ppc-aix osabi sniffer: Turn test of bfd flavour into assertion
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <fcntl.h>
26 #include "inferior.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "exceptions.h"
30 #include "target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "gdb_assert.h"
40 #include "observer.h"
41 #include "solib.h"
42 #include "cli/cli-decode.h"
43 #include "cli/cli-setshow.h"
44 #include "target-descriptions.h"
45 #include "gdb_bfd.h"
46
47 #include <ctype.h>
48 #include <sys/time.h>
49
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include "inf-loop.h"
53
54 #include <signal.h>
55 #include "serial.h"
56
57 #include "gdbcore.h" /* for exec_bfd */
58
59 #include "remote-fileio.h"
60 #include "gdb/fileio.h"
61 #include "gdb_stat.h"
62 #include "xml-support.h"
63
64 #include "memory-map.h"
65
66 #include "tracepoint.h"
67 #include "ax.h"
68 #include "ax-gdb.h"
69 #include "agent.h"
70
71 /* Temp hacks for tracepoint encoding migration. */
72 static char *target_buf;
73 static long target_buf_size;
74
75 /* The size to align memory write packets, when practical. The protocol
76 does not guarantee any alignment, and gdb will generate short
77 writes and unaligned writes, but even as a best-effort attempt this
78 can improve bulk transfers. For instance, if a write is misaligned
79 relative to the target's data bus, the stub may need to make an extra
80 round trip fetching data from the target. This doesn't make a
81 huge difference, but it's easy to do, so we try to be helpful.
82
83 The alignment chosen is arbitrary; usually data bus width is
84 important here, not the possibly larger cache line size. */
85 enum { REMOTE_ALIGN_WRITES = 16 };
86
87 /* Prototypes for local functions. */
88 static void cleanup_sigint_signal_handler (void *dummy);
89 static void initialize_sigint_signal_handler (void);
90 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
91 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
92 int forever);
93
94 static void handle_remote_sigint (int);
95 static void handle_remote_sigint_twice (int);
96 static void async_remote_interrupt (gdb_client_data);
97 void async_remote_interrupt_twice (gdb_client_data);
98
99 static void remote_files_info (struct target_ops *ignore);
100
101 static void remote_prepare_to_store (struct regcache *regcache);
102
103 static void remote_open (char *name, int from_tty);
104
105 static void extended_remote_open (char *name, int from_tty);
106
107 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
108
109 static void remote_close (int quitting);
110
111 static void remote_mourn (struct target_ops *ops);
112
113 static void extended_remote_restart (void);
114
115 static void extended_remote_mourn (struct target_ops *);
116
117 static void remote_mourn_1 (struct target_ops *);
118
119 static void remote_send (char **buf, long *sizeof_buf_p);
120
121 static int readchar (int timeout);
122
123 static void remote_kill (struct target_ops *ops);
124
125 static int tohex (int nib);
126
127 static int remote_can_async_p (void);
128
129 static int remote_is_async_p (void);
130
131 static void remote_async (void (*callback) (enum inferior_event_type event_type,
132 void *context), void *context);
133
134 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
135
136 static void remote_interrupt (int signo);
137
138 static void remote_interrupt_twice (int signo);
139
140 static void interrupt_query (void);
141
142 static void set_general_thread (struct ptid ptid);
143 static void set_continue_thread (struct ptid ptid);
144
145 static void get_offsets (void);
146
147 static void skip_frame (void);
148
149 static long read_frame (char **buf_p, long *sizeof_buf);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void remote_stop (ptid_t);
158
159 static int ishex (int ch, int *val);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (char *);
170
171 static void compare_sections_command (char *, int);
172
173 static void packet_command (char *, int);
174
175 static int stub_unpack_int (char *buff, int fieldlength);
176
177 static ptid_t remote_current_thread (ptid_t oldptid);
178
179 static void remote_find_new_threads (void);
180
181 static void record_currthread (ptid_t currthread);
182
183 static int fromhex (int a);
184
185 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
186
187 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
188
189 static int putpkt_binary (char *buf, int cnt);
190
191 static void check_binary_download (CORE_ADDR addr);
192
193 struct packet_config;
194
195 static void show_packet_config_cmd (struct packet_config *config);
196
197 static void update_packet_config (struct packet_config *config);
198
199 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
200 struct cmd_list_element *c);
201
202 static void show_remote_protocol_packet_cmd (struct ui_file *file,
203 int from_tty,
204 struct cmd_list_element *c,
205 const char *value);
206
207 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
208 static ptid_t read_ptid (char *buf, char **obuf);
209
210 static void remote_set_permissions (void);
211
212 struct remote_state;
213 static int remote_get_trace_status (struct trace_status *ts);
214
215 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
216
217 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
218
219 static void remote_query_supported (void);
220
221 static void remote_check_symbols (struct objfile *objfile);
222
223 void _initialize_remote (void);
224
225 struct stop_reply;
226 static struct stop_reply *stop_reply_xmalloc (void);
227 static void stop_reply_xfree (struct stop_reply *);
228 static void do_stop_reply_xfree (void *arg);
229 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
230 static void push_stop_reply (struct stop_reply *);
231 static void remote_get_pending_stop_replies (void);
232 static void discard_pending_stop_replies (int pid);
233 static int peek_stop_reply (ptid_t ptid);
234
235 static void remote_async_inferior_event_handler (gdb_client_data);
236 static void remote_async_get_pending_events_handler (gdb_client_data);
237
238 static void remote_terminal_ours (void);
239
240 static int remote_read_description_p (struct target_ops *target);
241
242 static void remote_console_output (char *msg);
243
244 static int remote_supports_cond_breakpoints (void);
245
246 static int remote_can_run_breakpoint_commands (void);
247
248 /* The non-stop remote protocol provisions for one pending stop reply.
249 This is where we keep it until it is acknowledged. */
250
251 static struct stop_reply *pending_stop_reply = NULL;
252
253 /* For "remote". */
254
255 static struct cmd_list_element *remote_cmdlist;
256
257 /* For "set remote" and "show remote". */
258
259 static struct cmd_list_element *remote_set_cmdlist;
260 static struct cmd_list_element *remote_show_cmdlist;
261
262 /* Description of the remote protocol state for the currently
263 connected target. This is per-target state, and independent of the
264 selected architecture. */
265
266 struct remote_state
267 {
268 /* A buffer to use for incoming packets, and its current size. The
269 buffer is grown dynamically for larger incoming packets.
270 Outgoing packets may also be constructed in this buffer.
271 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
272 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
273 packets. */
274 char *buf;
275 long buf_size;
276
277 /* True if we're going through initial connection setup (finding out
278 about the remote side's threads, relocating symbols, etc.). */
279 int starting_up;
280
281 /* If we negotiated packet size explicitly (and thus can bypass
282 heuristics for the largest packet size that will not overflow
283 a buffer in the stub), this will be set to that packet size.
284 Otherwise zero, meaning to use the guessed size. */
285 long explicit_packet_size;
286
287 /* remote_wait is normally called when the target is running and
288 waits for a stop reply packet. But sometimes we need to call it
289 when the target is already stopped. We can send a "?" packet
290 and have remote_wait read the response. Or, if we already have
291 the response, we can stash it in BUF and tell remote_wait to
292 skip calling getpkt. This flag is set when BUF contains a
293 stop reply packet and the target is not waiting. */
294 int cached_wait_status;
295
296 /* True, if in no ack mode. That is, neither GDB nor the stub will
297 expect acks from each other. The connection is assumed to be
298 reliable. */
299 int noack_mode;
300
301 /* True if we're connected in extended remote mode. */
302 int extended;
303
304 /* True if the stub reported support for multi-process
305 extensions. */
306 int multi_process_aware;
307
308 /* True if we resumed the target and we're waiting for the target to
309 stop. In the mean time, we can't start another command/query.
310 The remote server wouldn't be ready to process it, so we'd
311 timeout waiting for a reply that would never come and eventually
312 we'd close the connection. This can happen in asynchronous mode
313 because we allow GDB commands while the target is running. */
314 int waiting_for_stop_reply;
315
316 /* True if the stub reports support for non-stop mode. */
317 int non_stop_aware;
318
319 /* True if the stub reports support for vCont;t. */
320 int support_vCont_t;
321
322 /* True if the stub reports support for conditional tracepoints. */
323 int cond_tracepoints;
324
325 /* True if the stub reports support for target-side breakpoint
326 conditions. */
327 int cond_breakpoints;
328
329 /* True if the stub reports support for target-side breakpoint
330 commands. */
331 int breakpoint_commands;
332
333 /* True if the stub reports support for fast tracepoints. */
334 int fast_tracepoints;
335
336 /* True if the stub reports support for static tracepoints. */
337 int static_tracepoints;
338
339 /* True if the stub reports support for installing tracepoint while
340 tracing. */
341 int install_in_trace;
342
343 /* True if the stub can continue running a trace while GDB is
344 disconnected. */
345 int disconnected_tracing;
346
347 /* True if the stub reports support for enabling and disabling
348 tracepoints while a trace experiment is running. */
349 int enable_disable_tracepoints;
350
351 /* True if the stub can collect strings using tracenz bytecode. */
352 int string_tracing;
353
354 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
355 responded to that. */
356 int ctrlc_pending_p;
357 };
358
359 /* Private data that we'll store in (struct thread_info)->private. */
360 struct private_thread_info
361 {
362 char *extra;
363 int core;
364 };
365
366 static void
367 free_private_thread_info (struct private_thread_info *info)
368 {
369 xfree (info->extra);
370 xfree (info);
371 }
372
373 /* Returns true if the multi-process extensions are in effect. */
374 static int
375 remote_multi_process_p (struct remote_state *rs)
376 {
377 return rs->multi_process_aware;
378 }
379
380 /* This data could be associated with a target, but we do not always
381 have access to the current target when we need it, so for now it is
382 static. This will be fine for as long as only one target is in use
383 at a time. */
384 static struct remote_state remote_state;
385
386 static struct remote_state *
387 get_remote_state_raw (void)
388 {
389 return &remote_state;
390 }
391
392 /* Description of the remote protocol for a given architecture. */
393
394 struct packet_reg
395 {
396 long offset; /* Offset into G packet. */
397 long regnum; /* GDB's internal register number. */
398 LONGEST pnum; /* Remote protocol register number. */
399 int in_g_packet; /* Always part of G packet. */
400 /* long size in bytes; == register_size (target_gdbarch, regnum);
401 at present. */
402 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
403 at present. */
404 };
405
406 struct remote_arch_state
407 {
408 /* Description of the remote protocol registers. */
409 long sizeof_g_packet;
410
411 /* Description of the remote protocol registers indexed by REGNUM
412 (making an array gdbarch_num_regs in size). */
413 struct packet_reg *regs;
414
415 /* This is the size (in chars) of the first response to the ``g''
416 packet. It is used as a heuristic when determining the maximum
417 size of memory-read and memory-write packets. A target will
418 typically only reserve a buffer large enough to hold the ``g''
419 packet. The size does not include packet overhead (headers and
420 trailers). */
421 long actual_register_packet_size;
422
423 /* This is the maximum size (in chars) of a non read/write packet.
424 It is also used as a cap on the size of read/write packets. */
425 long remote_packet_size;
426 };
427
428 long sizeof_pkt = 2000;
429
430 /* Utility: generate error from an incoming stub packet. */
431 static void
432 trace_error (char *buf)
433 {
434 if (*buf++ != 'E')
435 return; /* not an error msg */
436 switch (*buf)
437 {
438 case '1': /* malformed packet error */
439 if (*++buf == '0') /* general case: */
440 error (_("remote.c: error in outgoing packet."));
441 else
442 error (_("remote.c: error in outgoing packet at field #%ld."),
443 strtol (buf, NULL, 16));
444 case '2':
445 error (_("trace API error 0x%s."), ++buf);
446 default:
447 error (_("Target returns error code '%s'."), buf);
448 }
449 }
450
451 /* Utility: wait for reply from stub, while accepting "O" packets. */
452 static char *
453 remote_get_noisy_reply (char **buf_p,
454 long *sizeof_buf)
455 {
456 do /* Loop on reply from remote stub. */
457 {
458 char *buf;
459
460 QUIT; /* Allow user to bail out with ^C. */
461 getpkt (buf_p, sizeof_buf, 0);
462 buf = *buf_p;
463 if (buf[0] == 'E')
464 trace_error (buf);
465 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
466 {
467 ULONGEST ul;
468 CORE_ADDR from, to, org_to;
469 char *p, *pp;
470 int adjusted_size = 0;
471 volatile struct gdb_exception ex;
472
473 p = buf + strlen ("qRelocInsn:");
474 pp = unpack_varlen_hex (p, &ul);
475 if (*pp != ';')
476 error (_("invalid qRelocInsn packet: %s"), buf);
477 from = ul;
478
479 p = pp + 1;
480 unpack_varlen_hex (p, &ul);
481 to = ul;
482
483 org_to = to;
484
485 TRY_CATCH (ex, RETURN_MASK_ALL)
486 {
487 gdbarch_relocate_instruction (target_gdbarch, &to, from);
488 }
489 if (ex.reason >= 0)
490 {
491 adjusted_size = to - org_to;
492
493 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
494 putpkt (buf);
495 }
496 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
497 {
498 /* Propagate memory errors silently back to the target.
499 The stub may have limited the range of addresses we
500 can write to, for example. */
501 putpkt ("E01");
502 }
503 else
504 {
505 /* Something unexpectedly bad happened. Be verbose so
506 we can tell what, and propagate the error back to the
507 stub, so it doesn't get stuck waiting for a
508 response. */
509 exception_fprintf (gdb_stderr, ex,
510 _("warning: relocating instruction: "));
511 putpkt ("E01");
512 }
513 }
514 else if (buf[0] == 'O' && buf[1] != 'K')
515 remote_console_output (buf + 1); /* 'O' message from stub */
516 else
517 return buf; /* Here's the actual reply. */
518 }
519 while (1);
520 }
521
522 /* Handle for retreving the remote protocol data from gdbarch. */
523 static struct gdbarch_data *remote_gdbarch_data_handle;
524
525 static struct remote_arch_state *
526 get_remote_arch_state (void)
527 {
528 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
529 }
530
531 /* Fetch the global remote target state. */
532
533 static struct remote_state *
534 get_remote_state (void)
535 {
536 /* Make sure that the remote architecture state has been
537 initialized, because doing so might reallocate rs->buf. Any
538 function which calls getpkt also needs to be mindful of changes
539 to rs->buf, but this call limits the number of places which run
540 into trouble. */
541 get_remote_arch_state ();
542
543 return get_remote_state_raw ();
544 }
545
546 static int
547 compare_pnums (const void *lhs_, const void *rhs_)
548 {
549 const struct packet_reg * const *lhs = lhs_;
550 const struct packet_reg * const *rhs = rhs_;
551
552 if ((*lhs)->pnum < (*rhs)->pnum)
553 return -1;
554 else if ((*lhs)->pnum == (*rhs)->pnum)
555 return 0;
556 else
557 return 1;
558 }
559
560 static int
561 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
562 {
563 int regnum, num_remote_regs, offset;
564 struct packet_reg **remote_regs;
565
566 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
567 {
568 struct packet_reg *r = &regs[regnum];
569
570 if (register_size (gdbarch, regnum) == 0)
571 /* Do not try to fetch zero-sized (placeholder) registers. */
572 r->pnum = -1;
573 else
574 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
575
576 r->regnum = regnum;
577 }
578
579 /* Define the g/G packet format as the contents of each register
580 with a remote protocol number, in order of ascending protocol
581 number. */
582
583 remote_regs = alloca (gdbarch_num_regs (gdbarch)
584 * sizeof (struct packet_reg *));
585 for (num_remote_regs = 0, regnum = 0;
586 regnum < gdbarch_num_regs (gdbarch);
587 regnum++)
588 if (regs[regnum].pnum != -1)
589 remote_regs[num_remote_regs++] = &regs[regnum];
590
591 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
592 compare_pnums);
593
594 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
595 {
596 remote_regs[regnum]->in_g_packet = 1;
597 remote_regs[regnum]->offset = offset;
598 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
599 }
600
601 return offset;
602 }
603
604 /* Given the architecture described by GDBARCH, return the remote
605 protocol register's number and the register's offset in the g/G
606 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
607 If the target does not have a mapping for REGNUM, return false,
608 otherwise, return true. */
609
610 int
611 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
612 int *pnum, int *poffset)
613 {
614 int sizeof_g_packet;
615 struct packet_reg *regs;
616 struct cleanup *old_chain;
617
618 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
619
620 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
621 old_chain = make_cleanup (xfree, regs);
622
623 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
624
625 *pnum = regs[regnum].pnum;
626 *poffset = regs[regnum].offset;
627
628 do_cleanups (old_chain);
629
630 return *pnum != -1;
631 }
632
633 static void *
634 init_remote_state (struct gdbarch *gdbarch)
635 {
636 struct remote_state *rs = get_remote_state_raw ();
637 struct remote_arch_state *rsa;
638
639 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
640
641 /* Use the architecture to build a regnum<->pnum table, which will be
642 1:1 unless a feature set specifies otherwise. */
643 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
644 gdbarch_num_regs (gdbarch),
645 struct packet_reg);
646
647 /* Record the maximum possible size of the g packet - it may turn out
648 to be smaller. */
649 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
650
651 /* Default maximum number of characters in a packet body. Many
652 remote stubs have a hardwired buffer size of 400 bytes
653 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
654 as the maximum packet-size to ensure that the packet and an extra
655 NUL character can always fit in the buffer. This stops GDB
656 trashing stubs that try to squeeze an extra NUL into what is
657 already a full buffer (As of 1999-12-04 that was most stubs). */
658 rsa->remote_packet_size = 400 - 1;
659
660 /* This one is filled in when a ``g'' packet is received. */
661 rsa->actual_register_packet_size = 0;
662
663 /* Should rsa->sizeof_g_packet needs more space than the
664 default, adjust the size accordingly. Remember that each byte is
665 encoded as two characters. 32 is the overhead for the packet
666 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
667 (``$NN:G...#NN'') is a better guess, the below has been padded a
668 little. */
669 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
670 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
671
672 /* Make sure that the packet buffer is plenty big enough for
673 this architecture. */
674 if (rs->buf_size < rsa->remote_packet_size)
675 {
676 rs->buf_size = 2 * rsa->remote_packet_size;
677 rs->buf = xrealloc (rs->buf, rs->buf_size);
678 }
679
680 return rsa;
681 }
682
683 /* Return the current allowed size of a remote packet. This is
684 inferred from the current architecture, and should be used to
685 limit the length of outgoing packets. */
686 static long
687 get_remote_packet_size (void)
688 {
689 struct remote_state *rs = get_remote_state ();
690 struct remote_arch_state *rsa = get_remote_arch_state ();
691
692 if (rs->explicit_packet_size)
693 return rs->explicit_packet_size;
694
695 return rsa->remote_packet_size;
696 }
697
698 static struct packet_reg *
699 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
700 {
701 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
702 return NULL;
703 else
704 {
705 struct packet_reg *r = &rsa->regs[regnum];
706
707 gdb_assert (r->regnum == regnum);
708 return r;
709 }
710 }
711
712 static struct packet_reg *
713 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
714 {
715 int i;
716
717 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
718 {
719 struct packet_reg *r = &rsa->regs[i];
720
721 if (r->pnum == pnum)
722 return r;
723 }
724 return NULL;
725 }
726
727 /* FIXME: graces/2002-08-08: These variables should eventually be
728 bound to an instance of the target object (as in gdbarch-tdep()),
729 when such a thing exists. */
730
731 /* This is set to the data address of the access causing the target
732 to stop for a watchpoint. */
733 static CORE_ADDR remote_watch_data_address;
734
735 /* This is non-zero if target stopped for a watchpoint. */
736 static int remote_stopped_by_watchpoint_p;
737
738 static struct target_ops remote_ops;
739
740 static struct target_ops extended_remote_ops;
741
742 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
743 ``forever'' still use the normal timeout mechanism. This is
744 currently used by the ASYNC code to guarentee that target reads
745 during the initial connect always time-out. Once getpkt has been
746 modified to return a timeout indication and, in turn
747 remote_wait()/wait_for_inferior() have gained a timeout parameter
748 this can go away. */
749 static int wait_forever_enabled_p = 1;
750
751 /* Allow the user to specify what sequence to send to the remote
752 when he requests a program interruption: Although ^C is usually
753 what remote systems expect (this is the default, here), it is
754 sometimes preferable to send a break. On other systems such
755 as the Linux kernel, a break followed by g, which is Magic SysRq g
756 is required in order to interrupt the execution. */
757 const char interrupt_sequence_control_c[] = "Ctrl-C";
758 const char interrupt_sequence_break[] = "BREAK";
759 const char interrupt_sequence_break_g[] = "BREAK-g";
760 static const char *const interrupt_sequence_modes[] =
761 {
762 interrupt_sequence_control_c,
763 interrupt_sequence_break,
764 interrupt_sequence_break_g,
765 NULL
766 };
767 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
768
769 static void
770 show_interrupt_sequence (struct ui_file *file, int from_tty,
771 struct cmd_list_element *c,
772 const char *value)
773 {
774 if (interrupt_sequence_mode == interrupt_sequence_control_c)
775 fprintf_filtered (file,
776 _("Send the ASCII ETX character (Ctrl-c) "
777 "to the remote target to interrupt the "
778 "execution of the program.\n"));
779 else if (interrupt_sequence_mode == interrupt_sequence_break)
780 fprintf_filtered (file,
781 _("send a break signal to the remote target "
782 "to interrupt the execution of the program.\n"));
783 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
784 fprintf_filtered (file,
785 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
786 "the remote target to interrupt the execution "
787 "of Linux kernel.\n"));
788 else
789 internal_error (__FILE__, __LINE__,
790 _("Invalid value for interrupt_sequence_mode: %s."),
791 interrupt_sequence_mode);
792 }
793
794 /* This boolean variable specifies whether interrupt_sequence is sent
795 to the remote target when gdb connects to it.
796 This is mostly needed when you debug the Linux kernel: The Linux kernel
797 expects BREAK g which is Magic SysRq g for connecting gdb. */
798 static int interrupt_on_connect = 0;
799
800 /* This variable is used to implement the "set/show remotebreak" commands.
801 Since these commands are now deprecated in favor of "set/show remote
802 interrupt-sequence", it no longer has any effect on the code. */
803 static int remote_break;
804
805 static void
806 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
807 {
808 if (remote_break)
809 interrupt_sequence_mode = interrupt_sequence_break;
810 else
811 interrupt_sequence_mode = interrupt_sequence_control_c;
812 }
813
814 static void
815 show_remotebreak (struct ui_file *file, int from_tty,
816 struct cmd_list_element *c,
817 const char *value)
818 {
819 }
820
821 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
822 remote_open knows that we don't have a file open when the program
823 starts. */
824 static struct serial *remote_desc = NULL;
825
826 /* This variable sets the number of bits in an address that are to be
827 sent in a memory ("M" or "m") packet. Normally, after stripping
828 leading zeros, the entire address would be sent. This variable
829 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
830 initial implementation of remote.c restricted the address sent in
831 memory packets to ``host::sizeof long'' bytes - (typically 32
832 bits). Consequently, for 64 bit targets, the upper 32 bits of an
833 address was never sent. Since fixing this bug may cause a break in
834 some remote targets this variable is principly provided to
835 facilitate backward compatibility. */
836
837 static unsigned int remote_address_size;
838
839 /* Temporary to track who currently owns the terminal. See
840 remote_terminal_* for more details. */
841
842 static int remote_async_terminal_ours_p;
843
844 /* The executable file to use for "run" on the remote side. */
845
846 static char *remote_exec_file = "";
847
848 \f
849 /* User configurable variables for the number of characters in a
850 memory read/write packet. MIN (rsa->remote_packet_size,
851 rsa->sizeof_g_packet) is the default. Some targets need smaller
852 values (fifo overruns, et.al.) and some users need larger values
853 (speed up transfers). The variables ``preferred_*'' (the user
854 request), ``current_*'' (what was actually set) and ``forced_*''
855 (Positive - a soft limit, negative - a hard limit). */
856
857 struct memory_packet_config
858 {
859 char *name;
860 long size;
861 int fixed_p;
862 };
863
864 /* Compute the current size of a read/write packet. Since this makes
865 use of ``actual_register_packet_size'' the computation is dynamic. */
866
867 static long
868 get_memory_packet_size (struct memory_packet_config *config)
869 {
870 struct remote_state *rs = get_remote_state ();
871 struct remote_arch_state *rsa = get_remote_arch_state ();
872
873 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
874 law?) that some hosts don't cope very well with large alloca()
875 calls. Eventually the alloca() code will be replaced by calls to
876 xmalloc() and make_cleanups() allowing this restriction to either
877 be lifted or removed. */
878 #ifndef MAX_REMOTE_PACKET_SIZE
879 #define MAX_REMOTE_PACKET_SIZE 16384
880 #endif
881 /* NOTE: 20 ensures we can write at least one byte. */
882 #ifndef MIN_REMOTE_PACKET_SIZE
883 #define MIN_REMOTE_PACKET_SIZE 20
884 #endif
885 long what_they_get;
886 if (config->fixed_p)
887 {
888 if (config->size <= 0)
889 what_they_get = MAX_REMOTE_PACKET_SIZE;
890 else
891 what_they_get = config->size;
892 }
893 else
894 {
895 what_they_get = get_remote_packet_size ();
896 /* Limit the packet to the size specified by the user. */
897 if (config->size > 0
898 && what_they_get > config->size)
899 what_they_get = config->size;
900
901 /* Limit it to the size of the targets ``g'' response unless we have
902 permission from the stub to use a larger packet size. */
903 if (rs->explicit_packet_size == 0
904 && rsa->actual_register_packet_size > 0
905 && what_they_get > rsa->actual_register_packet_size)
906 what_they_get = rsa->actual_register_packet_size;
907 }
908 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
909 what_they_get = MAX_REMOTE_PACKET_SIZE;
910 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
911 what_they_get = MIN_REMOTE_PACKET_SIZE;
912
913 /* Make sure there is room in the global buffer for this packet
914 (including its trailing NUL byte). */
915 if (rs->buf_size < what_they_get + 1)
916 {
917 rs->buf_size = 2 * what_they_get;
918 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
919 }
920
921 return what_they_get;
922 }
923
924 /* Update the size of a read/write packet. If they user wants
925 something really big then do a sanity check. */
926
927 static void
928 set_memory_packet_size (char *args, struct memory_packet_config *config)
929 {
930 int fixed_p = config->fixed_p;
931 long size = config->size;
932
933 if (args == NULL)
934 error (_("Argument required (integer, `fixed' or `limited')."));
935 else if (strcmp (args, "hard") == 0
936 || strcmp (args, "fixed") == 0)
937 fixed_p = 1;
938 else if (strcmp (args, "soft") == 0
939 || strcmp (args, "limit") == 0)
940 fixed_p = 0;
941 else
942 {
943 char *end;
944
945 size = strtoul (args, &end, 0);
946 if (args == end)
947 error (_("Invalid %s (bad syntax)."), config->name);
948 #if 0
949 /* Instead of explicitly capping the size of a packet to
950 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
951 instead allowed to set the size to something arbitrarily
952 large. */
953 if (size > MAX_REMOTE_PACKET_SIZE)
954 error (_("Invalid %s (too large)."), config->name);
955 #endif
956 }
957 /* Extra checks? */
958 if (fixed_p && !config->fixed_p)
959 {
960 if (! query (_("The target may not be able to correctly handle a %s\n"
961 "of %ld bytes. Change the packet size? "),
962 config->name, size))
963 error (_("Packet size not changed."));
964 }
965 /* Update the config. */
966 config->fixed_p = fixed_p;
967 config->size = size;
968 }
969
970 static void
971 show_memory_packet_size (struct memory_packet_config *config)
972 {
973 printf_filtered (_("The %s is %ld. "), config->name, config->size);
974 if (config->fixed_p)
975 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
976 get_memory_packet_size (config));
977 else
978 printf_filtered (_("Packets are limited to %ld bytes.\n"),
979 get_memory_packet_size (config));
980 }
981
982 static struct memory_packet_config memory_write_packet_config =
983 {
984 "memory-write-packet-size",
985 };
986
987 static void
988 set_memory_write_packet_size (char *args, int from_tty)
989 {
990 set_memory_packet_size (args, &memory_write_packet_config);
991 }
992
993 static void
994 show_memory_write_packet_size (char *args, int from_tty)
995 {
996 show_memory_packet_size (&memory_write_packet_config);
997 }
998
999 static long
1000 get_memory_write_packet_size (void)
1001 {
1002 return get_memory_packet_size (&memory_write_packet_config);
1003 }
1004
1005 static struct memory_packet_config memory_read_packet_config =
1006 {
1007 "memory-read-packet-size",
1008 };
1009
1010 static void
1011 set_memory_read_packet_size (char *args, int from_tty)
1012 {
1013 set_memory_packet_size (args, &memory_read_packet_config);
1014 }
1015
1016 static void
1017 show_memory_read_packet_size (char *args, int from_tty)
1018 {
1019 show_memory_packet_size (&memory_read_packet_config);
1020 }
1021
1022 static long
1023 get_memory_read_packet_size (void)
1024 {
1025 long size = get_memory_packet_size (&memory_read_packet_config);
1026
1027 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1028 extra buffer size argument before the memory read size can be
1029 increased beyond this. */
1030 if (size > get_remote_packet_size ())
1031 size = get_remote_packet_size ();
1032 return size;
1033 }
1034
1035 \f
1036 /* Generic configuration support for packets the stub optionally
1037 supports. Allows the user to specify the use of the packet as well
1038 as allowing GDB to auto-detect support in the remote stub. */
1039
1040 enum packet_support
1041 {
1042 PACKET_SUPPORT_UNKNOWN = 0,
1043 PACKET_ENABLE,
1044 PACKET_DISABLE
1045 };
1046
1047 struct packet_config
1048 {
1049 const char *name;
1050 const char *title;
1051 enum auto_boolean detect;
1052 enum packet_support support;
1053 };
1054
1055 /* Analyze a packet's return value and update the packet config
1056 accordingly. */
1057
1058 enum packet_result
1059 {
1060 PACKET_ERROR,
1061 PACKET_OK,
1062 PACKET_UNKNOWN
1063 };
1064
1065 static void
1066 update_packet_config (struct packet_config *config)
1067 {
1068 switch (config->detect)
1069 {
1070 case AUTO_BOOLEAN_TRUE:
1071 config->support = PACKET_ENABLE;
1072 break;
1073 case AUTO_BOOLEAN_FALSE:
1074 config->support = PACKET_DISABLE;
1075 break;
1076 case AUTO_BOOLEAN_AUTO:
1077 config->support = PACKET_SUPPORT_UNKNOWN;
1078 break;
1079 }
1080 }
1081
1082 static void
1083 show_packet_config_cmd (struct packet_config *config)
1084 {
1085 char *support = "internal-error";
1086
1087 switch (config->support)
1088 {
1089 case PACKET_ENABLE:
1090 support = "enabled";
1091 break;
1092 case PACKET_DISABLE:
1093 support = "disabled";
1094 break;
1095 case PACKET_SUPPORT_UNKNOWN:
1096 support = "unknown";
1097 break;
1098 }
1099 switch (config->detect)
1100 {
1101 case AUTO_BOOLEAN_AUTO:
1102 printf_filtered (_("Support for the `%s' packet "
1103 "is auto-detected, currently %s.\n"),
1104 config->name, support);
1105 break;
1106 case AUTO_BOOLEAN_TRUE:
1107 case AUTO_BOOLEAN_FALSE:
1108 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1109 config->name, support);
1110 break;
1111 }
1112 }
1113
1114 static void
1115 add_packet_config_cmd (struct packet_config *config, const char *name,
1116 const char *title, int legacy)
1117 {
1118 char *set_doc;
1119 char *show_doc;
1120 char *cmd_name;
1121
1122 config->name = name;
1123 config->title = title;
1124 config->detect = AUTO_BOOLEAN_AUTO;
1125 config->support = PACKET_SUPPORT_UNKNOWN;
1126 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1127 name, title);
1128 show_doc = xstrprintf ("Show current use of remote "
1129 "protocol `%s' (%s) packet",
1130 name, title);
1131 /* set/show TITLE-packet {auto,on,off} */
1132 cmd_name = xstrprintf ("%s-packet", title);
1133 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1134 &config->detect, set_doc,
1135 show_doc, NULL, /* help_doc */
1136 set_remote_protocol_packet_cmd,
1137 show_remote_protocol_packet_cmd,
1138 &remote_set_cmdlist, &remote_show_cmdlist);
1139 /* The command code copies the documentation strings. */
1140 xfree (set_doc);
1141 xfree (show_doc);
1142 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1143 if (legacy)
1144 {
1145 char *legacy_name;
1146
1147 legacy_name = xstrprintf ("%s-packet", name);
1148 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1149 &remote_set_cmdlist);
1150 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1151 &remote_show_cmdlist);
1152 }
1153 }
1154
1155 static enum packet_result
1156 packet_check_result (const char *buf)
1157 {
1158 if (buf[0] != '\0')
1159 {
1160 /* The stub recognized the packet request. Check that the
1161 operation succeeded. */
1162 if (buf[0] == 'E'
1163 && isxdigit (buf[1]) && isxdigit (buf[2])
1164 && buf[3] == '\0')
1165 /* "Enn" - definitly an error. */
1166 return PACKET_ERROR;
1167
1168 /* Always treat "E." as an error. This will be used for
1169 more verbose error messages, such as E.memtypes. */
1170 if (buf[0] == 'E' && buf[1] == '.')
