gdb_stdlog,
3708 "Bad register packet; fetching a new packet\n");
3709 getpkt (&rs->buf, &rs->buf_size, 0);
3710 }
3711
3712 buf_len = strlen (rs->buf);
3713
3714 /* Sanity check the received packet. */
3715 if (buf_len % 2 != 0)
3716 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3717
3718 return buf_len / 2;
3719 }
3720
3721 static void
3722 process_g_packet (struct regcache *regcache)
3723 {
3724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3725 struct remote_state *rs = get_remote_state ();
3726 struct remote_arch_state *rsa = get_remote_arch_state ();
3727 int i, buf_len;
3728 char *p;
3729 char *regs;
3730
3731 buf_len = strlen (rs->buf);
3732
3733 /* Further sanity checks, with knowledge of the architecture. */
3734 if (buf_len > 2 * rsa->sizeof_g_packet)
3735 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3736
3737 /* Save the size of the packet sent to us by the target. It is used
3738 as a heuristic when determining the max size of packets that the
3739 target can safely receive. */
3740 if (rsa->actual_register_packet_size == 0)
3741 rsa->actual_register_packet_size = buf_len;
3742
3743 /* If this is smaller than we guessed the 'g' packet would be,
3744 update our records. A 'g' reply that doesn't include a register's
3745 value implies either that the register is not available, or that
3746 the 'p' packet must be used. */
3747 if (buf_len < 2 * rsa->sizeof_g_packet)
3748 {
3749 rsa->sizeof_g_packet = buf_len / 2;
3750
3751 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3752 {
3753 if (rsa->regs[i].pnum == -1)
3754 continue;
3755
3756 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3757 rsa->regs[i].in_g_packet = 0;
3758 else
3759 rsa->regs[i].in_g_packet = 1;
3760 }
3761 }
3762
3763 regs = alloca (rsa->sizeof_g_packet);
3764
3765 /* Unimplemented registers read as all bits zero. */
3766 memset (regs, 0, rsa->sizeof_g_packet);
3767
3768 /* Reply describes registers byte by byte, each byte encoded as two
3769 hex characters. Suck them all up, then supply them to the
3770 register cacheing/storage mechanism. */
3771
3772 p = rs->buf;
3773 for (i = 0; i < rsa->sizeof_g_packet; i++)
3774 {
3775 if (p[0] == 0 || p[1] == 0)
3776 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3777 internal_error (__FILE__, __LINE__,
3778 "unexpected end of 'g' packet reply");
3779
3780 if (p[0] == 'x' && p[1] == 'x')
3781 regs[i] = 0; /* 'x' */
3782 else
3783 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3784 p += 2;
3785 }
3786
3787 {
3788 int i;
3789 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3790 {
3791 struct packet_reg *r = &rsa->regs[i];
3792 if (r->in_g_packet)
3793 {
3794 if (r->offset * 2 >= strlen (rs->buf))
3795 /* This shouldn't happen - we adjusted in_g_packet above. */
3796 internal_error (__FILE__, __LINE__,
3797 "unexpected end of 'g' packet reply");
3798 else if (rs->buf[r->offset * 2] == 'x')
3799 {
3800 gdb_assert (r->offset * 2 < strlen (rs->buf));
3801 /* The register isn't available, mark it as such (at
3802 the same time setting the value to zero). */
3803 regcache_raw_supply (regcache, r->regnum, NULL);
3804 }
3805 else
3806 regcache_raw_supply (regcache, r->regnum,
3807 regs + r->offset);
3808 }
3809 }
3810 }
3811 }
3812
3813 static void
3814 fetch_registers_using_g (struct regcache *regcache)
3815 {
3816 send_g_packet ();
3817 process_g_packet (regcache);
3818 }
3819
3820 static void
3821 remote_fetch_registers (struct regcache *regcache, int regnum)
3822 {
3823 struct remote_state *rs = get_remote_state ();
3824 struct remote_arch_state *rsa = get_remote_arch_state ();
3825 int i;
3826
3827 set_thread (PIDGET (inferior_ptid), 1);
3828
3829 if (regnum >= 0)
3830 {
3831 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3832 gdb_assert (reg != NULL);
3833
3834 /* If this register might be in the 'g' packet, try that first -
3835 we are likely to read more than one register. If this is the
3836 first 'g' packet, we might be overly optimistic about its
3837 contents, so fall back to 'p'. */
3838 if (reg->in_g_packet)
3839 {
3840 fetch_registers_using_g (regcache);
3841 if (reg->in_g_packet)
3842 return;
3843 }
3844
3845 if (fetch_register_using_p (regcache, reg))
3846 return;
3847
3848 /* This register is not available. */
3849 regcache_raw_supply (regcache, reg->regnum, NULL);
3850
3851 return;
3852 }
3853
3854 fetch_registers_using_g (regcache);
3855
3856 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3857 if (!rsa->regs[i].in_g_packet)
3858 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
3859 {
3860 /* This register is not available. */
3861 regcache_raw_supply (regcache, i, NULL);
3862 }
3863 }
3864
3865 /* Prepare to store registers. Since we may send them all (using a
3866 'G' request), we have to read out the ones we don't want to change
3867 first. */
3868
3869 static void
3870 remote_prepare_to_store (struct regcache *regcache)
3871 {
3872 struct remote_arch_state *rsa = get_remote_arch_state ();
3873 int i;
3874 gdb_byte buf[MAX_REGISTER_SIZE];
3875
3876 /* Make sure the entire registers array is valid. */
3877 switch (remote_protocol_packets[PACKET_P].support)
3878 {
3879 case PACKET_DISABLE:
3880 case PACKET_SUPPORT_UNKNOWN:
3881 /* Make sure all the necessary registers are cached. */
3882 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3883 if (rsa->regs[i].in_g_packet)
3884 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
3885 break;
3886 case PACKET_ENABLE:
3887 break;
3888 }
3889 }
3890
3891 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3892 packet was not recognized. */
3893
3894 static int
3895 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
3896 {
3897 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3898 struct remote_state *rs = get_remote_state ();
3899 struct remote_arch_state *rsa = get_remote_arch_state ();
3900 /* Try storing a single register. */
3901 char *buf = rs->buf;
3902 gdb_byte regp[MAX_REGISTER_SIZE];
3903 char *p;
3904
3905 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3906 return 0;
3907
3908 if (reg->pnum == -1)
3909 return 0;
3910
3911 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3912 p = buf + strlen (buf);
3913 regcache_raw_collect (regcache, reg->regnum, regp);
3914 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
3915 remote_send (&rs->buf, &rs->buf_size);
3916
3917 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3918 {
3919 case PACKET_OK:
3920 return 1;
3921 case PACKET_ERROR:
3922 error (_("Could not write register \"%s\""),
3923 gdbarch_register_name (gdbarch, reg->regnum));
3924 case PACKET_UNKNOWN:
3925 return 0;
3926 default:
3927 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3928 }
3929 }
3930
3931 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3932 contents of the register cache buffer. FIXME: ignores errors. */
3933
3934 static void
3935 store_registers_using_G (const struct regcache *regcache)
3936 {
3937 struct remote_state *rs = get_remote_state ();
3938 struct remote_arch_state *rsa = get_remote_arch_state ();
3939 gdb_byte *regs;
3940 char *p;
3941
3942 /* Extract all the registers in the regcache copying them into a
3943 local buffer. */
3944 {
3945 int i;
3946 regs = alloca (rsa->sizeof_g_packet);
3947 memset (regs, 0, rsa->sizeof_g_packet);
3948 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3949 {
3950 struct packet_reg *r = &rsa->regs[i];
3951 if (r->in_g_packet)
3952 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
3953 }
3954 }
3955
3956 /* Command describes registers byte by byte,
3957 each byte encoded as two hex characters. */
3958 p = rs->buf;
3959 *p++ = 'G';
3960 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3961 updated. */
3962 bin2hex (regs, p, rsa->sizeof_g_packet);
3963 remote_send (&rs->buf, &rs->buf_size);
3964 }
3965
3966 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3967 of the register cache buffer. FIXME: ignores errors. */
3968
3969 static void
3970 remote_store_registers (struct regcache *regcache, int regnum)
3971 {
3972 struct remote_state *rs = get_remote_state ();
3973 struct remote_arch_state *rsa = get_remote_arch_state ();
3974 int i;
3975
3976 set_thread (PIDGET (inferior_ptid), 1);
3977
3978 if (regnum >= 0)
3979 {
3980 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3981 gdb_assert (reg != NULL);
3982
3983 /* Always prefer to store registers using the 'P' packet if
3984 possible; we often change only a small number of registers.
3985 Sometimes we change a larger number; we'd need help from a
3986 higher layer to know to use 'G'. */
3987 if (store_register_using_P (regcache, reg))
3988 return;
3989
3990 /* For now, don't complain if we have no way to write the
3991 register. GDB loses track of unavailable registers too
3992 easily. Some day, this may be an error. We don't have
3993 any way to read the register, either... */
3994 if (!reg->in_g_packet)
3995 return;
3996
3997 store_registers_using_G (regcache);
3998 return;
3999 }
4000
4001 store_registers_using_G (regcache);
4002
4003 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4004 if (!rsa->regs[i].in_g_packet)
4005 if (!store_register_using_P (regcache, &rsa->regs[i]))
4006 /* See above for why we do not issue an error here. */
4007 continue;
4008 }
4009 \f
4010
4011 /* Return the number of hex digits in num. */
4012
4013 static int
4014 hexnumlen (ULONGEST num)
4015 {
4016 int i;
4017
4018 for (i = 0; num != 0; i++)
4019 num >>= 4;
4020
4021 return max (i, 1);
4022 }
4023
4024 /* Set BUF to the minimum number of hex digits representing NUM. */
4025
4026 static int
4027 hexnumstr (char *buf, ULONGEST num)
4028 {
4029 int len = hexnumlen (num);
4030 return hexnumnstr (buf, num, len);
4031 }
4032
4033
4034 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
4035
4036 static int
4037 hexnumnstr (char *buf, ULONGEST num, int width)
4038 {
4039 int i;
4040
4041 buf[width] = '\0';
4042
4043 for (i = width - 1; i >= 0; i--)
4044 {
4045 buf[i] = "0123456789abcdef"[(num & 0xf)];
4046 num >>= 4;
4047 }
4048
4049 return width;
4050 }
4051
4052 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4053
4054 static CORE_ADDR
4055 remote_address_masked (CORE_ADDR addr)
4056 {
4057 int address_size = remote_address_size;
4058 /* If "remoteaddresssize" was not set, default to target address size. */
4059 if (!address_size)
4060 address_size = gdbarch_addr_bit (current_gdbarch);
4061
4062 if (address_size > 0
4063 && address_size < (sizeof (ULONGEST) * 8))
4064 {
4065 /* Only create a mask when that mask can safely be constructed
4066 in a ULONGEST variable. */
4067 ULONGEST mask = 1;
4068 mask = (mask << address_size) - 1;
4069 addr &= mask;
4070 }
4071 return addr;
4072 }
4073
4074 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4075 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4076 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4077 (which may be more than *OUT_LEN due to escape characters). The
4078 total number of bytes in the output buffer will be at most
4079 OUT_MAXLEN. */
4080
4081 static int
4082 remote_escape_output (const gdb_byte *buffer, int len,
4083 gdb_byte *out_buf, int *out_len,
4084 int out_maxlen)
4085 {
4086 int input_index, output_index;
4087
4088 output_index = 0;
4089 for (input_index = 0; input_index < len; input_index++)
4090 {
4091 gdb_byte b = buffer[input_index];
4092
4093 if (b == '$' || b == '#' || b == '}')
4094 {
4095 /* These must be escaped. */
4096 if (output_index + 2 > out_maxlen)
4097 break;
4098 out_buf[output_index++] = '}';
4099 out_buf[output_index++] = b ^ 0x20;
4100 }
4101 else
4102 {
4103 if (output_index + 1 > out_maxlen)
4104 break;
4105 out_buf[output_index++] = b;
4106 }
4107 }
4108
4109 *out_len = input_index;
4110 return output_index;
4111 }
4112
4113 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4114 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4115 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4116
4117 This function reverses remote_escape_output. It allows more
4118 escaped characters than that function does, in particular because
4119 '*' must be escaped to avoid the run-length encoding processing
4120 in reading packets. */
4121
4122 static int
4123 remote_unescape_input (const gdb_byte *buffer, int len,
4124 gdb_byte *out_buf, int out_maxlen)
4125 {
4126 int input_index, output_index;
4127 int escaped;
4128
4129 output_index = 0;
4130 escaped = 0;
4131 for (input_index = 0; input_index < len; input_index++)
4132 {
4133 gdb_byte b = buffer[input_index];
4134
4135 if (output_index + 1 > out_maxlen)
4136 {
4137 warning (_("Received too much data from remote target;"
4138 " ignoring overflow."));
4139 return output_index;
4140 }
4141
4142 if (escaped)
4143 {
4144 out_buf[output_index++] = b ^ 0x20;
4145 escaped = 0;
4146 }
4147 else if (b == '}')
4148 escaped = 1;
4149 else
4150 out_buf[output_index++] = b;
4151 }
4152
4153 if (escaped)
4154 error (_("Unmatched escape character in target response."));
4155
4156 return output_index;
4157 }
4158
4159 /* Determine whether the remote target supports binary downloading.
4160 This is accomplished by sending a no-op memory write of zero length
4161 to the target at the specified address. It does not suffice to send
4162 the whole packet, since many stubs strip the eighth bit and
4163 subsequently compute a wrong checksum, which causes real havoc with
4164 remote_write_bytes.
