* remote.c (remote_open_1): Add async_p.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* See the GDB User Guide for details of the GDB remote protocol. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <fcntl.h>
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42
43 #include <ctype.h>
44 #include <sys/time.h>
45 #ifdef USG
46 #include <sys/types.h>
47 #endif
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 /* Prototypes for local functions */
59 static void cleanup_sigint_signal_handler (void *dummy);
60 static void initialize_sigint_signal_handler (void);
61 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
62
63 static void handle_remote_sigint (int);
64 static void handle_remote_sigint_twice (int);
65 static void async_remote_interrupt (gdb_client_data);
66 void async_remote_interrupt_twice (gdb_client_data);
67
68 static void build_remote_gdbarch_data (void);
69
70 static int remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len);
71
72 static int remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len);
73
74 static void remote_files_info (struct target_ops *ignore);
75
76 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
77 int len, int should_write,
78 struct mem_attrib *attrib,
79 struct target_ops *target);
80
81 static void remote_prepare_to_store (void);
82
83 static void remote_fetch_registers (int regno);
84
85 static void remote_resume (ptid_t ptid, int step,
86 enum target_signal siggnal);
87 static void remote_async_resume (ptid_t ptid, int step,
88 enum target_signal siggnal);
89 static int remote_start_remote (struct ui_out *uiout, void *dummy);
90
91 static void remote_open (char *name, int from_tty);
92 static void remote_async_open (char *name, int from_tty);
93
94 static void extended_remote_open (char *name, int from_tty);
95 static void extended_remote_async_open (char *name, int from_tty);
96
97 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
98 int async_p);
99
100 static void remote_close (int quitting);
101
102 static void remote_store_registers (int regno);
103
104 static void remote_mourn (void);
105 static void remote_async_mourn (void);
106
107 static void extended_remote_restart (void);
108
109 static void extended_remote_mourn (void);
110
111 static void extended_remote_create_inferior (char *, char *, char **);
112 static void extended_remote_async_create_inferior (char *, char *, char **);
113
114 static void remote_mourn_1 (struct target_ops *);
115
116 static void remote_send (char *buf, long sizeof_buf);
117
118 static int readchar (int timeout);
119
120 static ptid_t remote_wait (ptid_t ptid,
121 struct target_waitstatus *status);
122 static ptid_t remote_async_wait (ptid_t ptid,
123 struct target_waitstatus *status);
124
125 static void remote_kill (void);
126 static void remote_async_kill (void);
127
128 static int tohex (int nib);
129
130 static void remote_detach (char *args, int from_tty);
131 static void remote_async_detach (char *args, int from_tty);
132
133 static void remote_interrupt (int signo);
134
135 static void remote_interrupt_twice (int signo);
136
137 static void interrupt_query (void);
138
139 static void set_thread (int, int);
140
141 static int remote_thread_alive (ptid_t);
142
143 static void get_offsets (void);
144
145 static long read_frame (char *buf, long sizeof_buf);
146
147 static int remote_insert_breakpoint (CORE_ADDR, char *);
148
149 static int remote_remove_breakpoint (CORE_ADDR, char *);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void init_remote_cisco_ops (void);
158
159 static struct target_ops remote_cisco_ops;
160
161 static void remote_stop (void);
162
163 static int ishex (int ch, int *val);
164
165 static int stubhex (int ch);
166
167 static int remote_query (int /*char */ , char *, char *, int *);
168
169 static int hexnumstr (char *, ULONGEST);
170
171 static int hexnumnstr (char *, ULONGEST, int);
172
173 static CORE_ADDR remote_address_masked (CORE_ADDR);
174
175 static void print_packet (char *);
176
177 static unsigned long crc32 (unsigned char *, int, unsigned int);
178
179 static void compare_sections_command (char *, int);
180
181 static void packet_command (char *, int);
182
183 static int stub_unpack_int (char *buff, int fieldlength);
184
185 static ptid_t remote_current_thread (ptid_t oldptid);
186
187 static void remote_find_new_threads (void);
188
189 static void record_currthread (int currthread);
190
191 static int fromhex (int a);
192
193 static int hex2bin (const char *hex, char *bin, int count);
194
195 static int bin2hex (const char *bin, char *hex, int count);
196
197 static int putpkt_binary (char *buf, int cnt);
198
199 static void check_binary_download (CORE_ADDR addr);
200
201 struct packet_config;
202
203 static void show_packet_config_cmd (struct packet_config *config);
204
205 static void update_packet_config (struct packet_config *config);
206
207 void _initialize_remote (void);
208
209 /* Description of the remote protocol. Strictly speaking, when the
210 target is open()ed, remote.c should create a per-target description
211 of the remote protocol using that target's architecture.
212 Unfortunatly, the target stack doesn't include local state. For
213 the moment keep the information in the target's architecture
214 object. Sigh.. */
215
216 struct packet_reg
217 {
218 long offset; /* Offset into G packet. */
219 long regnum; /* GDB's internal register number. */
220 LONGEST pnum; /* Remote protocol register number. */
221 int in_g_packet; /* Always part of G packet. */
222 /* long size in bytes; == REGISTER_RAW_SIZE (regnum); at present. */
223 /* char *name; == REGISTER_NAME (regnum); at present. */
224 };
225
226 struct remote_state
227 {
228 /* Description of the remote protocol registers. */
229 long sizeof_g_packet;
230
231 /* Description of the remote protocol registers indexed by REGNUM
232 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
233 struct packet_reg *regs;
234
235 /* This is the size (in chars) of the first response to the ``g''
236 packet. It is used as a heuristic when determining the maximum
237 size of memory-read and memory-write packets. A target will
238 typically only reserve a buffer large enough to hold the ``g''
239 packet. The size does not include packet overhead (headers and
240 trailers). */
241 long actual_register_packet_size;
242
243 /* This is the maximum size (in chars) of a non read/write packet.
244 It is also used as a cap on the size of read/write packets. */
245 long remote_packet_size;
246 };
247
248
249 /* Handle for retreving the remote protocol data from gdbarch. */
250 static struct gdbarch_data *remote_gdbarch_data_handle;
251
252 static struct remote_state *
253 get_remote_state (void)
254 {
255 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
256 }
257
258 static void *
259 init_remote_state (struct gdbarch *gdbarch)
260 {
261 int regnum;
262 struct remote_state *rs = xmalloc (sizeof (struct remote_state));
263
264 /* Start out by having the remote protocol mimic the existing
265 behavour - just copy in the description of the register cache. */
266 rs->sizeof_g_packet = REGISTER_BYTES; /* OK use. */
267
268 /* Assume a 1:1 regnum<->pnum table. */
269 rs->regs = xcalloc (NUM_REGS + NUM_PSEUDO_REGS, sizeof (struct packet_reg));
270 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
271 {
272 struct packet_reg *r = &rs->regs[regnum];
273 r->pnum = regnum;
274 r->regnum = regnum;
275 r->offset = REGISTER_BYTE (regnum);
276 r->in_g_packet = (regnum < NUM_REGS);
277 /* ...size = REGISTER_RAW_SIZE (regnum); */
278 /* ...name = REGISTER_NAME (regnum); */
279 }
280
281 /* Default maximum number of characters in a packet body. Many
282 remote stubs have a hardwired buffer size of 400 bytes
283 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
284 as the maximum packet-size to ensure that the packet and an extra
285 NUL character can always fit in the buffer. This stops GDB
286 trashing stubs that try to squeeze an extra NUL into what is
287 already a full buffer (As of 1999-12-04 that was most stubs. */
288 rs->remote_packet_size = 400 - 1;
289
290 /* Should rs->sizeof_g_packet needs more space than the
291 default, adjust the size accordingly. Remember that each byte is
292 encoded as two characters. 32 is the overhead for the packet
293 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
294 (``$NN:G...#NN'') is a better guess, the below has been padded a
295 little. */
296 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
297 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
298
299 /* This one is filled in when a ``g'' packet is received. */
300 rs->actual_register_packet_size = 0;
301
302 return rs;
303 }
304
305 static void
306 free_remote_state (struct gdbarch *gdbarch, void *pointer)
307 {
308 struct remote_state *data = pointer;
309 xfree (data->regs);
310 xfree (data);
311 }
312
313 static struct packet_reg *
314 packet_reg_from_regnum (struct remote_state *rs, long regnum)
315 {
316 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
317 return NULL;
318 else
319 {
320 struct packet_reg *r = &rs->regs[regnum];
321 gdb_assert (r->regnum == regnum);
322 return r;
323 }
324 }
325
326 static struct packet_reg *
327 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
328 {
329 int i;
330 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
331 {
332 struct packet_reg *r = &rs->regs[i];
333 if (r->pnum == pnum)
334 return r;
335 }
336 return NULL;
337 }
338
339 /* FIXME: graces/2002-08-08: These variables should eventually be
340 bound to an instance of the target object (as in gdbarch-tdep()),
341 when such a thing exists. */
342
343 /* This is set to the data address of the access causing the target
344 to stop for a watchpoint. */
345 static CORE_ADDR remote_watch_data_address;
346
347 /* This is non-zero if taregt stopped for a watchpoint. */
348 static int remote_stopped_by_watchpoint_p;
349
350
351 static struct target_ops remote_ops;
352
353 static struct target_ops extended_remote_ops;
354
355 /* Temporary target ops. Just like the remote_ops and
356 extended_remote_ops, but with asynchronous support. */
357 static struct target_ops remote_async_ops;
358
359 static struct target_ops extended_async_remote_ops;
360
361 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
362 ``forever'' still use the normal timeout mechanism. This is
363 currently used by the ASYNC code to guarentee that target reads
364 during the initial connect always time-out. Once getpkt has been
365 modified to return a timeout indication and, in turn
366 remote_wait()/wait_for_inferior() have gained a timeout parameter
367 this can go away. */
368 static int wait_forever_enabled_p = 1;
369
370
371 /* This variable chooses whether to send a ^C or a break when the user
372 requests program interruption. Although ^C is usually what remote
373 systems expect, and that is the default here, sometimes a break is
374 preferable instead. */
375
376 static int remote_break;
377
378 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
379 remote_open knows that we don't have a file open when the program
380 starts. */
381 static struct serial *remote_desc = NULL;
382
383 /* This is set by the target (thru the 'S' message)
384 to denote that the target is in kernel mode. */
385 static int cisco_kernel_mode = 0;
386
387 /* This variable sets the number of bits in an address that are to be
388 sent in a memory ("M" or "m") packet. Normally, after stripping
389 leading zeros, the entire address would be sent. This variable
390 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
391 initial implementation of remote.c restricted the address sent in
392 memory packets to ``host::sizeof long'' bytes - (typically 32
393 bits). Consequently, for 64 bit targets, the upper 32 bits of an
394 address was never sent. Since fixing this bug may cause a break in
395 some remote targets this variable is principly provided to
396 facilitate backward compatibility. */
397
398 static int remote_address_size;
399
400 /* Tempoary to track who currently owns the terminal. See
401 target_async_terminal_* for more details. */
402
403 static int remote_async_terminal_ours_p;
404
405 \f
406 /* User configurable variables for the number of characters in a
407 memory read/write packet. MIN ((rs->remote_packet_size),
408 rs->sizeof_g_packet) is the default. Some targets need smaller
409 values (fifo overruns, et.al.) and some users need larger values
410 (speed up transfers). The variables ``preferred_*'' (the user
411 request), ``current_*'' (what was actually set) and ``forced_*''
412 (Positive - a soft limit, negative - a hard limit). */
413
414 struct memory_packet_config
415 {
416 char *name;
417 long size;
418 int fixed_p;
419 };
420
421 /* Compute the current size of a read/write packet. Since this makes
422 use of ``actual_register_packet_size'' the computation is dynamic. */
423
424 static long
425 get_memory_packet_size (struct memory_packet_config *config)
426 {
427 struct remote_state *rs = get_remote_state ();
428 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
429 law?) that some hosts don't cope very well with large alloca()
430 calls. Eventually the alloca() code will be replaced by calls to
431 xmalloc() and make_cleanups() allowing this restriction to either
432 be lifted or removed. */
433 #ifndef MAX_REMOTE_PACKET_SIZE
434 #define MAX_REMOTE_PACKET_SIZE 16384
435 #endif
436 /* NOTE: 16 is just chosen at random. */
437 #ifndef MIN_REMOTE_PACKET_SIZE
438 #define MIN_REMOTE_PACKET_SIZE 16
439 #endif
440 long what_they_get;
441 if (config->fixed_p)
442 {
443 if (config->size <= 0)
444 what_they_get = MAX_REMOTE_PACKET_SIZE;
445 else
446 what_they_get = config->size;
447 }
448 else
449 {
450 what_they_get = (rs->remote_packet_size);
451 /* Limit the packet to the size specified by the user. */
452 if (config->size > 0
453 && what_they_get > config->size)
454 what_they_get = config->size;
455 /* Limit it to the size of the targets ``g'' response. */
456 if ((rs->actual_register_packet_size) > 0
457 && what_they_get > (rs->actual_register_packet_size))
458 what_they_get = (rs->actual_register_packet_size);
459 }
460 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
461 what_they_get = MAX_REMOTE_PACKET_SIZE;
462 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
463 what_they_get = MIN_REMOTE_PACKET_SIZE;
464 return what_they_get;
465 }
466
467 /* Update the size of a read/write packet. If they user wants
468 something really big then do a sanity check. */
469
470 static void
471 set_memory_packet_size (char *args, struct memory_packet_config *config)
472 {
473 int fixed_p = config->fixed_p;
474 long size = config->size;
475 if (args == NULL)
476 error ("Argument required (integer, `fixed' or `limited').");
477 else if (strcmp (args, "hard") == 0
478 || strcmp (args, "fixed") == 0)
479 fixed_p = 1;
480 else if (strcmp (args, "soft") == 0
481 || strcmp (args, "limit") == 0)
482 fixed_p = 0;
483 else
484 {
485 char *end;
486 size = strtoul (args, &end, 0);
487 if (args == end)
488 error ("Invalid %s (bad syntax).", config->name);
489 #if 0
490 /* Instead of explicitly capping the size of a packet to
491 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
492 instead allowed to set the size to something arbitrarily
493 large. */
494 if (size > MAX_REMOTE_PACKET_SIZE)
495 error ("Invalid %s (too large).", config->name);
496 #endif
497 }
498 /* Extra checks? */
499 if (fixed_p && !config->fixed_p)
500 {
501 if (! query ("The target may not be able to correctly handle a %s\n"
502 "of %ld bytes. Change the packet size? ",
503 config->name, size))
504 error ("Packet size not changed.");
505 }
506 /* Update the config. */
507 config->fixed_p = fixed_p;
508 config->size = size;
509 }
510
511 static void
512 show_memory_packet_size (struct memory_packet_config *config)
513 {
514 printf_filtered ("The %s is %ld. ", config->name, config->size);
515 if (config->fixed_p)
516 printf_filtered ("Packets are fixed at %ld bytes.\n",
517 get_memory_packet_size (config));
518 else
519 printf_filtered ("Packets are limited to %ld bytes.\n",
520 get_memory_packet_size (config));
521 }
522
523 static struct memory_packet_config memory_write_packet_config =
524 {
525 "memory-write-packet-size",
526 };
527
528 static void
529 set_memory_write_packet_size (char *args, int from_tty)
530 {
531 set_memory_packet_size (args, &memory_write_packet_config);
532 }
533
534 static void
535 show_memory_write_packet_size (char *args, int from_tty)
536 {
537 show_memory_packet_size (&memory_write_packet_config);
538 }
539
540 static long
541 get_memory_write_packet_size (void)
542 {
543 return get_memory_packet_size (&memory_write_packet_config);
544 }
545
546 static struct memory_packet_config memory_read_packet_config =
547 {
548 "memory-read-packet-size",
549 };
550
551 static void
552 set_memory_read_packet_size (char *args, int from_tty)
553 {
554 set_memory_packet_size (args, &memory_read_packet_config);
555 }
556
557 static void
558 show_memory_read_packet_size (char *args, int from_tty)
559 {
560 show_memory_packet_size (&memory_read_packet_config);
561 }
562
563 static long
564 get_memory_read_packet_size (void)
565 {
566 struct remote_state *rs = get_remote_state ();
567 long size = get_memory_packet_size (&memory_read_packet_config);
568 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
569 extra buffer size argument before the memory read size can be
570 increased beyond (rs->remote_packet_size). */
571 if (size > (rs->remote_packet_size))
572 size = (rs->remote_packet_size);
573 return size;
574 }
575
576 \f
577 /* Generic configuration support for packets the stub optionally
578 supports. Allows the user to specify the use of the packet as well
579 as allowing GDB to auto-detect support in the remote stub. */
580
581 enum packet_support
582 {
583 PACKET_SUPPORT_UNKNOWN = 0,
584 PACKET_ENABLE,
585 PACKET_DISABLE
586 };
587
588 struct packet_config
589 {
590 char *name;
591 char *title;
592 enum auto_boolean detect;
593 enum packet_support support;
594 };
595
596 /* Analyze a packet's return value and update the packet config
597 accordingly. */
598
599 enum packet_result
600 {
601 PACKET_ERROR,
602 PACKET_OK,
603 PACKET_UNKNOWN
604 };
605
606 static void
607 update_packet_config (struct packet_config *config)
608 {
609 switch (config->detect)
610 {
611 case AUTO_BOOLEAN_TRUE:
612 config->support = PACKET_ENABLE;
613 break;
614 case AUTO_BOOLEAN_FALSE:
615 config->support = PACKET_DISABLE;
616 break;
617 case AUTO_BOOLEAN_AUTO:
618 config->support = PACKET_SUPPORT_UNKNOWN;
619 break;
620 }
621 }
622
623 static void
624 show_packet_config_cmd (struct packet_config *config)
625 {
626 char *support = "internal-error";
627 switch (config->support)
628 {
629 case PACKET_ENABLE:
630 support = "enabled";
631 break;
632 case PACKET_DISABLE:
633 support = "disabled";
634 break;
635 case PACKET_SUPPORT_UNKNOWN:
636 support = "unknown";
637 break;
638 }
639 switch (config->detect)
640 {
641 case AUTO_BOOLEAN_AUTO:
642 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
643 config->name, config->title, support);
644 break;
645 case AUTO_BOOLEAN_TRUE:
646 case AUTO_BOOLEAN_FALSE:
647 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
648 config->name, config->title, support);
649 break;
650 }
651 }
652
653 static void
654 add_packet_config_cmd (struct packet_config *config,
655 char *name,
656 char *title,
657 cmd_sfunc_ftype *set_func,
658 cmd_sfunc_ftype *show_func,
659 struct cmd_list_element **set_remote_list,
660 struct cmd_list_element **show_remote_list,
661 int legacy)
662 {
663 struct cmd_list_element *set_cmd;
664 struct cmd_list_element *show_cmd;
665 char *set_doc;
666 char *show_doc;
667 char *cmd_name;
668 config->name = name;
669 config->title = title;
670 config->detect = AUTO_BOOLEAN_AUTO;
671 config->support = PACKET_SUPPORT_UNKNOWN;
672 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
673 name, title);
674 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
675 name, title);
676 /* set/show TITLE-packet {auto,on,off} */
677 xasprintf (&cmd_name, "%s-packet", title);
678 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
679 &config->detect, set_doc, show_doc,
680 set_func, show_func,
681 set_remote_list, show_remote_list);
682 /* set/show remote NAME-packet {auto,on,off} -- legacy */
683 if (legacy)
684 {
685 char *legacy_name;
686 xasprintf (&legacy_name, "%s-packet", name);
687 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
688 set_remote_list);
689 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
690 show_remote_list);
691 }
692 }
693
694 static enum packet_result
695 packet_ok (const char *buf, struct packet_config *config)
696 {
697 if (buf[0] != '\0')
698 {
699 /* The stub recognized the packet request. Check that the
700 operation succeeded. */
701 switch (config->support)
702 {
703 case PACKET_SUPPORT_UNKNOWN:
704 if (remote_debug)
705 fprintf_unfiltered (gdb_stdlog,
706 "Packet %s (%s) is supported\n",
707 config->name, config->title);
708 config->support = PACKET_ENABLE;
709 break;
710 case PACKET_DISABLE:
711 internal_error (__FILE__, __LINE__,
712 "packet_ok: attempt to use a disabled packet");
713 break;
714 case PACKET_ENABLE:
715 break;
716 }
717 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
718 /* "OK" - definitly OK. */
719 return PACKET_OK;
720 if (buf[0] == 'E'
721 && isxdigit (buf[1]) && isxdigit (buf[2])
722 && buf[3] == '\0')
723 /* "Enn" - definitly an error. */
724 return PACKET_ERROR;
725 /* The packet may or may not be OK. Just assume it is */
726 return PACKET_OK;
727 }
728 else
729 {
730 /* The stub does not support the packet. */
731 switch (config->support)
732 {
733 case PACKET_ENABLE:
734 if (config->detect == AUTO_BOOLEAN_AUTO)
735 /* If the stub previously indicated that the packet was
736 supported then there is a protocol error.. */
737 error ("Protocol error: %s (%s) conflicting enabled responses.",
738 config->name, config->title);
739 else
740 /* The user set it wrong. */
741 error ("Enabled packet %s (%s) not recognized by stub",
742 config->name, config->title);
743 break;
744 case PACKET_SUPPORT_UNKNOWN:
745 if (remote_debug)
746 fprintf_unfiltered (gdb_stdlog,
747 "Packet %s (%s) is NOT supported\n",
748 config->name, config->title);
749 config->support = PACKET_DISABLE;
750 break;
751 case PACKET_DISABLE:
752 break;
753 }
754 return PACKET_UNKNOWN;
755 }
756 }
757
758 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
759 static struct packet_config remote_protocol_qSymbol;
760
761 static void
762 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
763 struct cmd_list_element *c)
764 {
765 update_packet_config (&remote_protocol_qSymbol);
766 }
767
768 static void
769 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
770 struct cmd_list_element *c)
771 {
772 show_packet_config_cmd (&remote_protocol_qSymbol);
773 }
774
775 /* Should we try the 'e' (step over range) request? */
776 static struct packet_config remote_protocol_e;
777
778 static void
779 set_remote_protocol_e_packet_cmd (char *args, int from_tty,
780 struct cmd_list_element *c)
781 {
782 update_packet_config (&remote_protocol_e);
783 }
784
785 static void
786 show_remote_protocol_e_packet_cmd (char *args, int from_tty,
787 struct cmd_list_element *c)
788 {
789 show_packet_config_cmd (&remote_protocol_e);
790 }
791
792
793 /* Should we try the 'E' (step over range / w signal #) request? */
794 static struct packet_config remote_protocol_E;
795
796 static void
797 set_remote_protocol_E_packet_cmd (char *args, int from_tty,
798 struct cmd_list_element *c)
799 {
800 update_packet_config (&remote_protocol_E);
801 }
802
803 static void
804 show_remote_protocol_E_packet_cmd (char *args, int from_tty,
805 struct cmd_list_element *c)
806 {
807 show_packet_config_cmd (&remote_protocol_E);
808 }
809
810
811 /* Should we try the 'P' (set register) request? */
812
813 static struct packet_config remote_protocol_P;
814
815 static void
816 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
817 struct cmd_list_element *c)
818 {
819 update_packet_config (&remote_protocol_P);
820 }
821
822 static void
823 show_remote_protocol_P_packet_cmd (char *args, int from_tty,
824 struct cmd_list_element *c)
825 {
826 show_packet_config_cmd (&remote_protocol_P);
827 }
828
829 /* Should we try one of the 'Z' requests? */
830
831 enum Z_packet_type
832 {
833 Z_PACKET_SOFTWARE_BP,
834 Z_PACKET_HARDWARE_BP,
835 Z_PACKET_WRITE_WP,
836 Z_PACKET_READ_WP,
837 Z_PACKET_ACCESS_WP,
838 NR_Z_PACKET_TYPES
839 };
840
841 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
842
843 /* FIXME: Instead of having all these boiler plate functions, the
844 command callback should include a context argument. */
845
846 static void
847 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
848 struct cmd_list_element *c)
849 {
850 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
851 }
852
853 static void
854 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
855 struct cmd_list_element *c)
856 {
857 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
858 }
859
860 static void
861 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
862 struct cmd_list_element *c)
863 {
864 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
865 }
866
867 static void
868 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
869 struct cmd_list_element *c)
870 {
871 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
872 }
873
874 static void
875 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
876 struct cmd_list_element *c)
877 {
878 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
879 }
880
881 static void
882 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
883 struct cmd_list_element *c)
884 {
885 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
886 }
887
888 static void
889 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
890 struct cmd_list_element *c)
891 {
892 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
893 }
894
895 static void
896 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
897 struct cmd_list_element *c)
898 {
899 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
900 }
901
902 static void
903 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
904 struct cmd_list_element *c)
905 {
906 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
907 }
908
909 static void
910 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
911 struct cmd_list_element *c)
912 {
913 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
914 }
915
916 /* For compatibility with older distributions. Provide a ``set remote
917 Z-packet ...'' command that updates all the Z packet types. */
918
919 static enum auto_boolean remote_Z_packet_detect;
920
921 static void
922 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
923 struct cmd_list_element *c)
924 {
925 int i;
926 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
927 {
928 remote_protocol_Z[i].detect = remote_Z_packet_detect;
929 update_packet_config (&remote_protocol_Z[i]);
930 }
931 }
932
933 static void
934 show_remote_protocol_Z_packet_cmd (char *args, int from_tty,
935 struct cmd_list_element *c)
936 {
937 int i;
938 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
939 {
940 show_packet_config_cmd (&remote_protocol_Z[i]);
941 }
942 }
943
944 /* Should we try the 'X' (remote binary download) packet?