1171 return PACKET_ERROR;
1172
1173 /* The packet may or may not be OK. Just assume it is. */
1174 return PACKET_OK;
1175 }
1176 else
1177 /* The stub does not support the packet. */
1178 return PACKET_UNKNOWN;
1179 }
1180
1181 static enum packet_result
1182 packet_ok (const char *buf, struct packet_config *config)
1183 {
1184 enum packet_result result;
1185
1186 result = packet_check_result (buf);
1187 switch (result)
1188 {
1189 case PACKET_OK:
1190 case PACKET_ERROR:
1191 /* The stub recognized the packet request. */
1192 switch (config->support)
1193 {
1194 case PACKET_SUPPORT_UNKNOWN:
1195 if (remote_debug)
1196 fprintf_unfiltered (gdb_stdlog,
1197 "Packet %s (%s) is supported\n",
1198 config->name, config->title);
1199 config->support = PACKET_ENABLE;
1200 break;
1201 case PACKET_DISABLE:
1202 internal_error (__FILE__, __LINE__,
1203 _("packet_ok: attempt to use a disabled packet"));
1204 break;
1205 case PACKET_ENABLE:
1206 break;
1207 }
1208 break;
1209 case PACKET_UNKNOWN:
1210 /* The stub does not support the packet. */
1211 switch (config->support)
1212 {
1213 case PACKET_ENABLE:
1214 if (config->detect == AUTO_BOOLEAN_AUTO)
1215 /* If the stub previously indicated that the packet was
1216 supported then there is a protocol error.. */
1217 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1218 config->name, config->title);
1219 else
1220 /* The user set it wrong. */
1221 error (_("Enabled packet %s (%s) not recognized by stub"),
1222 config->name, config->title);
1223 break;
1224 case PACKET_SUPPORT_UNKNOWN:
1225 if (remote_debug)
1226 fprintf_unfiltered (gdb_stdlog,
1227 "Packet %s (%s) is NOT supported\n",
1228 config->name, config->title);
1229 config->support = PACKET_DISABLE;
1230 break;
1231 case PACKET_DISABLE:
1232 break;
1233 }
1234 break;
1235 }
1236
1237 return result;
1238 }
1239
1240 enum {
1241 PACKET_vCont = 0,
1242 PACKET_X,
1243 PACKET_qSymbol,
1244 PACKET_P,
1245 PACKET_p,
1246 PACKET_Z0,
1247 PACKET_Z1,
1248 PACKET_Z2,
1249 PACKET_Z3,
1250 PACKET_Z4,
1251 PACKET_vFile_open,
1252 PACKET_vFile_pread,
1253 PACKET_vFile_pwrite,
1254 PACKET_vFile_close,
1255 PACKET_vFile_unlink,
1256 PACKET_vFile_readlink,
1257 PACKET_qXfer_auxv,
1258 PACKET_qXfer_features,
1259 PACKET_qXfer_libraries,
1260 PACKET_qXfer_libraries_svr4,
1261 PACKET_qXfer_memory_map,
1262 PACKET_qXfer_spu_read,
1263 PACKET_qXfer_spu_write,
1264 PACKET_qXfer_osdata,
1265 PACKET_qXfer_threads,
1266 PACKET_qXfer_statictrace_read,
1267 PACKET_qXfer_traceframe_info,
1268 PACKET_qXfer_uib,
1269 PACKET_qGetTIBAddr,
1270 PACKET_qGetTLSAddr,
1271 PACKET_qSupported,
1272 PACKET_QPassSignals,
1273 PACKET_QProgramSignals,
1274 PACKET_qSearch_memory,
1275 PACKET_vAttach,
1276 PACKET_vRun,
1277 PACKET_QStartNoAckMode,
1278 PACKET_vKill,
1279 PACKET_qXfer_siginfo_read,
1280 PACKET_qXfer_siginfo_write,
1281 PACKET_qAttached,
1282 PACKET_ConditionalTracepoints,
1283 PACKET_ConditionalBreakpoints,
1284 PACKET_BreakpointCommands,
1285 PACKET_FastTracepoints,
1286 PACKET_StaticTracepoints,
1287 PACKET_InstallInTrace,
1288 PACKET_bc,
1289 PACKET_bs,
1290 PACKET_TracepointSource,
1291 PACKET_QAllow,
1292 PACKET_qXfer_fdpic,
1293 PACKET_QDisableRandomization,
1294 PACKET_QAgent,
1295 PACKET_MAX
1296 };
1297
1298 static struct packet_config remote_protocol_packets[PACKET_MAX];
1299
1300 static void
1301 set_remote_protocol_packet_cmd (char *args, int from_tty,
1302 struct cmd_list_element *c)
1303 {
1304 struct packet_config *packet;
1305
1306 for (packet = remote_protocol_packets;
1307 packet < &remote_protocol_packets[PACKET_MAX];
1308 packet++)
1309 {
1310 if (&packet->detect == c->var)
1311 {
1312 update_packet_config (packet);
1313 return;
1314 }
1315 }
1316 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1317 c->name);
1318 }
1319
1320 static void
1321 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1322 struct cmd_list_element *c,
1323 const char *value)
1324 {
1325 struct packet_config *packet;
1326
1327 for (packet = remote_protocol_packets;
1328 packet < &remote_protocol_packets[PACKET_MAX];
1329 packet++)
1330 {
1331 if (&packet->detect == c->var)
1332 {
1333 show_packet_config_cmd (packet);
1334 return;
1335 }
1336 }
1337 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1338 c->name);
1339 }
1340
1341 /* Should we try one of the 'Z' requests? */
1342
1343 enum Z_packet_type
1344 {
1345 Z_PACKET_SOFTWARE_BP,
1346 Z_PACKET_HARDWARE_BP,
1347 Z_PACKET_WRITE_WP,
1348 Z_PACKET_READ_WP,
1349 Z_PACKET_ACCESS_WP,
1350 NR_Z_PACKET_TYPES
1351 };
1352
1353 /* For compatibility with older distributions. Provide a ``set remote
1354 Z-packet ...'' command that updates all the Z packet types. */
1355
1356 static enum auto_boolean remote_Z_packet_detect;
1357
1358 static void
1359 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1360 struct cmd_list_element *c)
1361 {
1362 int i;
1363
1364 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1365 {
1366 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1367 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1368 }
1369 }
1370
1371 static void
1372 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1373 struct cmd_list_element *c,
1374 const char *value)
1375 {
1376 int i;
1377
1378 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1379 {
1380 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1381 }
1382 }
1383
1384 /* Should we try the 'ThreadInfo' query packet?
1385
1386 This variable (NOT available to the user: auto-detect only!)
1387 determines whether GDB will use the new, simpler "ThreadInfo"
1388 query or the older, more complex syntax for thread queries.
1389 This is an auto-detect variable (set to true at each connect,
1390 and set to false when the target fails to recognize it). */
1391
1392 static int use_threadinfo_query;
1393 static int use_threadextra_query;
1394
1395 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1396 static struct async_signal_handler *sigint_remote_twice_token;
1397 static struct async_signal_handler *sigint_remote_token;
1398
1399 \f
1400 /* Asynchronous signal handle registered as event loop source for
1401 when we have pending events ready to be passed to the core. */
1402
1403 static struct async_event_handler *remote_async_inferior_event_token;
1404
1405 /* Asynchronous signal handle registered as event loop source for when
1406 the remote sent us a %Stop notification. The registered callback
1407 will do a vStopped sequence to pull the rest of the events out of
1408 the remote side into our event queue. */
1409
1410 static struct async_event_handler *remote_async_get_pending_events_token;
1411 \f
1412
1413 static ptid_t magic_null_ptid;
1414 static ptid_t not_sent_ptid;
1415 static ptid_t any_thread_ptid;
1416
1417 /* These are the threads which we last sent to the remote system. The
1418 TID member will be -1 for all or -2 for not sent yet. */
1419
1420 static ptid_t general_thread;
1421 static ptid_t continue_thread;
1422
1423 /* This is the traceframe which we last selected on the remote system.
1424 It will be -1 if no traceframe is selected. */
1425 static int remote_traceframe_number = -1;
1426
1427 /* Find out if the stub attached to PID (and hence GDB should offer to
1428 detach instead of killing it when bailing out). */
1429
1430 static int
1431 remote_query_attached (int pid)
1432 {
1433 struct remote_state *rs = get_remote_state ();
1434 size_t size = get_remote_packet_size ();
1435
1436 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1437 return 0;
1438
1439 if (remote_multi_process_p (rs))
1440 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1441 else
1442 xsnprintf (rs->buf, size, "qAttached");
1443
1444 putpkt (rs->buf);
1445 getpkt (&rs->buf, &rs->buf_size, 0);
1446
1447 switch (packet_ok (rs->buf,
1448 &remote_protocol_packets[PACKET_qAttached]))
1449 {
1450 case PACKET_OK:
1451 if (strcmp (rs->buf, "1") == 0)
1452 return 1;
1453 break;
1454 case PACKET_ERROR:
1455 warning (_("Remote failure reply: %s"), rs->buf);
1456 break;
1457 case PACKET_UNKNOWN:
1458 break;
1459 }
1460
1461 return 0;
1462 }
1463
1464 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1465 has been invented by GDB, instead of reported by the target. Since
1466 we can be connected to a remote system before before knowing about
1467 any inferior, mark the target with execution when we find the first
1468 inferior. If ATTACHED is 1, then we had just attached to this
1469 inferior. If it is 0, then we just created this inferior. If it
1470 is -1, then try querying the remote stub to find out if it had
1471 attached to the inferior or not. */
1472
1473 static struct inferior *
1474 remote_add_inferior (int fake_pid_p, int pid, int attached)
1475 {
1476 struct inferior *inf;
1477
1478 /* Check whether this process we're learning about is to be
1479 considered attached, or if is to be considered to have been
1480 spawned by the stub. */
1481 if (attached == -1)
1482 attached = remote_query_attached (pid);
1483
1484 if (gdbarch_has_global_solist (target_gdbarch))
1485 {
1486 /* If the target shares code across all inferiors, then every
1487 attach adds a new inferior. */
1488 inf = add_inferior (pid);
1489
1490 /* ... and every inferior is bound to the same program space.
1491 However, each inferior may still have its own address
1492 space. */
1493 inf->aspace = maybe_new_address_space ();
1494 inf->pspace = current_program_space;
1495 }
1496 else
1497 {
1498 /* In the traditional debugging scenario, there's a 1-1 match
1499 between program/address spaces. We simply bind the inferior
1500 to the program space's address space. */
1501 inf = current_inferior ();
1502 inferior_appeared (inf, pid);
1503 }
1504
1505 inf->attach_flag = attached;
1506 inf->fake_pid_p = fake_pid_p;
1507
1508 return inf;
1509 }
1510
1511 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1512 according to RUNNING. */
1513
1514 static void
1515 remote_add_thread (ptid_t ptid, int running)
1516 {
1517 add_thread (ptid);
1518
1519 set_executing (ptid, running);
1520 set_running (ptid, running);
1521 }
1522
1523 /* Come here when we learn about a thread id from the remote target.
1524 It may be the first time we hear about such thread, so take the
1525 opportunity to add it to GDB's thread list. In case this is the
1526 first time we're noticing its corresponding inferior, add it to
1527 GDB's inferior list as well. */
1528
1529 static void
1530 remote_notice_new_inferior (ptid_t currthread, int running)
1531 {
1532 /* If this is a new thread, add it to GDB's thread list.
1533 If we leave it up to WFI to do this, bad things will happen. */
1534
1535 if (in_thread_list (currthread) && is_exited (currthread))
1536 {
1537 /* We're seeing an event on a thread id we knew had exited.
1538 This has to be a new thread reusing the old id. Add it. */
1539 remote_add_thread (currthread, running);
1540 return;
1541 }
1542
1543 if (!in_thread_list (currthread))
1544 {
1545 struct inferior *inf = NULL;
1546 int pid = ptid_get_pid (currthread);
1547
1548 if (ptid_is_pid (inferior_ptid)
1549 && pid == ptid_get_pid (inferior_ptid))
1550 {
1551 /* inferior_ptid has no thread member yet. This can happen
1552 with the vAttach -> remote_wait,"TAAthread:" path if the
1553 stub doesn't support qC. This is the first stop reported
1554 after an attach, so this is the main thread. Update the
1555 ptid in the thread list. */
1556 if (in_thread_list (pid_to_ptid (pid)))
1557 thread_change_ptid (inferior_ptid, currthread);
1558 else
1559 {
1560 remote_add_thread (currthread, running);
1561 inferior_ptid = currthread;
1562 }
1563 return;
1564 }
1565
1566 if (ptid_equal (magic_null_ptid, inferior_ptid))
1567 {
1568 /* inferior_ptid is not set yet. This can happen with the
1569 vRun -> remote_wait,"TAAthread:" path if the stub
1570 doesn't support qC. This is the first stop reported
1571 after an attach, so this is the main thread. Update the
1572 ptid in the thread list. */
1573 thread_change_ptid (inferior_ptid, currthread);
1574 return;
1575 }
1576
1577 /* When connecting to a target remote, or to a target
1578 extended-remote which already was debugging an inferior, we
1579 may not know about it yet. Add it before adding its child
1580 thread, so notifications are emitted in a sensible order. */
1581 if (!in_inferior_list (ptid_get_pid (currthread)))
1582 {
1583 struct remote_state *rs = get_remote_state ();
1584 int fake_pid_p = !remote_multi_process_p (rs);
1585
1586 inf = remote_add_inferior (fake_pid_p,
1587 ptid_get_pid (currthread), -1);
1588 }
1589
1590 /* This is really a new thread. Add it. */
1591 remote_add_thread (currthread, running);
1592
1593 /* If we found a new inferior, let the common code do whatever
1594 it needs to with it (e.g., read shared libraries, insert
1595 breakpoints). */
1596 if (inf != NULL)
1597 notice_new_inferior (currthread, running, 0);
1598 }
1599 }
1600
1601 /* Return the private thread data, creating it if necessary. */
1602
1603 static struct private_thread_info *
1604 demand_private_info (ptid_t ptid)
1605 {
1606 struct thread_info *info = find_thread_ptid (ptid);
1607
1608 gdb_assert (info);
1609
1610 if (!info->private)
1611 {
1612 info->private = xmalloc (sizeof (*(info->private)));
1613 info->private_dtor = free_private_thread_info;
1614 info->private->core = -1;
1615 info->private->extra = 0;
1616 }
1617
1618 return info->private;
1619 }
1620
1621 /* Call this function as a result of
1622 1) A halt indication (T packet) containing a thread id
1623 2) A direct query of currthread
1624 3) Successful execution of set thread */
1625
1626 static void
1627 record_currthread (ptid_t currthread)
1628 {
1629 general_thread = currthread;
1630 }
1631
1632 static char *last_pass_packet;
1633
1634 /* If 'QPassSignals' is supported, tell the remote stub what signals
1635 it can simply pass through to the inferior without reporting. */
1636
1637 static void
1638 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1639 {
1640 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1641 {
1642 char *pass_packet, *p;
1643 int count = 0, i;
1644
1645 gdb_assert (numsigs < 256);
1646 for (i = 0; i < numsigs; i++)
1647 {
1648 if (pass_signals[i])
1649 count++;
1650 }
1651 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1652 strcpy (pass_packet, "QPassSignals:");
1653 p = pass_packet + strlen (pass_packet);
1654 for (i = 0; i < numsigs; i++)
1655 {
1656 if (pass_signals[i])
1657 {
1658 if (i >= 16)
1659 *p++ = tohex (i >> 4);
1660 *p++ = tohex (i & 15);
1661 if (count)
1662 *p++ = ';';
1663 else
1664 break;
1665 count--;
1666 }
1667 }
1668 *p = 0;
1669 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1670 {
1671 struct remote_state *rs = get_remote_state ();
1672 char *buf = rs->buf;
1673
1674 putpkt (pass_packet);
1675 getpkt (&rs->buf, &rs->buf_size, 0);
1676 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1677 if (last_pass_packet)
1678 xfree (last_pass_packet);
1679 last_pass_packet = pass_packet;
1680 }
1681 else
1682 xfree (pass_packet);
1683 }
1684 }
1685
1686 /* The last QProgramSignals packet sent to the target. We bypass
1687 sending a new program signals list down to the target if the new
1688 packet is exactly the same as the last we sent. IOW, we only let
1689 the target know about program signals list changes. */
1690
1691 static char *last_program_signals_packet;
1692
1693 /* If 'QProgramSignals' is supported, tell the remote stub what
1694 signals it should pass through to the inferior when detaching. */
1695
1696 static void
1697 remote_program_signals (int numsigs, unsigned char *signals)
1698 {
1699 if (remote_protocol_packets[PACKET_QProgramSignals].support != PACKET_DISABLE)
1700 {
1701 char *packet, *p;
1702 int count = 0, i;
1703
1704 gdb_assert (numsigs < 256);
1705 for (i = 0; i < numsigs; i++)
1706 {
1707 if (signals[i])
1708 count++;
1709 }
1710 packet = xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
1711 strcpy (packet, "QProgramSignals:");
1712 p = packet + strlen (packet);
1713 for (i = 0; i < numsigs; i++)
1714 {
1715 if (signal_pass_state (i))
1716 {
1717 if (i >= 16)
1718 *p++ = tohex (i >> 4);
1719 *p++ = tohex (i & 15);
1720 if (count)
1721 *p++ = ';';
1722 else
1723 break;
1724 count--;
1725 }
1726 }
1727 *p = 0;
1728 if (!last_program_signals_packet
1729 || strcmp (last_program_signals_packet, packet) != 0)
1730 {
1731 struct remote_state *rs = get_remote_state ();
1732 char *buf = rs->buf;
1733
1734 putpkt (packet);
1735 getpkt (&rs->buf, &rs->buf_size, 0);
1736 packet_ok (buf, &remote_protocol_packets[PACKET_QProgramSignals]);
1737 xfree (last_program_signals_packet);
1738 last_program_signals_packet = packet;
1739 }
1740 else
1741 xfree (packet);
1742 }
1743 }
1744
1745 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1746 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1747 thread. If GEN is set, set the general thread, if not, then set
1748 the step/continue thread. */
1749 static void
1750 set_thread (struct ptid ptid, int gen)
1751 {
1752 struct remote_state *rs = get_remote_state ();
1753 ptid_t state = gen ? general_thread : continue_thread;
1754 char *buf = rs->buf;
1755 char *endbuf = rs->buf + get_remote_packet_size ();
1756
1757 if (ptid_equal (state, ptid))
1758 return;
1759
1760 *buf++ = 'H';
1761 *buf++ = gen ? 'g' : 'c';
1762 if (ptid_equal (ptid, magic_null_ptid))
1763 xsnprintf (buf, endbuf - buf, "0");
1764 else if (ptid_equal (ptid, any_thread_ptid))
1765 xsnprintf (buf, endbuf - buf, "0");
1766 else if (ptid_equal (ptid, minus_one_ptid))
1767 xsnprintf (buf, endbuf - buf, "-1");
1768 else
1769 write_ptid (buf, endbuf, ptid);
1770 putpkt (rs->buf);
1771 getpkt (&rs->buf, &rs->buf_size, 0);
1772 if (gen)
1773 general_thread = ptid;
1774 else
1775 continue_thread = ptid;
1776 }
1777
1778 static void
1779 set_general_thread (struct ptid ptid)
1780 {
1781 set_thread (ptid, 1);
1782 }
1783
1784 static void
1785 set_continue_thread (struct ptid ptid)
1786 {
1787 set_thread (ptid, 0);
1788 }
1789
1790 /* Change the remote current process. Which thread within the process
1791 ends up selected isn't important, as long as it is the same process
1792 as what INFERIOR_PTID points to.
1793
1794 This comes from that fact that there is no explicit notion of
1795 "selected process" in the protocol. The selected process for
1796 general operations is the process the selected general thread
1797 belongs to. */
1798
1799 static void
1800 set_general_process (void)
1801 {
1802 struct remote_state *rs = get_remote_state ();
1803
1804 /* If the remote can't handle multiple processes, don't bother. */
1805 if (!rs->extended || !remote_multi_process_p (rs))
1806 return;
1807
1808 /* We only need to change the remote current thread if it's pointing
1809 at some other process. */
1810 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1811 set_general_thread (inferior_ptid);
1812 }
1813
1814 \f
1815 /* Return nonzero if the thread PTID is still alive on the remote
1816 system. */
1817
1818 static int
1819 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1820 {
1821 struct remote_state *rs = get_remote_state ();
1822 char *p, *endp;
1823
1824 if (ptid_equal (ptid, magic_null_ptid))
1825 /* The main thread is always alive. */
1826 return 1;
1827
1828 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1829 /* The main thread is always alive. This can happen after a
1830 vAttach, if the remote side doesn't support
1831 multi-threading. */
1832 return 1;
1833
1834 p = rs->buf;
1835 endp = rs->buf + get_remote_packet_size ();
1836
1837 *p++ = 'T';
1838 write_ptid (p, endp, ptid);
1839
1840 putpkt (rs->buf);
1841 getpkt (&rs->buf, &rs->buf_size, 0);
1842 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1843 }
1844
1845 /* About these extended threadlist and threadinfo packets. They are
1846 variable length packets but, the fields within them are often fixed
1847 length. They are redundent enough to send over UDP as is the
1848 remote protocol in general. There is a matching unit test module
1849 in libstub. */
1850
1851 #define OPAQUETHREADBYTES 8
1852
1853 /* a 64 bit opaque identifier */
1854 typedef unsigned char threadref[OPAQUETHREADBYTES];
1855
1856 /* WARNING: This threadref data structure comes from the remote O.S.,
1857 libstub protocol encoding, and remote.c. It is not particularly
1858 changable. */
1859
1860 /* Right now, the internal structure is int. We want it to be bigger.
1861 Plan to fix this. */
1862
1863 typedef int gdb_threadref; /* Internal GDB thread reference. */
1864
1865 /* gdb_ext_thread_info is an internal GDB data structure which is
1866 equivalent to the reply of the remote threadinfo packet. */
1867
1868 struct gdb_ext_thread_info
1869 {
1870 threadref threadid; /* External form of thread reference. */
1871 int active; /* Has state interesting to GDB?
1872 regs, stack. */
1873 char display[256]; /* Brief state display, name,
1874 blocked/suspended. */
1875 char shortname[32]; /* To be used to name threads. */
1876 char more_display[256]; /* Long info, statistics, queue depth,
1877 whatever. */
1878 };
1879
1880 /* The volume of remote transfers can be limited by submitting
1881 a mask containing bits specifying the desired information.