4165
4166 NOTE: This can still lose if the serial line is not eight-bit
4167 clean. In cases like this, the user should clear "remote
4168 X-packet". */
4169
4170 static void
4171 check_binary_download (CORE_ADDR addr)
4172 {
4173 struct remote_state *rs = get_remote_state ();
4174
4175 switch (remote_protocol_packets[PACKET_X].support)
4176 {
4177 case PACKET_DISABLE:
4178 break;
4179 case PACKET_ENABLE:
4180 break;
4181 case PACKET_SUPPORT_UNKNOWN:
4182 {
4183 char *p;
4184
4185 p = rs->buf;
4186 *p++ = 'X';
4187 p += hexnumstr (p, (ULONGEST) addr);
4188 *p++ = ',';
4189 p += hexnumstr (p, (ULONGEST) 0);
4190 *p++ = ':';
4191 *p = '\0';
4192
4193 putpkt_binary (rs->buf, (int) (p - rs->buf));
4194 getpkt (&rs->buf, &rs->buf_size, 0);
4195
4196 if (rs->buf[0] == '\0')
4197 {
4198 if (remote_debug)
4199 fprintf_unfiltered (gdb_stdlog,
4200 "binary downloading NOT suppported by target\n");
4201 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4202 }
4203 else
4204 {
4205 if (remote_debug)
4206 fprintf_unfiltered (gdb_stdlog,
4207 "binary downloading suppported by target\n");
4208 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4209 }
4210 break;
4211 }
4212 }
4213 }
4214
4215 /* Write memory data directly to the remote machine.
4216 This does not inform the data cache; the data cache uses this.
4217 HEADER is the starting part of the packet.
4218 MEMADDR is the address in the remote memory space.
4219 MYADDR is the address of the buffer in our space.
4220 LEN is the number of bytes.
4221 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4222 should send data as binary ('X'), or hex-encoded ('M').
4223
4224 The function creates packet of the form
4225 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4226
4227 where encoding of <DATA> is termined by PACKET_FORMAT.
4228
4229 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4230 are omitted.
4231
4232 Returns the number of bytes transferred, or 0 (setting errno) for
4233 error. Only transfer a single packet. */
4234
4235 static int
4236 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4237 const gdb_byte *myaddr, int len,
4238 char packet_format, int use_length)
4239 {
4240 struct remote_state *rs = get_remote_state ();
4241 char *p;
4242 char *plen = NULL;
4243 int plenlen = 0;
4244 int todo;
4245 int nr_bytes;
4246 int payload_size;
4247 int payload_length;
4248 int header_length;
4249
4250 if (packet_format != 'X' && packet_format != 'M')
4251 internal_error (__FILE__, __LINE__,
4252 "remote_write_bytes_aux: bad packet format");
4253
4254 if (len <= 0)
4255 return 0;
4256
4257 payload_size = get_memory_write_packet_size ();
4258
4259 /* The packet buffer will be large enough for the payload;
4260 get_memory_packet_size ensures this. */
4261 rs->buf[0] = '\0';
4262
4263 /* Compute the size of the actual payload by subtracting out the
4264 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4265 */
4266 payload_size -= strlen ("$,:#NN");
4267 if (!use_length)
4268 /* The comma won't be used. */
4269 payload_size += 1;
4270 header_length = strlen (header);
4271 payload_size -= header_length;
4272 payload_size -= hexnumlen (memaddr);
4273
4274 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4275
4276 strcat (rs->buf, header);
4277 p = rs->buf + strlen (header);
4278
4279 /* Compute a best guess of the number of bytes actually transfered. */
4280 if (packet_format == 'X')
4281 {
4282 /* Best guess at number of bytes that will fit. */
4283 todo = min (len, payload_size);
4284 if (use_length)
4285 payload_size -= hexnumlen (todo);
4286 todo = min (todo, payload_size);
4287 }
4288 else
4289 {
4290 /* Num bytes that will fit. */
4291 todo = min (len, payload_size / 2);
4292 if (use_length)
4293 payload_size -= hexnumlen (todo);
4294 todo = min (todo, payload_size / 2);
4295 }
4296
4297 if (todo <= 0)
4298 internal_error (__FILE__, __LINE__,
4299 _("minumum packet size too small to write data"));
4300
4301 /* If we already need another packet, then try to align the end
4302 of this packet to a useful boundary. */
4303 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4304 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4305
4306 /* Append "<memaddr>". */
4307 memaddr = remote_address_masked (memaddr);
4308 p += hexnumstr (p, (ULONGEST) memaddr);
4309
4310 if (use_length)
4311 {
4312 /* Append ",". */
4313 *p++ = ',';
4314
4315 /* Append <len>. Retain the location/size of <len>. It may need to
4316 be adjusted once the packet body has been created. */
4317 plen = p;
4318 plenlen = hexnumstr (p, (ULONGEST) todo);
4319 p += plenlen;
4320 }
4321
4322 /* Append ":". */
4323 *p++ = ':';
4324 *p = '\0';
4325
4326 /* Append the packet body. */
4327 if (packet_format == 'X')
4328 {
4329 /* Binary mode. Send target system values byte by byte, in
4330 increasing byte addresses. Only escape certain critical
4331 characters. */
4332 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4333 payload_size);
4334
4335 /* If not all TODO bytes fit, then we'll need another packet. Make
4336 a second try to keep the end of the packet aligned. Don't do
4337 this if the packet is tiny. */
4338 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4339 {
4340 int new_nr_bytes;
4341
4342 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4343 - memaddr);
4344 if (new_nr_bytes != nr_bytes)
4345 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4346 p, &nr_bytes,
4347 payload_size);
4348 }
4349
4350 p += payload_length;
4351 if (use_length && nr_bytes < todo)
4352 {
4353 /* Escape chars have filled up the buffer prematurely,
4354 and we have actually sent fewer bytes than planned.
4355 Fix-up the length field of the packet. Use the same
4356 number of characters as before. */
4357 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4358 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4359 }
4360 }
4361 else
4362 {
4363 /* Normal mode: Send target system values byte by byte, in
4364 increasing byte addresses. Each byte is encoded as a two hex
4365 value. */
4366 nr_bytes = bin2hex (myaddr, p, todo);
4367 p += 2 * nr_bytes;
4368 }
4369
4370 putpkt_binary (rs->buf, (int) (p - rs->buf));
4371 getpkt (&rs->buf, &rs->buf_size, 0);
4372
4373 if (rs->buf[0] == 'E')
4374 {
4375 /* There is no correspondance between what the remote protocol
4376 uses for errors and errno codes. We would like a cleaner way
4377 of representing errors (big enough to include errno codes,
4378 bfd_error codes, and others). But for now just return EIO. */
4379 errno = EIO;
4380 return 0;
4381 }
4382
4383 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4384 fewer bytes than we'd planned. */
4385 return nr_bytes;
4386 }
4387
4388 /* Write memory data directly to the remote machine.
4389 This does not inform the data cache; the data cache uses this.
4390 MEMADDR is the address in the remote memory space.
4391 MYADDR is the address of the buffer in our space.
4392 LEN is the number of bytes.
4393
4394 Returns number of bytes transferred, or 0 (setting errno) for
4395 error. Only transfer a single packet. */
4396
4397 int
4398 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4399 {
4400 char *packet_format = 0;
4401
4402 /* Check whether the target supports binary download. */
4403 check_binary_download (memaddr);
4404
4405 switch (remote_protocol_packets[PACKET_X].support)
4406 {
4407 case PACKET_ENABLE:
4408 packet_format = "X";
4409 break;
4410 case PACKET_DISABLE:
4411 packet_format = "M";
4412 break;
4413 case PACKET_SUPPORT_UNKNOWN:
4414 internal_error (__FILE__, __LINE__,
4415 _("remote_write_bytes: bad internal state"));
4416 default:
4417 internal_error (__FILE__, __LINE__, _("bad switch"));
4418 }
4419
4420 return remote_write_bytes_aux (packet_format,
4421 memaddr, myaddr, len, packet_format[0], 1);
4422 }
4423
4424 /* Read memory data directly from the remote machine.
4425 This does not use the data cache; the data cache uses this.
4426 MEMADDR is the address in the remote memory space.
4427 MYADDR is the address of the buffer in our space.
4428 LEN is the number of bytes.
4429
4430 Returns number of bytes transferred, or 0 for error. */
4431
4432 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4433 remote targets) shouldn't attempt to read the entire buffer.
4434 Instead it should read a single packet worth of data and then
4435 return the byte size of that packet to the caller. The caller (its
4436 caller and its callers caller ;-) already contains code for
4437 handling partial reads. */
4438
4439 int
4440 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4441 {
4442 struct remote_state *rs = get_remote_state ();
4443 int max_buf_size; /* Max size of packet output buffer. */
4444 int origlen;
4445
4446 if (len <= 0)
4447 return 0;
4448
4449 max_buf_size = get_memory_read_packet_size ();
4450 /* The packet buffer will be large enough for the payload;
4451 get_memory_packet_size ensures this. */
4452
4453 origlen = len;
4454 while (len > 0)
4455 {
4456 char *p;
4457 int todo;
4458 int i;
4459
4460 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4461
4462 /* construct "m"<memaddr>","<len>" */
4463 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4464 memaddr = remote_address_masked (memaddr);
4465 p = rs->buf;
4466 *p++ = 'm';
4467 p += hexnumstr (p, (ULONGEST) memaddr);
4468 *p++ = ',';
4469 p += hexnumstr (p, (ULONGEST) todo);
4470 *p = '\0';
4471
4472 putpkt (rs->buf);
4473 getpkt (&rs->buf, &rs->buf_size, 0);
4474
4475 if (rs->buf[0] == 'E'
4476 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4477 && rs->buf[3] == '\0')
4478 {
4479 /* There is no correspondance between what the remote
4480 protocol uses for errors and errno codes. We would like
4481 a cleaner way of representing errors (big enough to
4482 include errno codes, bfd_error codes, and others). But
4483 for now just return EIO. */
4484 errno = EIO;
4485 return 0;
4486 }
4487
4488 /* Reply describes memory byte by byte,
4489 each byte encoded as two hex characters. */
4490
4491 p = rs->buf;
4492 if ((i = hex2bin (p, myaddr, todo)) < todo)
4493 {
4494 /* Reply is short. This means that we were able to read
4495 only part of what we wanted to. */
4496 return i + (origlen - len);
4497 }
4498 myaddr += todo;
4499 memaddr += todo;
4500 len -= todo;
4501 }
4502 return origlen;
4503 }
4504 \f
4505 /* Read or write LEN bytes from inferior memory at MEMADDR,
4506 transferring to or from debugger address BUFFER. Write to inferior
4507 if SHOULD_WRITE is nonzero. Returns length of data written or
4508 read; 0 for error. TARGET is unused. */
4509
4510 static int
4511 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4512 int should_write, struct mem_attrib *attrib,
4513 struct target_ops *target)
4514 {
4515 int res;
4516
4517 if (should_write)
4518 res = remote_write_bytes (mem_addr, buffer, mem_len);
4519 else
4520 res = remote_read_bytes (mem_addr, buffer, mem_len);
4521
4522 return res;
4523 }
4524
4525 /* Sends a packet with content determined by the printf format string
4526 FORMAT and the remaining arguments, then gets the reply. Returns
4527 whether the packet was a success, a failure, or unknown. */
4528
4529 enum packet_result
4530 remote_send_printf (const char *format, ...)
4531 {
4532 struct remote_state *rs = get_remote_state ();
4533 int max_size = get_remote_packet_size ();
4534
4535 va_list ap;
4536 va_start (ap, format);
4537
4538 rs->buf[0] = '\0';
4539 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4540 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4541
4542 if (putpkt (rs->buf) < 0)
4543 error (_("Communication problem with target."));
4544
4545 rs->buf[0] = '\0';
4546 getpkt (&rs->buf, &rs->buf_size, 0);
4547
4548 return packet_check_result (rs->buf);
4549 }
4550
4551 static void
4552 restore_remote_timeout (void *p)
4553 {
4554 int value = *(int *)p;
4555 remote_timeout = value;
4556 }
4557
4558 /* Flash writing can take quite some time. We'll set
4559 effectively infinite timeout for flash operations.
4560 In future, we'll need to decide on a better approach. */
4561 static const int remote_flash_timeout = 1000;
4562
4563 static void
4564 remote_flash_erase (struct target_ops *ops,
4565 ULONGEST address, LONGEST length)
4566 {
4567 int saved_remote_timeout = remote_timeout;
4568 enum packet_result ret;
4569
4570 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4571 &saved_remote_timeout);
4572 remote_timeout = remote_flash_timeout;
4573
4574 ret = remote_send_printf ("vFlashErase:%s,%s",
4575 paddr (address),
4576 phex (length, 4));
4577 switch (ret)
4578 {
4579 case PACKET_UNKNOWN:
4580 error (_("Remote target does not support flash erase"));
4581 case PACKET_ERROR:
4582 error (_("Error erasing flash with vFlashErase packet"));
4583 default:
4584 break;
4585 }
4586
4587 do_cleanups (back_to);
4588 }
4589
4590 static LONGEST
4591 remote_flash_write (struct target_ops *ops,
4592 ULONGEST address, LONGEST length,
4593 const gdb_byte *data)
4594 {
4595 int saved_remote_timeout = remote_timeout;
4596 int ret;
4597 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4598 &saved_remote_timeout);
4599
4600 remote_timeout = remote_flash_timeout;
4601 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4602 do_cleanups (back_to);
4603
4604 return ret;
4605 }
4606
4607 static void
4608 remote_flash_done (struct target_ops *ops)
4609 {
4610 int saved_remote_timeout = remote_timeout;
4611 int ret;
4612 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4613 &saved_remote_timeout);
4614
4615 remote_timeout = remote_flash_timeout;
4616 ret = remote_send_printf ("vFlashDone");
4617 do_cleanups (back_to);
4618
4619 switch (ret)
4620 {
4621 case PACKET_UNKNOWN:
4622 error (_("Remote target does not support vFlashDone"));
4623 case PACKET_ERROR:
4624 error (_("Error finishing flash operation"));
4625 default:
4626 break;
4627 }
4628 }
4629
4630 static void
4631 remote_files_info (struct target_ops *ignore)
4632 {
4633 puts_filtered ("Debugging a target over a serial line.\n");
4634 }
4635 \f
4636 /* Stuff for dealing with the packets which are part of this protocol.