945
946 This variable (available to the user via "set remote X-packet")
947 dictates whether downloads are sent in binary (via the 'X' packet).
948 We assume that the stub can, and attempt to do it. This will be
949 cleared if the stub does not understand it. This switch is still
950 needed, though in cases when the packet is supported in the stub,
951 but the connection does not allow it (i.e., 7-bit serial connection
952 only). */
953
954 static struct packet_config remote_protocol_binary_download;
955
956 /* Should we try the 'ThreadInfo' query packet?
957
958 This variable (NOT available to the user: auto-detect only!)
959 determines whether GDB will use the new, simpler "ThreadInfo"
960 query or the older, more complex syntax for thread queries.
961 This is an auto-detect variable (set to true at each connect,
962 and set to false when the target fails to recognize it). */
963
964 static int use_threadinfo_query;
965 static int use_threadextra_query;
966
967 static void
968 set_remote_protocol_binary_download_cmd (char *args,
969 int from_tty,
970 struct cmd_list_element *c)
971 {
972 update_packet_config (&remote_protocol_binary_download);
973 }
974
975 static void
976 show_remote_protocol_binary_download_cmd (char *args, int from_tty,
977 struct cmd_list_element *c)
978 {
979 show_packet_config_cmd (&remote_protocol_binary_download);
980 }
981
982
983 /* Tokens for use by the asynchronous signal handlers for SIGINT */
984 static void *sigint_remote_twice_token;
985 static void *sigint_remote_token;
986
987 /* These are pointers to hook functions that may be set in order to
988 modify resume/wait behavior for a particular architecture. */
989
990 void (*target_resume_hook) (void);
991 void (*target_wait_loop_hook) (void);
992 \f
993
994
995 /* These are the threads which we last sent to the remote system.
996 -1 for all or -2 for not sent yet. */
997 static int general_thread;
998 static int continue_thread;
999
1000 /* Call this function as a result of
1001 1) A halt indication (T packet) containing a thread id
1002 2) A direct query of currthread
1003 3) Successful execution of set thread
1004 */
1005
1006 static void
1007 record_currthread (int currthread)
1008 {
1009 general_thread = currthread;
1010
1011 /* If this is a new thread, add it to GDB's thread list.
1012 If we leave it up to WFI to do this, bad things will happen. */
1013 if (!in_thread_list (pid_to_ptid (currthread)))
1014 {
1015 add_thread (pid_to_ptid (currthread));
1016 ui_out_text (uiout, "[New ");
1017 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1018 ui_out_text (uiout, "]\n");
1019 }
1020 }
1021
1022 #define MAGIC_NULL_PID 42000
1023
1024 static void
1025 set_thread (int th, int gen)
1026 {
1027 struct remote_state *rs = get_remote_state ();
1028 char *buf = alloca (rs->remote_packet_size);
1029 int state = gen ? general_thread : continue_thread;
1030
1031 if (state == th)
1032 return;
1033
1034 buf[0] = 'H';
1035 buf[1] = gen ? 'g' : 'c';
1036 if (th == MAGIC_NULL_PID)
1037 {
1038 buf[2] = '0';
1039 buf[3] = '\0';
1040 }
1041 else if (th < 0)
1042 sprintf (&buf[2], "-%x", -th);
1043 else
1044 sprintf (&buf[2], "%x", th);
1045 putpkt (buf);
1046 getpkt (buf, (rs->remote_packet_size), 0);
1047 if (gen)
1048 general_thread = th;
1049 else
1050 continue_thread = th;
1051 }
1052 \f
1053 /* Return nonzero if the thread TH is still alive on the remote system. */
1054
1055 static int
1056 remote_thread_alive (ptid_t ptid)
1057 {
1058 int tid = PIDGET (ptid);
1059 char buf[16];
1060
1061 if (tid < 0)
1062 sprintf (buf, "T-%08x", -tid);
1063 else
1064 sprintf (buf, "T%08x", tid);
1065 putpkt (buf);
1066 getpkt (buf, sizeof (buf), 0);
1067 return (buf[0] == 'O' && buf[1] == 'K');
1068 }
1069
1070 /* About these extended threadlist and threadinfo packets. They are
1071 variable length packets but, the fields within them are often fixed
1072 length. They are redundent enough to send over UDP as is the
1073 remote protocol in general. There is a matching unit test module
1074 in libstub. */
1075
1076 #define OPAQUETHREADBYTES 8
1077
1078 /* a 64 bit opaque identifier */
1079 typedef unsigned char threadref[OPAQUETHREADBYTES];
1080
1081 /* WARNING: This threadref data structure comes from the remote O.S., libstub
1082 protocol encoding, and remote.c. it is not particularly changable */
1083
1084 /* Right now, the internal structure is int. We want it to be bigger.
1085 Plan to fix this.
1086 */
1087
1088 typedef int gdb_threadref; /* internal GDB thread reference */
1089
1090 /* gdb_ext_thread_info is an internal GDB data structure which is
1091 equivalint to the reply of the remote threadinfo packet */
1092
1093 struct gdb_ext_thread_info
1094 {
1095 threadref threadid; /* External form of thread reference */
1096 int active; /* Has state interesting to GDB? , regs, stack */
1097 char display[256]; /* Brief state display, name, blocked/syspended */
1098 char shortname[32]; /* To be used to name threads */
1099 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1100 };
1101
1102 /* The volume of remote transfers can be limited by submitting
1103 a mask containing bits specifying the desired information.
1104 Use a union of these values as the 'selection' parameter to
1105 get_thread_info. FIXME: Make these TAG names more thread specific.
1106 */
1107
1108 #define TAG_THREADID 1
1109 #define TAG_EXISTS 2
1110 #define TAG_DISPLAY 4
1111 #define TAG_THREADNAME 8
1112 #define TAG_MOREDISPLAY 16
1113
1114 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1115
1116 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1117
1118 static char *unpack_nibble (char *buf, int *val);
1119
1120 static char *pack_nibble (char *buf, int nibble);
1121
1122 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1123
1124 static char *unpack_byte (char *buf, int *value);
1125
1126 static char *pack_int (char *buf, int value);
1127
1128 static char *unpack_int (char *buf, int *value);
1129
1130 static char *unpack_string (char *src, char *dest, int length);
1131
1132 static char *pack_threadid (char *pkt, threadref * id);
1133
1134 static char *unpack_threadid (char *inbuf, threadref * id);
1135
1136 void int_to_threadref (threadref * id, int value);
1137
1138 static int threadref_to_int (threadref * ref);
1139
1140 static void copy_threadref (threadref * dest, threadref * src);
1141
1142 static int threadmatch (threadref * dest, threadref * src);
1143
1144 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1145
1146 static int remote_unpack_thread_info_response (char *pkt,
1147 threadref * expectedref,
1148 struct gdb_ext_thread_info
1149 *info);
1150
1151
1152 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1153 struct gdb_ext_thread_info *info);
1154
1155 static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1156 int selection,
1157 struct gdb_ext_thread_info *info);
1158
1159 static char *pack_threadlist_request (char *pkt, int startflag,
1160 int threadcount,
1161 threadref * nextthread);
1162
1163 static int parse_threadlist_response (char *pkt,
1164 int result_limit,
1165 threadref * original_echo,
1166 threadref * resultlist, int *doneflag);
1167
1168 static int remote_get_threadlist (int startflag,
1169 threadref * nextthread,
1170 int result_limit,
1171 int *done,
1172 int *result_count, threadref * threadlist);
1173
1174 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1175
1176 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1177 void *context, int looplimit);
1178
1179 static int remote_newthread_step (threadref * ref, void *context);
1180
1181 /* encode 64 bits in 16 chars of hex */
1182
1183 static const char hexchars[] = "0123456789abcdef";
1184
1185 static int
1186 ishex (int ch, int *val)
1187 {
1188 if ((ch >= 'a') && (ch <= 'f'))
1189 {
1190 *val = ch - 'a' + 10;
1191 return 1;
1192 }
1193 if ((ch >= 'A') && (ch <= 'F'))
1194 {
1195 *val = ch - 'A' + 10;
1196 return 1;
1197 }
1198 if ((ch >= '0') && (ch <= '9'))
1199 {
1200 *val = ch - '0';
1201 return 1;
1202 }
1203 return 0;
1204 }
1205
1206 static int
1207 stubhex (int ch)
1208 {
1209 if (ch >= 'a' && ch <= 'f')
1210 return ch - 'a' + 10;
1211 if (ch >= '0' && ch <= '9')
1212 return ch - '0';
1213 if (ch >= 'A' && ch <= 'F')
1214 return ch - 'A' + 10;
1215 return -1;
1216 }
1217
1218 static int
1219 stub_unpack_int (char *buff, int fieldlength)
1220 {
1221 int nibble;
1222 int retval = 0;
1223
1224 while (fieldlength)
1225 {
1226 nibble = stubhex (*buff++);
1227 retval |= nibble;
1228 fieldlength--;
1229 if (fieldlength)
1230 retval = retval << 4;
1231 }
1232 return retval;
1233 }
1234
1235 char *
1236 unpack_varlen_hex (char *buff, /* packet to parse */
1237 ULONGEST *result)
1238 {
1239 int nibble;
1240 int retval = 0;
1241
1242 while (ishex (*buff, &nibble))
1243 {
1244 buff++;
1245 retval = retval << 4;
1246 retval |= nibble & 0x0f;
1247 }
1248 *result = retval;
1249 return buff;
1250 }
1251
1252 static char *
1253 unpack_nibble (char *buf, int *val)
1254 {
1255 ishex (*buf++, val);
1256 return buf;
1257 }
1258
1259 static char *
1260 pack_nibble (char *buf, int nibble)
1261 {
1262 *buf++ = hexchars[(nibble & 0x0f)];
1263 return buf;
1264 }
1265
1266 static char *
1267 pack_hex_byte (char *pkt, int byte)
1268 {
1269 *pkt++ = hexchars[(byte >> 4) & 0xf];
1270 *pkt++ = hexchars[(byte & 0xf)];
1271 return pkt;
1272 }
1273
1274 static char *
1275 unpack_byte (char *buf, int *value)
1276 {
1277 *value = stub_unpack_int (buf, 2);
1278 return buf + 2;
1279 }
1280
1281 static char *
1282 pack_int (char *buf, int value)
1283 {
1284 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1285 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1286 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1287 buf = pack_hex_byte (buf, (value & 0xff));
1288 return buf;
1289 }
1290
1291 static char *
1292 unpack_int (char *buf, int *value)
1293 {
1294 *value = stub_unpack_int (buf, 8);
1295 return buf + 8;
1296 }
1297
1298 #if 0 /* currently unused, uncomment when needed */
1299 static char *pack_string (char *pkt, char *string);
1300
1301 static char *
1302 pack_string (char *pkt, char *string)
1303 {
1304 char ch;
1305 int len;
1306
1307 len = strlen (string);
1308 if (len > 200)
1309 len = 200; /* Bigger than most GDB packets, junk??? */
1310 pkt = pack_hex_byte (pkt, len);
1311 while (len-- > 0)
1312 {
1313 ch = *string++;
1314 if ((ch == '\0') || (ch == '#'))
1315 ch = '*'; /* Protect encapsulation */
1316 *pkt++ = ch;
1317 }
1318 return pkt;
1319 }
1320 #endif /* 0 (unused) */
1321
1322 static char *
1323 unpack_string (char *src, char *dest, int length)
1324 {
1325 while (length--)
1326 *dest++ = *src++;
1327 *dest = '\0';
1328 return src;
1329 }
1330
1331 static char *
1332 pack_threadid (char *pkt, threadref *id)
1333 {
1334 char *limit;
1335 unsigned char *altid;
1336
1337 altid = (unsigned char *) id;
1338 limit = pkt + BUF_THREAD_ID_SIZE;
1339 while (pkt < limit)
1340 pkt = pack_hex_byte (pkt, *altid++);
1341 return pkt;
1342 }
1343
1344
1345 static char *
1346 unpack_threadid (char *inbuf, threadref *id)
1347 {
1348 char *altref;
1349 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1350 int x, y;
1351
1352 altref = (char *) id;
1353
1354 while (inbuf < limit)
1355 {
1356 x = stubhex (*inbuf++);
1357 y = stubhex (*inbuf++);
1358 *altref++ = (x << 4) | y;
1359 }
1360 return inbuf;
1361 }
1362
1363 /* Externally, threadrefs are 64 bits but internally, they are still
1364 ints. This is due to a mismatch of specifications. We would like
1365 to use 64bit thread references internally. This is an adapter
1366 function. */
1367
1368 void
1369 int_to_threadref (threadref *id, int value)
1370 {
1371 unsigned char *scan;
1372
1373 scan = (unsigned char *) id;
1374 {
1375 int i = 4;
1376 while (i--)
1377 *scan++ = 0;
1378 }
1379 *scan++ = (value >> 24) & 0xff;
1380 *scan++ = (value >> 16) & 0xff;
1381 *scan++ = (value >> 8) & 0xff;
1382 *scan++ = (value & 0xff);
1383 }
1384
1385 static int
1386 threadref_to_int (threadref *ref)
1387 {
1388 int i, value = 0;
1389 unsigned char *scan;
1390
1391 scan = (char *) ref;
1392 scan += 4;
1393 i = 4;
1394 while (i-- > 0)
1395 value = (value << 8) | ((*scan++) & 0xff);
1396 return value;
1397 }
1398
1399 static void
1400 copy_threadref (threadref *dest, threadref *src)
1401 {
1402 int i;
1403 unsigned char *csrc, *cdest;
1404
1405 csrc = (unsigned char *) src;
1406 cdest = (unsigned char *) dest;
1407 i = 8;
1408 while (i--)
1409 *cdest++ = *csrc++;
1410 }
1411
1412 static int
1413 threadmatch (threadref *dest, threadref *src)
1414 {
1415 /* things are broken right now, so just assume we got a match */
1416 #if 0
1417 unsigned char *srcp, *destp;
1418 int i, result;
1419 srcp = (char *) src;
1420 destp = (char *) dest;
1421
1422 result = 1;
1423 while (i-- > 0)
1424 result &= (*srcp++ == *destp++) ? 1 : 0;
1425 return result;
1426 #endif
1427 return 1;
1428 }
1429
1430 /*
1431 threadid:1, # always request threadid
1432 context_exists:2,
1433 display:4,
1434 unique_name:8,
1435 more_display:16
1436 */
1437
1438 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1439
1440 static char *
1441 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1442 {
1443 *pkt++ = 'q'; /* Info Query */
1444 *pkt++ = 'P'; /* process or thread info */
1445 pkt = pack_int (pkt, mode); /* mode */
1446 pkt = pack_threadid (pkt, id); /* threadid */
1447 *pkt = '\0'; /* terminate */
1448 return pkt;
1449 }
1450
1451 /* These values tag the fields in a thread info response packet */
1452 /* Tagging the fields allows us to request specific fields and to
1453 add more fields as time goes by */
1454
1455 #define TAG_THREADID 1 /* Echo the thread identifier */
1456 #define TAG_EXISTS 2 /* Is this process defined enough to
1457 fetch registers and its stack */
1458 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1459 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1460 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1461 the process */
1462
1463 static int
1464 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1465 struct gdb_ext_thread_info *info)
1466 {
1467 struct remote_state *rs = get_remote_state ();
1468 int mask, length;
1469 unsigned int tag;
1470 threadref ref;
1471 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1472 int retval = 1;
1473
1474 /* info->threadid = 0; FIXME: implement zero_threadref */
1475 info->active = 0;
1476 info->display[0] = '\0';
1477 info->shortname[0] = '\0';
1478 info->more_display[0] = '\0';
1479
1480 /* Assume the characters indicating the packet type have been stripped */
1481 pkt = unpack_int (pkt, &mask); /* arg mask */
1482 pkt = unpack_threadid (pkt, &ref);
1483
1484 if (mask == 0)
1485 warning ("Incomplete response to threadinfo request\n");
1486 if (!threadmatch (&ref, expectedref))
1487 { /* This is an answer to a different request */
1488 warning ("ERROR RMT Thread info mismatch\n");
1489 return 0;
1490 }
1491 copy_threadref (&info->threadid, &ref);
1492
1493 /* Loop on tagged fields , try to bail if somthing goes wrong */
1494
1495 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1496 {
1497 pkt = unpack_int (pkt, &tag); /* tag */
1498 pkt = unpack_byte (pkt, &length); /* length */
1499 if (!(tag & mask)) /* tags out of synch with mask */
1500 {
1501 warning ("ERROR RMT: threadinfo tag mismatch\n");
1502 retval = 0;
1503 break;
1504 }
1505 if (tag == TAG_THREADID)
1506 {
1507 if (length != 16)
1508 {
1509 warning ("ERROR RMT: length of threadid is not 16\n");
1510 retval = 0;
1511 break;
1512 }
1513 pkt = unpack_threadid (pkt, &ref);
1514 mask = mask & ~TAG_THREADID;
1515 continue;
1516 }
1517 if (tag == TAG_EXISTS)
1518 {
1519 info->active = stub_unpack_int (pkt, length);
1520 pkt += length;
1521 mask = mask & ~(TAG_EXISTS);
1522 if (length > 8)
1523 {
1524 warning ("ERROR RMT: 'exists' length too long\n");
1525 retval = 0;
1526 break;
1527 }
1528 continue;
1529 }
1530 if (tag == TAG_THREADNAME)
1531 {
1532 pkt = unpack_string (pkt, &info->shortname[0], length);
1533 mask = mask & ~TAG_THREADNAME;
1534 continue;
1535 }
1536 if (tag == TAG_DISPLAY)
1537 {
1538 pkt = unpack_string (pkt, &info->display[0], length);
1539 mask = mask & ~TAG_DISPLAY;
1540 continue;
1541 }
1542 if (tag == TAG_MOREDISPLAY)
1543 {
1544 pkt = unpack_string (pkt, &info->more_display[0], length);
1545 mask = mask & ~TAG_MOREDISPLAY;
1546 continue;
1547 }
1548 warning ("ERROR RMT: unknown thread info tag\n");
1549 break; /* Not a tag we know about */
1550 }
1551 return retval;
1552 }
1553
1554 static int
1555 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1556 struct gdb_ext_thread_info *info)
1557 {
1558 struct remote_state *rs = get_remote_state ();
1559 int result;
1560 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1561
1562 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1563 putpkt (threadinfo_pkt);
1564 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1565 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1566 info);
1567 return result;
1568 }
1569
1570 /* Unfortunately, 61 bit thread-ids are bigger than the internal
1571 representation of a threadid. */
1572
1573 static int
1574 adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1575 struct gdb_ext_thread_info *info)
1576 {
1577 threadref lclref;
1578
1579 int_to_threadref (&lclref, *ref);
1580 return remote_get_threadinfo (&lclref, selection, info);
1581 }
1582
1583 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1584
1585 static char *
1586 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1587 threadref *nextthread)
1588 {
1589 *pkt++ = 'q'; /* info query packet */
1590 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1591 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1592 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1593 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1594 *pkt = '\0';
1595 return pkt;
1596 }
1597
1598 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1599
1600 static int
1601 parse_threadlist_response (char *pkt, int result_limit,
1602 threadref *original_echo, threadref *resultlist,
1603 int *doneflag)
1604 {
1605 struct remote_state *rs = get_remote_state ();
1606 char *limit;
1607 int count, resultcount, done;
1608
1609 resultcount = 0;
1610 /* Assume the 'q' and 'M chars have been stripped. */
1611 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1612 pkt = unpack_byte (pkt, &count); /* count field */
1613 pkt = unpack_nibble (pkt, &done);
1614 /* The first threadid is the argument threadid. */
1615 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1616 while ((count-- > 0) && (pkt < limit))
1617 {
1618 pkt = unpack_threadid (pkt, resultlist++);
1619 if (resultcount++ >= result_limit)
1620 break;
1621 }
1622 if (doneflag)
1623 *doneflag = done;
1624 return resultcount;
1625 }
1626
1627 static int
1628 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1629 int *done, int *result_count, threadref *threadlist)
1630 {
1631 struct remote_state *rs = get_remote_state ();
1632 static threadref echo_nextthread;
1633 char *threadlist_packet = alloca (rs->remote_packet_size);
1634 char *t_response = alloca (rs->remote_packet_size);
1635 int result = 1;
1636
1637 /* Trancate result limit to be smaller than the packet size */
1638 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1639 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1640
1641 pack_threadlist_request (threadlist_packet,
1642 startflag, result_limit, nextthread);
1643 putpkt (threadlist_packet);
1644 getpkt (t_response, (rs->remote_packet_size), 0);
1645
1646 *result_count =
1647 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1648 threadlist, done);
1649
1650 if (!threadmatch (&echo_nextthread, nextthread))
1651 {
1652 /* FIXME: This is a good reason to drop the packet */
1653 /* Possably, there is a duplicate response */
1654 /* Possabilities :
1655 retransmit immediatly - race conditions
1656 retransmit after timeout - yes
1657 exit
1658 wait for packet, then exit
1659 */
1660 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1661 return 0; /* I choose simply exiting */
1662 }
1663 if (*result_count <= 0)
1664 {
1665 if (*done != 1)
1666 {
1667 warning ("RMT ERROR : failed to get remote thread list\n");
1668 result = 0;
1669 }
1670 return result; /* break; */
1671 }
1672 if (*result_count > result_limit)
1673 {
1674 *result_count = 0;
1675 warning ("RMT ERROR: threadlist response longer than requested\n");
1676 return 0;
1677 }
1678 return result;
1679 }
1680
1681 /* This is the interface between remote and threads, remotes upper interface */
1682
1683 /* remote_find_new_threads retrieves the thread list and for each
1684 thread in the list, looks up the thread in GDB's internal list,
1685 ading the thread if it does not already exist. This involves
1686 getting partial thread lists from the remote target so, polling the
1687 quit_flag is required. */
1688
1689
1690 /* About this many threadisds fit in a packet. */
1691
1692 #define MAXTHREADLISTRESULTS 32
1693
1694 static int
1695 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1696 int looplimit)
1697 {
1698 int done, i, result_count;
1699 int startflag = 1;
1700 int result = 1;
1701 int loopcount = 0;
1702 static threadref nextthread;
1703 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1704
1705 done = 0;
1706 while (!done)
1707 {
1708 if (loopcount++ > looplimit)
1709 {
1710 result = 0;
1711 warning ("Remote fetch threadlist -infinite loop-\n");
1712 break;
1713 }
1714 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1715 &done, &result_count, resultthreadlist))
1716 {
1717 result = 0;
1718 break;
1719 }
1720 /* clear for later iterations */
1721 startflag = 0;
1722 /* Setup to resume next batch of thread references, set nextthread. */
1723 if (result_count >= 1)
1724 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1725 i = 0;
1726 while (result_count--)
1727 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1728 break;
1729 }
1730 return result;
1731 }
1732
1733 static int
1734 remote_newthread_step (threadref *ref, void *context)
1735 {
1736 ptid_t ptid;
1737
1738 ptid = pid_to_ptid (threadref_to_int (ref));
1739
1740 if (!in_thread_list (ptid))
1741 add_thread (ptid);
1742 return 1; /* continue iterator */
1743 }
1744
1745 #define CRAZY_MAX_THREADS 1000
1746
1747 static ptid_t
1748 remote_current_thread (ptid_t oldpid)
1749 {
1750 struct remote_state *rs = get_remote_state ();
1751 char *buf = alloca (rs->remote_packet_size);
1752
1753 putpkt ("qC");
1754 getpkt (buf, (rs->remote_packet_size), 0);
1755 if (buf[0] == 'Q' && buf[1] == 'C')
1756 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1757 else
1758 return oldpid;
1759 }
1760
1761 /* Find new threads for info threads command.