1882 Use a union of these values as the 'selection' parameter to
1883 get_thread_info. FIXME: Make these TAG names more thread specific. */
1884
1885 #define TAG_THREADID 1
1886 #define TAG_EXISTS 2
1887 #define TAG_DISPLAY 4
1888 #define TAG_THREADNAME 8
1889 #define TAG_MOREDISPLAY 16
1890
1891 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1892
1893 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1894
1895 static char *unpack_nibble (char *buf, int *val);
1896
1897 static char *pack_nibble (char *buf, int nibble);
1898
1899 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1900
1901 static char *unpack_byte (char *buf, int *value);
1902
1903 static char *pack_int (char *buf, int value);
1904
1905 static char *unpack_int (char *buf, int *value);
1906
1907 static char *unpack_string (char *src, char *dest, int length);
1908
1909 static char *pack_threadid (char *pkt, threadref *id);
1910
1911 static char *unpack_threadid (char *inbuf, threadref *id);
1912
1913 void int_to_threadref (threadref *id, int value);
1914
1915 static int threadref_to_int (threadref *ref);
1916
1917 static void copy_threadref (threadref *dest, threadref *src);
1918
1919 static int threadmatch (threadref *dest, threadref *src);
1920
1921 static char *pack_threadinfo_request (char *pkt, int mode,
1922 threadref *id);
1923
1924 static int remote_unpack_thread_info_response (char *pkt,
1925 threadref *expectedref,
1926 struct gdb_ext_thread_info
1927 *info);
1928
1929
1930 static int remote_get_threadinfo (threadref *threadid,
1931 int fieldset, /*TAG mask */
1932 struct gdb_ext_thread_info *info);
1933
1934 static char *pack_threadlist_request (char *pkt, int startflag,
1935 int threadcount,
1936 threadref *nextthread);
1937
1938 static int parse_threadlist_response (char *pkt,
1939 int result_limit,
1940 threadref *original_echo,
1941 threadref *resultlist,
1942 int *doneflag);
1943
1944 static int remote_get_threadlist (int startflag,
1945 threadref *nextthread,
1946 int result_limit,
1947 int *done,
1948 int *result_count,
1949 threadref *threadlist);
1950
1951 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1952
1953 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1954 void *context, int looplimit);
1955
1956 static int remote_newthread_step (threadref *ref, void *context);
1957
1958
1959 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1960 buffer we're allowed to write to. Returns
1961 BUF+CHARACTERS_WRITTEN. */
1962
1963 static char *
1964 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1965 {
1966 int pid, tid;
1967 struct remote_state *rs = get_remote_state ();
1968
1969 if (remote_multi_process_p (rs))
1970 {
1971 pid = ptid_get_pid (ptid);
1972 if (pid < 0)
1973 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1974 else
1975 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1976 }
1977 tid = ptid_get_tid (ptid);
1978 if (tid < 0)
1979 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1980 else
1981 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1982
1983 return buf;
1984 }
1985
1986 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1987 passed the last parsed char. Returns null_ptid on error. */
1988
1989 static ptid_t
1990 read_ptid (char *buf, char **obuf)
1991 {
1992 char *p = buf;
1993 char *pp;
1994 ULONGEST pid = 0, tid = 0;
1995
1996 if (*p == 'p')
1997 {
1998 /* Multi-process ptid. */
1999 pp = unpack_varlen_hex (p + 1, &pid);
2000 if (*pp != '.')
2001 error (_("invalid remote ptid: %s"), p);
2002
2003 p = pp;
2004 pp = unpack_varlen_hex (p + 1, &tid);
2005 if (obuf)
2006 *obuf = pp;
2007 return ptid_build (pid, 0, tid);
2008 }
2009
2010 /* No multi-process. Just a tid. */
2011 pp = unpack_varlen_hex (p, &tid);
2012
2013 /* Since the stub is not sending a process id, then default to
2014 what's in inferior_ptid, unless it's null at this point. If so,
2015 then since there's no way to know the pid of the reported
2016 threads, use the magic number. */
2017 if (ptid_equal (inferior_ptid, null_ptid))
2018 pid = ptid_get_pid (magic_null_ptid);
2019 else
2020 pid = ptid_get_pid (inferior_ptid);
2021
2022 if (obuf)
2023 *obuf = pp;
2024 return ptid_build (pid, 0, tid);
2025 }
2026
2027 /* Encode 64 bits in 16 chars of hex. */
2028
2029 static const char hexchars[] = "0123456789abcdef";
2030
2031 static int
2032 ishex (int ch, int *val)
2033 {
2034 if ((ch >= 'a') && (ch <= 'f'))
2035 {
2036 *val = ch - 'a' + 10;
2037 return 1;
2038 }
2039 if ((ch >= 'A') && (ch <= 'F'))
2040 {
2041 *val = ch - 'A' + 10;
2042 return 1;
2043 }
2044 if ((ch >= '0') && (ch <= '9'))
2045 {
2046 *val = ch - '0';
2047 return 1;
2048 }
2049 return 0;
2050 }
2051
2052 static int
2053 stubhex (int ch)
2054 {
2055 if (ch >= 'a' && ch <= 'f')
2056 return ch - 'a' + 10;
2057 if (ch >= '0' && ch <= '9')
2058 return ch - '0';
2059 if (ch >= 'A' && ch <= 'F')
2060 return ch - 'A' + 10;
2061 return -1;
2062 }
2063
2064 static int
2065 stub_unpack_int (char *buff, int fieldlength)
2066 {
2067 int nibble;
2068 int retval = 0;
2069
2070 while (fieldlength)
2071 {
2072 nibble = stubhex (*buff++);
2073 retval |= nibble;
2074 fieldlength--;
2075 if (fieldlength)
2076 retval = retval << 4;
2077 }
2078 return retval;
2079 }
2080
2081 char *
2082 unpack_varlen_hex (char *buff, /* packet to parse */
2083 ULONGEST *result)
2084 {
2085 int nibble;
2086 ULONGEST retval = 0;
2087
2088 while (ishex (*buff, &nibble))
2089 {
2090 buff++;
2091 retval = retval << 4;
2092 retval |= nibble & 0x0f;
2093 }
2094 *result = retval;
2095 return buff;
2096 }
2097
2098 static char *
2099 unpack_nibble (char *buf, int *val)
2100 {
2101 *val = fromhex (*buf++);
2102 return buf;
2103 }
2104
2105 static char *
2106 pack_nibble (char *buf, int nibble)
2107 {
2108 *buf++ = hexchars[(nibble & 0x0f)];
2109 return buf;
2110 }
2111
2112 static char *
2113 pack_hex_byte (char *pkt, int byte)
2114 {
2115 *pkt++ = hexchars[(byte >> 4) & 0xf];
2116 *pkt++ = hexchars[(byte & 0xf)];
2117 return pkt;
2118 }
2119
2120 static char *
2121 unpack_byte (char *buf, int *value)
2122 {
2123 *value = stub_unpack_int (buf, 2);
2124 return buf + 2;
2125 }
2126
2127 static char *
2128 pack_int (char *buf, int value)
2129 {
2130 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2131 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2132 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2133 buf = pack_hex_byte (buf, (value & 0xff));
2134 return buf;
2135 }
2136
2137 static char *
2138 unpack_int (char *buf, int *value)
2139 {
2140 *value = stub_unpack_int (buf, 8);
2141 return buf + 8;
2142 }
2143
2144 #if 0 /* Currently unused, uncomment when needed. */
2145 static char *pack_string (char *pkt, char *string);
2146
2147 static char *
2148 pack_string (char *pkt, char *string)
2149 {
2150 char ch;
2151 int len;
2152
2153 len = strlen (string);
2154 if (len > 200)
2155 len = 200; /* Bigger than most GDB packets, junk??? */
2156 pkt = pack_hex_byte (pkt, len);
2157 while (len-- > 0)
2158 {
2159 ch = *string++;
2160 if ((ch == '\0') || (ch == '#'))
2161 ch = '*'; /* Protect encapsulation. */
2162 *pkt++ = ch;
2163 }
2164 return pkt;
2165 }
2166 #endif /* 0 (unused) */
2167
2168 static char *
2169 unpack_string (char *src, char *dest, int length)
2170 {
2171 while (length--)
2172 *dest++ = *src++;
2173 *dest = '\0';
2174 return src;
2175 }
2176
2177 static char *
2178 pack_threadid (char *pkt, threadref *id)
2179 {
2180 char *limit;
2181 unsigned char *altid;
2182
2183 altid = (unsigned char *) id;
2184 limit = pkt + BUF_THREAD_ID_SIZE;
2185 while (pkt < limit)
2186 pkt = pack_hex_byte (pkt, *altid++);
2187 return pkt;
2188 }
2189
2190
2191 static char *
2192 unpack_threadid (char *inbuf, threadref *id)
2193 {
2194 char *altref;
2195 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2196 int x, y;
2197
2198 altref = (char *) id;
2199
2200 while (inbuf < limit)
2201 {
2202 x = stubhex (*inbuf++);
2203 y = stubhex (*inbuf++);
2204 *altref++ = (x << 4) | y;
2205 }
2206 return inbuf;
2207 }
2208
2209 /* Externally, threadrefs are 64 bits but internally, they are still
2210 ints. This is due to a mismatch of specifications. We would like
2211 to use 64bit thread references internally. This is an adapter
2212 function. */
2213
2214 void
2215 int_to_threadref (threadref *id, int value)
2216 {
2217 unsigned char *scan;
2218
2219 scan = (unsigned char *) id;
2220 {
2221 int i = 4;
2222 while (i--)
2223 *scan++ = 0;
2224 }
2225 *scan++ = (value >> 24) & 0xff;
2226 *scan++ = (value >> 16) & 0xff;
2227 *scan++ = (value >> 8) & 0xff;
2228 *scan++ = (value & 0xff);
2229 }
2230
2231 static int
2232 threadref_to_int (threadref *ref)
2233 {
2234 int i, value = 0;
2235 unsigned char *scan;
2236
2237 scan = *ref;
2238 scan += 4;
2239 i = 4;
2240 while (i-- > 0)
2241 value = (value << 8) | ((*scan++) & 0xff);
2242 return value;
2243 }
2244
2245 static void
2246 copy_threadref (threadref *dest, threadref *src)
2247 {
2248 int i;
2249 unsigned char *csrc, *cdest;
2250
2251 csrc = (unsigned char *) src;
2252 cdest = (unsigned char *) dest;
2253 i = 8;
2254 while (i--)
2255 *cdest++ = *csrc++;
2256 }
2257
2258 static int
2259 threadmatch (threadref *dest, threadref *src)
2260 {
2261 /* Things are broken right now, so just assume we got a match. */
2262 #if 0
2263 unsigned char *srcp, *destp;
2264 int i, result;
2265 srcp = (char *) src;
2266 destp = (char *) dest;
2267
2268 result = 1;
2269 while (i-- > 0)
2270 result &= (*srcp++ == *destp++) ? 1 : 0;
2271 return result;
2272 #endif
2273 return 1;
2274 }
2275
2276 /*
2277 threadid:1, # always request threadid
2278 context_exists:2,
2279 display:4,
2280 unique_name:8,
2281 more_display:16
2282 */
2283
2284 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2285
2286 static char *
2287 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2288 {
2289 *pkt++ = 'q'; /* Info Query */
2290 *pkt++ = 'P'; /* process or thread info */
2291 pkt = pack_int (pkt, mode); /* mode */
2292 pkt = pack_threadid (pkt, id); /* threadid */
2293 *pkt = '\0'; /* terminate */
2294 return pkt;
2295 }
2296
2297 /* These values tag the fields in a thread info response packet. */
2298 /* Tagging the fields allows us to request specific fields and to
2299 add more fields as time goes by. */
2300
2301 #define TAG_THREADID 1 /* Echo the thread identifier. */
2302 #define TAG_EXISTS 2 /* Is this process defined enough to
2303 fetch registers and its stack? */
2304 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2305 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2306 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2307 the process. */
2308
2309 static int
2310 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2311 struct gdb_ext_thread_info *info)
2312 {
2313 struct remote_state *rs = get_remote_state ();
2314 int mask, length;
2315 int tag;
2316 threadref ref;
2317 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2318 int retval = 1;
2319
2320 /* info->threadid = 0; FIXME: implement zero_threadref. */
2321 info->active = 0;
2322 info->display[0] = '\0';
2323 info->shortname[0] = '\0';
2324 info->more_display[0] = '\0';
2325
2326 /* Assume the characters indicating the packet type have been
2327 stripped. */
2328 pkt = unpack_int (pkt, &mask); /* arg mask */
2329 pkt = unpack_threadid (pkt, &ref);
2330
2331 if (mask == 0)
2332 warning (_("Incomplete response to threadinfo request."));
2333 if (!threadmatch (&ref, expectedref))
2334 { /* This is an answer to a different request. */
2335 warning (_("ERROR RMT Thread info mismatch."));
2336 return 0;
2337 }
2338 copy_threadref (&info->threadid, &ref);
2339
2340 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2341
2342 /* Packets are terminated with nulls. */
2343 while ((pkt < limit) && mask && *pkt)
2344 {
2345 pkt = unpack_int (pkt, &tag); /* tag */
2346 pkt = unpack_byte (pkt, &length); /* length */
2347 if (!(tag & mask)) /* Tags out of synch with mask. */
2348 {
2349 warning (_("ERROR RMT: threadinfo tag mismatch."));
2350 retval = 0;
2351 break;
2352 }
2353 if (tag == TAG_THREADID)
2354 {
2355 if (length != 16)
2356 {
2357 warning (_("ERROR RMT: length of threadid is not 16."));
2358 retval = 0;
2359 break;
2360 }
2361 pkt = unpack_threadid (pkt, &ref);
2362 mask = mask & ~TAG_THREADID;
2363 continue;
2364 }
2365 if (tag == TAG_EXISTS)
2366 {
2367 info->active = stub_unpack_int (pkt, length);
2368 pkt += length;
2369 mask = mask & ~(TAG_EXISTS);
2370 if (length > 8)
2371 {
2372 warning (_("ERROR RMT: 'exists' length too long."));
2373 retval = 0;
2374 break;
2375 }
2376 continue;
2377 }
2378 if (tag == TAG_THREADNAME)
2379 {
2380 pkt = unpack_string (pkt, &info->shortname[0], length);
2381 mask = mask & ~TAG_THREADNAME;
2382 continue;
2383 }
2384 if (tag == TAG_DISPLAY)
2385 {
2386 pkt = unpack_string (pkt, &info->display[0], length);
2387 mask = mask & ~TAG_DISPLAY;
2388 continue;
2389 }
2390 if (tag == TAG_MOREDISPLAY)
2391 {
2392 pkt = unpack_string (pkt, &info->more_display[0], length);
2393 mask = mask & ~TAG_MOREDISPLAY;
2394 continue;
2395 }
2396 warning (_("ERROR RMT: unknown thread info tag."));
2397 break; /* Not a tag we know about. */
2398 }
2399 return retval;
2400 }
2401
2402 static int
2403 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2404 struct gdb_ext_thread_info *info)
2405 {
2406 struct remote_state *rs = get_remote_state ();
2407 int result;
2408
2409 pack_threadinfo_request (rs->buf, fieldset, threadid);
2410 putpkt (rs->buf);
2411 getpkt (&rs->buf, &rs->buf_size, 0);
2412
2413 if (rs->buf[0] == '\0')
2414 return 0;
2415
2416 result = remote_unpack_thread_info_response (rs->buf + 2,
2417 threadid, info);
2418 return result;
2419 }
2420
2421 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2422
2423 static char *
2424 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2425 threadref *nextthread)
2426 {
2427 *pkt++ = 'q'; /* info query packet */
2428 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2429 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2430 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2431 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2432 *pkt = '\0';
2433 return pkt;
2434 }
2435
2436 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2437
2438 static int
2439 parse_threadlist_response (char *pkt, int result_limit,
2440 threadref *original_echo, threadref *resultlist,
2441 int *doneflag)
2442 {
2443 struct remote_state *rs = get_remote_state ();
2444 char *limit;
2445 int count, resultcount, done;
2446
2447 resultcount = 0;
2448 /* Assume the 'q' and 'M chars have been stripped. */
2449 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2450 /* done parse past here */
2451 pkt = unpack_byte (pkt, &count); /* count field */
2452 pkt = unpack_nibble (pkt, &done);
2453 /* The first threadid is the argument threadid. */
2454 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2455 while ((count-- > 0) && (pkt < limit))
2456 {
2457 pkt = unpack_threadid (pkt, resultlist++);
2458 if (resultcount++ >= result_limit)
2459 break;
2460 }
2461 if (doneflag)
2462 *doneflag = done;
2463 return resultcount;
2464 }
2465
2466 static int
2467 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2468 int *done, int *result_count, threadref *threadlist)
2469 {
2470 struct remote_state *rs = get_remote_state ();
2471 static threadref echo_nextthread;
2472 int result = 1;
2473
2474 /* Trancate result limit to be smaller than the packet size. */
2475 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2476 >= get_remote_packet_size ())
2477 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2478
2479 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2480 putpkt (rs->buf);
2481 getpkt (&rs->buf, &rs->buf_size, 0);
2482
2483 if (*rs->buf == '\0')
2484 return 0;
2485 else
2486 *result_count =
2487 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2488 threadlist, done);
2489
2490 if (!threadmatch (&echo_nextthread, nextthread))
2491 {
2492 /* FIXME: This is a good reason to drop the packet. */
2493 /* Possably, there is a duplicate response. */
2494 /* Possabilities :
2495 retransmit immediatly - race conditions
2496 retransmit after timeout - yes
2497 exit
2498 wait for packet, then exit
2499 */
2500 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2501 return 0; /* I choose simply exiting. */
2502 }
2503 if (*result_count <= 0)
2504 {
2505 if (*done != 1)
2506 {
2507 warning (_("RMT ERROR : failed to get remote thread list."));
2508 result = 0;
2509 }
2510 return result; /* break; */
2511 }
2512 if (*result_count > result_limit)
2513 {
2514 *result_count = 0;
2515 warning (_("RMT ERROR: threadlist response longer than requested."));
2516 return 0;
2517 }
2518 return result;
2519 }
2520
2521 /* This is the interface between remote and threads, remotes upper
2522 interface. */
2523
2524 /* remote_find_new_threads retrieves the thread list and for each
2525 thread in the list, looks up the thread in GDB's internal list,
2526 adding the thread if it does not already exist. This involves
2527 getting partial thread lists from the remote target so, polling the
2528 quit_flag is required. */
2529
2530
2531 /* About this many threadisds fit in a packet. */
2532
2533 #define MAXTHREADLISTRESULTS 32
2534
2535 static int
2536 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2537 int looplimit)
2538 {
2539 int done, i, result_count;
2540 int startflag = 1;
2541 int result = 1;
2542 int loopcount = 0;
2543 static threadref nextthread;
2544 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2545
2546 done = 0;
2547 while (!done)
2548 {
2549 if (loopcount++ > looplimit)
2550 {
2551 result = 0;
2552 warning (_("Remote fetch threadlist -infinite loop-."));
2553 break;
2554 }
2555 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2556 &done, &result_count, resultthreadlist))
2557 {
2558 result = 0;
2559 break;
2560 }
2561 /* Clear for later iterations. */
2562 startflag = 0;
2563 /* Setup to resume next batch of thread references, set nextthread. */
2564 if (result_count >= 1)
2565 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2566 i = 0;
2567 while (result_count--)
2568 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2569 break;
2570 }
2571 return result;
2572 }
2573
2574 static int
2575 remote_newthread_step (threadref *ref, void *context)
2576 {
2577 int pid = ptid_get_pid (inferior_ptid);
2578 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2579
2580 if (!in_thread_list (ptid))
2581 add_thread (ptid);
2582 return 1; /* continue iterator */
2583 }
2584
2585 #define CRAZY_MAX_THREADS 1000
2586
2587 static ptid_t
2588 remote_current_thread (ptid_t oldpid)
2589 {
2590 struct remote_state *rs = get_remote_state ();
2591
2592 putpkt ("qC");
2593 getpkt (&rs->buf, &rs->buf_size, 0);
2594 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2595 return read_ptid (&rs->buf[2], NULL);
2596 else
2597 return oldpid;
2598 }
2599
2600 /* Find new threads for info threads command.
2601 * Original version, using John Metzler's thread protocol.
2602 */
2603
2604 static void
2605 remote_find_new_threads (void)
2606 {
2607 remote_threadlist_iterator (remote_newthread_step, 0,
2608 CRAZY_MAX_THREADS);
2609 }
2610
2611 #if defined(HAVE_LIBEXPAT)
2612
2613 typedef struct thread_item
2614 {
2615 ptid_t ptid;
2616 char *extra;
2617 int core;
2618 } thread_item_t;
2619 DEF_VEC_O(thread_item_t);
2620
2621 struct threads_parsing_context
2622 {
2623 VEC (thread_item_t) *items;
2624 };
2625
2626 static void
2627 start_thread (struct gdb_xml_parser *parser,
2628 const struct gdb_xml_element *element,
2629 void *user_data, VEC(gdb_xml_value_s) *attributes)
2630 {
2631 struct threads_parsing_context *data = user_data;
2632
2633 struct thread_item item;
2634 char *id;
2635 struct gdb_xml_value *attr;
2636
2637 id = xml_find_attribute (attributes, "id")->value;
2638 item.ptid = read_ptid (id, NULL);
2639
2640 attr = xml_find_attribute (attributes, "core");
2641 if (attr != NULL)
2642 item.core = *(ULONGEST *) attr->value;
2643 else
2644 item.core = -1;
2645
2646 item.extra = 0;
2647
2648 VEC_safe_push (thread_item_t, data->items, &item);
2649 }
2650
2651 static void
2652 end_thread (struct gdb_xml_parser *parser,
2653 const struct gdb_xml_element *element,
2654 void *user_data, const char *body_text)
2655 {
2656 struct threads_parsing_context *data = user_data;
2657
2658 if (body_text && *body_text)
2659 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2660 }
2661
2662 const struct gdb_xml_attribute thread_attributes[] = {
2663 { "id", GDB_XML_AF_NONE, NULL, NULL },
2664 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2665 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2666 };
2667
2668 const struct gdb_xml_element thread_children[] = {
2669 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2670 };
2671
2672 const struct gdb_xml_element threads_children[] = {
2673 { "thread", thread_attributes, thread_children,
2674 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2675 start_thread, end_thread },
2676 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2677 };
2678
2679 const struct gdb_xml_element threads_elements[] = {
2680 { "threads", NULL, threads_children,
2681 GDB_XML_EF_NONE, NULL, NULL },
2682 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2683 };
2684
2685 /* Discard the contents of the constructed thread info context. */
2686
2687 static void
2688 clear_threads_parsing_context (void *p)
2689 {
2690 struct threads_parsing_context *context = p;
2691 int i;
2692 struct thread_item *item;
2693
2694 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2695 xfree (item->extra);
2696
2697 VEC_free (thread_item_t, context->items);
2698 }
2699
2700 #endif
2701
2702 /*
2703 * Find all threads for info threads command.
2704 * Uses new thread protocol contributed by Cisco.
2705 * Falls back and attempts to use the older method (above)
2706 * if the target doesn't respond to the new method.
2707 */
2708
2709 static void
2710 remote_threads_info (struct target_ops *ops)
2711 {
2712 struct remote_state *rs = get_remote_state ();
2713 char *bufp;
2714 ptid_t new_thread;
2715
2716 if (remote_desc == 0) /* paranoia */
2717 error (_("Command can only be used when connected to the remote target."));
2718
2719 #if defined(HAVE_LIBEXPAT)
2720 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2721 {
2722 char *xml = target_read_stralloc (&current_target,
2723 TARGET_OBJECT_THREADS, NULL);
2724
2725 struct cleanup *back_to = make_cleanup (xfree, xml);
2726
2727 if (xml && *xml)
2728 {
2729 struct threads_parsing_context context;
2730
2731 context.items = NULL;
2732 make_cleanup (clear_threads_parsing_context, &context);
2733
2734 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2735 threads_elements, xml, &context) == 0)
2736 {
2737 int i;
2738 struct thread_item *item;
2739
2740 for (i = 0;
2741 VEC_iterate (thread_item_t, context.items, i, item);
2742 ++i)
2743 {
2744 if (!ptid_equal (item->ptid, null_ptid))
2745 {
2746 struct private_thread_info *info;
2747 /* In non-stop mode, we assume new found threads
2748 are running until proven otherwise with a
2749 stop reply. In all-stop, we can only get
2750 here if all threads are stopped. */
2751 int running = non_stop ? 1 : 0;
2752
2753 remote_notice_new_inferior (item->ptid, running);
2754
2755 info = demand_private_info (item->ptid);
2756 info->core = item->core;
2757 info->extra = item->extra;
2758 item->extra = NULL;
2759 }
2760 }
2761 }
2762 }
2763
2764 do_cleanups (back_to);
2765 return;
2766 }
2767 #endif
2768
2769 if (use_threadinfo_query)
2770 {
2771 putpkt ("qfThreadInfo");
2772 getpkt (&rs->buf, &rs->buf_size, 0);
2773 bufp = rs->buf;
2774 if (bufp[0] != '\0') /* q packet recognized */
2775 {
2776 while (*bufp++ == 'm') /* reply contains one or more TID */
2777 {
2778 do
2779 {
2780 new_thread = read_ptid (bufp, &bufp);
2781 if (!ptid_equal (new_thread, null_ptid))
2782 {
2783 /* In non-stop mode, we assume new found threads
2784 are running until proven otherwise with a
2785 stop reply. In all-stop, we can only get
2786 here if all threads are stopped. */
2787 int running = non_stop ? 1 : 0;
2788
2789 remote_notice_new_inferior (new_thread, running);
2790 }
2791 }
2792 while (*bufp++ == ','); /* comma-separated list */
2793 putpkt ("qsThreadInfo");
2794 getpkt (&rs->buf, &rs->buf_size, 0);
2795 bufp = rs->buf;
2796 }
2797 return; /* done */
2798 }
2799 }
2800
2801 /* Only qfThreadInfo is supported in non-stop mode. */
2802 if (non_stop)
2803 return;
2804
2805 /* Else fall back to old method based on jmetzler protocol. */
2806 use_threadinfo_query = 0;
2807 remote_find_new_threads ();
2808 return;
2809 }
2810
2811 /*
2812 * Collect a descriptive string about the given thread.
2813 * The target may say anything it wants to about the thread
2814 * (typically info about its blocked / runnable state, name, etc.).
2815 * This string will appear in the info threads display.
2816 *
2817 * Optional: targets are not required to implement this function.
2818 */
2819
2820 static char *
2821 remote_threads_extra_info (struct thread_info *tp)
2822 {
2823 struct remote_state *rs = get_remote_state ();
2824 int result;
2825 int set;
2826 threadref id;
2827 struct gdb_ext_thread_info threadinfo;
2828 static char display_buf[100]; /* arbitrary... */
2829 int n = 0; /* position in display_buf */
2830
2831 if (remote_desc == 0) /* paranoia */
2832 internal_error (__FILE__, __LINE__,
2833 _("remote_threads_extra_info"));
2834
2835 if (ptid_equal (tp->ptid, magic_null_ptid)
2836 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2837 /* This is the main thread which was added by GDB. The remote
2838 server doesn't know about it. */
2839 return NULL;
2840
2841 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2842 {
2843 struct thread_info *info = find_thread_ptid (tp->ptid);
2844
2845 if (info && info->private)
2846 return info->private->extra;
2847 else
2848 return NULL;
2849 }
2850
2851 if (use_threadextra_query)
2852 {
2853 char *b = rs->buf;
2854 char *endb = rs->buf + get_remote_packet_size ();
2855
2856 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2857 b += strlen (b);
2858 write_ptid (b, endb, tp->ptid);
2859
2860 putpkt (rs->buf);
2861 getpkt (&rs->buf, &rs->buf_size, 0);
2862 if (rs->buf[0] != 0)
2863 {
2864 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2865 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2866 display_buf [result] = '\0';
2867 return display_buf;
2868 }
2869 }
2870
2871 /* If the above query fails, fall back to the old method. */
2872 use_threadextra_query = 0;
2873 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2874 | TAG_MOREDISPLAY | TAG_DISPLAY;
2875 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2876 if (remote_get_threadinfo (&id, set, &threadinfo))
2877 if (threadinfo.active)
2878 {
2879 if (*threadinfo.shortname)
2880 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2881 " Name: %s,", threadinfo.shortname);
2882 if (*threadinfo.display)
2883 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2884 " State: %s,", threadinfo.display);
2885 if (*threadinfo.more_display)
2886 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2887 " Priority: %s", threadinfo.more_display);
2888
2889 if (n > 0)
2890 {
2891 /* For purely cosmetic reasons, clear up trailing commas. */
2892 if (',' == display_buf[n-1])
2893 display_buf[n-1] = ' ';
2894 return display_buf;
2895 }
2896 }
2897 return NULL;
2898 }
2899 \f
2900
2901 static int
2902 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2903 struct static_tracepoint_marker *marker)
2904 {
2905 struct remote_state *rs = get_remote_state ();
2906 char *p = rs->buf;
2907
2908 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
2909 p += strlen (p);
2910 p += hexnumstr (p, addr);
2911 putpkt (rs->buf);
2912 getpkt (&rs->buf, &rs->buf_size, 0);
2913 p = rs->buf;
2914
2915 if (*p == 'E')
2916 error (_("Remote failure reply: %s"), p);
2917
2918 if (*p++ == 'm')
2919 {
2920 parse_static_tracepoint_marker_definition (p, &p, marker);
2921 return 1;
2922 }
2923
2924 return 0;
2925 }
2926
2927 static VEC(static_tracepoint_marker_p) *
2928 remote_static_tracepoint_markers_by_strid (const char *strid)
2929 {
2930 struct remote_state *rs = get_remote_state ();
2931 VEC(static_tracepoint_marker_p) *markers = NULL;
2932 struct static_tracepoint_marker *marker = NULL;
2933 struct cleanup *old_chain;
2934 char *p;
2935
2936 /* Ask for a first packet of static tracepoint marker
2937 definition. */
2938 putpkt ("qTfSTM");
2939 getpkt (&rs->buf, &rs->buf_size, 0);
2940 p = rs->buf;
2941 if (*p == 'E')
2942 error (_("Remote failure reply: %s"), p);
2943
2944 old_chain = make_cleanup (free_current_marker, &marker);
2945
2946 while (*p++ == 'm')
2947 {
2948 if (marker == NULL)
2949 marker = XCNEW (struct static_tracepoint_marker);
2950
2951 do
2952 {
2953 parse_static_tracepoint_marker_definition (p, &p, marker);
2954
2955 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2956 {
2957 VEC_safe_push (static_tracepoint_marker_p,
2958 markers, marker);
2959 marker = NULL;
2960 }
2961 else
2962 {
2963 release_static_tracepoint_marker (marker);
2964 memset (marker, 0, sizeof (*marker));
2965 }
2966 }
2967 while (*p++ == ','); /* comma-separated list */
2968 /* Ask for another packet of static tracepoint definition. */
2969 putpkt ("qTsSTM");
2970 getpkt (&rs->buf, &rs->buf_size, 0);
2971 p = rs->buf;
2972 }
2973
2974 do_cleanups (old_chain);
2975 return markers;
2976 }
2977
2978 \f
2979 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2980
2981 static ptid_t
2982 remote_get_ada_task_ptid (long lwp, long thread)
2983 {
2984 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2985 }
2986 \f
2987
2988 /* Restart the remote side; this is an extended protocol operation. */
2989
2990 static void
2991 extended_remote_restart (void)
2992 {
2993 struct remote_state *rs = get_remote_state ();
2994
2995 /* Send the restart command; for reasons I don't understand the
2996 remote side really expects a number after the "R". */
2997 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2998 putpkt (rs->buf);
2999
3000 remote_fileio_reset ();
3001 }
3002 \f
3003 /* Clean up connection to a remote debugger. */
3004
3005 static void
3006 remote_close (int quitting)
3007 {
3008 if (remote_desc == NULL)
3009 return; /* already closed */
3010
3011 /* Make sure we leave stdin registered in the event loop, and we
3012 don't leave the async SIGINT signal handler installed. */
3013 remote_terminal_ours ();
3014
3015 serial_close (remote_desc);
3016 remote_desc = NULL;
3017
3018 /* We don't have a connection to the remote stub anymore. Get rid
3019 of all the inferiors and their threads we were controlling.