4637 See comment at top of file for details. */
4638
4639 /* Read a single character from the remote end. */
4640
4641 static int
4642 readchar (int timeout)
4643 {
4644 int ch;
4645
4646 ch = serial_readchar (remote_desc, timeout);
4647
4648 if (ch >= 0)
4649 return ch;
4650
4651 switch ((enum serial_rc) ch)
4652 {
4653 case SERIAL_EOF:
4654 target_mourn_inferior ();
4655 error (_("Remote connection closed"));
4656 /* no return */
4657 case SERIAL_ERROR:
4658 perror_with_name (_("Remote communication error"));
4659 /* no return */
4660 case SERIAL_TIMEOUT:
4661 break;
4662 }
4663 return ch;
4664 }
4665
4666 /* Send the command in *BUF to the remote machine, and read the reply
4667 into *BUF. Report an error if we get an error reply. Resize
4668 *BUF using xrealloc if necessary to hold the result, and update
4669 *SIZEOF_BUF. */
4670
4671 static void
4672 remote_send (char **buf,
4673 long *sizeof_buf)
4674 {
4675 putpkt (*buf);
4676 getpkt (buf, sizeof_buf, 0);
4677
4678 if ((*buf)[0] == 'E')
4679 error (_("Remote failure reply: %s"), *buf);
4680 }
4681
4682 /* Display a null-terminated packet on stdout, for debugging, using C
4683 string notation. */
4684
4685 static void
4686 print_packet (char *buf)
4687 {
4688 puts_filtered ("\"");
4689 fputstr_filtered (buf, '"', gdb_stdout);
4690 puts_filtered ("\"");
4691 }
4692
4693 int
4694 putpkt (char *buf)
4695 {
4696 return putpkt_binary (buf, strlen (buf));
4697 }
4698
4699 /* Send a packet to the remote machine, with error checking. The data
4700 of the packet is in BUF. The string in BUF can be at most
4701 get_remote_packet_size () - 5 to account for the $, # and checksum,
4702 and for a possible /0 if we are debugging (remote_debug) and want
4703 to print the sent packet as a string. */
4704
4705 static int
4706 putpkt_binary (char *buf, int cnt)
4707 {
4708 int i;
4709 unsigned char csum = 0;
4710 char *buf2 = alloca (cnt + 6);
4711
4712 int ch;
4713 int tcount = 0;
4714 char *p;
4715
4716 /* Copy the packet into buffer BUF2, encapsulating it
4717 and giving it a checksum. */
4718
4719 p = buf2;
4720 *p++ = '$';
4721
4722 for (i = 0; i < cnt; i++)
4723 {
4724 csum += buf[i];
4725 *p++ = buf[i];
4726 }
4727 *p++ = '#';
4728 *p++ = tohex ((csum >> 4) & 0xf);
4729 *p++ = tohex (csum & 0xf);
4730
4731 /* Send it over and over until we get a positive ack. */
4732
4733 while (1)
4734 {
4735 int started_error_output = 0;
4736
4737 if (remote_debug)
4738 {
4739 *p = '\0';
4740 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4741 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4742 fprintf_unfiltered (gdb_stdlog, "...");
4743 gdb_flush (gdb_stdlog);
4744 }
4745 if (serial_write (remote_desc, buf2, p - buf2))
4746 perror_with_name (_("putpkt: write failed"));
4747
4748 /* Read until either a timeout occurs (-2) or '+' is read. */
4749 while (1)
4750 {
4751 ch = readchar (remote_timeout);
4752
4753 if (remote_debug)
4754 {
4755 switch (ch)
4756 {
4757 case '+':
4758 case '-':
4759 case SERIAL_TIMEOUT:
4760 case '$':
4761 if (started_error_output)
4762 {
4763 putchar_unfiltered ('\n');
4764 started_error_output = 0;
4765 }
4766 }
4767 }
4768
4769 switch (ch)
4770 {
4771 case '+':
4772 if (remote_debug)
4773 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4774 return 1;
4775 case '-':
4776 if (remote_debug)
4777 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4778 case SERIAL_TIMEOUT:
4779 tcount++;
4780 if (tcount > 3)
4781 return 0;
4782 break; /* Retransmit buffer. */
4783 case '$':
4784 {
4785 if (remote_debug)
4786 fprintf_unfiltered (gdb_stdlog,
4787 "Packet instead of Ack, ignoring it\n");
4788 /* It's probably an old response sent because an ACK
4789 was lost. Gobble up the packet and ack it so it
4790 doesn't get retransmitted when we resend this
4791 packet. */
4792 skip_frame ();
4793 serial_write (remote_desc, "+", 1);
4794 continue; /* Now, go look for +. */
4795 }
4796 default:
4797 if (remote_debug)
4798 {
4799 if (!started_error_output)
4800 {
4801 started_error_output = 1;
4802 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4803 }
4804 fputc_unfiltered (ch & 0177, gdb_stdlog);
4805 }
4806 continue;
4807 }
4808 break; /* Here to retransmit. */
4809 }
4810
4811 #if 0
4812 /* This is wrong. If doing a long backtrace, the user should be
4813 able to get out next time we call QUIT, without anything as
4814 violent as interrupt_query. If we want to provide a way out of
4815 here without getting to the next QUIT, it should be based on
4816 hitting ^C twice as in remote_wait. */
4817 if (quit_flag)
4818 {
4819 quit_flag = 0;
4820 interrupt_query ();
4821 }
4822 #endif
4823 }
4824 }
4825
4826 /* Come here after finding the start of a frame when we expected an
4827 ack. Do our best to discard the rest of this packet. */
4828
4829 static void
4830 skip_frame (void)
4831 {
4832 int c;
4833
4834 while (1)
4835 {
4836 c = readchar (remote_timeout);
4837 switch (c)
4838 {
4839 case SERIAL_TIMEOUT:
4840 /* Nothing we can do. */
4841 return;
4842 case '#':
4843 /* Discard the two bytes of checksum and stop. */
4844 c = readchar (remote_timeout);
4845 if (c >= 0)
4846 c = readchar (remote_timeout);
4847
4848 return;
4849 case '*': /* Run length encoding. */
4850 /* Discard the repeat count. */
4851 c = readchar (remote_timeout);
4852 if (c < 0)
4853 return;
4854 break;
4855 default:
4856 /* A regular character. */
4857 break;
4858 }
4859 }
4860 }
4861
4862 /* Come here after finding the start of the frame. Collect the rest
4863 into *BUF, verifying the checksum, length, and handling run-length
4864 compression. NUL terminate the buffer. If there is not enough room,
4865 expand *BUF using xrealloc.
4866
4867 Returns -1 on error, number of characters in buffer (ignoring the
4868 trailing NULL) on success. (could be extended to return one of the
4869 SERIAL status indications). */
4870
4871 static long
4872 read_frame (char **buf_p,
4873 long *sizeof_buf)
4874 {
4875 unsigned char csum;
4876 long bc;
4877 int c;
4878 char *buf = *buf_p;
4879
4880 csum = 0;
4881 bc = 0;
4882
4883 while (1)
4884 {
4885 c = readchar (remote_timeout);
4886 switch (c)
4887 {
4888 case SERIAL_TIMEOUT:
4889 if (remote_debug)
4890 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4891 return -1;
4892 case '$':
4893 if (remote_debug)
4894 fputs_filtered ("Saw new packet start in middle of old one\n",
4895 gdb_stdlog);
4896 return -1; /* Start a new packet, count retries. */
4897 case '#':
4898 {
4899 unsigned char pktcsum;
4900 int check_0 = 0;
4901 int check_1 = 0;
4902
4903 buf[bc] = '\0';
4904
4905 check_0 = readchar (remote_timeout);
4906 if (check_0 >= 0)
4907 check_1 = readchar (remote_timeout);
4908
4909 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4910 {
4911 if (remote_debug)
4912 fputs_filtered ("Timeout in checksum, retrying\n",
4913 gdb_stdlog);
4914 return -1;
4915 }
4916 else if (check_0 < 0 || check_1 < 0)
4917 {
4918 if (remote_debug)
4919 fputs_filtered ("Communication error in checksum\n",
4920 gdb_stdlog);
4921 return -1;
4922 }
4923
4924 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4925 if (csum == pktcsum)
4926 return bc;
4927
4928 if (remote_debug)
4929 {
4930 fprintf_filtered (gdb_stdlog,
4931 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4932 pktcsum, csum);
4933 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4934 fputs_filtered ("\n", gdb_stdlog);
4935 }
4936 /* Number of characters in buffer ignoring trailing
4937 NULL. */
4938 return -1;
4939 }
4940 case '*': /* Run length encoding. */
4941 {
4942 int repeat;
4943 csum += c;
4944
4945 c = readchar (remote_timeout);
4946 csum += c;
4947 repeat = c - ' ' + 3; /* Compute repeat count. */
4948
4949 /* The character before ``*'' is repeated. */
4950
4951 if (repeat > 0 && repeat <= 255 && bc > 0)
4952 {
4953 if (bc + repeat - 1 >= *sizeof_buf - 1)
4954 {
4955 /* Make some more room in the buffer. */
4956 *sizeof_buf += repeat;
4957 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4958 buf = *buf_p;
4959 }
4960
4961 memset (&buf[bc], buf[bc - 1], repeat);
4962 bc += repeat;
4963 continue;
4964 }
4965
4966 buf[bc] = '\0';
4967 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4968 return -1;
4969 }
4970 default:
4971 if (bc >= *sizeof_buf - 1)
4972 {
4973 /* Make some more room in the buffer. */
4974 *sizeof_buf *= 2;
4975 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4976 buf = *buf_p;
4977 }
4978
4979 buf[bc++] = c;
4980 csum += c;
4981 continue;
4982 }
4983 }
4984 }
4985
4986 /* Read a packet from the remote machine, with error checking, and
4987 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4988 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4989 rather than timing out; this is used (in synchronous mode) to wait
4990 for a target that is is executing user code to stop. */
4991 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4992 don't have to change all the calls to getpkt to deal with the
4993 return value, because at the moment I don't know what the right
4994 thing to do it for those. */
4995 void
4996 getpkt (char **buf,
4997 long *sizeof_buf,
4998 int forever)
4999 {
5000 int timed_out;
5001
5002 timed_out = getpkt_sane (buf, sizeof_buf, forever);
5003 }
5004
5005
5006 /* Read a packet from the remote machine, with error checking, and
5007 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5008 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5009 rather than timing out; this is used (in synchronous mode) to wait
5010 for a target that is is executing user code to stop. If FOREVER ==
5011 0, this function is allowed to time out gracefully and return an
5012 indication of this to the caller. Otherwise return the number
5013 of bytes read. */
5014 static int
5015 getpkt_sane (char **buf, long *sizeof_buf, int forever)
5016 {
5017 int c;
5018 int tries;
5019 int timeout;
5020 int val;
5021
5022 strcpy (*buf, "timeout");
5023
5024 if (forever)
5025 {
5026 timeout = watchdog > 0 ? watchdog : -1;
5027 }
5028
5029 else
5030 timeout = remote_timeout;
5031
5032 #define MAX_TRIES 3
5033
5034 for (tries = 1; tries <= MAX_TRIES; tries++)
5035 {
5036 /* This can loop forever if the remote side sends us characters
5037 continuously, but if it pauses, we'll get a zero from
5038 readchar because of timeout. Then we'll count that as a
5039 retry. */
5040
5041 /* Note that we will only wait forever prior to the start of a
5042 packet. After that, we expect characters to arrive at a
5043 brisk pace. They should show up within remote_timeout
5044 intervals. */
5045
5046 do
5047 {
5048 c = readchar (timeout);
5049
5050 if (c == SERIAL_TIMEOUT)
5051 {
5052 if (forever) /* Watchdog went off? Kill the target. */
5053 {
5054 QUIT;
5055 target_mourn_inferior ();
5056 error (_("Watchdog timeout has expired. Target detached."));
5057 }
5058 if (remote_debug)
5059 fputs_filtered ("Timed out.\n", gdb_stdlog);
5060 goto retry;
5061 }
5062 }
5063 while (c != '$');
5064
5065 /* We've found the start of a packet, now collect the data. */
5066
5067 val = read_frame (buf, sizeof_buf);
5068
5069 if (val >= 0)
5070 {
5071 if (remote_debug)
5072 {
5073 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5074 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5075 fprintf_unfiltered (gdb_stdlog, "\n");
5076 }
5077 serial_write (remote_desc, "+", 1);
5078 return val;
5079 }
5080
5081 /* Try the whole thing again. */
5082 retry:
5083 serial_write (remote_desc, "-", 1);
5084 }
5085
5086 /* We have tried hard enough, and just can't receive the packet.
5087 Give up. */
5088
5089 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5090 serial_write (remote_desc, "+", 1);
5091 return -1;
5092 }
5093 \f
5094 static void
5095 remote_kill (void)
5096 {
5097 /* For some mysterious reason, wait_for_inferior calls kill instead of
5098 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5099 if (kill_kludge)
5100 {
5101 kill_kludge = 0;
5102 target_mourn_inferior ();
5103 return;
5104 }
5105
5106 /* Use catch_errors so the user can quit from gdb even when we aren't on
5107 speaking terms with the remote system. */
5108 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5109
5110 /* Don't wait for it to die. I'm not really sure it matters whether
5111 we do or not. For the existing stubs, kill is a noop. */
5112 target_mourn_inferior ();
5113 }
5114
5115 /* Async version of remote_kill. */
5116 static void
5117 remote_async_kill (void)
5118 {
5119 /* Unregister the file descriptor from the event loop. */
5120 if (target_is_async_p ())
5121 serial_async (remote_desc, NULL, 0);
5122
5123 /* For some mysterious reason, wait_for_inferior calls kill instead of
5124 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5125 if (kill_kludge)
5126 {
5127 kill_kludge = 0;
5128 target_mourn_inferior ();
5129 return;
5130 }
5131
5132 /* Use catch_errors so the user can quit from gdb even when we
5133 aren't on speaking terms with the remote system. */
5134 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5135
5136 /* Don't wait for it to die. I'm not really sure it matters whether
5137 we do or not. For the existing stubs, kill is a noop. */
5138 target_mourn_inferior ();
5139 }
5140
5141 static void
5142 remote_mourn (void)
5143 {
5144 remote_mourn_1 (&remote_ops);
5145 }
5146
5147 static void
5148 remote_async_mourn (void)
5149 {
5150 remote_mourn_1 (&remote_async_ops);
5151 }
5152
5153 static void
5154 extended_remote_mourn (void)
5155 {
5156 /* We do _not_ want to mourn the target like this; this will
5157 remove the extended remote target from the target stack,
5158 and the next time the user says "run" it'll fail.
