daily update
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62
63 #include "memory-map.h"
64
65 /* The size to align memory write packets, when practical. The protocol
66 does not guarantee any alignment, and gdb will generate short
67 writes and unaligned writes, but even as a best-effort attempt this
68 can improve bulk transfers. For instance, if a write is misaligned
69 relative to the target's data bus, the stub may need to make an extra
70 round trip fetching data from the target. This doesn't make a
71 huge difference, but it's easy to do, so we try to be helpful.
72
73 The alignment chosen is arbitrary; usually data bus width is
74 important here, not the possibly larger cache line size. */
75 enum { REMOTE_ALIGN_WRITES = 16 };
76
77 /* Prototypes for local functions. */
78 static void cleanup_sigint_signal_handler (void *dummy);
79 static void initialize_sigint_signal_handler (void);
80 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
81
82 static void handle_remote_sigint (int);
83 static void handle_remote_sigint_twice (int);
84 static void async_remote_interrupt (gdb_client_data);
85 void async_remote_interrupt_twice (gdb_client_data);
86
87 static void remote_files_info (struct target_ops *ignore);
88
89 static void remote_prepare_to_store (struct regcache *regcache);
90
91 static void remote_fetch_registers (struct regcache *regcache, int regno);
92
93 static void remote_resume (ptid_t ptid, int step,
94 enum target_signal siggnal);
95 static void remote_open (char *name, int from_tty);
96
97 static void extended_remote_open (char *name, int from_tty);
98
99 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
100
101 static void remote_close (int quitting);
102
103 static void remote_store_registers (struct regcache *regcache, int regno);
104
105 static void remote_mourn (void);
106
107 static void extended_remote_restart (void);
108
109 static void extended_remote_mourn (void);
110
111 static void remote_mourn_1 (struct target_ops *);
112
113 static void remote_send (char **buf, long *sizeof_buf_p);
114
115 static int readchar (int timeout);
116
117 static ptid_t remote_wait (ptid_t ptid,
118 struct target_waitstatus *status);
119
120 static void remote_kill (void);
121
122 static int tohex (int nib);
123
124 static int remote_can_async_p (void);
125
126 static int remote_is_async_p (void);
127
128 static void remote_async (void (*callback) (enum inferior_event_type event_type,
129 void *context), void *context);
130
131 static int remote_async_mask (int new_mask);
132
133 static void remote_detach (char *args, int from_tty);
134
135 static void remote_interrupt (int signo);
136
137 static void remote_interrupt_twice (int signo);
138
139 static void interrupt_query (void);
140
141 static void set_general_thread (struct ptid ptid);
142 static void set_continue_thread (struct ptid ptid);
143
144 static int remote_thread_alive (ptid_t);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (ptid_t);
159
160 static int ishex (int ch, int *val);
161
162 static int stubhex (int ch);
163
164 static int hexnumstr (char *, ULONGEST);
165
166 static int hexnumnstr (char *, ULONGEST, int);
167
168 static CORE_ADDR remote_address_masked (CORE_ADDR);
169
170 static void print_packet (char *);
171
172 static unsigned long crc32 (unsigned char *, int, unsigned int);
173
174 static void compare_sections_command (char *, int);
175
176 static void packet_command (char *, int);
177
178 static int stub_unpack_int (char *buff, int fieldlength);
179
180 static ptid_t remote_current_thread (ptid_t oldptid);
181
182 static void remote_find_new_threads (void);
183
184 static void record_currthread (ptid_t currthread);
185
186 static int fromhex (int a);
187
188 static int hex2bin (const char *hex, gdb_byte *bin, int count);
189
190 static int bin2hex (const gdb_byte *bin, char *hex, int count);
191
192 static int putpkt_binary (char *buf, int cnt);
193
194 static void check_binary_download (CORE_ADDR addr);
195
196 struct packet_config;
197
198 static void show_packet_config_cmd (struct packet_config *config);
199
200 static void update_packet_config (struct packet_config *config);
201
202 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
203 struct cmd_list_element *c);
204
205 static void show_remote_protocol_packet_cmd (struct ui_file *file,
206 int from_tty,
207 struct cmd_list_element *c,
208 const char *value);
209
210 void _initialize_remote (void);
211
212 /* Controls if async mode is permitted. */
213 static int remote_async_permitted = 0;
214
215 static int remote_async_permitted_set = 0;
216
217 static void
218 set_maintenance_remote_async_permitted (char *args, int from_tty,
219 struct cmd_list_element *c)
220 {
221 if (target_has_execution)
222 {
223 remote_async_permitted_set = remote_async_permitted; /* revert */
224 error (_("Cannot change this setting while the inferior is running."));
225 }
226
227 remote_async_permitted = remote_async_permitted_set;
228 }
229
230 static void
231 show_maintenance_remote_async_permitted (struct ui_file *file, int from_tty,
232 struct cmd_list_element *c, const char *value)
233 {
234 fprintf_filtered (file, _("\
235 Controlling the remote inferior in asynchronous mode is %s.\n"),
236 value);
237 }
238
239 /* For "remote". */
240
241 static struct cmd_list_element *remote_cmdlist;
242
243 /* For "set remote" and "show remote". */
244
245 static struct cmd_list_element *remote_set_cmdlist;
246 static struct cmd_list_element *remote_show_cmdlist;
247
248 /* Description of the remote protocol state for the currently
249 connected target. This is per-target state, and independent of the
250 selected architecture. */
251
252 struct remote_state
253 {
254 /* A buffer to use for incoming packets, and its current size. The
255 buffer is grown dynamically for larger incoming packets.
256 Outgoing packets may also be constructed in this buffer.
257 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
258 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
259 packets. */
260 char *buf;
261 long buf_size;
262
263 /* If we negotiated packet size explicitly (and thus can bypass
264 heuristics for the largest packet size that will not overflow
265 a buffer in the stub), this will be set to that packet size.
266 Otherwise zero, meaning to use the guessed size. */
267 long explicit_packet_size;
268
269 /* remote_wait is normally called when the target is running and
270 waits for a stop reply packet. But sometimes we need to call it
271 when the target is already stopped. We can send a "?" packet
272 and have remote_wait read the response. Or, if we already have
273 the response, we can stash it in BUF and tell remote_wait to
274 skip calling getpkt. This flag is set when BUF contains a
275 stop reply packet and the target is not waiting. */
276 int cached_wait_status;
277 };
278
279 /* This data could be associated with a target, but we do not always
280 have access to the current target when we need it, so for now it is
281 static. This will be fine for as long as only one target is in use
282 at a time. */
283 static struct remote_state remote_state;
284
285 static struct remote_state *
286 get_remote_state_raw (void)
287 {
288 return &remote_state;
289 }
290
291 /* Description of the remote protocol for a given architecture. */
292
293 struct packet_reg
294 {
295 long offset; /* Offset into G packet. */
296 long regnum; /* GDB's internal register number. */
297 LONGEST pnum; /* Remote protocol register number. */
298 int in_g_packet; /* Always part of G packet. */
299 /* long size in bytes; == register_size (current_gdbarch, regnum);
300 at present. */
301 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
302 at present. */
303 };
304
305 struct remote_arch_state
306 {
307 /* Description of the remote protocol registers. */
308 long sizeof_g_packet;
309
310 /* Description of the remote protocol registers indexed by REGNUM
311 (making an array gdbarch_num_regs in size). */
312 struct packet_reg *regs;
313
314 /* This is the size (in chars) of the first response to the ``g''
315 packet. It is used as a heuristic when determining the maximum
316 size of memory-read and memory-write packets. A target will
317 typically only reserve a buffer large enough to hold the ``g''
318 packet. The size does not include packet overhead (headers and
319 trailers). */
320 long actual_register_packet_size;
321
322 /* This is the maximum size (in chars) of a non read/write packet.
323 It is also used as a cap on the size of read/write packets. */
324 long remote_packet_size;
325 };
326
327
328 /* Handle for retreving the remote protocol data from gdbarch. */
329 static struct gdbarch_data *remote_gdbarch_data_handle;
330
331 static struct remote_arch_state *
332 get_remote_arch_state (void)
333 {
334 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
335 }
336
337 /* Fetch the global remote target state. */
338
339 static struct remote_state *
340 get_remote_state (void)
341 {
342 /* Make sure that the remote architecture state has been
343 initialized, because doing so might reallocate rs->buf. Any
344 function which calls getpkt also needs to be mindful of changes
345 to rs->buf, but this call limits the number of places which run
346 into trouble. */
347 get_remote_arch_state ();
348
349 return get_remote_state_raw ();
350 }
351
352 static int
353 compare_pnums (const void *lhs_, const void *rhs_)
354 {
355 const struct packet_reg * const *lhs = lhs_;
356 const struct packet_reg * const *rhs = rhs_;
357
358 if ((*lhs)->pnum < (*rhs)->pnum)
359 return -1;
360 else if ((*lhs)->pnum == (*rhs)->pnum)
361 return 0;
362 else
363 return 1;
364 }
365
366 static void *
367 init_remote_state (struct gdbarch *gdbarch)
368 {
369 int regnum, num_remote_regs, offset;
370 struct remote_state *rs = get_remote_state_raw ();
371 struct remote_arch_state *rsa;
372 struct packet_reg **remote_regs;
373
374 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
375
376 /* Use the architecture to build a regnum<->pnum table, which will be
377 1:1 unless a feature set specifies otherwise. */
378 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
379 gdbarch_num_regs (gdbarch),
380 struct packet_reg);
381 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
382 {
383 struct packet_reg *r = &rsa->regs[regnum];
384
385 if (register_size (gdbarch, regnum) == 0)
386 /* Do not try to fetch zero-sized (placeholder) registers. */
387 r->pnum = -1;
388 else
389 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
390
391 r->regnum = regnum;
392 }
393
394 /* Define the g/G packet format as the contents of each register
395 with a remote protocol number, in order of ascending protocol
396 number. */
397
398 remote_regs = alloca (gdbarch_num_regs (gdbarch)
399 * sizeof (struct packet_reg *));
400 for (num_remote_regs = 0, regnum = 0;
401 regnum < gdbarch_num_regs (gdbarch);
402 regnum++)
403 if (rsa->regs[regnum].pnum != -1)
404 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
405
406 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
407 compare_pnums);
408
409 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
410 {
411 remote_regs[regnum]->in_g_packet = 1;
412 remote_regs[regnum]->offset = offset;
413 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
414 }
415
416 /* Record the maximum possible size of the g packet - it may turn out
417 to be smaller. */
418 rsa->sizeof_g_packet = offset;
419
420 /* Default maximum number of characters in a packet body. Many
421 remote stubs have a hardwired buffer size of 400 bytes
422 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
423 as the maximum packet-size to ensure that the packet and an extra
424 NUL character can always fit in the buffer. This stops GDB
425 trashing stubs that try to squeeze an extra NUL into what is
426 already a full buffer (As of 1999-12-04 that was most stubs). */
427 rsa->remote_packet_size = 400 - 1;
428
429 /* This one is filled in when a ``g'' packet is received. */
430 rsa->actual_register_packet_size = 0;
431
432 /* Should rsa->sizeof_g_packet needs more space than the
433 default, adjust the size accordingly. Remember that each byte is
434 encoded as two characters. 32 is the overhead for the packet
435 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
436 (``$NN:G...#NN'') is a better guess, the below has been padded a
437 little. */
438 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
439 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
440
441 /* Make sure that the packet buffer is plenty big enough for
442 this architecture. */
443 if (rs->buf_size < rsa->remote_packet_size)
444 {
445 rs->buf_size = 2 * rsa->remote_packet_size;
446 rs->buf = xrealloc (rs->buf, rs->buf_size);
447 }
448
449 return rsa;
450 }
451
452 /* Return the current allowed size of a remote packet. This is
453 inferred from the current architecture, and should be used to
454 limit the length of outgoing packets. */
455 static long
456 get_remote_packet_size (void)
457 {
458 struct remote_state *rs = get_remote_state ();
459 struct remote_arch_state *rsa = get_remote_arch_state ();
460
461 if (rs->explicit_packet_size)
462 return rs->explicit_packet_size;
463
464 return rsa->remote_packet_size;
465 }
466
467 static struct packet_reg *
468 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
469 {
470 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
471 return NULL;
472 else
473 {
474 struct packet_reg *r = &rsa->regs[regnum];
475 gdb_assert (r->regnum == regnum);
476 return r;
477 }
478 }
479
480 static struct packet_reg *
481 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
482 {
483 int i;
484 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
485 {
486 struct packet_reg *r = &rsa->regs[i];
487 if (r->pnum == pnum)
488 return r;
489 }
490 return NULL;
491 }
492
493 /* FIXME: graces/2002-08-08: These variables should eventually be
494 bound to an instance of the target object (as in gdbarch-tdep()),
495 when such a thing exists. */
496
497 /* This is set to the data address of the access causing the target
498 to stop for a watchpoint. */
499 static CORE_ADDR remote_watch_data_address;
500
501 /* This is non-zero if target stopped for a watchpoint. */
502 static int remote_stopped_by_watchpoint_p;
503
504 static struct target_ops remote_ops;
505
506 static struct target_ops extended_remote_ops;
507
508 static int remote_async_mask_value = 1;
509
510 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
511 ``forever'' still use the normal timeout mechanism. This is
512 currently used by the ASYNC code to guarentee that target reads
513 during the initial connect always time-out. Once getpkt has been
514 modified to return a timeout indication and, in turn
515 remote_wait()/wait_for_inferior() have gained a timeout parameter
516 this can go away. */
517 static int wait_forever_enabled_p = 1;
518
519
520 /* This variable chooses whether to send a ^C or a break when the user
521 requests program interruption. Although ^C is usually what remote
522 systems expect, and that is the default here, sometimes a break is
523 preferable instead. */
524
525 static int remote_break;
526
527 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
528 remote_open knows that we don't have a file open when the program
529 starts. */
530 static struct serial *remote_desc = NULL;
531
532 /* This variable sets the number of bits in an address that are to be
533 sent in a memory ("M" or "m") packet. Normally, after stripping
534 leading zeros, the entire address would be sent. This variable
535 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
536 initial implementation of remote.c restricted the address sent in
537 memory packets to ``host::sizeof long'' bytes - (typically 32
538 bits). Consequently, for 64 bit targets, the upper 32 bits of an
539 address was never sent. Since fixing this bug may cause a break in
540 some remote targets this variable is principly provided to
541 facilitate backward compatibility. */
542
543 static int remote_address_size;
544
545 /* Temporary to track who currently owns the terminal. See
546 remote_terminal_* for more details. */
547
548 static int remote_async_terminal_ours_p;
549
550 /* The executable file to use for "run" on the remote side. */
551
552 static char *remote_exec_file = "";
553
554 \f
555 /* User configurable variables for the number of characters in a
556 memory read/write packet. MIN (rsa->remote_packet_size,
557 rsa->sizeof_g_packet) is the default. Some targets need smaller
558 values (fifo overruns, et.al.) and some users need larger values
559 (speed up transfers). The variables ``preferred_*'' (the user
560 request), ``current_*'' (what was actually set) and ``forced_*''
561 (Positive - a soft limit, negative - a hard limit). */
562
563 struct memory_packet_config
564 {
565 char *name;
566 long size;
567 int fixed_p;
568 };
569
570 /* Compute the current size of a read/write packet. Since this makes
571 use of ``actual_register_packet_size'' the computation is dynamic. */
572
573 static long
574 get_memory_packet_size (struct memory_packet_config *config)
575 {
576 struct remote_state *rs = get_remote_state ();
577 struct remote_arch_state *rsa = get_remote_arch_state ();
578
579 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
580 law?) that some hosts don't cope very well with large alloca()
581 calls. Eventually the alloca() code will be replaced by calls to
582 xmalloc() and make_cleanups() allowing this restriction to either
583 be lifted or removed. */
584 #ifndef MAX_REMOTE_PACKET_SIZE
585 #define MAX_REMOTE_PACKET_SIZE 16384
586 #endif
587 /* NOTE: 20 ensures we can write at least one byte. */
588 #ifndef MIN_REMOTE_PACKET_SIZE
589 #define MIN_REMOTE_PACKET_SIZE 20
590 #endif
591 long what_they_get;
592 if (config->fixed_p)
593 {
594 if (config->size <= 0)
595 what_they_get = MAX_REMOTE_PACKET_SIZE;
596 else
597 what_they_get = config->size;
598 }
599 else
600 {
601 what_they_get = get_remote_packet_size ();
602 /* Limit the packet to the size specified by the user. */
603 if (config->size > 0
604 && what_they_get > config->size)
605 what_they_get = config->size;
606
607 /* Limit it to the size of the targets ``g'' response unless we have
608 permission from the stub to use a larger packet size. */
609 if (rs->explicit_packet_size == 0
610 && rsa->actual_register_packet_size > 0
611 && what_they_get > rsa->actual_register_packet_size)
612 what_they_get = rsa->actual_register_packet_size;
613 }
614 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
615 what_they_get = MAX_REMOTE_PACKET_SIZE;
616 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
617 what_they_get = MIN_REMOTE_PACKET_SIZE;
618
619 /* Make sure there is room in the global buffer for this packet
620 (including its trailing NUL byte). */
621 if (rs->buf_size < what_they_get + 1)
622 {
623 rs->buf_size = 2 * what_they_get;
624 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
625 }
626
627 return what_they_get;
628 }
629
630 /* Update the size of a read/write packet. If they user wants
631 something really big then do a sanity check. */
632
633 static void
634 set_memory_packet_size (char *args, struct memory_packet_config *config)
635 {
636 int fixed_p = config->fixed_p;
637 long size = config->size;
638 if (args == NULL)
639 error (_("Argument required (integer, `fixed' or `limited')."));
640 else if (strcmp (args, "hard") == 0
641 || strcmp (args, "fixed") == 0)
642 fixed_p = 1;
643 else if (strcmp (args, "soft") == 0
644 || strcmp (args, "limit") == 0)
645 fixed_p = 0;
646 else
647 {
648 char *end;
649 size = strtoul (args, &end, 0);
650 if (args == end)
651 error (_("Invalid %s (bad syntax)."), config->name);
652 #if 0
653 /* Instead of explicitly capping the size of a packet to
654 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
655 instead allowed to set the size to something arbitrarily
656 large. */
657 if (size > MAX_REMOTE_PACKET_SIZE)
658 error (_("Invalid %s (too large)."), config->name);
659 #endif
660 }
661 /* Extra checks? */
662 if (fixed_p && !config->fixed_p)
663 {
664 if (! query (_("The target may not be able to correctly handle a %s\n"
665 "of %ld bytes. Change the packet size? "),
666 config->name, size))
667 error (_("Packet size not changed."));
668 }
669 /* Update the config. */
670 config->fixed_p = fixed_p;
671 config->size = size;
672 }
673
674 static void
675 show_memory_packet_size (struct memory_packet_config *config)
676 {
677 printf_filtered (_("The %s is %ld. "), config->name, config->size);
678 if (config->fixed_p)
679 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
680 get_memory_packet_size (config));
681 else
682 printf_filtered (_("Packets are limited to %ld bytes.\n"),
683 get_memory_packet_size (config));
684 }
685
686 static struct memory_packet_config memory_write_packet_config =
687 {
688 "memory-write-packet-size",
689 };
690
691 static void
692 set_memory_write_packet_size (char *args, int from_tty)
693 {
694 set_memory_packet_size (args, &memory_write_packet_config);
695 }
696
697 static void
698 show_memory_write_packet_size (char *args, int from_tty)
699 {
700 show_memory_packet_size (&memory_write_packet_config);
701 }
702
703 static long
704 get_memory_write_packet_size (void)
705 {
706 return get_memory_packet_size (&memory_write_packet_config);
707 }
708
709 static struct memory_packet_config memory_read_packet_config =
710 {
711 "memory-read-packet-size",
712 };
713
714 static void
715 set_memory_read_packet_size (char *args, int from_tty)
716 {
717 set_memory_packet_size (args, &memory_read_packet_config);
718 }
719
720 static void
721 show_memory_read_packet_size (char *args, int from_tty)
722 {
723 show_memory_packet_size (&memory_read_packet_config);
724 }
725
726 static long
727 get_memory_read_packet_size (void)
728 {
729 long size = get_memory_packet_size (&memory_read_packet_config);
730 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
731 extra buffer size argument before the memory read size can be
732 increased beyond this. */
733 if (size > get_remote_packet_size ())
734 size = get_remote_packet_size ();
735 return size;
736 }
737
738 \f
739 /* Generic configuration support for packets the stub optionally
740 supports. Allows the user to specify the use of the packet as well
741 as allowing GDB to auto-detect support in the remote stub. */
742
743 enum packet_support
744 {
745 PACKET_SUPPORT_UNKNOWN = 0,
746 PACKET_ENABLE,
747 PACKET_DISABLE
748 };
749
750 struct packet_config
751 {
752 const char *name;
753 const char *title;
754 enum auto_boolean detect;
755 enum packet_support support;
756 };
757
758 /* Analyze a packet's return value and update the packet config
759 accordingly. */
760
761 enum packet_result
762 {
763 PACKET_ERROR,
764 PACKET_OK,
765 PACKET_UNKNOWN
766 };
767
768 static void
769 update_packet_config (struct packet_config *config)
770 {
771 switch (config->detect)
772 {
773 case AUTO_BOOLEAN_TRUE:
774 config->support = PACKET_ENABLE;
775 break;
776 case AUTO_BOOLEAN_FALSE:
777 config->support = PACKET_DISABLE;
778 break;
779 case AUTO_BOOLEAN_AUTO:
780 config->support = PACKET_SUPPORT_UNKNOWN;
781 break;
782 }
783 }
784
785 static void
786 show_packet_config_cmd (struct packet_config *config)
787 {
788 char *support = "internal-error";
789 switch (config->support)
790 {
791 case PACKET_ENABLE:
792 support = "enabled";
793 break;
794 case PACKET_DISABLE:
795 support = "disabled";
796 break;
797 case PACKET_SUPPORT_UNKNOWN:
798 support = "unknown";
799 break;
800 }
801 switch (config->detect)
802 {
803 case AUTO_BOOLEAN_AUTO:
804 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
805 config->name, support);
806 break;
807 case AUTO_BOOLEAN_TRUE:
808 case AUTO_BOOLEAN_FALSE:
809 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
810 config->name, support);
811 break;
812 }
813 }
814
815 static void
816 add_packet_config_cmd (struct packet_config *config, const char *name,
817 const char *title, int legacy)
818 {
819 char *set_doc;
820 char *show_doc;
821 char *cmd_name;
822
823 config->name = name;
824 config->title = title;
825 config->detect = AUTO_BOOLEAN_AUTO;
826 config->support = PACKET_SUPPORT_UNKNOWN;
827 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
828 name, title);
829 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
830 name, title);
831 /* set/show TITLE-packet {auto,on,off} */
832 cmd_name = xstrprintf ("%s-packet", title);
833 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
834 &config->detect, set_doc, show_doc, NULL, /* help_doc */
835 set_remote_protocol_packet_cmd,
836 show_remote_protocol_packet_cmd,
837 &remote_set_cmdlist, &remote_show_cmdlist);
838 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
839 if (legacy)
840 {
841 char *legacy_name;
842 legacy_name = xstrprintf ("%s-packet", name);
843 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
844 &remote_set_cmdlist);
845 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
846 &remote_show_cmdlist);
847 }
848 }
849
850 static enum packet_result
851 packet_check_result (const char *buf)
852 {
853 if (buf[0] != '\0')
854 {
855 /* The stub recognized the packet request. Check that the
856 operation succeeded. */
857 if (buf[0] == 'E'
858 && isxdigit (buf[1]) && isxdigit (buf[2])
859 && buf[3] == '\0')
860 /* "Enn" - definitly an error. */
861 return PACKET_ERROR;
862
863 /* Always treat "E." as an error. This will be used for
864 more verbose error messages, such as E.memtypes. */
865 if (buf[0] == 'E' && buf[1] == '.')
866 return PACKET_ERROR;
867
868 /* The packet may or may not be OK. Just assume it is. */
869 return PACKET_OK;
870 }
871 else
872 /* The stub does not support the packet. */
873 return PACKET_UNKNOWN;
874 }
875
876 static enum packet_result
877 packet_ok (const char *buf, struct packet_config *config)
878 {
879 enum packet_result result;
880
881 result = packet_check_result (buf);
882 switch (result)
883 {
884 case PACKET_OK:
885 case PACKET_ERROR:
886 /* The stub recognized the packet request. */
887 switch (config->support)
888 {
889 case PACKET_SUPPORT_UNKNOWN:
890 if (remote_debug)
891 fprintf_unfiltered (gdb_stdlog,
892 "Packet %s (%s) is supported\n",
893 config->name, config->title);
894 config->support = PACKET_ENABLE;
895 break;
896 case PACKET_DISABLE:
897 internal_error (__FILE__, __LINE__,
898 _("packet_ok: attempt to use a disabled packet"));
899 break;
900 case PACKET_ENABLE:
901 break;
902 }
903 break;
904 case PACKET_UNKNOWN:
905 /* The stub does not support the packet. */
906 switch (config->support)
907 {
908 case PACKET_ENABLE:
909 if (config->detect == AUTO_BOOLEAN_AUTO)
910 /* If the stub previously indicated that the packet was
911 supported then there is a protocol error.. */
912 error (_("Protocol error: %s (%s) conflicting enabled responses."),
913 config->name, config->title);
914 else
915 /* The user set it wrong. */
916 error (_("Enabled packet %s (%s) not recognized by stub"),
917 config->name, config->title);
918 break;
919 case PACKET_SUPPORT_UNKNOWN:
920 if (remote_debug)
921 fprintf_unfiltered (gdb_stdlog,
922 "Packet %s (%s) is NOT supported\n",
923 config->name, config->title);
924 config->support = PACKET_DISABLE;
925 break;
926 case PACKET_DISABLE:
927 break;
928 }
929 break;
930 }
931
932 return result;
933 }
934
935 enum {
936 PACKET_vCont = 0,
937 PACKET_X,
938 PACKET_qSymbol,
939 PACKET_P,
940 PACKET_p,
941 PACKET_Z0,
942 PACKET_Z1,
943 PACKET_Z2,
944 PACKET_Z3,
945 PACKET_Z4,
946 PACKET_vFile_open,
947 PACKET_vFile_pread,
948 PACKET_vFile_pwrite,
949 PACKET_vFile_close,
950 PACKET_vFile_unlink,
951 PACKET_qXfer_auxv,
952 PACKET_qXfer_features,
953 PACKET_qXfer_libraries,
954 PACKET_qXfer_memory_map,
955 PACKET_qXfer_spu_read,
956 PACKET_qXfer_spu_write,
957 PACKET_qGetTLSAddr,
958 PACKET_qSupported,
959 PACKET_QPassSignals,
960 PACKET_qSearch_memory,
961 PACKET_vAttach,
962 PACKET_vRun,
963 PACKET_MAX
964 };
965
966 static struct packet_config remote_protocol_packets[PACKET_MAX];
967
968 static void
969 set_remote_protocol_packet_cmd (char *args, int from_tty,
970 struct cmd_list_element *c)
971 {
972 struct packet_config *packet;
973
974 for (packet = remote_protocol_packets;
975 packet < &remote_protocol_packets[PACKET_MAX];
976 packet++)
977 {
978 if (&packet->detect == c->var)
979 {
980 update_packet_config (packet);
981 return;
982 }
983 }
984 internal_error (__FILE__, __LINE__, "Could not find config for %s",
985 c->name);
986 }
987
988 static void
989 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
990 struct cmd_list_element *c,
991 const char *value)
992 {
993 struct packet_config *packet;
994
995 for (packet = remote_protocol_packets;
996 packet < &remote_protocol_packets[PACKET_MAX];
997 packet++)
998 {
999 if (&packet->detect == c->var)
1000 {
1001 show_packet_config_cmd (packet);
1002 return;
1003 }
1004 }
1005 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1006 c->name);
1007 }
1008
1009 /* Should we try one of the 'Z' requests? */
1010
1011 enum Z_packet_type
1012 {
1013 Z_PACKET_SOFTWARE_BP,
1014 Z_PACKET_HARDWARE_BP,
1015 Z_PACKET_WRITE_WP,
1016 Z_PACKET_READ_WP,
1017 Z_PACKET_ACCESS_WP,
1018 NR_Z_PACKET_TYPES
1019 };
1020
1021 /* For compatibility with older distributions. Provide a ``set remote
1022 Z-packet ...'' command that updates all the Z packet types. */
1023
1024 static enum auto_boolean remote_Z_packet_detect;
1025
1026 static void
1027 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1028 struct cmd_list_element *c)
1029 {
1030 int i;
1031 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1032 {
1033 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1034 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1035 }
1036 }
1037
1038 static void
1039 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1040 struct cmd_list_element *c,
1041 const char *value)
1042 {
1043 int i;
1044 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1045 {
1046 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1047 }
1048 }
1049
1050 /* Should we try the 'ThreadInfo' query packet?