1762 * Original version, using John Metzler's thread protocol.
1763 */
1764
1765 static void
1766 remote_find_new_threads (void)
1767 {
1768 remote_threadlist_iterator (remote_newthread_step, 0,
1769 CRAZY_MAX_THREADS);
1770 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1771 inferior_ptid = remote_current_thread (inferior_ptid);
1772 }
1773
1774 /*
1775 * Find all threads for info threads command.
1776 * Uses new thread protocol contributed by Cisco.
1777 * Falls back and attempts to use the older method (above)
1778 * if the target doesn't respond to the new method.
1779 */
1780
1781 static void
1782 remote_threads_info (void)
1783 {
1784 struct remote_state *rs = get_remote_state ();
1785 char *buf = alloca (rs->remote_packet_size);
1786 char *bufp;
1787 int tid;
1788
1789 if (remote_desc == 0) /* paranoia */
1790 error ("Command can only be used when connected to the remote target.");
1791
1792 if (use_threadinfo_query)
1793 {
1794 putpkt ("qfThreadInfo");
1795 bufp = buf;
1796 getpkt (bufp, (rs->remote_packet_size), 0);
1797 if (bufp[0] != '\0') /* q packet recognized */
1798 {
1799 while (*bufp++ == 'm') /* reply contains one or more TID */
1800 {
1801 do
1802 {
1803 tid = strtol (bufp, &bufp, 16);
1804 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1805 add_thread (pid_to_ptid (tid));
1806 }
1807 while (*bufp++ == ','); /* comma-separated list */
1808 putpkt ("qsThreadInfo");
1809 bufp = buf;
1810 getpkt (bufp, (rs->remote_packet_size), 0);
1811 }
1812 return; /* done */
1813 }
1814 }
1815
1816 /* Else fall back to old method based on jmetzler protocol. */
1817 use_threadinfo_query = 0;
1818 remote_find_new_threads ();
1819 return;
1820 }
1821
1822 /*
1823 * Collect a descriptive string about the given thread.
1824 * The target may say anything it wants to about the thread
1825 * (typically info about its blocked / runnable state, name, etc.).
1826 * This string will appear in the info threads display.
1827 *
1828 * Optional: targets are not required to implement this function.
1829 */
1830
1831 static char *
1832 remote_threads_extra_info (struct thread_info *tp)
1833 {
1834 struct remote_state *rs = get_remote_state ();
1835 int result;
1836 int set;
1837 threadref id;
1838 struct gdb_ext_thread_info threadinfo;
1839 static char display_buf[100]; /* arbitrary... */
1840 char *bufp = alloca (rs->remote_packet_size);
1841 int n = 0; /* position in display_buf */
1842
1843 if (remote_desc == 0) /* paranoia */
1844 internal_error (__FILE__, __LINE__,
1845 "remote_threads_extra_info");
1846
1847 if (use_threadextra_query)
1848 {
1849 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1850 putpkt (bufp);
1851 getpkt (bufp, (rs->remote_packet_size), 0);
1852 if (bufp[0] != 0)
1853 {
1854 n = min (strlen (bufp) / 2, sizeof (display_buf));
1855 result = hex2bin (bufp, display_buf, n);
1856 display_buf [result] = '\0';
1857 return display_buf;
1858 }
1859 }
1860
1861 /* If the above query fails, fall back to the old method. */
1862 use_threadextra_query = 0;
1863 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1864 | TAG_MOREDISPLAY | TAG_DISPLAY;
1865 int_to_threadref (&id, PIDGET (tp->ptid));
1866 if (remote_get_threadinfo (&id, set, &threadinfo))
1867 if (threadinfo.active)
1868 {
1869 if (*threadinfo.shortname)
1870 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1871 if (*threadinfo.display)
1872 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1873 if (*threadinfo.more_display)
1874 n += sprintf(&display_buf[n], " Priority: %s",
1875 threadinfo.more_display);
1876
1877 if (n > 0)
1878 {
1879 /* for purely cosmetic reasons, clear up trailing commas */
1880 if (',' == display_buf[n-1])
1881 display_buf[n-1] = ' ';
1882 return display_buf;
1883 }
1884 }
1885 return NULL;
1886 }
1887
1888 \f
1889
1890 /* Restart the remote side; this is an extended protocol operation. */
1891
1892 static void
1893 extended_remote_restart (void)
1894 {
1895 struct remote_state *rs = get_remote_state ();
1896 char *buf = alloca (rs->remote_packet_size);
1897
1898 /* Send the restart command; for reasons I don't understand the
1899 remote side really expects a number after the "R". */
1900 buf[0] = 'R';
1901 sprintf (&buf[1], "%x", 0);
1902 putpkt (buf);
1903
1904 /* Now query for status so this looks just like we restarted
1905 gdbserver from scratch. */
1906 putpkt ("?");
1907 getpkt (buf, (rs->remote_packet_size), 0);
1908 }
1909 \f
1910 /* Clean up connection to a remote debugger. */
1911
1912 /* ARGSUSED */
1913 static void
1914 remote_close (int quitting)
1915 {
1916 if (remote_desc)
1917 serial_close (remote_desc);
1918 remote_desc = NULL;
1919 }
1920
1921 /* Query the remote side for the text, data and bss offsets. */
1922
1923 static void
1924 get_offsets (void)
1925 {
1926 struct remote_state *rs = get_remote_state ();
1927 char *buf = alloca (rs->remote_packet_size);
1928 char *ptr;
1929 int lose;
1930 CORE_ADDR text_addr, data_addr, bss_addr;
1931 struct section_offsets *offs;
1932
1933 putpkt ("qOffsets");
1934
1935 getpkt (buf, (rs->remote_packet_size), 0);
1936
1937 if (buf[0] == '\000')
1938 return; /* Return silently. Stub doesn't support
1939 this command. */
1940 if (buf[0] == 'E')
1941 {
1942 warning ("Remote failure reply: %s", buf);
1943 return;
1944 }
1945
1946 /* Pick up each field in turn. This used to be done with scanf, but
1947 scanf will make trouble if CORE_ADDR size doesn't match
1948 conversion directives correctly. The following code will work
1949 with any size of CORE_ADDR. */
1950 text_addr = data_addr = bss_addr = 0;
1951 ptr = buf;
1952 lose = 0;
1953
1954 if (strncmp (ptr, "Text=", 5) == 0)
1955 {
1956 ptr += 5;
1957 /* Don't use strtol, could lose on big values. */
1958 while (*ptr && *ptr != ';')
1959 text_addr = (text_addr << 4) + fromhex (*ptr++);
1960 }
1961 else
1962 lose = 1;
1963
1964 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1965 {
1966 ptr += 6;
1967 while (*ptr && *ptr != ';')
1968 data_addr = (data_addr << 4) + fromhex (*ptr++);
1969 }
1970 else
1971 lose = 1;
1972
1973 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1974 {
1975 ptr += 5;
1976 while (*ptr && *ptr != ';')
1977 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1978 }
1979 else
1980 lose = 1;
1981
1982 if (lose)
1983 error ("Malformed response to offset query, %s", buf);
1984
1985 if (symfile_objfile == NULL)
1986 return;
1987
1988 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1989 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1990
1991 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1992
1993 /* This is a temporary kludge to force data and bss to use the same offsets
1994 because that's what nlmconv does now. The real solution requires changes
1995 to the stub and remote.c that I don't have time to do right now. */
1996
1997 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1998 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1999
2000 objfile_relocate (symfile_objfile, offs);
2001 }
2002
2003 /*
2004 * Cisco version of section offsets:
2005 *
2006 * Instead of having GDB query the target for the section offsets,
2007 * Cisco lets the target volunteer the information! It's also in
2008 * a different format, so here are the functions that will decode
2009 * a section offset packet from a Cisco target.
2010 */
2011
2012 /*
2013 * Function: remote_cisco_section_offsets
2014 *
2015 * Returns: zero for success, non-zero for failure
2016 */
2017
2018 static int
2019 remote_cisco_section_offsets (bfd_vma text_addr,
2020 bfd_vma data_addr,
2021 bfd_vma bss_addr,
2022 bfd_signed_vma *text_offs,
2023 bfd_signed_vma *data_offs,
2024 bfd_signed_vma *bss_offs)
2025 {
2026 bfd_vma text_base, data_base, bss_base;
2027 struct minimal_symbol *start;
2028 asection *sect;
2029 bfd *abfd;
2030 int len;
2031
2032 if (symfile_objfile == NULL)
2033 return -1; /* no can do nothin' */
2034
2035 start = lookup_minimal_symbol ("_start", NULL, NULL);
2036 if (start == NULL)
2037 return -1; /* Can't find "_start" symbol */
2038
2039 data_base = bss_base = 0;
2040 text_base = SYMBOL_VALUE_ADDRESS (start);
2041
2042 abfd = symfile_objfile->obfd;
2043 for (sect = abfd->sections;
2044 sect != 0;
2045 sect = sect->next)
2046 {
2047 const char *p = bfd_get_section_name (abfd, sect);
2048 len = strlen (p);
2049 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
2050 if (data_base == 0 ||
2051 data_base > bfd_get_section_vma (abfd, sect))
2052 data_base = bfd_get_section_vma (abfd, sect);
2053 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
2054 if (bss_base == 0 ||
2055 bss_base > bfd_get_section_vma (abfd, sect))
2056 bss_base = bfd_get_section_vma (abfd, sect);
2057 }
2058 *text_offs = text_addr - text_base;
2059 *data_offs = data_addr - data_base;
2060 *bss_offs = bss_addr - bss_base;
2061 if (remote_debug)
2062 {
2063 char tmp[128];
2064
2065 sprintf (tmp, "VMA: text = 0x");
2066 sprintf_vma (tmp + strlen (tmp), text_addr);
2067 sprintf (tmp + strlen (tmp), " data = 0x");
2068 sprintf_vma (tmp + strlen (tmp), data_addr);
2069 sprintf (tmp + strlen (tmp), " bss = 0x");
2070 sprintf_vma (tmp + strlen (tmp), bss_addr);
2071 fprintf_filtered (gdb_stdlog, tmp);
2072 fprintf_filtered (gdb_stdlog,
2073 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
2074 paddr_nz (*text_offs),
2075 paddr_nz (*data_offs),
2076 paddr_nz (*bss_offs));
2077 }
2078
2079 return 0;
2080 }
2081
2082 /*
2083 * Function: remote_cisco_objfile_relocate
2084 *
2085 * Relocate the symbol file for a remote target.
2086 */
2087
2088 void
2089 remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
2090 bfd_signed_vma bss_off)
2091 {
2092 struct section_offsets *offs;
2093
2094 if (text_off != 0 || data_off != 0 || bss_off != 0)
2095 {
2096 /* FIXME: This code assumes gdb-stabs.h is being used; it's
2097 broken for xcoff, dwarf, sdb-coff, etc. But there is no
2098 simple canonical representation for this stuff. */
2099
2100 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
2101 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
2102
2103 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
2104 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
2105 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
2106
2107 /* First call the standard objfile_relocate. */
2108 objfile_relocate (symfile_objfile, offs);
2109
2110 /* Now we need to fix up the section entries already attached to
2111 the exec target. These entries will control memory transfers
2112 from the exec file. */
2113
2114 exec_set_section_offsets (text_off, data_off, bss_off);
2115 }
2116 }
2117
2118 /* Stub for catch_errors. */
2119
2120 static int
2121 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
2122 {
2123 start_remote (); /* Initialize gdb process mechanisms */
2124 /* NOTE: Return something >=0. A -ve value is reserved for
2125 catch_exceptions. */
2126 return 1;
2127 }
2128
2129 static int
2130 remote_start_remote (struct ui_out *uiout, void *dummy)
2131 {
2132 immediate_quit++; /* Allow user to interrupt it */
2133
2134 /* Ack any packet which the remote side has already sent. */
2135 serial_write (remote_desc, "+", 1);
2136
2137 /* Let the stub know that we want it to return the thread. */
2138 set_thread (-1, 0);
2139
2140 inferior_ptid = remote_current_thread (inferior_ptid);
2141
2142 get_offsets (); /* Get text, data & bss offsets */
2143
2144 putpkt ("?"); /* initiate a query from remote machine */
2145 immediate_quit--;
2146
2147 /* NOTE: See comment above in remote_start_remote_dummy(). This
2148 function returns something >=0. */
2149 return remote_start_remote_dummy (uiout, dummy);
2150 }
2151
2152 /* Open a connection to a remote debugger.
2153 NAME is the filename used for communication. */
2154
2155 static void
2156 remote_open (char *name, int from_tty)
2157 {
2158 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2159 }
2160
2161 /* Just like remote_open, but with asynchronous support. */
2162 static void
2163 remote_async_open (char *name, int from_tty)
2164 {
2165 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2166 }
2167
2168 /* Open a connection to a remote debugger using the extended
2169 remote gdb protocol. NAME is the filename used for communication. */
2170
2171 static void
2172 extended_remote_open (char *name, int from_tty)
2173 {
2174 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2175 0 /* async_p */);
2176 }
2177
2178 /* Just like extended_remote_open, but with asynchronous support. */
2179 static void
2180 extended_remote_async_open (char *name, int from_tty)
2181 {
2182 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2183 1 /*extended_p */, 1 /* async_p */);
2184 }
2185
2186 /* Generic code for opening a connection to a remote target. */
2187
2188 static void
2189 init_all_packet_configs (void)
2190 {
2191 int i;
2192 update_packet_config (&remote_protocol_e);
2193 update_packet_config (&remote_protocol_E);
2194 update_packet_config (&remote_protocol_P);
2195 update_packet_config (&remote_protocol_qSymbol);
2196 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2197 update_packet_config (&remote_protocol_Z[i]);
2198 /* Force remote_write_bytes to check whether target supports binary
2199 downloading. */
2200 update_packet_config (&remote_protocol_binary_download);
2201 }
2202
2203 /* Symbol look-up. */
2204
2205 static void
2206 remote_check_symbols (struct objfile *objfile)
2207 {
2208 struct remote_state *rs = get_remote_state ();
2209 char *msg, *reply, *tmp;
2210 struct minimal_symbol *sym;
2211 int end;
2212
2213 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2214 return;
2215
2216 msg = alloca (rs->remote_packet_size);
2217 reply = alloca (rs->remote_packet_size);
2218
2219 /* Invite target to request symbol lookups. */
2220
2221 putpkt ("qSymbol::");
2222 getpkt (reply, (rs->remote_packet_size), 0);
2223 packet_ok (reply, &remote_protocol_qSymbol);
2224
2225 while (strncmp (reply, "qSymbol:", 8) == 0)
2226 {
2227 tmp = &reply[8];
2228 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2229 msg[end] = '\0';
2230 sym = lookup_minimal_symbol (msg, NULL, NULL);
2231 if (sym == NULL)
2232 sprintf (msg, "qSymbol::%s", &reply[8]);
2233 else
2234 sprintf (msg, "qSymbol:%s:%s",
2235 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2236 &reply[8]);
2237 putpkt (msg);
2238 getpkt (reply, (rs->remote_packet_size), 0);
2239 }
2240 }
2241
2242 static struct serial *
2243 remote_serial_open (char *name)
2244 {
2245 static int udp_warning = 0;
2246
2247 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2248 of in ser-tcp.c, because it is the remote protocol assuming that the
2249 serial connection is reliable and not the serial connection promising
2250 to be. */
2251 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2252 {
2253 warning ("The remote protocol may be unreliable over UDP.");
2254 warning ("Some events may be lost, rendering further debugging "
2255 "impossible.");
2256 udp_warning = 1;
2257 }
2258
2259 return serial_open (name);
2260 }
2261
2262 static void
2263 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2264 int extended_p, int async_p)
2265 {
2266 int ex;
2267 struct remote_state *rs = get_remote_state ();
2268 if (name == 0)
2269 error ("To open a remote debug connection, you need to specify what\n"
2270 "serial device is attached to the remote system\n"
2271 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2272
2273 /* See FIXME above */
2274 if (!async_p)
2275 wait_forever_enabled_p = 1;
2276
2277 target_preopen (from_tty);
2278
2279 unpush_target (target);
2280
2281 remote_desc = remote_serial_open (name);
2282 if (!remote_desc)
2283 perror_with_name (name);
2284
2285 if (baud_rate != -1)
2286 {
2287 if (serial_setbaudrate (remote_desc, baud_rate))
2288 {
2289 serial_close (remote_desc);
2290 perror_with_name (name);
2291 }
2292 }
2293
2294 serial_raw (remote_desc);
2295
2296 /* If there is something sitting in the buffer we might take it as a
2297 response to a command, which would be bad. */
2298 serial_flush_input (remote_desc);
2299
2300 if (from_tty)
2301 {
2302 puts_filtered ("Remote debugging using ");
2303 puts_filtered (name);
2304 puts_filtered ("\n");
2305 }
2306 push_target (target); /* Switch to using remote target now */
2307
2308 init_all_packet_configs ();
2309
2310 general_thread = -2;
2311 continue_thread = -2;
2312
2313 /* Probe for ability to use "ThreadInfo" query, as required. */
2314 use_threadinfo_query = 1;
2315 use_threadextra_query = 1;
2316
2317 /* Without this, some commands which require an active target (such
2318 as kill) won't work. This variable serves (at least) double duty
2319 as both the pid of the target process (if it has such), and as a
2320 flag indicating that a target is active. These functions should
2321 be split out into seperate variables, especially since GDB will
2322 someday have a notion of debugging several processes. */
2323
2324 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2325
2326 if (async_p)
2327 {
2328 /* With this target we start out by owning the terminal. */
2329 remote_async_terminal_ours_p = 1;
2330
2331 /* FIXME: cagney/1999-09-23: During the initial connection it is
2332 assumed that the target is already ready and able to respond to
2333 requests. Unfortunately remote_start_remote() eventually calls
2334 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2335 around this. Eventually a mechanism that allows
2336 wait_for_inferior() to expect/get timeouts will be
2337 implemented. */
2338 wait_forever_enabled_p = 0;
2339 }
2340
2341 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2342 /* First delete any symbols previously loaded from shared libraries. */
2343 no_shared_libraries (NULL, 0);
2344 #endif
2345
2346 /* Start the remote connection. If error() or QUIT, discard this
2347 target (we'd otherwise be in an inconsistent state) and then
2348 propogate the error on up the exception chain. This ensures that
2349 the caller doesn't stumble along blindly assuming that the
2350 function succeeded. The CLI doesn't have this problem but other
2351 UI's, such as MI do.
2352
2353 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2354 this function should return an error indication letting the
2355 caller restore the previous state. Unfortunatly the command
2356 ``target remote'' is directly wired to this function making that
2357 impossible. On a positive note, the CLI side of this problem has
2358 been fixed - the function set_cmd_context() makes it possible for
2359 all the ``target ....'' commands to share a common callback
2360 function. See cli-dump.c. */
2361 ex = catch_exceptions (uiout,
2362 remote_start_remote, NULL,
2363 "Couldn't establish connection to remote"
2364 " target\n",
2365 RETURN_MASK_ALL);
2366 if (ex < 0)
2367 {
2368 pop_target ();
2369 if (async_p)
2370 wait_forever_enabled_p = 1;
2371 throw_exception (ex);
2372 }
2373
2374 if (async_p)
2375 wait_forever_enabled_p = 1;
2376
2377 if (extended_p)
2378 {
2379 /* Tell the remote that we are using the extended protocol. */
2380 char *buf = alloca (rs->remote_packet_size);
2381 putpkt ("!");
2382 getpkt (buf, (rs->remote_packet_size), 0);
2383 }
2384 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2385 /* FIXME: need a master target_open vector from which all
2386 remote_opens can be called, so that stuff like this can
2387 go there. Failing that, the following code must be copied
2388 to the open function for any remote target that wants to
2389 support svr4 shared libraries. */
2390
2391 /* Set up to detect and load shared libraries. */
2392 if (exec_bfd) /* No use without an exec file. */
2393 {
2394 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2395 remote_check_symbols (symfile_objfile);
2396 }
2397 #endif
2398 }
2399
2400 /* This takes a program previously attached to and detaches it. After
2401 this is done, GDB can be used to debug some other program. We
2402 better not have left any breakpoints in the target program or it'll
2403 die when it hits one. */
2404
2405 static void
2406 remote_detach (char *args, int from_tty)
2407 {
2408 struct remote_state *rs = get_remote_state ();
2409 char *buf = alloca (rs->remote_packet_size);
2410
2411 if (args)
2412 error ("Argument given to \"detach\" when remotely debugging.");
2413
2414 /* Tell the remote target to detach. */
2415 strcpy (buf, "D");
2416 remote_send (buf, (rs->remote_packet_size));
2417
2418 target_mourn_inferior ();
2419 if (from_tty)
2420 puts_filtered ("Ending remote debugging.\n");
2421
2422 }
2423
2424 /* Same as remote_detach, but with async support. */
2425 static void
2426 remote_async_detach (char *args, int from_tty)
2427 {
2428 struct remote_state *rs = get_remote_state ();
2429 char *buf = alloca (rs->remote_packet_size);
2430
2431 if (args)
2432 error ("Argument given to \"detach\" when remotely debugging.");
2433
2434 /* Tell the remote target to detach. */
2435 strcpy (buf, "D");
2436 remote_send (buf, (rs->remote_packet_size));
2437
2438 /* Unregister the file descriptor from the event loop. */
2439 if (target_is_async_p ())
2440 serial_async (remote_desc, NULL, 0);
2441
2442 target_mourn_inferior ();
2443 if (from_tty)
2444 puts_filtered ("Ending remote debugging.\n");
2445 }
2446
2447 /* Convert hex digit A to a number. */
2448
2449 static int
2450 fromhex (int a)
2451 {
2452 if (a >= '0' && a <= '9')
2453 return a - '0';
2454 else if (a >= 'a' && a <= 'f')
2455 return a - 'a' + 10;
2456 else if (a >= 'A' && a <= 'F')
2457 return a - 'A' + 10;
2458 else
2459 error ("Reply contains invalid hex digit %d", a);
2460 }
2461
2462 static int
2463 hex2bin (const char *hex, char *bin, int count)
2464 {
2465 int i;
2466
2467 for (i = 0; i < count; i++)
2468 {
2469 if (hex[0] == 0 || hex[1] == 0)
2470 {
2471 /* Hex string is short, or of uneven length.