5159
5160 FIXME: What is the right thing to do here? */
5161 #if 0
5162 remote_mourn_1 (&extended_remote_ops);
5163 #endif
5164 }
5165
5166 /* Worker function for remote_mourn. */
5167 static void
5168 remote_mourn_1 (struct target_ops *target)
5169 {
5170 unpush_target (target);
5171 generic_mourn_inferior ();
5172 }
5173
5174 /* In the extended protocol we want to be able to do things like
5175 "run" and have them basically work as expected. So we need
5176 a special create_inferior function.
5177
5178 FIXME: One day add support for changing the exec file
5179 we're debugging, arguments and an environment. */
5180
5181 static void
5182 extended_remote_create_inferior (char *exec_file, char *args,
5183 char **env, int from_tty)
5184 {
5185 /* Rip out the breakpoints; we'll reinsert them after restarting
5186 the remote server. */
5187 remove_breakpoints ();
5188
5189 /* Now restart the remote server. */
5190 extended_remote_restart ();
5191
5192 /* NOTE: We don't need to recheck for a target description here; but
5193 if we gain the ability to switch the remote executable we may
5194 need to, if for instance we are running a process which requested
5195 different emulated hardware from the operating system. A
5196 concrete example of this is ARM GNU/Linux, where some binaries
5197 will have a legacy FPA coprocessor emulated and others may have
5198 access to a hardware VFP unit. */
5199
5200 /* Now put the breakpoints back in. This way we're safe if the
5201 restart function works via a unix fork on the remote side. */
5202 insert_breakpoints ();
5203
5204 /* Clean up from the last time we were running. */
5205 clear_proceed_status ();
5206 }
5207
5208 /* Async version of extended_remote_create_inferior. */
5209 static void
5210 extended_remote_async_create_inferior (char *exec_file, char *args,
5211 char **env, int from_tty)
5212 {
5213 /* Rip out the breakpoints; we'll reinsert them after restarting
5214 the remote server. */
5215 remove_breakpoints ();
5216
5217 /* If running asynchronously, register the target file descriptor
5218 with the event loop. */
5219 if (target_can_async_p ())
5220 target_async (inferior_event_handler, 0);
5221
5222 /* Now restart the remote server. */
5223 extended_remote_restart ();
5224
5225 /* NOTE: We don't need to recheck for a target description here; but
5226 if we gain the ability to switch the remote executable we may
5227 need to, if for instance we are running a process which requested
5228 different emulated hardware from the operating system. A
5229 concrete example of this is ARM GNU/Linux, where some binaries
5230 will have a legacy FPA coprocessor emulated and others may have
5231 access to a hardware VFP unit. */
5232
5233 /* Now put the breakpoints back in. This way we're safe if the
5234 restart function works via a unix fork on the remote side. */
5235 insert_breakpoints ();
5236
5237 /* Clean up from the last time we were running. */
5238 clear_proceed_status ();
5239 }
5240 \f
5241
5242 /* Insert a breakpoint. On targets that have software breakpoint
5243 support, we ask the remote target to do the work; on targets
5244 which don't, we insert a traditional memory breakpoint. */
5245
5246 static int
5247 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5248 {
5249 CORE_ADDR addr = bp_tgt->placed_address;
5250 struct remote_state *rs = get_remote_state ();
5251
5252 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5253 If it succeeds, then set the support to PACKET_ENABLE. If it
5254 fails, and the user has explicitly requested the Z support then
5255 report an error, otherwise, mark it disabled and go on. */
5256
5257 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5258 {
5259 char *p = rs->buf;
5260
5261 *(p++) = 'Z';
5262 *(p++) = '0';
5263 *(p++) = ',';
5264 gdbarch_breakpoint_from_pc
5265 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5266 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5267 p += hexnumstr (p, addr);
5268 sprintf (p, ",%d", bp_tgt->placed_size);
5269
5270 putpkt (rs->buf);
5271 getpkt (&rs->buf, &rs->buf_size, 0);
5272
5273 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5274 {
5275 case PACKET_ERROR:
5276 return -1;
5277 case PACKET_OK:
5278 return 0;
5279 case PACKET_UNKNOWN:
5280 break;
5281 }
5282 }
5283
5284 return memory_insert_breakpoint (bp_tgt);
5285 }
5286
5287 static int
5288 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5289 {
5290 CORE_ADDR addr = bp_tgt->placed_address;
5291 struct remote_state *rs = get_remote_state ();
5292 int bp_size;
5293
5294 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5295 {
5296 char *p = rs->buf;
5297
5298 *(p++) = 'z';
5299 *(p++) = '0';
5300 *(p++) = ',';
5301
5302 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5303 p += hexnumstr (p, addr);
5304 sprintf (p, ",%d", bp_tgt->placed_size);
5305
5306 putpkt (rs->buf);
5307 getpkt (&rs->buf, &rs->buf_size, 0);
5308
5309 return (rs->buf[0] == 'E');
5310 }
5311
5312 return memory_remove_breakpoint (bp_tgt);
5313 }
5314
5315 static int
5316 watchpoint_to_Z_packet (int type)
5317 {
5318 switch (type)
5319 {
5320 case hw_write:
5321 return Z_PACKET_WRITE_WP;
5322 break;
5323 case hw_read:
5324 return Z_PACKET_READ_WP;
5325 break;
5326 case hw_access:
5327 return Z_PACKET_ACCESS_WP;
5328 break;
5329 default:
5330 internal_error (__FILE__, __LINE__,
5331 _("hw_bp_to_z: bad watchpoint type %d"), type);
5332 }
5333 }
5334
5335 static int
5336 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5337 {
5338 struct remote_state *rs = get_remote_state ();
5339 char *p;
5340 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5341
5342 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5343 return -1;
5344
5345 sprintf (rs->buf, "Z%x,", packet);
5346 p = strchr (rs->buf, '\0');
5347 addr = remote_address_masked (addr);
5348 p += hexnumstr (p, (ULONGEST) addr);
5349 sprintf (p, ",%x", len);
5350
5351 putpkt (rs->buf);
5352 getpkt (&rs->buf, &rs->buf_size, 0);
5353
5354 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5355 {
5356 case PACKET_ERROR:
5357 case PACKET_UNKNOWN:
5358 return -1;
5359 case PACKET_OK:
5360 return 0;
5361 }
5362 internal_error (__FILE__, __LINE__,
5363 _("remote_insert_watchpoint: reached end of function"));
5364 }
5365
5366
5367 static int
5368 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5369 {
5370 struct remote_state *rs = get_remote_state ();
5371 char *p;
5372 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5373
5374 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5375 return -1;
5376
5377 sprintf (rs->buf, "z%x,", packet);
5378 p = strchr (rs->buf, '\0');
5379 addr = remote_address_masked (addr);
5380 p += hexnumstr (p, (ULONGEST) addr);
5381 sprintf (p, ",%x", len);
5382 putpkt (rs->buf);
5383 getpkt (&rs->buf, &rs->buf_size, 0);
5384
5385 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5386 {
5387 case PACKET_ERROR:
5388 case PACKET_UNKNOWN:
5389 return -1;
5390 case PACKET_OK:
5391 return 0;
5392 }
5393 internal_error (__FILE__, __LINE__,
5394 _("remote_remove_watchpoint: reached end of function"));
5395 }
5396
5397
5398 int remote_hw_watchpoint_limit = -1;
5399 int remote_hw_breakpoint_limit = -1;
5400
5401 static int
5402 remote_check_watch_resources (int type, int cnt, int ot)
5403 {
5404 if (type == bp_hardware_breakpoint)
5405 {
5406 if (remote_hw_breakpoint_limit == 0)
5407 return 0;
5408 else if (remote_hw_breakpoint_limit < 0)
5409 return 1;
5410 else if (cnt <= remote_hw_breakpoint_limit)
5411 return 1;
5412 }
5413 else
5414 {
5415 if (remote_hw_watchpoint_limit == 0)
5416 return 0;
5417 else if (remote_hw_watchpoint_limit < 0)
5418 return 1;
5419 else if (ot)
5420 return -1;
5421 else if (cnt <= remote_hw_watchpoint_limit)
5422 return 1;
5423 }
5424 return -1;
5425 }
5426
5427 static int
5428 remote_stopped_by_watchpoint (void)
5429 {
5430 return remote_stopped_by_watchpoint_p;
5431 }
5432
5433 static int
5434 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5435 {
5436 int rc = 0;
5437 if (remote_stopped_by_watchpoint ())
5438 {
5439 *addr_p = remote_watch_data_address;
5440 rc = 1;
5441 }
5442
5443 return rc;
5444 }
5445
5446
5447 static int
5448 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5449 {
5450 CORE_ADDR addr;
5451 struct remote_state *rs = get_remote_state ();
5452 char *p = rs->buf;
5453
5454 /* The length field should be set to the size of a breakpoint
5455 instruction, even though we aren't inserting one ourselves. */
5456
5457 gdbarch_breakpoint_from_pc
5458 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5459
5460 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5461 return -1;
5462
5463 *(p++) = 'Z';
5464 *(p++) = '1';
5465 *(p++) = ',';
5466
5467 addr = remote_address_masked (bp_tgt->placed_address);
5468 p += hexnumstr (p, (ULONGEST) addr);
5469 sprintf (p, ",%x", bp_tgt->placed_size);
5470
5471 putpkt (rs->buf);
5472 getpkt (&rs->buf, &rs->buf_size, 0);
5473
5474 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5475 {
5476 case PACKET_ERROR:
5477 case PACKET_UNKNOWN:
5478 return -1;
5479 case PACKET_OK:
5480 return 0;
5481 }
5482 internal_error (__FILE__, __LINE__,
5483 _("remote_insert_hw_breakpoint: reached end of function"));
5484 }
5485
5486
5487 static int
5488 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5489 {
5490 CORE_ADDR addr;
5491 struct remote_state *rs = get_remote_state ();
5492 char *p = rs->buf;
5493
5494 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5495 return -1;
5496
5497 *(p++) = 'z';
5498 *(p++) = '1';
5499 *(p++) = ',';
5500
5501 addr = remote_address_masked (bp_tgt->placed_address);
5502 p += hexnumstr (p, (ULONGEST) addr);
5503 sprintf (p, ",%x", bp_tgt->placed_size);
5504
5505 putpkt (rs->buf);
5506 getpkt (&rs->buf, &rs->buf_size, 0);
5507
5508 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5509 {
5510 case PACKET_ERROR:
5511 case PACKET_UNKNOWN:
5512 return -1;
5513 case PACKET_OK:
5514 return 0;
5515 }
5516 internal_error (__FILE__, __LINE__,
5517 _("remote_remove_hw_breakpoint: reached end of function"));
5518 }
5519
5520 /* Some targets are only capable of doing downloads, and afterwards
5521 they switch to the remote serial protocol. This function provides
5522 a clean way to get from the download target to the remote target.
5523 It's basically just a wrapper so that we don't have to expose any
5524 of the internal workings of remote.c.
5525
5526 Prior to calling this routine, you should shutdown the current
5527 target code, else you will get the "A program is being debugged
5528 already..." message. Usually a call to pop_target() suffices. */
5529
5530 void
5531 push_remote_target (char *name, int from_tty)
5532 {
5533 printf_filtered (_("Switching to remote protocol\n"));
5534 remote_open (name, from_tty);
5535 }
5536
5537 /* Table used by the crc32 function to calcuate the checksum. */
5538
5539 static unsigned long crc32_table[256] =
5540 {0, 0};
5541
5542 static unsigned long
5543 crc32 (unsigned char *buf, int len, unsigned int crc)
5544 {
5545 if (!crc32_table[1])
5546 {
5547 /* Initialize the CRC table and the decoding table. */
5548 int i, j;
5549 unsigned int c;
5550
5551 for (i = 0; i < 256; i++)
5552 {
5553 for (c = i << 24, j = 8; j > 0; --j)
5554 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5555 crc32_table[i] = c;
5556 }
5557 }
5558
5559 while (len--)
5560 {
5561 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5562 buf++;
5563 }
5564 return crc;
5565 }
5566
5567 /* compare-sections command
5568
5569 With no arguments, compares each loadable section in the exec bfd
5570 with the same memory range on the target, and reports mismatches.