3020 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3021 will be unable to find the thread corresponding to (pid, 0, 0). */
3022 inferior_ptid = null_ptid;
3023 discard_all_inferiors ();
3024
3025 /* We're no longer interested in any of these events. */
3026 discard_pending_stop_replies (-1);
3027
3028 if (remote_async_inferior_event_token)
3029 delete_async_event_handler (&remote_async_inferior_event_token);
3030 if (remote_async_get_pending_events_token)
3031 delete_async_event_handler (&remote_async_get_pending_events_token);
3032 }
3033
3034 /* Query the remote side for the text, data and bss offsets. */
3035
3036 static void
3037 get_offsets (void)
3038 {
3039 struct remote_state *rs = get_remote_state ();
3040 char *buf;
3041 char *ptr;
3042 int lose, num_segments = 0, do_sections, do_segments;
3043 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3044 struct section_offsets *offs;
3045 struct symfile_segment_data *data;
3046
3047 if (symfile_objfile == NULL)
3048 return;
3049
3050 putpkt ("qOffsets");
3051 getpkt (&rs->buf, &rs->buf_size, 0);
3052 buf = rs->buf;
3053
3054 if (buf[0] == '\000')
3055 return; /* Return silently. Stub doesn't support
3056 this command. */
3057 if (buf[0] == 'E')
3058 {
3059 warning (_("Remote failure reply: %s"), buf);
3060 return;
3061 }
3062
3063 /* Pick up each field in turn. This used to be done with scanf, but
3064 scanf will make trouble if CORE_ADDR size doesn't match
3065 conversion directives correctly. The following code will work
3066 with any size of CORE_ADDR. */
3067 text_addr = data_addr = bss_addr = 0;
3068 ptr = buf;
3069 lose = 0;
3070
3071 if (strncmp (ptr, "Text=", 5) == 0)
3072 {
3073 ptr += 5;
3074 /* Don't use strtol, could lose on big values. */
3075 while (*ptr && *ptr != ';')
3076 text_addr = (text_addr << 4) + fromhex (*ptr++);
3077
3078 if (strncmp (ptr, ";Data=", 6) == 0)
3079 {
3080 ptr += 6;
3081 while (*ptr && *ptr != ';')
3082 data_addr = (data_addr << 4) + fromhex (*ptr++);
3083 }
3084 else
3085 lose = 1;
3086
3087 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3088 {
3089 ptr += 5;
3090 while (*ptr && *ptr != ';')
3091 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3092
3093 if (bss_addr != data_addr)
3094 warning (_("Target reported unsupported offsets: %s"), buf);
3095 }
3096 else
3097 lose = 1;
3098 }
3099 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3100 {
3101 ptr += 8;
3102 /* Don't use strtol, could lose on big values. */
3103 while (*ptr && *ptr != ';')
3104 text_addr = (text_addr << 4) + fromhex (*ptr++);
3105 num_segments = 1;
3106
3107 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3108 {
3109 ptr += 9;
3110 while (*ptr && *ptr != ';')
3111 data_addr = (data_addr << 4) + fromhex (*ptr++);
3112 num_segments++;
3113 }
3114 }
3115 else
3116 lose = 1;
3117
3118 if (lose)
3119 error (_("Malformed response to offset query, %s"), buf);
3120 else if (*ptr != '\0')
3121 warning (_("Target reported unsupported offsets: %s"), buf);
3122
3123 offs = ((struct section_offsets *)
3124 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3125 memcpy (offs, symfile_objfile->section_offsets,
3126 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3127
3128 data = get_symfile_segment_data (symfile_objfile->obfd);
3129 do_segments = (data != NULL);
3130 do_sections = num_segments == 0;
3131
3132 if (num_segments > 0)
3133 {
3134 segments[0] = text_addr;
3135 segments[1] = data_addr;
3136 }
3137 /* If we have two segments, we can still try to relocate everything
3138 by assuming that the .text and .data offsets apply to the whole
3139 text and data segments. Convert the offsets given in the packet
3140 to base addresses for symfile_map_offsets_to_segments. */
3141 else if (data && data->num_segments == 2)
3142 {
3143 segments[0] = data->segment_bases[0] + text_addr;
3144 segments[1] = data->segment_bases[1] + data_addr;
3145 num_segments = 2;
3146 }
3147 /* If the object file has only one segment, assume that it is text
3148 rather than data; main programs with no writable data are rare,
3149 but programs with no code are useless. Of course the code might
3150 have ended up in the data segment... to detect that we would need
3151 the permissions here. */
3152 else if (data && data->num_segments == 1)
3153 {
3154 segments[0] = data->segment_bases[0] + text_addr;
3155 num_segments = 1;
3156 }
3157 /* There's no way to relocate by segment. */
3158 else
3159 do_segments = 0;
3160
3161 if (do_segments)
3162 {
3163 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3164 offs, num_segments, segments);
3165
3166 if (ret == 0 && !do_sections)
3167 error (_("Can not handle qOffsets TextSeg "
3168 "response with this symbol file"));
3169
3170 if (ret > 0)
3171 do_sections = 0;
3172 }
3173
3174 if (data)
3175 free_symfile_segment_data (data);
3176
3177 if (do_sections)
3178 {
3179 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3180
3181 /* This is a temporary kludge to force data and bss to use the
3182 same offsets because that's what nlmconv does now. The real
3183 solution requires changes to the stub and remote.c that I
3184 don't have time to do right now. */
3185
3186 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3187 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3188 }
3189
3190 objfile_relocate (symfile_objfile, offs);
3191 }
3192
3193 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3194 threads we know are stopped already. This is used during the
3195 initial remote connection in non-stop mode --- threads that are
3196 reported as already being stopped are left stopped. */
3197
3198 static int
3199 set_stop_requested_callback (struct thread_info *thread, void *data)
3200 {
3201 /* If we have a stop reply for this thread, it must be stopped. */
3202 if (peek_stop_reply (thread->ptid))
3203 set_stop_requested (thread->ptid, 1);
3204
3205 return 0;
3206 }
3207
3208 /* Send interrupt_sequence to remote target. */
3209 static void
3210 send_interrupt_sequence (void)
3211 {
3212 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3213 serial_write (remote_desc, "\x03", 1);
3214 else if (interrupt_sequence_mode == interrupt_sequence_break)
3215 serial_send_break (remote_desc);
3216 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3217 {
3218 serial_send_break (remote_desc);
3219 serial_write (remote_desc, "g", 1);
3220 }
3221 else
3222 internal_error (__FILE__, __LINE__,
3223 _("Invalid value for interrupt_sequence_mode: %s."),
3224 interrupt_sequence_mode);
3225 }
3226
3227 /* Query the remote target for which is the current thread/process,
3228 add it to our tables, and update INFERIOR_PTID. The caller is
3229 responsible for setting the state such that the remote end is ready
3230 to return the current thread. */
3231
3232 static void
3233 add_current_inferior_and_thread (void)
3234 {
3235 struct remote_state *rs = get_remote_state ();
3236 int fake_pid_p = 0;
3237 ptid_t ptid;
3238
3239 inferior_ptid = null_ptid;
3240
3241 /* Now, if we have thread information, update inferior_ptid. */
3242 ptid = remote_current_thread (inferior_ptid);
3243 if (!ptid_equal (ptid, null_ptid))
3244 {
3245 if (!remote_multi_process_p (rs))
3246 fake_pid_p = 1;
3247
3248 inferior_ptid = ptid;
3249 }
3250 else
3251 {
3252 /* Without this, some commands which require an active target
3253 (such as kill) won't work. This variable serves (at least)
3254 double duty as both the pid of the target process (if it has
3255 such), and as a flag indicating that a target is active. */
3256 inferior_ptid = magic_null_ptid;
3257 fake_pid_p = 1;
3258 }
3259
3260 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3261
3262 /* Add the main thread. */
3263 add_thread_silent (inferior_ptid);
3264 }
3265
3266 static void
3267 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3268 {
3269 struct remote_state *rs = get_remote_state ();
3270 struct packet_config *noack_config;
3271 char *wait_status = NULL;
3272
3273 immediate_quit++; /* Allow user to interrupt it. */
3274 QUIT;
3275
3276 if (interrupt_on_connect)
3277 send_interrupt_sequence ();
3278
3279 /* Ack any packet which the remote side has already sent. */
3280 serial_write (remote_desc, "+", 1);
3281
3282 /* Signal other parts that we're going through the initial setup,
3283 and so things may not be stable yet. */
3284 rs->starting_up = 1;
3285
3286 /* The first packet we send to the target is the optional "supported
3287 packets" request. If the target can answer this, it will tell us
3288 which later probes to skip. */
3289 remote_query_supported ();
3290
3291 /* If the stub wants to get a QAllow, compose one and send it. */
3292 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3293 remote_set_permissions ();
3294
3295 /* Next, we possibly activate noack mode.
3296
3297 If the QStartNoAckMode packet configuration is set to AUTO,
3298 enable noack mode if the stub reported a wish for it with
3299 qSupported.
3300
3301 If set to TRUE, then enable noack mode even if the stub didn't
3302 report it in qSupported. If the stub doesn't reply OK, the
3303 session ends with an error.
3304
3305 If FALSE, then don't activate noack mode, regardless of what the
3306 stub claimed should be the default with qSupported. */
3307
3308 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3309
3310 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3311 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3312 && noack_config->support == PACKET_ENABLE))
3313 {
3314 putpkt ("QStartNoAckMode");
3315 getpkt (&rs->buf, &rs->buf_size, 0);
3316 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3317 rs->noack_mode = 1;
3318 }
3319
3320 if (extended_p)
3321 {
3322 /* Tell the remote that we are using the extended protocol. */
3323 putpkt ("!");
3324 getpkt (&rs->buf, &rs->buf_size, 0);
3325 }
3326
3327 /* Let the target know which signals it is allowed to pass down to
3328 the program. */
3329 update_signals_program_target ();
3330
3331 /* Next, if the target can specify a description, read it. We do
3332 this before anything involving memory or registers. */
3333 target_find_description ();
3334
3335 /* Next, now that we know something about the target, update the
3336 address spaces in the program spaces. */
3337 update_address_spaces ();
3338
3339 /* On OSs where the list of libraries is global to all
3340 processes, we fetch them early. */
3341 if (gdbarch_has_global_solist (target_gdbarch))
3342 solib_add (NULL, from_tty, target, auto_solib_add);
3343
3344 if (non_stop)
3345 {
3346 if (!rs->non_stop_aware)
3347 error (_("Non-stop mode requested, but remote "
3348 "does not support non-stop"));
3349
3350 putpkt ("QNonStop:1");
3351 getpkt (&rs->buf, &rs->buf_size, 0);
3352
3353 if (strcmp (rs->buf, "OK") != 0)
3354 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3355
3356 /* Find about threads and processes the stub is already
3357 controlling. We default to adding them in the running state.
3358 The '?' query below will then tell us about which threads are
3359 stopped. */
3360 remote_threads_info (target);
3361 }
3362 else if (rs->non_stop_aware)
3363 {
3364 /* Don't assume that the stub can operate in all-stop mode.
3365 Request it explicitely. */
3366 putpkt ("QNonStop:0");
3367 getpkt (&rs->buf, &rs->buf_size, 0);
3368
3369 if (strcmp (rs->buf, "OK") != 0)
3370 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3371 }
3372
3373 /* Check whether the target is running now. */
3374 putpkt ("?");
3375 getpkt (&rs->buf, &rs->buf_size, 0);
3376
3377 if (!non_stop)
3378 {
3379 ptid_t ptid;
3380 int fake_pid_p = 0;
3381 struct inferior *inf;
3382
3383 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3384 {
3385 if (!extended_p)
3386 error (_("The target is not running (try extended-remote?)"));
3387
3388 /* We're connected, but not running. Drop out before we
3389 call start_remote. */
3390 rs->starting_up = 0;
3391 return;
3392 }
3393 else
3394 {
3395 /* Save the reply for later. */
3396 wait_status = alloca (strlen (rs->buf) + 1);
3397 strcpy (wait_status, rs->buf);
3398 }
3399
3400 /* Let the stub know that we want it to return the thread. */
3401 set_continue_thread (minus_one_ptid);
3402
3403 add_current_inferior_and_thread ();
3404
3405 /* init_wait_for_inferior should be called before get_offsets in order
3406 to manage `inserted' flag in bp loc in a correct state.
3407 breakpoint_init_inferior, called from init_wait_for_inferior, set
3408 `inserted' flag to 0, while before breakpoint_re_set, called from
3409 start_remote, set `inserted' flag to 1. In the initialization of
3410 inferior, breakpoint_init_inferior should be called first, and then
3411 breakpoint_re_set can be called. If this order is broken, state of
3412 `inserted' flag is wrong, and cause some problems on breakpoint
3413 manipulation. */
3414 init_wait_for_inferior ();
3415
3416 get_offsets (); /* Get text, data & bss offsets. */
3417
3418 /* If we could not find a description using qXfer, and we know
3419 how to do it some other way, try again. This is not
3420 supported for non-stop; it could be, but it is tricky if
3421 there are no stopped threads when we connect. */
3422 if (remote_read_description_p (target)
3423 && gdbarch_target_desc (target_gdbarch) == NULL)
3424 {
3425 target_clear_description ();
3426 target_find_description ();
3427 }
3428
3429 /* Use the previously fetched status. */
3430 gdb_assert (wait_status != NULL);
3431 strcpy (rs->buf, wait_status);
3432 rs->cached_wait_status = 1;
3433
3434 immediate_quit--;
3435 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3436 }
3437 else
3438 {
3439 /* Clear WFI global state. Do this before finding about new
3440 threads and inferiors, and setting the current inferior.
3441 Otherwise we would clear the proceed status of the current
3442 inferior when we want its stop_soon state to be preserved
3443 (see notice_new_inferior). */
3444 init_wait_for_inferior ();
3445
3446 /* In non-stop, we will either get an "OK", meaning that there
3447 are no stopped threads at this time; or, a regular stop
3448 reply. In the latter case, there may be more than one thread
3449 stopped --- we pull them all out using the vStopped
3450 mechanism. */
3451 if (strcmp (rs->buf, "OK") != 0)
3452 {
3453 struct stop_reply *stop_reply;
3454 struct cleanup *old_chain;
3455
3456 stop_reply = stop_reply_xmalloc ();
3457 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3458
3459 remote_parse_stop_reply (rs->buf, stop_reply);
3460 discard_cleanups (old_chain);
3461
3462 /* get_pending_stop_replies acks this one, and gets the rest
3463 out. */
3464 pending_stop_reply = stop_reply;
3465 remote_get_pending_stop_replies ();
3466
3467 /* Make sure that threads that were stopped remain
3468 stopped. */
3469 iterate_over_threads (set_stop_requested_callback, NULL);
3470 }
3471
3472 if (target_can_async_p ())
3473 target_async (inferior_event_handler, 0);
3474
3475 if (thread_count () == 0)
3476 {
3477 if (!extended_p)
3478 error (_("The target is not running (try extended-remote?)"));
3479
3480 /* We're connected, but not running. Drop out before we
3481 call start_remote. */
3482 rs->starting_up = 0;
3483 return;
3484 }
3485
3486 /* Let the stub know that we want it to return the thread. */
3487
3488 /* Force the stub to choose a thread. */
3489 set_general_thread (null_ptid);
3490
3491 /* Query it. */
3492 inferior_ptid = remote_current_thread (minus_one_ptid);
3493 if (ptid_equal (inferior_ptid, minus_one_ptid))
3494 error (_("remote didn't report the current thread in non-stop mode"));
3495
3496 get_offsets (); /* Get text, data & bss offsets. */
3497
3498 /* In non-stop mode, any cached wait status will be stored in
3499 the stop reply queue. */
3500 gdb_assert (wait_status == NULL);
3501
3502 /* Report all signals during attach/startup. */
3503 remote_pass_signals (0, NULL);
3504 }
3505
3506 /* If we connected to a live target, do some additional setup. */
3507 if (target_has_execution)
3508 {
3509 if (exec_bfd) /* No use without an exec file. */
3510 remote_check_symbols (symfile_objfile);
3511 }
3512
3513 /* Possibly the target has been engaged in a trace run started
3514 previously; find out where things are at. */
3515 if (remote_get_trace_status (current_trace_status ()) != -1)
3516 {
3517 struct uploaded_tp *uploaded_tps = NULL;
3518 struct uploaded_tsv *uploaded_tsvs = NULL;
3519
3520 if (current_trace_status ()->running)
3521 printf_filtered (_("Trace is already running on the target.\n"));
3522
3523 /* Get trace state variables first, they may be checked when
3524 parsing uploaded commands. */
3525
3526 remote_upload_trace_state_variables (&uploaded_tsvs);
3527
3528 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3529
3530 remote_upload_tracepoints (&uploaded_tps);
3531
3532 merge_uploaded_tracepoints (&uploaded_tps);
3533 }
3534
3535 /* The thread and inferior lists are now synchronized with the
3536 target, our symbols have been relocated, and we're merged the
3537 target's tracepoints with ours. We're done with basic start
3538 up. */
3539 rs->starting_up = 0;
3540
3541 /* If breakpoints are global, insert them now. */
3542 if (gdbarch_has_global_breakpoints (target_gdbarch)
3543 && breakpoints_always_inserted_mode ())
3544 insert_breakpoints ();
3545 }
3546
3547 /* Open a connection to a remote debugger.
3548 NAME is the filename used for communication. */
3549
3550 static void
3551 remote_open (char *name, int from_tty)
3552 {
3553 remote_open_1 (name, from_tty, &remote_ops, 0);
3554 }
3555
3556 /* Open a connection to a remote debugger using the extended
3557 remote gdb protocol. NAME is the filename used for communication. */
3558
3559 static void
3560 extended_remote_open (char *name, int from_tty)
3561 {
3562 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3563 }
3564
3565 /* Generic code for opening a connection to a remote target. */
3566
3567 static void
3568 init_all_packet_configs (void)
3569 {
3570 int i;
3571
3572 for (i = 0; i < PACKET_MAX; i++)
3573 update_packet_config (&remote_protocol_packets[i]);
3574 }
3575
3576 /* Symbol look-up. */
3577
3578 static void
3579 remote_check_symbols (struct objfile *objfile)
3580 {
3581 struct remote_state *rs = get_remote_state ();
3582 char *msg, *reply, *tmp;
3583 struct minimal_symbol *sym;
3584 int end;
3585
3586 /* The remote side has no concept of inferiors that aren't running
3587 yet, it only knows about running processes. If we're connected
3588 but our current inferior is not running, we should not invite the
3589 remote target to request symbol lookups related to its
3590 (unrelated) current process. */
3591 if (!target_has_execution)
3592 return;
3593
3594 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3595 return;
3596
3597 /* Make sure the remote is pointing at the right process. Note
3598 there's no way to select "no process". */
3599 set_general_process ();
3600
3601 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3602 because we need both at the same time. */
3603 msg = alloca (get_remote_packet_size ());
3604
3605 /* Invite target to request symbol lookups. */
3606
3607 putpkt ("qSymbol::");
3608 getpkt (&rs->buf, &rs->buf_size, 0);
3609 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3610 reply = rs->buf;
3611
3612 while (strncmp (reply, "qSymbol:", 8) == 0)
3613 {
3614 tmp = &reply[8];
3615 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3616 msg[end] = '\0';
3617 sym = lookup_minimal_symbol (msg, NULL, NULL);
3618 if (sym == NULL)
3619 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3620 else
3621 {
3622 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3623 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3624
3625 /* If this is a function address, return the start of code
3626 instead of any data function descriptor. */
3627 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3628 sym_addr,
3629 &current_target);
3630
3631 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3632 phex_nz (sym_addr, addr_size), &reply[8]);
3633 }
3634
3635 putpkt (msg);
3636 getpkt (&rs->buf, &rs->buf_size, 0);
3637 reply = rs->buf;
3638 }
3639 }
3640
3641 static struct serial *
3642 remote_serial_open (char *name)
3643 {
3644 static int udp_warning = 0;
3645
3646 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3647 of in ser-tcp.c, because it is the remote protocol assuming that the
3648 serial connection is reliable and not the serial connection promising
3649 to be. */
3650 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3651 {
3652 warning (_("The remote protocol may be unreliable over UDP.\n"
3653 "Some events may be lost, rendering further debugging "
3654 "impossible."));
3655 udp_warning = 1;
3656 }
3657
3658 return serial_open (name);
3659 }
3660
3661 /* Inform the target of our permission settings. The permission flags
3662 work without this, but if the target knows the settings, it can do
3663 a couple things. First, it can add its own check, to catch cases
3664 that somehow manage to get by the permissions checks in target
3665 methods. Second, if the target is wired to disallow particular
3666 settings (for instance, a system in the field that is not set up to
3667 be able to stop at a breakpoint), it can object to any unavailable
3668 permissions. */
3669
3670 void
3671 remote_set_permissions (void)
3672 {
3673 struct remote_state *rs = get_remote_state ();
3674
3675 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
3676 "WriteReg:%x;WriteMem:%x;"
3677 "InsertBreak:%x;InsertTrace:%x;"
3678 "InsertFastTrace:%x;Stop:%x",
3679 may_write_registers, may_write_memory,
3680 may_insert_breakpoints, may_insert_tracepoints,
3681 may_insert_fast_tracepoints, may_stop);
3682 putpkt (rs->buf);
3683 getpkt (&rs->buf, &rs->buf_size, 0);
3684
3685 /* If the target didn't like the packet, warn the user. Do not try
3686 to undo the user's settings, that would just be maddening. */
3687 if (strcmp (rs->buf, "OK") != 0)
3688 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3689 }
3690
3691 /* This type describes each known response to the qSupported
3692 packet. */
3693 struct protocol_feature
3694 {
3695 /* The name of this protocol feature. */
3696 const char *name;
3697
3698 /* The default for this protocol feature. */
3699 enum packet_support default_support;
3700
3701 /* The function to call when this feature is reported, or after
3702 qSupported processing if the feature is not supported.