1051
1052 This variable (NOT available to the user: auto-detect only!)
1053 determines whether GDB will use the new, simpler "ThreadInfo"
1054 query or the older, more complex syntax for thread queries.
1055 This is an auto-detect variable (set to true at each connect,
1056 and set to false when the target fails to recognize it). */
1057
1058 static int use_threadinfo_query;
1059 static int use_threadextra_query;
1060
1061 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1062 static struct async_signal_handler *sigint_remote_twice_token;
1063 static struct async_signal_handler *sigint_remote_token;
1064
1065 \f
1066
1067 static ptid_t magic_null_ptid;
1068 static ptid_t not_sent_ptid;
1069 static ptid_t any_thread_ptid;
1070
1071 /* These are the threads which we last sent to the remote system. The
1072 TID member will be -1 for all or -2 for not sent yet. */
1073
1074 static ptid_t general_thread;
1075 static ptid_t continue_thread;
1076
1077
1078 /* Call this function as a result of
1079 1) A halt indication (T packet) containing a thread id
1080 2) A direct query of currthread
1081 3) Successful execution of set thread
1082 */
1083
1084 static void
1085 record_currthread (ptid_t currthread)
1086 {
1087 general_thread = currthread;
1088
1089 /* If this is a new thread, add it to GDB's thread list.
1090 If we leave it up to WFI to do this, bad things will happen. */
1091 if (!in_thread_list (currthread))
1092 {
1093 if (ptid_equal (pid_to_ptid (ptid_get_pid (currthread)), inferior_ptid))
1094 {
1095 /* inferior_ptid has no thread member yet. This can happen
1096 with the vAttach -> remote_wait,"TAAthread:" path if the
1097 stub doesn't support qC. This is the first stop reported
1098 after an attach, so this is the main thread. Update the
1099 ptid in the thread list. */
1100 struct thread_info *th = find_thread_pid (inferior_ptid);
1101 inferior_ptid = th->ptid = currthread;
1102 }
1103 else if (ptid_equal (magic_null_ptid, inferior_ptid))
1104 {
1105 /* inferior_ptid is not set yet. This can happen with the
1106 vRun -> remote_wait,"TAAthread:" path if the stub
1107 doesn't support qC. This is the first stop reported
1108 after an attach, so this is the main thread. Update the
1109 ptid in the thread list. */
1110 struct thread_info *th = find_thread_pid (inferior_ptid);
1111 inferior_ptid = th->ptid = currthread;
1112 }
1113 else
1114 /* This is really a new thread. Add it. */
1115 add_thread (currthread);
1116 }
1117 }
1118
1119 static char *last_pass_packet;
1120
1121 /* If 'QPassSignals' is supported, tell the remote stub what signals
1122 it can simply pass through to the inferior without reporting. */
1123
1124 static void
1125 remote_pass_signals (void)
1126 {
1127 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1128 {
1129 char *pass_packet, *p;
1130 int numsigs = (int) TARGET_SIGNAL_LAST;
1131 int count = 0, i;
1132
1133 gdb_assert (numsigs < 256);
1134 for (i = 0; i < numsigs; i++)
1135 {
1136 if (signal_stop_state (i) == 0
1137 && signal_print_state (i) == 0
1138 && signal_pass_state (i) == 1)
1139 count++;
1140 }
1141 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1142 strcpy (pass_packet, "QPassSignals:");
1143 p = pass_packet + strlen (pass_packet);
1144 for (i = 0; i < numsigs; i++)
1145 {
1146 if (signal_stop_state (i) == 0
1147 && signal_print_state (i) == 0
1148 && signal_pass_state (i) == 1)
1149 {
1150 if (i >= 16)
1151 *p++ = tohex (i >> 4);
1152 *p++ = tohex (i & 15);
1153 if (count)
1154 *p++ = ';';
1155 else
1156 break;
1157 count--;
1158 }
1159 }
1160 *p = 0;
1161 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1162 {
1163 struct remote_state *rs = get_remote_state ();
1164 char *buf = rs->buf;
1165
1166 putpkt (pass_packet);
1167 getpkt (&rs->buf, &rs->buf_size, 0);
1168 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1169 if (last_pass_packet)
1170 xfree (last_pass_packet);
1171 last_pass_packet = pass_packet;
1172 }
1173 else
1174 xfree (pass_packet);
1175 }
1176 }
1177
1178 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1179 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1180 thread. If GEN is set, set the general thread, if not, then set
1181 the step/continue thread. */
1182 static void
1183 set_thread (struct ptid ptid, int gen)
1184 {
1185 struct remote_state *rs = get_remote_state ();
1186 ptid_t state = gen ? general_thread : continue_thread;
1187 char *buf = rs->buf;
1188 char *endbuf = rs->buf + get_remote_packet_size ();
1189
1190 if (ptid_equal (state, ptid))
1191 return;
1192
1193 *buf++ = 'H';
1194 *buf++ = gen ? 'g' : 'c';
1195 if (ptid_equal (ptid, magic_null_ptid))
1196 xsnprintf (buf, endbuf - buf, "0");
1197 else if (ptid_equal (ptid, any_thread_ptid))
1198 xsnprintf (buf, endbuf - buf, "0");
1199 else if (ptid_equal (ptid, minus_one_ptid))
1200 xsnprintf (buf, endbuf - buf, "-1");
1201 else
1202 {
1203 int tid = ptid_get_tid (ptid);
1204 if (tid < 0)
1205 xsnprintf (buf, endbuf - buf, "-%x", -tid);
1206 else
1207 xsnprintf (buf, endbuf - buf, "%x", tid);
1208 }
1209 putpkt (rs->buf);
1210 getpkt (&rs->buf, &rs->buf_size, 0);
1211 if (gen)
1212 general_thread = ptid;
1213 else
1214 continue_thread = ptid;
1215 }
1216
1217 static void
1218 set_general_thread (struct ptid ptid)
1219 {
1220 set_thread (ptid, 1);
1221 }
1222
1223 static void
1224 set_continue_thread (struct ptid ptid)
1225 {
1226 set_thread (ptid, 0);
1227 }
1228
1229 \f
1230 /* Return nonzero if the thread PTID is still alive on the remote
1231 system. */
1232
1233 static int
1234 remote_thread_alive (ptid_t ptid)
1235 {
1236 struct remote_state *rs = get_remote_state ();
1237 int tid = ptid_get_tid (ptid);
1238
1239 if (ptid_equal (ptid, magic_null_ptid))
1240 /* The main thread is always alive. */
1241 return 1;
1242
1243 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1244 /* The main thread is always alive. This can happen after a
1245 vAttach, if the remote side doesn't support
1246 multi-threading. */
1247 return 1;
1248
1249 if (tid < 0)
1250 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1251 else
1252 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1253 putpkt (rs->buf);
1254 getpkt (&rs->buf, &rs->buf_size, 0);
1255 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1256 }
1257
1258 /* About these extended threadlist and threadinfo packets. They are
1259 variable length packets but, the fields within them are often fixed
1260 length. They are redundent enough to send over UDP as is the
1261 remote protocol in general. There is a matching unit test module
1262 in libstub. */
1263
1264 #define OPAQUETHREADBYTES 8
1265
1266 /* a 64 bit opaque identifier */
1267 typedef unsigned char threadref[OPAQUETHREADBYTES];
1268
1269 /* WARNING: This threadref data structure comes from the remote O.S.,
1270 libstub protocol encoding, and remote.c. it is not particularly
1271 changable. */
1272
1273 /* Right now, the internal structure is int. We want it to be bigger.
1274 Plan to fix this.
1275 */
1276
1277 typedef int gdb_threadref; /* Internal GDB thread reference. */
1278
1279 /* gdb_ext_thread_info is an internal GDB data structure which is
1280 equivalent to the reply of the remote threadinfo packet. */
1281
1282 struct gdb_ext_thread_info
1283 {
1284 threadref threadid; /* External form of thread reference. */
1285 int active; /* Has state interesting to GDB?
1286 regs, stack. */
1287 char display[256]; /* Brief state display, name,
1288 blocked/suspended. */
1289 char shortname[32]; /* To be used to name threads. */
1290 char more_display[256]; /* Long info, statistics, queue depth,
1291 whatever. */
1292 };
1293
1294 /* The volume of remote transfers can be limited by submitting
1295 a mask containing bits specifying the desired information.
1296 Use a union of these values as the 'selection' parameter to
1297 get_thread_info. FIXME: Make these TAG names more thread specific.
1298 */
1299
1300 #define TAG_THREADID 1
1301 #define TAG_EXISTS 2
1302 #define TAG_DISPLAY 4
1303 #define TAG_THREADNAME 8
1304 #define TAG_MOREDISPLAY 16
1305
1306 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1307
1308 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1309
1310 static char *unpack_nibble (char *buf, int *val);
1311
1312 static char *pack_nibble (char *buf, int nibble);
1313
1314 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1315
1316 static char *unpack_byte (char *buf, int *value);
1317
1318 static char *pack_int (char *buf, int value);
1319
1320 static char *unpack_int (char *buf, int *value);
1321
1322 static char *unpack_string (char *src, char *dest, int length);
1323
1324 static char *pack_threadid (char *pkt, threadref *id);
1325
1326 static char *unpack_threadid (char *inbuf, threadref *id);
1327
1328 void int_to_threadref (threadref *id, int value);
1329
1330 static int threadref_to_int (threadref *ref);
1331
1332 static void copy_threadref (threadref *dest, threadref *src);
1333
1334 static int threadmatch (threadref *dest, threadref *src);
1335
1336 static char *pack_threadinfo_request (char *pkt, int mode,
1337 threadref *id);
1338
1339 static int remote_unpack_thread_info_response (char *pkt,
1340 threadref *expectedref,
1341 struct gdb_ext_thread_info
1342 *info);
1343
1344
1345 static int remote_get_threadinfo (threadref *threadid,
1346 int fieldset, /*TAG mask */
1347 struct gdb_ext_thread_info *info);
1348
1349 static char *pack_threadlist_request (char *pkt, int startflag,
1350 int threadcount,
1351 threadref *nextthread);
1352
1353 static int parse_threadlist_response (char *pkt,
1354 int result_limit,
1355 threadref *original_echo,
1356 threadref *resultlist,
1357 int *doneflag);
1358
1359 static int remote_get_threadlist (int startflag,
1360 threadref *nextthread,
1361 int result_limit,
1362 int *done,
1363 int *result_count,
1364 threadref *threadlist);
1365
1366 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1367
1368 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1369 void *context, int looplimit);
1370
1371 static int remote_newthread_step (threadref *ref, void *context);
1372
1373 /* Encode 64 bits in 16 chars of hex. */
1374
1375 static const char hexchars[] = "0123456789abcdef";
1376
1377 static int
1378 ishex (int ch, int *val)
1379 {
1380 if ((ch >= 'a') && (ch <= 'f'))
1381 {
1382 *val = ch - 'a' + 10;
1383 return 1;
1384 }
1385 if ((ch >= 'A') && (ch <= 'F'))
1386 {
1387 *val = ch - 'A' + 10;
1388 return 1;
1389 }
1390 if ((ch >= '0') && (ch <= '9'))
1391 {
1392 *val = ch - '0';
1393 return 1;
1394 }
1395 return 0;
1396 }
1397
1398 static int
1399 stubhex (int ch)
1400 {
1401 if (ch >= 'a' && ch <= 'f')
1402 return ch - 'a' + 10;
1403 if (ch >= '0' && ch <= '9')
1404 return ch - '0';
1405 if (ch >= 'A' && ch <= 'F')
1406 return ch - 'A' + 10;
1407 return -1;
1408 }
1409
1410 static int
1411 stub_unpack_int (char *buff, int fieldlength)
1412 {
1413 int nibble;
1414 int retval = 0;
1415
1416 while (fieldlength)
1417 {
1418 nibble = stubhex (*buff++);
1419 retval |= nibble;
1420 fieldlength--;
1421 if (fieldlength)
1422 retval = retval << 4;
1423 }
1424 return retval;
1425 }
1426
1427 char *
1428 unpack_varlen_hex (char *buff, /* packet to parse */
1429 ULONGEST *result)
1430 {
1431 int nibble;
1432 ULONGEST retval = 0;
1433
1434 while (ishex (*buff, &nibble))
1435 {
1436 buff++;
1437 retval = retval << 4;
1438 retval |= nibble & 0x0f;
1439 }
1440 *result = retval;
1441 return buff;
1442 }
1443
1444 static char *
1445 unpack_nibble (char *buf, int *val)
1446 {
1447 *val = fromhex (*buf++);
1448 return buf;
1449 }
1450
1451 static char *
1452 pack_nibble (char *buf, int nibble)
1453 {
1454 *buf++ = hexchars[(nibble & 0x0f)];
1455 return buf;
1456 }
1457
1458 static char *
1459 pack_hex_byte (char *pkt, int byte)
1460 {
1461 *pkt++ = hexchars[(byte >> 4) & 0xf];
1462 *pkt++ = hexchars[(byte & 0xf)];
1463 return pkt;
1464 }
1465
1466 static char *
1467 unpack_byte (char *buf, int *value)
1468 {
1469 *value = stub_unpack_int (buf, 2);
1470 return buf + 2;
1471 }
1472
1473 static char *
1474 pack_int (char *buf, int value)
1475 {
1476 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1477 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1478 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1479 buf = pack_hex_byte (buf, (value & 0xff));
1480 return buf;
1481 }
1482
1483 static char *
1484 unpack_int (char *buf, int *value)
1485 {
1486 *value = stub_unpack_int (buf, 8);
1487 return buf + 8;
1488 }
1489
1490 #if 0 /* Currently unused, uncomment when needed. */
1491 static char *pack_string (char *pkt, char *string);
1492
1493 static char *
1494 pack_string (char *pkt, char *string)
1495 {
1496 char ch;
1497 int len;
1498
1499 len = strlen (string);
1500 if (len > 200)
1501 len = 200; /* Bigger than most GDB packets, junk??? */
1502 pkt = pack_hex_byte (pkt, len);
1503 while (len-- > 0)
1504 {
1505 ch = *string++;
1506 if ((ch == '\0') || (ch == '#'))
1507 ch = '*'; /* Protect encapsulation. */
1508 *pkt++ = ch;
1509 }
1510 return pkt;
1511 }
1512 #endif /* 0 (unused) */
1513
1514 static char *
1515 unpack_string (char *src, char *dest, int length)
1516 {
1517 while (length--)
1518 *dest++ = *src++;
1519 *dest = '\0';
1520 return src;
1521 }
1522
1523 static char *
1524 pack_threadid (char *pkt, threadref *id)
1525 {
1526 char *limit;
1527 unsigned char *altid;
1528
1529 altid = (unsigned char *) id;
1530 limit = pkt + BUF_THREAD_ID_SIZE;
1531 while (pkt < limit)
1532 pkt = pack_hex_byte (pkt, *altid++);
1533 return pkt;
1534 }
1535
1536
1537 static char *
1538 unpack_threadid (char *inbuf, threadref *id)
1539 {
1540 char *altref;
1541 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1542 int x, y;
1543
1544 altref = (char *) id;
1545
1546 while (inbuf < limit)
1547 {
1548 x = stubhex (*inbuf++);
1549 y = stubhex (*inbuf++);
1550 *altref++ = (x << 4) | y;
1551 }
1552 return inbuf;
1553 }
1554
1555 /* Externally, threadrefs are 64 bits but internally, they are still
1556 ints. This is due to a mismatch of specifications. We would like
1557 to use 64bit thread references internally. This is an adapter
1558 function. */
1559
1560 void
1561 int_to_threadref (threadref *id, int value)
1562 {
1563 unsigned char *scan;
1564
1565 scan = (unsigned char *) id;
1566 {
1567 int i = 4;
1568 while (i--)
1569 *scan++ = 0;
1570 }
1571 *scan++ = (value >> 24) & 0xff;
1572 *scan++ = (value >> 16) & 0xff;
1573 *scan++ = (value >> 8) & 0xff;
1574 *scan++ = (value & 0xff);
1575 }
1576
1577 static int
1578 threadref_to_int (threadref *ref)
1579 {
1580 int i, value = 0;
1581 unsigned char *scan;
1582
1583 scan = *ref;
1584 scan += 4;
1585 i = 4;
1586 while (i-- > 0)
1587 value = (value << 8) | ((*scan++) & 0xff);
1588 return value;
1589 }
1590
1591 static void
1592 copy_threadref (threadref *dest, threadref *src)
1593 {
1594 int i;
1595 unsigned char *csrc, *cdest;
1596
1597 csrc = (unsigned char *) src;
1598 cdest = (unsigned char *) dest;
1599 i = 8;
1600 while (i--)
1601 *cdest++ = *csrc++;
1602 }
1603
1604 static int
1605 threadmatch (threadref *dest, threadref *src)
1606 {
1607 /* Things are broken right now, so just assume we got a match. */
1608 #if 0
1609 unsigned char *srcp, *destp;
1610 int i, result;
1611 srcp = (char *) src;
1612 destp = (char *) dest;
1613
1614 result = 1;
1615 while (i-- > 0)
1616 result &= (*srcp++ == *destp++) ? 1 : 0;
1617 return result;
1618 #endif
1619 return 1;
1620 }
1621
1622 /*
1623 threadid:1, # always request threadid
1624 context_exists:2,
1625 display:4,
1626 unique_name:8,
1627 more_display:16
1628 */
1629
1630 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1631
1632 static char *
1633 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1634 {
1635 *pkt++ = 'q'; /* Info Query */
1636 *pkt++ = 'P'; /* process or thread info */
1637 pkt = pack_int (pkt, mode); /* mode */
1638 pkt = pack_threadid (pkt, id); /* threadid */
1639 *pkt = '\0'; /* terminate */
1640 return pkt;
1641 }
1642
1643 /* These values tag the fields in a thread info response packet. */
1644 /* Tagging the fields allows us to request specific fields and to
1645 add more fields as time goes by. */
1646
1647 #define TAG_THREADID 1 /* Echo the thread identifier. */
1648 #define TAG_EXISTS 2 /* Is this process defined enough to
1649 fetch registers and its stack? */
1650 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1651 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1652 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1653 the process. */
1654
1655 static int
1656 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1657 struct gdb_ext_thread_info *info)
1658 {
1659 struct remote_state *rs = get_remote_state ();
1660 int mask, length;
1661 int tag;
1662 threadref ref;
1663 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1664 int retval = 1;
1665
1666 /* info->threadid = 0; FIXME: implement zero_threadref. */
1667 info->active = 0;
1668 info->display[0] = '\0';
1669 info->shortname[0] = '\0';
1670 info->more_display[0] = '\0';
1671
1672 /* Assume the characters indicating the packet type have been
1673 stripped. */
1674 pkt = unpack_int (pkt, &mask); /* arg mask */
1675 pkt = unpack_threadid (pkt, &ref);
1676
1677 if (mask == 0)
1678 warning (_("Incomplete response to threadinfo request."));
1679 if (!threadmatch (&ref, expectedref))
1680 { /* This is an answer to a different request. */
1681 warning (_("ERROR RMT Thread info mismatch."));
1682 return 0;
1683 }
1684 copy_threadref (&info->threadid, &ref);
1685
1686 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1687
1688 /* Packets are terminated with nulls. */
1689 while ((pkt < limit) && mask && *pkt)
1690 {
1691 pkt = unpack_int (pkt, &tag); /* tag */
1692 pkt = unpack_byte (pkt, &length); /* length */
1693 if (!(tag & mask)) /* Tags out of synch with mask. */
1694 {
1695 warning (_("ERROR RMT: threadinfo tag mismatch."));
1696 retval = 0;
1697 break;
1698 }
1699 if (tag == TAG_THREADID)
1700 {
1701 if (length != 16)
1702 {
1703 warning (_("ERROR RMT: length of threadid is not 16."));
1704 retval = 0;
1705 break;
1706 }
1707 pkt = unpack_threadid (pkt, &ref);
1708 mask = mask & ~TAG_THREADID;
1709 continue;
1710 }
1711 if (tag == TAG_EXISTS)
1712 {
1713 info->active = stub_unpack_int (pkt, length);
1714 pkt += length;
1715 mask = mask & ~(TAG_EXISTS);
1716 if (length > 8)
1717 {
1718 warning (_("ERROR RMT: 'exists' length too long."));
1719 retval = 0;
1720 break;
1721 }
1722 continue;
1723 }
1724 if (tag == TAG_THREADNAME)
1725 {
1726 pkt = unpack_string (pkt, &info->shortname[0], length);
1727 mask = mask & ~TAG_THREADNAME;
1728 continue;
1729 }
1730 if (tag == TAG_DISPLAY)
1731 {
1732 pkt = unpack_string (pkt, &info->display[0], length);
1733 mask = mask & ~TAG_DISPLAY;
1734 continue;
1735 }
1736 if (tag == TAG_MOREDISPLAY)
1737 {
1738 pkt = unpack_string (pkt, &info->more_display[0], length);
1739 mask = mask & ~TAG_MOREDISPLAY;
1740 continue;
1741 }
1742 warning (_("ERROR RMT: unknown thread info tag."));
1743 break; /* Not a tag we know about. */
1744 }
1745 return retval;
1746 }
1747
1748 static int
1749 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1750 struct gdb_ext_thread_info *info)
1751 {
1752 struct remote_state *rs = get_remote_state ();
1753 int result;
1754
1755 pack_threadinfo_request (rs->buf, fieldset, threadid);
1756 putpkt (rs->buf);
1757 getpkt (&rs->buf, &rs->buf_size, 0);
1758 result = remote_unpack_thread_info_response (rs->buf + 2,
1759 threadid, info);
1760 return result;
1761 }
1762
1763 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1764
1765 static char *
1766 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1767 threadref *nextthread)
1768 {
1769 *pkt++ = 'q'; /* info query packet */
1770 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1771 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1772 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1773 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1774 *pkt = '\0';
1775 return pkt;
1776 }
1777
1778 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1779
1780 static int
1781 parse_threadlist_response (char *pkt, int result_limit,
1782 threadref *original_echo, threadref *resultlist,
1783 int *doneflag)
1784 {
1785 struct remote_state *rs = get_remote_state ();
1786 char *limit;
1787 int count, resultcount, done;
1788
1789 resultcount = 0;
1790 /* Assume the 'q' and 'M chars have been stripped. */
1791 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1792 /* done parse past here */
1793 pkt = unpack_byte (pkt, &count); /* count field */
1794 pkt = unpack_nibble (pkt, &done);
1795 /* The first threadid is the argument threadid. */
1796 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1797 while ((count-- > 0) && (pkt < limit))
1798 {
1799 pkt = unpack_threadid (pkt, resultlist++);
1800 if (resultcount++ >= result_limit)
1801 break;
1802 }
1803 if (doneflag)
1804 *doneflag = done;
1805 return resultcount;
1806 }
1807
1808 static int
1809 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1810 int *done, int *result_count, threadref *threadlist)
1811 {
1812 struct remote_state *rs = get_remote_state ();
1813 static threadref echo_nextthread;
1814 int result = 1;
1815
1816 /* Trancate result limit to be smaller than the packet size. */
1817 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1818 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1819
1820 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1821 putpkt (rs->buf);
1822 getpkt (&rs->buf, &rs->buf_size, 0);
1823
1824 if (*rs->buf == '\0')
1825 *result_count = 0;
1826 else
1827 *result_count =
1828 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1829 threadlist, done);
1830
1831 if (!threadmatch (&echo_nextthread, nextthread))
1832 {
1833 /* FIXME: This is a good reason to drop the packet. */
1834 /* Possably, there is a duplicate response. */
1835 /* Possabilities :
1836 retransmit immediatly - race conditions
1837 retransmit after timeout - yes
1838 exit
1839 wait for packet, then exit
1840 */
1841 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1842 return 0; /* I choose simply exiting. */
1843 }
1844 if (*result_count <= 0)
1845 {
1846 if (*done != 1)
1847 {
1848 warning (_("RMT ERROR : failed to get remote thread list."));
1849 result = 0;
1850 }
1851 return result; /* break; */
1852 }
1853 if (*result_count > result_limit)
1854 {
1855 *result_count = 0;
1856 warning (_("RMT ERROR: threadlist response longer than requested."));
1857 return 0;
1858 }
1859 return result;
1860 }
1861
1862 /* This is the interface between remote and threads, remotes upper
1863 interface. */
1864
1865 /* remote_find_new_threads retrieves the thread list and for each
1866 thread in the list, looks up the thread in GDB's internal list,
1867 adding the thread if it does not already exist. This involves
1868 getting partial thread lists from the remote target so, polling the
1869 quit_flag is required. */
1870
1871
1872 /* About this many threadisds fit in a packet. */
1873
1874 #define MAXTHREADLISTRESULTS 32
1875
1876 static int
1877 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1878 int looplimit)
1879 {
1880 int done, i, result_count;
1881 int startflag = 1;
1882 int result = 1;
1883 int loopcount = 0;
1884 static threadref nextthread;
1885 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1886
1887 done = 0;
1888 while (!done)
1889 {
1890 if (loopcount++ > looplimit)
1891 {
1892 result = 0;
1893 warning (_("Remote fetch threadlist -infinite loop-."));
1894 break;
1895 }
1896 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1897 &done, &result_count, resultthreadlist))
1898 {
1899 result = 0;
1900 break;
1901 }
1902 /* Clear for later iterations. */
1903 startflag = 0;
1904 /* Setup to resume next batch of thread references, set nextthread. */
1905 if (result_count >= 1)
1906 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1907 i = 0;
1908 while (result_count--)
1909 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1910 break;
1911 }
1912 return result;
1913 }
1914
1915 static int
1916 remote_newthread_step (threadref *ref, void *context)
1917 {
1918 int pid = ptid_get_pid (inferior_ptid);
1919 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
1920
1921 if (!in_thread_list (ptid))
1922 add_thread (ptid);
1923 return 1; /* continue iterator */
1924 }
1925
1926 #define CRAZY_MAX_THREADS 1000
1927
1928 static ptid_t
1929 remote_current_thread (ptid_t oldpid)
1930 {
1931 struct remote_state *rs = get_remote_state ();
1932 char *p = rs->buf;
1933 int tid;
1934 int pid;
1935
1936 putpkt ("qC");
1937 getpkt (&rs->buf, &rs->buf_size, 0);
1938 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1939 {
1940 /* Use strtoul here, so we'll correctly parse values whose
1941 highest bit is set. The protocol carries them as a simple
1942 series of hex digits; in the absence of a sign, strtol will
1943 see such values as positive numbers out of range for signed
1944 'long', and return LONG_MAX to indicate an overflow. */
1945 tid = strtoul (&rs->buf[2], NULL, 16);
1946 pid = ptid_get_pid (oldpid);
1947 return ptid_build (pid, 0, tid);
1948 }
1949 else
1950 return oldpid;
1951 }
1952
1953 /* Find new threads for info threads command.
1954 * Original version, using John Metzler's thread protocol.
1955 */
1956
1957 static void
1958 remote_find_new_threads (void)
1959 {
1960 remote_threadlist_iterator (remote_newthread_step, 0,
1961 CRAZY_MAX_THREADS);
1962 }
1963
1964 /*
1965 * Find all threads for info threads command.
1966 * Uses new thread protocol contributed by Cisco.
1967 * Falls back and attempts to use the older method (above)
1968 * if the target doesn't respond to the new method.