5571 Useful for verifying the image on the target against the exec file.
5572 Depends on the target understanding the new "qCRC:" request. */
5573
5574 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5575 target method (target verify memory) and generic version of the
5576 actual command. This will allow other high-level code (especially
5577 generic_load()) to make use of this target functionality. */
5578
5579 static void
5580 compare_sections_command (char *args, int from_tty)
5581 {
5582 struct remote_state *rs = get_remote_state ();
5583 asection *s;
5584 unsigned long host_crc, target_crc;
5585 extern bfd *exec_bfd;
5586 struct cleanup *old_chain;
5587 char *tmp;
5588 char *sectdata;
5589 const char *sectname;
5590 bfd_size_type size;
5591 bfd_vma lma;
5592 int matched = 0;
5593 int mismatched = 0;
5594
5595 if (!exec_bfd)
5596 error (_("command cannot be used without an exec file"));
5597 if (!current_target.to_shortname ||
5598 strcmp (current_target.to_shortname, "remote") != 0)
5599 error (_("command can only be used with remote target"));
5600
5601 for (s = exec_bfd->sections; s; s = s->next)
5602 {
5603 if (!(s->flags & SEC_LOAD))
5604 continue; /* skip non-loadable section */
5605
5606 size = bfd_get_section_size (s);
5607 if (size == 0)
5608 continue; /* skip zero-length section */
5609
5610 sectname = bfd_get_section_name (exec_bfd, s);
5611 if (args && strcmp (args, sectname) != 0)
5612 continue; /* not the section selected by user */
5613
5614 matched = 1; /* do this section */
5615 lma = s->lma;
5616 /* FIXME: assumes lma can fit into long. */
5617 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5618 (long) lma, (long) size);
5619 putpkt (rs->buf);
5620
5621 /* Be clever; compute the host_crc before waiting for target
5622 reply. */
5623 sectdata = xmalloc (size);
5624 old_chain = make_cleanup (xfree, sectdata);
5625 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5626 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5627
5628 getpkt (&rs->buf, &rs->buf_size, 0);
5629 if (rs->buf[0] == 'E')
5630 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5631 sectname, paddr (lma), paddr (lma + size));
5632 if (rs->buf[0] != 'C')
5633 error (_("remote target does not support this operation"));
5634
5635 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5636 target_crc = target_crc * 16 + fromhex (*tmp);
5637
5638 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5639 sectname, paddr (lma), paddr (lma + size));
5640 if (host_crc == target_crc)
5641 printf_filtered ("matched.\n");
5642 else
5643 {
5644 printf_filtered ("MIS-MATCHED!\n");
5645 mismatched++;
5646 }
5647
5648 do_cleanups (old_chain);
5649 }
5650 if (mismatched > 0)
5651 warning (_("One or more sections of the remote executable does not match\n\
5652 the loaded file\n"));
5653 if (args && !matched)
5654 printf_filtered (_("No loaded section named '%s'.\n"), args);
5655 }
5656
5657 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5658 into remote target. The number of bytes written to the remote
5659 target is returned, or -1 for error. */
5660
5661 static LONGEST
5662 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5663 const char *annex, const gdb_byte *writebuf,
5664 ULONGEST offset, LONGEST len,
5665 struct packet_config *packet)
5666 {
5667 int i, buf_len;
5668 ULONGEST n;
5669 gdb_byte *wbuf;
5670 struct remote_state *rs = get_remote_state ();
5671 int max_size = get_memory_write_packet_size ();
5672
5673 if (packet->support == PACKET_DISABLE)
5674 return -1;
5675
5676 /* Insert header. */
5677 i = snprintf (rs->buf, max_size,
5678 "qXfer:%s:write:%s:%s:",
5679 object_name, annex ? annex : "",
5680 phex_nz (offset, sizeof offset));
5681 max_size -= (i + 1);
5682
5683 /* Escape as much data as fits into rs->buf. */
5684 buf_len = remote_escape_output
5685 (writebuf, len, (rs->buf + i), &max_size, max_size);
5686
5687 if (putpkt_binary (rs->buf, i + buf_len) < 0
5688 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5689 || packet_ok (rs->buf, packet) != PACKET_OK)
5690 return -1;
5691
5692 unpack_varlen_hex (rs->buf, &n);
5693 return n;
5694 }
5695
5696 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5697 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5698 number of bytes read is returned, or 0 for EOF, or -1 for error.
5699 The number of bytes read may be less than LEN without indicating an
5700 EOF. PACKET is checked and updated to indicate whether the remote
5701 target supports this object. */
5702
5703 static LONGEST
5704 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5705 const char *annex,
5706 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5707 struct packet_config *packet)
5708 {
5709 static char *finished_object;
5710 static char *finished_annex;
5711 static ULONGEST finished_offset;
5712
5713 struct remote_state *rs = get_remote_state ();
5714 unsigned int total = 0;
5715 LONGEST i, n, packet_len;
5716
5717 if (packet->support == PACKET_DISABLE)
5718 return -1;
5719
5720 /* Check whether we've cached an end-of-object packet that matches
5721 this request. */
5722 if (finished_object)
5723 {
5724 if (strcmp (object_name, finished_object) == 0
5725 && strcmp (annex ? annex : "", finished_annex) == 0
5726 && offset == finished_offset)
5727 return 0;
5728
5729 /* Otherwise, we're now reading something different. Discard
5730 the cache. */
5731 xfree (finished_object);
5732 xfree (finished_annex);
5733 finished_object = NULL;
5734 finished_annex = NULL;
5735 }
5736
5737 /* Request only enough to fit in a single packet. The actual data
5738 may not, since we don't know how much of it will need to be escaped;
5739 the target is free to respond with slightly less data. We subtract
5740 five to account for the response type and the protocol frame. */
5741 n = min (get_remote_packet_size () - 5, len);
5742 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5743 object_name, annex ? annex : "",
5744 phex_nz (offset, sizeof offset),
5745 phex_nz (n, sizeof n));
5746 i = putpkt (rs->buf);
5747 if (i < 0)
5748 return -1;
5749
5750 rs->buf[0] = '\0';
5751 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5752 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5753 return -1;
5754
5755 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5756 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5757
5758 /* 'm' means there is (or at least might be) more data after this
5759 batch. That does not make sense unless there's at least one byte
5760 of data in this reply. */
5761 if (rs->buf[0] == 'm' && packet_len == 1)
5762 error (_("Remote qXfer reply contained no data."));
5763
5764 /* Got some data. */
5765 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5766
5767 /* 'l' is an EOF marker, possibly including a final block of data,
5768 or possibly empty. If we have the final block of a non-empty
5769 object, record this fact to bypass a subsequent partial read. */
5770 if (rs->buf[0] == 'l' && offset + i > 0)
5771 {
5772 finished_object = xstrdup (object_name);
5773 finished_annex = xstrdup (annex ? annex : "");
5774 finished_offset = offset + i;
5775 }
5776
5777 return i;
5778 }
5779
5780 static LONGEST
5781 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5782 const char *annex, gdb_byte *readbuf,
5783 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5784 {
5785 struct remote_state *rs = get_remote_state ();
5786 int i;
5787 char *p2;
5788 char query_type;
5789
5790 /* Handle memory using the standard memory routines. */
5791 if (object == TARGET_OBJECT_MEMORY)
5792 {
5793 int xfered;
5794 errno = 0;
5795
5796 if (writebuf != NULL)
5797 xfered = remote_write_bytes (offset, writebuf, len);
5798 else
5799 xfered = remote_read_bytes (offset, readbuf, len);
5800
5801 if (xfered > 0)
5802 return xfered;
5803 else if (xfered == 0 && errno == 0)
5804 return 0;
5805 else
5806 return -1;
5807 }
5808
5809 /* Handle SPU memory using qxfer packets. */
5810 if (object == TARGET_OBJECT_SPU)
5811 {
5812 if (readbuf)
5813 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
5814 &remote_protocol_packets
5815 [PACKET_qXfer_spu_read]);
5816 else
5817 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
5818 &remote_protocol_packets
5819 [PACKET_qXfer_spu_write]);
5820 }
5821
5822 /* Only handle flash writes. */
5823 if (writebuf != NULL)
5824 {
5825 LONGEST xfered;
5826
5827 switch (object)
5828 {
5829 case TARGET_OBJECT_FLASH:
5830 xfered = remote_flash_write (ops, offset, len, writebuf);
5831
5832 if (xfered > 0)
5833 return xfered;
5834 else if (xfered == 0 && errno == 0)
5835 return 0;
5836 else
5837 return -1;
5838
5839 default:
5840 return -1;
5841 }
5842 }
5843
5844 /* Map pre-existing objects onto letters. DO NOT do this for new
5845 objects!!! Instead specify new query packets. */
5846 switch (object)
5847 {
5848 case TARGET_OBJECT_AVR:
5849 query_type = 'R';
5850 break;
5851
5852 case TARGET_OBJECT_AUXV:
5853 gdb_assert (annex == NULL);
5854 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5855 &remote_protocol_packets[PACKET_qXfer_auxv]);
5856
5857 case TARGET_OBJECT_AVAILABLE_FEATURES:
5858 return remote_read_qxfer
5859 (ops, "features", annex, readbuf, offset, len,
5860 &remote_protocol_packets[PACKET_qXfer_features]);
5861
5862 case TARGET_OBJECT_LIBRARIES:
5863 return remote_read_qxfer
5864 (ops, "libraries", annex, readbuf, offset, len,
5865 &remote_protocol_packets[PACKET_qXfer_libraries]);
5866
5867 case TARGET_OBJECT_MEMORY_MAP:
5868 gdb_assert (annex == NULL);
5869 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5870 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5871
5872 default:
5873 return -1;
5874 }
5875
5876 /* Note: a zero OFFSET and LEN can be used to query the minimum
5877 buffer size. */
5878 if (offset == 0 && len == 0)
5879 return (get_remote_packet_size ());
5880 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5881 large enough let the caller deal with it. */
5882 if (len < get_remote_packet_size ())
5883 return -1;
5884 len = get_remote_packet_size ();
5885
5886 /* Except for querying the minimum buffer size, target must be open. */
5887 if (!remote_desc)
5888 error (_("remote query is only available after target open"));
5889
5890 gdb_assert (annex != NULL);
5891 gdb_assert (readbuf != NULL);
5892
5893 p2 = rs->buf;
5894 *p2++ = 'q';
5895 *p2++ = query_type;
5896
5897 /* We used one buffer char for the remote protocol q command and
5898 another for the query type. As the remote protocol encapsulation
5899 uses 4 chars plus one extra in case we are debugging
5900 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5901 string. */
5902 i = 0;
5903 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5904 {
5905 /* Bad caller may have sent forbidden characters. */
5906 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5907 *p2++ = annex[i];
5908 i++;
5909 }
5910 *p2 = '\0';
5911 gdb_assert (annex[i] == '\0');
5912
5913 i = putpkt (rs->buf);
5914 if (i < 0)
5915 return i;
5916
5917 getpkt (&rs->buf, &rs->buf_size, 0);
5918 strcpy ((char *) readbuf, rs->buf);
5919
5920 return strlen ((char *) readbuf);
5921 }
5922
5923 static void
5924 remote_rcmd (char *command,
5925 struct ui_file *outbuf)
5926 {
5927 struct remote_state *rs = get_remote_state ();
5928 char *p = rs->buf;
5929
5930 if (!remote_desc)
5931 error (_("remote rcmd is only available after target open"));
5932
5933 /* Send a NULL command across as an empty command. */
5934 if (command == NULL)
5935 command = "";
5936
5937 /* The query prefix. */
5938 strcpy (rs->buf, "qRcmd,");
5939 p = strchr (rs->buf, '\0');
5940
5941 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5942 error (_("\"monitor\" command ``%s'' is too long."), command);
5943
5944 /* Encode the actual command. */
5945 bin2hex ((gdb_byte *) command, p, 0);
5946
5947 if (putpkt (rs->buf) < 0)
5948 error (_("Communication problem with target."));
5949
5950 /* get/display the response */
5951 while (1)
5952 {
5953 char *buf;
5954
5955 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5956 rs->buf[0] = '\0';
5957 getpkt (&rs->buf, &rs->buf_size, 0);
5958 buf = rs->buf;
5959 if (buf[0] == '\0')
5960 error (_("Target does not support this command."));
5961 if (buf[0] == 'O' && buf[1] != 'K')
5962 {
5963 remote_console_output (buf + 1); /* 'O' message from stub. */
5964 continue;
5965 }
5966 if (strcmp (buf, "OK") == 0)
5967 break;
5968 if (strlen (buf) == 3 && buf[0] == 'E'
5969 && isdigit (buf[1]) && isdigit (buf[2]))
5970 {
5971 error (_("Protocol error with Rcmd"));
5972 }
5973 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5974 {
5975 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5976 fputc_unfiltered (c, outbuf);
5977 }
5978 break;
5979 }
5980 }
5981
5982 static VEC(mem_region_s) *
5983 remote_memory_map (struct target_ops *ops)
5984 {
5985 VEC(mem_region_s) *result = NULL;
5986 char *text = target_read_stralloc (&current_target,
5987 TARGET_OBJECT_MEMORY_MAP, NULL);
5988
5989 if (text)
5990 {
5991 struct cleanup *back_to = make_cleanup (xfree, text);
5992 result = parse_memory_map (text);
5993 do_cleanups (back_to);
5994 }
5995
5996 return result;
5997 }
5998
5999 static void
6000 packet_command (char *args, int from_tty)
6001 {
6002 struct remote_state *rs = get_remote_state ();
6003
6004 if (!remote_desc)
6005 error (_("command can only be used with remote target"));
6006
6007 if (!args)
6008 error (_("remote-packet command requires packet text as argument"));
6009
6010 puts_filtered ("sending: ");
6011 print_packet (args);
6012 puts_filtered ("\n");
6013 putpkt (args);
6014
6015 getpkt (&rs->buf, &rs->buf_size, 0);
6016 puts_filtered ("received: ");
6017 print_packet (rs->buf);
6018 puts_filtered ("\n");
6019 }
6020
6021 #if 0
6022 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6023
6024 static void display_thread_info (struct gdb_ext_thread_info *info);
6025
6026 static void threadset_test_cmd (char *cmd, int tty);
6027
6028 static void threadalive_test (char *cmd, int tty);
6029
6030 static void threadlist_test_cmd (char *cmd, int tty);
6031
6032 int get_and_display_threadinfo (threadref *ref);
6033
6034 static void threadinfo_test_cmd (char *cmd, int tty);
6035
6036 static int thread_display_step (threadref *ref, void *context);
6037
6038 static void threadlist_update_test_cmd (char *cmd, int tty);
6039
6040 static void init_remote_threadtests (void);
6041
6042 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6043
6044 static void
6045 threadset_test_cmd (char *cmd, int tty)
6046 {
6047 int sample_thread = SAMPLE_THREAD;
6048
6049 printf_filtered (_("Remote threadset test\n"));
6050 set_thread (sample_thread, 1);
6051 }
6052
6053