2472 Return the count that has been converted so far. */
2473 return i;
2474 }
2475 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2476 hex += 2;
2477 }
2478 return i;
2479 }
2480
2481 /* Convert number NIB to a hex digit. */
2482
2483 static int
2484 tohex (int nib)
2485 {
2486 if (nib < 10)
2487 return '0' + nib;
2488 else
2489 return 'a' + nib - 10;
2490 }
2491
2492 static int
2493 bin2hex (const char *bin, char *hex, int count)
2494 {
2495 int i;
2496 /* May use a length, or a nul-terminated string as input. */
2497 if (count == 0)
2498 count = strlen (bin);
2499
2500 for (i = 0; i < count; i++)
2501 {
2502 *hex++ = tohex ((*bin >> 4) & 0xf);
2503 *hex++ = tohex (*bin++ & 0xf);
2504 }
2505 *hex = 0;
2506 return i;
2507 }
2508 \f
2509 /* Tell the remote machine to resume. */
2510
2511 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2512
2513 static int last_sent_step;
2514
2515 static void
2516 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2517 {
2518 struct remote_state *rs = get_remote_state ();
2519 char *buf = alloca (rs->remote_packet_size);
2520 int pid = PIDGET (ptid);
2521 char *p;
2522
2523 if (pid == -1)
2524 set_thread (0, 0); /* run any thread */
2525 else
2526 set_thread (pid, 0); /* run this thread */
2527
2528 last_sent_signal = siggnal;
2529 last_sent_step = step;
2530
2531 /* A hook for when we need to do something at the last moment before
2532 resumption. */
2533 if (target_resume_hook)
2534 (*target_resume_hook) ();
2535
2536
2537 /* The s/S/c/C packets do not return status. So if the target does
2538 not support the S or C packets, the debug agent returns an empty
2539 string which is detected in remote_wait(). This protocol defect
2540 is fixed in the e/E packets. */
2541
2542 if (step && step_range_end)
2543 {
2544 /* If the target does not support the 'E' packet, we try the 'S'
2545 packet. Ideally we would fall back to the 'e' packet if that
2546 too is not supported. But that would require another copy of
2547 the code to issue the 'e' packet (and fall back to 's' if not
2548 supported) in remote_wait(). */
2549
2550 if (siggnal != TARGET_SIGNAL_0)
2551 {
2552 if (remote_protocol_E.support != PACKET_DISABLE)
2553 {
2554 p = buf;
2555 *p++ = 'E';
2556 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2557 *p++ = tohex (((int) siggnal) & 0xf);
2558 *p++ = ',';
2559 p += hexnumstr (p, (ULONGEST) step_range_start);
2560 *p++ = ',';
2561 p += hexnumstr (p, (ULONGEST) step_range_end);
2562 *p++ = 0;
2563
2564 putpkt (buf);
2565 getpkt (buf, (rs->remote_packet_size), 0);
2566
2567 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2568 return;
2569 }
2570 }
2571 else
2572 {
2573 if (remote_protocol_e.support != PACKET_DISABLE)
2574 {
2575 p = buf;
2576 *p++ = 'e';
2577 p += hexnumstr (p, (ULONGEST) step_range_start);
2578 *p++ = ',';
2579 p += hexnumstr (p, (ULONGEST) step_range_end);
2580 *p++ = 0;
2581
2582 putpkt (buf);
2583 getpkt (buf, (rs->remote_packet_size), 0);
2584
2585 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2586 return;
2587 }
2588 }
2589 }
2590
2591 if (siggnal != TARGET_SIGNAL_0)
2592 {
2593 buf[0] = step ? 'S' : 'C';
2594 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2595 buf[2] = tohex (((int) siggnal) & 0xf);
2596 buf[3] = '\0';
2597 }
2598 else
2599 strcpy (buf, step ? "s" : "c");
2600
2601 putpkt (buf);
2602 }
2603
2604 /* Same as remote_resume, but with async support. */
2605 static void
2606 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2607 {
2608 struct remote_state *rs = get_remote_state ();
2609 char *buf = alloca (rs->remote_packet_size);
2610 int pid = PIDGET (ptid);
2611 char *p;
2612
2613 if (pid == -1)
2614 set_thread (0, 0); /* run any thread */
2615 else
2616 set_thread (pid, 0); /* run this thread */
2617
2618 last_sent_signal = siggnal;
2619 last_sent_step = step;
2620
2621 /* A hook for when we need to do something at the last moment before
2622 resumption. */
2623 if (target_resume_hook)
2624 (*target_resume_hook) ();
2625
2626 /* The s/S/c/C packets do not return status. So if the target does
2627 not support the S or C packets, the debug agent returns an empty
2628 string which is detected in remote_wait(). This protocol defect
2629 is fixed in the e/E packets. */
2630
2631 if (step && step_range_end)
2632 {
2633 /* If the target does not support the 'E' packet, we try the 'S'
2634 packet. Ideally we would fall back to the 'e' packet if that
2635 too is not supported. But that would require another copy of
2636 the code to issue the 'e' packet (and fall back to 's' if not
2637 supported) in remote_wait(). */
2638
2639 if (siggnal != TARGET_SIGNAL_0)
2640 {
2641 if (remote_protocol_E.support != PACKET_DISABLE)
2642 {
2643 p = buf;
2644 *p++ = 'E';
2645 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2646 *p++ = tohex (((int) siggnal) & 0xf);
2647 *p++ = ',';
2648 p += hexnumstr (p, (ULONGEST) step_range_start);
2649 *p++ = ',';
2650 p += hexnumstr (p, (ULONGEST) step_range_end);
2651 *p++ = 0;
2652
2653 putpkt (buf);
2654 getpkt (buf, (rs->remote_packet_size), 0);
2655
2656 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2657 goto register_event_loop;
2658 }
2659 }
2660 else
2661 {
2662 if (remote_protocol_e.support != PACKET_DISABLE)
2663 {
2664 p = buf;
2665 *p++ = 'e';
2666 p += hexnumstr (p, (ULONGEST) step_range_start);
2667 *p++ = ',';
2668 p += hexnumstr (p, (ULONGEST) step_range_end);
2669 *p++ = 0;
2670
2671 putpkt (buf);
2672 getpkt (buf, (rs->remote_packet_size), 0);
2673
2674 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2675 goto register_event_loop;
2676 }
2677 }
2678 }
2679
2680 if (siggnal != TARGET_SIGNAL_0)
2681 {
2682 buf[0] = step ? 'S' : 'C';
2683 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2684 buf[2] = tohex ((int) siggnal & 0xf);
2685 buf[3] = '\0';
2686 }
2687 else
2688 strcpy (buf, step ? "s" : "c");
2689
2690 putpkt (buf);
2691
2692 register_event_loop:
2693 /* We are about to start executing the inferior, let's register it
2694 with the event loop. NOTE: this is the one place where all the
2695 execution commands end up. We could alternatively do this in each
2696 of the execution commands in infcmd.c.*/
2697 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2698 into infcmd.c in order to allow inferior function calls to work
2699 NOT asynchronously. */
2700 if (event_loop_p && target_can_async_p ())
2701 target_async (inferior_event_handler, 0);
2702 /* Tell the world that the target is now executing. */
2703 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2704 this? Instead, should the client of target just assume (for
2705 async targets) that the target is going to start executing? Is
2706 this information already found in the continuation block? */
2707 if (target_is_async_p ())
2708 target_executing = 1;
2709 }
2710 \f
2711
2712 /* Set up the signal handler for SIGINT, while the target is
2713 executing, ovewriting the 'regular' SIGINT signal handler. */
2714 static void
2715 initialize_sigint_signal_handler (void)
2716 {
2717 sigint_remote_token =
2718 create_async_signal_handler (async_remote_interrupt, NULL);
2719 signal (SIGINT, handle_remote_sigint);
2720 }
2721
2722 /* Signal handler for SIGINT, while the target is executing. */
2723 static void
2724 handle_remote_sigint (int sig)
2725 {
2726 signal (sig, handle_remote_sigint_twice);
2727 sigint_remote_twice_token =
2728 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2729 mark_async_signal_handler_wrapper (sigint_remote_token);
2730 }
2731
2732 /* Signal handler for SIGINT, installed after SIGINT has already been
2733 sent once. It will take effect the second time that the user sends
2734 a ^C. */
2735 static void
2736 handle_remote_sigint_twice (int sig)
2737 {
2738 signal (sig, handle_sigint);
2739 sigint_remote_twice_token =
2740 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2741 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2742 }
2743
2744 /* Perform the real interruption of the target execution, in response
2745 to a ^C. */
2746 static void
2747 async_remote_interrupt (gdb_client_data arg)
2748 {
2749 if (remote_debug)
2750 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2751
2752 target_stop ();
2753 }
2754
2755 /* Perform interrupt, if the first attempt did not succeed. Just give
2756 up on the target alltogether. */
2757 void
2758 async_remote_interrupt_twice (gdb_client_data arg)
2759 {
2760 if (remote_debug)
2761 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2762 /* Do something only if the target was not killed by the previous
2763 cntl-C. */
2764 if (target_executing)
2765 {
2766 interrupt_query ();
2767 signal (SIGINT, handle_remote_sigint);
2768 }
2769 }
2770
2771 /* Reinstall the usual SIGINT handlers, after the target has
2772 stopped. */
2773 static void
2774 cleanup_sigint_signal_handler (void *dummy)
2775 {
2776 signal (SIGINT, handle_sigint);
2777 if (sigint_remote_twice_token)
2778 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2779 if (sigint_remote_token)
2780 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2781 }
2782
2783 /* Send ^C to target to halt it. Target will respond, and send us a
2784 packet. */
2785 static void (*ofunc) (int);
2786
2787 /* The command line interface's stop routine. This function is installed
2788 as a signal handler for SIGINT. The first time a user requests a
2789 stop, we call remote_stop to send a break or ^C. If there is no
2790 response from the target (it didn't stop when the user requested it),
2791 we ask the user if he'd like to detach from the target. */
2792 static void
2793 remote_interrupt (int signo)
2794 {
2795 /* If this doesn't work, try more severe steps. */
2796 signal (signo, remote_interrupt_twice);
2797
2798 if (remote_debug)
2799 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2800
2801 target_stop ();
2802 }
2803
2804 /* The user typed ^C twice. */
2805
2806 static void
2807 remote_interrupt_twice (int signo)
2808 {
2809 signal (signo, ofunc);
2810 interrupt_query ();
2811 signal (signo, remote_interrupt);
2812 }
2813
2814 /* This is the generic stop called via the target vector. When a target
2815 interrupt is requested, either by the command line or the GUI, we
2816 will eventually end up here. */
2817 static void
2818 remote_stop (void)
2819 {
2820 /* Send a break or a ^C, depending on user preference. */
2821 if (remote_debug)
2822 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2823
2824 if (remote_break)
2825 serial_send_break (remote_desc);
2826 else
2827 serial_write (remote_desc, "\003", 1);
2828 }
2829
2830 /* Ask the user what to do when an interrupt is received. */
2831
2832 static void
2833 interrupt_query (void)
2834 {
2835 target_terminal_ours ();
2836
2837 if (query ("Interrupted while waiting for the program.\n\
2838 Give up (and stop debugging it)? "))
2839 {
2840 target_mourn_inferior ();
2841 throw_exception (RETURN_QUIT);
2842 }
2843
2844 target_terminal_inferior ();
2845 }
2846
2847 /* Enable/disable target terminal ownership. Most targets can use
2848 terminal groups to control terminal ownership. Remote targets are
2849 different in that explicit transfer of ownership to/from GDB/target
2850 is required. */
2851
2852 static void
2853 remote_async_terminal_inferior (void)
2854 {
2855 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2856 sync_execution here. This function should only be called when
2857 GDB is resuming the inferior in the forground. A background
2858 resume (``run&'') should leave GDB in control of the terminal and
2859 consequently should not call this code. */
2860 if (!sync_execution)
2861 return;
2862 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2863 calls target_terminal_*() idenpotent. The event-loop GDB talking
2864 to an asynchronous target with a synchronous command calls this
2865 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2866 stops trying to transfer the terminal to the target when it
2867 shouldn't this guard can go away. */
2868 if (!remote_async_terminal_ours_p)
2869 return;
2870 delete_file_handler (input_fd);
2871 remote_async_terminal_ours_p = 0;
2872 initialize_sigint_signal_handler ();
2873 /* NOTE: At this point we could also register our selves as the
2874 recipient of all input. Any characters typed could then be
2875 passed on down to the target. */
2876 }
2877
2878 static void
2879 remote_async_terminal_ours (void)
2880 {
2881 /* See FIXME in remote_async_terminal_inferior. */
2882 if (!sync_execution)
2883 return;
2884 /* See FIXME in remote_async_terminal_inferior. */
2885 if (remote_async_terminal_ours_p)
2886 return;
2887 cleanup_sigint_signal_handler (NULL);
2888 add_file_handler (input_fd, stdin_event_handler, 0);
2889 remote_async_terminal_ours_p = 1;
2890 }
2891
2892 /* If nonzero, ignore the next kill. */
2893
2894 int kill_kludge;
2895
2896 void
2897 remote_console_output (char *msg)
2898 {
2899 char *p;
2900
2901 for (p = msg; p[0] && p[1]; p += 2)
2902 {
2903 char tb[2];
2904 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2905 tb[0] = c;
2906 tb[1] = 0;
2907 fputs_unfiltered (tb, gdb_stdtarg);
2908 }
2909 gdb_flush (gdb_stdtarg);
2910 }
2911
2912 /* Wait until the remote machine stops, then return,
2913 storing status in STATUS just as `wait' would.
2914 Returns "pid", which in the case of a multi-threaded
2915 remote OS, is the thread-id. */
2916
2917 static ptid_t
2918 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2919 {
2920 struct remote_state *rs = get_remote_state ();
2921 unsigned char *buf = alloca (rs->remote_packet_size);
2922 ULONGEST thread_num = -1;
2923 ULONGEST addr;
2924
2925 status->kind = TARGET_WAITKIND_EXITED;
2926 status->value.integer = 0;
2927
2928 while (1)
2929 {
2930 unsigned char *p;
2931
2932 ofunc = signal (SIGINT, remote_interrupt);
2933 getpkt (buf, (rs->remote_packet_size), 1);
2934 signal (SIGINT, ofunc);
2935
2936 /* This is a hook for when we need to do something (perhaps the
2937 collection of trace data) every time the target stops. */
2938 if (target_wait_loop_hook)
2939 (*target_wait_loop_hook) ();
2940
2941 remote_stopped_by_watchpoint_p = 0;
2942
2943 switch (buf[0])
2944 {
2945 case 'E': /* Error of some sort */
2946 warning ("Remote failure reply: %s", buf);
2947 continue;
2948 case 'T': /* Status with PC, SP, FP, ... */
2949 {
2950 int i;
2951 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
2952
2953 /* Expedited reply, containing Signal, {regno, reg} repeat */
2954 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2955 ss = signal number
2956 n... = register number
2957 r... = register contents
2958 */
2959 p = &buf[3]; /* after Txx */
2960
2961 while (*p)
2962 {
2963 unsigned char *p1;
2964 char *p_temp;
2965 int fieldsize;
2966 LONGEST pnum = 0;
2967
2968 /* If the packet contains a register number save it in pnum
2969 and set p1 to point to the character following it.
2970 Otherwise p1 points to p. */
2971
2972 /* If this packet is an awatch packet, don't parse the 'a'
2973 as a register number. */
2974
2975 if (strncmp (p, "awatch", strlen("awatch")) != 0)
2976 {
2977 /* Read the ``P'' register number. */
2978 pnum = strtol (p, &p_temp, 16);
2979 p1 = (unsigned char *) p_temp;
2980 }
2981 else
2982 p1 = p;
2983
2984 if (p1 == p) /* No register number present here */
2985 {
2986 p1 = (unsigned char *) strchr (p, ':');
2987 if (p1 == NULL)
2988 warning ("Malformed packet(a) (missing colon): %s\n\
2989 Packet: '%s'\n",
2990 p, buf);
2991 if (strncmp (p, "thread", p1 - p) == 0)
2992 {
2993 p_temp = unpack_varlen_hex (++p1, &thread_num);
2994 record_currthread (thread_num);
2995 p = (unsigned char *) p_temp;
2996 }
2997 else if ((strncmp (p, "watch", p1 - p) == 0)
2998 || (strncmp (p, "rwatch", p1 - p) == 0)
2999 || (strncmp (p, "awatch", p1 - p) == 0))
3000 {
3001 remote_stopped_by_watchpoint_p = 1;
3002 p = unpack_varlen_hex (++p1, &addr);
3003 remote_watch_data_address = (CORE_ADDR)addr;
3004 }
3005 else
3006 {
3007 /* Silently skip unknown optional info. */
3008 p_temp = strchr (p1 + 1, ';');
3009 if (p_temp)
3010 p = (unsigned char *) p_temp;
3011 }
3012 }
3013 else
3014 {
3015 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3016 p = p1;
3017
3018 if (*p++ != ':')
3019 warning ("Malformed packet(b) (missing colon): %s\n\
3020 Packet: '%s'\n",
3021 p, buf);
3022
3023 if (reg == NULL)
3024 warning ("Remote sent bad register number %s: %s\n\
3025 Packet: '%s'\n",
3026 phex_nz (pnum, 0), p, buf);
3027
3028 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3029 p += 2 * fieldsize;
3030 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3031 warning ("Remote reply is too short: %s", buf);
3032 supply_register (reg->regnum, regs);
3033 }
3034
3035 if (*p++ != ';')
3036 {
3037 warning ("Remote register badly formatted: %s", buf);
3038 warning (" here: %s", p);
3039 }
3040 }
3041 }
3042 /* fall through */
3043 case 'S': /* Old style status, just signal only */
3044 status->kind = TARGET_WAITKIND_STOPPED;
3045 status->value.sig = (enum target_signal)
3046 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3047
3048 if (buf[3] == 'p')
3049 {
3050 /* Export Cisco kernel mode as a convenience variable
3051 (so that it can be used in the GDB prompt if desired). */
3052
3053 if (cisco_kernel_mode == 1)
3054 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3055 value_from_string ("PDEBUG-"));
3056 cisco_kernel_mode = 0;
3057 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3058 record_currthread (thread_num);
3059 }
3060 else if (buf[3] == 'k')
3061 {
3062 /* Export Cisco kernel mode as a convenience variable
3063 (so that it can be used in the GDB prompt if desired). */
3064
3065 if (cisco_kernel_mode == 1)
3066 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3067 value_from_string ("KDEBUG-"));
3068 cisco_kernel_mode = 1;
3069 }
3070 goto got_status;
3071 case 'N': /* Cisco special: status and offsets */
3072 {
3073 bfd_vma text_addr, data_addr, bss_addr;
3074 bfd_signed_vma text_off, data_off, bss_off;
3075 unsigned char *p1;
3076
3077 status->kind = TARGET_WAITKIND_STOPPED;
3078 status->value.sig = (enum target_signal)
3079 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3080
3081 if (symfile_objfile == NULL)
3082 {
3083 warning ("Relocation packet received with no symbol file. \
3084 Packet Dropped");
3085 goto got_status;
3086 }
3087
3088 /* Relocate object file. Buffer format is NAATT;DD;BB
3089 * where AA is the signal number, TT is the new text
3090 * address, DD * is the new data address, and BB is the
3091 * new bss address. */
3092
3093 p = &buf[3];
3094 text_addr = strtoul (p, (char **) &p1, 16);
3095 if (p1 == p || *p1 != ';')
3096 warning ("Malformed relocation packet: Packet '%s'", buf);
3097 p = p1 + 1;
3098 data_addr = strtoul (p, (char **) &p1, 16);
3099 if (p1 == p || *p1 != ';')
3100 warning ("Malformed relocation packet: Packet '%s'", buf);
3101 p = p1 + 1;
3102 bss_addr = strtoul (p, (char **) &p1, 16);
3103 if (p1 == p)
3104 warning ("Malformed relocation packet: Packet '%s'", buf);
3105
3106 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3107 &text_off, &data_off, &bss_off)
3108 == 0)
3109 if (text_off != 0 || data_off != 0 || bss_off != 0)
3110 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3111
3112 goto got_status;
3113 }
3114 case 'W': /* Target exited */
3115 {
3116 /* The remote process exited. */
3117 status->kind = TARGET_WAITKIND_EXITED;
3118 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3119 goto got_status;
3120 }
3121 case 'X':
3122 status->kind = TARGET_WAITKIND_SIGNALLED;
3123 status->value.sig = (enum target_signal)
3124 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3125 kill_kludge = 1;
3126
3127 goto got_status;
3128 case 'O': /* Console output */
3129 remote_console_output (buf + 1);
3130 continue;
3131 case '\0':
3132 if (last_sent_signal != TARGET_SIGNAL_0)
3133 {
3134 /* Zero length reply means that we tried 'S' or 'C' and
3135 the remote system doesn't support it. */
3136 target_terminal_ours_for_output ();
3137 printf_filtered
3138 ("Can't send signals to this remote system. %s not sent.\n",
3139 target_signal_to_name (last_sent_signal));
3140 last_sent_signal = TARGET_SIGNAL_0;
3141 target_terminal_inferior ();
3142
3143 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3144 putpkt ((char *) buf);
3145 continue;
3146 }
3147 /* else fallthrough */
3148 default:
3149 warning ("Invalid remote reply: %s", buf);
3150 continue;
3151 }
3152 }
3153 got_status:
3154 if (thread_num != -1)
3155 {
3156 return pid_to_ptid (thread_num);
3157 }
3158 return inferior_ptid;
3159 }
3160
3161 /* Async version of remote_wait. */
3162 static ptid_t
3163 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3164 {
3165 struct remote_state *rs = get_remote_state ();
3166 unsigned char *buf = alloca (rs->remote_packet_size);
3167 ULONGEST thread_num = -1;
3168 ULONGEST addr;
3169
3170 status->kind = TARGET_WAITKIND_EXITED;
3171 status->value.integer = 0;
3172
3173 remote_stopped_by_watchpoint_p = 0;
3174
3175 while (1)
3176 {
3177 unsigned char *p;
3178
3179 if (!target_is_async_p ())
3180 ofunc = signal (SIGINT, remote_interrupt);
3181 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3182 _never_ wait for ever -> test on target_is_async_p().
3183 However, before we do that we need to ensure that the caller
3184 knows how to take the target into/out of async mode. */
3185 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3186 if (!target_is_async_p ())
3187 signal (SIGINT, ofunc);
3188
3189 /* This is a hook for when we need to do something (perhaps the
3190 collection of trace data) every time the target stops. */
3191 if (target_wait_loop_hook)
3192 (*target_wait_loop_hook) ();
3193
3194 switch (buf[0])
3195 {
3196 case 'E': /* Error of some sort */
3197 warning ("Remote failure reply: %s", buf);
3198 continue;
3199 case 'T': /* Status with PC, SP, FP, ... */
3200 {
3201 int i;
3202 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
3203
3204 /* Expedited reply, containing Signal, {regno, reg} repeat */
3205 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3206 ss = signal number
3207 n... = register number
3208 r... = register contents
3209 */
3210 p = &buf[3]; /* after Txx */
3211
3212 while (*p)
3213 {
3214 unsigned char *p1;
3215 char *p_temp;
3216 int fieldsize;
3217 long pnum = 0;
3218
3219 /* If the packet contains a register number, save it in pnum
3220 and set p1 to point to the character following it.