3703 The first argument points to this structure. The second
3704 argument indicates whether the packet requested support be
3705 enabled, disabled, or probed (or the default, if this function
3706 is being called at the end of processing and this feature was
3707 not reported). The third argument may be NULL; if not NULL, it
3708 is a NUL-terminated string taken from the packet following
3709 this feature's name and an equals sign. */
3710 void (*func) (const struct protocol_feature *, enum packet_support,
3711 const char *);
3712
3713 /* The corresponding packet for this feature. Only used if
3714 FUNC is remote_supported_packet. */
3715 int packet;
3716 };
3717
3718 static void
3719 remote_supported_packet (const struct protocol_feature *feature,
3720 enum packet_support support,
3721 const char *argument)
3722 {
3723 if (argument)
3724 {
3725 warning (_("Remote qSupported response supplied an unexpected value for"
3726 " \"%s\"."), feature->name);
3727 return;
3728 }
3729
3730 if (remote_protocol_packets[feature->packet].support
3731 == PACKET_SUPPORT_UNKNOWN)
3732 remote_protocol_packets[feature->packet].support = support;
3733 }
3734
3735 static void
3736 remote_packet_size (const struct protocol_feature *feature,
3737 enum packet_support support, const char *value)
3738 {
3739 struct remote_state *rs = get_remote_state ();
3740
3741 int packet_size;
3742 char *value_end;
3743
3744 if (support != PACKET_ENABLE)
3745 return;
3746
3747 if (value == NULL || *value == '\0')
3748 {
3749 warning (_("Remote target reported \"%s\" without a size."),
3750 feature->name);
3751 return;
3752 }
3753
3754 errno = 0;
3755 packet_size = strtol (value, &value_end, 16);
3756 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3757 {
3758 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3759 feature->name, value);
3760 return;
3761 }
3762
3763 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3764 {
3765 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3766 packet_size, MAX_REMOTE_PACKET_SIZE);
3767 packet_size = MAX_REMOTE_PACKET_SIZE;
3768 }
3769
3770 /* Record the new maximum packet size. */
3771 rs->explicit_packet_size = packet_size;
3772 }
3773
3774 static void
3775 remote_multi_process_feature (const struct protocol_feature *feature,
3776 enum packet_support support, const char *value)
3777 {
3778 struct remote_state *rs = get_remote_state ();
3779
3780 rs->multi_process_aware = (support == PACKET_ENABLE);
3781 }
3782
3783 static void
3784 remote_non_stop_feature (const struct protocol_feature *feature,
3785 enum packet_support support, const char *value)
3786 {
3787 struct remote_state *rs = get_remote_state ();
3788
3789 rs->non_stop_aware = (support == PACKET_ENABLE);
3790 }
3791
3792 static void
3793 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3794 enum packet_support support,
3795 const char *value)
3796 {
3797 struct remote_state *rs = get_remote_state ();
3798
3799 rs->cond_tracepoints = (support == PACKET_ENABLE);
3800 }
3801
3802 static void
3803 remote_cond_breakpoint_feature (const struct protocol_feature *feature,
3804 enum packet_support support,
3805 const char *value)
3806 {
3807 struct remote_state *rs = get_remote_state ();
3808
3809 rs->cond_breakpoints = (support == PACKET_ENABLE);
3810 }
3811
3812 static void
3813 remote_breakpoint_commands_feature (const struct protocol_feature *feature,
3814 enum packet_support support,
3815 const char *value)
3816 {
3817 struct remote_state *rs = get_remote_state ();
3818
3819 rs->breakpoint_commands = (support == PACKET_ENABLE);
3820 }
3821
3822 static void
3823 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3824 enum packet_support support,
3825 const char *value)
3826 {
3827 struct remote_state *rs = get_remote_state ();
3828
3829 rs->fast_tracepoints = (support == PACKET_ENABLE);
3830 }
3831
3832 static void
3833 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3834 enum packet_support support,
3835 const char *value)
3836 {
3837 struct remote_state *rs = get_remote_state ();
3838
3839 rs->static_tracepoints = (support == PACKET_ENABLE);
3840 }
3841
3842 static void
3843 remote_install_in_trace_feature (const struct protocol_feature *feature,
3844 enum packet_support support,
3845 const char *value)
3846 {
3847 struct remote_state *rs = get_remote_state ();
3848
3849 rs->install_in_trace = (support == PACKET_ENABLE);
3850 }
3851
3852 static void
3853 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3854 enum packet_support support,
3855 const char *value)
3856 {
3857 struct remote_state *rs = get_remote_state ();
3858
3859 rs->disconnected_tracing = (support == PACKET_ENABLE);
3860 }
3861
3862 static void
3863 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3864 enum packet_support support,
3865 const char *value)
3866 {
3867 struct remote_state *rs = get_remote_state ();
3868
3869 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3870 }
3871
3872 static void
3873 remote_string_tracing_feature (const struct protocol_feature *feature,
3874 enum packet_support support,
3875 const char *value)
3876 {
3877 struct remote_state *rs = get_remote_state ();
3878
3879 rs->string_tracing = (support == PACKET_ENABLE);
3880 }
3881
3882 static struct protocol_feature remote_protocol_features[] = {
3883 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3884 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3885 PACKET_qXfer_auxv },
3886 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3887 PACKET_qXfer_features },
3888 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3889 PACKET_qXfer_libraries },
3890 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
3891 PACKET_qXfer_libraries_svr4 },
3892 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3893 PACKET_qXfer_memory_map },
3894 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3895 PACKET_qXfer_spu_read },
3896 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3897 PACKET_qXfer_spu_write },
3898 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3899 PACKET_qXfer_osdata },
3900 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3901 PACKET_qXfer_threads },
3902 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
3903 PACKET_qXfer_traceframe_info },
3904 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3905 PACKET_QPassSignals },
3906 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
3907 PACKET_QProgramSignals },
3908 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3909 PACKET_QStartNoAckMode },
3910 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3911 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3912 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3913 PACKET_qXfer_siginfo_read },
3914 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3915 PACKET_qXfer_siginfo_write },
3916 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3917 PACKET_ConditionalTracepoints },
3918 { "ConditionalBreakpoints", PACKET_DISABLE, remote_cond_breakpoint_feature,
3919 PACKET_ConditionalBreakpoints },
3920 { "BreakpointCommands", PACKET_DISABLE, remote_breakpoint_commands_feature,
3921 PACKET_BreakpointCommands },
3922 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3923 PACKET_FastTracepoints },
3924 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3925 PACKET_StaticTracepoints },
3926 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
3927 PACKET_InstallInTrace},
3928 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3929 -1 },
3930 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3931 PACKET_bc },
3932 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3933 PACKET_bs },
3934 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3935 PACKET_TracepointSource },
3936 { "QAllow", PACKET_DISABLE, remote_supported_packet,
3937 PACKET_QAllow },
3938 { "EnableDisableTracepoints", PACKET_DISABLE,
3939 remote_enable_disable_tracepoint_feature, -1 },
3940 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
3941 PACKET_qXfer_fdpic },
3942 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
3943 PACKET_qXfer_uib },
3944 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
3945 PACKET_QDisableRandomization },
3946 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
3947 { "tracenz", PACKET_DISABLE,
3948 remote_string_tracing_feature, -1 },
3949 };
3950
3951 static char *remote_support_xml;
3952
3953 /* Register string appended to "xmlRegisters=" in qSupported query. */
3954
3955 void
3956 register_remote_support_xml (const char *xml)
3957 {
3958 #if defined(HAVE_LIBEXPAT)
3959 if (remote_support_xml == NULL)
3960 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
3961 else
3962 {
3963 char *copy = xstrdup (remote_support_xml + 13);
3964 char *p = strtok (copy, ",");
3965
3966 do
3967 {
3968 if (strcmp (p, xml) == 0)
3969 {
3970 /* already there */
3971 xfree (copy);
3972 return;
3973 }
3974 }
3975 while ((p = strtok (NULL, ",")) != NULL);
3976 xfree (copy);
3977
3978 remote_support_xml = reconcat (remote_support_xml,
3979 remote_support_xml, ",", xml,
3980 (char *) NULL);
3981 }
3982 #endif
3983 }
3984
3985 static char *
3986 remote_query_supported_append (char *msg, const char *append)
3987 {
3988 if (msg)
3989 return reconcat (msg, msg, ";", append, (char *) NULL);
3990 else
3991 return xstrdup (append);
3992 }
3993
3994 static void
3995 remote_query_supported (void)
3996 {
3997 struct remote_state *rs = get_remote_state ();
3998 char *next;
3999 int i;
4000 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4001
4002 /* The packet support flags are handled differently for this packet
4003 than for most others. We treat an error, a disabled packet, and
4004 an empty response identically: any features which must be reported
4005 to be used will be automatically disabled. An empty buffer
4006 accomplishes this, since that is also the representation for a list
4007 containing no features. */
4008
4009 rs->buf[0] = 0;
4010 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
4011 {
4012 char *q = NULL;
4013 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4014
4015 q = remote_query_supported_append (q, "multiprocess+");
4016
4017 if (remote_support_xml)
4018 q = remote_query_supported_append (q, remote_support_xml);
4019
4020 q = remote_query_supported_append (q, "qRelocInsn+");
4021
4022 q = reconcat (q, "qSupported:", q, (char *) NULL);
4023 putpkt (q);
4024
4025 do_cleanups (old_chain);
4026
4027 getpkt (&rs->buf, &rs->buf_size, 0);
4028
4029 /* If an error occured, warn, but do not return - just reset the
4030 buffer to empty and go on to disable features. */
4031 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4032 == PACKET_ERROR)
4033 {
4034 warning (_("Remote failure reply: %s"), rs->buf);
4035 rs->buf[0] = 0;
4036 }
4037 }
4038
4039 memset (seen, 0, sizeof (seen));
4040
4041 next = rs->buf;
4042 while (*next)
4043 {
4044 enum packet_support is_supported;
4045 char *p, *end, *name_end, *value;
4046
4047 /* First separate out this item from the rest of the packet. If
4048 there's another item after this, we overwrite the separator
4049 (terminated strings are much easier to work with). */
4050 p = next;
4051 end = strchr (p, ';');
4052 if (end == NULL)
4053 {
4054 end = p + strlen (p);
4055 next = end;
4056 }
4057 else
4058 {
4059 *end = '\0';
4060 next = end + 1;
4061
4062 if (end == p)
4063 {
4064 warning (_("empty item in \"qSupported\" response"));
4065 continue;
4066 }
4067 }
4068
4069 name_end = strchr (p, '=');
4070 if (name_end)
4071 {
4072 /* This is a name=value entry. */
4073 is_supported = PACKET_ENABLE;
4074 value = name_end + 1;
4075 *name_end = '\0';
4076 }
4077 else
4078 {
4079 value = NULL;
4080 switch (end[-1])
4081 {
4082 case '+':
4083 is_supported = PACKET_ENABLE;
4084 break;
4085
4086 case '-':
4087 is_supported = PACKET_DISABLE;
4088 break;
4089
4090 case '?':
4091 is_supported = PACKET_SUPPORT_UNKNOWN;
4092 break;
4093
4094 default:
4095 warning (_("unrecognized item \"%s\" "
4096 "in \"qSupported\" response"), p);
4097 continue;
4098 }
4099 end[-1] = '\0';
4100 }
4101
4102 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4103 if (strcmp (remote_protocol_features[i].name, p) == 0)
4104 {
4105 const struct protocol_feature *feature;
4106
4107 seen[i] = 1;
4108 feature = &remote_protocol_features[i];
4109 feature->func (feature, is_supported, value);
4110 break;
4111 }
4112 }
4113
4114 /* If we increased the packet size, make sure to increase the global
4115 buffer size also. We delay this until after parsing the entire
4116 qSupported packet, because this is the same buffer we were
4117 parsing. */
4118 if (rs->buf_size < rs->explicit_packet_size)
4119 {
4120 rs->buf_size = rs->explicit_packet_size;
4121 rs->buf = xrealloc (rs->buf, rs->buf_size);
4122 }
4123
4124 /* Handle the defaults for unmentioned features. */
4125 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4126 if (!seen[i])
4127 {
4128 const struct protocol_feature *feature;
4129
4130 feature = &remote_protocol_features[i];
4131 feature->func (feature, feature->default_support, NULL);
4132 }
4133 }
4134
4135
4136 static void
4137 remote_open_1 (char *name, int from_tty,
4138 struct target_ops *target, int extended_p)
4139 {
4140 struct remote_state *rs = get_remote_state ();
4141
4142 if (name == 0)
4143 error (_("To open a remote debug connection, you need to specify what\n"
4144 "serial device is attached to the remote system\n"
4145 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4146
4147 /* See FIXME above. */
4148 if (!target_async_permitted)
4149 wait_forever_enabled_p = 1;
4150
4151 /* If we're connected to a running target, target_preopen will kill it.
4152 But if we're connected to a target system with no running process,
4153 then we will still be connected when it returns. Ask this question
4154 first, before target_preopen has a chance to kill anything. */
4155 if (remote_desc != NULL && !have_inferiors ())
4156 {
4157 if (!from_tty
4158 || query (_("Already connected to a remote target. Disconnect? ")))
4159 pop_target ();
4160 else
4161 error (_("Still connected."));
4162 }
4163
4164 target_preopen (from_tty);
4165
4166 unpush_target (target);
4167
4168 /* This time without a query. If we were connected to an
4169 extended-remote target and target_preopen killed the running
4170 process, we may still be connected. If we are starting "target
4171 remote" now, the extended-remote target will not have been
4172 removed by unpush_target. */
4173 if (remote_desc != NULL && !have_inferiors ())
4174 pop_target ();
4175
4176 /* Make sure we send the passed signals list the next time we resume. */
4177 xfree (last_pass_packet);
4178 last_pass_packet = NULL;
4179
4180 /* Make sure we send the program signals list the next time we
4181 resume. */
4182 xfree (last_program_signals_packet);
4183 last_program_signals_packet = NULL;
4184
4185 remote_fileio_reset ();
4186 reopen_exec_file ();
4187 reread_symbols ();
4188
4189 remote_desc = remote_serial_open (name);
4190 if (!remote_desc)
4191 perror_with_name (name);
4192
4193 if (baud_rate != -1)
4194 {
4195 if (serial_setbaudrate (remote_desc, baud_rate))
4196 {
4197 /* The requested speed could not be set. Error out to
4198 top level after closing remote_desc. Take care to
4199 set remote_desc to NULL to avoid closing remote_desc
4200 more than once. */
4201 serial_close (remote_desc);
4202 remote_desc = NULL;
4203 perror_with_name (name);
4204 }
4205 }
4206
4207 serial_raw (remote_desc);
4208
4209 /* If there is something sitting in the buffer we might take it as a
4210 response to a command, which would be bad. */
4211 serial_flush_input (remote_desc);
4212
4213 if (from_tty)
4214 {
4215 puts_filtered ("Remote debugging using ");
4216 puts_filtered (name);
4217 puts_filtered ("\n");
4218 }
4219 push_target (target); /* Switch to using remote target now. */
4220
4221 /* Register extra event sources in the event loop. */
4222 remote_async_inferior_event_token
4223 = create_async_event_handler (remote_async_inferior_event_handler,
4224 NULL);
4225 remote_async_get_pending_events_token
4226 = create_async_event_handler (remote_async_get_pending_events_handler,
4227 NULL);
4228
4229 /* Reset the target state; these things will be queried either by
4230 remote_query_supported or as they are needed. */
4231 init_all_packet_configs ();
4232 rs->cached_wait_status = 0;
4233 rs->explicit_packet_size = 0;
4234 rs->noack_mode = 0;
4235 rs->multi_process_aware = 0;
4236 rs->extended = extended_p;
4237 rs->non_stop_aware = 0;
4238 rs->waiting_for_stop_reply = 0;
4239 rs->ctrlc_pending_p = 0;
4240
4241 general_thread = not_sent_ptid;
4242 continue_thread = not_sent_ptid;
4243 remote_traceframe_number = -1;
4244
4245 /* Probe for ability to use "ThreadInfo" query, as required. */
4246 use_threadinfo_query = 1;
4247 use_threadextra_query = 1;
4248
4249 if (target_async_permitted)
4250 {
4251 /* With this target we start out by owning the terminal. */
4252 remote_async_terminal_ours_p = 1;
4253
4254 /* FIXME: cagney/1999-09-23: During the initial connection it is
4255 assumed that the target is already ready and able to respond to
4256 requests. Unfortunately remote_start_remote() eventually calls
4257 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4258 around this. Eventually a mechanism that allows
4259 wait_for_inferior() to expect/get timeouts will be
4260 implemented. */
4261 wait_forever_enabled_p = 0;
4262 }
4263
4264 /* First delete any symbols previously loaded from shared libraries. */
4265 no_shared_libraries (NULL, 0);
4266
4267 /* Start afresh. */
4268 init_thread_list ();
4269
4270 /* Start the remote connection. If error() or QUIT, discard this
4271 target (we'd otherwise be in an inconsistent state) and then
4272 propogate the error on up the exception chain. This ensures that
4273 the caller doesn't stumble along blindly assuming that the
4274 function succeeded. The CLI doesn't have this problem but other
4275 UI's, such as MI do.
4276
4277 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4278 this function should return an error indication letting the
4279 caller restore the previous state. Unfortunately the command
4280 ``target remote'' is directly wired to this function making that
4281 impossible. On a positive note, the CLI side of this problem has
4282 been fixed - the function set_cmd_context() makes it possible for
4283 all the ``target ....'' commands to share a common callback
4284 function. See cli-dump.c. */
4285 {
4286 volatile struct gdb_exception ex;
4287
4288 TRY_CATCH (ex, RETURN_MASK_ALL)
4289 {
4290 remote_start_remote (from_tty, target, extended_p);
4291 }
4292 if (ex.reason < 0)
4293 {
4294 /* Pop the partially set up target - unless something else did
4295 already before throwing the exception. */
4296 if (remote_desc != NULL)
4297 pop_target ();
4298 if (target_async_permitted)
4299 wait_forever_enabled_p = 1;
4300 throw_exception (ex);
4301 }
4302 }
4303
4304 if (target_async_permitted)
4305 wait_forever_enabled_p = 1;
4306 }
4307
4308 /* This takes a program previously attached to and detaches it. After
4309 this is done, GDB can be used to debug some other program. We
4310 better not have left any breakpoints in the target program or it'll
4311 die when it hits one. */
4312
4313 static void
4314 remote_detach_1 (char *args, int from_tty, int extended)
4315 {
4316 int pid = ptid_get_pid (inferior_ptid);
4317 struct remote_state *rs = get_remote_state ();
4318
4319 if (args)
4320 error (_("Argument given to \"detach\" when remotely debugging."));
4321
4322 if (!target_has_execution)
4323 error (_("No process to detach from."));
4324
4325 if (from_tty)
4326 {
4327 char *exec_file = get_exec_file (0);
4328 if (exec_file == NULL)
4329 exec_file = "";
4330 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4331 target_pid_to_str (pid_to_ptid (pid)));
4332 gdb_flush (gdb_stdout);
4333 }
4334
4335 /* Tell the remote target to detach. */
4336 if (remote_multi_process_p (rs))
4337 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
4338 else
4339 strcpy (rs->buf, "D");
4340
4341 putpkt (rs->buf);
4342 getpkt (&rs->buf, &rs->buf_size, 0);
4343
4344 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4345 ;
4346 else if (rs->buf[0] == '\0')
4347 error (_("Remote doesn't know how to detach"));
4348 else
4349 error (_("Can't detach process."));
4350
4351 if (from_tty && !extended)
4352 puts_filtered (_("Ending remote debugging.\n"));
4353
4354 discard_pending_stop_replies (pid);
4355 target_mourn_inferior ();
4356 }
4357
4358 static void
4359 remote_detach (struct target_ops *ops, char *args, int from_tty)
4360 {
4361 remote_detach_1 (args, from_tty, 0);
4362 }
4363
4364 static void
4365 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4366 {
4367 remote_detach_1 (args, from_tty, 1);
4368 }
4369
4370 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4371
4372 static void
4373 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4374 {
4375 if (args)
4376 error (_("Argument given to \"disconnect\" when remotely debugging."));
4377
4378 /* Make sure we unpush even the extended remote targets; mourn
4379 won't do it. So call remote_mourn_1 directly instead of
4380 target_mourn_inferior. */
4381 remote_mourn_1 (target);
4382
4383 if (from_tty)
4384 puts_filtered ("Ending remote debugging.\n");
4385 }
4386
4387 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4388 be chatty about it. */
4389
4390 static void
4391 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4392 {
4393 struct remote_state *rs = get_remote_state ();
4394 int pid;
4395 char *wait_status = NULL;
4396
4397 pid = parse_pid_to_attach (args);
4398
4399 /* Remote PID can be freely equal to getpid, do not check it here the same
4400 way as in other targets. */
4401
4402 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4403 error (_("This target does not support attaching to a process"));
4404
4405 if (from_tty)
4406 {
4407 char *exec_file = get_exec_file (0);
4408
4409 if (exec_file)
4410 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4411 target_pid_to_str (pid_to_ptid (pid)));
4412 else
4413 printf_unfiltered (_("Attaching to %s\n"),
4414 target_pid_to_str (pid_to_ptid (pid)));
4415
4416 gdb_flush (gdb_stdout);
4417 }
4418
4419 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
4420 putpkt (rs->buf);
4421 getpkt (&rs->buf, &rs->buf_size, 0);
4422
4423 if (packet_ok (rs->buf,
4424 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4425 {
4426 if (!non_stop)
4427 {
4428 /* Save the reply for later. */
4429 wait_status = alloca (strlen (rs->buf) + 1);
4430 strcpy (wait_status, rs->buf);
4431 }
4432 else if (strcmp (rs->buf, "OK") != 0)
4433 error (_("Attaching to %s failed with: %s"),
4434 target_pid_to_str (pid_to_ptid (pid)),
4435 rs->buf);
4436 }
4437 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4438 error (_("This target does not support attaching to a process"));
4439 else
4440 error (_("Attaching to %s failed"),
4441 target_pid_to_str (pid_to_ptid (pid)));
4442
4443 set_current_inferior (remote_add_inferior (0, pid, 1));
4444
4445 inferior_ptid = pid_to_ptid (pid);
4446
4447 if (non_stop)
4448 {
4449 struct thread_info *thread;
4450
4451 /* Get list of threads. */
4452 remote_threads_info (target);
4453
4454 thread = first_thread_of_process (pid);
4455 if (thread)
4456 inferior_ptid = thread->ptid;
4457 else
4458 inferior_ptid = pid_to_ptid (pid);
4459
4460 /* Invalidate our notion of the remote current thread. */
4461 record_currthread (minus_one_ptid);
4462 }
4463 else
4464 {
4465 /* Now, if we have thread information, update inferior_ptid. */
4466 inferior_ptid = remote_current_thread (inferior_ptid);
4467
4468 /* Add the main thread to the thread list. */
4469 add_thread_silent (inferior_ptid);
4470 }
4471
4472 /* Next, if the target can specify a description, read it. We do
4473 this before anything involving memory or registers. */
4474 target_find_description ();
4475
4476 if (!non_stop)
4477 {
4478 /* Use the previously fetched status. */
4479 gdb_assert (wait_status != NULL);
4480
4481 if (target_can_async_p ())
4482 {
4483 struct stop_reply *stop_reply;
4484 struct cleanup *old_chain;
4485
4486 stop_reply = stop_reply_xmalloc ();
4487 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4488 remote_parse_stop_reply (wait_status, stop_reply);
4489 discard_cleanups (old_chain);
4490 push_stop_reply (stop_reply);
4491
4492 target_async (inferior_event_handler, 0);
4493 }
4494 else
4495 {
4496 gdb_assert (wait_status != NULL);
4497 strcpy (rs->buf, wait_status);
4498 rs->cached_wait_status = 1;
4499 }
4500 }
4501 else
4502 gdb_assert (wait_status == NULL);
4503 }
4504
4505 static void
4506 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4507 {
4508 extended_remote_attach_1 (ops, args, from_tty);
4509 }
4510
4511 /* Convert hex digit A to a number. */
4512
4513 static int
4514 fromhex (int a)
4515 {
4516 if (a >= '0' && a <= '9')
4517 return a - '0';
4518 else if (a >= 'a' && a <= 'f')
4519 return a - 'a' + 10;
4520 else if (a >= 'A' && a <= 'F')
4521 return a - 'A' + 10;
4522 else
4523 error (_("Reply contains invalid hex digit %d"), a);
4524 }
4525
4526 int
4527 hex2bin (const char *hex, gdb_byte *bin, int count)
4528 {
4529 int i;
4530
4531 for (i = 0; i < count; i++)
4532 {
4533 if (hex[0] == 0 || hex[1] == 0)
4534 {
4535 /* Hex string is short, or of uneven length.
4536 Return the count that has been converted so far. */
4537 return i;
4538 }
4539 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4540 hex += 2;
4541 }
4542 return i;
4543 }
4544
4545 /* Convert number NIB to a hex digit. */
4546
4547 static int
4548 tohex (int nib)
4549 {
4550 if (nib < 10)
4551 return '0' + nib;
4552 else
4553 return 'a' + nib - 10;
4554 }
4555
4556 int
4557 bin2hex (const gdb_byte *bin, char *hex, int count)
4558 {
4559 int i;
4560
4561 /* May use a length, or a nul-terminated string as input. */
4562 if (count == 0)
4563 count = strlen ((char *) bin);
4564
4565 for (i = 0; i < count; i++)
4566 {
4567 *hex++ = tohex ((*bin >> 4) & 0xf);
4568 *hex++ = tohex (*bin++ & 0xf);
4569 }
4570 *hex = 0;
4571 return i;
4572 }
4573 \f
4574 /* Check for the availability of vCont. This function should also check
4575 the response. */
4576
4577 static void
4578 remote_vcont_probe (struct remote_state *rs)
4579 {
4580 char *buf;
4581
4582 strcpy (rs->buf, "vCont?");
4583 putpkt (rs->buf);
4584 getpkt (&rs->buf, &rs->buf_size, 0);
4585 buf = rs->buf;
4586
4587 /* Make sure that the features we assume are supported. */
4588 if (strncmp (buf, "vCont", 5) == 0)
4589 {
4590 char *p = &buf[5];
4591 int support_s, support_S, support_c, support_C;
4592
4593 support_s = 0;
4594 support_S = 0;
4595 support_c = 0;
4596 support_C = 0;
4597 rs->support_vCont_t = 0;
4598 while (p && *p == ';')
4599 {
4600 p++;
4601 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4602 support_s = 1;
4603 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4604 support_S = 1;
4605 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4606 support_c = 1;
4607 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4608 support_C = 1;
4609 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4610 rs->support_vCont_t = 1;
4611
4612 p = strchr (p, ';');
4613 }
4614
4615 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4616 BUF will make packet_ok disable the packet. */
4617 if (!support_s || !support_S || !support_c || !support_C)
4618 buf[0] = 0;
4619 }
4620
4621 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4622 }
4623
4624 /* Helper function for building "vCont" resumptions. Write a
4625 resumption to P. ENDP points to one-passed-the-end of the buffer
4626 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4627 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4628 resumed thread should be single-stepped and/or signalled. If PTID
4629 equals minus_one_ptid, then all threads are resumed; if PTID
4630 represents a process, then all threads of the process are resumed;
4631 the thread to be stepped and/or signalled is given in the global
4632 INFERIOR_PTID. */
4633
4634 static char *
4635 append_resumption (char *p, char *endp,
4636 ptid_t ptid, int step, enum gdb_signal siggnal)
4637 {
4638 struct remote_state *rs = get_remote_state ();
4639
4640 if (step && siggnal != GDB_SIGNAL_0)
4641 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4642 else if (step)
4643 p += xsnprintf (p, endp - p, ";s");
4644 else if (siggnal != GDB_SIGNAL_0)
4645 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4646 else
4647 p += xsnprintf (p, endp - p, ";c");
4648
4649 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4650 {
4651 ptid_t nptid;
4652
4653 /* All (-1) threads of process. */
4654 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4655
4656 p += xsnprintf (p, endp - p, ":");
4657 p = write_ptid (p, endp, nptid);
4658 }
4659 else if (!ptid_equal (ptid, minus_one_ptid))
4660 {
4661 p += xsnprintf (p, endp - p, ":");
4662 p = write_ptid (p, endp, ptid);
4663 }
4664
4665 return p;
4666 }
4667
4668 /* Append a vCont continue-with-signal action for threads that have a
4669 non-zero stop signal. */
4670
4671 static char *
4672 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
4673 {
4674 struct thread_info *thread;
4675
4676 ALL_THREADS (thread)
4677 if (ptid_match (thread->ptid, ptid)
4678 && !ptid_equal (inferior_ptid, thread->ptid)
4679 && thread->suspend.stop_signal != GDB_SIGNAL_0
4680 && signal_pass_state (thread->suspend.stop_signal))
4681 {
4682 p = append_resumption (p, endp, thread->ptid,
4683 0, thread->suspend.stop_signal);
4684 thread->suspend.stop_signal = GDB_SIGNAL_0;
4685 }
4686
4687 return p;
4688 }
4689
4690 /* Resume the remote inferior by using a "vCont" packet. The thread
4691 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4692 resumed thread should be single-stepped and/or signalled. If PTID
4693 equals minus_one_ptid, then all threads are resumed; the thread to
4694 be stepped and/or signalled is given in the global INFERIOR_PTID.