6054 static void
6055 threadalive_test (char *cmd, int tty)
6056 {
6057 int sample_thread = SAMPLE_THREAD;
6058
6059 if (remote_thread_alive (pid_to_ptid (sample_thread)))
6060 printf_filtered ("PASS: Thread alive test\n");
6061 else
6062 printf_filtered ("FAIL: Thread alive test\n");
6063 }
6064
6065 void output_threadid (char *title, threadref *ref);
6066
6067 void
6068 output_threadid (char *title, threadref *ref)
6069 {
6070 char hexid[20];
6071
6072 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6073 hexid[16] = 0;
6074 printf_filtered ("%s %s\n", title, (&hexid[0]));
6075 }
6076
6077 static void
6078 threadlist_test_cmd (char *cmd, int tty)
6079 {
6080 int startflag = 1;
6081 threadref nextthread;
6082 int done, result_count;
6083 threadref threadlist[3];
6084
6085 printf_filtered ("Remote Threadlist test\n");
6086 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6087 &result_count, &threadlist[0]))
6088 printf_filtered ("FAIL: threadlist test\n");
6089 else
6090 {
6091 threadref *scan = threadlist;
6092 threadref *limit = scan + result_count;
6093
6094 while (scan < limit)
6095 output_threadid (" thread ", scan++);
6096 }
6097 }
6098
6099 void
6100 display_thread_info (struct gdb_ext_thread_info *info)
6101 {
6102 output_threadid ("Threadid: ", &info->threadid);
6103 printf_filtered ("Name: %s\n ", info->shortname);
6104 printf_filtered ("State: %s\n", info->display);
6105 printf_filtered ("other: %s\n\n", info->more_display);
6106 }
6107
6108 int
6109 get_and_display_threadinfo (threadref *ref)
6110 {
6111 int result;
6112 int set;
6113 struct gdb_ext_thread_info threadinfo;
6114
6115 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6116 | TAG_MOREDISPLAY | TAG_DISPLAY;
6117 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6118 display_thread_info (&threadinfo);
6119 return result;
6120 }
6121
6122 static void
6123 threadinfo_test_cmd (char *cmd, int tty)
6124 {
6125 int athread = SAMPLE_THREAD;
6126 threadref thread;
6127 int set;
6128
6129 int_to_threadref (&thread, athread);
6130 printf_filtered ("Remote Threadinfo test\n");
6131 if (!get_and_display_threadinfo (&thread))
6132 printf_filtered ("FAIL cannot get thread info\n");
6133 }
6134
6135 static int
6136 thread_display_step (threadref *ref, void *context)
6137 {
6138 /* output_threadid(" threadstep ",ref); *//* simple test */
6139 return get_and_display_threadinfo (ref);
6140 }
6141
6142 static void
6143 threadlist_update_test_cmd (char *cmd, int tty)
6144 {
6145 printf_filtered ("Remote Threadlist update test\n");
6146 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6147 }
6148
6149 static void
6150 init_remote_threadtests (void)
6151 {
6152 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6153 Fetch and print the remote list of thread identifiers, one pkt only"));
6154 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6155 _("Fetch and display info about one thread"));
6156 add_com ("tset", class_obscure, threadset_test_cmd,
6157 _("Test setting to a different thread"));
6158 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6159 _("Iterate through updating all remote thread info"));
6160 add_com ("talive", class_obscure, threadalive_test,
6161 _(" Remote thread alive test "));
6162 }
6163
6164 #endif /* 0 */
6165
6166 /* Convert a thread ID to a string. Returns the string in a static
6167 buffer. */
6168
6169 static char *
6170 remote_pid_to_str (ptid_t ptid)
6171 {
6172 static char buf[32];
6173
6174 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6175 return buf;
6176 }
6177
6178 /* Get the address of the thread local variable in OBJFILE which is
6179 stored at OFFSET within the thread local storage for thread PTID. */
6180
6181 static CORE_ADDR
6182 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6183 {
6184 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6185 {
6186 struct remote_state *rs = get_remote_state ();
6187 char *p = rs->buf;
6188 enum packet_result result;
6189
6190 strcpy (p, "qGetTLSAddr:");
6191 p += strlen (p);
6192 p += hexnumstr (p, PIDGET (ptid));
6193 *p++ = ',';
6194 p += hexnumstr (p, offset);
6195 *p++ = ',';
6196 p += hexnumstr (p, lm);
6197 *p++ = '\0';
6198
6199 putpkt (rs->buf);
6200 getpkt (&rs->buf, &rs->buf_size, 0);
6201 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6202 if (result == PACKET_OK)
6203 {
6204 ULONGEST result;
6205
6206 unpack_varlen_hex (rs->buf, &result);
6207 return result;
6208 }
6209 else if (result == PACKET_UNKNOWN)
6210 throw_error (TLS_GENERIC_ERROR,
6211 _("Remote target doesn't support qGetTLSAddr packet"));
6212 else
6213 throw_error (TLS_GENERIC_ERROR,
6214 _("Remote target failed to process qGetTLSAddr request"));
6215 }
6216 else
6217 throw_error (TLS_GENERIC_ERROR,
6218 _("TLS not supported or disabled on this target"));
6219 /* Not reached. */
6220 return 0;
6221 }
6222
6223 /* Support for inferring a target description based on the current
6224 architecture and the size of a 'g' packet. While the 'g' packet
6225 can have any size (since optional registers can be left off the
6226 end), some sizes are easily recognizable given knowledge of the
6227 approximate architecture. */
6228
6229 struct remote_g_packet_guess
6230 {
6231 int bytes;
6232 const struct target_desc *tdesc;
6233 };
6234 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6235 DEF_VEC_O(remote_g_packet_guess_s);
6236
6237 struct remote_g_packet_data
6238 {
6239 VEC(remote_g_packet_guess_s) *guesses;
6240 };
6241
6242 static struct gdbarch_data *remote_g_packet_data_handle;
6243
6244 static void *
6245 remote_g_packet_data_init (struct obstack *obstack)
6246 {
6247 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6248 }
6249
6250 void
6251 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6252 const struct target_desc *tdesc)
6253 {
6254 struct remote_g_packet_data *data
6255 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6256 struct remote_g_packet_guess new_guess, *guess;
6257 int ix;
6258
6259 gdb_assert (tdesc != NULL);
6260
6261 for (ix = 0;
6262 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6263 ix++)
6264 if (guess->bytes == bytes)
6265 internal_error (__FILE__, __LINE__,
6266 "Duplicate g packet description added for size %d",
6267 bytes);
6268
6269 new_guess.bytes = bytes;
6270 new_guess.tdesc = tdesc;
6271 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6272 }
6273
6274 static const struct target_desc *
6275 remote_read_description (struct target_ops *target)
6276 {
6277 struct remote_g_packet_data *data
6278 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6279
6280 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6281 {
6282 struct remote_g_packet_guess *guess;
6283 int ix;
6284 int bytes = send_g_packet ();
6285
6286 for (ix = 0;
6287 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6288 ix++)
6289 if (guess->bytes == bytes)
6290 return guess->tdesc;
6291
6292 /* We discard the g packet. A minor optimization would be to
6293 hold on to it, and fill the register cache once we have selected
6294 an architecture, but it's too tricky to do safely. */
6295 }
6296
6297 return NULL;
6298 }
6299
6300 /* Remote file transfer support. This is host-initiated I/O, not
6301 target-initiated; for target-initiated, see remote-fileio.c. */
6302
6303 /* If *LEFT is at least the length of STRING, copy STRING to
6304 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6305 decrease *LEFT. Otherwise raise an error. */
6306
6307 static void
6308 remote_buffer_add_string (char **buffer, int *left, char *string)
6309 {
6310 int len = strlen (string);
6311
6312 if (len > *left)
6313 error (_("Packet too long for target."));
6314
6315 memcpy (*buffer, string, len);
6316 *buffer += len;
6317 *left -= len;
6318
6319 /* NUL-terminate the buffer as a convenience, if there is
6320 room. */
6321 if (*left)
6322 **buffer = '\0';
6323 }
6324
6325 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
6326 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6327 decrease *LEFT. Otherwise raise an error. */
6328
6329 static void
6330 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
6331 int len)
6332 {
6333 if (2 * len > *left)
6334 error (_("Packet too long for target."));
6335
6336 bin2hex (bytes, *buffer, len);
6337 *buffer += 2 * len;
6338 *left -= 2 * len;
6339
6340 /* NUL-terminate the buffer as a convenience, if there is
6341 room. */
6342 if (*left)
6343 **buffer = '\0';
6344 }
6345
6346 /* If *LEFT is large enough, convert VALUE to hex and add it to
6347 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6348 decrease *LEFT. Otherwise raise an error. */
6349
6350 static void
6351 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
6352 {
6353 int len = hexnumlen (value);
6354
6355 if (len > *left)
6356 error (_("Packet too long for target."));
6357
6358 hexnumstr (*buffer, value);
6359 *buffer += len;
6360 *left -= len;
6361
6362 /* NUL-terminate the buffer as a convenience, if there is
6363 room. */
6364 if (*left)
6365 **buffer = '\0';
6366 }
6367
6368 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
6369 value, *REMOTE_ERRNO to the remote error number or zero if none
6370 was included, and *ATTACHMENT to point to the start of the annex
6371 if any. The length of the packet isn't needed here; there may
6372 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
6373
6374 Return 0 if the packet could be parsed, -1 if it could not. If
6375 -1 is returned, the other variables may not be initialized. */
6376
6377 static int
6378 remote_hostio_parse_result (char *buffer, int *retcode,
6379 int *remote_errno, char **attachment)
6380 {
6381 char *p, *p2;
6382
6383 *remote_errno = 0;
6384 *attachment = NULL;
6385
6386 if (buffer[0] != 'F')
6387 return -1;
6388
6389 errno = 0;
6390 *retcode = strtol (&buffer[1], &p, 16);
6391 if (errno != 0 || p == &buffer[1])
6392 return -1;
6393
6394 /* Check for ",errno". */
6395 if (*p == ',')
6396 {
6397 errno = 0;
6398 *remote_errno = strtol (p + 1, &p2, 16);
6399 if (errno != 0 || p + 1 == p2)
6400 return -1;
6401 p = p2;
6402 }
6403
6404 /* Check for ";attachment". If there is no attachment, the
6405 packet should end here. */
6406 if (*p == ';')
6407 {
6408 *attachment = p + 1;
6409 return 0;
6410 }
6411 else if (*p == '\0')
6412 return 0;
6413 else
6414 return -1;
6415 }
6416
6417 /* Send a prepared I/O packet to the target and read its response.
6418 The prepared packet is in the global RS->BUF before this function
6419 is called, and the answer is there when we return.
6420
6421 COMMAND_BYTES is the length of the request to send, which may include
6422 binary data. WHICH_PACKET is the packet configuration to check
6423 before attempting a packet. If an error occurs, *REMOTE_ERRNO
6424 is set to the error number and -1 is returned. Otherwise the value
6425 returned by the function is returned.
6426
6427 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
6428 attachment is expected; an error will be reported if there's a
6429 mismatch. If one is found, *ATTACHMENT will be set to point into
6430 the packet buffer and *ATTACHMENT_LEN will be set to the
6431 attachment's length. */
6432
6433 static int
6434 remote_hostio_send_command (int command_bytes, int which_packet,
6435 int *remote_errno, char **attachment,
6436 int *attachment_len)
6437 {
6438 struct remote_state *rs = get_remote_state ();
6439 int ret, bytes_read;
6440 char *attachment_tmp;
6441
6442 if (remote_protocol_packets[which_packet].support == PACKET_DISABLE)
6443 {
6444 *remote_errno = FILEIO_ENOSYS;
6445 return -1;
6446 }
6447
6448 putpkt_binary (rs->buf, command_bytes);
6449 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6450
6451 /* If it timed out, something is wrong. Don't try to parse the
6452 buffer. */
6453 if (bytes_read < 0)
6454 {
6455 *remote_errno = FILEIO_EINVAL;
6456 return -1;
6457 }
6458
6459 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
6460 {
6461 case PACKET_ERROR:
6462 *remote_errno = FILEIO_EINVAL;
6463 return -1;
6464 case PACKET_UNKNOWN:
6465 *remote_errno = FILEIO_ENOSYS;
6466 return -1;
6467 case PACKET_OK:
6468 break;
6469 }
6470
6471 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
6472 &attachment_tmp))
6473 {
6474 *remote_errno = FILEIO_EINVAL;
6475 return -1;
6476 }
6477
6478 /* Make sure we saw an attachment if and only if we expected one. */
6479 if ((attachment_tmp == NULL && attachment != NULL)
6480 || (attachment_tmp != NULL && attachment == NULL))
6481 {
6482 *remote_errno = FILEIO_EINVAL;
6483 return -1;
6484 }
6485
6486 /* If an attachment was found, it must point into the packet buffer;
6487 work out how many bytes there were. */
6488 if (attachment_tmp != NULL)
6489 {
6490 *attachment = attachment_tmp;
6491 *attachment_len = bytes_read - (*attachment - rs->buf);
6492 }
6493
6494 return ret;
6495 }
6496
6497 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
6498 remote file descriptor, or -1 if an error occurs (and set
6499 *REMOTE_ERRNO). */
6500
6501 static int
6502 remote_hostio_open (const char *filename, int flags, int mode,
6503 int *remote_errno)
6504 {
6505 struct remote_state *rs = get_remote_state ();
6506 char *p = rs->buf;
6507 int left = get_remote_packet_size () - 1;
6508
6509 remote_buffer_add_string (&p, &left, "vFile:open:");
6510
6511 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6512 strlen (filename));
6513 remote_buffer_add_string (&p, &left, ",");
6514
6515 remote_buffer_add_int (&p, &left, flags);
6516 remote_buffer_add_string (&p, &left, ",");
6517
6518 remote_buffer_add_int (&p, &left, mode);
6519
6520 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
6521 remote_errno, NULL, NULL);
6522 }
6523
6524 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
6525 Return the number of bytes written, or -1 if an error occurs (and
6526 set *REMOTE_ERRNO). */
6527
6528 static int
6529 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
6530 ULONGEST offset, int *remote_errno)
6531 {
6532 struct remote_state *rs = get_remote_state ();
6533 char *p = rs->buf;
6534 int left = get_remote_packet_size ();
6535 int out_len;
6536
6537 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
6538
6539 remote_buffer_add_int (&p, &left, fd);
6540 remote_buffer_add_string (&p, &left, ",");
6541
6542 remote_buffer_add_int (&p, &left, offset);
6543 remote_buffer_add_string (&p, &left, ",");
6544
6545 p += remote_escape_output (write_buf, len, p, &out_len,
6546 get_remote_packet_size () - (p - rs->buf));
6547
6548 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
6549 remote_errno, NULL, NULL);
6550 }
6551
6552 /* Read up to LEN bytes FD on the remote target into READ_BUF
6553 Return the number of bytes read, or -1 if an error occurs (and