3221 Otherwise p1 points to p. */
3222
3223 /* If this packet is an awatch packet, don't parse the 'a'
3224 as a register number. */
3225
3226 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3227 {
3228 /* Read the register number. */
3229 pnum = strtol (p, &p_temp, 16);
3230 p1 = (unsigned char *) p_temp;
3231 }
3232 else
3233 p1 = p;
3234
3235 if (p1 == p) /* No register number present here */
3236 {
3237 p1 = (unsigned char *) strchr (p, ':');
3238 if (p1 == NULL)
3239 warning ("Malformed packet(a) (missing colon): %s\n\
3240 Packet: '%s'\n",
3241 p, buf);
3242 if (strncmp (p, "thread", p1 - p) == 0)
3243 {
3244 p_temp = unpack_varlen_hex (++p1, &thread_num);
3245 record_currthread (thread_num);
3246 p = (unsigned char *) p_temp;
3247 }
3248 else if ((strncmp (p, "watch", p1 - p) == 0)
3249 || (strncmp (p, "rwatch", p1 - p) == 0)
3250 || (strncmp (p, "awatch", p1 - p) == 0))
3251 {
3252 remote_stopped_by_watchpoint_p = 1;
3253 p = unpack_varlen_hex (++p1, &addr);
3254 remote_watch_data_address = (CORE_ADDR)addr;
3255 }
3256 else
3257 {
3258 /* Silently skip unknown optional info. */
3259 p_temp = (unsigned char *) strchr (p1 + 1, ';');
3260 if (p_temp)
3261 p = p_temp;
3262 }
3263 }
3264
3265 else
3266 {
3267 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3268 p = p1;
3269 if (*p++ != ':')
3270 warning ("Malformed packet(b) (missing colon): %s\n\
3271 Packet: '%s'\n",
3272 p, buf);
3273
3274 if (reg == NULL)
3275 warning ("Remote sent bad register number %ld: %s\n\
3276 Packet: '%s'\n",
3277 pnum, p, buf);
3278
3279 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3280 p += 2 * fieldsize;
3281 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3282 warning ("Remote reply is too short: %s", buf);
3283 supply_register (reg->regnum, regs);
3284 }
3285
3286 if (*p++ != ';')
3287 {
3288 warning ("Remote register badly formatted: %s", buf);
3289 warning (" here: %s", p);
3290 }
3291 }
3292 }
3293 /* fall through */
3294 case 'S': /* Old style status, just signal only */
3295 status->kind = TARGET_WAITKIND_STOPPED;
3296 status->value.sig = (enum target_signal)
3297 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3298
3299 if (buf[3] == 'p')
3300 {
3301 /* Export Cisco kernel mode as a convenience variable
3302 (so that it can be used in the GDB prompt if desired). */
3303
3304 if (cisco_kernel_mode == 1)
3305 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3306 value_from_string ("PDEBUG-"));
3307 cisco_kernel_mode = 0;
3308 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3309 record_currthread (thread_num);
3310 }
3311 else if (buf[3] == 'k')
3312 {
3313 /* Export Cisco kernel mode as a convenience variable
3314 (so that it can be used in the GDB prompt if desired). */
3315
3316 if (cisco_kernel_mode == 1)
3317 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3318 value_from_string ("KDEBUG-"));
3319 cisco_kernel_mode = 1;
3320 }
3321 goto got_status;
3322 case 'N': /* Cisco special: status and offsets */
3323 {
3324 bfd_vma text_addr, data_addr, bss_addr;
3325 bfd_signed_vma text_off, data_off, bss_off;
3326 unsigned char *p1;
3327
3328 status->kind = TARGET_WAITKIND_STOPPED;
3329 status->value.sig = (enum target_signal)
3330 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3331
3332 if (symfile_objfile == NULL)
3333 {
3334 warning ("Relocation packet recieved with no symbol file. \
3335 Packet Dropped");
3336 goto got_status;
3337 }
3338
3339 /* Relocate object file. Buffer format is NAATT;DD;BB
3340 * where AA is the signal number, TT is the new text
3341 * address, DD * is the new data address, and BB is the
3342 * new bss address. */
3343
3344 p = &buf[3];
3345 text_addr = strtoul (p, (char **) &p1, 16);
3346 if (p1 == p || *p1 != ';')
3347 warning ("Malformed relocation packet: Packet '%s'", buf);
3348 p = p1 + 1;
3349 data_addr = strtoul (p, (char **) &p1, 16);
3350 if (p1 == p || *p1 != ';')
3351 warning ("Malformed relocation packet: Packet '%s'", buf);
3352 p = p1 + 1;
3353 bss_addr = strtoul (p, (char **) &p1, 16);
3354 if (p1 == p)
3355 warning ("Malformed relocation packet: Packet '%s'", buf);
3356
3357 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3358 &text_off, &data_off, &bss_off)
3359 == 0)
3360 if (text_off != 0 || data_off != 0 || bss_off != 0)
3361 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3362
3363 goto got_status;
3364 }
3365 case 'W': /* Target exited */
3366 {
3367 /* The remote process exited. */
3368 status->kind = TARGET_WAITKIND_EXITED;
3369 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3370 goto got_status;
3371 }
3372 case 'X':
3373 status->kind = TARGET_WAITKIND_SIGNALLED;
3374 status->value.sig = (enum target_signal)
3375 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3376 kill_kludge = 1;
3377
3378 goto got_status;
3379 case 'O': /* Console output */
3380 remote_console_output (buf + 1);
3381 /* Return immediately to the event loop. The event loop will
3382 still be waiting on the inferior afterwards. */
3383 status->kind = TARGET_WAITKIND_IGNORE;
3384 goto got_status;
3385 case '\0':
3386 if (last_sent_signal != TARGET_SIGNAL_0)
3387 {
3388 /* Zero length reply means that we tried 'S' or 'C' and
3389 the remote system doesn't support it. */
3390 target_terminal_ours_for_output ();
3391 printf_filtered
3392 ("Can't send signals to this remote system. %s not sent.\n",
3393 target_signal_to_name (last_sent_signal));
3394 last_sent_signal = TARGET_SIGNAL_0;
3395 target_terminal_inferior ();
3396
3397 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3398 putpkt ((char *) buf);
3399 continue;
3400 }
3401 /* else fallthrough */
3402 default:
3403 warning ("Invalid remote reply: %s", buf);
3404 continue;
3405 }
3406 }
3407 got_status:
3408 if (thread_num != -1)
3409 {
3410 return pid_to_ptid (thread_num);
3411 }
3412 return inferior_ptid;
3413 }
3414
3415 /* Number of bytes of registers this stub implements. */
3416
3417 static int register_bytes_found;
3418
3419 /* Read the remote registers into the block REGS. */
3420 /* Currently we just read all the registers, so we don't use regnum. */
3421
3422 /* ARGSUSED */
3423 static void
3424 remote_fetch_registers (int regnum)
3425 {
3426 struct remote_state *rs = get_remote_state ();
3427 char *buf = alloca (rs->remote_packet_size);
3428 int i;
3429 char *p;
3430 char *regs = alloca (rs->sizeof_g_packet);
3431
3432 set_thread (PIDGET (inferior_ptid), 1);
3433
3434 if (regnum >= 0)
3435 {
3436 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3437 gdb_assert (reg != NULL);
3438 if (!reg->in_g_packet)
3439 internal_error (__FILE__, __LINE__,
3440 "Attempt to fetch a non G-packet register when this "
3441 "remote.c does not support the p-packet.");
3442 }
3443
3444 sprintf (buf, "g");
3445 remote_send (buf, (rs->remote_packet_size));
3446
3447 /* Save the size of the packet sent to us by the target. Its used
3448 as a heuristic when determining the max size of packets that the
3449 target can safely receive. */
3450 if ((rs->actual_register_packet_size) == 0)
3451 (rs->actual_register_packet_size) = strlen (buf);
3452
3453 /* Unimplemented registers read as all bits zero. */
3454 memset (regs, 0, rs->sizeof_g_packet);
3455
3456 /* We can get out of synch in various cases. If the first character
3457 in the buffer is not a hex character, assume that has happened
3458 and try to fetch another packet to read. */
3459 while ((buf[0] < '0' || buf[0] > '9')
3460 && (buf[0] < 'a' || buf[0] > 'f')
3461 && buf[0] != 'x') /* New: unavailable register value */
3462 {
3463 if (remote_debug)
3464 fprintf_unfiltered (gdb_stdlog,
3465 "Bad register packet; fetching a new packet\n");
3466 getpkt (buf, (rs->remote_packet_size), 0);
3467 }
3468
3469 /* Reply describes registers byte by byte, each byte encoded as two
3470 hex characters. Suck them all up, then supply them to the
3471 register cacheing/storage mechanism. */
3472
3473 p = buf;
3474 for (i = 0; i < rs->sizeof_g_packet; i++)
3475 {
3476 if (p[0] == 0)
3477 break;
3478 if (p[1] == 0)
3479 {
3480 warning ("Remote reply is of odd length: %s", buf);
3481 /* Don't change register_bytes_found in this case, and don't
3482 print a second warning. */
3483 goto supply_them;
3484 }
3485 if (p[0] == 'x' && p[1] == 'x')
3486 regs[i] = 0; /* 'x' */
3487 else
3488 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3489 p += 2;
3490 }
3491
3492 if (i != register_bytes_found)
3493 {
3494 register_bytes_found = i;
3495 if (REGISTER_BYTES_OK_P ()
3496 && !REGISTER_BYTES_OK (i))
3497 warning ("Remote reply is too short: %s", buf);
3498 }
3499
3500 supply_them:
3501 {
3502 int i;
3503 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3504 {
3505 struct packet_reg *r = &rs->regs[i];
3506 if (r->in_g_packet)
3507 {
3508 supply_register (r->regnum, regs + r->offset);
3509 if (buf[r->offset * 2] == 'x')
3510 set_register_cached (i, -1);
3511 }
3512 }
3513 }
3514 }
3515
3516 /* Prepare to store registers. Since we may send them all (using a
3517 'G' request), we have to read out the ones we don't want to change
3518 first. */
3519
3520 static void
3521 remote_prepare_to_store (void)
3522 {
3523 /* Make sure the entire registers array is valid. */
3524 switch (remote_protocol_P.support)
3525 {
3526 case PACKET_DISABLE:
3527 case PACKET_SUPPORT_UNKNOWN:
3528 /* NOTE: This isn't rs->sizeof_g_packet because here, we are
3529 forcing the register cache to read its and not the target
3530 registers. */
3531 read_register_bytes (0, (char *) NULL, REGISTER_BYTES); /* OK use. */
3532 break;
3533 case PACKET_ENABLE:
3534 break;
3535 }
3536 }
3537
3538 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3539 packet was not recognized. */
3540
3541 static int
3542 store_register_using_P (int regnum)
3543 {
3544 struct remote_state *rs = get_remote_state ();
3545 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3546 /* Try storing a single register. */
3547 char *buf = alloca (rs->remote_packet_size);
3548 char *regp = alloca (MAX_REGISTER_RAW_SIZE);
3549 char *p;
3550 int i;
3551
3552 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3553 p = buf + strlen (buf);
3554 regcache_collect (reg->regnum, regp);
3555 bin2hex (regp, p, REGISTER_RAW_SIZE (reg->regnum));
3556 remote_send (buf, rs->remote_packet_size);
3557
3558 return buf[0] != '\0';
3559 }
3560
3561
3562 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3563 of the register cache buffer. FIXME: ignores errors. */
3564
3565 static void
3566 remote_store_registers (int regnum)
3567 {
3568 struct remote_state *rs = get_remote_state ();
3569 char *buf;
3570 char *regs;
3571 int i;
3572 char *p;
3573
3574 set_thread (PIDGET (inferior_ptid), 1);
3575
3576 if (regnum >= 0)
3577 {
3578 switch (remote_protocol_P.support)
3579 {
3580 case PACKET_DISABLE:
3581 break;
3582 case PACKET_ENABLE:
3583 if (store_register_using_P (regnum))
3584 return;
3585 else
3586 error ("Protocol error: P packet not recognized by stub");
3587 case PACKET_SUPPORT_UNKNOWN:
3588 if (store_register_using_P (regnum))
3589 {
3590 /* The stub recognized the 'P' packet. Remember this. */
3591 remote_protocol_P.support = PACKET_ENABLE;
3592 return;
3593 }
3594 else
3595 {
3596 /* The stub does not support the 'P' packet. Use 'G'
3597 instead, and don't try using 'P' in the future (it
3598 will just waste our time). */
3599 remote_protocol_P.support = PACKET_DISABLE;
3600 break;
3601 }
3602 }
3603 }
3604
3605 /* Extract all the registers in the regcache copying them into a
3606 local buffer. */
3607 {
3608 int i;
3609 regs = alloca (rs->sizeof_g_packet);
3610 memset (regs, rs->sizeof_g_packet, 0);
3611 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3612 {
3613 struct packet_reg *r = &rs->regs[i];
3614 if (r->in_g_packet)
3615 regcache_collect (r->regnum, regs + r->offset);
3616 }
3617 }
3618
3619 /* Command describes registers byte by byte,
3620 each byte encoded as two hex characters. */
3621 buf = alloca (rs->remote_packet_size);
3622 p = buf;
3623 *p++ = 'G';
3624 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3625 bin2hex (regs, p, register_bytes_found);
3626 remote_send (buf, (rs->remote_packet_size));
3627 }
3628 \f
3629
3630 /* Return the number of hex digits in num. */
3631
3632 static int
3633 hexnumlen (ULONGEST num)
3634 {
3635 int i;
3636
3637 for (i = 0; num != 0; i++)
3638 num >>= 4;
3639
3640 return max (i, 1);
3641 }
3642
3643 /* Set BUF to the minimum number of hex digits representing NUM. */
3644
3645 static int
3646 hexnumstr (char *buf, ULONGEST num)
3647 {
3648 int len = hexnumlen (num);
3649 return hexnumnstr (buf, num, len);
3650 }
3651
3652
3653 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3654
3655 static int
3656 hexnumnstr (char *buf, ULONGEST num, int width)
3657 {
3658 int i;
3659
3660 buf[width] = '\0';
3661
3662 for (i = width - 1; i >= 0; i--)
3663 {
3664 buf[i] = "0123456789abcdef"[(num & 0xf)];
3665 num >>= 4;
3666 }
3667
3668 return width;
3669 }
3670
3671 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3672
3673 static CORE_ADDR
3674 remote_address_masked (CORE_ADDR addr)
3675 {
3676 if (remote_address_size > 0
3677 && remote_address_size < (sizeof (ULONGEST) * 8))
3678 {
3679 /* Only create a mask when that mask can safely be constructed
3680 in a ULONGEST variable. */
3681 ULONGEST mask = 1;
3682 mask = (mask << remote_address_size) - 1;
3683 addr &= mask;
3684 }
3685 return addr;
3686 }
3687
3688 /* Determine whether the remote target supports binary downloading.
3689 This is accomplished by sending a no-op memory write of zero length
3690 to the target at the specified address. It does not suffice to send
3691 the whole packet, since many stubs strip the eighth bit and subsequently
3692 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3693
3694 NOTE: This can still lose if the serial line is not eight-bit
3695 clean. In cases like this, the user should clear "remote
3696 X-packet". */
3697
3698 static void
3699 check_binary_download (CORE_ADDR addr)
3700 {
3701 struct remote_state *rs = get_remote_state ();
3702 switch (remote_protocol_binary_download.support)
3703 {
3704 case PACKET_DISABLE:
3705 break;
3706 case PACKET_ENABLE:
3707 break;
3708 case PACKET_SUPPORT_UNKNOWN:
3709 {
3710 char *buf = alloca (rs->remote_packet_size);
3711 char *p;
3712
3713 p = buf;
3714 *p++ = 'X';
3715 p += hexnumstr (p, (ULONGEST) addr);
3716 *p++ = ',';
3717 p += hexnumstr (p, (ULONGEST) 0);
3718 *p++ = ':';
3719 *p = '\0';
3720
3721 putpkt_binary (buf, (int) (p - buf));
3722 getpkt (buf, (rs->remote_packet_size), 0);
3723
3724 if (buf[0] == '\0')
3725 {
3726 if (remote_debug)
3727 fprintf_unfiltered (gdb_stdlog,
3728 "binary downloading NOT suppported by target\n");
3729 remote_protocol_binary_download.support = PACKET_DISABLE;
3730 }
3731 else
3732 {
3733 if (remote_debug)
3734 fprintf_unfiltered (gdb_stdlog,
3735 "binary downloading suppported by target\n");
3736 remote_protocol_binary_download.support = PACKET_ENABLE;
3737 }
3738 break;
3739 }
3740 }
3741 }
3742
3743 /* Write memory data directly to the remote machine.
3744 This does not inform the data cache; the data cache uses this.
3745 MEMADDR is the address in the remote memory space.
3746 MYADDR is the address of the buffer in our space.
3747 LEN is the number of bytes.
3748
3749 Returns number of bytes transferred, or 0 (setting errno) for
3750 error. Only transfer a single packet. */
3751
3752 static int
3753 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3754 {
3755 unsigned char *buf;
3756 int max_buf_size; /* Max size of packet output buffer */
3757 unsigned char *p;
3758 unsigned char *plen;
3759 long sizeof_buf;
3760 int plenlen;
3761 int todo;
3762 int nr_bytes;
3763
3764 /* Verify that the target can support a binary download */
3765 check_binary_download (memaddr);
3766
3767 /* Determine the max packet size. */
3768 max_buf_size = get_memory_write_packet_size ();
3769 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3770 buf = alloca (sizeof_buf);
3771
3772 /* Subtract header overhead from max payload size - $M<memaddr>,<len>:#nn */
3773 max_buf_size -= 2 + hexnumlen (memaddr + len - 1) + 1 + hexnumlen (len) + 4;
3774
3775 /* construct "M"<memaddr>","<len>":" */
3776 /* sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, todo); */
3777 p = buf;
3778
3779 /* Append [XM]. Compute a best guess of the number of bytes
3780 actually transfered. */
3781 switch (remote_protocol_binary_download.support)
3782 {
3783 case PACKET_ENABLE:
3784 *p++ = 'X';
3785 /* Best guess at number of bytes that will fit. */
3786 todo = min (len, max_buf_size);
3787 break;
3788 case PACKET_DISABLE:
3789 *p++ = 'M';
3790 /* num bytes that will fit */
3791 todo = min (len, max_buf_size / 2);
3792 break;
3793 case PACKET_SUPPORT_UNKNOWN:
3794 internal_error (__FILE__, __LINE__,
3795 "remote_write_bytes: bad internal state");
3796 default:
3797 internal_error (__FILE__, __LINE__, "bad switch");
3798 }
3799
3800 /* Append <memaddr> */
3801 memaddr = remote_address_masked (memaddr);
3802 p += hexnumstr (p, (ULONGEST) memaddr);
3803 *p++ = ',';
3804
3805 /* Append <len>. Retain the location/size of <len>. It may
3806 need to be adjusted once the packet body has been created. */
3807 plen = p;
3808 plenlen = hexnumstr (p, (ULONGEST) todo);
3809 p += plenlen;
3810 *p++ = ':';
3811 *p = '\0';
3812
3813 /* Append the packet body. */
3814 switch (remote_protocol_binary_download.support)
3815 {
3816 case PACKET_ENABLE:
3817 /* Binary mode. Send target system values byte by byte, in
3818 increasing byte addresses. Only escape certain critical
3819 characters. */
3820 for (nr_bytes = 0;
3821 (nr_bytes < todo) && (p - buf) < (max_buf_size - 2);
3822 nr_bytes++)
3823 {
3824 switch (myaddr[nr_bytes] & 0xff)
3825 {
3826 case '$':
3827 case '#':
3828 case 0x7d:
3829 /* These must be escaped */
3830 *p++ = 0x7d;
3831 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3832 break;
3833 default:
3834 *p++ = myaddr[nr_bytes] & 0xff;
3835 break;
3836 }
3837 }
3838 if (nr_bytes < todo)
3839 {
3840 /* Escape chars have filled up the buffer prematurely,
3841 and we have actually sent fewer bytes than planned.
3842 Fix-up the length field of the packet. Use the same
3843 number of characters as before. */
3844
3845 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3846 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3847 }
3848 break;
3849 case PACKET_DISABLE:
3850 /* Normal mode: Send target system values byte by byte, in
3851 increasing byte addresses. Each byte is encoded as a two hex
3852 value. */
3853 nr_bytes = bin2hex (myaddr, p, todo);
3854 p += 2 * nr_bytes;
3855 break;
3856 case PACKET_SUPPORT_UNKNOWN:
3857 internal_error (__FILE__, __LINE__,
3858 "remote_write_bytes: bad internal state");
3859 default:
3860 internal_error (__FILE__, __LINE__, "bad switch");
3861 }
3862
3863 putpkt_binary (buf, (int) (p - buf));
3864 getpkt (buf, sizeof_buf, 0);
3865
3866 if (buf[0] == 'E')
3867 {
3868 /* There is no correspondance between what the remote protocol
3869 uses for errors and errno codes. We would like a cleaner way
3870 of representing errors (big enough to include errno codes,
3871 bfd_error codes, and others). But for now just return EIO. */
3872 errno = EIO;
3873 return 0;
3874 }
3875
3876 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3877 bytes than we'd planned. */
3878 return nr_bytes;
3879 }
3880
3881 /* Read memory data directly from the remote machine.
3882 This does not use the data cache; the data cache uses this.
3883 MEMADDR is the address in the remote memory space.
3884 MYADDR is the address of the buffer in our space.
3885 LEN is the number of bytes.
3886
3887 Returns number of bytes transferred, or 0 for error. */
3888
3889 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3890 remote targets) shouldn't attempt to read the entire buffer.
3891 Instead it should read a single packet worth of data and then
3892 return the byte size of that packet to the caller. The caller (its
3893 caller and its callers caller ;-) already contains code for
3894 handling partial reads. */
3895
3896 static int
3897 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3898 {
3899 char *buf;
3900 int max_buf_size; /* Max size of packet output buffer */
3901 long sizeof_buf;
3902 int origlen;
3903
3904 /* Create a buffer big enough for this packet. */
3905 max_buf_size = get_memory_read_packet_size ();
3906 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3907 buf = alloca (sizeof_buf);
3908
3909 origlen = len;
3910 while (len > 0)
3911 {
3912 char *p;
3913 int todo;
3914 int i;
3915
3916 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3917
3918 /* construct "m"<memaddr>","<len>" */
3919 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3920 memaddr = remote_address_masked (memaddr);
3921 p = buf;
3922 *p++ = 'm';
3923 p += hexnumstr (p, (ULONGEST) memaddr);
3924 *p++ = ',';
3925 p += hexnumstr (p, (ULONGEST) todo);
3926 *p = '\0';
3927
3928 putpkt (buf);
3929 getpkt (buf, sizeof_buf, 0);
3930
3931 if (buf[0] == 'E'
3932 && isxdigit (buf[1]) && isxdigit (buf[2])
3933 && buf[3] == '\0')
3934 {
3935 /* There is no correspondance between what the remote protocol uses
3936 for errors and errno codes. We would like a cleaner way of
3937 representing errors (big enough to include errno codes, bfd_error
3938 codes, and others). But for now just return EIO. */
3939 errno = EIO;
3940 return 0;
3941 }
3942
3943 /* Reply describes memory byte by byte,
3944 each byte encoded as two hex characters. */
3945
3946 p = buf;
3947 if ((i = hex2bin (p, myaddr, todo)) < todo)
3948 {
3949 /* Reply is short. This means that we were able to read
3950 only part of what we wanted to. */
3951 return i + (origlen - len);
3952 }
3953 myaddr += todo;
3954 memaddr += todo;
3955 len -= todo;
3956 }
3957 return origlen;
3958 }
3959 \f
3960 /* Read or write LEN bytes from inferior memory at MEMADDR,
3961 transferring to or from debugger address BUFFER. Write to inferior if
3962 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3963 for error. TARGET is unused. */
3964
3965 /* ARGSUSED */
3966 static int
3967 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3968 int should_write, struct mem_attrib *attrib,
3969 struct target_ops *target)
3970 {
3971 CORE_ADDR targ_addr;
3972 int targ_len;
3973 int res;
3974
3975 REMOTE_TRANSLATE_XFER_ADDRESS (mem_addr, mem_len, &targ_addr, &targ_len);
3976 if (targ_len <= 0)
3977 return 0;
3978
3979 if (should_write)
3980 res = remote_write_bytes (targ_addr, buffer, targ_len);
3981 else
3982 res = remote_read_bytes (targ_addr, buffer, targ_len);
3983
3984 return res;
3985 }
3986
3987
3988 #if 0
3989 /* Enable after 4.12. */
3990
3991 void
3992 remote_search (int len, char *data, char *mask, CORE_ADDR startaddr,
3993 int increment, CORE_ADDR lorange, CORE_ADDR hirange,
3994 CORE_ADDR *addr_found, char *data_found)
3995 {
3996 if (increment == -4 && len == 4)
3997 {
3998 long mask_long, data_long;
3999 long data_found_long;
4000 CORE_ADDR addr_we_found;
4001 char *buf = alloca (rs->remote_packet_size);
4002 long returned_long[2];
4003 char *p;
4004
4005 mask_long = extract_unsigned_integer (mask, len);
4006 data_long = extract_unsigned_integer (data, len);
4007 sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
4008 putpkt (buf);
4009 getpkt (buf, (rs->remote_packet_size), 0);
4010 if (buf[0] == '\0')
4011 {
4012 /* The stub doesn't support the 't' request. We might want to
4013 remember this fact, but on the other hand the stub could be
4014 switched on us. Maybe we should remember it only until
4015 the next "target remote". */
4016 generic_search (len, data, mask, startaddr, increment, lorange,
4017 hirange, addr_found, data_found);
4018 return;
4019 }
4020
4021 if (buf[0] == 'E')
4022 /* There is no correspondance between what the remote protocol uses
4023 for errors and errno codes. We would like a cleaner way of
4024 representing errors (big enough to include errno codes, bfd_error
4025 codes, and others). But for now just use EIO. */
4026 memory_error (EIO, startaddr);
4027 p = buf;
4028 addr_we_found = 0;
4029 while (*p != '\0' && *p != ',')
4030 addr_we_found = (addr_we_found << 4) + fromhex (*p++);
4031 if (*p == '\0')
4032 error ("Protocol error: short return for search");
4033
4034 data_found_long = 0;
4035 while (*p != '\0' && *p != ',')
4036 data_found_long = (data_found_long << 4) + fromhex (*p++);
4037 /* Ignore anything after this comma, for future extensions. */
4038
4039 if (addr_we_found < lorange || addr_we_found >= hirange)
4040 {
4041 *addr_found = 0;
4042 return;
4043 }
4044
4045 *addr_found = addr_we_found;
4046 *data_found = store_unsigned_integer (data_we_found, len);
4047 return;
4048 }
4049 generic_search (len, data, mask, startaddr, increment, lorange,
4050 hirange, addr_found, data_found);
4051 }
4052 #endif /* 0 */
4053 \f
4054 static void
4055 remote_files_info (struct target_ops *ignore)
4056 {
4057 puts_filtered ("Debugging a target over a serial line.\n");
4058 }
4059 \f
4060 /* Stuff for dealing with the packets which are part of this protocol.