4695 This function returns non-zero iff it resumes the inferior.
4696
4697 This function issues a strict subset of all possible vCont commands at the
4698 moment. */
4699
4700 static int
4701 remote_vcont_resume (ptid_t ptid, int step, enum gdb_signal siggnal)
4702 {
4703 struct remote_state *rs = get_remote_state ();
4704 char *p;
4705 char *endp;
4706
4707 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4708 remote_vcont_probe (rs);
4709
4710 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4711 return 0;
4712
4713 p = rs->buf;
4714 endp = rs->buf + get_remote_packet_size ();
4715
4716 /* If we could generate a wider range of packets, we'd have to worry
4717 about overflowing BUF. Should there be a generic
4718 "multi-part-packet" packet? */
4719
4720 p += xsnprintf (p, endp - p, "vCont");
4721
4722 if (ptid_equal (ptid, magic_null_ptid))
4723 {
4724 /* MAGIC_NULL_PTID means that we don't have any active threads,
4725 so we don't have any TID numbers the inferior will
4726 understand. Make sure to only send forms that do not specify
4727 a TID. */
4728 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4729 }
4730 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4731 {
4732 /* Resume all threads (of all processes, or of a single
4733 process), with preference for INFERIOR_PTID. This assumes
4734 inferior_ptid belongs to the set of all threads we are about
4735 to resume. */
4736 if (step || siggnal != GDB_SIGNAL_0)
4737 {
4738 /* Step inferior_ptid, with or without signal. */
4739 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4740 }
4741
4742 /* Also pass down any pending signaled resumption for other
4743 threads not the current. */
4744 p = append_pending_thread_resumptions (p, endp, ptid);
4745
4746 /* And continue others without a signal. */
4747 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
4748 }
4749 else
4750 {
4751 /* Scheduler locking; resume only PTID. */
4752 append_resumption (p, endp, ptid, step, siggnal);
4753 }
4754
4755 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4756 putpkt (rs->buf);
4757
4758 if (non_stop)
4759 {
4760 /* In non-stop, the stub replies to vCont with "OK". The stop
4761 reply will be reported asynchronously by means of a `%Stop'
4762 notification. */
4763 getpkt (&rs->buf, &rs->buf_size, 0);
4764 if (strcmp (rs->buf, "OK") != 0)
4765 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4766 }
4767
4768 return 1;
4769 }
4770
4771 /* Tell the remote machine to resume. */
4772
4773 static enum gdb_signal last_sent_signal = GDB_SIGNAL_0;
4774
4775 static int last_sent_step;
4776
4777 static void
4778 remote_resume (struct target_ops *ops,
4779 ptid_t ptid, int step, enum gdb_signal siggnal)
4780 {
4781 struct remote_state *rs = get_remote_state ();
4782 char *buf;
4783
4784 last_sent_signal = siggnal;
4785 last_sent_step = step;
4786
4787 /* The vCont packet doesn't need to specify threads via Hc. */
4788 /* No reverse support (yet) for vCont. */
4789 if (execution_direction != EXEC_REVERSE)
4790 if (remote_vcont_resume (ptid, step, siggnal))
4791 goto done;
4792
4793 /* All other supported resume packets do use Hc, so set the continue
4794 thread. */
4795 if (ptid_equal (ptid, minus_one_ptid))
4796 set_continue_thread (any_thread_ptid);
4797 else
4798 set_continue_thread (ptid);
4799
4800 buf = rs->buf;
4801 if (execution_direction == EXEC_REVERSE)
4802 {
4803 /* We don't pass signals to the target in reverse exec mode. */
4804 if (info_verbose && siggnal != GDB_SIGNAL_0)
4805 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4806 siggnal);
4807
4808 if (step
4809 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4810 error (_("Remote reverse-step not supported."));
4811 if (!step
4812 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4813 error (_("Remote reverse-continue not supported."));
4814
4815 strcpy (buf, step ? "bs" : "bc");
4816 }
4817 else if (siggnal != GDB_SIGNAL_0)
4818 {
4819 buf[0] = step ? 'S' : 'C';
4820 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4821 buf[2] = tohex (((int) siggnal) & 0xf);
4822 buf[3] = '\0';
4823 }
4824 else
4825 strcpy (buf, step ? "s" : "c");
4826
4827 putpkt (buf);
4828
4829 done:
4830 /* We are about to start executing the inferior, let's register it
4831 with the event loop. NOTE: this is the one place where all the
4832 execution commands end up. We could alternatively do this in each
4833 of the execution commands in infcmd.c. */
4834 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4835 into infcmd.c in order to allow inferior function calls to work
4836 NOT asynchronously. */
4837 if (target_can_async_p ())
4838 target_async (inferior_event_handler, 0);
4839
4840 /* We've just told the target to resume. The remote server will
4841 wait for the inferior to stop, and then send a stop reply. In
4842 the mean time, we can't start another command/query ourselves
4843 because the stub wouldn't be ready to process it. This applies
4844 only to the base all-stop protocol, however. In non-stop (which
4845 only supports vCont), the stub replies with an "OK", and is
4846 immediate able to process further serial input. */
4847 if (!non_stop)
4848 rs->waiting_for_stop_reply = 1;
4849 }
4850 \f
4851
4852 /* Set up the signal handler for SIGINT, while the target is
4853 executing, ovewriting the 'regular' SIGINT signal handler. */
4854 static void
4855 initialize_sigint_signal_handler (void)
4856 {
4857 signal (SIGINT, handle_remote_sigint);
4858 }
4859
4860 /* Signal handler for SIGINT, while the target is executing. */
4861 static void
4862 handle_remote_sigint (int sig)
4863 {
4864 signal (sig, handle_remote_sigint_twice);
4865 mark_async_signal_handler_wrapper (sigint_remote_token);
4866 }
4867
4868 /* Signal handler for SIGINT, installed after SIGINT has already been
4869 sent once. It will take effect the second time that the user sends
4870 a ^C. */
4871 static void
4872 handle_remote_sigint_twice (int sig)
4873 {
4874 signal (sig, handle_remote_sigint);
4875 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4876 }
4877
4878 /* Perform the real interruption of the target execution, in response
4879 to a ^C. */
4880 static void
4881 async_remote_interrupt (gdb_client_data arg)
4882 {
4883 if (remote_debug)
4884 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt called\n");
4885
4886 target_stop (inferior_ptid);
4887 }
4888
4889 /* Perform interrupt, if the first attempt did not succeed. Just give
4890 up on the target alltogether. */
4891 void
4892 async_remote_interrupt_twice (gdb_client_data arg)
4893 {
4894 if (remote_debug)
4895 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt_twice called\n");
4896
4897 interrupt_query ();
4898 }
4899
4900 /* Reinstall the usual SIGINT handlers, after the target has
4901 stopped. */
4902 static void
4903 cleanup_sigint_signal_handler (void *dummy)
4904 {
4905 signal (SIGINT, handle_sigint);
4906 }
4907
4908 /* Send ^C to target to halt it. Target will respond, and send us a
4909 packet. */
4910 static void (*ofunc) (int);
4911
4912 /* The command line interface's stop routine. This function is installed
4913 as a signal handler for SIGINT. The first time a user requests a
4914 stop, we call remote_stop to send a break or ^C. If there is no
4915 response from the target (it didn't stop when the user requested it),
4916 we ask the user if he'd like to detach from the target. */
4917 static void
4918 remote_interrupt (int signo)
4919 {
4920 /* If this doesn't work, try more severe steps. */
4921 signal (signo, remote_interrupt_twice);
4922
4923 gdb_call_async_signal_handler (sigint_remote_token, 1);
4924 }
4925
4926 /* The user typed ^C twice. */
4927
4928 static void
4929 remote_interrupt_twice (int signo)
4930 {
4931 signal (signo, ofunc);
4932 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4933 signal (signo, remote_interrupt);
4934 }
4935
4936 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4937 thread, all threads of a remote process, or all threads of all
4938 processes. */
4939
4940 static void
4941 remote_stop_ns (ptid_t ptid)
4942 {
4943 struct remote_state *rs = get_remote_state ();
4944 char *p = rs->buf;
4945 char *endp = rs->buf + get_remote_packet_size ();
4946
4947 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4948 remote_vcont_probe (rs);
4949
4950 if (!rs->support_vCont_t)
4951 error (_("Remote server does not support stopping threads"));
4952
4953 if (ptid_equal (ptid, minus_one_ptid)
4954 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4955 p += xsnprintf (p, endp - p, "vCont;t");
4956 else
4957 {
4958 ptid_t nptid;
4959
4960 p += xsnprintf (p, endp - p, "vCont;t:");
4961
4962 if (ptid_is_pid (ptid))
4963 /* All (-1) threads of process. */
4964 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4965 else
4966 {
4967 /* Small optimization: if we already have a stop reply for
4968 this thread, no use in telling the stub we want this
4969 stopped. */
4970 if (peek_stop_reply (ptid))
4971 return;
4972
4973 nptid = ptid;
4974 }
4975
4976 write_ptid (p, endp, nptid);
4977 }
4978
4979 /* In non-stop, we get an immediate OK reply. The stop reply will
4980 come in asynchronously by notification. */
4981 putpkt (rs->buf);
4982 getpkt (&rs->buf, &rs->buf_size, 0);
4983 if (strcmp (rs->buf, "OK") != 0)
4984 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4985 }
4986
4987 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4988 remote target. It is undefined which thread of which process
4989 reports the stop. */
4990
4991 static void
4992 remote_stop_as (ptid_t ptid)
4993 {
4994 struct remote_state *rs = get_remote_state ();
4995
4996 rs->ctrlc_pending_p = 1;
4997
4998 /* If the inferior is stopped already, but the core didn't know
4999 about it yet, just ignore the request. The cached wait status
5000 will be collected in remote_wait. */
5001 if (rs->cached_wait_status)
5002 return;
5003
5004 /* Send interrupt_sequence to remote target. */
5005 send_interrupt_sequence ();
5006 }
5007
5008 /* This is the generic stop called via the target vector. When a target
5009 interrupt is requested, either by the command line or the GUI, we
5010 will eventually end up here. */
5011
5012 static void
5013 remote_stop (ptid_t ptid)
5014 {
5015 if (remote_debug)
5016 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
5017
5018 if (non_stop)
5019 remote_stop_ns (ptid);
5020 else
5021 remote_stop_as (ptid);
5022 }
5023
5024 /* Ask the user what to do when an interrupt is received. */
5025
5026 static void
5027 interrupt_query (void)
5028 {
5029 target_terminal_ours ();
5030
5031 if (target_can_async_p ())
5032 {
5033 signal (SIGINT, handle_sigint);
5034 deprecated_throw_reason (RETURN_QUIT);
5035 }
5036 else
5037 {
5038 if (query (_("Interrupted while waiting for the program.\n\
5039 Give up (and stop debugging it)? ")))
5040 {
5041 pop_target ();
5042 deprecated_throw_reason (RETURN_QUIT);
5043 }
5044 }
5045
5046 target_terminal_inferior ();
5047 }
5048
5049 /* Enable/disable target terminal ownership. Most targets can use
5050 terminal groups to control terminal ownership. Remote targets are
5051 different in that explicit transfer of ownership to/from GDB/target
5052 is required. */
5053
5054 static void
5055 remote_terminal_inferior (void)
5056 {
5057 if (!target_async_permitted)
5058 /* Nothing to do. */
5059 return;
5060
5061 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
5062 idempotent. The event-loop GDB talking to an asynchronous target
5063 with a synchronous command calls this function from both
5064 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
5065 transfer the terminal to the target when it shouldn't this guard
5066 can go away. */
5067 if (!remote_async_terminal_ours_p)
5068 return;
5069 delete_file_handler (input_fd);
5070 remote_async_terminal_ours_p = 0;
5071 initialize_sigint_signal_handler ();
5072 /* NOTE: At this point we could also register our selves as the
5073 recipient of all input. Any characters typed could then be
5074 passed on down to the target. */
5075 }
5076
5077 static void
5078 remote_terminal_ours (void)
5079 {
5080 if (!target_async_permitted)
5081 /* Nothing to do. */
5082 return;
5083
5084 /* See FIXME in remote_terminal_inferior. */
5085 if (remote_async_terminal_ours_p)
5086 return;
5087 cleanup_sigint_signal_handler (NULL);
5088 add_file_handler (input_fd, stdin_event_handler, 0);
5089 remote_async_terminal_ours_p = 1;
5090 }
5091
5092 static void
5093 remote_console_output (char *msg)
5094 {
5095 char *p;
5096
5097 for (p = msg; p[0] && p[1]; p += 2)
5098 {
5099 char tb[2];
5100 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
5101
5102 tb[0] = c;
5103 tb[1] = 0;
5104 fputs_unfiltered (tb, gdb_stdtarg);
5105 }
5106 gdb_flush (gdb_stdtarg);
5107 }
5108
5109 typedef struct cached_reg
5110 {
5111 int num;
5112 gdb_byte data[MAX_REGISTER_SIZE];
5113 } cached_reg_t;
5114
5115 DEF_VEC_O(cached_reg_t);
5116
5117 struct stop_reply
5118 {
5119 struct stop_reply *next;
5120
5121 ptid_t ptid;
5122
5123 struct target_waitstatus ws;
5124
5125 /* Expedited registers. This makes remote debugging a bit more
5126 efficient for those targets that provide critical registers as
5127 part of their normal status mechanism (as another roundtrip to
5128 fetch them is avoided). */
5129 VEC(cached_reg_t) *regcache;
5130
5131 int stopped_by_watchpoint_p;
5132 CORE_ADDR watch_data_address;
5133
5134 int solibs_changed;
5135 int replay_event;
5136
5137 int core;
5138 };
5139
5140 /* The list of already fetched and acknowledged stop events. */
5141 static struct stop_reply *stop_reply_queue;
5142
5143 static struct stop_reply *
5144 stop_reply_xmalloc (void)
5145 {
5146 struct stop_reply *r = XMALLOC (struct stop_reply);
5147
5148 r->next = NULL;
5149 return r;
5150 }
5151
5152 static void
5153 stop_reply_xfree (struct stop_reply *r)
5154 {
5155 if (r != NULL)
5156 {
5157 VEC_free (cached_reg_t, r->regcache);
5158 xfree (r);
5159 }
5160 }
5161
5162 /* Discard all pending stop replies of inferior PID. If PID is -1,
5163 discard everything. */
5164
5165 static void
5166 discard_pending_stop_replies (int pid)
5167 {
5168 struct stop_reply *prev = NULL, *reply, *next;
5169
5170 /* Discard the in-flight notification. */
5171 if (pending_stop_reply != NULL
5172 && (pid == -1
5173 || ptid_get_pid (pending_stop_reply->ptid) == pid))
5174 {
5175 stop_reply_xfree (pending_stop_reply);
5176 pending_stop_reply = NULL;
5177 }
5178
5179 /* Discard the stop replies we have already pulled with
5180 vStopped. */
5181 for (reply = stop_reply_queue; reply; reply = next)
5182 {
5183 next = reply->next;
5184 if (pid == -1
5185 || ptid_get_pid (reply->ptid) == pid)
5186 {
5187 if (reply == stop_reply_queue)
5188 stop_reply_queue = reply->next;
5189 else
5190 prev->next = reply->next;
5191
5192 stop_reply_xfree (reply);
5193 }
5194 else
5195 prev = reply;
5196 }
5197 }
5198
5199 /* Cleanup wrapper. */
5200
5201 static void
5202 do_stop_reply_xfree (void *arg)
5203 {
5204 struct stop_reply *r = arg;
5205
5206 stop_reply_xfree (r);
5207 }
5208
5209 /* Look for a queued stop reply belonging to PTID. If one is found,
5210 remove it from the queue, and return it. Returns NULL if none is
5211 found. If there are still queued events left to process, tell the
5212 event loop to get back to target_wait soon. */
5213
5214 static struct stop_reply *
5215 queued_stop_reply (ptid_t ptid)
5216 {
5217 struct stop_reply *it;
5218 struct stop_reply **it_link;
5219
5220 it = stop_reply_queue;
5221 it_link = &stop_reply_queue;
5222 while (it)
5223 {
5224 if (ptid_match (it->ptid, ptid))
5225 {
5226 *it_link = it->next;
5227 it->next = NULL;
5228 break;
5229 }
5230
5231 it_link = &it->next;
5232 it = *it_link;
5233 }
5234
5235 if (stop_reply_queue)
5236 /* There's still at least an event left. */
5237 mark_async_event_handler (remote_async_inferior_event_token);
5238
5239 return it;
5240 }
5241
5242 /* Push a fully parsed stop reply in the stop reply queue. Since we
5243 know that we now have at least one queued event left to pass to the
5244 core side, tell the event loop to get back to target_wait soon. */
5245
5246 static void
5247 push_stop_reply (struct stop_reply *new_event)
5248 {
5249 struct stop_reply *event;
5250
5251 if (stop_reply_queue)
5252 {
5253 for (event = stop_reply_queue;
5254 event && event->next;
5255 event = event->next)
5256 ;
5257
5258 event->next = new_event;
5259 }
5260 else
5261 stop_reply_queue = new_event;
5262
5263 mark_async_event_handler (remote_async_inferior_event_token);
5264 }
5265
5266 /* Returns true if we have a stop reply for PTID. */
5267
5268 static int
5269 peek_stop_reply (ptid_t ptid)
5270 {
5271 struct stop_reply *it;
5272
5273 for (it = stop_reply_queue; it; it = it->next)
5274 if (ptid_equal (ptid, it->ptid))
5275 {
5276 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
5277 return 1;
5278 }
5279
5280 return 0;
5281 }
5282
5283 /* Parse the stop reply in BUF. Either the function succeeds, and the
5284 result is stored in EVENT, or throws an error. */
5285
5286 static void
5287 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5288 {
5289 struct remote_arch_state *rsa = get_remote_arch_state ();
5290 ULONGEST addr;
5291 char *p;
5292
5293 event->ptid = null_ptid;
5294 event->ws.kind = TARGET_WAITKIND_IGNORE;
5295 event->ws.value.integer = 0;
5296 event->solibs_changed = 0;
5297 event->replay_event = 0;
5298 event->stopped_by_watchpoint_p = 0;
5299 event->regcache = NULL;
5300 event->core = -1;
5301
5302 switch (buf[0])
5303 {
5304 case 'T': /* Status with PC, SP, FP, ... */
5305 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5306 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5307 ss = signal number
5308 n... = register number
5309 r... = register contents
5310 */
5311
5312 p = &buf[3]; /* after Txx */
5313 while (*p)
5314 {
5315 char *p1;
5316 char *p_temp;
5317 int fieldsize;
5318 LONGEST pnum = 0;
5319
5320 /* If the packet contains a register number, save it in
5321 pnum and set p1 to point to the character following it.
5322 Otherwise p1 points to p. */
5323
5324 /* If this packet is an awatch packet, don't parse the 'a'
5325 as a register number. */
5326
5327 if (strncmp (p, "awatch", strlen("awatch")) != 0
5328 && strncmp (p, "core", strlen ("core") != 0))
5329 {
5330 /* Read the ``P'' register number. */
5331 pnum = strtol (p, &p_temp, 16);
5332 p1 = p_temp;
5333 }
5334 else
5335 p1 = p;
5336
5337 if (p1 == p) /* No register number present here. */
5338 {
5339 p1 = strchr (p, ':');
5340 if (p1 == NULL)
5341 error (_("Malformed packet(a) (missing colon): %s\n\
5342 Packet: '%s'\n"),
5343 p, buf);
5344 if (strncmp (p, "thread", p1 - p) == 0)
5345 event->ptid = read_ptid (++p1, &p);
5346 else if ((strncmp (p, "watch", p1 - p) == 0)
5347 || (strncmp (p, "rwatch", p1 - p) == 0)
5348 || (strncmp (p, "awatch", p1 - p) == 0))
5349 {
5350 event->stopped_by_watchpoint_p = 1;
5351 p = unpack_varlen_hex (++p1, &addr);
5352 event->watch_data_address = (CORE_ADDR) addr;
5353 }
5354 else if (strncmp (p, "library", p1 - p) == 0)
5355 {
5356 p1++;
5357 p_temp = p1;
5358 while (*p_temp && *p_temp != ';')
5359 p_temp++;
5360
5361 event->solibs_changed = 1;
5362 p = p_temp;
5363 }
5364 else if (strncmp (p, "replaylog", p1 - p) == 0)
5365 {
5366 /* NO_HISTORY event.
5367 p1 will indicate "begin" or "end", but
5368 it makes no difference for now, so ignore it. */
5369 event->replay_event = 1;
5370 p_temp = strchr (p1 + 1, ';');
5371 if (p_temp)
5372 p = p_temp;
5373 }
5374 else if (strncmp (p, "core", p1 - p) == 0)
5375 {
5376 ULONGEST c;
5377
5378 p = unpack_varlen_hex (++p1, &c);
5379 event->core = c;
5380 }
5381 else
5382 {
5383 /* Silently skip unknown optional info. */
5384 p_temp = strchr (p1 + 1, ';');
5385 if (p_temp)
5386 p = p_temp;
5387 }
5388 }
5389 else
5390 {
5391 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5392 cached_reg_t cached_reg;
5393
5394 p = p1;
5395
5396 if (*p != ':')
5397 error (_("Malformed packet(b) (missing colon): %s\n\
5398 Packet: '%s'\n"),
5399 p, buf);
5400 ++p;
5401
5402 if (reg == NULL)
5403 error (_("Remote sent bad register number %s: %s\n\
5404 Packet: '%s'\n"),
5405 hex_string (pnum), p, buf);
5406
5407 cached_reg.num = reg->regnum;
5408
5409 fieldsize = hex2bin (p, cached_reg.data,
5410 register_size (target_gdbarch,
5411 reg->regnum));
5412 p += 2 * fieldsize;
5413 if (fieldsize < register_size (target_gdbarch,
5414 reg->regnum))
5415 warning (_("Remote reply is too short: %s"), buf);
5416
5417 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5418 }
5419
5420 if (*p != ';')
5421 error (_("Remote register badly formatted: %s\nhere: %s"),
5422 buf, p);
5423 ++p;
5424 }
5425 /* fall through */
5426 case 'S': /* Old style status, just signal only. */
5427 if (event->solibs_changed)
5428 event->ws.kind = TARGET_WAITKIND_LOADED;
5429 else if (event->replay_event)
5430 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5431 else
5432 {
5433 event->ws.kind = TARGET_WAITKIND_STOPPED;
5434 event->ws.value.sig = (enum gdb_signal)
5435 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5436 }
5437 break;
5438 case 'W': /* Target exited. */
5439 case 'X':
5440 {
5441 char *p;
5442 int pid;
5443 ULONGEST value;
5444
5445 /* GDB used to accept only 2 hex chars here. Stubs should
5446 only send more if they detect GDB supports multi-process
5447 support. */
5448 p = unpack_varlen_hex (&buf[1], &value);
5449
5450 if (buf[0] == 'W')
5451 {
5452 /* The remote process exited. */
5453 event->ws.kind = TARGET_WAITKIND_EXITED;
5454 event->ws.value.integer = value;
5455 }
5456 else
5457 {
5458 /* The remote process exited with a signal. */
5459 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5460 event->ws.value.sig = (enum gdb_signal) value;
5461 }
5462
5463 /* If no process is specified, assume inferior_ptid. */
5464 pid = ptid_get_pid (inferior_ptid);
5465 if (*p == '\0')
5466 ;
5467 else if (*p == ';')
5468 {
5469 p++;
5470
5471 if (p == '\0')
5472 ;
5473 else if (strncmp (p,
5474 "process:", sizeof ("process:") - 1) == 0)
5475 {
5476 ULONGEST upid;
5477
5478 p += sizeof ("process:") - 1;
5479 unpack_varlen_hex (p, &upid);
5480 pid = upid;
5481 }
5482 else
5483 error (_("unknown stop reply packet: %s"), buf);
5484 }
5485 else
5486 error (_("unknown stop reply packet: %s"), buf);
5487 event->ptid = pid_to_ptid (pid);
5488 }
5489 break;
5490 }
5491
5492 if (non_stop && ptid_equal (event->ptid, null_ptid))
5493 error (_("No process or thread specified in stop reply: %s"), buf);
5494 }
5495
5496 /* When the stub wants to tell GDB about a new stop reply, it sends a
5497 stop notification (%Stop). Those can come it at any time, hence,
5498 we have to make sure that any pending putpkt/getpkt sequence we're
5499 making is finished, before querying the stub for more events with
5500 vStopped. E.g., if we started a vStopped sequence immediatelly
5501 upon receiving the %Stop notification, something like this could
5502 happen:
5503
5504 1.1) --> Hg 1
5505 1.2) <-- OK
5506 1.3) --> g
5507 1.4) <-- %Stop
5508 1.5) --> vStopped
5509 1.6) <-- (registers reply to step #1.3)
5510
5511 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5512 query.
5513
5514 To solve this, whenever we parse a %Stop notification sucessfully,
5515 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5516 doing whatever we were doing:
5517
5518 2.1) --> Hg 1
5519 2.2) <-- OK
5520 2.3) --> g
5521 2.4) <-- %Stop
5522 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5523 2.5) <-- (registers reply to step #2.3)
5524
5525 Eventualy after step #2.5, we return to the event loop, which
5526 notices there's an event on the
5527 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5528 associated callback --- the function below. At this point, we're
5529 always safe to start a vStopped sequence. :
5530
5531 2.6) --> vStopped
5532 2.7) <-- T05 thread:2
5533 2.8) --> vStopped
5534 2.9) --> OK
5535 */
5536
5537 static void
5538 remote_get_pending_stop_replies (void)
5539 {
5540 struct remote_state *rs = get_remote_state ();
5541
5542 if (pending_stop_reply)
5543 {
5544 /* acknowledge */
5545 putpkt ("vStopped");
5546
5547 /* Now we can rely on it. */
5548 push_stop_reply (pending_stop_reply);
5549 pending_stop_reply = NULL;
5550
5551 while (1)
5552 {
5553 getpkt (&rs->buf, &rs->buf_size, 0);
5554 if (strcmp (rs->buf, "OK") == 0)
5555 break;
5556 else
5557 {
5558 struct cleanup *old_chain;
5559 struct stop_reply *stop_reply = stop_reply_xmalloc ();
5560
5561 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5562 remote_parse_stop_reply (rs->buf, stop_reply);
5563
5564 /* acknowledge */
5565 putpkt ("vStopped");
5566
5567 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
5568 {
5569 /* Now we can rely on it. */
5570 discard_cleanups (old_chain);
5571 push_stop_reply (stop_reply);
5572 }
5573 else
5574 /* We got an unknown stop reply. */
5575 do_cleanups (old_chain);
5576 }
5577 }
5578 }
5579 }
5580
5581
5582 /* Called when it is decided that STOP_REPLY holds the info of the
5583 event that is to be returned to the core. This function always
5584 destroys STOP_REPLY. */
5585
5586 static ptid_t
5587 process_stop_reply (struct stop_reply *stop_reply,
5588 struct target_waitstatus *status)
5589 {
5590 ptid_t ptid;
5591
5592 *status = stop_reply->ws;
5593 ptid = stop_reply->ptid;
5594
5595 /* If no thread/process was reported by the stub, assume the current
5596 inferior. */
5597 if (ptid_equal (ptid, null_ptid))
5598 ptid = inferior_ptid;
5599
5600 if (status->kind != TARGET_WAITKIND_EXITED
5601 && status->kind != TARGET_WAITKIND_SIGNALLED)
5602 {
5603 /* Expedited registers. */
5604 if (stop_reply->regcache)
5605 {
5606 struct regcache *regcache
5607 = get_thread_arch_regcache (ptid, target_gdbarch);
5608 cached_reg_t *reg;
5609 int ix;
5610
5611 for (ix = 0;
5612 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5613 ix++)
5614 regcache_raw_supply (regcache, reg->num, reg->data);
5615 VEC_free (cached_reg_t, stop_reply->regcache);
5616 }
5617
5618 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5619 remote_watch_data_address = stop_reply->watch_data_address;
5620
5621 remote_notice_new_inferior (ptid, 0);
5622 demand_private_info (ptid)->core = stop_reply->core;
5623 }
5624
5625 stop_reply_xfree (stop_reply);
5626 return ptid;
5627 }
5628
5629 /* The non-stop mode version of target_wait. */
5630
5631 static ptid_t
5632 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5633 {
5634 struct remote_state *rs = get_remote_state ();
5635 struct stop_reply *stop_reply;
5636 int ret;
5637
5638 /* If in non-stop mode, get out of getpkt even if a
5639 notification is received. */
5640
5641 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5642 0 /* forever */);
5643 while (1)
5644 {
5645 if (ret != -1)
5646 switch (rs->buf[0])
5647 {
5648 case 'E': /* Error of some sort. */
5649 /* We're out of sync with the target now. Did it continue
5650 or not? We can't tell which thread it was in non-stop,
5651 so just ignore this. */
5652 warning (_("Remote failure reply: %s"), rs->buf);
5653 break;
5654 case 'O': /* Console output. */
5655 remote_console_output (rs->buf + 1);
5656 break;
5657 default:
5658 warning (_("Invalid remote reply: %s"), rs->buf);
5659 break;
5660 }
5661
5662 /* Acknowledge a pending stop reply that may have arrived in the
5663 mean time. */
5664 if (pending_stop_reply != NULL)
5665 remote_get_pending_stop_replies ();
5666
5667 /* If indeed we noticed a stop reply, we're done. */
5668 stop_reply = queued_stop_reply (ptid);
5669 if (stop_reply != NULL)
5670 return process_stop_reply (stop_reply, status);
5671
5672 /* Still no event. If we're just polling for an event, then
5673 return to the event loop. */
5674 if (options & TARGET_WNOHANG)
5675 {
5676 status->kind = TARGET_WAITKIND_IGNORE;
5677 return minus_one_ptid;
5678 }
5679
5680 /* Otherwise do a blocking wait. */
5681 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5682 1 /* forever */);
5683 }
5684 }
5685
5686 /* Wait until the remote machine stops, then return, storing status in
5687 STATUS just as `wait' would. */
5688
5689 static ptid_t
5690 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5691 {
5692 struct remote_state *rs = get_remote_state ();
5693 ptid_t event_ptid = null_ptid;
5694 char *buf;
5695 struct stop_reply *stop_reply;
5696
5697 again:
5698
5699 status->kind = TARGET_WAITKIND_IGNORE;
5700 status->value.integer = 0;
5701
5702 stop_reply = queued_stop_reply (ptid);
5703 if (stop_reply != NULL)
5704 return process_stop_reply (stop_reply, status);
5705
5706 if (rs->cached_wait_status)
5707 /* Use the cached wait status, but only once. */
5708 rs->cached_wait_status = 0;
5709 else
5710 {
5711 int ret;
5712
5713 if (!target_is_async_p ())
5714 {
5715 ofunc = signal (SIGINT, remote_interrupt);
5716 /* If the user hit C-c before this packet, or between packets,
5717 pretend that it was hit right here. */
5718 if (check_quit_flag ())
5719 {
5720 clear_quit_flag ();
5721 remote_interrupt (SIGINT);
5722 }
5723 }
5724
5725 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5726 _never_ wait for ever -> test on target_is_async_p().