6554 set *REMOTE_ERRNO). */
6555
6556 static int
6557 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
6558 ULONGEST offset, int *remote_errno)
6559 {
6560 struct remote_state *rs = get_remote_state ();
6561 char *p = rs->buf;
6562 char *attachment;
6563 int left = get_remote_packet_size ();
6564 int ret, attachment_len;
6565 int read_len;
6566
6567 remote_buffer_add_string (&p, &left, "vFile:pread:");
6568
6569 remote_buffer_add_int (&p, &left, fd);
6570 remote_buffer_add_string (&p, &left, ",");
6571
6572 remote_buffer_add_int (&p, &left, len);
6573 remote_buffer_add_string (&p, &left, ",");
6574
6575 remote_buffer_add_int (&p, &left, offset);
6576
6577 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
6578 remote_errno, &attachment,
6579 &attachment_len);
6580
6581 if (ret < 0)
6582 return ret;
6583
6584 read_len = remote_unescape_input (attachment, attachment_len,
6585 read_buf, len);
6586 if (read_len != ret)
6587 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
6588
6589 return ret;
6590 }
6591
6592 /* Close FD on the remote target. Return 0, or -1 if an error occurs
6593 (and set *REMOTE_ERRNO). */
6594
6595 static int
6596 remote_hostio_close (int fd, int *remote_errno)
6597 {
6598 struct remote_state *rs = get_remote_state ();
6599 char *p = rs->buf;
6600 int left = get_remote_packet_size () - 1;
6601
6602 remote_buffer_add_string (&p, &left, "vFile:close:");
6603
6604 remote_buffer_add_int (&p, &left, fd);
6605
6606 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
6607 remote_errno, NULL, NULL);
6608 }
6609
6610 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
6611 occurs (and set *REMOTE_ERRNO). */
6612
6613 static int
6614 remote_hostio_unlink (const char *filename, int *remote_errno)
6615 {
6616 struct remote_state *rs = get_remote_state ();
6617 char *p = rs->buf;
6618 int left = get_remote_packet_size () - 1;
6619
6620 remote_buffer_add_string (&p, &left, "vFile:unlink:");
6621
6622 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6623 strlen (filename));
6624
6625 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
6626 remote_errno, NULL, NULL);
6627 }
6628
6629 static int
6630 remote_fileio_errno_to_host (int errnum)
6631 {
6632 switch (errnum)
6633 {
6634 case FILEIO_EPERM:
6635 return EPERM;
6636 case FILEIO_ENOENT:
6637 return ENOENT;
6638 case FILEIO_EINTR:
6639 return EINTR;
6640 case FILEIO_EIO:
6641 return EIO;
6642 case FILEIO_EBADF:
6643 return EBADF;
6644 case FILEIO_EACCES:
6645 return EACCES;
6646 case FILEIO_EFAULT:
6647 return EFAULT;
6648 case FILEIO_EBUSY:
6649 return EBUSY;
6650 case FILEIO_EEXIST:
6651 return EEXIST;
6652 case FILEIO_ENODEV:
6653 return ENODEV;
6654 case FILEIO_ENOTDIR:
6655 return ENOTDIR;
6656 case FILEIO_EISDIR:
6657 return EISDIR;
6658 case FILEIO_EINVAL:
6659 return EINVAL;
6660 case FILEIO_ENFILE:
6661 return ENFILE;
6662 case FILEIO_EMFILE:
6663 return EMFILE;
6664 case FILEIO_EFBIG:
6665 return EFBIG;
6666 case FILEIO_ENOSPC:
6667 return ENOSPC;
6668 case FILEIO_ESPIPE:
6669 return ESPIPE;
6670 case FILEIO_EROFS:
6671 return EROFS;
6672 case FILEIO_ENOSYS:
6673 return ENOSYS;
6674 case FILEIO_ENAMETOOLONG:
6675 return ENAMETOOLONG;
6676 }
6677 return -1;
6678 }
6679
6680 static char *
6681 remote_hostio_error (int errnum)
6682 {
6683 int host_error = remote_fileio_errno_to_host (errnum);
6684
6685 if (host_error == -1)
6686 error (_("Unknown remote I/O error %d"), errnum);
6687 else
6688 error (_("Remote I/O error: %s"), safe_strerror (host_error));
6689 }
6690
6691 static void
6692 fclose_cleanup (void *file)
6693 {
6694 fclose (file);
6695 }
6696
6697 static void
6698 remote_hostio_close_cleanup (void *opaque)
6699 {
6700 int fd = *(int *) opaque;
6701 int remote_errno;
6702
6703 remote_hostio_close (fd, &remote_errno);
6704 }
6705
6706 void
6707 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
6708 {
6709 struct cleanup *back_to, *close_cleanup;
6710 int retcode, fd, remote_errno, bytes, io_size;
6711 FILE *file;
6712 gdb_byte *buffer;
6713 int bytes_in_buffer;
6714 int saw_eof;
6715 ULONGEST offset;
6716
6717 if (!remote_desc)
6718 error (_("command can only be used with remote target"));
6719
6720 file = fopen (local_file, "rb");
6721 if (file == NULL)
6722 perror_with_name (local_file);
6723 back_to = make_cleanup (fclose_cleanup, file);
6724
6725 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
6726 | FILEIO_O_TRUNC),
6727 0700, &remote_errno);
6728 if (fd == -1)
6729 remote_hostio_error (remote_errno);
6730
6731 /* Send up to this many bytes at once. They won't all fit in the
6732 remote packet limit, so we'll transfer slightly fewer. */
6733 io_size = get_remote_packet_size ();
6734 buffer = xmalloc (io_size);
6735 make_cleanup (xfree, buffer);
6736
6737 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
6738
6739 bytes_in_buffer = 0;
6740 saw_eof = 0;
6741 offset = 0;
6742 while (bytes_in_buffer || !saw_eof)
6743 {
6744 if (!saw_eof)
6745 {
6746 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
6747 file);
6748 if (bytes == 0)
6749 {
6750 if (ferror (file))
6751 error (_("Error reading %s."), local_file);
6752 else
6753 {
6754 /* EOF. Unless there is something still in the
6755 buffer from the last iteration, we are done. */
6756 saw_eof = 1;
6757 if (bytes_in_buffer == 0)
6758 break;
6759 }
6760 }
6761 }
6762 else
6763 bytes = 0;
6764
6765 bytes += bytes_in_buffer;
6766 bytes_in_buffer = 0;
6767
6768 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
6769
6770 if (retcode < 0)
6771 remote_hostio_error (remote_errno);
6772 else if (retcode == 0)
6773 error (_("Remote write of %d bytes returned 0!"), bytes);
6774 else if (retcode < bytes)
6775 {
6776 /* Short write. Save the rest of the read data for the next
6777 write. */
6778 bytes_in_buffer = bytes - retcode;
6779 memmove (buffer, buffer + retcode, bytes_in_buffer);
6780 }
6781
6782 offset += retcode;
6783 }
6784
6785 discard_cleanups (close_cleanup);
6786 if (remote_hostio_close (fd, &remote_errno))
6787 remote_hostio_error (remote_errno);
6788
6789 if (from_tty)
6790 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
6791 do_cleanups (back_to);
6792 }
6793
6794 void
6795 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
6796 {
6797 struct cleanup *back_to, *close_cleanup;
6798 int retcode, fd, remote_errno, bytes, io_size;
6799 FILE *file;
6800 gdb_byte *buffer;
6801 ULONGEST offset;
6802
6803 if (!remote_desc)
6804 error (_("command can only be used with remote target"));
6805
6806 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
6807 if (fd == -1)
6808 remote_hostio_error (remote_errno);
6809
6810 file = fopen (local_file, "wb");
6811 if (file == NULL)
6812 perror_with_name (local_file);
6813 back_to = make_cleanup (fclose_cleanup, file);
6814
6815 /* Send up to this many bytes at once. They won't all fit in the
6816 remote packet limit, so we'll transfer slightly fewer. */
6817 io_size = get_remote_packet_size ();
6818 buffer = xmalloc (io_size);
6819 make_cleanup (xfree, buffer);
6820
6821 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
6822
6823 offset = 0;
6824 while (1)
6825 {
6826 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
6827 if (bytes == 0)
6828 /* Success, but no bytes, means end-of-file. */
6829 break;
6830 if (bytes == -1)
6831 remote_hostio_error (remote_errno);
6832
6833 offset += bytes;
6834
6835 bytes = fwrite (buffer, 1, bytes, file);
6836 if (bytes == 0)
6837 perror_with_name (local_file);
6838 }
6839
6840 discard_cleanups (close_cleanup);
6841 if (remote_hostio_close (fd, &remote_errno))
6842 remote_hostio_error (remote_errno);
6843
6844 if (from_tty)
6845 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
6846 do_cleanups (back_to);
6847 }
6848
6849 void
6850 remote_file_delete (const char *remote_file, int from_tty)
6851 {
6852 int retcode, remote_errno;
6853
6854 if (!remote_desc)
6855 error (_("command can only be used with remote target"));
6856
6857 retcode = remote_hostio_unlink (remote_file, &remote_errno);
6858 if (retcode == -1)
6859 remote_hostio_error (remote_errno);
6860
6861 if (from_tty)
6862 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
6863 }
6864
6865 static void
6866 remote_put_command (char *args, int from_tty)
6867 {
6868 struct cleanup *back_to;
6869 char **argv;
6870
6871 argv = buildargv (args);
6872 if (argv == NULL)
6873 nomem (0);
6874 back_to = make_cleanup_freeargv (argv);
6875 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
6876 error (_("Invalid parameters to remote put"));
6877
6878 remote_file_put (argv[0], argv[1], from_tty);
6879
6880 do_cleanups (back_to);
6881 }
6882
6883 static void
6884 remote_get_command (char *args, int from_tty)
6885 {
6886 struct cleanup *back_to;
6887 char **argv;
6888
6889 argv = buildargv (args);
6890 if (argv == NULL)
6891 nomem (0);
6892 back_to = make_cleanup_freeargv (argv);
6893 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
6894 error (_("Invalid parameters to remote get"));
6895
6896 remote_file_get (argv[0], argv[1], from_tty);
6897
6898 do_cleanups (back_to);
6899 }
6900
6901 static void
6902 remote_delete_command (char *args, int from_tty)
6903 {
6904 struct cleanup *back_to;
6905 char **argv;
6906
6907 argv = buildargv (args);
6908 if (argv == NULL)
6909 nomem (0);
6910 back_to = make_cleanup_freeargv (argv);
6911 if (argv[0] == NULL || argv[1] != NULL)
6912 error (_("Invalid parameters to remote delete"));
6913
6914 remote_file_delete (argv[0], from_tty);
6915
6916 do_cleanups (back_to);
6917 }
6918
6919 static void
6920 remote_command (char *args, int from_tty)
6921 {
6922 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
6923 }
6924
6925 static void
6926 init_remote_ops (void)
6927 {
6928 remote_ops.to_shortname = "remote";
6929 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
6930 remote_ops.to_doc =
6931 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6932 Specify the serial device it is connected to\n\
6933 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
6934 remote_ops.to_open = remote_open;
6935 remote_ops.to_close = remote_close;
6936 remote_ops.to_detach = remote_detach;
6937 remote_ops.to_disconnect = remote_disconnect;
6938 remote_ops.to_resume = remote_resume;
6939 remote_ops.to_wait = remote_wait;
6940 remote_ops.to_fetch_registers = remote_fetch_registers;
6941 remote_ops.to_store_registers = remote_store_registers;
6942 remote_ops.to_prepare_to_store = remote_prepare_to_store;
6943 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
6944 remote_ops.to_files_info = remote_files_info;
6945 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
6946 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
6947 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6948 remote_ops.to_stopped_data_address = remote_stopped_data_address;
6949 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6950 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6951 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6952 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
6953 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
6954 remote_ops.to_kill = remote_kill;
6955 remote_ops.to_load = generic_load;
6956 remote_ops.to_mourn_inferior = remote_mourn;
6957 remote_ops.to_thread_alive = remote_thread_alive;
6958 remote_ops.to_find_new_threads = remote_threads_info;
6959 remote_ops.to_pid_to_str = remote_pid_to_str;
6960 remote_ops.to_extra_thread_info = remote_threads_extra_info;
6961 remote_ops.to_stop = remote_stop;
6962 remote_ops.to_xfer_partial = remote_xfer_partial;
6963 remote_ops.to_rcmd = remote_rcmd;
6964 remote_ops.to_log_command = serial_log_command;
6965 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
6966 remote_ops.to_stratum = process_stratum;
6967 remote_ops.to_has_all_memory = 1;
6968 remote_ops.to_has_memory = 1;
6969 remote_ops.to_has_stack = 1;
6970 remote_ops.to_has_registers = 1;
6971 remote_ops.to_has_execution = 1;
6972 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6973 remote_ops.to_magic = OPS_MAGIC;
6974 remote_ops.to_memory_map = remote_memory_map;
6975 remote_ops.to_flash_erase = remote_flash_erase;
6976 remote_ops.to_flash_done = remote_flash_done;
6977 remote_ops.to_read_description = remote_read_description;
6978 }
6979
6980 /* Set up the extended remote vector by making a copy of the standard
6981 remote vector and adding to it. */
6982
6983 static void
6984 init_extended_remote_ops (void)
6985 {
6986 extended_remote_ops = remote_ops;
6987
6988 extended_remote_ops.to_shortname = "extended-remote";
6989 extended_remote_ops.to_longname =
6990 "Extended remote serial target in gdb-specific protocol";
6991 extended_remote_ops.to_doc =
6992 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6993 Specify the serial device it is connected to (e.g. /dev/ttya).",
6994 extended_remote_ops.to_open = extended_remote_open;
6995 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
6996 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
6997 }
6998
6999 static int
7000 remote_can_async_p (void)
7001 {
7002 /* We're async whenever the serial device is. */
7003 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
7004 }
7005
7006 static int
7007 remote_is_async_p (void)
7008 {
7009 /* We're async whenever the serial device is. */
7010 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
7011 }
7012
7013 /* Pass the SERIAL event on and up to the client. One day this code
7014 will be able to delay notifying the client of an event until the
7015 point where an entire packet has been received. */
7016
7017 static void (*async_client_callback) (enum inferior_event_type event_type,
7018 void *context);
7019 static void *async_client_context;
7020 static serial_event_ftype remote_async_serial_handler;
7021
7022 static void
7023 remote_async_serial_handler (struct serial *scb, void *context)
7024 {
7025 /* Don't propogate error information up to the client. Instead let
7026 the client find out about the error by querying the target. */
7027 async_client_callback (INF_REG_EVENT, async_client_context);
7028 }
7029
7030 static void
7031 remote_async (void (*callback) (enum inferior_event_type event_type,
7032 void *context), void *context)
7033 {
7034 if (current_target.to_async_mask_value == 0)
7035 internal_error (__FILE__, __LINE__,
7036 _("Calling remote_async when async is masked"));
7037
7038 if (callback != NULL)
7039 {
7040 serial_async (remote_desc, remote_async_serial_handler, NULL);
7041 async_client_callback = callback;
7042 async_client_context = context;
7043 }
7044 else
7045 serial_async (remote_desc, NULL, NULL);
7046 }
7047
7048 /* Target async and target extended-async.