4061 See comment at top of file for details. */
4062
4063 /* Read a single character from the remote end, masking it down to 7 bits. */
4064
4065 static int
4066 readchar (int timeout)
4067 {
4068 int ch;
4069
4070 ch = serial_readchar (remote_desc, timeout);
4071
4072 if (ch >= 0)
4073 return (ch & 0x7f);
4074
4075 switch ((enum serial_rc) ch)
4076 {
4077 case SERIAL_EOF:
4078 target_mourn_inferior ();
4079 error ("Remote connection closed");
4080 /* no return */
4081 case SERIAL_ERROR:
4082 perror_with_name ("Remote communication error");
4083 /* no return */
4084 case SERIAL_TIMEOUT:
4085 break;
4086 }
4087 return ch;
4088 }
4089
4090 /* Send the command in BUF to the remote machine, and read the reply
4091 into BUF. Report an error if we get an error reply. */
4092
4093 static void
4094 remote_send (char *buf,
4095 long sizeof_buf)
4096 {
4097 putpkt (buf);
4098 getpkt (buf, sizeof_buf, 0);
4099
4100 if (buf[0] == 'E')
4101 error ("Remote failure reply: %s", buf);
4102 }
4103
4104 /* Display a null-terminated packet on stdout, for debugging, using C
4105 string notation. */
4106
4107 static void
4108 print_packet (char *buf)
4109 {
4110 puts_filtered ("\"");
4111 fputstr_filtered (buf, '"', gdb_stdout);
4112 puts_filtered ("\"");
4113 }
4114
4115 int
4116 putpkt (char *buf)
4117 {
4118 return putpkt_binary (buf, strlen (buf));
4119 }
4120
4121 /* Send a packet to the remote machine, with error checking. The data
4122 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
4123 to account for the $, # and checksum, and for a possible /0 if we are
4124 debugging (remote_debug) and want to print the sent packet as a string */
4125
4126 static int
4127 putpkt_binary (char *buf, int cnt)
4128 {
4129 struct remote_state *rs = get_remote_state ();
4130 int i;
4131 unsigned char csum = 0;
4132 char *buf2 = alloca (cnt + 6);
4133 long sizeof_junkbuf = (rs->remote_packet_size);
4134 char *junkbuf = alloca (sizeof_junkbuf);
4135
4136 int ch;
4137 int tcount = 0;
4138 char *p;
4139
4140 /* Copy the packet into buffer BUF2, encapsulating it
4141 and giving it a checksum. */
4142
4143 p = buf2;
4144 *p++ = '$';
4145
4146 for (i = 0; i < cnt; i++)
4147 {
4148 csum += buf[i];
4149 *p++ = buf[i];
4150 }
4151 *p++ = '#';
4152 *p++ = tohex ((csum >> 4) & 0xf);
4153 *p++ = tohex (csum & 0xf);
4154
4155 /* Send it over and over until we get a positive ack. */
4156
4157 while (1)
4158 {
4159 int started_error_output = 0;
4160
4161 if (remote_debug)
4162 {
4163 *p = '\0';
4164 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4165 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4166 fprintf_unfiltered (gdb_stdlog, "...");
4167 gdb_flush (gdb_stdlog);
4168 }
4169 if (serial_write (remote_desc, buf2, p - buf2))
4170 perror_with_name ("putpkt: write failed");
4171
4172 /* read until either a timeout occurs (-2) or '+' is read */
4173 while (1)
4174 {
4175 ch = readchar (remote_timeout);
4176
4177 if (remote_debug)
4178 {
4179 switch (ch)
4180 {
4181 case '+':
4182 case '-':
4183 case SERIAL_TIMEOUT:
4184 case '$':
4185 if (started_error_output)
4186 {
4187 putchar_unfiltered ('\n');
4188 started_error_output = 0;
4189 }
4190 }
4191 }
4192
4193 switch (ch)
4194 {
4195 case '+':
4196 if (remote_debug)
4197 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4198 return 1;
4199 case '-':
4200 if (remote_debug)
4201 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4202 case SERIAL_TIMEOUT:
4203 tcount++;
4204 if (tcount > 3)
4205 return 0;
4206 break; /* Retransmit buffer */
4207 case '$':
4208 {
4209 if (remote_debug)
4210 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
4211 /* It's probably an old response, and we're out of sync.
4212 Just gobble up the packet and ignore it. */
4213 read_frame (junkbuf, sizeof_junkbuf);
4214 continue; /* Now, go look for + */
4215 }
4216 default:
4217 if (remote_debug)
4218 {
4219 if (!started_error_output)
4220 {
4221 started_error_output = 1;
4222 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4223 }
4224 fputc_unfiltered (ch & 0177, gdb_stdlog);
4225 }
4226 continue;
4227 }
4228 break; /* Here to retransmit */
4229 }
4230
4231 #if 0
4232 /* This is wrong. If doing a long backtrace, the user should be
4233 able to get out next time we call QUIT, without anything as
4234 violent as interrupt_query. If we want to provide a way out of
4235 here without getting to the next QUIT, it should be based on
4236 hitting ^C twice as in remote_wait. */
4237 if (quit_flag)
4238 {
4239 quit_flag = 0;
4240 interrupt_query ();
4241 }
4242 #endif
4243 }
4244 }
4245
4246 static int remote_cisco_mode;
4247
4248 /* Come here after finding the start of the frame. Collect the rest
4249 into BUF, verifying the checksum, length, and handling run-length
4250 compression. No more than sizeof_buf-1 characters are read so that
4251 the buffer can be NUL terminated.
4252
4253 Returns -1 on error, number of characters in buffer (ignoring the
4254 trailing NULL) on success. (could be extended to return one of the
4255 SERIAL status indications). */
4256
4257 static long
4258 read_frame (char *buf,
4259 long sizeof_buf)
4260 {
4261 unsigned char csum;
4262 long bc;
4263 int c;
4264
4265 csum = 0;
4266 bc = 0;
4267
4268 while (1)
4269 {
4270 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4271 c = readchar (remote_timeout);
4272 switch (c)
4273 {
4274 case SERIAL_TIMEOUT:
4275 if (remote_debug)
4276 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4277 return -1;
4278 case '$':
4279 if (remote_debug)
4280 fputs_filtered ("Saw new packet start in middle of old one\n",
4281 gdb_stdlog);
4282 return -1; /* Start a new packet, count retries */
4283 case '#':
4284 {
4285 unsigned char pktcsum;
4286 int check_0 = 0;
4287 int check_1 = 0;
4288
4289 buf[bc] = '\0';
4290
4291 check_0 = readchar (remote_timeout);
4292 if (check_0 >= 0)
4293 check_1 = readchar (remote_timeout);
4294
4295 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4296 {
4297 if (remote_debug)
4298 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4299 return -1;
4300 }
4301 else if (check_0 < 0 || check_1 < 0)
4302 {
4303 if (remote_debug)
4304 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4305 return -1;
4306 }
4307
4308 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4309 if (csum == pktcsum)
4310 return bc;
4311
4312 if (remote_debug)
4313 {
4314 fprintf_filtered (gdb_stdlog,
4315 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4316 pktcsum, csum);
4317 fputs_filtered (buf, gdb_stdlog);
4318 fputs_filtered ("\n", gdb_stdlog);
4319 }
4320 /* Number of characters in buffer ignoring trailing
4321 NUL. */
4322 return -1;
4323 }
4324 case '*': /* Run length encoding */
4325 {
4326 int repeat;
4327 csum += c;
4328
4329 if (remote_cisco_mode == 0)
4330 {
4331 c = readchar (remote_timeout);
4332 csum += c;
4333 repeat = c - ' ' + 3; /* Compute repeat count */
4334 }
4335 else
4336 {
4337 /* Cisco's run-length encoding variant uses two
4338 hex chars to represent the repeat count. */
4339
4340 c = readchar (remote_timeout);
4341 csum += c;
4342 repeat = fromhex (c) << 4;
4343 c = readchar (remote_timeout);
4344 csum += c;
4345 repeat += fromhex (c);
4346 }
4347
4348 /* The character before ``*'' is repeated. */
4349
4350 if (repeat > 0 && repeat <= 255
4351 && bc > 0
4352 && bc + repeat - 1 < sizeof_buf - 1)
4353 {
4354 memset (&buf[bc], buf[bc - 1], repeat);
4355 bc += repeat;
4356 continue;
4357 }
4358
4359 buf[bc] = '\0';
4360 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4361 puts_filtered (buf);
4362 puts_filtered ("\n");
4363 return -1;
4364 }
4365 default:
4366 if (bc < sizeof_buf - 1)
4367 {
4368 buf[bc++] = c;
4369 csum += c;
4370 continue;
4371 }
4372
4373 buf[bc] = '\0';
4374 puts_filtered ("Remote packet too long: ");
4375 puts_filtered (buf);
4376 puts_filtered ("\n");
4377
4378 return -1;
4379 }
4380 }
4381 }
4382
4383 /* Read a packet from the remote machine, with error checking, and
4384 store it in BUF. If FOREVER, wait forever rather than timing out;
4385 this is used (in synchronous mode) to wait for a target that is is
4386 executing user code to stop. */
4387 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4388 don't have to change all the calls to getpkt to deal with the
4389 return value, because at the moment I don't know what the right
4390 thing to do it for those. */
4391 void
4392 getpkt (char *buf,
4393 long sizeof_buf,
4394 int forever)
4395 {
4396 int timed_out;
4397
4398 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4399 }
4400
4401
4402 /* Read a packet from the remote machine, with error checking, and
4403 store it in BUF. If FOREVER, wait forever rather than timing out;
4404 this is used (in synchronous mode) to wait for a target that is is
4405 executing user code to stop. If FOREVER == 0, this function is
4406 allowed to time out gracefully and return an indication of this to
4407 the caller. */
4408 static int
4409 getpkt_sane (char *buf,
4410 long sizeof_buf,
4411 int forever)
4412 {
4413 int c;
4414 int tries;
4415 int timeout;
4416 int val;
4417
4418 strcpy (buf, "timeout");
4419
4420 if (forever)
4421 {
4422 timeout = watchdog > 0 ? watchdog : -1;
4423 }
4424
4425 else
4426 timeout = remote_timeout;
4427
4428 #define MAX_TRIES 3
4429
4430 for (tries = 1; tries <= MAX_TRIES; tries++)
4431 {
4432 /* This can loop forever if the remote side sends us characters
4433 continuously, but if it pauses, we'll get a zero from readchar
4434 because of timeout. Then we'll count that as a retry. */
4435
4436 /* Note that we will only wait forever prior to the start of a packet.
4437 After that, we expect characters to arrive at a brisk pace. They
4438 should show up within remote_timeout intervals. */
4439
4440 do
4441 {
4442 c = readchar (timeout);
4443
4444 if (c == SERIAL_TIMEOUT)
4445 {
4446 if (forever) /* Watchdog went off? Kill the target. */
4447 {
4448 QUIT;
4449 target_mourn_inferior ();
4450 error ("Watchdog has expired. Target detached.\n");
4451 }
4452 if (remote_debug)
4453 fputs_filtered ("Timed out.\n", gdb_stdlog);
4454 goto retry;
4455 }
4456 }
4457 while (c != '$');
4458
4459 /* We've found the start of a packet, now collect the data. */
4460
4461 val = read_frame (buf, sizeof_buf);
4462
4463 if (val >= 0)
4464 {
4465 if (remote_debug)
4466 {
4467 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4468 fputstr_unfiltered (buf, 0, gdb_stdlog);
4469 fprintf_unfiltered (gdb_stdlog, "\n");
4470 }
4471 serial_write (remote_desc, "+", 1);
4472 return 0;
4473 }
4474
4475 /* Try the whole thing again. */
4476 retry:
4477 serial_write (remote_desc, "-", 1);
4478 }
4479
4480 /* We have tried hard enough, and just can't receive the packet. Give up. */
4481
4482 printf_unfiltered ("Ignoring packet error, continuing...\n");
4483 serial_write (remote_desc, "+", 1);
4484 return 1;
4485 }
4486 \f
4487 static void
4488 remote_kill (void)
4489 {
4490 /* For some mysterious reason, wait_for_inferior calls kill instead of
4491 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4492 if (kill_kludge)
4493 {
4494 kill_kludge = 0;
4495 target_mourn_inferior ();
4496 return;
4497 }
4498
4499 /* Use catch_errors so the user can quit from gdb even when we aren't on
4500 speaking terms with the remote system. */
4501 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4502
4503 /* Don't wait for it to die. I'm not really sure it matters whether
4504 we do or not. For the existing stubs, kill is a noop. */
4505 target_mourn_inferior ();
4506 }
4507
4508 /* Async version of remote_kill. */
4509 static void
4510 remote_async_kill (void)
4511 {
4512 /* Unregister the file descriptor from the event loop. */
4513 if (target_is_async_p ())
4514 serial_async (remote_desc, NULL, 0);
4515
4516 /* For some mysterious reason, wait_for_inferior calls kill instead of
4517 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4518 if (kill_kludge)
4519 {
4520 kill_kludge = 0;
4521 target_mourn_inferior ();
4522 return;
4523 }
4524
4525 /* Use catch_errors so the user can quit from gdb even when we aren't on
4526 speaking terms with the remote system. */
4527 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4528
4529 /* Don't wait for it to die. I'm not really sure it matters whether
4530 we do or not. For the existing stubs, kill is a noop. */
4531 target_mourn_inferior ();
4532 }
4533
4534 static void
4535 remote_mourn (void)
4536 {
4537 remote_mourn_1 (&remote_ops);
4538 }
4539
4540 static void
4541 remote_async_mourn (void)
4542 {
4543 remote_mourn_1 (&remote_async_ops);
4544 }
4545
4546 static void
4547 extended_remote_mourn (void)
4548 {
4549 /* We do _not_ want to mourn the target like this; this will
4550 remove the extended remote target from the target stack,
4551 and the next time the user says "run" it'll fail.
4552
4553 FIXME: What is the right thing to do here? */
4554 #if 0
4555 remote_mourn_1 (&extended_remote_ops);
4556 #endif
4557 }
4558
4559 /* Worker function for remote_mourn. */
4560 static void
4561 remote_mourn_1 (struct target_ops *target)
4562 {
4563 unpush_target (target);
4564 generic_mourn_inferior ();
4565 }
4566
4567 /* In the extended protocol we want to be able to do things like
4568 "run" and have them basically work as expected. So we need
4569 a special create_inferior function.
4570
4571 FIXME: One day add support for changing the exec file
4572 we're debugging, arguments and an environment. */
4573
4574 static void
4575 extended_remote_create_inferior (char *exec_file, char *args, char **env)
4576 {
4577 /* Rip out the breakpoints; we'll reinsert them after restarting
4578 the remote server. */
4579 remove_breakpoints ();
4580
4581 /* Now restart the remote server. */
4582 extended_remote_restart ();
4583
4584 /* Now put the breakpoints back in. This way we're safe if the
4585 restart function works via a unix fork on the remote side. */
4586 insert_breakpoints ();
4587
4588 /* Clean up from the last time we were running. */
4589 clear_proceed_status ();
4590
4591 /* Let the remote process run. */
4592 proceed (-1, TARGET_SIGNAL_0, 0);
4593 }
4594
4595 /* Async version of extended_remote_create_inferior. */
4596 static void
4597 extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4598 {
4599 /* Rip out the breakpoints; we'll reinsert them after restarting
4600 the remote server. */
4601 remove_breakpoints ();
4602
4603 /* If running asynchronously, register the target file descriptor
4604 with the event loop. */
4605 if (event_loop_p && target_can_async_p ())
4606 target_async (inferior_event_handler, 0);
4607
4608 /* Now restart the remote server. */
4609 extended_remote_restart ();
4610
4611 /* Now put the breakpoints back in. This way we're safe if the
4612 restart function works via a unix fork on the remote side. */
4613 insert_breakpoints ();
4614
4615 /* Clean up from the last time we were running. */
4616 clear_proceed_status ();
4617
4618 /* Let the remote process run. */
4619 proceed (-1, TARGET_SIGNAL_0, 0);
4620 }
4621 \f
4622
4623 /* On some machines, e.g. 68k, we may use a different breakpoint instruction
4624 than other targets; in those use REMOTE_BREAKPOINT instead of just
4625 BREAKPOINT. Also, bi-endian targets may define LITTLE_REMOTE_BREAKPOINT
4626 and BIG_REMOTE_BREAKPOINT. If none of these are defined, we just call
4627 the standard routines that are in mem-break.c. */
4628
4629 /* FIXME, these ought to be done in a more dynamic fashion. For instance,
4630 the choice of breakpoint instruction affects target program design and
4631 vice versa, and by making it user-tweakable, the special code here
4632 goes away and we need fewer special GDB configurations. */
4633
4634 #if defined (LITTLE_REMOTE_BREAKPOINT) && defined (BIG_REMOTE_BREAKPOINT) && !defined(REMOTE_BREAKPOINT)
4635 #define REMOTE_BREAKPOINT
4636 #endif
4637
4638 #ifdef REMOTE_BREAKPOINT
4639
4640 /* If the target isn't bi-endian, just pretend it is. */
4641 #if !defined (LITTLE_REMOTE_BREAKPOINT) && !defined (BIG_REMOTE_BREAKPOINT)
4642 #define LITTLE_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4643 #define BIG_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4644 #endif
4645
4646 static unsigned char big_break_insn[] = BIG_REMOTE_BREAKPOINT;
4647 static unsigned char little_break_insn[] = LITTLE_REMOTE_BREAKPOINT;
4648
4649 #endif /* REMOTE_BREAKPOINT */
4650
4651 /* Insert a breakpoint on targets that don't have any better breakpoint
4652 support. We read the contents of the target location and stash it,
4653 then overwrite it with a breakpoint instruction. ADDR is the target
4654 location in the target machine. CONTENTS_CACHE is a pointer to
4655 memory allocated for saving the target contents. It is guaranteed
4656 by the caller to be long enough to save sizeof BREAKPOINT bytes (this
4657 is accomplished via BREAKPOINT_MAX). */
4658
4659 static int
4660 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4661 {
4662 struct remote_state *rs = get_remote_state ();
4663 #ifdef REMOTE_BREAKPOINT
4664 int val;
4665 #endif
4666 int bp_size;
4667
4668 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4669 If it succeeds, then set the support to PACKET_ENABLE. If it
4670 fails, and the user has explicitly requested the Z support then
4671 report an error, otherwise, mark it disabled and go on. */
4672
4673 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4674 {
4675 char *buf = alloca (rs->remote_packet_size);
4676 char *p = buf;
4677
4678 addr = remote_address_masked (addr);
4679 *(p++) = 'Z';
4680 *(p++) = '0';
4681 *(p++) = ',';
4682 p += hexnumstr (p, (ULONGEST) addr);
4683 BREAKPOINT_FROM_PC (&addr, &bp_size);
4684 sprintf (p, ",%d", bp_size);
4685
4686 putpkt (buf);
4687 getpkt (buf, (rs->remote_packet_size), 0);
4688
4689 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4690 {
4691 case PACKET_ERROR:
4692 return -1;
4693 case PACKET_OK:
4694 return 0;
4695 case PACKET_UNKNOWN:
4696 break;
4697 }
4698 }
4699
4700 #ifdef REMOTE_BREAKPOINT
4701 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4702
4703 if (val == 0)
4704 {
4705 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4706 val = target_write_memory (addr, (char *) big_break_insn,
4707 sizeof big_break_insn);
4708 else
4709 val = target_write_memory (addr, (char *) little_break_insn,
4710 sizeof little_break_insn);
4711 }
4712
4713 return val;
4714 #else
4715 return memory_insert_breakpoint (addr, contents_cache);
4716 #endif /* REMOTE_BREAKPOINT */
4717 }
4718
4719 static int
4720 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4721 {
4722 struct remote_state *rs = get_remote_state ();
4723 int bp_size;
4724
4725 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4726 {
4727 char *buf = alloca (rs->remote_packet_size);
4728 char *p = buf;
4729
4730 *(p++) = 'z';
4731 *(p++) = '0';
4732 *(p++) = ',';
4733
4734 addr = remote_address_masked (addr);
4735 p += hexnumstr (p, (ULONGEST) addr);
4736 BREAKPOINT_FROM_PC (&addr, &bp_size);
4737 sprintf (p, ",%d", bp_size);
4738
4739 putpkt (buf);
4740 getpkt (buf, (rs->remote_packet_size), 0);
4741
4742 return (buf[0] == 'E');
4743 }
4744
4745 #ifdef REMOTE_BREAKPOINT
4746 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4747 #else
4748 return memory_remove_breakpoint (addr, contents_cache);
4749 #endif /* REMOTE_BREAKPOINT */
4750 }
4751
4752 static int
4753 watchpoint_to_Z_packet (int type)
4754 {
4755 switch (type)
4756 {
4757 case hw_write:
4758 return 2;
4759 break;
4760 case hw_read:
4761 return 3;
4762 break;
4763 case hw_access:
4764 return 4;
4765 break;
4766 default:
4767 internal_error (__FILE__, __LINE__,
4768 "hw_bp_to_z: bad watchpoint type %d", type);
4769 }
4770 }
4771
4772 static int
4773 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4774 {
4775 struct remote_state *rs = get_remote_state ();
4776 char *buf = alloca (rs->remote_packet_size);
4777 char *p;
4778 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4779
4780 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4781 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4782 remote_protocol_Z[packet].name,
4783 remote_protocol_Z[packet].title);
4784
4785 sprintf (buf, "Z%x,", packet);
4786 p = strchr (buf, '\0');
4787 addr = remote_address_masked (addr);
4788 p += hexnumstr (p, (ULONGEST) addr);
4789 sprintf (p, ",%x", len);
4790
4791 putpkt (buf);
4792 getpkt (buf, (rs->remote_packet_size), 0);
4793
4794 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4795 {
4796 case PACKET_ERROR:
4797 case PACKET_UNKNOWN:
4798 return -1;
4799 case PACKET_OK:
4800 return 0;
4801 }
4802 internal_error (__FILE__, __LINE__,
4803 "remote_insert_watchpoint: reached end of function");
4804 }
4805
4806
4807 static int
4808 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4809 {
4810 struct remote_state *rs = get_remote_state ();
4811 char *buf = alloca (rs->remote_packet_size);
4812 char *p;
4813 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4814
4815 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4816 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4817 remote_protocol_Z[packet].name,
4818 remote_protocol_Z[packet].title);
4819
4820 sprintf (buf, "z%x,", packet);
4821 p = strchr (buf, '\0');
4822 addr = remote_address_masked (addr);
4823 p += hexnumstr (p, (ULONGEST) addr);
4824 sprintf (p, ",%x", len);
4825 putpkt (buf);
4826 getpkt (buf, (rs->remote_packet_size), 0);
4827
4828 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4829 {
4830 case PACKET_ERROR:
4831 case PACKET_UNKNOWN:
4832 return -1;
4833 case PACKET_OK:
4834 return 0;
4835 }
4836 internal_error (__FILE__, __LINE__,
4837 "remote_remove_watchpoint: reached end of function");
4838 }
4839
4840
4841 int remote_hw_watchpoint_limit = 0;
4842 int remote_hw_breakpoint_limit = 0;
4843
4844 int
4845 remote_check_watch_resources (int type, int cnt, int ot)
4846 {
4847 if (type == bp_hardware_breakpoint)
4848 {
4849 if (remote_hw_breakpoint_limit == 0)
4850 return 0;
4851 else if (cnt <= remote_hw_breakpoint_limit)
4852 return 1;
4853 }
4854 else
4855 {
4856 if (remote_hw_watchpoint_limit == 0)
4857 return 0;
4858 else if (ot)
4859 return -1;
4860 else if (cnt <= remote_hw_watchpoint_limit)
4861 return 1;
4862 }
4863 return -1;
4864 }
4865
4866 int
4867 remote_stopped_by_watchpoint (void)
4868 {
4869 return remote_stopped_by_watchpoint_p;
4870 }
4871
4872 CORE_ADDR
4873 remote_stopped_data_address (void)
4874 {
4875 if (remote_stopped_by_watchpoint ())
4876 return remote_watch_data_address;
4877 return (CORE_ADDR)0;
4878 }
4879
4880
4881 static int
4882 remote_insert_hw_breakpoint (CORE_ADDR addr, char *shadow)
4883 {
4884 int len = 0;
4885 struct remote_state *rs = get_remote_state ();
4886 char *buf = alloca (rs->remote_packet_size);
4887 char *p = buf;
4888
4889 /* The length field should be set to the size of a breakpoint
4890 instruction. */
4891
4892 BREAKPOINT_FROM_PC (&addr, &len);
4893
4894 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4895 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4896 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4897 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4898
4899 *(p++) = 'Z';
4900 *(p++) = '1';
4901 *(p++) = ',';
4902
4903 addr = remote_address_masked (addr);
4904 p += hexnumstr (p, (ULONGEST) addr);
4905 sprintf (p, ",%x", len);
4906
4907 putpkt (buf);
4908 getpkt (buf, (rs->remote_packet_size), 0);
4909
4910 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4911 {
4912 case PACKET_ERROR:
4913 case PACKET_UNKNOWN:
4914 return -1;
4915 case PACKET_OK:
4916 return 0;
4917 }
4918 internal_error (__FILE__, __LINE__,
4919 "remote_insert_hw_breakpoint: reached end of function");
4920 }
4921
4922
4923 static int
4924 remote_remove_hw_breakpoint (CORE_ADDR addr, char *shadow)
4925 {
4926 int len;
4927 struct remote_state *rs = get_remote_state ();
4928 char *buf = alloca (rs->remote_packet_size);
4929 char *p = buf;
4930
4931 /* The length field should be set to the size of a breakpoint
4932 instruction. */
4933
4934 BREAKPOINT_FROM_PC (&addr, &len);
4935
4936 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4937 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4938 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4939 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4940
4941 *(p++) = 'z';
4942 *(p++) = '1';
4943 *(p++) = ',';
4944
4945 addr = remote_address_masked (addr);
4946 p += hexnumstr (p, (ULONGEST) addr);
4947 sprintf (p, ",%x", len);
4948
4949 putpkt(buf);
4950 getpkt (buf, (rs->remote_packet_size), 0);
4951
4952 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4953 {
4954 case PACKET_ERROR:
4955 case PACKET_UNKNOWN:
4956 return -1;
4957 case PACKET_OK:
4958 return 0;
4959 }
4960 internal_error (__FILE__, __LINE__,
4961 "remote_remove_hw_breakpoint: reached end of function");
4962 }
4963
4964 /* Some targets are only capable of doing downloads, and afterwards
4965 they switch to the remote serial protocol. This function provides
4966 a clean way to get from the download target to the remote target.