5727 However, before we do that we need to ensure that the caller
5728 knows how to take the target into/out of async mode. */
5729 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5730 if (!target_is_async_p ())
5731 signal (SIGINT, ofunc);
5732 }
5733
5734 buf = rs->buf;
5735
5736 remote_stopped_by_watchpoint_p = 0;
5737
5738 /* We got something. */
5739 rs->waiting_for_stop_reply = 0;
5740
5741 /* Assume that the target has acknowledged Ctrl-C unless we receive
5742 an 'F' or 'O' packet. */
5743 if (buf[0] != 'F' && buf[0] != 'O')
5744 rs->ctrlc_pending_p = 0;
5745
5746 switch (buf[0])
5747 {
5748 case 'E': /* Error of some sort. */
5749 /* We're out of sync with the target now. Did it continue or
5750 not? Not is more likely, so report a stop. */
5751 warning (_("Remote failure reply: %s"), buf);
5752 status->kind = TARGET_WAITKIND_STOPPED;
5753 status->value.sig = GDB_SIGNAL_0;
5754 break;
5755 case 'F': /* File-I/O request. */
5756 remote_fileio_request (buf, rs->ctrlc_pending_p);
5757 rs->ctrlc_pending_p = 0;
5758 break;
5759 case 'T': case 'S': case 'X': case 'W':
5760 {
5761 struct stop_reply *stop_reply;
5762 struct cleanup *old_chain;
5763
5764 stop_reply = stop_reply_xmalloc ();
5765 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5766 remote_parse_stop_reply (buf, stop_reply);
5767 discard_cleanups (old_chain);
5768 event_ptid = process_stop_reply (stop_reply, status);
5769 break;
5770 }
5771 case 'O': /* Console output. */
5772 remote_console_output (buf + 1);
5773
5774 /* The target didn't really stop; keep waiting. */
5775 rs->waiting_for_stop_reply = 1;
5776
5777 break;
5778 case '\0':
5779 if (last_sent_signal != GDB_SIGNAL_0)
5780 {
5781 /* Zero length reply means that we tried 'S' or 'C' and the
5782 remote system doesn't support it. */
5783 target_terminal_ours_for_output ();
5784 printf_filtered
5785 ("Can't send signals to this remote system. %s not sent.\n",
5786 gdb_signal_to_name (last_sent_signal));
5787 last_sent_signal = GDB_SIGNAL_0;
5788 target_terminal_inferior ();
5789
5790 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5791 putpkt ((char *) buf);
5792
5793 /* We just told the target to resume, so a stop reply is in
5794 order. */
5795 rs->waiting_for_stop_reply = 1;
5796 break;
5797 }
5798 /* else fallthrough */
5799 default:
5800 warning (_("Invalid remote reply: %s"), buf);
5801 /* Keep waiting. */
5802 rs->waiting_for_stop_reply = 1;
5803 break;
5804 }
5805
5806 if (status->kind == TARGET_WAITKIND_IGNORE)
5807 {
5808 /* Nothing interesting happened. If we're doing a non-blocking
5809 poll, we're done. Otherwise, go back to waiting. */
5810 if (options & TARGET_WNOHANG)
5811 return minus_one_ptid;
5812 else
5813 goto again;
5814 }
5815 else if (status->kind != TARGET_WAITKIND_EXITED
5816 && status->kind != TARGET_WAITKIND_SIGNALLED)
5817 {
5818 if (!ptid_equal (event_ptid, null_ptid))
5819 record_currthread (event_ptid);
5820 else
5821 event_ptid = inferior_ptid;
5822 }
5823 else
5824 /* A process exit. Invalidate our notion of current thread. */
5825 record_currthread (minus_one_ptid);
5826
5827 return event_ptid;
5828 }
5829
5830 /* Wait until the remote machine stops, then return, storing status in
5831 STATUS just as `wait' would. */
5832
5833 static ptid_t
5834 remote_wait (struct target_ops *ops,
5835 ptid_t ptid, struct target_waitstatus *status, int options)
5836 {
5837 ptid_t event_ptid;
5838
5839 if (non_stop)
5840 event_ptid = remote_wait_ns (ptid, status, options);
5841 else
5842 event_ptid = remote_wait_as (ptid, status, options);
5843
5844 if (target_can_async_p ())
5845 {
5846 /* If there are are events left in the queue tell the event loop
5847 to return here. */
5848 if (stop_reply_queue)
5849 mark_async_event_handler (remote_async_inferior_event_token);
5850 }
5851
5852 return event_ptid;
5853 }
5854
5855 /* Fetch a single register using a 'p' packet. */
5856
5857 static int
5858 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5859 {
5860 struct remote_state *rs = get_remote_state ();
5861 char *buf, *p;
5862 char regp[MAX_REGISTER_SIZE];
5863 int i;
5864
5865 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5866 return 0;
5867
5868 if (reg->pnum == -1)
5869 return 0;
5870
5871 p = rs->buf;
5872 *p++ = 'p';
5873 p += hexnumstr (p, reg->pnum);
5874 *p++ = '\0';
5875 putpkt (rs->buf);
5876 getpkt (&rs->buf, &rs->buf_size, 0);
5877
5878 buf = rs->buf;
5879
5880 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5881 {
5882 case PACKET_OK:
5883 break;
5884 case PACKET_UNKNOWN:
5885 return 0;
5886 case PACKET_ERROR:
5887 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5888 gdbarch_register_name (get_regcache_arch (regcache),
5889 reg->regnum),
5890 buf);
5891 }
5892
5893 /* If this register is unfetchable, tell the regcache. */
5894 if (buf[0] == 'x')
5895 {
5896 regcache_raw_supply (regcache, reg->regnum, NULL);
5897 return 1;
5898 }
5899
5900 /* Otherwise, parse and supply the value. */
5901 p = buf;
5902 i = 0;
5903 while (p[0] != 0)
5904 {
5905 if (p[1] == 0)
5906 error (_("fetch_register_using_p: early buf termination"));
5907
5908 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5909 p += 2;
5910 }
5911 regcache_raw_supply (regcache, reg->regnum, regp);
5912 return 1;
5913 }
5914
5915 /* Fetch the registers included in the target's 'g' packet. */
5916
5917 static int
5918 send_g_packet (void)
5919 {
5920 struct remote_state *rs = get_remote_state ();
5921 int buf_len;
5922
5923 xsnprintf (rs->buf, get_remote_packet_size (), "g");
5924 remote_send (&rs->buf, &rs->buf_size);
5925
5926 /* We can get out of synch in various cases. If the first character
5927 in the buffer is not a hex character, assume that has happened
5928 and try to fetch another packet to read. */
5929 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5930 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5931 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5932 && rs->buf[0] != 'x') /* New: unavailable register value. */
5933 {
5934 if (remote_debug)
5935 fprintf_unfiltered (gdb_stdlog,
5936 "Bad register packet; fetching a new packet\n");
5937 getpkt (&rs->buf, &rs->buf_size, 0);
5938 }
5939
5940 buf_len = strlen (rs->buf);
5941
5942 /* Sanity check the received packet. */
5943 if (buf_len % 2 != 0)
5944 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5945
5946 return buf_len / 2;
5947 }
5948
5949 static void
5950 process_g_packet (struct regcache *regcache)
5951 {
5952 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5953 struct remote_state *rs = get_remote_state ();
5954 struct remote_arch_state *rsa = get_remote_arch_state ();
5955 int i, buf_len;
5956 char *p;
5957 char *regs;
5958
5959 buf_len = strlen (rs->buf);
5960
5961 /* Further sanity checks, with knowledge of the architecture. */
5962 if (buf_len > 2 * rsa->sizeof_g_packet)
5963 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5964
5965 /* Save the size of the packet sent to us by the target. It is used
5966 as a heuristic when determining the max size of packets that the
5967 target can safely receive. */
5968 if (rsa->actual_register_packet_size == 0)
5969 rsa->actual_register_packet_size = buf_len;
5970
5971 /* If this is smaller than we guessed the 'g' packet would be,
5972 update our records. A 'g' reply that doesn't include a register's
5973 value implies either that the register is not available, or that
5974 the 'p' packet must be used. */
5975 if (buf_len < 2 * rsa->sizeof_g_packet)
5976 {
5977 rsa->sizeof_g_packet = buf_len / 2;
5978
5979 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5980 {
5981 if (rsa->regs[i].pnum == -1)
5982 continue;
5983
5984 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5985 rsa->regs[i].in_g_packet = 0;
5986 else
5987 rsa->regs[i].in_g_packet = 1;
5988 }
5989 }
5990
5991 regs = alloca (rsa->sizeof_g_packet);
5992
5993 /* Unimplemented registers read as all bits zero. */
5994 memset (regs, 0, rsa->sizeof_g_packet);
5995
5996 /* Reply describes registers byte by byte, each byte encoded as two
5997 hex characters. Suck them all up, then supply them to the
5998 register cacheing/storage mechanism. */
5999
6000 p = rs->buf;
6001 for (i = 0; i < rsa->sizeof_g_packet; i++)
6002 {
6003 if (p[0] == 0 || p[1] == 0)
6004 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
6005 internal_error (__FILE__, __LINE__,
6006 _("unexpected end of 'g' packet reply"));
6007
6008 if (p[0] == 'x' && p[1] == 'x')
6009 regs[i] = 0; /* 'x' */
6010 else
6011 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
6012 p += 2;
6013 }
6014
6015 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6016 {
6017 struct packet_reg *r = &rsa->regs[i];
6018
6019 if (r->in_g_packet)
6020 {
6021 if (r->offset * 2 >= strlen (rs->buf))
6022 /* This shouldn't happen - we adjusted in_g_packet above. */
6023 internal_error (__FILE__, __LINE__,
6024 _("unexpected end of 'g' packet reply"));
6025 else if (rs->buf[r->offset * 2] == 'x')
6026 {
6027 gdb_assert (r->offset * 2 < strlen (rs->buf));
6028 /* The register isn't available, mark it as such (at
6029 the same time setting the value to zero). */
6030 regcache_raw_supply (regcache, r->regnum, NULL);
6031 }
6032 else
6033 regcache_raw_supply (regcache, r->regnum,
6034 regs + r->offset);
6035 }
6036 }
6037 }
6038
6039 static void
6040 fetch_registers_using_g (struct regcache *regcache)
6041 {
6042 send_g_packet ();
6043 process_g_packet (regcache);
6044 }
6045
6046 /* Make the remote selected traceframe match GDB's selected
6047 traceframe. */
6048
6049 static void
6050 set_remote_traceframe (void)
6051 {
6052 int newnum;
6053
6054 if (remote_traceframe_number == get_traceframe_number ())
6055 return;
6056
6057 /* Avoid recursion, remote_trace_find calls us again. */
6058 remote_traceframe_number = get_traceframe_number ();
6059
6060 newnum = target_trace_find (tfind_number,
6061 get_traceframe_number (), 0, 0, NULL);
6062
6063 /* Should not happen. If it does, all bets are off. */
6064 if (newnum != get_traceframe_number ())
6065 warning (_("could not set remote traceframe"));
6066 }
6067
6068 static void
6069 remote_fetch_registers (struct target_ops *ops,
6070 struct regcache *regcache, int regnum)
6071 {
6072 struct remote_arch_state *rsa = get_remote_arch_state ();
6073 int i;
6074
6075 set_remote_traceframe ();
6076 set_general_thread (inferior_ptid);
6077
6078 if (regnum >= 0)
6079 {
6080 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6081
6082 gdb_assert (reg != NULL);
6083
6084 /* If this register might be in the 'g' packet, try that first -
6085 we are likely to read more than one register. If this is the
6086 first 'g' packet, we might be overly optimistic about its
6087 contents, so fall back to 'p'. */
6088 if (reg->in_g_packet)
6089 {
6090 fetch_registers_using_g (regcache);
6091 if (reg->in_g_packet)
6092 return;
6093 }
6094
6095 if (fetch_register_using_p (regcache, reg))
6096 return;
6097
6098 /* This register is not available. */
6099 regcache_raw_supply (regcache, reg->regnum, NULL);
6100
6101 return;
6102 }
6103
6104 fetch_registers_using_g (regcache);
6105
6106 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6107 if (!rsa->regs[i].in_g_packet)
6108 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
6109 {
6110 /* This register is not available. */
6111 regcache_raw_supply (regcache, i, NULL);
6112 }
6113 }
6114
6115 /* Prepare to store registers. Since we may send them all (using a
6116 'G' request), we have to read out the ones we don't want to change
6117 first. */
6118
6119 static void
6120 remote_prepare_to_store (struct regcache *regcache)
6121 {
6122 struct remote_arch_state *rsa = get_remote_arch_state ();
6123 int i;
6124 gdb_byte buf[MAX_REGISTER_SIZE];
6125
6126 /* Make sure the entire registers array is valid. */
6127 switch (remote_protocol_packets[PACKET_P].support)
6128 {
6129 case PACKET_DISABLE:
6130 case PACKET_SUPPORT_UNKNOWN:
6131 /* Make sure all the necessary registers are cached. */
6132 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6133 if (rsa->regs[i].in_g_packet)
6134 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
6135 break;
6136 case PACKET_ENABLE:
6137 break;
6138 }
6139 }
6140
6141 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
6142 packet was not recognized. */
6143
6144 static int
6145 store_register_using_P (const struct regcache *regcache,
6146 struct packet_reg *reg)
6147 {
6148 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6149 struct remote_state *rs = get_remote_state ();
6150 /* Try storing a single register. */
6151 char *buf = rs->buf;
6152 gdb_byte regp[MAX_REGISTER_SIZE];
6153 char *p;
6154
6155 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6156 return 0;
6157
6158 if (reg->pnum == -1)
6159 return 0;
6160
6161 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6162 p = buf + strlen (buf);
6163 regcache_raw_collect (regcache, reg->regnum, regp);
6164 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6165 putpkt (rs->buf);
6166 getpkt (&rs->buf, &rs->buf_size, 0);
6167
6168 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6169 {
6170 case PACKET_OK:
6171 return 1;
6172 case PACKET_ERROR:
6173 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6174 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6175 case PACKET_UNKNOWN:
6176 return 0;
6177 default:
6178 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6179 }
6180 }
6181
6182 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6183 contents of the register cache buffer. FIXME: ignores errors. */
6184
6185 static void
6186 store_registers_using_G (const struct regcache *regcache)
6187 {
6188 struct remote_state *rs = get_remote_state ();
6189 struct remote_arch_state *rsa = get_remote_arch_state ();
6190 gdb_byte *regs;
6191 char *p;
6192
6193 /* Extract all the registers in the regcache copying them into a
6194 local buffer. */
6195 {
6196 int i;
6197
6198 regs = alloca (rsa->sizeof_g_packet);
6199 memset (regs, 0, rsa->sizeof_g_packet);
6200 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6201 {
6202 struct packet_reg *r = &rsa->regs[i];
6203
6204 if (r->in_g_packet)
6205 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6206 }
6207 }
6208
6209 /* Command describes registers byte by byte,
6210 each byte encoded as two hex characters. */
6211 p = rs->buf;
6212 *p++ = 'G';
6213 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6214 updated. */
6215 bin2hex (regs, p, rsa->sizeof_g_packet);
6216 putpkt (rs->buf);
6217 getpkt (&rs->buf, &rs->buf_size, 0);
6218 if (packet_check_result (rs->buf) == PACKET_ERROR)
6219 error (_("Could not write registers; remote failure reply '%s'"),
6220 rs->buf);
6221 }
6222
6223 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6224 of the register cache buffer. FIXME: ignores errors. */
6225
6226 static void
6227 remote_store_registers (struct target_ops *ops,
6228 struct regcache *regcache, int regnum)
6229 {
6230 struct remote_arch_state *rsa = get_remote_arch_state ();
6231 int i;
6232
6233 set_remote_traceframe ();
6234 set_general_thread (inferior_ptid);
6235
6236 if (regnum >= 0)
6237 {
6238 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6239
6240 gdb_assert (reg != NULL);
6241
6242 /* Always prefer to store registers using the 'P' packet if
6243 possible; we often change only a small number of registers.
6244 Sometimes we change a larger number; we'd need help from a
6245 higher layer to know to use 'G'. */
6246 if (store_register_using_P (regcache, reg))
6247 return;
6248
6249 /* For now, don't complain if we have no way to write the
6250 register. GDB loses track of unavailable registers too
6251 easily. Some day, this may be an error. We don't have
6252 any way to read the register, either... */
6253 if (!reg->in_g_packet)
6254 return;
6255
6256 store_registers_using_G (regcache);
6257 return;
6258 }
6259
6260 store_registers_using_G (regcache);
6261
6262 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6263 if (!rsa->regs[i].in_g_packet)
6264 if (!store_register_using_P (regcache, &rsa->regs[i]))
6265 /* See above for why we do not issue an error here. */
6266 continue;
6267 }
6268 \f
6269
6270 /* Return the number of hex digits in num. */
6271
6272 static int
6273 hexnumlen (ULONGEST num)
6274 {
6275 int i;
6276
6277 for (i = 0; num != 0; i++)
6278 num >>= 4;
6279
6280 return max (i, 1);
6281 }
6282
6283 /* Set BUF to the minimum number of hex digits representing NUM. */
6284
6285 static int
6286 hexnumstr (char *buf, ULONGEST num)
6287 {
6288 int len = hexnumlen (num);
6289
6290 return hexnumnstr (buf, num, len);
6291 }
6292
6293
6294 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6295
6296 static int
6297 hexnumnstr (char *buf, ULONGEST num, int width)
6298 {
6299 int i;
6300
6301 buf[width] = '\0';
6302
6303 for (i = width - 1; i >= 0; i--)
6304 {
6305 buf[i] = "0123456789abcdef"[(num & 0xf)];
6306 num >>= 4;
6307 }
6308
6309 return width;
6310 }
6311
6312 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6313
6314 static CORE_ADDR
6315 remote_address_masked (CORE_ADDR addr)
6316 {
6317 unsigned int address_size = remote_address_size;
6318
6319 /* If "remoteaddresssize" was not set, default to target address size. */
6320 if (!address_size)
6321 address_size = gdbarch_addr_bit (target_gdbarch);
6322
6323 if (address_size > 0
6324 && address_size < (sizeof (ULONGEST) * 8))
6325 {
6326 /* Only create a mask when that mask can safely be constructed
6327 in a ULONGEST variable. */
6328 ULONGEST mask = 1;
6329
6330 mask = (mask << address_size) - 1;
6331 addr &= mask;
6332 }
6333 return addr;
6334 }
6335
6336 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6337 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6338 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6339 (which may be more than *OUT_LEN due to escape characters). The
6340 total number of bytes in the output buffer will be at most
6341 OUT_MAXLEN. */
6342
6343 static int
6344 remote_escape_output (const gdb_byte *buffer, int len,
6345 gdb_byte *out_buf, int *out_len,
6346 int out_maxlen)
6347 {
6348 int input_index, output_index;
6349
6350 output_index = 0;
6351 for (input_index = 0; input_index < len; input_index++)
6352 {
6353 gdb_byte b = buffer[input_index];
6354
6355 if (b == '$' || b == '#' || b == '}')
6356 {
6357 /* These must be escaped. */
6358 if (output_index + 2 > out_maxlen)
6359 break;
6360 out_buf[output_index++] = '}';
6361 out_buf[output_index++] = b ^ 0x20;
6362 }
6363 else
6364 {
6365 if (output_index + 1 > out_maxlen)
6366 break;
6367 out_buf[output_index++] = b;
6368 }
6369 }
6370
6371 *out_len = input_index;
6372 return output_index;
6373 }
6374
6375 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6376 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6377 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6378
6379 This function reverses remote_escape_output. It allows more
6380 escaped characters than that function does, in particular because
6381 '*' must be escaped to avoid the run-length encoding processing
6382 in reading packets. */
6383
6384 static int
6385 remote_unescape_input (const gdb_byte *buffer, int len,
6386 gdb_byte *out_buf, int out_maxlen)
6387 {
6388 int input_index, output_index;
6389 int escaped;
6390
6391 output_index = 0;
6392 escaped = 0;
6393 for (input_index = 0; input_index < len; input_index++)
6394 {
6395 gdb_byte b = buffer[input_index];
6396
6397 if (output_index + 1 > out_maxlen)
6398 {
6399 warning (_("Received too much data from remote target;"
6400 " ignoring overflow."));
6401 return output_index;
6402 }
6403
6404 if (escaped)
6405 {
6406 out_buf[output_index++] = b ^ 0x20;
6407 escaped = 0;
6408 }
6409 else if (b == '}')
6410 escaped = 1;
6411 else
6412 out_buf[output_index++] = b;
6413 }
6414
6415 if (escaped)
6416 error (_("Unmatched escape character in target response."));
6417
6418 return output_index;
6419 }
6420
6421 /* Determine whether the remote target supports binary downloading.
6422 This is accomplished by sending a no-op memory write of zero length
6423 to the target at the specified address. It does not suffice to send
6424 the whole packet, since many stubs strip the eighth bit and
6425 subsequently compute a wrong checksum, which causes real havoc with
6426 remote_write_bytes.
6427
6428 NOTE: This can still lose if the serial line is not eight-bit
6429 clean. In cases like this, the user should clear "remote
6430 X-packet". */
6431
6432 static void
6433 check_binary_download (CORE_ADDR addr)
6434 {
6435 struct remote_state *rs = get_remote_state ();
6436
6437 switch (remote_protocol_packets[PACKET_X].support)
6438 {
6439 case PACKET_DISABLE:
6440 break;
6441 case PACKET_ENABLE:
6442 break;
6443 case PACKET_SUPPORT_UNKNOWN:
6444 {
6445 char *p;
6446
6447 p = rs->buf;
6448 *p++ = 'X';
6449 p += hexnumstr (p, (ULONGEST) addr);
6450 *p++ = ',';
6451 p += hexnumstr (p, (ULONGEST) 0);
6452 *p++ = ':';
6453 *p = '\0';
6454
6455 putpkt_binary (rs->buf, (int) (p - rs->buf));
6456 getpkt (&rs->buf, &rs->buf_size, 0);
6457
6458 if (rs->buf[0] == '\0')
6459 {
6460 if (remote_debug)
6461 fprintf_unfiltered (gdb_stdlog,
6462 "binary downloading NOT "
6463 "supported by target\n");
6464 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6465 }
6466 else
6467 {
6468 if (remote_debug)
6469 fprintf_unfiltered (gdb_stdlog,
6470 "binary downloading supported by target\n");
6471 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6472 }
6473 break;
6474 }
6475 }
6476 }
6477
6478 /* Write memory data directly to the remote machine.
6479 This does not inform the data cache; the data cache uses this.
6480 HEADER is the starting part of the packet.
6481 MEMADDR is the address in the remote memory space.
6482 MYADDR is the address of the buffer in our space.
6483 LEN is the number of bytes.
6484 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6485 should send data as binary ('X'), or hex-encoded ('M').
6486
6487 The function creates packet of the form
6488 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6489
6490 where encoding of <DATA> is termined by PACKET_FORMAT.
6491
6492 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6493 are omitted.
6494
6495 Returns the number of bytes transferred, or 0 (setting errno) for
6496 error. Only transfer a single packet. */
6497
6498 static int
6499 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6500 const gdb_byte *myaddr, ssize_t len,
6501 char packet_format, int use_length)
6502 {
6503 struct remote_state *rs = get_remote_state ();
6504 char *p;
6505 char *plen = NULL;
6506 int plenlen = 0;
6507 int todo;
6508 int nr_bytes;
6509 int payload_size;
6510 int payload_length;
6511 int header_length;
6512
6513 if (packet_format != 'X' && packet_format != 'M')
6514 internal_error (__FILE__, __LINE__,
6515 _("remote_write_bytes_aux: bad packet format"));
6516
6517 if (len <= 0)
6518 return 0;
6519
6520 payload_size = get_memory_write_packet_size ();
6521
6522 /* The packet buffer will be large enough for the payload;
6523 get_memory_packet_size ensures this. */
6524 rs->buf[0] = '\0';
6525
6526 /* Compute the size of the actual payload by subtracting out the
6527 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6528
6529 payload_size -= strlen ("$,:#NN");
6530 if (!use_length)
6531 /* The comma won't be used. */
6532 payload_size += 1;
6533 header_length = strlen (header);
6534 payload_size -= header_length;
6535 payload_size -= hexnumlen (memaddr);
6536
6537 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6538
6539 strcat (rs->buf, header);
6540 p = rs->buf + strlen (header);
6541
6542 /* Compute a best guess of the number of bytes actually transfered. */
6543 if (packet_format == 'X')
6544 {
6545 /* Best guess at number of bytes that will fit. */
6546 todo = min (len, payload_size);
6547 if (use_length)
6548 payload_size -= hexnumlen (todo);
6549 todo = min (todo, payload_size);
6550 }
6551 else
6552 {
6553 /* Num bytes that will fit. */
6554 todo = min (len, payload_size / 2);
6555 if (use_length)
6556 payload_size -= hexnumlen (todo);
6557 todo = min (todo, payload_size / 2);
6558 }
6559
6560 if (todo <= 0)
6561 internal_error (__FILE__, __LINE__,
6562 _("minimum packet size too small to write data"));
6563
6564 /* If we already need another packet, then try to align the end
6565 of this packet to a useful boundary. */
6566 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6567 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6568
6569 /* Append "<memaddr>". */
6570 memaddr = remote_address_masked (memaddr);
6571 p += hexnumstr (p, (ULONGEST) memaddr);
6572
6573 if (use_length)
6574 {
6575 /* Append ",". */
6576 *p++ = ',';
6577
6578 /* Append <len>. Retain the location/size of <len>. It may need to
6579 be adjusted once the packet body has been created. */
6580 plen = p;
6581 plenlen = hexnumstr (p, (ULONGEST) todo);
6582 p += plenlen;
6583 }
6584
6585 /* Append ":". */
6586 *p++ = ':';
6587 *p = '\0';
6588
6589 /* Append the packet body. */
6590 if (packet_format == 'X')
6591 {
6592 /* Binary mode. Send target system values byte by byte, in
6593 increasing byte addresses. Only escape certain critical
6594 characters. */
6595 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6596 payload_size);
6597
6598 /* If not all TODO bytes fit, then we'll need another packet. Make
6599 a second try to keep the end of the packet aligned. Don't do
6600 this if the packet is tiny. */
6601 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6602 {
6603 int new_nr_bytes;
6604
6605 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6606 - memaddr);
6607 if (new_nr_bytes != nr_bytes)
6608 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6609 p, &nr_bytes,
6610 payload_size);
6611 }
6612
6613 p += payload_length;
6614 if (use_length && nr_bytes < todo)
6615 {
6616 /* Escape chars have filled up the buffer prematurely,
6617 and we have actually sent fewer bytes than planned.
6618 Fix-up the length field of the packet. Use the same
6619 number of characters as before. */
6620 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6621 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6622 }
6623 }
6624 else
6625 {
6626 /* Normal mode: Send target system values byte by byte, in
6627 increasing byte addresses. Each byte is encoded as a two hex
6628 value. */
6629 nr_bytes = bin2hex (myaddr, p, todo);
6630 p += 2 * nr_bytes;
6631 }
6632
6633 putpkt_binary (rs->buf, (int) (p - rs->buf));
6634 getpkt (&rs->buf, &rs->buf_size, 0);
6635
6636 if (rs->buf[0] == 'E')
6637 {
6638 /* There is no correspondance between what the remote protocol
6639 uses for errors and errno codes. We would like a cleaner way
6640 of representing errors (big enough to include errno codes,
6641 bfd_error codes, and others). But for now just return EIO. */
6642 errno = EIO;
6643 return 0;
6644 }
6645
6646 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6647 fewer bytes than we'd planned. */
6648 return nr_bytes;
6649 }
6650
6651 /* Write memory data directly to the remote machine.
6652 This does not inform the data cache; the data cache uses this.
6653 MEMADDR is the address in the remote memory space.
6654 MYADDR is the address of the buffer in our space.
6655 LEN is the number of bytes.
6656
6657 Returns number of bytes transferred, or 0 (setting errno) for
6658 error. Only transfer a single packet. */
6659
6660 static int
6661 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
6662 {
6663 char *packet_format = 0;
6664
6665 /* Check whether the target supports binary download. */
6666 check_binary_download (memaddr);
6667
6668 switch (remote_protocol_packets[PACKET_X].support)
6669 {
6670 case PACKET_ENABLE:
6671 packet_format = "X";
6672 break;
6673 case PACKET_DISABLE:
6674 packet_format = "M";
6675 break;
6676 case PACKET_SUPPORT_UNKNOWN:
6677 internal_error (__FILE__, __LINE__,
6678 _("remote_write_bytes: bad internal state"));
6679 default:
6680 internal_error (__FILE__, __LINE__, _("bad switch"));
6681 }
6682
6683 return remote_write_bytes_aux (packet_format,
6684 memaddr, myaddr, len, packet_format[0], 1);
6685 }
6686
6687 /* Read memory data directly from the remote machine.