1969 */
1970
1971 static void
1972 remote_threads_info (void)
1973 {
1974 struct remote_state *rs = get_remote_state ();
1975 char *bufp;
1976 int tid;
1977 int pid;
1978 ptid_t new_thread;
1979
1980 if (remote_desc == 0) /* paranoia */
1981 error (_("Command can only be used when connected to the remote target."));
1982
1983 if (use_threadinfo_query)
1984 {
1985 putpkt ("qfThreadInfo");
1986 getpkt (&rs->buf, &rs->buf_size, 0);
1987 bufp = rs->buf;
1988 if (bufp[0] != '\0') /* q packet recognized */
1989 {
1990 while (*bufp++ == 'm') /* reply contains one or more TID */
1991 {
1992 do
1993 {
1994 /* Use strtoul here, so we'll correctly parse values
1995 whose highest bit is set. The protocol carries
1996 them as a simple series of hex digits; in the
1997 absence of a sign, strtol will see such values as
1998 positive numbers out of range for signed 'long',
1999 and return LONG_MAX to indicate an overflow. */
2000 tid = strtoul (bufp, &bufp, 16);
2001 pid = ptid_get_pid (inferior_ptid);
2002 new_thread = ptid_build (pid, 0, tid);
2003 if (tid != 0 && !in_thread_list (new_thread))
2004 add_thread (new_thread);
2005 }
2006 while (*bufp++ == ','); /* comma-separated list */
2007 putpkt ("qsThreadInfo");
2008 getpkt (&rs->buf, &rs->buf_size, 0);
2009 bufp = rs->buf;
2010 }
2011 return; /* done */
2012 }
2013 }
2014
2015 /* Else fall back to old method based on jmetzler protocol. */
2016 use_threadinfo_query = 0;
2017 remote_find_new_threads ();
2018 return;
2019 }
2020
2021 /*
2022 * Collect a descriptive string about the given thread.
2023 * The target may say anything it wants to about the thread
2024 * (typically info about its blocked / runnable state, name, etc.).
2025 * This string will appear in the info threads display.
2026 *
2027 * Optional: targets are not required to implement this function.
2028 */
2029
2030 static char *
2031 remote_threads_extra_info (struct thread_info *tp)
2032 {
2033 struct remote_state *rs = get_remote_state ();
2034 int result;
2035 int set;
2036 threadref id;
2037 struct gdb_ext_thread_info threadinfo;
2038 static char display_buf[100]; /* arbitrary... */
2039 int n = 0; /* position in display_buf */
2040
2041 if (remote_desc == 0) /* paranoia */
2042 internal_error (__FILE__, __LINE__,
2043 _("remote_threads_extra_info"));
2044
2045 if (use_threadextra_query)
2046 {
2047 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%lx",
2048 ptid_get_tid (tp->ptid));
2049 putpkt (rs->buf);
2050 getpkt (&rs->buf, &rs->buf_size, 0);
2051 if (rs->buf[0] != 0)
2052 {
2053 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2054 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2055 display_buf [result] = '\0';
2056 return display_buf;
2057 }
2058 }
2059
2060 /* If the above query fails, fall back to the old method. */
2061 use_threadextra_query = 0;
2062 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2063 | TAG_MOREDISPLAY | TAG_DISPLAY;
2064 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2065 if (remote_get_threadinfo (&id, set, &threadinfo))
2066 if (threadinfo.active)
2067 {
2068 if (*threadinfo.shortname)
2069 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2070 " Name: %s,", threadinfo.shortname);
2071 if (*threadinfo.display)
2072 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2073 " State: %s,", threadinfo.display);
2074 if (*threadinfo.more_display)
2075 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2076 " Priority: %s", threadinfo.more_display);
2077
2078 if (n > 0)
2079 {
2080 /* For purely cosmetic reasons, clear up trailing commas. */
2081 if (',' == display_buf[n-1])
2082 display_buf[n-1] = ' ';
2083 return display_buf;
2084 }
2085 }
2086 return NULL;
2087 }
2088 \f
2089
2090 /* Restart the remote side; this is an extended protocol operation. */
2091
2092 static void
2093 extended_remote_restart (void)
2094 {
2095 struct remote_state *rs = get_remote_state ();
2096
2097 /* Send the restart command; for reasons I don't understand the
2098 remote side really expects a number after the "R". */
2099 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2100 putpkt (rs->buf);
2101
2102 remote_fileio_reset ();
2103 }
2104 \f
2105 /* Clean up connection to a remote debugger. */
2106
2107 static void
2108 remote_close (int quitting)
2109 {
2110 if (remote_desc)
2111 serial_close (remote_desc);
2112 remote_desc = NULL;
2113 }
2114
2115 /* Query the remote side for the text, data and bss offsets. */
2116
2117 static void
2118 get_offsets (void)
2119 {
2120 struct remote_state *rs = get_remote_state ();
2121 char *buf;
2122 char *ptr;
2123 int lose, num_segments = 0, do_sections, do_segments;
2124 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2125 struct section_offsets *offs;
2126 struct symfile_segment_data *data;
2127
2128 if (symfile_objfile == NULL)
2129 return;
2130
2131 putpkt ("qOffsets");
2132 getpkt (&rs->buf, &rs->buf_size, 0);
2133 buf = rs->buf;
2134
2135 if (buf[0] == '\000')
2136 return; /* Return silently. Stub doesn't support
2137 this command. */
2138 if (buf[0] == 'E')
2139 {
2140 warning (_("Remote failure reply: %s"), buf);
2141 return;
2142 }
2143
2144 /* Pick up each field in turn. This used to be done with scanf, but
2145 scanf will make trouble if CORE_ADDR size doesn't match
2146 conversion directives correctly. The following code will work
2147 with any size of CORE_ADDR. */
2148 text_addr = data_addr = bss_addr = 0;
2149 ptr = buf;
2150 lose = 0;
2151
2152 if (strncmp (ptr, "Text=", 5) == 0)
2153 {
2154 ptr += 5;
2155 /* Don't use strtol, could lose on big values. */
2156 while (*ptr && *ptr != ';')
2157 text_addr = (text_addr << 4) + fromhex (*ptr++);
2158
2159 if (strncmp (ptr, ";Data=", 6) == 0)
2160 {
2161 ptr += 6;
2162 while (*ptr && *ptr != ';')
2163 data_addr = (data_addr << 4) + fromhex (*ptr++);
2164 }
2165 else
2166 lose = 1;
2167
2168 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2169 {
2170 ptr += 5;
2171 while (*ptr && *ptr != ';')
2172 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2173
2174 if (bss_addr != data_addr)
2175 warning (_("Target reported unsupported offsets: %s"), buf);
2176 }
2177 else
2178 lose = 1;
2179 }
2180 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2181 {
2182 ptr += 8;
2183 /* Don't use strtol, could lose on big values. */
2184 while (*ptr && *ptr != ';')
2185 text_addr = (text_addr << 4) + fromhex (*ptr++);
2186 num_segments = 1;
2187
2188 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2189 {
2190 ptr += 9;
2191 while (*ptr && *ptr != ';')
2192 data_addr = (data_addr << 4) + fromhex (*ptr++);
2193 num_segments++;
2194 }
2195 }
2196 else
2197 lose = 1;
2198
2199 if (lose)
2200 error (_("Malformed response to offset query, %s"), buf);
2201 else if (*ptr != '\0')
2202 warning (_("Target reported unsupported offsets: %s"), buf);
2203
2204 offs = ((struct section_offsets *)
2205 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2206 memcpy (offs, symfile_objfile->section_offsets,
2207 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2208
2209 data = get_symfile_segment_data (symfile_objfile->obfd);
2210 do_segments = (data != NULL);
2211 do_sections = num_segments == 0;
2212
2213 if (num_segments > 0)
2214 {
2215 segments[0] = text_addr;
2216 segments[1] = data_addr;
2217 }
2218 /* If we have two segments, we can still try to relocate everything
2219 by assuming that the .text and .data offsets apply to the whole
2220 text and data segments. Convert the offsets given in the packet
2221 to base addresses for symfile_map_offsets_to_segments. */
2222 else if (data && data->num_segments == 2)
2223 {
2224 segments[0] = data->segment_bases[0] + text_addr;
2225 segments[1] = data->segment_bases[1] + data_addr;
2226 num_segments = 2;
2227 }
2228 /* If the object file has only one segment, assume that it is text
2229 rather than data; main programs with no writable data are rare,
2230 but programs with no code are useless. Of course the code might
2231 have ended up in the data segment... to detect that we would need
2232 the permissions here. */
2233 else if (data && data->num_segments == 1)
2234 {
2235 segments[0] = data->segment_bases[0] + text_addr;
2236 num_segments = 1;
2237 }
2238 /* There's no way to relocate by segment. */
2239 else
2240 do_segments = 0;
2241
2242 if (do_segments)
2243 {
2244 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2245 offs, num_segments, segments);
2246
2247 if (ret == 0 && !do_sections)
2248 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2249
2250 if (ret > 0)
2251 do_sections = 0;
2252 }
2253
2254 if (data)
2255 free_symfile_segment_data (data);
2256
2257 if (do_sections)
2258 {
2259 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2260
2261 /* This is a temporary kludge to force data and bss to use the same offsets
2262 because that's what nlmconv does now. The real solution requires changes
2263 to the stub and remote.c that I don't have time to do right now. */
2264
2265 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2266 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2267 }
2268
2269 objfile_relocate (symfile_objfile, offs);
2270 }
2271
2272 /* Stub for catch_exception. */
2273
2274 struct start_remote_args
2275 {
2276 int from_tty;
2277
2278 /* The current target. */
2279 struct target_ops *target;
2280
2281 /* Non-zero if this is an extended-remote target. */
2282 int extended_p;
2283 };
2284
2285 static void
2286 remote_start_remote (struct ui_out *uiout, void *opaque)
2287 {
2288 struct remote_state *rs = get_remote_state ();
2289 struct start_remote_args *args = opaque;
2290 char *wait_status = NULL;
2291
2292 immediate_quit++; /* Allow user to interrupt it. */
2293
2294 /* Ack any packet which the remote side has already sent. */
2295 serial_write (remote_desc, "+", 1);
2296
2297 /* Check whether the target is running now. */
2298 putpkt ("?");
2299 getpkt (&rs->buf, &rs->buf_size, 0);
2300
2301 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2302 {
2303 if (args->extended_p)
2304 {
2305 /* We're connected, but not running. Drop out before we
2306 call start_remote. */
2307 target_mark_exited (args->target);
2308 return;
2309 }
2310 else
2311 error (_("The target is not running (try extended-remote?)"));
2312 }
2313 else
2314 {
2315 if (args->extended_p)
2316 target_mark_running (args->target);
2317
2318 /* Save the reply for later. */
2319 wait_status = alloca (strlen (rs->buf) + 1);
2320 strcpy (wait_status, rs->buf);
2321 }
2322
2323 /* Start afresh. */
2324 init_thread_list ();
2325
2326 /* Let the stub know that we want it to return the thread. */
2327 set_continue_thread (minus_one_ptid);
2328
2329 /* Without this, some commands which require an active target
2330 (such as kill) won't work. This variable serves (at least)
2331 double duty as both the pid of the target process (if it has
2332 such), and as a flag indicating that a target is active.
2333 These functions should be split out into seperate variables,
2334 especially since GDB will someday have a notion of debugging
2335 several processes. */
2336 inferior_ptid = magic_null_ptid;
2337
2338 /* Now, if we have thread information, update inferior_ptid. */
2339 inferior_ptid = remote_current_thread (inferior_ptid);
2340
2341 /* Always add the main thread. */
2342 add_thread_silent (inferior_ptid);
2343
2344 get_offsets (); /* Get text, data & bss offsets. */
2345
2346 /* Use the previously fetched status. */
2347 gdb_assert (wait_status != NULL);
2348 strcpy (rs->buf, wait_status);
2349 rs->cached_wait_status = 1;
2350
2351 immediate_quit--;
2352 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2353 }
2354
2355 /* Open a connection to a remote debugger.
2356 NAME is the filename used for communication. */
2357
2358 static void
2359 remote_open (char *name, int from_tty)
2360 {
2361 remote_open_1 (name, from_tty, &remote_ops, 0);
2362 }
2363
2364 /* Open a connection to a remote debugger using the extended
2365 remote gdb protocol. NAME is the filename used for communication. */
2366
2367 static void
2368 extended_remote_open (char *name, int from_tty)
2369 {
2370 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2371 }
2372
2373 /* Generic code for opening a connection to a remote target. */
2374
2375 static void
2376 init_all_packet_configs (void)
2377 {
2378 int i;
2379 for (i = 0; i < PACKET_MAX; i++)
2380 update_packet_config (&remote_protocol_packets[i]);
2381 }
2382
2383 /* Symbol look-up. */
2384
2385 static void
2386 remote_check_symbols (struct objfile *objfile)
2387 {
2388 struct remote_state *rs = get_remote_state ();
2389 char *msg, *reply, *tmp;
2390 struct minimal_symbol *sym;
2391 int end;
2392
2393 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2394 return;
2395
2396 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2397 because we need both at the same time. */
2398 msg = alloca (get_remote_packet_size ());
2399
2400 /* Invite target to request symbol lookups. */
2401
2402 putpkt ("qSymbol::");
2403 getpkt (&rs->buf, &rs->buf_size, 0);
2404 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2405 reply = rs->buf;
2406
2407 while (strncmp (reply, "qSymbol:", 8) == 0)
2408 {
2409 tmp = &reply[8];
2410 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2411 msg[end] = '\0';
2412 sym = lookup_minimal_symbol (msg, NULL, NULL);
2413 if (sym == NULL)
2414 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2415 else
2416 {
2417 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2418
2419 /* If this is a function address, return the start of code
2420 instead of any data function descriptor. */
2421 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
2422 sym_addr,
2423 &current_target);
2424
2425 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2426 paddr_nz (sym_addr), &reply[8]);
2427 }
2428
2429 putpkt (msg);
2430 getpkt (&rs->buf, &rs->buf_size, 0);
2431 reply = rs->buf;
2432 }
2433 }
2434
2435 static struct serial *
2436 remote_serial_open (char *name)
2437 {
2438 static int udp_warning = 0;
2439
2440 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2441 of in ser-tcp.c, because it is the remote protocol assuming that the
2442 serial connection is reliable and not the serial connection promising
2443 to be. */
2444 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2445 {
2446 warning (_("\
2447 The remote protocol may be unreliable over UDP.\n\
2448 Some events may be lost, rendering further debugging impossible."));
2449 udp_warning = 1;
2450 }
2451
2452 return serial_open (name);
2453 }
2454
2455 /* This type describes each known response to the qSupported
2456 packet. */
2457 struct protocol_feature
2458 {
2459 /* The name of this protocol feature. */
2460 const char *name;
2461
2462 /* The default for this protocol feature. */
2463 enum packet_support default_support;
2464
2465 /* The function to call when this feature is reported, or after
2466 qSupported processing if the feature is not supported.
2467 The first argument points to this structure. The second
2468 argument indicates whether the packet requested support be
2469 enabled, disabled, or probed (or the default, if this function
2470 is being called at the end of processing and this feature was
2471 not reported). The third argument may be NULL; if not NULL, it
2472 is a NUL-terminated string taken from the packet following
2473 this feature's name and an equals sign. */
2474 void (*func) (const struct protocol_feature *, enum packet_support,
2475 const char *);
2476
2477 /* The corresponding packet for this feature. Only used if
2478 FUNC is remote_supported_packet. */
2479 int packet;
2480 };
2481
2482 static void
2483 remote_supported_packet (const struct protocol_feature *feature,
2484 enum packet_support support,
2485 const char *argument)
2486 {
2487 if (argument)
2488 {
2489 warning (_("Remote qSupported response supplied an unexpected value for"
2490 " \"%s\"."), feature->name);
2491 return;
2492 }
2493
2494 if (remote_protocol_packets[feature->packet].support
2495 == PACKET_SUPPORT_UNKNOWN)
2496 remote_protocol_packets[feature->packet].support = support;
2497 }
2498
2499 static void
2500 remote_packet_size (const struct protocol_feature *feature,
2501 enum packet_support support, const char *value)
2502 {
2503 struct remote_state *rs = get_remote_state ();
2504
2505 int packet_size;
2506 char *value_end;
2507
2508 if (support != PACKET_ENABLE)
2509 return;
2510
2511 if (value == NULL || *value == '\0')
2512 {
2513 warning (_("Remote target reported \"%s\" without a size."),
2514 feature->name);
2515 return;
2516 }
2517
2518 errno = 0;
2519 packet_size = strtol (value, &value_end, 16);
2520 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2521 {
2522 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2523 feature->name, value);
2524 return;
2525 }
2526
2527 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2528 {
2529 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2530 packet_size, MAX_REMOTE_PACKET_SIZE);
2531 packet_size = MAX_REMOTE_PACKET_SIZE;
2532 }
2533
2534 /* Record the new maximum packet size. */
2535 rs->explicit_packet_size = packet_size;
2536 }
2537
2538 static struct protocol_feature remote_protocol_features[] = {
2539 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2540 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2541 PACKET_qXfer_auxv },
2542 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2543 PACKET_qXfer_features },
2544 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2545 PACKET_qXfer_libraries },
2546 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2547 PACKET_qXfer_memory_map },
2548 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2549 PACKET_qXfer_spu_read },
2550 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2551 PACKET_qXfer_spu_write },
2552 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2553 PACKET_QPassSignals },
2554 };
2555
2556 static void
2557 remote_query_supported (void)
2558 {
2559 struct remote_state *rs = get_remote_state ();
2560 char *next;
2561 int i;
2562 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2563
2564 /* The packet support flags are handled differently for this packet
2565 than for most others. We treat an error, a disabled packet, and
2566 an empty response identically: any features which must be reported
2567 to be used will be automatically disabled. An empty buffer
2568 accomplishes this, since that is also the representation for a list
2569 containing no features. */
2570
2571 rs->buf[0] = 0;
2572 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2573 {
2574 putpkt ("qSupported");
2575 getpkt (&rs->buf, &rs->buf_size, 0);
2576
2577 /* If an error occured, warn, but do not return - just reset the
2578 buffer to empty and go on to disable features. */
2579 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2580 == PACKET_ERROR)
2581 {
2582 warning (_("Remote failure reply: %s"), rs->buf);
2583 rs->buf[0] = 0;
2584 }
2585 }
2586
2587 memset (seen, 0, sizeof (seen));
2588
2589 next = rs->buf;
2590 while (*next)
2591 {
2592 enum packet_support is_supported;
2593 char *p, *end, *name_end, *value;
2594
2595 /* First separate out this item from the rest of the packet. If
2596 there's another item after this, we overwrite the separator
2597 (terminated strings are much easier to work with). */
2598 p = next;
2599 end = strchr (p, ';');
2600 if (end == NULL)
2601 {
2602 end = p + strlen (p);
2603 next = end;
2604 }
2605 else
2606 {
2607 *end = '\0';
2608 next = end + 1;
2609
2610 if (end == p)
2611 {
2612 warning (_("empty item in \"qSupported\" response"));
2613 continue;
2614 }
2615 }
2616
2617 name_end = strchr (p, '=');
2618 if (name_end)
2619 {
2620 /* This is a name=value entry. */
2621 is_supported = PACKET_ENABLE;
2622 value = name_end + 1;
2623 *name_end = '\0';
2624 }
2625 else
2626 {
2627 value = NULL;
2628 switch (end[-1])
2629 {
2630 case '+':
2631 is_supported = PACKET_ENABLE;
2632 break;
2633
2634 case '-':
2635 is_supported = PACKET_DISABLE;
2636 break;
2637
2638 case '?':
2639 is_supported = PACKET_SUPPORT_UNKNOWN;
2640 break;
2641
2642 default:
2643 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2644 continue;
2645 }
2646 end[-1] = '\0';
2647 }
2648
2649 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2650 if (strcmp (remote_protocol_features[i].name, p) == 0)
2651 {
2652 const struct protocol_feature *feature;
2653
2654 seen[i] = 1;
2655 feature = &remote_protocol_features[i];
2656 feature->func (feature, is_supported, value);
2657 break;
2658 }
2659 }
2660
2661 /* If we increased the packet size, make sure to increase the global
2662 buffer size also. We delay this until after parsing the entire
2663 qSupported packet, because this is the same buffer we were
2664 parsing. */
2665 if (rs->buf_size < rs->explicit_packet_size)
2666 {
2667 rs->buf_size = rs->explicit_packet_size;
2668 rs->buf = xrealloc (rs->buf, rs->buf_size);
2669 }
2670
2671 /* Handle the defaults for unmentioned features. */
2672 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2673 if (!seen[i])
2674 {
2675 const struct protocol_feature *feature;
2676
2677 feature = &remote_protocol_features[i];
2678 feature->func (feature, feature->default_support, NULL);
2679 }
2680 }
2681
2682
2683 static void
2684 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
2685 {
2686 struct remote_state *rs = get_remote_state ();
2687 if (name == 0)
2688 error (_("To open a remote debug connection, you need to specify what\n"
2689 "serial device is attached to the remote system\n"
2690 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2691
2692 /* See FIXME above. */
2693 if (!remote_async_permitted)
2694 wait_forever_enabled_p = 1;
2695
2696 /* If we're connected to a running target, target_preopen will kill it.
2697 But if we're connected to a target system with no running process,
2698 then we will still be connected when it returns. Ask this question
2699 first, before target_preopen has a chance to kill anything. */
2700 if (remote_desc != NULL && !target_has_execution)
2701 {
2702 if (!from_tty
2703 || query (_("Already connected to a remote target. Disconnect? ")))
2704 pop_target ();
2705 else
2706 error (_("Still connected."));
2707 }
2708
2709 target_preopen (from_tty);
2710
2711 unpush_target (target);
2712
2713 /* This time without a query. If we were connected to an
2714 extended-remote target and target_preopen killed the running
2715 process, we may still be connected. If we are starting "target
2716 remote" now, the extended-remote target will not have been
2717 removed by unpush_target. */
2718 if (remote_desc != NULL && !target_has_execution)
2719 pop_target ();
2720
2721 /* Make sure we send the passed signals list the next time we resume. */
2722 xfree (last_pass_packet);
2723 last_pass_packet = NULL;
2724
2725 remote_fileio_reset ();
2726 reopen_exec_file ();
2727 reread_symbols ();
2728
2729 remote_desc = remote_serial_open (name);
2730 if (!remote_desc)
2731 perror_with_name (name);
2732
2733 if (baud_rate != -1)
2734 {
2735 if (serial_setbaudrate (remote_desc, baud_rate))
2736 {
2737 /* The requested speed could not be set. Error out to
2738 top level after closing remote_desc. Take care to
2739 set remote_desc to NULL to avoid closing remote_desc
2740 more than once. */
2741 serial_close (remote_desc);
2742 remote_desc = NULL;
2743 perror_with_name (name);
2744 }
2745 }
2746
2747 serial_raw (remote_desc);
2748
2749 /* If there is something sitting in the buffer we might take it as a
2750 response to a command, which would be bad. */
2751 serial_flush_input (remote_desc);
2752
2753 if (from_tty)
2754 {
2755 puts_filtered ("Remote debugging using ");
2756 puts_filtered (name);
2757 puts_filtered ("\n");
2758 }
2759 push_target (target); /* Switch to using remote target now. */
2760
2761 /* Assume that the target is running, unless we learn otherwise. */
2762 target_mark_running (target);
2763
2764 /* Reset the target state; these things will be queried either by
2765 remote_query_supported or as they are needed. */
2766 init_all_packet_configs ();
2767 rs->explicit_packet_size = 0;
2768
2769 general_thread = not_sent_ptid;
2770 continue_thread = not_sent_ptid;
2771
2772 /* Probe for ability to use "ThreadInfo" query, as required. */
2773 use_threadinfo_query = 1;
2774 use_threadextra_query = 1;
2775
2776 /* The first packet we send to the target is the optional "supported
2777 packets" request. If the target can answer this, it will tell us
2778 which later probes to skip. */
2779 remote_query_supported ();
2780
2781 /* Next, if the target can specify a description, read it. We do
2782 this before anything involving memory or registers. */
2783 target_find_description ();
2784
2785 if (remote_async_permitted)
2786 {
2787 /* With this target we start out by owning the terminal. */
2788 remote_async_terminal_ours_p = 1;
2789
2790 /* FIXME: cagney/1999-09-23: During the initial connection it is
2791 assumed that the target is already ready and able to respond to
2792 requests. Unfortunately remote_start_remote() eventually calls
2793 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2794 around this. Eventually a mechanism that allows
2795 wait_for_inferior() to expect/get timeouts will be
2796 implemented. */
2797 wait_forever_enabled_p = 0;
2798 }
2799
2800 /* First delete any symbols previously loaded from shared libraries. */
2801 no_shared_libraries (NULL, 0);
2802
2803 /* Start the remote connection. If error() or QUIT, discard this
2804 target (we'd otherwise be in an inconsistent state) and then
2805 propogate the error on up the exception chain. This ensures that
2806 the caller doesn't stumble along blindly assuming that the
2807 function succeeded. The CLI doesn't have this problem but other
2808 UI's, such as MI do.
2809
2810 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2811 this function should return an error indication letting the
2812 caller restore the previous state. Unfortunately the command
2813 ``target remote'' is directly wired to this function making that
2814 impossible. On a positive note, the CLI side of this problem has
2815 been fixed - the function set_cmd_context() makes it possible for
2816 all the ``target ....'' commands to share a common callback
2817 function. See cli-dump.c. */
2818 {
2819 struct gdb_exception ex;
2820 struct start_remote_args args;
2821
2822 args.from_tty = from_tty;
2823 args.target = target;
2824 args.extended_p = extended_p;
2825
2826 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
2827 if (ex.reason < 0)
2828 {
2829 pop_target ();
2830 if (remote_async_permitted)
2831 wait_forever_enabled_p = 1;
2832 throw_exception (ex);
2833 }
2834 }
2835
2836 if (remote_async_permitted)
2837 wait_forever_enabled_p = 1;
2838
2839 if (extended_p)
2840 {
2841 /* Tell the remote that we are using the extended protocol. */
2842 putpkt ("!");
2843 getpkt (&rs->buf, &rs->buf_size, 0);
2844 }
2845
2846 /* If we connected to a live target, do some additional setup. */
2847 if (target_has_execution)
2848 {
2849 if (exec_bfd) /* No use without an exec file. */
2850 remote_check_symbols (symfile_objfile);
2851 }
2852 }
2853
2854 /* This takes a program previously attached to and detaches it. After
2855 this is done, GDB can be used to debug some other program. We
2856 better not have left any breakpoints in the target program or it'll
2857 die when it hits one. */
2858
2859 static void
2860 remote_detach_1 (char *args, int from_tty, int extended)
2861 {
2862 struct remote_state *rs = get_remote_state ();
2863
2864 if (args)
2865 error (_("Argument given to \"detach\" when remotely debugging."));
2866
2867 if (!target_has_execution)
2868 error (_("No process to detach from."));
2869
2870 /* Tell the remote target to detach. */
2871 strcpy (rs->buf, "D");
2872 putpkt (rs->buf);
2873 getpkt (&rs->buf, &rs->buf_size, 0);
2874
2875 if (rs->buf[0] == 'E')
2876 error (_("Can't detach process."));
2877
2878 /* Unregister the file descriptor from the event loop. */
2879 if (target_is_async_p ())
2880 serial_async (remote_desc, NULL, 0);
2881
2882 target_mourn_inferior ();
2883 if (from_tty)
2884 {
2885 if (extended)
2886 puts_filtered ("Detached from remote process.\n");
2887 else
2888 puts_filtered ("Ending remote debugging.\n");
2889 }
2890 }
2891
2892 static void
2893 remote_detach (char *args, int from_tty)
2894 {
2895 remote_detach_1 (args, from_tty, 0);
2896 }
2897
2898 static void
2899 extended_remote_detach (char *args, int from_tty)
2900 {
2901 remote_detach_1 (args, from_tty, 1);
2902 }
2903
2904 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2905
2906 static void
2907 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2908 {
2909 if (args)
2910 error (_("Argument given to \"disconnect\" when remotely debugging."));
2911
2912 /* Unregister the file descriptor from the event loop. */
2913 if (target_is_async_p ())
2914 serial_async (remote_desc, NULL, 0);
2915
2916 /* Make sure we unpush even the extended remote targets; mourn
2917 won't do it. So call remote_mourn_1 directly instead of
2918 target_mourn_inferior. */
2919 remote_mourn_1 (target);
2920
2921 if (from_tty)
2922 puts_filtered ("Ending remote debugging.\n");
2923 }
2924
2925 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
2926 be chatty about it. */
2927
2928 static void
2929 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
2930 {
2931 struct remote_state *rs = get_remote_state ();
2932 int pid;
2933 char *dummy;
2934 char *wait_status = NULL;
2935
2936 if (!args)
2937 error_no_arg (_("process-id to attach"));
2938
2939 dummy = args;
2940 pid = strtol (args, &dummy, 0);
2941 /* Some targets don't set errno on errors, grrr! */
2942 if (pid == 0 && args == dummy)
2943 error (_("Illegal process-id: %s."), args);
2944
2945 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
2946 error (_("This target does not support attaching to a process"));
2947
2948 sprintf (rs->buf, "vAttach;%x", pid);
2949 putpkt (rs->buf);
2950 getpkt (&rs->buf, &rs->buf_size, 0);
2951
2952 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
2953 {
2954 if (from_tty)
2955 printf_unfiltered (_("Attached to %s\n"),
2956 target_pid_to_str (pid_to_ptid (pid)));
2957
2958 /* Save the reply for later. */
2959 wait_status = alloca (strlen (rs->buf) + 1);
2960 strcpy (wait_status, rs->buf);
2961 }
2962 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
2963 error (_("This target does not support attaching to a process"));
2964 else
2965 error (_("Attaching to %s failed"),
2966 target_pid_to_str (pid_to_ptid (pid)));
2967
2968 target_mark_running (target);
2969 inferior_ptid = pid_to_ptid (pid);
2970
2971 /* Now, if we have thread information, update inferior_ptid. */
2972 inferior_ptid = remote_current_thread (inferior_ptid);
2973
2974 /* Now, add the main thread to the thread list. */
2975 add_thread_silent (inferior_ptid);
2976
2977 attach_flag = 1;
2978
2979 /* Next, if the target can specify a description, read it. We do
2980 this before anything involving memory or registers. */
2981 target_find_description ();
2982
2983 /* Use the previously fetched status. */
2984 gdb_assert (wait_status != NULL);
2985 strcpy (rs->buf, wait_status);
2986 rs->cached_wait_status = 1;
2987 }
2988
2989 static void
2990 extended_remote_attach (char *args, int from_tty)
2991 {
2992 extended_remote_attach_1 (&extended_remote_ops, args, from_tty);
2993 }
2994
2995 /* Convert hex digit A to a number. */
2996
2997 static int
2998 fromhex (int a)
2999 {
3000 if (a >= '0' && a <= '9')
3001 return a - '0';
3002 else if (a >= 'a' && a <= 'f')
3003 return a - 'a' + 10;
3004 else if (a >= 'A' && a <= 'F')
3005 return a - 'A' + 10;
3006 else
3007 error (_("Reply contains invalid hex digit %d"), a);
3008 }
3009
3010 static int
3011 hex2bin (const char *hex, gdb_byte *bin, int count)
3012 {
3013 int i;
3014
3015 for (i = 0; i < count; i++)
3016 {
3017 if (hex[0] == 0 || hex[1] == 0)
3018 {
3019 /* Hex string is short, or of uneven length.