4967 It's basically just a wrapper so that we don't have to expose any
4968 of the internal workings of remote.c.
4969
4970 Prior to calling this routine, you should shutdown the current
4971 target code, else you will get the "A program is being debugged
4972 already..." message. Usually a call to pop_target() suffices. */
4973
4974 void
4975 push_remote_target (char *name, int from_tty)
4976 {
4977 printf_filtered ("Switching to remote protocol\n");
4978 remote_open (name, from_tty);
4979 }
4980
4981 /* Table used by the crc32 function to calcuate the checksum. */
4982
4983 static unsigned long crc32_table[256] =
4984 {0, 0};
4985
4986 static unsigned long
4987 crc32 (unsigned char *buf, int len, unsigned int crc)
4988 {
4989 if (!crc32_table[1])
4990 {
4991 /* Initialize the CRC table and the decoding table. */
4992 int i, j;
4993 unsigned int c;
4994
4995 for (i = 0; i < 256; i++)
4996 {
4997 for (c = i << 24, j = 8; j > 0; --j)
4998 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4999 crc32_table[i] = c;
5000 }
5001 }
5002
5003 while (len--)
5004 {
5005 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5006 buf++;
5007 }
5008 return crc;
5009 }
5010
5011 /* compare-sections command
5012
5013 With no arguments, compares each loadable section in the exec bfd
5014 with the same memory range on the target, and reports mismatches.
5015 Useful for verifying the image on the target against the exec file.
5016 Depends on the target understanding the new "qCRC:" request. */
5017
5018 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5019 target method (target verify memory) and generic version of the
5020 actual command. This will allow other high-level code (especially
5021 generic_load()) to make use of this target functionality. */
5022
5023 static void
5024 compare_sections_command (char *args, int from_tty)
5025 {
5026 struct remote_state *rs = get_remote_state ();
5027 asection *s;
5028 unsigned long host_crc, target_crc;
5029 extern bfd *exec_bfd;
5030 struct cleanup *old_chain;
5031 char *tmp;
5032 char *sectdata;
5033 const char *sectname;
5034 char *buf = alloca (rs->remote_packet_size);
5035 bfd_size_type size;
5036 bfd_vma lma;
5037 int matched = 0;
5038 int mismatched = 0;
5039
5040 if (!exec_bfd)
5041 error ("command cannot be used without an exec file");
5042 if (!current_target.to_shortname ||
5043 strcmp (current_target.to_shortname, "remote") != 0)
5044 error ("command can only be used with remote target");
5045
5046 for (s = exec_bfd->sections; s; s = s->next)
5047 {
5048 if (!(s->flags & SEC_LOAD))
5049 continue; /* skip non-loadable section */
5050
5051 size = bfd_get_section_size_before_reloc (s);
5052 if (size == 0)
5053 continue; /* skip zero-length section */
5054
5055 sectname = bfd_get_section_name (exec_bfd, s);
5056 if (args && strcmp (args, sectname) != 0)
5057 continue; /* not the section selected by user */
5058
5059 matched = 1; /* do this section */
5060 lma = s->lma;
5061 /* FIXME: assumes lma can fit into long */
5062 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
5063 putpkt (buf);
5064
5065 /* be clever; compute the host_crc before waiting for target reply */
5066 sectdata = xmalloc (size);
5067 old_chain = make_cleanup (xfree, sectdata);
5068 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5069 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5070
5071 getpkt (buf, (rs->remote_packet_size), 0);
5072 if (buf[0] == 'E')
5073 error ("target memory fault, section %s, range 0x%s -- 0x%s",
5074 sectname, paddr (lma), paddr (lma + size));
5075 if (buf[0] != 'C')
5076 error ("remote target does not support this operation");
5077
5078 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
5079 target_crc = target_crc * 16 + fromhex (*tmp);
5080
5081 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5082 sectname, paddr (lma), paddr (lma + size));
5083 if (host_crc == target_crc)
5084 printf_filtered ("matched.\n");
5085 else
5086 {
5087 printf_filtered ("MIS-MATCHED!\n");
5088 mismatched++;
5089 }
5090
5091 do_cleanups (old_chain);
5092 }
5093 if (mismatched > 0)
5094 warning ("One or more sections of the remote executable does not match\n\
5095 the loaded file\n");
5096 if (args && !matched)
5097 printf_filtered ("No loaded section named '%s'.\n", args);
5098 }
5099
5100 static int
5101 remote_query (int query_type, char *buf, char *outbuf, int *bufsiz)
5102 {
5103 struct remote_state *rs = get_remote_state ();
5104 int i;
5105 char *buf2 = alloca (rs->remote_packet_size);
5106 char *p2 = &buf2[0];
5107
5108 if (!bufsiz)
5109 error ("null pointer to remote bufer size specified");
5110
5111 /* minimum outbuf size is (rs->remote_packet_size) - if bufsiz is not large enough let
5112 the caller know and return what the minimum size is */
5113 /* Note: a zero bufsiz can be used to query the minimum buffer size */
5114 if (*bufsiz < (rs->remote_packet_size))
5115 {
5116 *bufsiz = (rs->remote_packet_size);
5117 return -1;
5118 }
5119
5120 /* except for querying the minimum buffer size, target must be open */
5121 if (!remote_desc)
5122 error ("remote query is only available after target open");
5123
5124 /* we only take uppercase letters as query types, at least for now */
5125 if ((query_type < 'A') || (query_type > 'Z'))
5126 error ("invalid remote query type");
5127
5128 if (!buf)
5129 error ("null remote query specified");
5130
5131 if (!outbuf)
5132 error ("remote query requires a buffer to receive data");
5133
5134 outbuf[0] = '\0';
5135
5136 *p2++ = 'q';
5137 *p2++ = query_type;
5138
5139 /* we used one buffer char for the remote protocol q command and another
5140 for the query type. As the remote protocol encapsulation uses 4 chars
5141 plus one extra in case we are debugging (remote_debug),
5142 we have PBUFZIZ - 7 left to pack the query string */
5143 i = 0;
5144 while (buf[i] && (i < ((rs->remote_packet_size) - 8)))
5145 {
5146 /* bad caller may have sent forbidden characters */
5147 if ((!isprint (buf[i])) || (buf[i] == '$') || (buf[i] == '#'))
5148 error ("illegal characters in query string");
5149
5150 *p2++ = buf[i];
5151 i++;
5152 }
5153 *p2 = buf[i];
5154
5155 if (buf[i])
5156 error ("query larger than available buffer");
5157
5158 i = putpkt (buf2);
5159 if (i < 0)
5160 return i;
5161
5162 getpkt (outbuf, *bufsiz, 0);
5163
5164 return 0;
5165 }
5166
5167 static void
5168 remote_rcmd (char *command,
5169 struct ui_file *outbuf)
5170 {
5171 struct remote_state *rs = get_remote_state ();
5172 int i;
5173 char *buf = alloca (rs->remote_packet_size);
5174 char *p = buf;
5175
5176 if (!remote_desc)
5177 error ("remote rcmd is only available after target open");
5178
5179 /* Send a NULL command across as an empty command */
5180 if (command == NULL)
5181 command = "";
5182
5183 /* The query prefix */
5184 strcpy (buf, "qRcmd,");
5185 p = strchr (buf, '\0');
5186
5187 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5188 error ("\"monitor\" command ``%s'' is too long\n", command);
5189
5190 /* Encode the actual command */
5191 bin2hex (command, p, 0);
5192
5193 if (putpkt (buf) < 0)
5194 error ("Communication problem with target\n");
5195
5196 /* get/display the response */
5197 while (1)
5198 {
5199 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
5200 buf[0] = '\0';
5201 getpkt (buf, (rs->remote_packet_size), 0);
5202 if (buf[0] == '\0')
5203 error ("Target does not support this command\n");
5204 if (buf[0] == 'O' && buf[1] != 'K')
5205 {
5206 remote_console_output (buf + 1); /* 'O' message from stub */
5207 continue;
5208 }
5209 if (strcmp (buf, "OK") == 0)
5210 break;
5211 if (strlen (buf) == 3 && buf[0] == 'E'
5212 && isdigit (buf[1]) && isdigit (buf[2]))
5213 {
5214 error ("Protocol error with Rcmd");
5215 }
5216 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5217 {
5218 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5219 fputc_unfiltered (c, outbuf);
5220 }
5221 break;
5222 }
5223 }
5224
5225 static void
5226 packet_command (char *args, int from_tty)
5227 {
5228 struct remote_state *rs = get_remote_state ();
5229 char *buf = alloca (rs->remote_packet_size);
5230
5231 if (!remote_desc)
5232 error ("command can only be used with remote target");
5233
5234 if (!args)
5235 error ("remote-packet command requires packet text as argument");
5236
5237 puts_filtered ("sending: ");
5238 print_packet (args);
5239 puts_filtered ("\n");
5240 putpkt (args);
5241
5242 getpkt (buf, (rs->remote_packet_size), 0);
5243 puts_filtered ("received: ");
5244 print_packet (buf);
5245 puts_filtered ("\n");
5246 }
5247
5248 #if 0
5249 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
5250
5251 static void display_thread_info (struct gdb_ext_thread_info *info);
5252
5253 static void threadset_test_cmd (char *cmd, int tty);
5254
5255 static void threadalive_test (char *cmd, int tty);
5256
5257 static void threadlist_test_cmd (char *cmd, int tty);
5258
5259 int get_and_display_threadinfo (threadref * ref);
5260
5261 static void threadinfo_test_cmd (char *cmd, int tty);
5262
5263 static int thread_display_step (threadref * ref, void *context);
5264
5265 static void threadlist_update_test_cmd (char *cmd, int tty);
5266
5267 static void init_remote_threadtests (void);
5268
5269 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
5270
5271 static void
5272 threadset_test_cmd (char *cmd, int tty)
5273 {
5274 int sample_thread = SAMPLE_THREAD;
5275
5276 printf_filtered ("Remote threadset test\n");
5277 set_thread (sample_thread, 1);
5278 }
5279
5280
5281 static void
5282 threadalive_test (char *cmd, int tty)
5283 {
5284 int sample_thread = SAMPLE_THREAD;
5285
5286 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5287 printf_filtered ("PASS: Thread alive test\n");
5288 else
5289 printf_filtered ("FAIL: Thread alive test\n");
5290 }
5291
5292 void output_threadid (char *title, threadref * ref);
5293
5294 void
5295 output_threadid (char *title, threadref *ref)
5296 {
5297 char hexid[20];
5298
5299 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5300 hexid[16] = 0;
5301 printf_filtered ("%s %s\n", title, (&hexid[0]));
5302 }
5303
5304 static void
5305 threadlist_test_cmd (char *cmd, int tty)
5306 {
5307 int startflag = 1;
5308 threadref nextthread;
5309 int done, result_count;
5310 threadref threadlist[3];
5311
5312 printf_filtered ("Remote Threadlist test\n");
5313 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5314 &result_count, &threadlist[0]))
5315 printf_filtered ("FAIL: threadlist test\n");
5316 else
5317 {
5318 threadref *scan = threadlist;
5319 threadref *limit = scan + result_count;
5320
5321 while (scan < limit)
5322 output_threadid (" thread ", scan++);
5323 }
5324 }
5325
5326 void
5327 display_thread_info (struct gdb_ext_thread_info *info)
5328 {
5329 output_threadid ("Threadid: ", &info->threadid);
5330 printf_filtered ("Name: %s\n ", info->shortname);
5331 printf_filtered ("State: %s\n", info->display);
5332 printf_filtered ("other: %s\n\n", info->more_display);
5333 }
5334
5335 int
5336 get_and_display_threadinfo (threadref *ref)
5337 {
5338 int result;
5339 int set;
5340 struct gdb_ext_thread_info threadinfo;
5341
5342 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5343 | TAG_MOREDISPLAY | TAG_DISPLAY;
5344 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5345 display_thread_info (&threadinfo);
5346 return result;
5347 }
5348
5349 static void
5350 threadinfo_test_cmd (char *cmd, int tty)
5351 {
5352 int athread = SAMPLE_THREAD;
5353 threadref thread;
5354 int set;
5355
5356 int_to_threadref (&thread, athread);
5357 printf_filtered ("Remote Threadinfo test\n");
5358 if (!get_and_display_threadinfo (&thread))
5359 printf_filtered ("FAIL cannot get thread info\n");
5360 }
5361
5362 static int
5363 thread_display_step (threadref *ref, void *context)
5364 {
5365 /* output_threadid(" threadstep ",ref); *//* simple test */
5366 return get_and_display_threadinfo (ref);
5367 }
5368
5369 static void
5370 threadlist_update_test_cmd (char *cmd, int tty)
5371 {
5372 printf_filtered ("Remote Threadlist update test\n");
5373 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5374 }
5375
5376 static void
5377 init_remote_threadtests (void)
5378 {
5379 add_com ("tlist", class_obscure, threadlist_test_cmd,
5380 "Fetch and print the remote list of thread identifiers, one pkt only");
5381 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5382 "Fetch and display info about one thread");
5383 add_com ("tset", class_obscure, threadset_test_cmd,
5384 "Test setting to a different thread");
5385 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5386 "Iterate through updating all remote thread info");
5387 add_com ("talive", class_obscure, threadalive_test,
5388 " Remote thread alive test ");
5389 }
5390
5391 #endif /* 0 */
5392
5393 /* Convert a thread ID to a string. Returns the string in a static
5394 buffer. */
5395
5396 static char *
5397 remote_pid_to_str (ptid_t ptid)
5398 {
5399 static char buf[30];
5400
5401 sprintf (buf, "Thread %d", PIDGET (ptid));
5402 return buf;
5403 }
5404
5405 static void
5406 init_remote_ops (void)
5407 {
5408 remote_ops.to_shortname = "remote";
5409 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5410 remote_ops.to_doc =
5411 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5412 Specify the serial device it is connected to\n\
5413 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5414 remote_ops.to_open = remote_open;
5415 remote_ops.to_close = remote_close;
5416 remote_ops.to_detach = remote_detach;
5417 remote_ops.to_resume = remote_resume;
5418 remote_ops.to_wait = remote_wait;
5419 remote_ops.to_fetch_registers = remote_fetch_registers;
5420 remote_ops.to_store_registers = remote_store_registers;
5421 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5422 remote_ops.to_xfer_memory = remote_xfer_memory;
5423 remote_ops.to_files_info = remote_files_info;
5424 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5425 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5426 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5427 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5428 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5429 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5430 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5431 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5432 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5433 remote_ops.to_kill = remote_kill;
5434 remote_ops.to_load = generic_load;
5435 remote_ops.to_mourn_inferior = remote_mourn;
5436 remote_ops.to_thread_alive = remote_thread_alive;
5437 remote_ops.to_find_new_threads = remote_threads_info;
5438 remote_ops.to_pid_to_str = remote_pid_to_str;
5439 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5440 remote_ops.to_stop = remote_stop;
5441 remote_ops.to_query = remote_query;
5442 remote_ops.to_rcmd = remote_rcmd;
5443 remote_ops.to_stratum = process_stratum;
5444 remote_ops.to_has_all_memory = 1;
5445 remote_ops.to_has_memory = 1;
5446 remote_ops.to_has_stack = 1;
5447 remote_ops.to_has_registers = 1;
5448 remote_ops.to_has_execution = 1;
5449 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5450 remote_ops.to_magic = OPS_MAGIC;
5451 }
5452
5453 /* Set up the extended remote vector by making a copy of the standard
5454 remote vector and adding to it. */
5455
5456 static void
5457 init_extended_remote_ops (void)
5458 {
5459 extended_remote_ops = remote_ops;
5460
5461 extended_remote_ops.to_shortname = "extended-remote";
5462 extended_remote_ops.to_longname =
5463 "Extended remote serial target in gdb-specific protocol";
5464 extended_remote_ops.to_doc =
5465 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5466 Specify the serial device it is connected to (e.g. /dev/ttya).",
5467 extended_remote_ops.to_open = extended_remote_open;
5468 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5469 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5470 }
5471
5472 /*
5473 * Command: info remote-process
5474 *
5475 * This implements Cisco's version of the "info proc" command.
5476 *
5477 * This query allows the target stub to return an arbitrary string
5478 * (or strings) giving arbitrary information about the target process.
5479 * This is optional; the target stub isn't required to implement it.
5480 *
5481 * Syntax: qfProcessInfo request first string
5482 * qsProcessInfo request subsequent string
5483 * reply: 'O'<hex-encoded-string>
5484 * 'l' last reply (empty)
5485 */
5486
5487 static void
5488 remote_info_process (char *args, int from_tty)
5489 {
5490 struct remote_state *rs = get_remote_state ();
5491 char *buf = alloca (rs->remote_packet_size);
5492
5493 if (remote_desc == 0)
5494 error ("Command can only be used when connected to the remote target.");
5495
5496 putpkt ("qfProcessInfo");
5497 getpkt (buf, (rs->remote_packet_size), 0);
5498 if (buf[0] == 0)
5499 return; /* Silently: target does not support this feature. */
5500
5501 if (buf[0] == 'E')
5502 error ("info proc: target error.");
5503
5504 while (buf[0] == 'O') /* Capitol-O packet */
5505 {
5506 remote_console_output (&buf[1]);
5507 putpkt ("qsProcessInfo");
5508 getpkt (buf, (rs->remote_packet_size), 0);
5509 }
5510 }
5511
5512 /*
5513 * Target Cisco
5514 */
5515
5516 static void
5517 remote_cisco_open (char *name, int from_tty)
5518 {
5519 int ex;
5520 if (name == 0)
5521 error ("To open a remote debug connection, you need to specify what \n"
5522 "device is attached to the remote system (e.g. host:port).");
5523
5524 /* See FIXME above */
5525 wait_forever_enabled_p = 1;
5526
5527 target_preopen (from_tty);
5528
5529 unpush_target (&remote_cisco_ops);
5530
5531 remote_desc = remote_serial_open (name);
5532 if (!remote_desc)
5533 perror_with_name (name);
5534
5535 /*
5536 * If a baud rate was specified on the gdb command line it will
5537 * be greater than the initial value of -1. If it is, use it otherwise
5538 * default to 9600
5539 */
5540
5541 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5542 if (serial_setbaudrate (remote_desc, baud_rate))
5543 {
5544 serial_close (remote_desc);
5545 perror_with_name (name);
5546 }
5547
5548 serial_raw (remote_desc);
5549
5550 /* If there is something sitting in the buffer we might take it as a
5551 response to a command, which would be bad. */
5552 serial_flush_input (remote_desc);
5553
5554 if (from_tty)
5555 {
5556 puts_filtered ("Remote debugging using ");
5557 puts_filtered (name);
5558 puts_filtered ("\n");
5559 }
5560
5561 remote_cisco_mode = 1;
5562
5563 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5564
5565 init_all_packet_configs ();
5566
5567 general_thread = -2;
5568 continue_thread = -2;
5569
5570 /* Probe for ability to use "ThreadInfo" query, as required. */
5571 use_threadinfo_query = 1;
5572 use_threadextra_query = 1;
5573
5574 /* Without this, some commands which require an active target (such
5575 as kill) won't work. This variable serves (at least) double duty
5576 as both the pid of the target process (if it has such), and as a
5577 flag indicating that a target is active. These functions should
5578 be split out into seperate variables, especially since GDB will
5579 someday have a notion of debugging several processes. */
5580 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5581
5582 /* Start the remote connection; if error, discard this target. See
5583 the comments in remote_open_1() for further details such as the
5584 need to re-throw the exception. */
5585 ex = catch_exceptions (uiout,
5586 remote_start_remote_dummy, NULL,
5587 "Couldn't establish connection to remote"
5588 " target\n",
5589 RETURN_MASK_ALL);
5590 if (ex < 0)
5591 {
5592 pop_target ();
5593 throw_exception (ex);
5594 }
5595 }
5596
5597 static void
5598 remote_cisco_close (int quitting)
5599 {
5600 remote_cisco_mode = 0;
5601 remote_close (quitting);
5602 }
5603
5604 static void
5605 remote_cisco_mourn (void)
5606 {
5607 remote_mourn_1 (&remote_cisco_ops);
5608 }
5609
5610 enum
5611 {
5612 READ_MORE,
5613 FATAL_ERROR,
5614 ENTER_DEBUG,
5615 DISCONNECT_TELNET
5616 }
5617 minitelnet_return;
5618
5619 /* Shared between readsocket() and readtty(). The size is arbitrary,
5620 however all targets are known to support a 400 character packet. */
5621 static char tty_input[400];
5622
5623 static int escape_count;
5624 static int echo_check;
5625 extern int quit_flag;
5626
5627 static int
5628 readsocket (void)
5629 {
5630 int data;
5631
5632 /* Loop until the socket doesn't have any more data */
5633
5634 while ((data = readchar (0)) >= 0)
5635 {
5636 /* Check for the escape sequence */
5637 if (data == '|')
5638 {
5639 /* If this is the fourth escape, get out */
5640 if (++escape_count == 4)
5641 {
5642 return ENTER_DEBUG;
5643 }
5644 else
5645 { /* This is a '|', but not the fourth in a row.