7049
7050 This are temporary targets, until it is all tested. Eventually
7051 async support will be incorporated int the usual 'remote'
7052 target. */
7053
7054 static void
7055 init_remote_async_ops (void)
7056 {
7057 remote_async_ops.to_shortname = "async";
7058 remote_async_ops.to_longname =
7059 "Remote serial target in async version of the gdb-specific protocol";
7060 remote_async_ops.to_doc =
7061 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7062 Specify the serial device it is connected to (e.g. /dev/ttya).";
7063 remote_async_ops.to_open = remote_async_open;
7064 remote_async_ops.to_close = remote_close;
7065 remote_async_ops.to_detach = remote_detach;
7066 remote_async_ops.to_disconnect = remote_disconnect;
7067 remote_async_ops.to_resume = remote_async_resume;
7068 remote_async_ops.to_wait = remote_async_wait;
7069 remote_async_ops.to_fetch_registers = remote_fetch_registers;
7070 remote_async_ops.to_store_registers = remote_store_registers;
7071 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
7072 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
7073 remote_async_ops.to_files_info = remote_files_info;
7074 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
7075 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
7076 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
7077 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
7078 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
7079 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
7080 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
7081 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
7082 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
7083 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
7084 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
7085 remote_async_ops.to_kill = remote_async_kill;
7086 remote_async_ops.to_load = generic_load;
7087 remote_async_ops.to_mourn_inferior = remote_async_mourn;
7088 remote_async_ops.to_thread_alive = remote_thread_alive;
7089 remote_async_ops.to_find_new_threads = remote_threads_info;
7090 remote_async_ops.to_pid_to_str = remote_pid_to_str;
7091 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
7092 remote_async_ops.to_stop = remote_stop;
7093 remote_async_ops.to_xfer_partial = remote_xfer_partial;
7094 remote_async_ops.to_rcmd = remote_rcmd;
7095 remote_async_ops.to_stratum = process_stratum;
7096 remote_async_ops.to_has_all_memory = 1;
7097 remote_async_ops.to_has_memory = 1;
7098 remote_async_ops.to_has_stack = 1;
7099 remote_async_ops.to_has_registers = 1;
7100 remote_async_ops.to_has_execution = 1;
7101 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
7102 remote_async_ops.to_can_async_p = remote_can_async_p;
7103 remote_async_ops.to_is_async_p = remote_is_async_p;
7104 remote_async_ops.to_async = remote_async;
7105 remote_async_ops.to_async_mask_value = 1;
7106 remote_async_ops.to_magic = OPS_MAGIC;
7107 remote_async_ops.to_memory_map = remote_memory_map;
7108 remote_async_ops.to_flash_erase = remote_flash_erase;
7109 remote_async_ops.to_flash_done = remote_flash_done;
7110 remote_async_ops.to_read_description = remote_read_description;
7111 }
7112
7113 /* Set up the async extended remote vector by making a copy of the standard
7114 remote vector and adding to it. */
7115
7116 static void
7117 init_extended_async_remote_ops (void)
7118 {
7119 extended_async_remote_ops = remote_async_ops;
7120
7121 extended_async_remote_ops.to_shortname = "extended-async";
7122 extended_async_remote_ops.to_longname =
7123 "Extended remote serial target in async gdb-specific protocol";
7124 extended_async_remote_ops.to_doc =
7125 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
7126 Specify the serial device it is connected to (e.g. /dev/ttya).",
7127 extended_async_remote_ops.to_open = extended_remote_async_open;
7128 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
7129 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
7130 }
7131
7132 static void
7133 set_remote_cmd (char *args, int from_tty)
7134 {
7135 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
7136 }
7137
7138 static void
7139 show_remote_cmd (char *args, int from_tty)
7140 {
7141 /* We can't just use cmd_show_list here, because we want to skip
7142 the redundant "show remote Z-packet" and the legacy aliases. */
7143 struct cleanup *showlist_chain;
7144 struct cmd_list_element *list = remote_show_cmdlist;
7145
7146 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
7147 for (; list != NULL; list = list->next)
7148 if (strcmp (list->name, "Z-packet") == 0)
7149 continue;
7150 else if (list->type == not_set_cmd)
7151 /* Alias commands are exactly like the original, except they
7152 don't have the normal type. */
7153 continue;
7154 else
7155 {
7156 struct cleanup *option_chain
7157 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
7158 ui_out_field_string (uiout, "name", list->name);
7159 ui_out_text (uiout, ": ");
7160 if (list->type == show_cmd)
7161 do_setshow_command ((char *) NULL, from_tty, list);
7162 else
7163 cmd_func (list, NULL, from_tty);
7164 /* Close the tuple. */
7165 do_cleanups (option_chain);
7166 }
7167
7168 /* Close the tuple. */
7169 do_cleanups (showlist_chain);
7170 }
7171
7172
7173 /* Function to be called whenever a new objfile (shlib) is detected. */
7174 static void
7175 remote_new_objfile (struct objfile *objfile)
7176 {
7177 if (remote_desc != 0) /* Have a remote connection. */
7178 remote_check_symbols (objfile);
7179 }
7180
7181 void
7182 _initialize_remote (void)
7183 {
7184 struct remote_state *rs;
7185
7186 /* architecture specific data */
7187 remote_gdbarch_data_handle =
7188 gdbarch_data_register_post_init (init_remote_state);
7189 remote_g_packet_data_handle =
7190 gdbarch_data_register_pre_init (remote_g_packet_data_init);
7191
7192 /* Initialize the per-target state. At the moment there is only one
7193 of these, not one per target. Only one target is active at a
7194 time. The default buffer size is unimportant; it will be expanded
7195 whenever a larger buffer is needed. */
7196 rs = get_remote_state_raw ();
7197 rs->buf_size = 400;
7198 rs->buf = xmalloc (rs->buf_size);
7199
7200 init_remote_ops ();
7201 add_target (&remote_ops);
7202
7203 init_extended_remote_ops ();
7204 add_target (&extended_remote_ops);
7205
7206 init_remote_async_ops ();
7207 add_target (&remote_async_ops);
7208
7209 init_extended_async_remote_ops ();
7210 add_target (&extended_async_remote_ops);
7211
7212 /* Hook into new objfile notification. */
7213 observer_attach_new_objfile (remote_new_objfile);
7214
7215 #if 0
7216 init_remote_threadtests ();
7217 #endif
7218
7219 /* set/show remote ... */
7220
7221 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
7222 Remote protocol specific variables\n\
7223 Configure various remote-protocol specific variables such as\n\
7224 the packets being used"),
7225 &remote_set_cmdlist, "set remote ",
7226 0 /* allow-unknown */, &setlist);
7227 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
7228 Remote protocol specific variables\n\
7229 Configure various remote-protocol specific variables such as\n\
7230 the packets being used"),
7231 &remote_show_cmdlist, "show remote ",
7232 0 /* allow-unknown */, &showlist);
7233
7234 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
7235 Compare section data on target to the exec file.\n\
7236 Argument is a single section name (default: all loaded sections)."),
7237 &cmdlist);
7238
7239 add_cmd ("packet", class_maintenance, packet_command, _("\
7240 Send an arbitrary packet to a remote target.\n\
7241 maintenance packet TEXT\n\
7242 If GDB is talking to an inferior via the GDB serial protocol, then\n\
7243 this command sends the string TEXT to the inferior, and displays the\n\
7244 response packet. GDB supplies the initial `$' character, and the\n\
7245 terminating `#' character and checksum."),
7246 &maintenancelist);
7247
7248 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
7249 Set whether to send break if interrupted."), _("\
7250 Show whether to send break if interrupted."), _("\
7251 If set, a break, instead of a cntrl-c, is sent to the remote target."),
7252 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
7253 &setlist, &showlist);
7254
7255 /* Install commands for configuring memory read/write packets. */
7256
7257 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
7258 Set the maximum number of bytes per memory write packet (deprecated)."),
7259 &setlist);
7260 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
7261 Show the maximum number of bytes per memory write packet (deprecated)."),
7262 &showlist);
7263 add_cmd ("memory-write-packet-size", no_class,
7264 set_memory_write_packet_size, _("\
7265 Set the maximum number of bytes per memory-write packet.\n\
7266 Specify the number of bytes in a packet or 0 (zero) for the\n\
7267 default packet size. The actual limit is further reduced\n\
7268 dependent on the target. Specify ``fixed'' to disable the\n\
7269 further restriction and ``limit'' to enable that restriction."),
7270 &remote_set_cmdlist);
7271 add_cmd ("memory-read-packet-size", no_class,
7272 set_memory_read_packet_size, _("\
7273 Set the maximum number of bytes per memory-read packet.\n\
7274 Specify the number of bytes in a packet or 0 (zero) for the\n\
7275 default packet size. The actual limit is further reduced\n\
7276 dependent on the target. Specify ``fixed'' to disable the\n\
7277 further restriction and ``limit'' to enable that restriction."),
7278 &remote_set_cmdlist);
7279 add_cmd ("memory-write-packet-size", no_class,
7280 show_memory_write_packet_size,
7281 _("Show the maximum number of bytes per memory-write packet."),
7282 &remote_show_cmdlist);
7283 add_cmd ("memory-read-packet-size", no_class,
7284 show_memory_read_packet_size,
7285 _("Show the maximum number of bytes per memory-read packet."),
7286 &remote_show_cmdlist);
7287
7288 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
7289 &remote_hw_watchpoint_limit, _("\
7290 Set the maximum number of target hardware watchpoints."), _("\
7291 Show the maximum number of target hardware watchpoints."), _("\
7292 Specify a negative limit for unlimited."),
7293 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
7294 &remote_set_cmdlist, &remote_show_cmdlist);
7295 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
7296 &remote_hw_breakpoint_limit, _("\
7297 Set the maximum number of target hardware breakpoints."), _("\
7298 Show the maximum number of target hardware breakpoints."), _("\
7299 Specify a negative limit for unlimited."),
7300 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
7301 &remote_set_cmdlist, &remote_show_cmdlist);
7302
7303 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
7304 &remote_address_size, _("\
7305 Set the maximum size of the address (in bits) in a memory packet."), _("\
7306 Show the maximum size of the address (in bits) in a memory packet."), NULL,
7307 NULL,
7308 NULL, /* FIXME: i18n: */
7309 &setlist, &showlist);
7310
7311 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
7312 "X", "binary-download", 1);
7313
7314 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
7315 "vCont", "verbose-resume", 0);
7316
7317 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
7318 "QPassSignals", "pass-signals", 0);
7319
7320 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
7321 "qSymbol", "symbol-lookup", 0);
7322
7323 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
7324 "P", "set-register", 1);
7325
7326 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
7327 "p", "fetch-register", 1);
7328
7329 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
7330 "Z0", "software-breakpoint", 0);
7331
7332 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
7333 "Z1", "hardware-breakpoint", 0);
7334
7335 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
7336 "Z2", "write-watchpoint", 0);
7337
7338 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
7339 "Z3", "read-watchpoint", 0);
7340
7341 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
7342 "Z4", "access-watchpoint", 0);
7343
7344 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
7345 "qXfer:auxv:read", "read-aux-vector", 0);
7346
7347 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
7348 "qXfer:features:read", "target-features", 0);
7349
7350 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
7351 "qXfer:libraries:read", "library-info", 0);
7352
7353 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
7354 "qXfer:memory-map:read", "memory-map", 0);
7355
7356 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
7357 "qXfer:spu:read", "read-spu-object", 0);
7358
7359 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
7360 "qXfer:spu:write", "write-spu-object", 0);
7361
7362 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
7363 "qGetTLSAddr", "get-thread-local-storage-address",
7364 0);
7365
7366 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
7367 "qSupported", "supported-packets", 0);
7368
7369 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
7370 "vFile:open", "hostio-open", 0);
7371
7372 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
7373 "vFile:pread", "hostio-pread", 0);
7374
7375 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
7376 "vFile:pwrite", "hostio-pwrite", 0);
7377
7378 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
7379 "vFile:close", "hostio-close", 0);
7380
7381 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
7382 "vFile:unlink", "hostio-unlink", 0);
7383
7384 /* Keep the old ``set remote Z-packet ...'' working. Each individual
7385 Z sub-packet has its own set and show commands, but users may
7386 have sets to this variable in their .gdbinit files (or in their
7387 documentation). */
7388 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
7389 &remote_Z_packet_detect, _("\
7390 Set use of remote protocol `Z' packets"), _("\
7391 Show use of remote protocol `Z' packets "), _("\
7392 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
7393 packets."),
7394 set_remote_protocol_Z_packet_cmd,
7395 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
7396 &remote_set_cmdlist, &remote_show_cmdlist);
7397
7398 add_prefix_cmd ("remote", class_files, remote_command, _("\
7399 Manipulate files on the remote system\n\
7400 Transfer files to and from the remote target system."),
7401 &remote_cmdlist, "remote ",
7402 0 /* allow-unknown */, &cmdlist);
7403
7404 add_cmd ("put", class_files, remote_put_command,
7405 _("Copy a local file to the remote system."),
7406 &remote_cmdlist);
7407
7408 add_cmd ("get", class_files, remote_get_command,
7409 _("Copy a remote file to the local system."),
7410 &remote_cmdlist);
7411
7412 add_cmd ("delete", class_files, remote_delete_command,
7413 _("Delete a remote file."),
7414 &remote_cmdlist);
7415
7416 /* Eventually initialize fileio. See fileio.c */
7417 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
7418 }
This page took 0.187234 seconds and 4 git commands to generate.