3020 Return the count that has been converted so far. */
3021 return i;
3022 }
3023 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3024 hex += 2;
3025 }
3026 return i;
3027 }
3028
3029 /* Convert number NIB to a hex digit. */
3030
3031 static int
3032 tohex (int nib)
3033 {
3034 if (nib < 10)
3035 return '0' + nib;
3036 else
3037 return 'a' + nib - 10;
3038 }
3039
3040 static int
3041 bin2hex (const gdb_byte *bin, char *hex, int count)
3042 {
3043 int i;
3044 /* May use a length, or a nul-terminated string as input. */
3045 if (count == 0)
3046 count = strlen ((char *) bin);
3047
3048 for (i = 0; i < count; i++)
3049 {
3050 *hex++ = tohex ((*bin >> 4) & 0xf);
3051 *hex++ = tohex (*bin++ & 0xf);
3052 }
3053 *hex = 0;
3054 return i;
3055 }
3056 \f
3057 /* Check for the availability of vCont. This function should also check
3058 the response. */
3059
3060 static void
3061 remote_vcont_probe (struct remote_state *rs)
3062 {
3063 char *buf;
3064
3065 strcpy (rs->buf, "vCont?");
3066 putpkt (rs->buf);
3067 getpkt (&rs->buf, &rs->buf_size, 0);
3068 buf = rs->buf;
3069
3070 /* Make sure that the features we assume are supported. */
3071 if (strncmp (buf, "vCont", 5) == 0)
3072 {
3073 char *p = &buf[5];
3074 int support_s, support_S, support_c, support_C;
3075
3076 support_s = 0;
3077 support_S = 0;
3078 support_c = 0;
3079 support_C = 0;
3080 while (p && *p == ';')
3081 {
3082 p++;
3083 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3084 support_s = 1;
3085 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3086 support_S = 1;
3087 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3088 support_c = 1;
3089 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3090 support_C = 1;
3091
3092 p = strchr (p, ';');
3093 }
3094
3095 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3096 BUF will make packet_ok disable the packet. */
3097 if (!support_s || !support_S || !support_c || !support_C)
3098 buf[0] = 0;
3099 }
3100
3101 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3102 }
3103
3104 /* Resume the remote inferior by using a "vCont" packet. The thread
3105 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3106 resumed thread should be single-stepped and/or signalled. If PTID
3107 equals minus_one_ptid, then all threads are resumed; the thread to
3108 be stepped and/or signalled is given in the global INFERIOR_PTID.
3109 This function returns non-zero iff it resumes the inferior.
3110
3111 This function issues a strict subset of all possible vCont commands at the
3112 moment. */
3113
3114 static int
3115 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3116 {
3117 struct remote_state *rs = get_remote_state ();
3118 char *outbuf;
3119 struct cleanup *old_cleanup;
3120
3121 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3122 remote_vcont_probe (rs);
3123
3124 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3125 return 0;
3126
3127 /* If we could generate a wider range of packets, we'd have to worry
3128 about overflowing BUF. Should there be a generic
3129 "multi-part-packet" packet? */
3130
3131 if (ptid_equal (ptid, magic_null_ptid))
3132 {
3133 /* MAGIC_NULL_PTID means that we don't have any active threads,
3134 so we don't have any TID numbers the inferior will
3135 understand. Make sure to only send forms that do not specify
3136 a TID. */
3137 if (step && siggnal != TARGET_SIGNAL_0)
3138 outbuf = xstrprintf ("vCont;S%02x", siggnal);
3139 else if (step)
3140 outbuf = xstrprintf ("vCont;s");
3141 else if (siggnal != TARGET_SIGNAL_0)
3142 outbuf = xstrprintf ("vCont;C%02x", siggnal);
3143 else
3144 outbuf = xstrprintf ("vCont;c");
3145 }
3146 else if (ptid_equal (ptid, minus_one_ptid))
3147 {
3148 /* Resume all threads, with preference for INFERIOR_PTID. */
3149 int tid = ptid_get_tid (inferior_ptid);
3150 if (step && siggnal != TARGET_SIGNAL_0)
3151 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal, tid);
3152 else if (step)
3153 outbuf = xstrprintf ("vCont;s:%x;c", tid);
3154 else if (siggnal != TARGET_SIGNAL_0)
3155 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal, tid);
3156 else
3157 outbuf = xstrprintf ("vCont;c");
3158 }
3159 else
3160 {
3161 /* Scheduler locking; resume only PTID. */
3162 int tid = ptid_get_tid (ptid);
3163 if (step && siggnal != TARGET_SIGNAL_0)
3164 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, tid);
3165 else if (step)
3166 outbuf = xstrprintf ("vCont;s:%x", tid);
3167 else if (siggnal != TARGET_SIGNAL_0)
3168 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, tid);
3169 else
3170 outbuf = xstrprintf ("vCont;c:%x", tid);
3171 }
3172
3173 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
3174 old_cleanup = make_cleanup (xfree, outbuf);
3175
3176 putpkt (outbuf);
3177
3178 do_cleanups (old_cleanup);
3179
3180 return 1;
3181 }
3182
3183 /* Tell the remote machine to resume. */
3184
3185 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3186
3187 static int last_sent_step;
3188
3189 static void
3190 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
3191 {
3192 struct remote_state *rs = get_remote_state ();
3193 char *buf;
3194
3195 last_sent_signal = siggnal;
3196 last_sent_step = step;
3197
3198 /* Update the inferior on signals to silently pass, if they've changed. */
3199 remote_pass_signals ();
3200
3201 /* The vCont packet doesn't need to specify threads via Hc. */
3202 if (remote_vcont_resume (ptid, step, siggnal))
3203 goto done;
3204
3205 /* All other supported resume packets do use Hc, so set the continue
3206 thread. */
3207 if (ptid_equal (ptid, minus_one_ptid))
3208 set_continue_thread (any_thread_ptid);
3209 else
3210 set_continue_thread (ptid);
3211
3212 buf = rs->buf;
3213 if (siggnal != TARGET_SIGNAL_0)
3214 {
3215 buf[0] = step ? 'S' : 'C';
3216 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3217 buf[2] = tohex (((int) siggnal) & 0xf);
3218 buf[3] = '\0';
3219 }
3220 else
3221 strcpy (buf, step ? "s" : "c");
3222
3223 putpkt (buf);
3224
3225 done:
3226 /* We are about to start executing the inferior, let's register it
3227 with the event loop. NOTE: this is the one place where all the
3228 execution commands end up. We could alternatively do this in each
3229 of the execution commands in infcmd.c. */
3230 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3231 into infcmd.c in order to allow inferior function calls to work
3232 NOT asynchronously. */
3233 if (target_can_async_p ())
3234 target_async (inferior_event_handler, 0);
3235 }
3236 \f
3237
3238 /* Set up the signal handler for SIGINT, while the target is
3239 executing, ovewriting the 'regular' SIGINT signal handler. */
3240 static void
3241 initialize_sigint_signal_handler (void)
3242 {
3243 signal (SIGINT, handle_remote_sigint);
3244 }
3245
3246 /* Signal handler for SIGINT, while the target is executing. */
3247 static void
3248 handle_remote_sigint (int sig)
3249 {
3250 signal (sig, handle_remote_sigint_twice);
3251 mark_async_signal_handler_wrapper (sigint_remote_token);
3252 }
3253
3254 /* Signal handler for SIGINT, installed after SIGINT has already been
3255 sent once. It will take effect the second time that the user sends
3256 a ^C. */
3257 static void
3258 handle_remote_sigint_twice (int sig)
3259 {
3260 signal (sig, handle_remote_sigint);
3261 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3262 }
3263
3264 /* Perform the real interruption of the target execution, in response
3265 to a ^C. */
3266 static void
3267 async_remote_interrupt (gdb_client_data arg)
3268 {
3269 if (remote_debug)
3270 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3271
3272 target_stop (inferior_ptid);
3273 }
3274
3275 /* Perform interrupt, if the first attempt did not succeed. Just give
3276 up on the target alltogether. */
3277 void
3278 async_remote_interrupt_twice (gdb_client_data arg)
3279 {
3280 if (remote_debug)
3281 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3282
3283 interrupt_query ();
3284 }
3285
3286 /* Reinstall the usual SIGINT handlers, after the target has
3287 stopped. */
3288 static void
3289 cleanup_sigint_signal_handler (void *dummy)
3290 {
3291 signal (SIGINT, handle_sigint);
3292 }
3293
3294 /* Send ^C to target to halt it. Target will respond, and send us a
3295 packet. */
3296 static void (*ofunc) (int);
3297
3298 /* The command line interface's stop routine. This function is installed
3299 as a signal handler for SIGINT. The first time a user requests a
3300 stop, we call remote_stop to send a break or ^C. If there is no
3301 response from the target (it didn't stop when the user requested it),
3302 we ask the user if he'd like to detach from the target. */
3303 static void
3304 remote_interrupt (int signo)
3305 {
3306 /* If this doesn't work, try more severe steps. */
3307 signal (signo, remote_interrupt_twice);
3308
3309 gdb_call_async_signal_handler (sigint_remote_token, 1);
3310 }
3311
3312 /* The user typed ^C twice. */
3313
3314 static void
3315 remote_interrupt_twice (int signo)
3316 {
3317 signal (signo, ofunc);
3318 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3319 signal (signo, remote_interrupt);
3320 }
3321
3322 /* This is the generic stop called via the target vector. When a target
3323 interrupt is requested, either by the command line or the GUI, we
3324 will eventually end up here. */
3325 static void
3326 remote_stop (ptid_t ptid)
3327 {
3328 /* Send a break or a ^C, depending on user preference. */
3329 if (remote_debug)
3330 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3331
3332 if (remote_break)
3333 serial_send_break (remote_desc);
3334 else
3335 serial_write (remote_desc, "\003", 1);
3336 }
3337
3338 /* Ask the user what to do when an interrupt is received. */
3339
3340 static void
3341 interrupt_query (void)
3342 {
3343 target_terminal_ours ();
3344
3345 if (query ("Interrupted while waiting for the program.\n\
3346 Give up (and stop debugging it)? "))
3347 {
3348 target_mourn_inferior ();
3349 signal (SIGINT, handle_sigint);
3350 deprecated_throw_reason (RETURN_QUIT);
3351 }
3352
3353 target_terminal_inferior ();
3354 }
3355
3356 /* Enable/disable target terminal ownership. Most targets can use
3357 terminal groups to control terminal ownership. Remote targets are
3358 different in that explicit transfer of ownership to/from GDB/target
3359 is required. */
3360
3361 static void
3362 remote_terminal_inferior (void)
3363 {
3364 if (!remote_async_permitted)
3365 /* Nothing to do. */
3366 return;
3367
3368 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3369 sync_execution here. This function should only be called when
3370 GDB is resuming the inferior in the forground. A background
3371 resume (``run&'') should leave GDB in control of the terminal and
3372 consequently should not call this code. */
3373 if (!sync_execution)
3374 return;
3375 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3376 calls target_terminal_*() idenpotent. The event-loop GDB talking
3377 to an asynchronous target with a synchronous command calls this
3378 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3379 stops trying to transfer the terminal to the target when it
3380 shouldn't this guard can go away. */
3381 if (!remote_async_terminal_ours_p)
3382 return;
3383 delete_file_handler (input_fd);
3384 remote_async_terminal_ours_p = 0;
3385 initialize_sigint_signal_handler ();
3386 /* NOTE: At this point we could also register our selves as the
3387 recipient of all input. Any characters typed could then be
3388 passed on down to the target. */
3389 }
3390
3391 static void
3392 remote_terminal_ours (void)
3393 {
3394 if (!remote_async_permitted)
3395 /* Nothing to do. */
3396 return;
3397
3398 /* See FIXME in remote_terminal_inferior. */
3399 if (!sync_execution)
3400 return;
3401 /* See FIXME in remote_terminal_inferior. */
3402 if (remote_async_terminal_ours_p)
3403 return;
3404 cleanup_sigint_signal_handler (NULL);
3405 add_file_handler (input_fd, stdin_event_handler, 0);
3406 remote_async_terminal_ours_p = 1;
3407 }
3408
3409 void
3410 remote_console_output (char *msg)
3411 {
3412 char *p;
3413
3414 for (p = msg; p[0] && p[1]; p += 2)
3415 {
3416 char tb[2];
3417 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3418 tb[0] = c;
3419 tb[1] = 0;
3420 fputs_unfiltered (tb, gdb_stdtarg);
3421 }
3422 gdb_flush (gdb_stdtarg);
3423 }
3424
3425 /* Wait until the remote machine stops, then return,
3426 storing status in STATUS just as `wait' would. */
3427
3428 static ptid_t
3429 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3430 {
3431 struct remote_state *rs = get_remote_state ();
3432 struct remote_arch_state *rsa = get_remote_arch_state ();
3433 ULONGEST thread_num = -1;
3434 ULONGEST process_num = -1;
3435 ULONGEST addr;
3436 int solibs_changed = 0;
3437
3438 status->kind = TARGET_WAITKIND_EXITED;
3439 status->value.integer = 0;
3440
3441 while (1)
3442 {
3443 char *buf, *p;
3444
3445 if (rs->cached_wait_status)
3446 /* Use the cached wait status, but only once. */
3447 rs->cached_wait_status = 0;
3448 else
3449 {
3450 if (!target_is_async_p ())
3451 {
3452 ofunc = signal (SIGINT, remote_interrupt);
3453 /* If the user hit C-c before this packet, or between packets,
3454 pretend that it was hit right here. */
3455 if (quit_flag)
3456 {
3457 quit_flag = 0;
3458 remote_interrupt (SIGINT);
3459 }
3460 }
3461 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3462 _never_ wait for ever -> test on target_is_async_p().
3463 However, before we do that we need to ensure that the caller
3464 knows how to take the target into/out of async mode. */
3465 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3466 if (!target_is_async_p ())
3467 signal (SIGINT, ofunc);
3468 }
3469
3470 buf = rs->buf;
3471
3472 remote_stopped_by_watchpoint_p = 0;
3473
3474 switch (buf[0])
3475 {
3476 case 'E': /* Error of some sort. */
3477 /* We're out of sync with the target now. Did it continue or not?
3478 Not is more likely, so report a stop. */
3479 warning (_("Remote failure reply: %s"), buf);
3480 status->kind = TARGET_WAITKIND_STOPPED;
3481 status->value.sig = TARGET_SIGNAL_0;
3482 goto got_status;
3483 case 'F': /* File-I/O request. */
3484 remote_fileio_request (buf);
3485 continue;
3486 case 'T': /* Status with PC, SP, FP, ... */
3487 {
3488 gdb_byte regs[MAX_REGISTER_SIZE];
3489
3490 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3491 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3492 ss = signal number
3493 n... = register number
3494 r... = register contents
3495 */
3496 p = &buf[3]; /* after Txx */
3497
3498 while (*p)
3499 {
3500 char *p1;
3501 char *p_temp;
3502 int fieldsize;
3503 LONGEST pnum = 0;
3504
3505 /* If the packet contains a register number, save it
3506 in pnum and set p1 to point to the character
3507 following it. Otherwise p1 points to p. */
3508
3509 /* If this packet is an awatch packet, don't parse the
3510 'a' as a register number. */
3511
3512 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3513 {
3514 /* Read the ``P'' register number. */
3515 pnum = strtol (p, &p_temp, 16);
3516 p1 = p_temp;
3517 }
3518 else
3519 p1 = p;
3520
3521 if (p1 == p) /* No register number present here. */
3522 {
3523 p1 = strchr (p, ':');
3524 if (p1 == NULL)
3525 error (_("Malformed packet(a) (missing colon): %s\n\
3526 Packet: '%s'\n"),
3527 p, buf);
3528 if (strncmp (p, "thread", p1 - p) == 0)
3529 {
3530 p_temp = unpack_varlen_hex (++p1, &thread_num);
3531 p = p_temp;
3532 }
3533 else if ((strncmp (p, "watch", p1 - p) == 0)
3534 || (strncmp (p, "rwatch", p1 - p) == 0)
3535 || (strncmp (p, "awatch", p1 - p) == 0))
3536 {
3537 remote_stopped_by_watchpoint_p = 1;
3538 p = unpack_varlen_hex (++p1, &addr);
3539 remote_watch_data_address = (CORE_ADDR)addr;
3540 }
3541 else if (strncmp (p, "library", p1 - p) == 0)
3542 {
3543 p1++;
3544 p_temp = p1;
3545 while (*p_temp && *p_temp != ';')
3546 p_temp++;
3547
3548 solibs_changed = 1;
3549 p = p_temp;
3550 }
3551 else
3552 {
3553 /* Silently skip unknown optional info. */
3554 p_temp = strchr (p1 + 1, ';');
3555 if (p_temp)
3556 p = p_temp;
3557 }
3558 }
3559 else
3560 {
3561 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3562 p = p1;
3563
3564 if (*p != ':')
3565 error (_("Malformed packet(b) (missing colon): %s\n\
3566 Packet: '%s'\n"),
3567 p, buf);
3568 ++p;
3569
3570 if (reg == NULL)
3571 error (_("Remote sent bad register number %s: %s\n\
3572 Packet: '%s'\n"),
3573 phex_nz (pnum, 0), p, buf);
3574
3575 fieldsize = hex2bin (p, regs,
3576 register_size (current_gdbarch,
3577 reg->regnum));
3578 p += 2 * fieldsize;
3579 if (fieldsize < register_size (current_gdbarch,
3580 reg->regnum))
3581 warning (_("Remote reply is too short: %s"), buf);
3582 regcache_raw_supply (get_current_regcache (),
3583 reg->regnum, regs);
3584 }
3585
3586 if (*p != ';')
3587 error (_("Remote register badly formatted: %s\nhere: %s"),
3588 buf, p);
3589 ++p;
3590 }
3591 }
3592 /* fall through */
3593 case 'S': /* Old style status, just signal only. */
3594 if (solibs_changed)
3595 status->kind = TARGET_WAITKIND_LOADED;
3596 else
3597 {
3598 status->kind = TARGET_WAITKIND_STOPPED;
3599 status->value.sig = (enum target_signal)
3600 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3601 }
3602 goto got_status;
3603 case 'W': /* Target exited. */
3604 {
3605 /* The remote process exited. */
3606 status->kind = TARGET_WAITKIND_EXITED;
3607 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3608 goto got_status;
3609 }
3610 case 'X':
3611 status->kind = TARGET_WAITKIND_SIGNALLED;
3612 status->value.sig = (enum target_signal)
3613 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3614
3615 goto got_status;
3616 case 'O': /* Console output. */
3617 remote_console_output (buf + 1);
3618 if (target_can_async_p ())
3619 {
3620 /* Return immediately to the event loop. The event loop
3621 will still be waiting on the inferior afterwards. */
3622 status->kind = TARGET_WAITKIND_IGNORE;
3623 goto got_status;
3624 }
3625 else
3626 continue;
3627 case '\0':
3628 if (last_sent_signal != TARGET_SIGNAL_0)
3629 {
3630 /* Zero length reply means that we tried 'S' or 'C' and
3631 the remote system doesn't support it. */
3632 target_terminal_ours_for_output ();
3633 printf_filtered
3634 ("Can't send signals to this remote system. %s not sent.\n",
3635 target_signal_to_name (last_sent_signal));
3636 last_sent_signal = TARGET_SIGNAL_0;
3637 target_terminal_inferior ();
3638
3639 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3640 putpkt ((char *) buf);
3641 continue;
3642 }
3643 /* else fallthrough */
3644 default:
3645 warning (_("Invalid remote reply: %s"), buf);
3646 continue;
3647 }
3648 }
3649 got_status:
3650 if (thread_num != -1)
3651 {
3652 ptid_t ptid;
3653 ptid = ptid_build (ptid_get_pid (inferior_ptid), 0, thread_num);
3654 record_currthread (ptid);
3655 return ptid;
3656 }
3657
3658 return inferior_ptid;
3659 }
3660
3661 /* Fetch a single register using a 'p' packet. */
3662
3663 static int
3664 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3665 {
3666 struct remote_state *rs = get_remote_state ();
3667 char *buf, *p;
3668 char regp[MAX_REGISTER_SIZE];
3669 int i;
3670
3671 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3672 return 0;
3673
3674 if (reg->pnum == -1)
3675 return 0;
3676
3677 p = rs->buf;
3678 *p++ = 'p';
3679 p += hexnumstr (p, reg->pnum);
3680 *p++ = '\0';
3681 remote_send (&rs->buf, &rs->buf_size);
3682
3683 buf = rs->buf;
3684
3685 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3686 {
3687 case PACKET_OK:
3688 break;
3689 case PACKET_UNKNOWN:
3690 return 0;
3691 case PACKET_ERROR:
3692 error (_("Could not fetch register \"%s\""),
3693 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
3694 }
3695
3696 /* If this register is unfetchable, tell the regcache. */
3697 if (buf[0] == 'x')
3698 {
3699 regcache_raw_supply (regcache, reg->regnum, NULL);
3700 return 1;
3701 }
3702
3703 /* Otherwise, parse and supply the value. */
3704 p = buf;
3705 i = 0;
3706 while (p[0] != 0)
3707 {
3708 if (p[1] == 0)
3709 error (_("fetch_register_using_p: early buf termination"));
3710
3711 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3712 p += 2;
3713 }
3714 regcache_raw_supply (regcache, reg->regnum, regp);
3715 return 1;
3716 }
3717
3718 /* Fetch the registers included in the target's 'g' packet. */
3719
3720 static int
3721 send_g_packet (void)
3722 {
3723 struct remote_state *rs = get_remote_state ();
3724 int i, buf_len;
3725 char *p;
3726 char *regs;
3727
3728 sprintf (rs->buf, "g");
3729 remote_send (&rs->buf, &rs->buf_size);
3730
3731 /* We can get out of synch in various cases. If the first character
3732 in the buffer is not a hex character, assume that has happened
3733 and try to fetch another packet to read. */
3734 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3735 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3736 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3737 && rs->buf[0] != 'x') /* New: unavailable register value. */
3738 {
3739 if (remote_debug)
3740 fprintf_unfiltered (gdb_stdlog,
3741 "Bad register packet; fetching a new packet\n");
3742 getpkt (&rs->buf, &rs->buf_size, 0);
3743 }
3744
3745 buf_len = strlen (rs->buf);
3746
3747 /* Sanity check the received packet. */
3748 if (buf_len % 2 != 0)
3749 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3750
3751 return buf_len / 2;
3752 }
3753
3754 static void
3755 process_g_packet (struct regcache *regcache)
3756 {
3757 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3758 struct remote_state *rs = get_remote_state ();
3759 struct remote_arch_state *rsa = get_remote_arch_state ();
3760 int i, buf_len;
3761 char *p;
3762 char *regs;
3763
3764 buf_len = strlen (rs->buf);
3765
3766 /* Further sanity checks, with knowledge of the architecture. */
3767 if (buf_len > 2 * rsa->sizeof_g_packet)
3768 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3769
3770 /* Save the size of the packet sent to us by the target. It is used
3771 as a heuristic when determining the max size of packets that the
3772 target can safely receive. */
3773 if (rsa->actual_register_packet_size == 0)
3774 rsa->actual_register_packet_size = buf_len;
3775
3776 /* If this is smaller than we guessed the 'g' packet would be,
3777 update our records. A 'g' reply that doesn't include a register's
3778 value implies either that the register is not available, or that
3779 the 'p' packet must be used. */
3780 if (buf_len < 2 * rsa->sizeof_g_packet)
3781 {
3782 rsa->sizeof_g_packet = buf_len / 2;
3783
3784 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3785 {
3786 if (rsa->regs[i].pnum == -1)
3787 continue;
3788
3789 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3790 rsa->regs[i].in_g_packet = 0;
3791 else
3792 rsa->regs[i].in_g_packet = 1;
3793 }
3794 }
3795
3796 regs = alloca (rsa->sizeof_g_packet);
3797
3798 /* Unimplemented registers read as all bits zero. */
3799 memset (regs, 0, rsa->sizeof_g_packet);
3800
3801 /* Reply describes registers byte by byte, each byte encoded as two
3802 hex characters. Suck them all up, then supply them to the
3803 register cacheing/storage mechanism. */
3804
3805 p = rs->buf;
3806 for (i = 0; i < rsa->sizeof_g_packet; i++)
3807 {
3808 if (p[0] == 0 || p[1] == 0)
3809 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3810 internal_error (__FILE__, __LINE__,
3811 "unexpected end of 'g' packet reply");
3812
3813 if (p[0] == 'x' && p[1] == 'x')
3814 regs[i] = 0; /* 'x' */
3815 else
3816 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3817 p += 2;
3818 }
3819
3820 {
3821 int i;
3822 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3823 {
3824 struct packet_reg *r = &rsa->regs[i];
3825 if (r->in_g_packet)
3826 {
3827 if (r->offset * 2 >= strlen (rs->buf))
3828 /* This shouldn't happen - we adjusted in_g_packet above. */
3829 internal_error (__FILE__, __LINE__,
3830 "unexpected end of 'g' packet reply");
3831 else if (rs->buf[r->offset * 2] == 'x')
3832 {
3833 gdb_assert (r->offset * 2 < strlen (rs->buf));
3834 /* The register isn't available, mark it as such (at
3835 the same time setting the value to zero). */
3836 regcache_raw_supply (regcache, r->regnum, NULL);
3837 }
3838 else
3839 regcache_raw_supply (regcache, r->regnum,
3840 regs + r->offset);
3841 }
3842 }
3843 }
3844 }
3845
3846 static void
3847 fetch_registers_using_g (struct regcache *regcache)
3848 {
3849 send_g_packet ();
3850 process_g_packet (regcache);
3851 }
3852
3853 static void
3854 remote_fetch_registers (struct regcache *regcache, int regnum)
3855 {
3856 struct remote_state *rs = get_remote_state ();
3857 struct remote_arch_state *rsa = get_remote_arch_state ();
3858 int i;
3859
3860 set_general_thread (inferior_ptid);
3861
3862 if (regnum >= 0)
3863 {
3864 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3865 gdb_assert (reg != NULL);
3866
3867 /* If this register might be in the 'g' packet, try that first -
3868 we are likely to read more than one register. If this is the
3869 first 'g' packet, we might be overly optimistic about its
3870 contents, so fall back to 'p'. */
3871 if (reg->in_g_packet)
3872 {
3873 fetch_registers_using_g (regcache);
3874 if (reg->in_g_packet)
3875 return;
3876 }
3877
3878 if (fetch_register_using_p (regcache, reg))
3879 return;
3880
3881 /* This register is not available. */
3882 regcache_raw_supply (regcache, reg->regnum, NULL);
3883
3884 return;
3885 }
3886
3887 fetch_registers_using_g (regcache);
3888
3889 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3890 if (!rsa->regs[i].in_g_packet)
3891 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
3892 {
3893 /* This register is not available. */
3894 regcache_raw_supply (regcache, i, NULL);
3895 }
3896 }
3897
3898 /* Prepare to store registers. Since we may send them all (using a
3899 'G' request), we have to read out the ones we don't want to change
3900 first. */
3901
3902 static void
3903 remote_prepare_to_store (struct regcache *regcache)
3904 {
3905 struct remote_arch_state *rsa = get_remote_arch_state ();
3906 int i;
3907 gdb_byte buf[MAX_REGISTER_SIZE];
3908
3909 /* Make sure the entire registers array is valid. */
3910 switch (remote_protocol_packets[PACKET_P].support)
3911 {
3912 case PACKET_DISABLE:
3913 case PACKET_SUPPORT_UNKNOWN:
3914 /* Make sure all the necessary registers are cached. */
3915 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3916 if (rsa->regs[i].in_g_packet)
3917 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
3918 break;
3919 case PACKET_ENABLE:
3920 break;
3921 }
3922 }
3923
3924 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3925 packet was not recognized. */
3926
3927 static int
3928 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
3929 {
3930 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3931 struct remote_state *rs = get_remote_state ();
3932 struct remote_arch_state *rsa = get_remote_arch_state ();
3933 /* Try storing a single register. */
3934 char *buf = rs->buf;
3935 gdb_byte regp[MAX_REGISTER_SIZE];
3936 char *p;
3937
3938 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3939 return 0;
3940
3941 if (reg->pnum == -1)
3942 return 0;
3943
3944 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3945 p = buf + strlen (buf);
3946 regcache_raw_collect (regcache, reg->regnum, regp);
3947 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
3948 remote_send (&rs->buf, &rs->buf_size);
3949
3950 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3951 {
3952 case PACKET_OK:
3953 return 1;
3954 case PACKET_ERROR:
3955 error (_("Could not write register \"%s\""),
3956 gdbarch_register_name (gdbarch, reg->regnum));
3957 case PACKET_UNKNOWN:
3958 return 0;
3959 default:
3960 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3961 }
3962 }
3963
3964 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3965 contents of the register cache buffer. FIXME: ignores errors. */
3966
3967 static void
3968 store_registers_using_G (const struct regcache *regcache)
3969 {
3970 struct remote_state *rs = get_remote_state ();
3971 struct remote_arch_state *rsa = get_remote_arch_state ();
3972 gdb_byte *regs;
3973 char *p;
3974
3975 /* Extract all the registers in the regcache copying them into a
3976 local buffer. */
3977 {
3978 int i;
3979 regs = alloca (rsa->sizeof_g_packet);
3980 memset (regs, 0, rsa->sizeof_g_packet);
3981 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3982 {
3983 struct packet_reg *r = &rsa->regs[i];
3984 if (r->in_g_packet)
3985 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
3986 }
3987 }
3988
3989 /* Command describes registers byte by byte,
3990 each byte encoded as two hex characters. */
3991 p = rs->buf;
3992 *p++ = 'G';
3993 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3994 updated. */
3995 bin2hex (regs, p, rsa->sizeof_g_packet);
3996 remote_send (&rs->buf, &rs->buf_size);
3997 }
3998
3999 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
4000 of the register cache buffer. FIXME: ignores errors. */
4001
4002 static void
4003 remote_store_registers (struct regcache *regcache, int regnum)
4004 {
4005 struct remote_state *rs = get_remote_state ();
4006 struct remote_arch_state *rsa = get_remote_arch_state ();
4007 int i;
4008
4009 set_general_thread (inferior_ptid);
4010
4011 if (regnum >= 0)
4012 {
4013 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4014 gdb_assert (reg != NULL);
4015
4016 /* Always prefer to store registers using the 'P' packet if
4017 possible; we often change only a small number of registers.