5646 Continue without echoing it. If it isn't actually
5647 one of four in a row, it'll be echoed later. */
5648 continue;
5649 }
5650 }
5651 else
5652 /* Not a '|' */
5653 {
5654 /* Ensure any pending '|'s are flushed. */
5655
5656 for (; escape_count > 0; escape_count--)
5657 putchar ('|');
5658 }
5659
5660 if (data == '\r') /* If this is a return character, */
5661 continue; /* - just supress it. */
5662
5663 if (echo_check != -1) /* Check for echo of user input. */
5664 {
5665 if (tty_input[echo_check] == data)
5666 {
5667 gdb_assert (echo_check <= sizeof (tty_input));
5668 echo_check++; /* Character matched user input: */
5669 continue; /* Continue without echoing it. */
5670 }
5671 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5672 { /* End of the line (and of echo checking). */
5673 echo_check = -1; /* No more echo supression */
5674 continue; /* Continue without echoing. */
5675 }
5676 else
5677 { /* Failed check for echo of user input.
5678 We now have some suppressed output to flush! */
5679 int j;
5680
5681 for (j = 0; j < echo_check; j++)
5682 putchar (tty_input[j]);
5683 echo_check = -1;
5684 }
5685 }
5686 putchar (data); /* Default case: output the char. */
5687 }
5688
5689 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5690 return READ_MORE; /* Try to read some more */
5691 else
5692 return FATAL_ERROR; /* Trouble, bail out */
5693 }
5694
5695 static int
5696 readtty (void)
5697 {
5698 int tty_bytecount;
5699
5700 /* First, read a buffer full from the terminal */
5701 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5702 if (tty_bytecount == -1)
5703 {
5704 perror ("readtty: read failed");
5705 return FATAL_ERROR;
5706 }
5707
5708 /* Remove a quoted newline. */
5709 if (tty_input[tty_bytecount - 1] == '\n' &&
5710 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5711 {
5712 tty_input[--tty_bytecount] = 0; /* remove newline */
5713 tty_input[--tty_bytecount] = 0; /* remove backslash */
5714 }
5715
5716 /* Turn trailing newlines into returns */
5717 if (tty_input[tty_bytecount - 1] == '\n')
5718 tty_input[tty_bytecount - 1] = '\r';
5719
5720 /* If the line consists of a ~, enter debugging mode. */
5721 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5722 return ENTER_DEBUG;
5723
5724 /* Make this a zero terminated string and write it out */
5725 tty_input[tty_bytecount] = 0;
5726 if (serial_write (remote_desc, tty_input, tty_bytecount))
5727 {
5728 perror_with_name ("readtty: write failed");
5729 return FATAL_ERROR;
5730 }
5731
5732 return READ_MORE;
5733 }
5734
5735 static int
5736 minitelnet (void)
5737 {
5738 fd_set input; /* file descriptors for select */
5739 int tablesize; /* max number of FDs for select */
5740 int status;
5741 int quit_count = 0;
5742
5743 extern int escape_count; /* global shared by readsocket */
5744 extern int echo_check; /* ditto */
5745
5746 escape_count = 0;
5747 echo_check = -1;
5748
5749 tablesize = 8 * sizeof (input);
5750
5751 for (;;)
5752 {
5753 /* Check for anything from our socket - doesn't block. Note that
5754 this must be done *before* the select as there may be
5755 buffered I/O waiting to be processed. */
5756
5757 if ((status = readsocket ()) == FATAL_ERROR)
5758 {
5759 error ("Debugging terminated by communications error");
5760 }
5761 else if (status != READ_MORE)
5762 {
5763 return (status);
5764 }
5765
5766 fflush (stdout); /* Flush output before blocking */
5767
5768 /* Now block on more socket input or TTY input */
5769
5770 FD_ZERO (&input);
5771 FD_SET (fileno (stdin), &input);
5772 FD_SET (deprecated_serial_fd (remote_desc), &input);
5773
5774 status = select (tablesize, &input, 0, 0, 0);
5775 if ((status == -1) && (errno != EINTR))
5776 {
5777 error ("Communications error on select %d", errno);
5778 }
5779
5780 /* Handle Control-C typed */
5781
5782 if (quit_flag)
5783 {
5784 if ((++quit_count) == 2)
5785 {
5786 if (query ("Interrupt GDB? "))
5787 {
5788 printf_filtered ("Interrupted by user.\n");
5789 throw_exception (RETURN_QUIT);
5790 }
5791 quit_count = 0;
5792 }
5793 quit_flag = 0;
5794
5795 if (remote_break)
5796 serial_send_break (remote_desc);
5797 else
5798 serial_write (remote_desc, "\003", 1);
5799
5800 continue;
5801 }
5802
5803 /* Handle console input */
5804
5805 if (FD_ISSET (fileno (stdin), &input))
5806 {
5807 quit_count = 0;
5808 echo_check = 0;
5809 status = readtty ();
5810 if (status == READ_MORE)
5811 continue;
5812
5813 return status; /* telnet session ended */
5814 }
5815 }
5816 }
5817
5818 static ptid_t
5819 remote_cisco_wait (ptid_t ptid, struct target_waitstatus *status)
5820 {
5821 if (minitelnet () != ENTER_DEBUG)
5822 {
5823 error ("Debugging session terminated by protocol error");
5824 }
5825 putpkt ("?");
5826 return remote_wait (ptid, status);
5827 }
5828
5829 static void
5830 init_remote_cisco_ops (void)
5831 {
5832 remote_cisco_ops.to_shortname = "cisco";
5833 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5834 remote_cisco_ops.to_doc =
5835 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5836 Specify the serial device it is connected to (e.g. host:2020).";
5837 remote_cisco_ops.to_open = remote_cisco_open;
5838 remote_cisco_ops.to_close = remote_cisco_close;
5839 remote_cisco_ops.to_detach = remote_detach;
5840 remote_cisco_ops.to_resume = remote_resume;
5841 remote_cisco_ops.to_wait = remote_cisco_wait;
5842 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5843 remote_cisco_ops.to_store_registers = remote_store_registers;
5844 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5845 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5846 remote_cisco_ops.to_files_info = remote_files_info;
5847 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5848 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5849 remote_cisco_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5850 remote_cisco_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5851 remote_cisco_ops.to_insert_watchpoint = remote_insert_watchpoint;
5852 remote_cisco_ops.to_remove_watchpoint = remote_remove_watchpoint;
5853 remote_cisco_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5854 remote_cisco_ops.to_stopped_data_address = remote_stopped_data_address;
5855 remote_cisco_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5856 remote_cisco_ops.to_kill = remote_kill;
5857 remote_cisco_ops.to_load = generic_load;
5858 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5859 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5860 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5861 remote_cisco_ops.to_pid_to_str = remote_pid_to_str;
5862 remote_cisco_ops.to_extra_thread_info = remote_threads_extra_info;
5863 remote_cisco_ops.to_stratum = process_stratum;
5864 remote_cisco_ops.to_has_all_memory = 1;
5865 remote_cisco_ops.to_has_memory = 1;
5866 remote_cisco_ops.to_has_stack = 1;
5867 remote_cisco_ops.to_has_registers = 1;
5868 remote_cisco_ops.to_has_execution = 1;
5869 remote_cisco_ops.to_magic = OPS_MAGIC;
5870 }
5871
5872 static int
5873 remote_can_async_p (void)
5874 {
5875 /* We're async whenever the serial device is. */
5876 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5877 }
5878
5879 static int
5880 remote_is_async_p (void)
5881 {
5882 /* We're async whenever the serial device is. */
5883 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5884 }
5885
5886 /* Pass the SERIAL event on and up to the client. One day this code
5887 will be able to delay notifying the client of an event until the
5888 point where an entire packet has been received. */
5889
5890 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5891 static void *async_client_context;
5892 static serial_event_ftype remote_async_serial_handler;
5893
5894 static void
5895 remote_async_serial_handler (struct serial *scb, void *context)
5896 {
5897 /* Don't propogate error information up to the client. Instead let
5898 the client find out about the error by querying the target. */
5899 async_client_callback (INF_REG_EVENT, async_client_context);
5900 }
5901
5902 static void
5903 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5904 {
5905 if (current_target.to_async_mask_value == 0)
5906 internal_error (__FILE__, __LINE__,
5907 "Calling remote_async when async is masked");
5908
5909 if (callback != NULL)
5910 {
5911 serial_async (remote_desc, remote_async_serial_handler, NULL);
5912 async_client_callback = callback;
5913 async_client_context = context;
5914 }
5915 else
5916 serial_async (remote_desc, NULL, NULL);
5917 }
5918
5919 /* Target async and target extended-async.
5920
5921 This are temporary targets, until it is all tested. Eventually
5922 async support will be incorporated int the usual 'remote'
5923 target. */
5924
5925 static void
5926 init_remote_async_ops (void)
5927 {
5928 remote_async_ops.to_shortname = "async";
5929 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5930 remote_async_ops.to_doc =
5931 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5932 Specify the serial device it is connected to (e.g. /dev/ttya).";
5933 remote_async_ops.to_open = remote_async_open;
5934 remote_async_ops.to_close = remote_close;
5935 remote_async_ops.to_detach = remote_async_detach;
5936 remote_async_ops.to_resume = remote_async_resume;
5937 remote_async_ops.to_wait = remote_async_wait;
5938 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5939 remote_async_ops.to_store_registers = remote_store_registers;
5940 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5941 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5942 remote_async_ops.to_files_info = remote_files_info;
5943 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5944 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5945 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5946 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5947 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5948 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5949 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5950 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5951 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5952 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5953 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5954 remote_async_ops.to_kill = remote_async_kill;
5955 remote_async_ops.to_load = generic_load;
5956 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5957 remote_async_ops.to_thread_alive = remote_thread_alive;
5958 remote_async_ops.to_find_new_threads = remote_threads_info;
5959 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5960 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5961 remote_async_ops.to_stop = remote_stop;
5962 remote_async_ops.to_query = remote_query;
5963 remote_async_ops.to_rcmd = remote_rcmd;
5964 remote_async_ops.to_stratum = process_stratum;
5965 remote_async_ops.to_has_all_memory = 1;
5966 remote_async_ops.to_has_memory = 1;
5967 remote_async_ops.to_has_stack = 1;
5968 remote_async_ops.to_has_registers = 1;
5969 remote_async_ops.to_has_execution = 1;
5970 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5971 remote_async_ops.to_can_async_p = remote_can_async_p;
5972 remote_async_ops.to_is_async_p = remote_is_async_p;
5973 remote_async_ops.to_async = remote_async;
5974 remote_async_ops.to_async_mask_value = 1;
5975 remote_async_ops.to_magic = OPS_MAGIC;
5976 }
5977
5978 /* Set up the async extended remote vector by making a copy of the standard
5979 remote vector and adding to it. */
5980
5981 static void
5982 init_extended_async_remote_ops (void)
5983 {
5984 extended_async_remote_ops = remote_async_ops;
5985
5986 extended_async_remote_ops.to_shortname = "extended-async";
5987 extended_async_remote_ops.to_longname =
5988 "Extended remote serial target in async gdb-specific protocol";
5989 extended_async_remote_ops.to_doc =
5990 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5991 Specify the serial device it is connected to (e.g. /dev/ttya).",
5992 extended_async_remote_ops.to_open = extended_remote_async_open;
5993 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5994 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5995 }
5996
5997 static void
5998 set_remote_cmd (char *args, int from_tty)
5999 {
6000 }
6001
6002 static void
6003 show_remote_cmd (char *args, int from_tty)
6004 {
6005 /* FIXME: cagney/2002-06-15: This function should iterate over
6006 remote_show_cmdlist for a list of sub commands to show. */
6007 show_remote_protocol_Z_packet_cmd (args, from_tty, NULL);
6008 show_remote_protocol_e_packet_cmd (args, from_tty, NULL);
6009 show_remote_protocol_E_packet_cmd (args, from_tty, NULL);
6010 show_remote_protocol_P_packet_cmd (args, from_tty, NULL);
6011 show_remote_protocol_qSymbol_packet_cmd (args, from_tty, NULL);
6012 show_remote_protocol_binary_download_cmd (args, from_tty, NULL);
6013 }
6014
6015 static void
6016 build_remote_gdbarch_data (void)
6017 {
6018 remote_address_size = TARGET_ADDR_BIT;
6019 }
6020
6021 /* Saved pointer to previous owner of the new_objfile event. */
6022 static void (*remote_new_objfile_chain) (struct objfile *);
6023
6024 /* Function to be called whenever a new objfile (shlib) is detected. */
6025 static void
6026 remote_new_objfile (struct objfile *objfile)
6027 {
6028 if (remote_desc != 0) /* Have a remote connection */
6029 {
6030 remote_check_symbols (objfile);
6031 }
6032 /* Call predecessor on chain, if any. */
6033 if (remote_new_objfile_chain != 0 &&
6034 remote_desc == 0)
6035 remote_new_objfile_chain (objfile);
6036 }
6037
6038 void
6039 _initialize_remote (void)
6040 {
6041 static struct cmd_list_element *remote_set_cmdlist;
6042 static struct cmd_list_element *remote_show_cmdlist;
6043 struct cmd_list_element *tmpcmd;
6044
6045 /* architecture specific data */
6046 remote_gdbarch_data_handle = register_gdbarch_data (init_remote_state,
6047 free_remote_state);
6048
6049 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6050 that the remote protocol has been initialized. */
6051 register_gdbarch_swap (&remote_address_size,
6052 sizeof (&remote_address_size), NULL);
6053 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6054
6055 init_remote_ops ();
6056 add_target (&remote_ops);
6057
6058 init_extended_remote_ops ();
6059 add_target (&extended_remote_ops);
6060
6061 init_remote_async_ops ();
6062 add_target (&remote_async_ops);
6063
6064 init_extended_async_remote_ops ();
6065 add_target (&extended_async_remote_ops);
6066
6067 init_remote_cisco_ops ();
6068 add_target (&remote_cisco_ops);
6069
6070 /* Hook into new objfile notification. */
6071 remote_new_objfile_chain = target_new_objfile_hook;
6072 target_new_objfile_hook = remote_new_objfile;
6073
6074 #if 0
6075 init_remote_threadtests ();
6076 #endif
6077
6078 /* set/show remote ... */
6079
6080 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
6081 Remote protocol specific variables\n\
6082 Configure various remote-protocol specific variables such as\n\
6083 the packets being used",
6084 &remote_set_cmdlist, "set remote ",
6085 0/*allow-unknown*/, &setlist);
6086 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
6087 Remote protocol specific variables\n\
6088 Configure various remote-protocol specific variables such as\n\
6089 the packets being used",
6090 &remote_show_cmdlist, "show remote ",
6091 0/*allow-unknown*/, &showlist);
6092
6093 add_cmd ("compare-sections", class_obscure, compare_sections_command,
6094 "Compare section data on target to the exec file.\n\
6095 Argument is a single section name (default: all loaded sections).",
6096 &cmdlist);
6097
6098 add_cmd ("packet", class_maintenance, packet_command,
6099 "Send an arbitrary packet to a remote target.\n\
6100 maintenance packet TEXT\n\
6101 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6102 this command sends the string TEXT to the inferior, and displays the\n\
6103 response packet. GDB supplies the initial `$' character, and the\n\
6104 terminating `#' character and checksum.",
6105 &maintenancelist);
6106
6107 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break,
6108 "Set whether to send break if interrupted.\n",
6109 "Show whether to send break if interrupted.\n",
6110 NULL, NULL,
6111 &setlist, &showlist);
6112
6113 /* Install commands for configuring memory read/write packets. */
6114
6115 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
6116 "Set the maximum number of bytes per memory write packet (deprecated).\n",
6117 &setlist);
6118 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
6119 "Show the maximum number of bytes per memory write packet (deprecated).\n",
6120 &showlist);
6121 add_cmd ("memory-write-packet-size", no_class,
6122 set_memory_write_packet_size,
6123 "Set the maximum number of bytes per memory-write packet.\n"
6124 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6125 "default packet size. The actual limit is further reduced\n"
6126 "dependent on the target. Specify ``fixed'' to disable the\n"
6127 "further restriction and ``limit'' to enable that restriction\n",
6128 &remote_set_cmdlist);
6129 add_cmd ("memory-read-packet-size", no_class,
6130 set_memory_read_packet_size,
6131 "Set the maximum number of bytes per memory-read packet.\n"
6132 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6133 "default packet size. The actual limit is further reduced\n"
6134 "dependent on the target. Specify ``fixed'' to disable the\n"
6135 "further restriction and ``limit'' to enable that restriction\n",
6136 &remote_set_cmdlist);
6137 add_cmd ("memory-write-packet-size", no_class,
6138 show_memory_write_packet_size,
6139 "Show the maximum number of bytes per memory-write packet.\n",
6140 &remote_show_cmdlist);
6141 add_cmd ("memory-read-packet-size", no_class,
6142 show_memory_read_packet_size,
6143 "Show the maximum number of bytes per memory-read packet.\n",
6144 &remote_show_cmdlist);
6145
6146 add_show_from_set
6147 (add_set_cmd ("remoteaddresssize", class_obscure,
6148 var_integer, (char *) &remote_address_size,
6149 "Set the maximum size of the address (in bits) \
6150 in a memory packet.\n",
6151 &setlist),
6152 &showlist);
6153
6154 add_packet_config_cmd (&remote_protocol_binary_download,
6155 "X", "binary-download",
6156 set_remote_protocol_binary_download_cmd,
6157 show_remote_protocol_binary_download_cmd,
6158 &remote_set_cmdlist, &remote_show_cmdlist,
6159 1);
6160 #if 0
6161 /* XXXX - should ``set remotebinarydownload'' be retained for
6162 compatibility. */
6163 add_show_from_set
6164 (add_set_cmd ("remotebinarydownload", no_class,
6165 var_boolean, (char *) &remote_binary_download,
6166 "Set binary downloads.\n", &setlist),
6167 &showlist);
6168 #endif
6169
6170 add_info ("remote-process", remote_info_process,
6171 "Query the remote system for process info.");
6172
6173 add_packet_config_cmd (&remote_protocol_qSymbol,
6174 "qSymbol", "symbol-lookup",
6175 set_remote_protocol_qSymbol_packet_cmd,
6176 show_remote_protocol_qSymbol_packet_cmd,
6177 &remote_set_cmdlist, &remote_show_cmdlist,
6178 0);
6179
6180 add_packet_config_cmd (&remote_protocol_e,
6181 "e", "step-over-range",
6182 set_remote_protocol_e_packet_cmd,
6183 show_remote_protocol_e_packet_cmd,
6184 &remote_set_cmdlist, &remote_show_cmdlist,
6185 0);
6186 /* Disable by default. The ``e'' packet has nasty interactions with
6187 the threading code - it relies on global state. */
6188 remote_protocol_e.detect = AUTO_BOOLEAN_FALSE;
6189 update_packet_config (&remote_protocol_e);
6190
6191 add_packet_config_cmd (&remote_protocol_E,
6192 "E", "step-over-range-w-signal",
6193 set_remote_protocol_E_packet_cmd,
6194 show_remote_protocol_E_packet_cmd,
6195 &remote_set_cmdlist, &remote_show_cmdlist,
6196 0);
6197 /* Disable by default. The ``e'' packet has nasty interactions with
6198 the threading code - it relies on global state. */
6199 remote_protocol_E.detect = AUTO_BOOLEAN_FALSE;
6200 update_packet_config (&remote_protocol_E);
6201
6202 add_packet_config_cmd (&remote_protocol_P,
6203 "P", "set-register",
6204 set_remote_protocol_P_packet_cmd,
6205 show_remote_protocol_P_packet_cmd,
6206 &remote_set_cmdlist, &remote_show_cmdlist,
6207 1);
6208
6209 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
6210 "Z0", "software-breakpoint",
6211 set_remote_protocol_Z_software_bp_packet_cmd,
6212 show_remote_protocol_Z_software_bp_packet_cmd,
6213 &remote_set_cmdlist, &remote_show_cmdlist,
6214 0);
6215
6216 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
6217 "Z1", "hardware-breakpoint",
6218 set_remote_protocol_Z_hardware_bp_packet_cmd,
6219 show_remote_protocol_Z_hardware_bp_packet_cmd,
6220 &remote_set_cmdlist, &remote_show_cmdlist,
6221 0);
6222
6223 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
6224 "Z2", "write-watchpoint",
6225 set_remote_protocol_Z_write_wp_packet_cmd,
6226 show_remote_protocol_Z_write_wp_packet_cmd,
6227 &remote_set_cmdlist, &remote_show_cmdlist,
6228 0);
6229
6230 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
6231 "Z3", "read-watchpoint",
6232 set_remote_protocol_Z_read_wp_packet_cmd,
6233 show_remote_protocol_Z_read_wp_packet_cmd,
6234 &remote_set_cmdlist, &remote_show_cmdlist,
6235 0);
6236
6237 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
6238 "Z4", "access-watchpoint",
6239 set_remote_protocol_Z_access_wp_packet_cmd,
6240 show_remote_protocol_Z_access_wp_packet_cmd,
6241 &remote_set_cmdlist, &remote_show_cmdlist,
6242 0);
6243
6244 /* Keep the old ``set remote Z-packet ...'' working. */
6245 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6246 &remote_Z_packet_detect, "\
6247 Set use of remote protocol `Z' packets",
6248 "Show use of remote protocol `Z' packets ",
6249 set_remote_protocol_Z_packet_cmd,
6250 show_remote_protocol_Z_packet_cmd,
6251 &remote_set_cmdlist, &remote_show_cmdlist);
6252 }
This page took 0.173003 seconds and 4 git commands to generate.