4018 Sometimes we change a larger number; we'd need help from a
4019 higher layer to know to use 'G'. */
4020 if (store_register_using_P (regcache, reg))
4021 return;
4022
4023 /* For now, don't complain if we have no way to write the
4024 register. GDB loses track of unavailable registers too
4025 easily. Some day, this may be an error. We don't have
4026 any way to read the register, either... */
4027 if (!reg->in_g_packet)
4028 return;
4029
4030 store_registers_using_G (regcache);
4031 return;
4032 }
4033
4034 store_registers_using_G (regcache);
4035
4036 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4037 if (!rsa->regs[i].in_g_packet)
4038 if (!store_register_using_P (regcache, &rsa->regs[i]))
4039 /* See above for why we do not issue an error here. */
4040 continue;
4041 }
4042 \f
4043
4044 /* Return the number of hex digits in num. */
4045
4046 static int
4047 hexnumlen (ULONGEST num)
4048 {
4049 int i;
4050
4051 for (i = 0; num != 0; i++)
4052 num >>= 4;
4053
4054 return max (i, 1);
4055 }
4056
4057 /* Set BUF to the minimum number of hex digits representing NUM. */
4058
4059 static int
4060 hexnumstr (char *buf, ULONGEST num)
4061 {
4062 int len = hexnumlen (num);
4063 return hexnumnstr (buf, num, len);
4064 }
4065
4066
4067 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
4068
4069 static int
4070 hexnumnstr (char *buf, ULONGEST num, int width)
4071 {
4072 int i;
4073
4074 buf[width] = '\0';
4075
4076 for (i = width - 1; i >= 0; i--)
4077 {
4078 buf[i] = "0123456789abcdef"[(num & 0xf)];
4079 num >>= 4;
4080 }
4081
4082 return width;
4083 }
4084
4085 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4086
4087 static CORE_ADDR
4088 remote_address_masked (CORE_ADDR addr)
4089 {
4090 int address_size = remote_address_size;
4091 /* If "remoteaddresssize" was not set, default to target address size. */
4092 if (!address_size)
4093 address_size = gdbarch_addr_bit (current_gdbarch);
4094
4095 if (address_size > 0
4096 && address_size < (sizeof (ULONGEST) * 8))
4097 {
4098 /* Only create a mask when that mask can safely be constructed
4099 in a ULONGEST variable. */
4100 ULONGEST mask = 1;
4101 mask = (mask << address_size) - 1;
4102 addr &= mask;
4103 }
4104 return addr;
4105 }
4106
4107 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4108 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4109 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4110 (which may be more than *OUT_LEN due to escape characters). The
4111 total number of bytes in the output buffer will be at most
4112 OUT_MAXLEN. */
4113
4114 static int
4115 remote_escape_output (const gdb_byte *buffer, int len,
4116 gdb_byte *out_buf, int *out_len,
4117 int out_maxlen)
4118 {
4119 int input_index, output_index;
4120
4121 output_index = 0;
4122 for (input_index = 0; input_index < len; input_index++)
4123 {
4124 gdb_byte b = buffer[input_index];
4125
4126 if (b == '$' || b == '#' || b == '}')
4127 {
4128 /* These must be escaped. */
4129 if (output_index + 2 > out_maxlen)
4130 break;
4131 out_buf[output_index++] = '}';
4132 out_buf[output_index++] = b ^ 0x20;
4133 }
4134 else
4135 {
4136 if (output_index + 1 > out_maxlen)
4137 break;
4138 out_buf[output_index++] = b;
4139 }
4140 }
4141
4142 *out_len = input_index;
4143 return output_index;
4144 }
4145
4146 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4147 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4148 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4149
4150 This function reverses remote_escape_output. It allows more
4151 escaped characters than that function does, in particular because
4152 '*' must be escaped to avoid the run-length encoding processing
4153 in reading packets. */
4154
4155 static int
4156 remote_unescape_input (const gdb_byte *buffer, int len,
4157 gdb_byte *out_buf, int out_maxlen)
4158 {
4159 int input_index, output_index;
4160 int escaped;
4161
4162 output_index = 0;
4163 escaped = 0;
4164 for (input_index = 0; input_index < len; input_index++)
4165 {
4166 gdb_byte b = buffer[input_index];
4167
4168 if (output_index + 1 > out_maxlen)
4169 {
4170 warning (_("Received too much data from remote target;"
4171 " ignoring overflow."));
4172 return output_index;
4173 }
4174
4175 if (escaped)
4176 {
4177 out_buf[output_index++] = b ^ 0x20;
4178 escaped = 0;
4179 }
4180 else if (b == '}')
4181 escaped = 1;
4182 else
4183 out_buf[output_index++] = b;
4184 }
4185
4186 if (escaped)
4187 error (_("Unmatched escape character in target response."));
4188
4189 return output_index;
4190 }
4191
4192 /* Determine whether the remote target supports binary downloading.
4193 This is accomplished by sending a no-op memory write of zero length
4194 to the target at the specified address. It does not suffice to send
4195 the whole packet, since many stubs strip the eighth bit and
4196 subsequently compute a wrong checksum, which causes real havoc with
4197 remote_write_bytes.
4198
4199 NOTE: This can still lose if the serial line is not eight-bit
4200 clean. In cases like this, the user should clear "remote
4201 X-packet". */
4202
4203 static void
4204 check_binary_download (CORE_ADDR addr)
4205 {
4206 struct remote_state *rs = get_remote_state ();
4207
4208 switch (remote_protocol_packets[PACKET_X].support)
4209 {
4210 case PACKET_DISABLE:
4211 break;
4212 case PACKET_ENABLE:
4213 break;
4214 case PACKET_SUPPORT_UNKNOWN:
4215 {
4216 char *p;
4217
4218 p = rs->buf;
4219 *p++ = 'X';
4220 p += hexnumstr (p, (ULONGEST) addr);
4221 *p++ = ',';
4222 p += hexnumstr (p, (ULONGEST) 0);
4223 *p++ = ':';
4224 *p = '\0';
4225
4226 putpkt_binary (rs->buf, (int) (p - rs->buf));
4227 getpkt (&rs->buf, &rs->buf_size, 0);
4228
4229 if (rs->buf[0] == '\0')
4230 {
4231 if (remote_debug)
4232 fprintf_unfiltered (gdb_stdlog,
4233 "binary downloading NOT suppported by target\n");
4234 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4235 }
4236 else
4237 {
4238 if (remote_debug)
4239 fprintf_unfiltered (gdb_stdlog,
4240 "binary downloading suppported by target\n");
4241 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4242 }
4243 break;
4244 }
4245 }
4246 }
4247
4248 /* Write memory data directly to the remote machine.
4249 This does not inform the data cache; the data cache uses this.
4250 HEADER is the starting part of the packet.
4251 MEMADDR is the address in the remote memory space.
4252 MYADDR is the address of the buffer in our space.
4253 LEN is the number of bytes.
4254 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4255 should send data as binary ('X'), or hex-encoded ('M').
4256
4257 The function creates packet of the form
4258 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4259
4260 where encoding of <DATA> is termined by PACKET_FORMAT.
4261
4262 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4263 are omitted.
4264
4265 Returns the number of bytes transferred, or 0 (setting errno) for
4266 error. Only transfer a single packet. */
4267
4268 static int
4269 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4270 const gdb_byte *myaddr, int len,
4271 char packet_format, int use_length)
4272 {
4273 struct remote_state *rs = get_remote_state ();
4274 char *p;
4275 char *plen = NULL;
4276 int plenlen = 0;
4277 int todo;
4278 int nr_bytes;
4279 int payload_size;
4280 int payload_length;
4281 int header_length;
4282
4283 if (packet_format != 'X' && packet_format != 'M')
4284 internal_error (__FILE__, __LINE__,
4285 "remote_write_bytes_aux: bad packet format");
4286
4287 if (len <= 0)
4288 return 0;
4289
4290 payload_size = get_memory_write_packet_size ();
4291
4292 /* The packet buffer will be large enough for the payload;
4293 get_memory_packet_size ensures this. */
4294 rs->buf[0] = '\0';
4295
4296 /* Compute the size of the actual payload by subtracting out the
4297 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4298 */
4299 payload_size -= strlen ("$,:#NN");
4300 if (!use_length)
4301 /* The comma won't be used. */
4302 payload_size += 1;
4303 header_length = strlen (header);
4304 payload_size -= header_length;
4305 payload_size -= hexnumlen (memaddr);
4306
4307 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4308
4309 strcat (rs->buf, header);
4310 p = rs->buf + strlen (header);
4311
4312 /* Compute a best guess of the number of bytes actually transfered. */
4313 if (packet_format == 'X')
4314 {
4315 /* Best guess at number of bytes that will fit. */
4316 todo = min (len, payload_size);
4317 if (use_length)
4318 payload_size -= hexnumlen (todo);
4319 todo = min (todo, payload_size);
4320 }
4321 else
4322 {
4323 /* Num bytes that will fit. */
4324 todo = min (len, payload_size / 2);
4325 if (use_length)
4326 payload_size -= hexnumlen (todo);
4327 todo = min (todo, payload_size / 2);
4328 }
4329
4330 if (todo <= 0)
4331 internal_error (__FILE__, __LINE__,
4332 _("minumum packet size too small to write data"));
4333
4334 /* If we already need another packet, then try to align the end
4335 of this packet to a useful boundary. */
4336 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4337 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4338
4339 /* Append "<memaddr>". */
4340 memaddr = remote_address_masked (memaddr);
4341 p += hexnumstr (p, (ULONGEST) memaddr);
4342
4343 if (use_length)
4344 {
4345 /* Append ",". */
4346 *p++ = ',';
4347
4348 /* Append <len>. Retain the location/size of <len>. It may need to
4349 be adjusted once the packet body has been created. */
4350 plen = p;
4351 plenlen = hexnumstr (p, (ULONGEST) todo);
4352 p += plenlen;
4353 }
4354
4355 /* Append ":". */
4356 *p++ = ':';
4357 *p = '\0';
4358
4359 /* Append the packet body. */
4360 if (packet_format == 'X')
4361 {
4362 /* Binary mode. Send target system values byte by byte, in
4363 increasing byte addresses. Only escape certain critical
4364 characters. */
4365 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4366 payload_size);
4367
4368 /* If not all TODO bytes fit, then we'll need another packet. Make
4369 a second try to keep the end of the packet aligned. Don't do
4370 this if the packet is tiny. */
4371 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4372 {
4373 int new_nr_bytes;
4374
4375 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4376 - memaddr);
4377 if (new_nr_bytes != nr_bytes)
4378 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4379 p, &nr_bytes,
4380 payload_size);
4381 }
4382
4383 p += payload_length;
4384 if (use_length && nr_bytes < todo)
4385 {
4386 /* Escape chars have filled up the buffer prematurely,
4387 and we have actually sent fewer bytes than planned.
4388 Fix-up the length field of the packet. Use the same
4389 number of characters as before. */
4390 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4391 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4392 }
4393 }
4394 else
4395 {
4396 /* Normal mode: Send target system values byte by byte, in
4397 increasing byte addresses. Each byte is encoded as a two hex
4398 value. */
4399 nr_bytes = bin2hex (myaddr, p, todo);
4400 p += 2 * nr_bytes;
4401 }
4402
4403 putpkt_binary (rs->buf, (int) (p - rs->buf));
4404 getpkt (&rs->buf, &rs->buf_size, 0);
4405
4406 if (rs->buf[0] == 'E')
4407 {
4408 /* There is no correspondance between what the remote protocol
4409 uses for errors and errno codes. We would like a cleaner way
4410 of representing errors (big enough to include errno codes,
4411 bfd_error codes, and others). But for now just return EIO. */
4412 errno = EIO;
4413 return 0;
4414 }
4415
4416 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4417 fewer bytes than we'd planned. */
4418 return nr_bytes;
4419 }
4420
4421 /* Write memory data directly to the remote machine.
4422 This does not inform the data cache; the data cache uses this.
4423 MEMADDR is the address in the remote memory space.
4424 MYADDR is the address of the buffer in our space.
4425 LEN is the number of bytes.
4426
4427 Returns number of bytes transferred, or 0 (setting errno) for
4428 error. Only transfer a single packet. */
4429
4430 int
4431 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4432 {
4433 char *packet_format = 0;
4434
4435 /* Check whether the target supports binary download. */
4436 check_binary_download (memaddr);
4437
4438 switch (remote_protocol_packets[PACKET_X].support)
4439 {
4440 case PACKET_ENABLE:
4441 packet_format = "X";
4442 break;
4443 case PACKET_DISABLE:
4444 packet_format = "M";
4445 break;
4446 case PACKET_SUPPORT_UNKNOWN:
4447 internal_error (__FILE__, __LINE__,
4448 _("remote_write_bytes: bad internal state"));
4449 default:
4450 internal_error (__FILE__, __LINE__, _("bad switch"));
4451 }
4452
4453 return remote_write_bytes_aux (packet_format,
4454 memaddr, myaddr, len, packet_format[0], 1);
4455 }
4456
4457 /* Read memory data directly from the remote machine.
4458 This does not use the data cache; the data cache uses this.
4459 MEMADDR is the address in the remote memory space.
4460 MYADDR is the address of the buffer in our space.
4461 LEN is the number of bytes.
4462
4463 Returns number of bytes transferred, or 0 for error. */
4464
4465 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4466 remote targets) shouldn't attempt to read the entire buffer.
4467 Instead it should read a single packet worth of data and then
4468 return the byte size of that packet to the caller. The caller (its
4469 caller and its callers caller ;-) already contains code for
4470 handling partial reads. */
4471
4472 int
4473 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4474 {
4475 struct remote_state *rs = get_remote_state ();
4476 int max_buf_size; /* Max size of packet output buffer. */
4477 int origlen;
4478
4479 if (len <= 0)
4480 return 0;
4481
4482 max_buf_size = get_memory_read_packet_size ();
4483 /* The packet buffer will be large enough for the payload;
4484 get_memory_packet_size ensures this. */
4485
4486 origlen = len;
4487 while (len > 0)
4488 {
4489 char *p;
4490 int todo;
4491 int i;
4492
4493 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4494
4495 /* construct "m"<memaddr>","<len>" */
4496 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4497 memaddr = remote_address_masked (memaddr);
4498 p = rs->buf;
4499 *p++ = 'm';
4500 p += hexnumstr (p, (ULONGEST) memaddr);
4501 *p++ = ',';
4502 p += hexnumstr (p, (ULONGEST) todo);
4503 *p = '\0';
4504
4505 putpkt (rs->buf);
4506 getpkt (&rs->buf, &rs->buf_size, 0);
4507
4508 if (rs->buf[0] == 'E'
4509 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4510 && rs->buf[3] == '\0')
4511 {
4512 /* There is no correspondance between what the remote
4513 protocol uses for errors and errno codes. We would like
4514 a cleaner way of representing errors (big enough to
4515 include errno codes, bfd_error codes, and others). But
4516 for now just return EIO. */
4517 errno = EIO;
4518 return 0;
4519 }
4520
4521 /* Reply describes memory byte by byte,
4522 each byte encoded as two hex characters. */
4523
4524 p = rs->buf;
4525 if ((i = hex2bin (p, myaddr, todo)) < todo)
4526 {
4527 /* Reply is short. This means that we were able to read
4528 only part of what we wanted to. */
4529 return i + (origlen - len);
4530 }
4531 myaddr += todo;
4532 memaddr += todo;
4533 len -= todo;
4534 }
4535 return origlen;
4536 }
4537 \f
4538 /* Read or write LEN bytes from inferior memory at MEMADDR,
4539 transferring to or from debugger address BUFFER. Write to inferior
4540 if SHOULD_WRITE is nonzero. Returns length of data written or
4541 read; 0 for error. TARGET is unused. */
4542
4543 static int
4544 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4545 int should_write, struct mem_attrib *attrib,
4546 struct target_ops *target)
4547 {
4548 int res;
4549
4550 if (should_write)
4551 res = remote_write_bytes (mem_addr, buffer, mem_len);
4552 else
4553 res = remote_read_bytes (mem_addr, buffer, mem_len);
4554
4555 return res;
4556 }
4557
4558 /* Sends a packet with content determined by the printf format string
4559 FORMAT and the remaining arguments, then gets the reply. Returns
4560 whether the packet was a success, a failure, or unknown. */
4561
4562 enum packet_result
4563 remote_send_printf (const char *format, ...)
4564 {
4565 struct remote_state *rs = get_remote_state ();
4566 int max_size = get_remote_packet_size ();
4567
4568 va_list ap;
4569 va_start (ap, format);
4570
4571 rs->buf[0] = '\0';
4572 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4573 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4574
4575 if (putpkt (rs->buf) < 0)
4576 error (_("Communication problem with target."));
4577
4578 rs->buf[0] = '\0';
4579 getpkt (&rs->buf, &rs->buf_size, 0);
4580
4581 return packet_check_result (rs->buf);
4582 }
4583
4584 static void
4585 restore_remote_timeout (void *p)
4586 {
4587 int value = *(int *)p;
4588 remote_timeout = value;
4589 }
4590
4591 /* Flash writing can take quite some time. We'll set
4592 effectively infinite timeout for flash operations.
4593 In future, we'll need to decide on a better approach. */
4594 static const int remote_flash_timeout = 1000;
4595
4596 static void
4597 remote_flash_erase (struct target_ops *ops,
4598 ULONGEST address, LONGEST length)
4599 {
4600 int saved_remote_timeout = remote_timeout;
4601 enum packet_result ret;
4602
4603 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4604 &saved_remote_timeout);
4605 remote_timeout = remote_flash_timeout;
4606
4607 ret = remote_send_printf ("vFlashErase:%s,%s",
4608 paddr (address),
4609 phex (length, 4));
4610 switch (ret)
4611 {
4612 case PACKET_UNKNOWN:
4613 error (_("Remote target does not support flash erase"));
4614 case PACKET_ERROR:
4615 error (_("Error erasing flash with vFlashErase packet"));
4616 default:
4617 break;
4618 }
4619
4620 do_cleanups (back_to);
4621 }
4622
4623 static LONGEST
4624 remote_flash_write (struct target_ops *ops,
4625 ULONGEST address, LONGEST length,
4626 const gdb_byte *data)
4627 {
4628 int saved_remote_timeout = remote_timeout;
4629 int ret;
4630 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4631 &saved_remote_timeout);
4632
4633 remote_timeout = remote_flash_timeout;
4634 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4635 do_cleanups (back_to);
4636
4637 return ret;
4638 }
4639
4640 static void
4641 remote_flash_done (struct target_ops *ops)
4642 {
4643 int saved_remote_timeout = remote_timeout;
4644 int ret;
4645 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4646 &saved_remote_timeout);
4647
4648 remote_timeout = remote_flash_timeout;
4649 ret = remote_send_printf ("vFlashDone");
4650 do_cleanups (back_to);
4651
4652 switch (ret)
4653 {
4654 case PACKET_UNKNOWN:
4655 error (_("Remote target does not support vFlashDone"));
4656 case PACKET_ERROR:
4657 error (_("Error finishing flash operation"));
4658 default:
4659 break;
4660 }
4661 }
4662
4663 static void
4664 remote_files_info (struct target_ops *ignore)
4665 {
4666 puts_filtered ("Debugging a target over a serial line.\n");
4667 }
4668 \f
4669 /* Stuff for dealing with the packets which are part of this protocol.
4670 See comment at top of file for details. */
4671
4672 /* Read a single character from the remote end. */
4673
4674 static int
4675 readchar (int timeout)
4676 {
4677 int ch;
4678
4679 ch = serial_readchar (remote_desc, timeout);
4680
4681 if (ch >= 0)
4682 return ch;
4683
4684 switch ((enum serial_rc) ch)
4685 {
4686 case SERIAL_EOF:
4687 target_mourn_inferior ();
4688 error (_("Remote connection closed"));
4689 /* no return */
4690 case SERIAL_ERROR:
4691 perror_with_name (_("Remote communication error"));
4692 /* no return */
4693 case SERIAL_TIMEOUT:
4694 break;
4695 }
4696 return ch;
4697 }
4698
4699 /* Send the command in *BUF to the remote machine, and read the reply
4700 into *BUF. Report an error if we get an error reply. Resize
4701 *BUF using xrealloc if necessary to hold the result, and update
4702 *SIZEOF_BUF. */
4703
4704 static void
4705 remote_send (char **buf,
4706 long *sizeof_buf)
4707 {
4708 putpkt (*buf);
4709 getpkt (buf, sizeof_buf, 0);
4710
4711 if ((*buf)[0] == 'E')
4712 error (_("Remote failure reply: %s"), *buf);
4713 }
4714
4715 /* Display a null-terminated packet on stdout, for debugging, using C
4716 string notation. */
4717
4718 static void
4719 print_packet (char *buf)
4720 {
4721 puts_filtered ("\"");
4722 fputstr_filtered (buf, '"', gdb_stdout);
4723 puts_filtered ("\"");
4724 }
4725
4726 int
4727 putpkt (char *buf)
4728 {
4729 return putpkt_binary (buf, strlen (buf));
4730 }
4731
4732 /* Send a packet to the remote machine, with error checking. The data
4733 of the packet is in BUF. The string in BUF can be at most
4734 get_remote_packet_size () - 5 to account for the $, # and checksum,
4735 and for a possible /0 if we are debugging (remote_debug) and want
4736 to print the sent packet as a string. */
4737
4738 static int
4739 putpkt_binary (char *buf, int cnt)
4740 {
4741 struct remote_state *rs = get_remote_state ();
4742 int i;
4743 unsigned char csum = 0;
4744 char *buf2 = alloca (cnt + 6);
4745
4746 int ch;
4747 int tcount = 0;
4748 char *p;
4749
4750 /* We're sending out a new packet. Make sure we don't look at a
4751 stale cached response. */
4752 rs->cached_wait_status = 0;
4753
4754 /* Copy the packet into buffer BUF2, encapsulating it
4755 and giving it a checksum. */
4756
4757 p = buf2;
4758 *p++ = '$';
4759
4760 for (i = 0; i < cnt; i++)
4761 {
4762 csum += buf[i];
4763 *p++ = buf[i];
4764 }
4765 *p++ = '#';
4766 *p++ = tohex ((csum >> 4) & 0xf);
4767 *p++ = tohex (csum & 0xf);
4768
4769 /* Send it over and over until we get a positive ack. */
4770
4771 while (1)
4772 {
4773 int started_error_output = 0;
4774
4775 if (remote_debug)
4776 {
4777 *p = '\0';
4778 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4779 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4780 fprintf_unfiltered (gdb_stdlog, "...");
4781 gdb_flush (gdb_stdlog);
4782 }
4783 if (serial_write (remote_desc, buf2, p - buf2))
4784 perror_with_name (_("putpkt: write failed"));
4785
4786 /* Read until either a timeout occurs (-2) or '+' is read. */
4787 while (1)
4788 {
4789 ch = readchar (remote_timeout);
4790
4791 if (remote_debug)
4792 {
4793 switch (ch)
4794 {
4795 case '+':
4796 case '-':
4797 case SERIAL_TIMEOUT:
4798 case '$':
4799 if (started_error_output)
4800 {
4801 putchar_unfiltered ('\n');
4802 started_error_output = 0;
4803 }
4804 }
4805 }
4806
4807 switch (ch)
4808 {
4809 case '+':
4810 if (remote_debug)
4811 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4812 return 1;
4813 case '-':
4814 if (remote_debug)
4815 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4816 case SERIAL_TIMEOUT:
4817 tcount++;
4818 if (tcount > 3)
4819 return 0;
4820 break; /* Retransmit buffer. */
4821 case '$':
4822 {
4823 if (remote_debug)
4824 fprintf_unfiltered (gdb_stdlog,
4825 "Packet instead of Ack, ignoring it\n");
4826 /* It's probably an old response sent because an ACK
4827 was lost. Gobble up the packet and ack it so it
4828 doesn't get retransmitted when we resend this
4829 packet. */
4830 skip_frame ();
4831 serial_write (remote_desc, "+", 1);
4832 continue; /* Now, go look for +. */
4833 }
4834 default:
4835 if (remote_debug)
4836 {
4837 if (!started_error_output)
4838 {
4839 started_error_output = 1;
4840 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4841 }
4842 fputc_unfiltered (ch & 0177, gdb_stdlog);
4843 }
4844 continue;
4845 }
4846 break; /* Here to retransmit. */
4847 }
4848
4849 #if 0
4850 /* This is wrong. If doing a long backtrace, the user should be
4851 able to get out next time we call QUIT, without anything as
4852 violent as interrupt_query. If we want to provide a way out of
4853 here without getting to the next QUIT, it should be based on
4854 hitting ^C twice as in remote_wait. */
4855 if (quit_flag)
4856 {
4857 quit_flag = 0;
4858 interrupt_query ();
4859 }
4860 #endif
4861 }
4862 }
4863
4864 /* Come here after finding the start of a frame when we expected an
4865 ack. Do our best to discard the rest of this packet. */
4866
4867 static void
4868 skip_frame (void)
4869 {
4870 int c;
4871
4872 while (1)
4873 {
4874 c = readchar (remote_timeout);
4875 switch (c)
4876 {
4877 case SERIAL_TIMEOUT:
4878 /* Nothing we can do. */
4879 return;
4880 case '#':
4881 /* Discard the two bytes of checksum and stop. */
4882 c = readchar (remote_timeout);
4883 if (c >= 0)
4884 c = readchar (remote_timeout);
4885
4886 return;
4887 case '*': /* Run length encoding. */
4888 /* Discard the repeat count. */
4889 c = readchar (remote_timeout);
4890 if (c < 0)
4891 return;
4892 break;
4893 default:
4894 /* A regular character. */
4895 break;
4896 }
4897 }
4898 }
4899
4900 /* Come here after finding the start of the frame. Collect the rest
4901 into *BUF, verifying the checksum, length, and handling run-length
4902 compression. NUL terminate the buffer. If there is not enough room,
4903 expand *BUF using xrealloc.
4904
4905 Returns -1 on error, number of characters in buffer (ignoring the
4906 trailing NULL) on success. (could be extended to return one of the
4907 SERIAL status indications). */
4908
4909 static long
4910 read_frame (char **buf_p,
4911 long *sizeof_buf)
4912 {
4913 unsigned char csum;
4914 long bc;
4915 int c;
4916 char *buf = *buf_p;
4917
4918 csum = 0;
4919 bc = 0;
4920
4921 while (1)
4922 {
4923 c = readchar (remote_timeout);
4924 switch (c)
4925 {
4926 case SERIAL_TIMEOUT:
4927 if (remote_debug)
4928 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4929 return -1;
4930 case '$':
4931 if (remote_debug)
4932 fputs_filtered ("Saw new packet start in middle of old one\n",
4933 gdb_stdlog);
4934 return -1; /* Start a new packet, count retries. */
4935 case '#':
4936 {
4937 unsigned char pktcsum;
4938 int check_0 = 0;
4939 int check_1 = 0;
4940
4941 buf[bc] = '\0';
4942
4943 check_0 = readchar (remote_timeout);
4944 if (check_0 >= 0)
4945 check_1 = readchar (remote_timeout);
4946
4947 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4948 {
4949 if (remote_debug)
4950 fputs_filtered ("Timeout in checksum, retrying\n",
4951 gdb_stdlog);
4952 return -1;
4953 }
4954 else if (check_0 < 0 || check_1 < 0)
4955 {
4956 if (remote_debug)
4957 fputs_filtered ("Communication error in checksum\n",
4958 gdb_stdlog);
4959 return -1;
4960 }
4961
4962 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4963 if (csum == pktcsum)
4964 return bc;
4965
4966 if (remote_debug)
4967 {
4968 fprintf_filtered (gdb_stdlog,
4969 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4970 pktcsum, csum);
4971 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4972 fputs_filtered ("\n", gdb_stdlog);
4973 }
4974 /* Number of characters in buffer ignoring trailing
4975 NULL. */
4976 return -1;
4977 }
4978 case '*': /* Run length encoding. */
4979 {
4980 int repeat;
4981 csum += c;
4982
4983 c = readchar (remote_timeout);
4984 csum += c;
4985 repeat = c - ' ' + 3; /* Compute repeat count. */
4986
4987 /* The character before ``*'' is repeated. */
4988
4989 if (repeat > 0 && repeat <= 255 && bc > 0)
4990 {
4991 if (bc + repeat - 1 >= *sizeof_buf - 1)
4992 {
4993 /* Make some more room in the buffer. */
4994 *sizeof_buf += repeat;
4995 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4996 buf = *buf_p;
4997 }
4998
4999 memset (&buf[bc], buf[bc - 1], repeat);
5000 bc += repeat;
5001 continue;
5002 }
5003
5004 buf[bc] = '\0';
5005 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
5006 return -1;
5007 }
5008 default:
5009 if (bc >= *sizeof_buf - 1)
5010 {
5011 /* Make some more room in the buffer. */
5012 *sizeof_buf *= 2;
5013 *buf_p = xrealloc (*buf_p, *sizeof_buf);
5014 buf = *buf_p;
5015 }
5016
5017 buf[bc++] = c;
5018 csum += c;
5019 continue;
5020 }
5021 }
5022 }
5023
5024 /* Read a packet from the remote machine, with error checking, and
5025 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5026 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5027 rather than timing out; this is used (in synchronous mode) to wait
5028 for a target that is is executing user code to stop. */
5029 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
5030 don't have to change all the calls to getpkt to deal with the
5031 return value, because at the moment I don't know what the right
5032 thing to do it for those. */
5033 void
5034 getpkt (char **buf,
5035 long *sizeof_buf,
5036 int forever)
5037 {
5038 int timed_out;
5039
5040 timed_out = getpkt_sane (buf, sizeof_buf, forever);
5041 }
5042
5043
5044 /* Read a packet from the remote machine, with error checking, and
5045 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5046 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5047 rather than timing out; this is used (in synchronous mode) to wait
5048 for a target that is is executing user code to stop. If FOREVER ==
5049 0, this function is allowed to time out gracefully and return an
5050 indication of this to the caller. Otherwise return the number
5051 of bytes read. */
5052 static int
5053 getpkt_sane (char **buf, long *sizeof_buf, int forever)
5054 {
5055 struct remote_state *rs = get_remote_state ();
5056 int c;
5057 int tries;
5058 int timeout;
5059 int val;
5060
5061 /* We're reading a new response. Make sure we don't look at a
5062 previously cached response. */
5063 rs->cached_wait_status = 0;
5064
5065 strcpy (*buf, "timeout");
5066
5067 if (forever)
5068 {
5069 timeout = watchdog > 0 ? watchdog : -1;
5070 }
5071
5072 else
5073 timeout = remote_timeout;
5074
5075 #define MAX_TRIES 3
5076
5077 for (tries = 1; tries <= MAX_TRIES; tries++)
5078 {
5079 /* This can loop forever if the remote side sends us characters
5080 continuously, but if it pauses, we'll get a zero from
5081 readchar because of timeout. Then we'll count that as a
5082 retry. */
5083
5084 /* Note that we will only wait forever prior to the start of a
5085 packet. After that, we expect characters to arrive at a
5086 brisk pace. They should show up within remote_timeout
5087 intervals. */
5088
5089 do
5090 {
5091 c = readchar (timeout);
5092
5093 if (c == SERIAL_TIMEOUT)
5094 {
5095 if (forever) /* Watchdog went off? Kill the target. */
5096 {
5097 QUIT;
5098 target_mourn_inferior ();
5099 error (_("Watchdog timeout has expired. Target detached."));
5100 }
5101 if (remote_debug)
5102 fputs_filtered ("Timed out.\n", gdb_stdlog);
5103 goto retry;
5104 }
5105 }
5106 while (c != '$');
5107
5108 /* We've found the start of a packet, now collect the data. */
5109
5110 val = read_frame (buf, sizeof_buf);
5111
5112 if (val >= 0)
5113 {
5114 if (remote_debug)
5115 {
5116 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5117 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5118 fprintf_unfiltered (gdb_stdlog, "\n");
5119 }
5120 serial_write (remote_desc, "+", 1);
5121 return val;
5122 }
5123
5124 /* Try the whole thing again. */
5125 retry:
5126 serial_write (remote_desc, "-", 1);
5127 }
5128
5129 /* We have tried hard enough, and just can't receive the packet.
5130 Give up. */
5131
5132 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5133 serial_write (remote_desc, "+", 1);
5134 return -1;
5135 }
5136 \f
5137 static void
5138 remote_kill (void)
5139 {
5140 /* Unregister the file descriptor from the event loop. */
5141 if (target_is_async_p ())
5142 serial_async (remote_desc, NULL, 0);
5143
5144 /* Use catch_errors so the user can quit from gdb even when we
5145 aren't on speaking terms with the remote system. */
5146 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5147
5148 /* Don't wait for it to die. I'm not really sure it matters whether
5149 we do or not. For the existing stubs, kill is a noop. */
5150 target_mourn_inferior ();
5151 }
5152
5153 static void
5154 remote_mourn (void)
5155 {
5156 remote_mourn_1 (&remote_ops);
5157 }
5158
5159 /* Worker function for remote_mourn. */
5160 static void
5161 remote_mourn_1 (struct target_ops *target)
5162 {
5163 unpush_target (target);
5164 generic_mourn_inferior ();
5165 }
5166
5167 static void
5168 extended_remote_mourn_1 (struct target_ops *target)
5169 {
5170 struct remote_state *rs = get_remote_state ();
5171
5172 /* Unlike "target remote", we do not want to unpush the target; then
5173 the next time the user says "run", we won't be connected. */
5174
5175 /* Call common code to mark the inferior as not running. */
5176 generic_mourn_inferior ();
5177
5178 /* Check whether the target is running now - some remote stubs
5179 automatically restart after kill. */
5180 putpkt ("?");
5181 getpkt (&rs->buf, &rs->buf_size, 0);
5182
5183 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
5184 {
5185 /* Assume that the target has been restarted. Set inferior_ptid
5186 so that bits of core GDB realizes there's something here, e.g.,
5187 so that the user can say "kill" again. */
5188 inferior_ptid = remote_current_thread (magic_null_ptid);
5189 add_thread_silent (inferior_ptid);
5190 }
5191 else
5192 {
5193 /* Mark this (still pushed) target as not executable until we
5194 restart it. */
5195 target_mark_exited (target);
5196 }
5197 }
5198
5199 static void
5200 extended_remote_mourn (void)
5201 {
5202 extended_remote_mourn_1 (&extended_remote_ops);
5203 }
5204
5205 static int
5206 extended_remote_run (char *args)
5207 {
5208 struct remote_state *rs = get_remote_state ();
5209 char *p;
5210 int len;
5211
5212 /* If the user has disabled vRun support, or we have detected that
5213 support is not available, do not try it. */
5214 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5215 return -1;
5216
5217 strcpy (rs->buf, "vRun;");
5218 len = strlen (rs->buf);
5219
5220 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
5221 error (_("Remote file name too long for run packet"));
5222 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
5223
5224 if (*args)
5225 {
5226 struct cleanup *back_to;
5227 int i;
5228 char **argv;
5229
5230 argv = buildargv (args);
5231 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
5232 for (i = 0; argv[i] != NULL; i++)
5233 {
5234 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
5235 error (_("Argument list too long for run packet"));
5236 rs->buf[len++] = ';';
5237 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
5238 }
5239 do_cleanups (back_to);
5240 }
5241
5242 rs->buf[len++] = '\0';
5243
5244 putpkt (rs->buf);
5245 getpkt (&rs->buf, &rs->buf_size, 0);
5246
5247 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
5248 {
5249 /* We have a wait response; we don't need it, though. All is well. */
5250 return 0;
5251 }
5252 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5253 /* It wasn't disabled before, but it is now. */
5254 return -1;
5255 else
5256 {
5257 if (remote_exec_file[0] == '\0')
5258 error (_("Running the default executable on the remote target failed; "
5259 "try \"set remote exec-file\"?"));
5260 else
5261 error (_("Running \"%s\" on the remote target failed"),
5262 remote_exec_file);
5263 }
5264 }
5265
5266 /* In the extended protocol we want to be able to do things like
5267 "run" and have them basically work as expected. So we need
5268 a special create_inferior function. We support changing the
5269 executable file and the command line arguments, but not the
5270 environment. */
5271
5272 static void
5273 extended_remote_create_inferior_1 (char *exec_file, char *args,
5274 char **env, int from_tty)
5275 {
5276 /* If running asynchronously, register the target file descriptor
5277 with the event loop. */
5278 if (target_can_async_p ())
5279 target_async (inferior_event_handler, 0);
5280
5281 /* Now restart the remote server. */
5282 if (extended_remote_run (args) == -1)
5283 {
5284 /* vRun was not supported. Fail if we need it to do what the
5285 user requested. */
5286 if (remote_exec_file[0])
5287 error (_("Remote target does not support \"set remote exec-file\""));
5288 if (args[0])
5289 error (_("Remote target does not support \"set args\" or run <ARGS>"));
5290
5291 /* Fall back to "R". */
5292 extended_remote_restart ();
5293 }
5294
5295 /* Clean up from the last time we ran, before we mark the target
5296 running again. This will mark breakpoints uninserted, and
5297 get_offsets may insert breakpoints. */
5298 init_thread_list ();
5299 init_wait_for_inferior ();
5300
5301 /* Now mark the inferior as running before we do anything else. */
5302 attach_flag = 0;
5303 inferior_ptid = magic_null_ptid;
5304
5305 add_thread_silent (inferior_ptid);
5306
5307 target_mark_running (&extended_remote_ops);
5308
5309 /* Get updated offsets, if the stub uses qOffsets. */
5310 get_offsets ();
5311 }
5312
5313 static void
5314 extended_remote_create_inferior (char *exec_file, char *args,
5315 char **env, int from_tty)
5316 {
5317 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
5318 }
5319 \f
5320
5321 /* Insert a breakpoint. On targets that have software breakpoint
5322 support, we ask the remote target to do the work; on targets
5323 which don't, we insert a traditional memory breakpoint. */
5324
5325 static int
5326 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5327 {
5328 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5329 If it succeeds, then set the support to PACKET_ENABLE. If it
5330 fails, and the user has explicitly requested the Z support then
5331 report an error, otherwise, mark it disabled and go on. */
5332
5333 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5334 {
5335 CORE_ADDR addr = bp_tgt->placed_address;
5336 struct remote_state *rs;
5337 char *p;
5338 int bpsize;
5339
5340 gdbarch_breakpoint_from_pc
5341 (current_gdbarch, &addr, &bpsize);
5342
5343 rs = get_remote_state ();
5344 p = rs->buf;
5345
5346 *(p++) = 'Z';
5347 *(p++) = '0';
5348 *(p++) = ',';
5349 addr = (ULONGEST) remote_address_masked (addr);
5350 p += hexnumstr (p, addr);
5351 sprintf (p, ",%d", bpsize);
5352
5353 putpkt (rs->buf);
5354 getpkt (&rs->buf, &rs->buf_size, 0);
5355
5356 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5357 {
5358 case PACKET_ERROR:
5359 return -1;
5360 case PACKET_OK:
5361 bp_tgt->placed_address = addr;
5362 bp_tgt->placed_size = bpsize;
5363 return 0;
5364 case PACKET_UNKNOWN:
5365 break;
5366 }
5367 }
5368
5369 return memory_insert_breakpoint (bp_tgt);
5370 }
5371
5372 static int
5373 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5374 {
5375 CORE_ADDR addr = bp_tgt->placed_address;
5376 struct remote_state *rs = get_remote_state ();
5377 int bp_size;
5378
5379 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5380 {
5381 char *p = rs->buf;
5382
5383 *(p++) = 'z';
5384 *(p++) = '0';
5385 *(p++) = ',';
5386
5387 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5388 p += hexnumstr (p, addr);
5389 sprintf (p, ",%d", bp_tgt->placed_size);
5390
5391 putpkt (rs->buf);
5392 getpkt (&rs->buf, &rs->buf_size, 0);
5393
5394 return (rs->buf[0] == 'E');
5395 }
5396
5397 return memory_remove_breakpoint (bp_tgt);
5398 }
5399
5400 static int
5401 watchpoint_to_Z_packet (int type)
5402 {
5403 switch (type)
5404 {
5405 case hw_write:
5406 return Z_PACKET_WRITE_WP;
5407 break;
5408 case hw_read:
5409 return Z_PACKET_READ_WP;
5410 break;
5411 case hw_access:
5412 return Z_PACKET_ACCESS_WP;
5413 break;
5414 default:
5415 internal_error (__FILE__, __LINE__,
5416 _("hw_bp_to_z: bad watchpoint type %d"), type);
5417 }
5418 }
5419
5420 static int
5421 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5422 {
5423 struct remote_state *rs = get_remote_state ();
5424 char *p;
5425 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5426
5427 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5428 return -1;
5429
5430 sprintf (rs->buf, "Z%x,", packet);
5431 p = strchr (rs->buf, '\0');
5432 addr = remote_address_masked (addr);
5433 p += hexnumstr (p, (ULONGEST) addr);
5434 sprintf (p, ",%x", len);
5435
5436 putpkt (rs->buf);
5437 getpkt (&rs->buf, &rs->buf_size, 0);
5438
5439 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5440 {
5441 case PACKET_ERROR:
5442 case PACKET_UNKNOWN:
5443 return -1;
5444 case PACKET_OK:
5445 return 0;
5446 }
5447 internal_error (__FILE__, __LINE__,
5448 _("remote_insert_watchpoint: reached end of function"));
5449 }
5450
5451
5452 static int
5453 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5454 {
5455 struct remote_state *rs = get_remote_state ();
5456 char *p;
5457 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5458
5459 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5460 return -1;
5461
5462 sprintf (rs->buf, "z%x,", packet);
5463 p = strchr (rs->buf, '\0');
5464 addr = remote_address_masked (addr);
5465 p += hexnumstr (p, (ULONGEST) addr);
5466 sprintf (p, ",%x", len);
5467 putpkt (rs->buf);
5468 getpkt (&rs->buf, &rs->buf_size, 0);
5469
5470 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5471 {
5472 case PACKET_ERROR:
5473 case PACKET_UNKNOWN:
5474 return -1;
5475 case PACKET_OK:
5476 return 0;
5477 }
5478 internal_error (__FILE__, __LINE__,
5479 _("remote_remove_watchpoint: reached end of function"));
5480 }
5481
5482
5483 int remote_hw_watchpoint_limit = -1;
5484 int remote_hw_breakpoint_limit = -1;
5485
5486 static int
5487 remote_check_watch_resources (int type, int cnt, int ot)
5488 {
5489 if (type == bp_hardware_breakpoint)
5490 {
5491 if (remote_hw_breakpoint_limit == 0)
5492 return 0;
5493 else if (remote_hw_breakpoint_limit < 0)
5494 return 1;
5495 else if (cnt <= remote_hw_breakpoint_limit)
5496 return 1;
5497 }
5498 else
5499 {
5500 if (remote_hw_watchpoint_limit == 0)
5501 return 0;
5502 else if (remote_hw_watchpoint_limit < 0)
5503 return 1;
5504 else if (ot)
5505 return -1;
5506 else if (cnt <= remote_hw_watchpoint_limit)
5507 return 1;
5508 }
5509 return -1;
5510 }
5511
5512 static int
5513 remote_stopped_by_watchpoint (void)
5514 {
5515 return remote_stopped_by_watchpoint_p;
5516 }
5517
5518 static int
5519 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5520 {
5521 int rc = 0;
5522 if (remote_stopped_by_watchpoint ())
5523 {
5524 *addr_p = remote_watch_data_address;
5525 rc = 1;
5526 }
5527
5528 return rc;
5529 }
5530
5531
5532 static int
5533 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5534 {
5535 CORE_ADDR addr;
5536 struct remote_state *rs;
5537 char *p;
5538
5539 /* The length field should be set to the size of a breakpoint
5540 instruction, even though we aren't inserting one ourselves. */
5541
5542 gdbarch_breakpoint_from_pc
5543 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5544
5545 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5546 return -1;
5547
5548 rs = get_remote_state ();
5549 p = rs->buf;
5550
5551 *(p++) = 'Z';
5552 *(p++) = '1';
5553 *(p++) = ',';
5554
5555 addr = remote_address_masked (bp_tgt->placed_address);
5556 p += hexnumstr (p, (ULONGEST) addr);
5557 sprintf (p, ",%x", bp_tgt->placed_size);
5558
5559 putpkt (rs->buf);
5560 getpkt (&rs->buf, &rs->buf_size, 0);
5561
5562 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5563 {
5564 case PACKET_ERROR:
5565 case PACKET_UNKNOWN:
5566 return -1;
5567 case PACKET_OK:
5568 return 0;
5569 }
5570 internal_error (__FILE__, __LINE__,
5571 _("remote_insert_hw_breakpoint: reached end of function"));
5572 }
5573
5574
5575 static int
5576 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5577 {
5578 CORE_ADDR addr;
5579 struct remote_state *rs = get_remote_state ();
5580 char *p = rs->buf;
5581
5582 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5583 return -1;
5584
5585 *(p++) = 'z';
5586 *(p++) = '1';
5587 *(p++) = ',';
5588
5589 addr = remote_address_masked (bp_tgt->placed_address);
5590 p += hexnumstr (p, (ULONGEST) addr);
5591 sprintf (p, ",%x", bp_tgt->placed_size);
5592
5593 putpkt (rs->buf);
5594 getpkt (&rs->buf, &rs->buf_size, 0);
5595
5596 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5597 {
5598 case PACKET_ERROR:
5599 case PACKET_UNKNOWN:
5600 return -1;
5601 case PACKET_OK:
5602 return 0;
5603 }
5604 internal_error (__FILE__, __LINE__,
5605 _("remote_remove_hw_breakpoint: reached end of function"));
5606 }
5607
5608 /* Some targets are only capable of doing downloads, and afterwards
5609 they switch to the remote serial protocol. This function provides
5610 a clean way to get from the download target to the remote target.
5611 It's basically just a wrapper so that we don't have to expose any
5612 of the internal workings of remote.c.
5613
5614 Prior to calling this routine, you should shutdown the current
5615 target code, else you will get the "A program is being debugged
5616 already..." message. Usually a call to pop_target() suffices. */
5617
5618 void
5619 push_remote_target (char *name, int from_tty)
5620 {
5621 printf_filtered (_("Switching to remote protocol\n"));
5622 remote_open (name, from_tty);
5623 }
5624
5625 /* Table used by the crc32 function to calcuate the checksum. */
5626
5627 static unsigned long crc32_table[256] =
5628 {0, 0};
5629
5630 static unsigned long
5631 crc32 (unsigned char *buf, int len, unsigned int crc)
5632 {
5633 if (!crc32_table[1])
5634 {
5635 /* Initialize the CRC table and the decoding table. */
5636 int i, j;
5637 unsigned int c;
5638
5639 for (i = 0; i < 256; i++)
5640 {
5641 for (c = i << 24, j = 8; j > 0; --j)
5642 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5643 crc32_table[i] = c;
5644 }
5645 }
5646
5647 while (len--)
5648 {
5649 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5650 buf++;
5651 }
5652 return crc;
5653 }
5654
5655 /* compare-sections command
5656
5657 With no arguments, compares each loadable section in the exec bfd
5658 with the same memory range on the target, and reports mismatches.
5659 Useful for verifying the image on the target against the exec file.
5660 Depends on the target understanding the new "qCRC:" request. */
5661
5662 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5663 target method (target verify memory) and generic version of the
5664 actual command. This will allow other high-level code (especially
5665 generic_load()) to make use of this target functionality. */
5666
5667 static void
5668 compare_sections_command (char *args, int from_tty)
5669 {
5670 struct remote_state *rs = get_remote_state ();
5671 asection *s;
5672 unsigned long host_crc, target_crc;
5673 extern bfd *exec_bfd;
5674 struct cleanup *old_chain;
5675 char *tmp;
5676 char *sectdata;
5677 const char *sectname;
5678 bfd_size_type size;
5679 bfd_vma lma;
5680 int matched = 0;
5681 int mismatched = 0;
5682
5683 if (!exec_bfd)
5684 error (_("command cannot be used without an exec file"));
5685 if (!current_target.to_shortname ||
5686 strcmp (current_target.to_shortname, "remote") != 0)
5687 error (_("command can only be used with remote target"));
5688
5689 for (s = exec_bfd->sections; s; s = s->next)
5690 {
5691 if (!(s->flags & SEC_LOAD))
5692 continue; /* skip non-loadable section */
5693
5694 size = bfd_get_section_size (s);
5695 if (size == 0)
5696 continue; /* skip zero-length section */
5697
5698 sectname = bfd_get_section_name (exec_bfd, s);
5699 if (args && strcmp (args, sectname) != 0)
5700 continue; /* not the section selected by user */
5701
5702 matched = 1; /* do this section */
5703 lma = s->lma;
5704 /* FIXME: assumes lma can fit into long. */
5705 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5706 (long) lma, (long) size);
5707 putpkt (rs->buf);
5708
5709 /* Be clever; compute the host_crc before waiting for target
5710 reply. */
5711 sectdata = xmalloc (size);
5712 old_chain = make_cleanup (xfree, sectdata);
5713 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5714 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5715
5716 getpkt (&rs->buf, &rs->buf_size, 0);
5717 if (rs->buf[0] == 'E')
5718 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5719 sectname, paddr (lma), paddr (lma + size));
5720 if (rs->buf[0] != 'C')
5721 error (_("remote target does not support this operation"));
5722
5723 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5724 target_crc = target_crc * 16 + fromhex (*tmp);
5725
5726 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5727 sectname, paddr (lma), paddr (lma + size));
5728 if (host_crc == target_crc)
5729 printf_filtered ("matched.\n");
5730 else
5731 {
5732 printf_filtered ("MIS-MATCHED!\n");
5733 mismatched++;
5734 }
5735
5736 do_cleanups (old_chain);
5737 }
5738 if (mismatched > 0)
5739 warning (_("One or more sections of the remote executable does not match\n\
5740 the loaded file\n"));
5741 if (args && !matched)
5742 printf_filtered (_("No loaded section named '%s'.\n"), args);
5743 }
5744
5745 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5746 into remote target. The number of bytes written to the remote
5747 target is returned, or -1 for error. */
5748
5749 static LONGEST
5750 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5751 const char *annex, const gdb_byte *writebuf,
5752 ULONGEST offset, LONGEST len,
5753 struct packet_config *packet)
5754 {
5755 int i, buf_len;
5756 ULONGEST n;
5757 gdb_byte *wbuf;
5758 struct remote_state *rs = get_remote_state ();
5759 int max_size = get_memory_write_packet_size ();
5760
5761 if (packet->support == PACKET_DISABLE)
5762 return -1;
5763
5764 /* Insert header. */
5765 i = snprintf (rs->buf, max_size,
5766 "qXfer:%s:write:%s:%s:",
5767 object_name, annex ? annex : "",
5768 phex_nz (offset, sizeof offset));
5769 max_size -= (i + 1);
5770
5771 /* Escape as much data as fits into rs->buf. */
5772 buf_len = remote_escape_output
5773 (writebuf, len, (rs->buf + i), &max_size, max_size);
5774
5775 if (putpkt_binary (rs->buf, i + buf_len) < 0
5776 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5777 || packet_ok (rs->buf, packet) != PACKET_OK)
5778 return -1;
5779
5780 unpack_varlen_hex (rs->buf, &n);
5781 return n;
5782 }
5783
5784 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5785 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5786 number of bytes read is returned, or 0 for EOF, or -1 for error.
5787 The number of bytes read may be less than LEN without indicating an
5788 EOF. PACKET is checked and updated to indicate whether the remote
5789 target supports this object. */
5790
5791 static LONGEST
5792 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5793 const char *annex,
5794 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5795 struct packet_config *packet)
5796 {
5797 static char *finished_object;
5798 static char *finished_annex;
5799 static ULONGEST finished_offset;
5800
5801 struct remote_state *rs = get_remote_state ();
5802 unsigned int total = 0;
5803 LONGEST i, n, packet_len;
5804
5805 if (packet->support == PACKET_DISABLE)
5806 return -1;
5807
5808 /* Check whether we've cached an end-of-object packet that matches
5809 this request. */
5810 if (finished_object)
5811 {
5812 if (strcmp (object_name, finished_object) == 0
5813 && strcmp (annex ? annex : "", finished_annex) == 0
5814 && offset == finished_offset)
5815 return 0;
5816
5817 /* Otherwise, we're now reading something different. Discard
5818 the cache. */
5819 xfree (finished_object);
5820 xfree (finished_annex);
5821 finished_object = NULL;
5822 finished_annex = NULL;
5823 }
5824
5825 /* Request only enough to fit in a single packet. The actual data
5826 may not, since we don't know how much of it will need to be escaped;
5827 the target is free to respond with slightly less data. We subtract
5828 five to account for the response type and the protocol frame. */
5829 n = min (get_remote_packet_size () - 5, len);
5830 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5831 object_name, annex ? annex : "",
5832 phex_nz (offset, sizeof offset),
5833 phex_nz (n, sizeof n));
5834 i = putpkt (rs->buf);
5835 if (i < 0)
5836 return -1;
5837
5838 rs->buf[0] = '\0';
5839 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5840 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5841 return -1;
5842
5843 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5844 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5845
5846 /* 'm' means there is (or at least might be) more data after this
5847 batch. That does not make sense unless there's at least one byte
5848 of data in this reply. */
5849 if (rs->buf[0] == 'm' && packet_len == 1)
5850 error (_("Remote qXfer reply contained no data."));
5851
5852 /* Got some data. */
5853 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5854
5855 /* 'l' is an EOF marker, possibly including a final block of data,
5856 or possibly empty. If we have the final block of a non-empty
5857 object, record this fact to bypass a subsequent partial read. */
5858 if (rs->buf[0] == 'l' && offset + i > 0)
5859 {
5860 finished_object = xstrdup (object_name);
5861 finished_annex = xstrdup (annex ? annex : "");
5862 finished_offset = offset + i;
5863 }
5864
5865 return i;
5866 }
5867
5868 static LONGEST
5869 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5870 const char *annex, gdb_byte *readbuf,
5871 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5872 {
5873 struct remote_state *rs = get_remote_state ();
5874 int i;
5875 char *p2;
5876 char query_type;
5877
5878 /* Handle memory using the standard memory routines. */
5879 if (object == TARGET_OBJECT_MEMORY)
5880 {
5881 int xfered;
5882 errno = 0;
5883
5884 /* If the remote target is connected but not running, we should
5885 pass this request down to a lower stratum (e.g. the executable
5886 file). */
5887 if (!target_has_execution)
5888 return 0;
5889
5890 if (writebuf != NULL)
5891 xfered = remote_write_bytes (offset, writebuf, len);
5892 else
5893 xfered = remote_read_bytes (offset, readbuf, len);
5894
5895 if (xfered > 0)
5896 return xfered;
5897 else if (xfered == 0 && errno == 0)
5898 return 0;
5899 else
5900 return -1;
5901 }
5902
5903 /* Handle SPU memory using qxfer packets. */
5904 if (object == TARGET_OBJECT_SPU)
5905 {
5906 if (readbuf)
5907 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
5908 &remote_protocol_packets
5909 [PACKET_qXfer_spu_read]);
5910 else
5911 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
5912 &remote_protocol_packets
5913 [PACKET_qXfer_spu_write]);
5914 }
5915
5916 /* Only handle flash writes. */
5917 if (writebuf != NULL)
5918 {
5919 LONGEST xfered;
5920
5921 switch (object)
5922 {
5923 case TARGET_OBJECT_FLASH:
5924 xfered = remote_flash_write (ops, offset, len, writebuf);
5925
5926 if (xfered > 0)
5927 return xfered;
5928 else if (xfered == 0 && errno == 0)
5929 return 0;
5930 else
5931 return -1;
5932
5933 default:
5934 return -1;
5935 }
5936 }
5937
5938 /* Map pre-existing objects onto letters. DO NOT do this for new
5939 objects!!! Instead specify new query packets. */
5940 switch (object)
5941 {
5942 case TARGET_OBJECT_AVR:
5943 query_type = 'R';
5944 break;
5945
5946 case TARGET_OBJECT_AUXV:
5947 gdb_assert (annex == NULL);
5948 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5949 &remote_protocol_packets[PACKET_qXfer_auxv]);
5950
5951 case TARGET_OBJECT_AVAILABLE_FEATURES:
5952 return remote_read_qxfer
5953 (ops, "features", annex, readbuf, offset, len,
5954 &remote_protocol_packets[PACKET_qXfer_features]);
5955
5956 case TARGET_OBJECT_LIBRARIES:
5957 return remote_read_qxfer
5958 (ops, "libraries", annex, readbuf, offset, len,
5959 &remote_protocol_packets[PACKET_qXfer_libraries]);
5960
5961 case TARGET_OBJECT_MEMORY_MAP:
5962 gdb_assert (annex == NULL);
5963 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5964 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5965
5966 default:
5967 return -1;
5968 }
5969
5970 /* Note: a zero OFFSET and LEN can be used to query the minimum
5971 buffer size. */
5972 if (offset == 0 && len == 0)
5973 return (get_remote_packet_size ());
5974 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5975 large enough let the caller deal with it. */
5976 if (len < get_remote_packet_size ())
5977 return -1;
5978 len = get_remote_packet_size ();
5979
5980 /* Except for querying the minimum buffer size, target must be open. */
5981 if (!remote_desc)
5982 error (_("remote query is only available after target open"));
5983
5984 gdb_assert (annex != NULL);
5985 gdb_assert (readbuf != NULL);
5986
5987 p2 = rs->buf;
5988 *p2++ = 'q';
5989 *p2++ = query_type;
5990
5991 /* We used one buffer char for the remote protocol q command and
5992 another for the query type. As the remote protocol encapsulation
5993 uses 4 chars plus one extra in case we are debugging
5994 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5995 string. */
5996 i = 0;
5997 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5998 {
5999 /* Bad caller may have sent forbidden characters. */
6000 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
6001 *p2++ = annex[i];
6002 i++;
6003 }
6004 *p2 = '\0';
6005 gdb_assert (annex[i] == '\0');
6006
6007 i = putpkt (rs->buf);
6008 if (i < 0)
6009 return i;
6010
6011 getpkt (&rs->buf, &rs->buf_size, 0);
6012 strcpy ((char *) readbuf, rs->buf);
6013
6014 return strlen ((char *) readbuf);
6015 }
6016
6017 static int
6018 remote_search_memory (struct target_ops* ops,
6019 CORE_ADDR start_addr, ULONGEST search_space_len,
6020 const gdb_byte *pattern, ULONGEST pattern_len,
6021 CORE_ADDR *found_addrp)
6022 {
6023 struct remote_state *rs = get_remote_state ();
6024 int max_size = get_memory_write_packet_size ();
6025 struct packet_config *packet =
6026 &remote_protocol_packets[PACKET_qSearch_memory];
6027 /* number of packet bytes used to encode the pattern,
6028 this could be more than PATTERN_LEN due to escape characters */
6029 int escaped_pattern_len;
6030 /* amount of pattern that was encodable in the packet */
6031 int used_pattern_len;
6032 int i;
6033 int found;
6034 ULONGEST found_addr;
6035
6036 /* Don't go to the target if we don't have to.
6037 This is done before checking packet->support to avoid the possibility that
6038 a success for this edge case means the facility works in general. */
6039 if (pattern_len > search_space_len)
6040 return 0;
6041 if (pattern_len == 0)
6042 {
6043 *found_addrp = start_addr;
6044 return 1;
6045 }
6046
6047 /* If we already know the packet isn't supported, fall back to the simple
6048 way of searching memory. */
6049
6050 if (packet->support == PACKET_DISABLE)
6051 {
6052 /* Target doesn't provided special support, fall back and use the
6053 standard support (copy memory and do the search here). */
6054 return simple_search_memory (ops, start_addr, search_space_len,
6055 pattern, pattern_len, found_addrp);
6056 }
6057
6058 /* Insert header. */
6059 i = snprintf (rs->buf, max_size,
6060 "qSearch:memory:%s;%s;",
6061 paddr_nz (start_addr),
6062 phex_nz (search_space_len, sizeof (search_space_len)));
6063 max_size -= (i + 1);
6064
6065 /* Escape as much data as fits into rs->buf. */
6066 escaped_pattern_len =
6067 remote_escape_output (pattern, pattern_len, (rs->buf + i),
6068 &used_pattern_len, max_size);
6069
6070 /* Bail if the pattern is too large. */
6071 if (used_pattern_len != pattern_len)
6072 error ("Pattern is too large to transmit to remote target.");
6073
6074 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
6075 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
6076 || packet_ok (rs->buf, packet) != PACKET_OK)
6077 {
6078 /* The request may not have worked because the command is not
6079 supported. If so, fall back to the simple way. */
6080 if (packet->support == PACKET_DISABLE)
6081 {
6082 return simple_search_memory (ops, start_addr, search_space_len,
6083 pattern, pattern_len, found_addrp);
6084 }
6085 return -1;
6086 }
6087
6088 if (rs->buf[0] == '0')
6089 found = 0;
6090 else if (rs->buf[0] == '1')
6091 {
6092 found = 1;
6093 if (rs->buf[1] != ',')
6094 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
6095 unpack_varlen_hex (rs->buf + 2, &found_addr);
6096 *found_addrp = found_addr;
6097 }
6098 else
6099 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
6100
6101 return found;
6102 }
6103
6104 static void
6105 remote_rcmd (char *command,
6106 struct ui_file *outbuf)
6107 {
6108 struct remote_state *rs = get_remote_state ();
6109 char *p = rs->buf;
6110
6111 if (!remote_desc)
6112 error (_("remote rcmd is only available after target open"));
6113
6114 /* Send a NULL command across as an empty command. */
6115 if (command == NULL)
6116 command = "";
6117
6118 /* The query prefix. */
6119 strcpy (rs->buf, "qRcmd,");
6120 p = strchr (rs->buf, '\0');
6121
6122 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
6123 error (_("\"monitor\" command ``%s'' is too long."), command);
6124
6125 /* Encode the actual command. */
6126 bin2hex ((gdb_byte *) command, p, 0);
6127
6128 if (putpkt (rs->buf) < 0)
6129 error (_("Communication problem with target."));
6130
6131 /* get/display the response */
6132 while (1)
6133 {
6134 char *buf;
6135
6136 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
6137 rs->buf[0] = '\0';
6138 getpkt (&rs->buf, &rs->buf_size, 0);
6139 buf = rs->buf;
6140 if (buf[0] == '\0')
6141 error (_("Target does not support this command."));
6142 if (buf[0] == 'O' && buf[1] != 'K')
6143 {
6144 remote_console_output (buf + 1); /* 'O' message from stub. */
6145 continue;
6146 }
6147 if (strcmp (buf, "OK") == 0)
6148 break;
6149 if (strlen (buf) == 3 && buf[0] == 'E'
6150 && isdigit (buf[1]) && isdigit (buf[2]))
6151 {
6152 error (_("Protocol error with Rcmd"));
6153 }
6154 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
6155 {
6156 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
6157 fputc_unfiltered (c, outbuf);
6158 }
6159 break;
6160 }
6161 }
6162
6163 static VEC(mem_region_s) *
6164 remote_memory_map (struct target_ops *ops)
6165 {
6166 VEC(mem_region_s) *result = NULL;
6167 char *text = target_read_stralloc (&current_target,
6168 TARGET_OBJECT_MEMORY_MAP, NULL);
6169
6170 if (text)
6171 {
6172 struct cleanup *back_to = make_cleanup (xfree, text);
6173 result = parse_memory_map (text);
6174 do_cleanups (back_to);
6175 }
6176
6177 return result;
6178 }
6179
6180 static void
6181 packet_command (char *args, int from_tty)
6182 {
6183 struct remote_state *rs = get_remote_state ();
6184
6185 if (!remote_desc)
6186 error (_("command can only be used with remote target"));
6187
6188 if (!args)
6189 error (_("remote-packet command requires packet text as argument"));
6190
6191 puts_filtered ("sending: ");
6192 print_packet (args);
6193 puts_filtered ("\n");
6194 putpkt (args);
6195
6196 getpkt (&rs->buf, &rs->buf_size, 0);
6197 puts_filtered ("received: ");
6198 print_packet (rs->buf);
6199 puts_filtered ("\n");
6200 }
6201
6202 #if 0
6203 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6204
6205 static void display_thread_info (struct gdb_ext_thread_info *info);
6206
6207 static void threadset_test_cmd (char *cmd, int tty);
6208
6209 static void threadalive_test (char *cmd, int tty);
6210
6211 static void threadlist_test_cmd (char *cmd, int tty);
6212
6213 int get_and_display_threadinfo (threadref *ref);
6214
6215 static void threadinfo_test_cmd (char *cmd, int tty);
6216
6217 static int thread_display_step (threadref *ref, void *context);
6218
6219 static void threadlist_update_test_cmd (char *cmd, int tty);
6220
6221 static void init_remote_threadtests (void);
6222
6223 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6224
6225 static void
6226 threadset_test_cmd (char *cmd, int tty)
6227 {
6228 int sample_thread = SAMPLE_THREAD;
6229
6230 printf_filtered (_("Remote threadset test\n"));
6231 set_general_thread (sample_thread);
6232 }
6233
6234
6235 static void
6236 threadalive_test (char *cmd, int tty)
6237 {
6238 int sample_thread = SAMPLE_THREAD;
6239 int pid = ptid_get_pid (inferior_ptid);
6240 ptid_t ptid = ptid_build (pid, 0, sample_thread);
6241
6242 if (remote_thread_alive (ptid))
6243 printf_filtered ("PASS: Thread alive test\n");
6244 else
6245 printf_filtered ("FAIL: Thread alive test\n");
6246 }
6247
6248 void output_threadid (char *title, threadref *ref);
6249
6250 void
6251 output_threadid (char *title, threadref *ref)
6252 {
6253 char hexid[20];
6254
6255 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6256 hexid[16] = 0;
6257 printf_filtered ("%s %s\n", title, (&hexid[0]));
6258 }
6259
6260 static void
6261 threadlist_test_cmd (char *cmd, int tty)
6262 {
6263 int startflag = 1;
6264 threadref nextthread;
6265 int done, result_count;
6266 threadref threadlist[3];
6267
6268 printf_filtered ("Remote Threadlist test\n");
6269 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6270 &result_count, &threadlist[0]))
6271 printf_filtered ("FAIL: threadlist test\n");
6272 else
6273 {
6274 threadref *scan = threadlist;
6275 threadref *limit = scan + result_count;
6276
6277 while (scan < limit)
6278 output_threadid (" thread ", scan++);
6279 }
6280 }
6281
6282 void
6283 display_thread_info (struct gdb_ext_thread_info *info)
6284 {
6285 output_threadid ("Threadid: ", &info->threadid);
6286 printf_filtered ("Name: %s\n ", info->shortname);
6287 printf_filtered ("State: %s\n", info->display);
6288 printf_filtered ("other: %s\n\n", info->more_display);
6289 }
6290
6291 int
6292 get_and_display_threadinfo (threadref *ref)
6293 {
6294 int result;
6295 int set;
6296 struct gdb_ext_thread_info threadinfo;
6297
6298 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6299 | TAG_MOREDISPLAY | TAG_DISPLAY;
6300 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6301 display_thread_info (&threadinfo);
6302 return result;
6303 }
6304
6305 static void
6306 threadinfo_test_cmd (char *cmd, int tty)
6307 {
6308 int athread = SAMPLE_THREAD;
6309 threadref thread;
6310 int set;
6311
6312 int_to_threadref (&thread, athread);
6313 printf_filtered ("Remote Threadinfo test\n");
6314 if (!get_and_display_threadinfo (&thread))
6315 printf_filtered ("FAIL cannot get thread info\n");
6316 }
6317
6318 static int
6319 thread_display_step (threadref *ref, void *context)
6320 {
6321 /* output_threadid(" threadstep ",ref); *//* simple test */
6322 return get_and_display_threadinfo (ref);
6323 }
6324
6325 static void
6326 threadlist_update_test_cmd (char *cmd, int tty)
6327 {
6328 printf_filtered ("Remote Threadlist update test\n");
6329 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6330 }
6331
6332 static void
6333 init_remote_threadtests (void)
6334 {
6335 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6336 Fetch and print the remote list of thread identifiers, one pkt only"));
6337 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6338 _("Fetch and display info about one thread"));
6339 add_com ("tset", class_obscure, threadset_test_cmd,
6340 _("Test setting to a different thread"));
6341 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6342 _("Iterate through updating all remote thread info"));
6343 add_com ("talive", class_obscure, threadalive_test,
6344 _(" Remote thread alive test "));
6345 }
6346
6347 #endif /* 0 */
6348
6349 /* Convert a thread ID to a string. Returns the string in a static
6350 buffer. */
6351
6352 static char *
6353 remote_pid_to_str (ptid_t ptid)
6354 {
6355 static char buf[64];
6356
6357 if (ptid_equal (magic_null_ptid, ptid))
6358 {
6359 xsnprintf (buf, sizeof buf, "Thread <main>");
6360 return buf;
6361 }
6362 else if (ptid_get_tid (ptid) != 0)
6363 {
6364 xsnprintf (buf, sizeof buf, "Thread %ld",
6365 ptid_get_tid (ptid));
6366 return buf;
6367 }
6368
6369 return normal_pid_to_str (ptid);
6370 }
6371
6372 /* Get the address of the thread local variable in OBJFILE which is
6373 stored at OFFSET within the thread local storage for thread PTID. */
6374
6375 static CORE_ADDR
6376 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6377 {
6378 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6379 {
6380 struct remote_state *rs = get_remote_state ();
6381 char *p = rs->buf;
6382 enum packet_result result;
6383
6384 strcpy (p, "qGetTLSAddr:");
6385 p += strlen (p);
6386 p += hexnumstr (p, ptid_get_tid (ptid));
6387 *p++ = ',';
6388 p += hexnumstr (p, offset);
6389 *p++ = ',';
6390 p += hexnumstr (p, lm);
6391 *p++ = '\0';
6392
6393 putpkt (rs->buf);
6394 getpkt (&rs->buf, &rs->buf_size, 0);
6395 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6396 if (result == PACKET_OK)
6397 {
6398 ULONGEST result;
6399
6400 unpack_varlen_hex (rs->buf, &result);
6401 return result;
6402 }
6403 else if (result == PACKET_UNKNOWN)
6404 throw_error (TLS_GENERIC_ERROR,
6405 _("Remote target doesn't support qGetTLSAddr packet"));
6406 else
6407 throw_error (TLS_GENERIC_ERROR,
6408 _("Remote target failed to process qGetTLSAddr request"));
6409 }
6410 else
6411 throw_error (TLS_GENERIC_ERROR,
6412 _("TLS not supported or disabled on this target"));
6413 /* Not reached. */
6414 return 0;
6415 }
6416
6417 /* Support for inferring a target description based on the current
6418 architecture and the size of a 'g' packet. While the 'g' packet
6419 can have any size (since optional registers can be left off the
6420 end), some sizes are easily recognizable given knowledge of the
6421 approximate architecture. */
6422
6423 struct remote_g_packet_guess
6424 {
6425 int bytes;
6426 const struct target_desc *tdesc;
6427 };
6428 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6429 DEF_VEC_O(remote_g_packet_guess_s);
6430
6431 struct remote_g_packet_data
6432 {
6433 VEC(remote_g_packet_guess_s) *guesses;
6434 };
6435
6436 static struct gdbarch_data *remote_g_packet_data_handle;
6437
6438 static void *
6439 remote_g_packet_data_init (struct obstack *obstack)
6440 {
6441 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6442 }
6443
6444 void
6445 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6446 const struct target_desc *tdesc)
6447 {
6448 struct remote_g_packet_data *data
6449 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6450 struct remote_g_packet_guess new_guess, *guess;
6451 int ix;
6452
6453 gdb_assert (tdesc != NULL);
6454
6455 for (ix = 0;
6456 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6457 ix++)
6458 if (guess->bytes == bytes)
6459 internal_error (__FILE__, __LINE__,
6460 "Duplicate g packet description added for size %d",
6461 bytes);
6462
6463 new_guess.bytes = bytes;
6464 new_guess.tdesc = tdesc;
6465 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6466 }
6467
6468 static const struct target_desc *
6469 remote_read_description (struct target_ops *target)
6470 {
6471 struct remote_g_packet_data *data
6472 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6473
6474 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6475 {
6476 struct remote_g_packet_guess *guess;
6477 int ix;
6478 int bytes = send_g_packet ();
6479
6480 for (ix = 0;
6481 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6482 ix++)
6483 if (guess->bytes == bytes)
6484 return guess->tdesc;
6485
6486 /* We discard the g packet. A minor optimization would be to
6487 hold on to it, and fill the register cache once we have selected
6488 an architecture, but it's too tricky to do safely. */
6489 }
6490
6491 return NULL;
6492 }
6493
6494 /* Remote file transfer support. This is host-initiated I/O, not
6495 target-initiated; for target-initiated, see remote-fileio.c. */
6496
6497 /* If *LEFT is at least the length of STRING, copy STRING to
6498 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6499 decrease *LEFT. Otherwise raise an error. */
6500
6501 static void
6502 remote_buffer_add_string (char **buffer, int *left, char *string)
6503 {
6504 int len = strlen (string);
6505
6506 if (len > *left)
6507 error (_("Packet too long for target."));
6508
6509 memcpy (*buffer, string, len);
6510 *buffer += len;
6511 *left -= len;
6512
6513 /* NUL-terminate the buffer as a convenience, if there is
6514 room. */
6515 if (*left)
6516 **buffer = '\0';
6517 }
6518
6519 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
6520 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6521 decrease *LEFT. Otherwise raise an error. */
6522
6523 static void
6524 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
6525 int len)
6526 {
6527 if (2 * len > *left)
6528 error (_("Packet too long for target."));
6529
6530 bin2hex (bytes, *buffer, len);
6531 *buffer += 2 * len;
6532 *left -= 2 * len;
6533
6534 /* NUL-terminate the buffer as a convenience, if there is
6535 room. */
6536 if (*left)
6537 **buffer = '\0';
6538 }
6539
6540 /* If *LEFT is large enough, convert VALUE to hex and add it to
6541 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6542 decrease *LEFT. Otherwise raise an error. */
6543
6544 static void
6545 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
6546 {
6547 int len = hexnumlen (value);
6548
6549 if (len > *left)
6550 error (_("Packet too long for target."));
6551
6552 hexnumstr (*buffer, value);
6553 *buffer += len;
6554 *left -= len;
6555
6556 /* NUL-terminate the buffer as a convenience, if there is
6557 room. */
6558 if (*left)
6559 **buffer = '\0';
6560 }
6561
6562 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
6563 value, *REMOTE_ERRNO to the remote error number or zero if none
6564 was included, and *ATTACHMENT to point to the start of the annex
6565 if any. The length of the packet isn't needed here; there may
6566 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
6567
6568 Return 0 if the packet could be parsed, -1 if it could not. If
6569 -1 is returned, the other variables may not be initialized. */
6570
6571 static int
6572 remote_hostio_parse_result (char *buffer, int *retcode,
6573 int *remote_errno, char **attachment)
6574 {
6575 char *p, *p2;
6576
6577 *remote_errno = 0;
6578 *attachment = NULL;
6579
6580 if (buffer[0] != 'F')
6581 return -1;
6582
6583 errno = 0;
6584 *retcode = strtol (&buffer[1], &p, 16);
6585 if (errno != 0 || p == &buffer[1])
6586 return -1;
6587
6588 /* Check for ",errno". */
6589 if (*p == ',')
6590 {
6591 errno = 0;
6592 *remote_errno = strtol (p + 1, &p2, 16);
6593 if (errno != 0 || p + 1 == p2)
6594 return -1;
6595 p = p2;
6596 }
6597
6598 /* Check for ";attachment". If there is no attachment, the
6599 packet should end here. */
6600 if (*p == ';')
6601 {
6602 *attachment = p + 1;
6603 return 0;
6604 }
6605 else if (*p == '\0')
6606 return 0;
6607 else
6608 return -1;
6609 }
6610
6611 /* Send a prepared I/O packet to the target and read its response.
6612 The prepared packet is in the global RS->BUF before this function
6613 is called, and the answer is there when we return.
6614
6615 COMMAND_BYTES is the length of the request to send, which may include
6616 binary data. WHICH_PACKET is the packet configuration to check
6617 before attempting a packet. If an error occurs, *REMOTE_ERRNO
6618 is set to the error number and -1 is returned. Otherwise the value
6619 returned by the function is returned.
6620
6621 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
6622 attachment is expected; an error will be reported if there's a
6623 mismatch. If one is found, *ATTACHMENT will be set to point into
6624 the packet buffer and *ATTACHMENT_LEN will be set to the
6625 attachment's length. */
6626
6627 static int
6628 remote_hostio_send_command (int command_bytes, int which_packet,
6629 int *remote_errno, char **attachment,
6630 int *attachment_len)
6631 {
6632 struct remote_state *rs = get_remote_state ();
6633 int ret, bytes_read;
6634 char *attachment_tmp;
6635
6636 if (remote_protocol_packets[which_packet].support == PACKET_DISABLE)
6637 {
6638 *remote_errno = FILEIO_ENOSYS;
6639 return -1;
6640 }
6641
6642 putpkt_binary (rs->buf, command_bytes);
6643 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6644
6645 /* If it timed out, something is wrong. Don't try to parse the
6646 buffer. */
6647 if (bytes_read < 0)
6648 {
6649 *remote_errno = FILEIO_EINVAL;
6650 return -1;
6651 }
6652
6653 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
6654 {
6655 case PACKET_ERROR:
6656 *remote_errno = FILEIO_EINVAL;
6657 return -1;
6658 case PACKET_UNKNOWN:
6659 *remote_errno = FILEIO_ENOSYS;
6660 return -1;
6661 case PACKET_OK:
6662 break;
6663 }
6664
6665 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
6666 &attachment_tmp))
6667 {
6668 *remote_errno = FILEIO_EINVAL;
6669 return -1;
6670 }
6671
6672 /* Make sure we saw an attachment if and only if we expected one. */
6673 if ((attachment_tmp == NULL && attachment != NULL)
6674 || (attachment_tmp != NULL && attachment == NULL))
6675 {
6676 *remote_errno = FILEIO_EINVAL;
6677 return -1;
6678 }
6679
6680 /* If an attachment was found, it must point into the packet buffer;
6681 work out how many bytes there were. */
6682 if (attachment_tmp != NULL)
6683 {
6684 *attachment = attachment_tmp;
6685 *attachment_len = bytes_read - (*attachment - rs->buf);
6686 }
6687
6688 return ret;
6689 }
6690
6691 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
6692 remote file descriptor, or -1 if an error occurs (and set
6693 *REMOTE_ERRNO). */
6694
6695 static int
6696 remote_hostio_open (const char *filename, int flags, int mode,
6697 int *remote_errno)
6698 {
6699 struct remote_state *rs = get_remote_state ();
6700 char *p = rs->buf;
6701 int left = get_remote_packet_size () - 1;
6702
6703 remote_buffer_add_string (&p, &left, "vFile:open:");
6704
6705 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6706 strlen (filename));
6707 remote_buffer_add_string (&p, &left, ",");
6708
6709 remote_buffer_add_int (&p, &left, flags);
6710 remote_buffer_add_string (&p, &left, ",");
6711
6712 remote_buffer_add_int (&p, &left, mode);
6713
6714 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
6715 remote_errno, NULL, NULL);
6716 }
6717
6718 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
6719 Return the number of bytes written, or -1 if an error occurs (and
6720 set *REMOTE_ERRNO). */
6721
6722 static int
6723 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
6724 ULONGEST offset, int *remote_errno)
6725 {
6726 struct remote_state *rs = get_remote_state ();
6727 char *p = rs->buf;
6728 int left = get_remote_packet_size ();
6729 int out_len;
6730
6731 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
6732
6733 remote_buffer_add_int (&p, &left, fd);
6734 remote_buffer_add_string (&p, &left, ",");
6735
6736 remote_buffer_add_int (&p, &left, offset);
6737 remote_buffer_add_string (&p, &left, ",");
6738
6739 p += remote_escape_output (write_buf, len, p, &out_len,
6740 get_remote_packet_size () - (p - rs->buf));
6741
6742 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
6743 remote_errno, NULL, NULL);
6744 }
6745
6746 /* Read up to LEN bytes FD on the remote target into READ_BUF
6747 Return the number of bytes read, or -1 if an error occurs (and
6748 set *REMOTE_ERRNO). */
6749
6750 static int
6751 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
6752 ULONGEST offset, int *remote_errno)
6753 {
6754 struct remote_state *rs = get_remote_state ();
6755 char *p = rs->buf;
6756 char *attachment;
6757 int left = get_remote_packet_size ();
6758 int ret, attachment_len;
6759 int read_len;
6760
6761 remote_buffer_add_string (&p, &left, "vFile:pread:");
6762
6763 remote_buffer_add_int (&p, &left, fd);
6764 remote_buffer_add_string (&p, &left, ",");
6765
6766 remote_buffer_add_int (&p, &left, len);
6767 remote_buffer_add_string (&p, &left, ",");
6768
6769 remote_buffer_add_int (&p, &left, offset);
6770
6771 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
6772 remote_errno, &attachment,
6773 &attachment_len);
6774
6775 if (ret < 0)
6776 return ret;
6777
6778 read_len = remote_unescape_input (attachment, attachment_len,
6779 read_buf, len);
6780 if (read_len != ret)
6781 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
6782
6783 return ret;
6784 }
6785
6786 /* Close FD on the remote target. Return 0, or -1 if an error occurs
6787 (and set *REMOTE_ERRNO). */
6788
6789 static int
6790 remote_hostio_close (int fd, int *remote_errno)
6791 {
6792 struct remote_state *rs = get_remote_state ();
6793 char *p = rs->buf;
6794 int left = get_remote_packet_size () - 1;
6795
6796 remote_buffer_add_string (&p, &left, "vFile:close:");
6797
6798 remote_buffer_add_int (&p, &left, fd);
6799
6800 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
6801 remote_errno, NULL, NULL);
6802 }
6803
6804 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
6805 occurs (and set *REMOTE_ERRNO). */
6806
6807 static int
6808 remote_hostio_unlink (const char *filename, int *remote_errno)
6809 {
6810 struct remote_state *rs = get_remote_state ();
6811 char *p = rs->buf;
6812 int left = get_remote_packet_size () - 1;
6813
6814 remote_buffer_add_string (&p, &left, "vFile:unlink:");
6815
6816 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6817 strlen (filename));
6818
6819 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
6820 remote_errno, NULL, NULL);
6821 }
6822
6823 static int
6824 remote_fileio_errno_to_host (int errnum)
6825 {
6826 switch (errnum)
6827 {
6828 case FILEIO_EPERM:
6829 return EPERM;
6830 case FILEIO_ENOENT:
6831 return ENOENT;
6832 case FILEIO_EINTR:
6833 return EINTR;
6834 case FILEIO_EIO:
6835 return EIO;
6836 case FILEIO_EBADF:
6837 return EBADF;
6838 case FILEIO_EACCES:
6839 return EACCES;
6840 case FILEIO_EFAULT:
6841 return EFAULT;
6842 case FILEIO_EBUSY:
6843 return EBUSY;
6844 case FILEIO_EEXIST:
6845 return EEXIST;
6846 case FILEIO_ENODEV:
6847 return ENODEV;
6848 case FILEIO_ENOTDIR:
6849 return ENOTDIR;
6850 case FILEIO_EISDIR:
6851 return EISDIR;
6852 case FILEIO_EINVAL:
6853 return EINVAL;
6854 case FILEIO_ENFILE:
6855 return ENFILE;
6856 case FILEIO_EMFILE:
6857 return EMFILE;
6858 case FILEIO_EFBIG:
6859 return EFBIG;
6860 case FILEIO_ENOSPC:
6861 return ENOSPC;
6862 case FILEIO_ESPIPE:
6863 return ESPIPE;
6864 case FILEIO_EROFS:
6865 return EROFS;
6866 case FILEIO_ENOSYS:
6867 return ENOSYS;
6868 case FILEIO_ENAMETOOLONG:
6869 return ENAMETOOLONG;
6870 }
6871 return -1;
6872 }
6873
6874 static char *
6875 remote_hostio_error (int errnum)
6876 {
6877 int host_error = remote_fileio_errno_to_host (errnum);
6878
6879 if (host_error == -1)
6880 error (_("Unknown remote I/O error %d"), errnum);
6881 else
6882 error (_("Remote I/O error: %s"), safe_strerror (host_error));
6883 }
6884
6885 static void
6886 fclose_cleanup (void *file)
6887 {
6888 fclose (file);
6889 }
6890
6891 static void
6892 remote_hostio_close_cleanup (void *opaque)
6893 {
6894 int fd = *(int *) opaque;
6895 int remote_errno;
6896
6897 remote_hostio_close (fd, &remote_errno);
6898 }
6899
6900 void
6901 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
6902 {
6903 struct cleanup *back_to, *close_cleanup;
6904 int retcode, fd, remote_errno, bytes, io_size;
6905 FILE *file;
6906 gdb_byte *buffer;
6907 int bytes_in_buffer;
6908 int saw_eof;
6909 ULONGEST offset;
6910
6911 if (!remote_desc)
6912 error (_("command can only be used with remote target"));
6913
6914 file = fopen (local_file, "rb");
6915 if (file == NULL)
6916 perror_with_name (local_file);
6917 back_to = make_cleanup (fclose_cleanup, file);
6918
6919 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
6920 | FILEIO_O_TRUNC),
6921 0700, &remote_errno);
6922 if (fd == -1)
6923 remote_hostio_error (remote_errno);
6924
6925 /* Send up to this many bytes at once. They won't all fit in the
6926 remote packet limit, so we'll transfer slightly fewer. */
6927 io_size = get_remote_packet_size ();
6928 buffer = xmalloc (io_size);
6929 make_cleanup (xfree, buffer);
6930
6931 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
6932
6933 bytes_in_buffer = 0;
6934 saw_eof = 0;
6935 offset = 0;
6936 while (bytes_in_buffer || !saw_eof)
6937 {
6938 if (!saw_eof)
6939 {
6940 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
6941 file);
6942 if (bytes == 0)
6943 {
6944 if (ferror (file))
6945 error (_("Error reading %s."), local_file);
6946 else
6947 {
6948 /* EOF. Unless there is something still in the
6949 buffer from the last iteration, we are done. */
6950 saw_eof = 1;
6951 if (bytes_in_buffer == 0)
6952 break;
6953 }
6954 }
6955 }
6956 else
6957 bytes = 0;
6958
6959 bytes += bytes_in_buffer;
6960 bytes_in_buffer = 0;
6961
6962 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
6963
6964 if (retcode < 0)
6965 remote_hostio_error (remote_errno);
6966 else if (retcode == 0)
6967 error (_("Remote write of %d bytes returned 0!"), bytes);
6968 else if (retcode < bytes)
6969 {
6970 /* Short write. Save the rest of the read data for the next
6971 write. */
6972 bytes_in_buffer = bytes - retcode;
6973 memmove (buffer, buffer + retcode, bytes_in_buffer);
6974 }
6975
6976 offset += retcode;
6977 }
6978
6979 discard_cleanups (close_cleanup);
6980 if (remote_hostio_close (fd, &remote_errno))
6981 remote_hostio_error (remote_errno);
6982
6983 if (from_tty)
6984 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
6985 do_cleanups (back_to);
6986 }
6987
6988 void
6989 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
6990 {
6991 struct cleanup *back_to, *close_cleanup;
6992 int retcode, fd, remote_errno, bytes, io_size;
6993 FILE *file;
6994 gdb_byte *buffer;
6995 ULONGEST offset;
6996
6997 if (!remote_desc)
6998 error (_("command can only be used with remote target"));
6999
7000 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
7001 if (fd == -1)
7002 remote_hostio_error (remote_errno);
7003
7004 file = fopen (local_file, "wb");
7005 if (file == NULL)
7006 perror_with_name (local_file);
7007 back_to = make_cleanup (fclose_cleanup, file);
7008
7009 /* Send up to this many bytes at once. They won't all fit in the
7010 remote packet limit, so we'll transfer slightly fewer. */
7011 io_size = get_remote_packet_size ();
7012 buffer = xmalloc (io_size);
7013 make_cleanup (xfree, buffer);
7014
7015 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
7016
7017 offset = 0;
7018 while (1)
7019 {
7020 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
7021 if (bytes == 0)
7022 /* Success, but no bytes, means end-of-file. */
7023 break;
7024 if (bytes == -1)
7025 remote_hostio_error (remote_errno);
7026
7027 offset += bytes;
7028
7029 bytes = fwrite (buffer, 1, bytes, file);
7030 if (bytes == 0)
7031 perror_with_name (local_file);
7032 }
7033
7034 discard_cleanups (close_cleanup);
7035 if (remote_hostio_close (fd, &remote_errno))
7036 remote_hostio_error (remote_errno);
7037
7038 if (from_tty)
7039 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
7040 do_cleanups (back_to);
7041 }
7042
7043 void
7044 remote_file_delete (const char *remote_file, int from_tty)
7045 {
7046 int retcode, remote_errno;
7047
7048 if (!remote_desc)
7049 error (_("command can only be used with remote target"));
7050
7051 retcode = remote_hostio_unlink (remote_file, &remote_errno);
7052 if (retcode == -1)
7053 remote_hostio_error (remote_errno);
7054
7055 if (from_tty)
7056 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
7057 }
7058
7059 static void
7060 remote_put_command (char *args, int from_tty)
7061 {
7062 struct cleanup *back_to;
7063 char **argv;
7064
7065 argv = buildargv (args);
7066 if (argv == NULL)
7067 nomem (0);
7068 back_to = make_cleanup_freeargv (argv);
7069 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7070 error (_("Invalid parameters to remote put"));
7071
7072 remote_file_put (argv[0], argv[1], from_tty);
7073
7074 do_cleanups (back_to);
7075 }
7076
7077 static void
7078 remote_get_command (char *args, int from_tty)
7079 {
7080 struct cleanup *back_to;
7081 char **argv;
7082
7083 argv = buildargv (args);
7084 if (argv == NULL)
7085 nomem (0);
7086 back_to = make_cleanup_freeargv (argv);
7087 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7088 error (_("Invalid parameters to remote get"));
7089
7090 remote_file_get (argv[0], argv[1], from_tty);
7091
7092 do_cleanups (back_to);
7093 }
7094
7095 static void
7096 remote_delete_command (char *args, int from_tty)
7097 {
7098 struct cleanup *back_to;
7099 char **argv;
7100
7101 argv = buildargv (args);
7102 if (argv == NULL)
7103 nomem (0);
7104 back_to = make_cleanup_freeargv (argv);
7105 if (argv[0] == NULL || argv[1] != NULL)
7106 error (_("Invalid parameters to remote delete"));
7107
7108 remote_file_delete (argv[0], from_tty);
7109
7110 do_cleanups (back_to);
7111 }
7112
7113 static void
7114 remote_command (char *args, int from_tty)
7115 {
7116 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
7117 }
7118
7119 static void
7120 init_remote_ops (void)
7121 {
7122 remote_ops.to_shortname = "remote";
7123 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
7124 remote_ops.to_doc =
7125 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7126 Specify the serial device it is connected to\n\
7127 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
7128 remote_ops.to_open = remote_open;
7129 remote_ops.to_close = remote_close;
7130 remote_ops.to_detach = remote_detach;
7131 remote_ops.to_disconnect = remote_disconnect;
7132 remote_ops.to_resume = remote_resume;
7133 remote_ops.to_wait = remote_wait;
7134 remote_ops.to_fetch_registers = remote_fetch_registers;
7135 remote_ops.to_store_registers = remote_store_registers;
7136 remote_ops.to_prepare_to_store = remote_prepare_to_store;
7137 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
7138 remote_ops.to_files_info = remote_files_info;
7139 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
7140 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
7141 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
7142 remote_ops.to_stopped_data_address = remote_stopped_data_address;
7143 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
7144 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
7145 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
7146 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
7147 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
7148 remote_ops.to_kill = remote_kill;
7149 remote_ops.to_load = generic_load;
7150 remote_ops.to_mourn_inferior = remote_mourn;
7151 remote_ops.to_thread_alive = remote_thread_alive;
7152 remote_ops.to_find_new_threads = remote_threads_info;
7153 remote_ops.to_pid_to_str = remote_pid_to_str;
7154 remote_ops.to_extra_thread_info = remote_threads_extra_info;
7155 remote_ops.to_stop = remote_stop;
7156 remote_ops.to_xfer_partial = remote_xfer_partial;
7157 remote_ops.to_rcmd = remote_rcmd;
7158 remote_ops.to_log_command = serial_log_command;
7159 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
7160 remote_ops.to_stratum = process_stratum;
7161 remote_ops.to_has_all_memory = 1;
7162 remote_ops.to_has_memory = 1;
7163 remote_ops.to_has_stack = 1;
7164 remote_ops.to_has_registers = 1;
7165 remote_ops.to_has_execution = 1;
7166 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
7167 remote_ops.to_magic = OPS_MAGIC;
7168 remote_ops.to_memory_map = remote_memory_map;
7169 remote_ops.to_flash_erase = remote_flash_erase;
7170 remote_ops.to_flash_done = remote_flash_done;
7171 remote_ops.to_read_description = remote_read_description;
7172 remote_ops.to_search_memory = remote_search_memory;
7173 remote_ops.to_can_async_p = remote_can_async_p;
7174 remote_ops.to_is_async_p = remote_is_async_p;
7175 remote_ops.to_async = remote_async;
7176 remote_ops.to_async_mask = remote_async_mask;
7177 remote_ops.to_terminal_inferior = remote_terminal_inferior;
7178 remote_ops.to_terminal_ours = remote_terminal_ours;
7179 }
7180
7181 /* Set up the extended remote vector by making a copy of the standard
7182 remote vector and adding to it. */
7183
7184 static void
7185 init_extended_remote_ops (void)
7186 {
7187 extended_remote_ops = remote_ops;
7188
7189 extended_remote_ops.to_shortname = "extended-remote";
7190 extended_remote_ops.to_longname =
7191 "Extended remote serial target in gdb-specific protocol";
7192 extended_remote_ops.to_doc =
7193 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7194 Specify the serial device it is connected to (e.g. /dev/ttya).";
7195 extended_remote_ops.to_open = extended_remote_open;
7196 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
7197 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
7198 extended_remote_ops.to_detach = extended_remote_detach;
7199 extended_remote_ops.to_attach = extended_remote_attach;
7200 }
7201
7202 static int
7203 remote_can_async_p (void)
7204 {
7205 if (!remote_async_permitted)
7206 /* We only enable async when the user specifically asks for it. */
7207 return 0;
7208
7209 /* We're async whenever the serial device is. */
7210 return remote_async_mask_value && serial_can_async_p (remote_desc);
7211 }
7212
7213 static int
7214 remote_is_async_p (void)
7215 {
7216 if (!remote_async_permitted)
7217 /* We only enable async when the user specifically asks for it. */
7218 return 0;
7219
7220 /* We're async whenever the serial device is. */
7221 return remote_async_mask_value && serial_is_async_p (remote_desc);
7222 }
7223
7224 /* Pass the SERIAL event on and up to the client. One day this code
7225 will be able to delay notifying the client of an event until the
7226 point where an entire packet has been received. */
7227
7228 static void (*async_client_callback) (enum inferior_event_type event_type,
7229 void *context);
7230 static void *async_client_context;
7231 static serial_event_ftype remote_async_serial_handler;
7232
7233 static void
7234 remote_async_serial_handler (struct serial *scb, void *context)
7235 {
7236 /* Don't propogate error information up to the client. Instead let
7237 the client find out about the error by querying the target. */
7238 async_client_callback (INF_REG_EVENT, async_client_context);
7239 }
7240
7241 static void
7242 remote_async (void (*callback) (enum inferior_event_type event_type,
7243 void *context), void *context)
7244 {
7245 if (remote_async_mask_value == 0)
7246 internal_error (__FILE__, __LINE__,
7247 _("Calling remote_async when async is masked"));
7248
7249 if (callback != NULL)
7250 {
7251 serial_async (remote_desc, remote_async_serial_handler, NULL);
7252 async_client_callback = callback;
7253 async_client_context = context;
7254 }
7255 else
7256 serial_async (remote_desc, NULL, NULL);
7257 }
7258
7259 static int
7260 remote_async_mask (int new_mask)
7261 {
7262 int curr_mask = remote_async_mask_value;
7263 remote_async_mask_value = new_mask;
7264 return curr_mask;
7265 }
7266
7267 static void
7268 set_remote_cmd (char *args, int from_tty)
7269 {
7270 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
7271 }
7272
7273 static void
7274 show_remote_cmd (char *args, int from_tty)
7275 {
7276 /* We can't just use cmd_show_list here, because we want to skip
7277 the redundant "show remote Z-packet" and the legacy aliases. */
7278 struct cleanup *showlist_chain;
7279 struct cmd_list_element *list = remote_show_cmdlist;
7280
7281 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
7282 for (; list != NULL; list = list->next)
7283 if (strcmp (list->name, "Z-packet") == 0)
7284 continue;
7285 else if (list->type == not_set_cmd)
7286 /* Alias commands are exactly like the original, except they
7287 don't have the normal type. */
7288 continue;
7289 else
7290 {
7291 struct cleanup *option_chain
7292 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
7293 ui_out_field_string (uiout, "name", list->name);
7294 ui_out_text (uiout, ": ");
7295 if (list->type == show_cmd)
7296 do_setshow_command ((char *) NULL, from_tty, list);
7297 else
7298 cmd_func (list, NULL, from_tty);
7299 /* Close the tuple. */
7300 do_cleanups (option_chain);
7301 }
7302
7303 /* Close the tuple. */
7304 do_cleanups (showlist_chain);
7305 }
7306
7307
7308 /* Function to be called whenever a new objfile (shlib) is detected. */
7309 static void
7310 remote_new_objfile (struct objfile *objfile)
7311 {
7312 if (remote_desc != 0) /* Have a remote connection. */
7313 remote_check_symbols (objfile);
7314 }
7315
7316 void
7317 _initialize_remote (void)
7318 {
7319 struct remote_state *rs;
7320
7321 /* architecture specific data */
7322 remote_gdbarch_data_handle =
7323 gdbarch_data_register_post_init (init_remote_state);
7324 remote_g_packet_data_handle =
7325 gdbarch_data_register_pre_init (remote_g_packet_data_init);
7326
7327 /* Initialize the per-target state. At the moment there is only one
7328 of these, not one per target. Only one target is active at a
7329 time. The default buffer size is unimportant; it will be expanded
7330 whenever a larger buffer is needed. */
7331 rs = get_remote_state_raw ();
7332 rs->buf_size = 400;
7333 rs->buf = xmalloc (rs->buf_size);
7334
7335 init_remote_ops ();
7336 add_target (&remote_ops);
7337
7338 init_extended_remote_ops ();
7339 add_target (&extended_remote_ops);
7340
7341 /* Hook into new objfile notification. */
7342 observer_attach_new_objfile (remote_new_objfile);
7343
7344 /* Set up signal handlers. */
7345 sigint_remote_token =
7346 create_async_signal_handler (async_remote_interrupt, NULL);
7347 sigint_remote_twice_token =
7348 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
7349
7350 #if 0
7351 init_remote_threadtests ();
7352 #endif
7353
7354 /* set/show remote ... */
7355
7356 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
7357 Remote protocol specific variables\n\
7358 Configure various remote-protocol specific variables such as\n\
7359 the packets being used"),
7360 &remote_set_cmdlist, "set remote ",
7361 0 /* allow-unknown */, &setlist);
7362 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
7363 Remote protocol specific variables\n\
7364 Configure various remote-protocol specific variables such as\n\
7365 the packets being used"),
7366 &remote_show_cmdlist, "show remote ",
7367 0 /* allow-unknown */, &showlist);
7368
7369 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
7370 Compare section data on target to the exec file.\n\
7371 Argument is a single section name (default: all loaded sections)."),
7372 &cmdlist);
7373
7374 add_cmd ("packet", class_maintenance, packet_command, _("\
7375 Send an arbitrary packet to a remote target.\n\
7376 maintenance packet TEXT\n\
7377 If GDB is talking to an inferior via the GDB serial protocol, then\n\
7378 this command sends the string TEXT to the inferior, and displays the\n\
7379 response packet. GDB supplies the initial `$' character, and the\n\
7380 terminating `#' character and checksum."),
7381 &maintenancelist);
7382
7383 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
7384 Set whether to send break if interrupted."), _("\
7385 Show whether to send break if interrupted."), _("\
7386 If set, a break, instead of a cntrl-c, is sent to the remote target."),
7387 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
7388 &setlist, &showlist);
7389
7390 /* Install commands for configuring memory read/write packets. */
7391
7392 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
7393 Set the maximum number of bytes per memory write packet (deprecated)."),
7394 &setlist);
7395 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
7396 Show the maximum number of bytes per memory write packet (deprecated)."),
7397 &showlist);
7398 add_cmd ("memory-write-packet-size", no_class,
7399 set_memory_write_packet_size, _("\
7400 Set the maximum number of bytes per memory-write packet.\n\
7401 Specify the number of bytes in a packet or 0 (zero) for the\n\
7402 default packet size. The actual limit is further reduced\n\
7403 dependent on the target. Specify ``fixed'' to disable the\n\
7404 further restriction and ``limit'' to enable that restriction."),
7405 &remote_set_cmdlist);
7406 add_cmd ("memory-read-packet-size", no_class,
7407 set_memory_read_packet_size, _("\
7408 Set the maximum number of bytes per memory-read packet.\n\
7409 Specify the number of bytes in a packet or 0 (zero) for the\n\
7410 default packet size. The actual limit is further reduced\n\
7411 dependent on the target. Specify ``fixed'' to disable the\n\
7412 further restriction and ``limit'' to enable that restriction."),
7413 &remote_set_cmdlist);
7414 add_cmd ("memory-write-packet-size", no_class,
7415 show_memory_write_packet_size,
7416 _("Show the maximum number of bytes per memory-write packet."),
7417 &remote_show_cmdlist);
7418 add_cmd ("memory-read-packet-size", no_class,
7419 show_memory_read_packet_size,
7420 _("Show the maximum number of bytes per memory-read packet."),
7421 &remote_show_cmdlist);
7422
7423 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
7424 &remote_hw_watchpoint_limit, _("\
7425 Set the maximum number of target hardware watchpoints."), _("\
7426 Show the maximum number of target hardware watchpoints."), _("\
7427 Specify a negative limit for unlimited."),
7428 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
7429 &remote_set_cmdlist, &remote_show_cmdlist);
7430 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
7431 &remote_hw_breakpoint_limit, _("\
7432 Set the maximum number of target hardware breakpoints."), _("\
7433 Show the maximum number of target hardware breakpoints."), _("\
7434 Specify a negative limit for unlimited."),
7435 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
7436 &remote_set_cmdlist, &remote_show_cmdlist);
7437
7438 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
7439 &remote_address_size, _("\
7440 Set the maximum size of the address (in bits) in a memory packet."), _("\
7441 Show the maximum size of the address (in bits) in a memory packet."), NULL,
7442 NULL,
7443 NULL, /* FIXME: i18n: */
7444 &setlist, &showlist);
7445
7446 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
7447 "X", "binary-download", 1);
7448
7449 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
7450 "vCont", "verbose-resume", 0);
7451
7452 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
7453 "QPassSignals", "pass-signals", 0);
7454
7455 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
7456 "qSymbol", "symbol-lookup", 0);
7457
7458 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
7459 "P", "set-register", 1);
7460
7461 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
7462 "p", "fetch-register", 1);
7463
7464 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
7465 "Z0", "software-breakpoint", 0);
7466
7467 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
7468 "Z1", "hardware-breakpoint", 0);
7469
7470 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
7471 "Z2", "write-watchpoint", 0);
7472
7473 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
7474 "Z3", "read-watchpoint", 0);
7475
7476 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
7477 "Z4", "access-watchpoint", 0);
7478
7479 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
7480 "qXfer:auxv:read", "read-aux-vector", 0);
7481
7482 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
7483 "qXfer:features:read", "target-features", 0);
7484
7485 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
7486 "qXfer:libraries:read", "library-info", 0);
7487
7488 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
7489 "qXfer:memory-map:read", "memory-map", 0);
7490
7491 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
7492 "qXfer:spu:read", "read-spu-object", 0);
7493
7494 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
7495 "qXfer:spu:write", "write-spu-object", 0);
7496
7497 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
7498 "qGetTLSAddr", "get-thread-local-storage-address",
7499 0);
7500
7501 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
7502 "qSupported", "supported-packets", 0);
7503
7504 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
7505 "qSearch:memory", "search-memory", 0);
7506
7507 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
7508 "vFile:open", "hostio-open", 0);
7509
7510 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
7511 "vFile:pread", "hostio-pread", 0);
7512
7513 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
7514 "vFile:pwrite", "hostio-pwrite", 0);
7515
7516 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
7517 "vFile:close", "hostio-close", 0);
7518
7519 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
7520 "vFile:unlink", "hostio-unlink", 0);
7521
7522 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
7523 "vAttach", "attach", 0);
7524
7525 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
7526 "vRun", "run", 0);
7527
7528 /* Keep the old ``set remote Z-packet ...'' working. Each individual
7529 Z sub-packet has its own set and show commands, but users may
7530 have sets to this variable in their .gdbinit files (or in their
7531 documentation). */
7532 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
7533 &remote_Z_packet_detect, _("\
7534 Set use of remote protocol `Z' packets"), _("\
7535 Show use of remote protocol `Z' packets "), _("\
7536 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
7537 packets."),
7538 set_remote_protocol_Z_packet_cmd,
7539 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
7540 &remote_set_cmdlist, &remote_show_cmdlist);
7541
7542 add_prefix_cmd ("remote", class_files, remote_command, _("\
7543 Manipulate files on the remote system\n\
7544 Transfer files to and from the remote target system."),
7545 &remote_cmdlist, "remote ",
7546 0 /* allow-unknown */, &cmdlist);
7547
7548 add_cmd ("put", class_files, remote_put_command,
7549 _("Copy a local file to the remote system."),
7550 &remote_cmdlist);
7551
7552 add_cmd ("get", class_files, remote_get_command,
7553 _("Copy a remote file to the local system."),
7554 &remote_cmdlist);
7555
7556 add_cmd ("delete", class_files, remote_delete_command,
7557 _("Delete a remote file."),
7558 &remote_cmdlist);
7559
7560 remote_exec_file = xstrdup ("");
7561 add_setshow_string_noescape_cmd ("exec-file", class_files,
7562 &remote_exec_file, _("\
7563 Set the remote pathname for \"run\""), _("\
7564 Show the remote pathname for \"run\""), NULL, NULL, NULL,
7565 &remote_set_cmdlist, &remote_show_cmdlist);
7566
7567 add_setshow_boolean_cmd ("remote-async", class_maintenance,
7568 &remote_async_permitted_set, _("\
7569 Set whether gdb controls the remote inferior in asynchronous mode."), _("\
7570 Show whether gdb controls the remote inferior in asynchronous mode."), _("\
7571 Tells gdb whether to control the remote inferior in asynchronous mode."),
7572 set_maintenance_remote_async_permitted,
7573 show_maintenance_remote_async_permitted,
7574 &maintenance_set_cmdlist,
7575 &maintenance_show_cmdlist);
7576
7577
7578 /* Eventually initialize fileio. See fileio.c */
7579 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
7580
7581 /* Take advantage of the fact that the LWP field is not used, to tag
7582 special ptids with it set to != 0. */
7583 magic_null_ptid = ptid_build (0, 1, -1);
7584 not_sent_ptid = ptid_build (0, 1, -2);
7585 any_thread_ptid = ptid_build (0, 1, 0);
7586 }
This page took 0.304312 seconds and 4 git commands to generate.