6688 This does not use the data cache; the data cache uses this.
6689 MEMADDR is the address in the remote memory space.
6690 MYADDR is the address of the buffer in our space.
6691 LEN is the number of bytes.
6692
6693 Returns number of bytes transferred, or 0 for error. */
6694
6695 static int
6696 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6697 {
6698 struct remote_state *rs = get_remote_state ();
6699 int max_buf_size; /* Max size of packet output buffer. */
6700 char *p;
6701 int todo;
6702 int i;
6703
6704 if (len <= 0)
6705 return 0;
6706
6707 max_buf_size = get_memory_read_packet_size ();
6708 /* The packet buffer will be large enough for the payload;
6709 get_memory_packet_size ensures this. */
6710
6711 /* Number if bytes that will fit. */
6712 todo = min (len, max_buf_size / 2);
6713
6714 /* Construct "m"<memaddr>","<len>". */
6715 memaddr = remote_address_masked (memaddr);
6716 p = rs->buf;
6717 *p++ = 'm';
6718 p += hexnumstr (p, (ULONGEST) memaddr);
6719 *p++ = ',';
6720 p += hexnumstr (p, (ULONGEST) todo);
6721 *p = '\0';
6722 putpkt (rs->buf);
6723 getpkt (&rs->buf, &rs->buf_size, 0);
6724 if (rs->buf[0] == 'E'
6725 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6726 && rs->buf[3] == '\0')
6727 {
6728 /* There is no correspondance between what the remote protocol
6729 uses for errors and errno codes. We would like a cleaner way
6730 of representing errors (big enough to include errno codes,
6731 bfd_error codes, and others). But for now just return
6732 EIO. */
6733 errno = EIO;
6734 return 0;
6735 }
6736 /* Reply describes memory byte by byte, each byte encoded as two hex
6737 characters. */
6738 p = rs->buf;
6739 i = hex2bin (p, myaddr, todo);
6740 /* Return what we have. Let higher layers handle partial reads. */
6741 return i;
6742 }
6743 \f
6744
6745 /* Remote notification handler. */
6746
6747 static void
6748 handle_notification (char *buf)
6749 {
6750 if (strncmp (buf, "Stop:", 5) == 0)
6751 {
6752 if (pending_stop_reply)
6753 {
6754 /* We've already parsed the in-flight stop-reply, but the
6755 stub for some reason thought we didn't, possibly due to
6756 timeout on its side. Just ignore it. */
6757 if (remote_debug)
6758 fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6759 }
6760 else
6761 {
6762 struct cleanup *old_chain;
6763 struct stop_reply *reply = stop_reply_xmalloc ();
6764
6765 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6766
6767 remote_parse_stop_reply (buf + 5, reply);
6768
6769 discard_cleanups (old_chain);
6770
6771 /* Be careful to only set it after parsing, since an error
6772 may be thrown then. */
6773 pending_stop_reply = reply;
6774
6775 /* Notify the event loop there's a stop reply to acknowledge
6776 and that there may be more events to fetch. */
6777 mark_async_event_handler (remote_async_get_pending_events_token);
6778
6779 if (remote_debug)
6780 fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6781 }
6782 }
6783 else
6784 /* We ignore notifications we don't recognize, for compatibility
6785 with newer stubs. */
6786 ;
6787 }
6788
6789 \f
6790 /* Read or write LEN bytes from inferior memory at MEMADDR,
6791 transferring to or from debugger address BUFFER. Write to inferior
6792 if SHOULD_WRITE is nonzero. Returns length of data written or
6793 read; 0 for error. TARGET is unused. */
6794
6795 static int
6796 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6797 int should_write, struct mem_attrib *attrib,
6798 struct target_ops *target)
6799 {
6800 int res;
6801
6802 set_remote_traceframe ();
6803 set_general_thread (inferior_ptid);
6804
6805 if (should_write)
6806 res = remote_write_bytes (mem_addr, buffer, mem_len);
6807 else
6808 res = remote_read_bytes (mem_addr, buffer, mem_len);
6809
6810 return res;
6811 }
6812
6813 /* Sends a packet with content determined by the printf format string
6814 FORMAT and the remaining arguments, then gets the reply. Returns
6815 whether the packet was a success, a failure, or unknown. */
6816
6817 static enum packet_result
6818 remote_send_printf (const char *format, ...)
6819 {
6820 struct remote_state *rs = get_remote_state ();
6821 int max_size = get_remote_packet_size ();
6822 va_list ap;
6823
6824 va_start (ap, format);
6825
6826 rs->buf[0] = '\0';
6827 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6828 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
6829
6830 if (putpkt (rs->buf) < 0)
6831 error (_("Communication problem with target."));
6832
6833 rs->buf[0] = '\0';
6834 getpkt (&rs->buf, &rs->buf_size, 0);
6835
6836 return packet_check_result (rs->buf);
6837 }
6838
6839 static void
6840 restore_remote_timeout (void *p)
6841 {
6842 int value = *(int *)p;
6843
6844 remote_timeout = value;
6845 }
6846
6847 /* Flash writing can take quite some time. We'll set
6848 effectively infinite timeout for flash operations.
6849 In future, we'll need to decide on a better approach. */
6850 static const int remote_flash_timeout = 1000;
6851
6852 static void
6853 remote_flash_erase (struct target_ops *ops,
6854 ULONGEST address, LONGEST length)
6855 {
6856 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6857 int saved_remote_timeout = remote_timeout;
6858 enum packet_result ret;
6859 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6860 &saved_remote_timeout);
6861
6862 remote_timeout = remote_flash_timeout;
6863
6864 ret = remote_send_printf ("vFlashErase:%s,%s",
6865 phex (address, addr_size),
6866 phex (length, 4));
6867 switch (ret)
6868 {
6869 case PACKET_UNKNOWN:
6870 error (_("Remote target does not support flash erase"));
6871 case PACKET_ERROR:
6872 error (_("Error erasing flash with vFlashErase packet"));
6873 default:
6874 break;
6875 }
6876
6877 do_cleanups (back_to);
6878 }
6879
6880 static LONGEST
6881 remote_flash_write (struct target_ops *ops,
6882 ULONGEST address, LONGEST length,
6883 const gdb_byte *data)
6884 {
6885 int saved_remote_timeout = remote_timeout;
6886 int ret;
6887 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6888 &saved_remote_timeout);
6889
6890 remote_timeout = remote_flash_timeout;
6891 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6892 do_cleanups (back_to);
6893
6894 return ret;
6895 }
6896
6897 static void
6898 remote_flash_done (struct target_ops *ops)
6899 {
6900 int saved_remote_timeout = remote_timeout;
6901 int ret;
6902 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6903 &saved_remote_timeout);
6904
6905 remote_timeout = remote_flash_timeout;
6906 ret = remote_send_printf ("vFlashDone");
6907 do_cleanups (back_to);
6908
6909 switch (ret)
6910 {
6911 case PACKET_UNKNOWN:
6912 error (_("Remote target does not support vFlashDone"));
6913 case PACKET_ERROR:
6914 error (_("Error finishing flash operation"));
6915 default:
6916 break;
6917 }
6918 }
6919
6920 static void
6921 remote_files_info (struct target_ops *ignore)
6922 {
6923 puts_filtered ("Debugging a target over a serial line.\n");
6924 }
6925 \f
6926 /* Stuff for dealing with the packets which are part of this protocol.
6927 See comment at top of file for details. */
6928
6929 /* Read a single character from the remote end. */
6930
6931 static int
6932 readchar (int timeout)
6933 {
6934 int ch;
6935
6936 ch = serial_readchar (remote_desc, timeout);
6937
6938 if (ch >= 0)
6939 return ch;
6940
6941 switch ((enum serial_rc) ch)
6942 {
6943 case SERIAL_EOF:
6944 pop_target ();
6945 error (_("Remote connection closed"));
6946 /* no return */
6947 case SERIAL_ERROR:
6948 pop_target ();
6949 perror_with_name (_("Remote communication error. "
6950 "Target disconnected."));
6951 /* no return */
6952 case SERIAL_TIMEOUT:
6953 break;
6954 }
6955 return ch;
6956 }
6957
6958 /* Send the command in *BUF to the remote machine, and read the reply
6959 into *BUF. Report an error if we get an error reply. Resize
6960 *BUF using xrealloc if necessary to hold the result, and update
6961 *SIZEOF_BUF. */
6962
6963 static void
6964 remote_send (char **buf,
6965 long *sizeof_buf)
6966 {
6967 putpkt (*buf);
6968 getpkt (buf, sizeof_buf, 0);
6969
6970 if ((*buf)[0] == 'E')
6971 error (_("Remote failure reply: %s"), *buf);
6972 }
6973
6974 /* Return a pointer to an xmalloc'ed string representing an escaped
6975 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6976 etc. The caller is responsible for releasing the returned
6977 memory. */
6978
6979 static char *
6980 escape_buffer (const char *buf, int n)
6981 {
6982 struct cleanup *old_chain;
6983 struct ui_file *stb;
6984 char *str;
6985
6986 stb = mem_fileopen ();
6987 old_chain = make_cleanup_ui_file_delete (stb);
6988
6989 fputstrn_unfiltered (buf, n, 0, stb);
6990 str = ui_file_xstrdup (stb, NULL);
6991 do_cleanups (old_chain);
6992 return str;
6993 }
6994
6995 /* Display a null-terminated packet on stdout, for debugging, using C
6996 string notation. */
6997
6998 static void
6999 print_packet (char *buf)
7000 {
7001 puts_filtered ("\"");
7002 fputstr_filtered (buf, '"', gdb_stdout);
7003 puts_filtered ("\"");
7004 }
7005
7006 int
7007 putpkt (char *buf)
7008 {
7009 return putpkt_binary (buf, strlen (buf));
7010 }
7011
7012 /* Send a packet to the remote machine, with error checking. The data
7013 of the packet is in BUF. The string in BUF can be at most
7014 get_remote_packet_size () - 5 to account for the $, # and checksum,
7015 and for a possible /0 if we are debugging (remote_debug) and want
7016 to print the sent packet as a string. */
7017
7018 static int
7019 putpkt_binary (char *buf, int cnt)
7020 {
7021 struct remote_state *rs = get_remote_state ();
7022 int i;
7023 unsigned char csum = 0;
7024 char *buf2 = alloca (cnt + 6);
7025
7026 int ch;
7027 int tcount = 0;
7028 char *p;
7029 char *message;
7030
7031 /* Catch cases like trying to read memory or listing threads while
7032 we're waiting for a stop reply. The remote server wouldn't be
7033 ready to handle this request, so we'd hang and timeout. We don't
7034 have to worry about this in synchronous mode, because in that
7035 case it's not possible to issue a command while the target is
7036 running. This is not a problem in non-stop mode, because in that
7037 case, the stub is always ready to process serial input. */
7038 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
7039 error (_("Cannot execute this command while the target is running."));
7040
7041 /* We're sending out a new packet. Make sure we don't look at a
7042 stale cached response. */
7043 rs->cached_wait_status = 0;
7044
7045 /* Copy the packet into buffer BUF2, encapsulating it
7046 and giving it a checksum. */
7047
7048 p = buf2;
7049 *p++ = '$';
7050
7051 for (i = 0; i < cnt; i++)
7052 {
7053 csum += buf[i];
7054 *p++ = buf[i];
7055 }
7056 *p++ = '#';
7057 *p++ = tohex ((csum >> 4) & 0xf);
7058 *p++ = tohex (csum & 0xf);
7059
7060 /* Send it over and over until we get a positive ack. */
7061
7062 while (1)
7063 {
7064 int started_error_output = 0;
7065
7066 if (remote_debug)
7067 {
7068 struct cleanup *old_chain;
7069 char *str;
7070
7071 *p = '\0';
7072 str = escape_buffer (buf2, p - buf2);
7073 old_chain = make_cleanup (xfree, str);
7074 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
7075 gdb_flush (gdb_stdlog);
7076 do_cleanups (old_chain);
7077 }
7078 if (serial_write (remote_desc, buf2, p - buf2))
7079 perror_with_name (_("putpkt: write failed"));
7080
7081 /* If this is a no acks version of the remote protocol, send the
7082 packet and move on. */
7083 if (rs->noack_mode)
7084 break;
7085
7086 /* Read until either a timeout occurs (-2) or '+' is read.
7087 Handle any notification that arrives in the mean time. */
7088 while (1)
7089 {
7090 ch = readchar (remote_timeout);
7091
7092 if (remote_debug)
7093 {
7094 switch (ch)
7095 {
7096 case '+':
7097 case '-':
7098 case SERIAL_TIMEOUT:
7099 case '$':
7100 case '%':
7101 if (started_error_output)
7102 {
7103 putchar_unfiltered ('\n');
7104 started_error_output = 0;
7105 }
7106 }
7107 }
7108
7109 switch (ch)
7110 {
7111 case '+':
7112 if (remote_debug)
7113 fprintf_unfiltered (gdb_stdlog, "Ack\n");
7114 return 1;
7115 case '-':
7116 if (remote_debug)
7117 fprintf_unfiltered (gdb_stdlog, "Nak\n");
7118 /* FALLTHROUGH */
7119 case SERIAL_TIMEOUT:
7120 tcount++;
7121 if (tcount > 3)
7122 return 0;
7123 break; /* Retransmit buffer. */
7124 case '$':
7125 {
7126 if (remote_debug)
7127 fprintf_unfiltered (gdb_stdlog,
7128 "Packet instead of Ack, ignoring it\n");
7129 /* It's probably an old response sent because an ACK
7130 was lost. Gobble up the packet and ack it so it
7131 doesn't get retransmitted when we resend this
7132 packet. */
7133 skip_frame ();
7134 serial_write (remote_desc, "+", 1);
7135 continue; /* Now, go look for +. */
7136 }
7137
7138 case '%':
7139 {
7140 int val;
7141
7142 /* If we got a notification, handle it, and go back to looking
7143 for an ack. */
7144 /* We've found the start of a notification. Now
7145 collect the data. */
7146 val = read_frame (&rs->buf, &rs->buf_size);
7147 if (val >= 0)
7148 {
7149 if (remote_debug)
7150 {
7151 struct cleanup *old_chain;
7152 char *str;
7153
7154 str = escape_buffer (rs->buf, val);
7155 old_chain = make_cleanup (xfree, str);
7156 fprintf_unfiltered (gdb_stdlog,
7157 " Notification received: %s\n",
7158 str);
7159 do_cleanups (old_chain);
7160 }
7161 handle_notification (rs->buf);
7162 /* We're in sync now, rewait for the ack. */
7163 tcount = 0;
7164 }
7165 else
7166 {
7167 if (remote_debug)
7168 {
7169 if (!started_error_output)
7170 {
7171 started_error_output = 1;
7172 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7173 }
7174 fputc_unfiltered (ch & 0177, gdb_stdlog);
7175 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7176 }
7177 }
7178 continue;
7179 }
7180 /* fall-through */
7181 default:
7182 if (remote_debug)
7183 {
7184 if (!started_error_output)
7185 {
7186 started_error_output = 1;
7187 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7188 }
7189 fputc_unfiltered (ch & 0177, gdb_stdlog);
7190 }
7191 continue;
7192 }
7193 break; /* Here to retransmit. */
7194 }
7195
7196 #if 0
7197 /* This is wrong. If doing a long backtrace, the user should be
7198 able to get out next time we call QUIT, without anything as
7199 violent as interrupt_query. If we want to provide a way out of
7200 here without getting to the next QUIT, it should be based on
7201 hitting ^C twice as in remote_wait. */
7202 if (quit_flag)
7203 {
7204 quit_flag = 0;
7205 interrupt_query ();
7206 }
7207 #endif
7208 }
7209 return 0;
7210 }
7211
7212 /* Come here after finding the start of a frame when we expected an
7213 ack. Do our best to discard the rest of this packet. */
7214
7215 static void
7216 skip_frame (void)
7217 {
7218 int c;
7219
7220 while (1)
7221 {
7222 c = readchar (remote_timeout);
7223 switch (c)
7224 {
7225 case SERIAL_TIMEOUT:
7226 /* Nothing we can do. */
7227 return;
7228 case '#':
7229 /* Discard the two bytes of checksum and stop. */
7230 c = readchar (remote_timeout);
7231 if (c >= 0)
7232 c = readchar (remote_timeout);
7233
7234 return;
7235 case '*': /* Run length encoding. */
7236 /* Discard the repeat count. */
7237 c = readchar (remote_timeout);
7238 if (c < 0)
7239 return;
7240 break;
7241 default:
7242 /* A regular character. */
7243 break;
7244 }
7245 }
7246 }
7247
7248 /* Come here after finding the start of the frame. Collect the rest
7249 into *BUF, verifying the checksum, length, and handling run-length
7250 compression. NUL terminate the buffer. If there is not enough room,
7251 expand *BUF using xrealloc.
7252
7253 Returns -1 on error, number of characters in buffer (ignoring the
7254 trailing NULL) on success. (could be extended to return one of the
7255 SERIAL status indications). */
7256
7257 static long
7258 read_frame (char **buf_p,
7259 long *sizeof_buf)
7260 {
7261 unsigned char csum;
7262 long bc;
7263 int c;
7264 char *buf = *buf_p;
7265 struct remote_state *rs = get_remote_state ();
7266
7267 csum = 0;
7268 bc = 0;
7269
7270 while (1)
7271 {
7272 c = readchar (remote_timeout);
7273 switch (c)
7274 {
7275 case SERIAL_TIMEOUT:
7276 if (remote_debug)
7277 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7278 return -1;
7279 case '$':
7280 if (remote_debug)
7281 fputs_filtered ("Saw new packet start in middle of old one\n",
7282 gdb_stdlog);
7283 return -1; /* Start a new packet, count retries. */
7284 case '#':
7285 {
7286 unsigned char pktcsum;
7287 int check_0 = 0;
7288 int check_1 = 0;
7289
7290 buf[bc] = '\0';
7291
7292 check_0 = readchar (remote_timeout);
7293 if (check_0 >= 0)
7294 check_1 = readchar (remote_timeout);
7295
7296 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7297 {
7298 if (remote_debug)
7299 fputs_filtered ("Timeout in checksum, retrying\n",
7300 gdb_stdlog);
7301 return -1;
7302 }
7303 else if (check_0 < 0 || check_1 < 0)
7304 {
7305 if (remote_debug)
7306 fputs_filtered ("Communication error in checksum\n",
7307 gdb_stdlog);
7308 return -1;
7309 }
7310
7311 /* Don't recompute the checksum; with no ack packets we
7312 don't have any way to indicate a packet retransmission
7313 is necessary. */
7314 if (rs->noack_mode)
7315 return bc;
7316
7317 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7318 if (csum == pktcsum)
7319 return bc;
7320
7321 if (remote_debug)
7322 {
7323 struct cleanup *old_chain;
7324 char *str;
7325
7326 str = escape_buffer (buf, bc);
7327 old_chain = make_cleanup (xfree, str);
7328 fprintf_unfiltered (gdb_stdlog,
7329 "Bad checksum, sentsum=0x%x, "
7330 "csum=0x%x, buf=%s\n",
7331 pktcsum, csum, str);
7332 do_cleanups (old_chain);
7333 }
7334 /* Number of characters in buffer ignoring trailing
7335 NULL. */
7336 return -1;
7337 }
7338 case '*': /* Run length encoding. */
7339 {
7340 int repeat;
7341
7342 csum += c;
7343 c = readchar (remote_timeout);
7344 csum += c;
7345 repeat = c - ' ' + 3; /* Compute repeat count. */
7346
7347 /* The character before ``*'' is repeated. */
7348
7349 if (repeat > 0 && repeat <= 255 && bc > 0)
7350 {
7351 if (bc + repeat - 1 >= *sizeof_buf - 1)
7352 {
7353 /* Make some more room in the buffer. */
7354 *sizeof_buf += repeat;
7355 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7356 buf = *buf_p;
7357 }
7358
7359 memset (&buf[bc], buf[bc - 1], repeat);
7360 bc += repeat;
7361 continue;
7362 }
7363
7364 buf[bc] = '\0';
7365 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7366 return -1;
7367 }
7368 default:
7369 if (bc >= *sizeof_buf - 1)
7370 {
7371 /* Make some more room in the buffer. */
7372 *sizeof_buf *= 2;
7373 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7374 buf = *buf_p;
7375 }
7376
7377 buf[bc++] = c;
7378 csum += c;
7379 continue;
7380 }
7381 }
7382 }
7383
7384 /* Read a packet from the remote machine, with error checking, and
7385 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7386 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7387 rather than timing out; this is used (in synchronous mode) to wait
7388 for a target that is is executing user code to stop. */
7389 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7390 don't have to change all the calls to getpkt to deal with the
7391 return value, because at the moment I don't know what the right
7392 thing to do it for those. */
7393 void
7394 getpkt (char **buf,
7395 long *sizeof_buf,
7396 int forever)
7397 {
7398 int timed_out;
7399
7400 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7401 }
7402
7403
7404 /* Read a packet from the remote machine, with error checking, and
7405 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7406 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7407 rather than timing out; this is used (in synchronous mode) to wait
7408 for a target that is is executing user code to stop. If FOREVER ==
7409 0, this function is allowed to time out gracefully and return an
7410 indication of this to the caller. Otherwise return the number of
7411 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7412 enough reason to return to the caller. */
7413
7414 static int
7415 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7416 int expecting_notif)
7417 {
7418 struct remote_state *rs = get_remote_state ();
7419 int c;
7420 int tries;
7421 int timeout;
7422 int val = -1;
7423
7424 /* We're reading a new response. Make sure we don't look at a
7425 previously cached response. */
7426 rs->cached_wait_status = 0;
7427
7428 strcpy (*buf, "timeout");
7429
7430 if (forever)
7431 timeout = watchdog > 0 ? watchdog : -1;
7432 else if (expecting_notif)
7433 timeout = 0; /* There should already be a char in the buffer. If
7434 not, bail out. */
7435 else
7436 timeout = remote_timeout;
7437
7438 #define MAX_TRIES 3
7439
7440 /* Process any number of notifications, and then return when
7441 we get a packet. */
7442 for (;;)
7443 {
7444 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7445 times. */
7446 for (tries = 1; tries <= MAX_TRIES; tries++)
7447 {
7448 /* This can loop forever if the remote side sends us
7449 characters continuously, but if it pauses, we'll get
7450 SERIAL_TIMEOUT from readchar because of timeout. Then
7451 we'll count that as a retry.
7452
7453 Note that even when forever is set, we will only wait
7454 forever prior to the start of a packet. After that, we
7455 expect characters to arrive at a brisk pace. They should
7456 show up within remote_timeout intervals. */
7457 do
7458 c = readchar (timeout);
7459 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7460
7461 if (c == SERIAL_TIMEOUT)
7462 {
7463 if (expecting_notif)
7464 return -1; /* Don't complain, it's normal to not get
7465 anything in this case. */
7466
7467 if (forever) /* Watchdog went off? Kill the target. */
7468 {
7469 QUIT;
7470 pop_target ();
7471 error (_("Watchdog timeout has expired. Target detached."));
7472 }
7473 if (remote_debug)
7474 fputs_filtered ("Timed out.\n", gdb_stdlog);
7475 }
7476 else
7477 {
7478 /* We've found the start of a packet or notification.
7479 Now collect the data. */
7480 val = read_frame (buf, sizeof_buf);
7481 if (val >= 0)
7482 break;
7483 }
7484
7485 serial_write (remote_desc, "-", 1);
7486 }
7487
7488 if (tries > MAX_TRIES)
7489 {
7490 /* We have tried hard enough, and just can't receive the
7491 packet/notification. Give up. */
7492 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7493
7494 /* Skip the ack char if we're in no-ack mode. */
7495 if (!rs->noack_mode)
7496 serial_write (remote_desc, "+", 1);
7497 return -1;
7498 }
7499
7500 /* If we got an ordinary packet, return that to our caller. */
7501 if (c == '$')
7502 {
7503 if (remote_debug)
7504 {
7505 struct cleanup *old_chain;
7506 char *str;
7507
7508 str = escape_buffer (*buf, val);
7509 old_chain = make_cleanup (xfree, str);
7510 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7511 do_cleanups (old_chain);
7512 }
7513
7514 /* Skip the ack char if we're in no-ack mode. */
7515 if (!rs->noack_mode)
7516 serial_write (remote_desc, "+", 1);
7517 return val;
7518 }
7519
7520 /* If we got a notification, handle it, and go back to looking
7521 for a packet. */
7522 else
7523 {
7524 gdb_assert (c == '%');
7525
7526 if (remote_debug)
7527 {
7528 struct cleanup *old_chain;
7529 char *str;
7530
7531 str = escape_buffer (*buf, val);
7532 old_chain = make_cleanup (xfree, str);
7533 fprintf_unfiltered (gdb_stdlog,
7534 " Notification received: %s\n",
7535 str);
7536 do_cleanups (old_chain);
7537 }
7538
7539 handle_notification (*buf);
7540
7541 /* Notifications require no acknowledgement. */
7542
7543 if (expecting_notif)
7544 return -1;
7545 }
7546 }
7547 }
7548
7549 static int
7550 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7551 {
7552 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
7553 }
7554
7555 static int
7556 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
7557 {
7558 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
7559 }
7560
7561 \f
7562 /* A helper function that just calls putpkt; for type correctness. */
7563
7564 static int
7565 putpkt_for_catch_errors (void *arg)
7566 {
7567 return putpkt (arg);
7568 }
7569
7570 static void
7571 remote_kill (struct target_ops *ops)
7572 {
7573 /* Use catch_errors so the user can quit from gdb even when we
7574 aren't on speaking terms with the remote system. */
7575 catch_errors (putpkt_for_catch_errors, "k", "", RETURN_MASK_ERROR);
7576
7577 /* Don't wait for it to die. I'm not really sure it matters whether
7578 we do or not. For the existing stubs, kill is a noop. */
7579 target_mourn_inferior ();
7580 }
7581
7582 static int
7583 remote_vkill (int pid, struct remote_state *rs)
7584 {
7585 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7586 return -1;
7587
7588 /* Tell the remote target to detach. */
7589 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
7590 putpkt (rs->buf);
7591 getpkt (&rs->buf, &rs->buf_size, 0);
7592
7593 if (packet_ok (rs->buf,
7594 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7595 return 0;
7596 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7597 return -1;
7598 else
7599 return 1;
7600 }
7601
7602 static void
7603 extended_remote_kill (struct target_ops *ops)
7604 {
7605 int res;
7606 int pid = ptid_get_pid (inferior_ptid);
7607 struct remote_state *rs = get_remote_state ();
7608
7609 res = remote_vkill (pid, rs);
7610 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7611 {
7612 /* Don't try 'k' on a multi-process aware stub -- it has no way
7613 to specify the pid. */
7614
7615 putpkt ("k");
7616 #if 0
7617 getpkt (&rs->buf, &rs->buf_size, 0);
7618 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7619 res = 1;
7620 #else
7621 /* Don't wait for it to die. I'm not really sure it matters whether
7622 we do or not. For the existing stubs, kill is a noop. */
7623 res = 0;
7624 #endif
7625 }
7626
7627 if (res != 0)
7628 error (_("Can't kill process"));
7629
7630 target_mourn_inferior ();
7631 }
7632
7633 static void
7634 remote_mourn (struct target_ops *ops)
7635 {
7636 remote_mourn_1 (ops);
7637 }
7638
7639 /* Worker function for remote_mourn. */
7640 static void
7641 remote_mourn_1 (struct target_ops *target)
7642 {
7643 unpush_target (target);
7644
7645 /* remote_close takes care of doing most of the clean up. */
7646 generic_mourn_inferior ();
7647 }
7648
7649 static void
7650 extended_remote_mourn_1 (struct target_ops *target)
7651 {
7652 struct remote_state *rs = get_remote_state ();
7653
7654 /* In case we got here due to an error, but we're going to stay
7655 connected. */
7656 rs->waiting_for_stop_reply = 0;
7657
7658 /* We're no longer interested in these events. */
7659 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7660
7661 /* If the current general thread belonged to the process we just
7662 detached from or has exited, the remote side current general
7663 thread becomes undefined. Considering a case like this:
7664
7665 - We just got here due to a detach.
7666 - The process that we're detaching from happens to immediately
7667 report a global breakpoint being hit in non-stop mode, in the
7668 same thread we had selected before.
7669 - GDB attaches to this process again.
7670 - This event happens to be the next event we handle.
7671
7672 GDB would consider that the current general thread didn't need to
7673 be set on the stub side (with Hg), since for all it knew,
7674 GENERAL_THREAD hadn't changed.
7675
7676 Notice that although in all-stop mode, the remote server always
7677 sets the current thread to the thread reporting the stop event,
7678 that doesn't happen in non-stop mode; in non-stop, the stub *must
7679 not* change the current thread when reporting a breakpoint hit,
7680 due to the decoupling of event reporting and event handling.
7681
7682 To keep things simple, we always invalidate our notion of the
7683 current thread. */
7684 record_currthread (minus_one_ptid);
7685
7686 /* Unlike "target remote", we do not want to unpush the target; then
7687 the next time the user says "run", we won't be connected. */
7688
7689 /* Call common code to mark the inferior as not running. */
7690 generic_mourn_inferior ();
7691
7692 if (!have_inferiors ())
7693 {
7694 if (!remote_multi_process_p (rs))
7695 {
7696 /* Check whether the target is running now - some remote stubs
7697 automatically restart after kill. */
7698 putpkt ("?");
7699 getpkt (&rs->buf, &rs->buf_size, 0);
7700
7701 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7702 {
7703 /* Assume that the target has been restarted. Set
7704 inferior_ptid so that bits of core GDB realizes
7705 there's something here, e.g., so that the user can
7706 say "kill" again. */
7707 inferior_ptid = magic_null_ptid;
7708 }
7709 }
7710 }
7711 }
7712
7713 static void
7714 extended_remote_mourn (struct target_ops *ops)
7715 {
7716 extended_remote_mourn_1 (ops);
7717 }
7718
7719 static int
7720 extended_remote_supports_disable_randomization (void)
7721 {
7722 return (remote_protocol_packets[PACKET_QDisableRandomization].support
7723 == PACKET_ENABLE);
7724 }
7725
7726 static void
7727 extended_remote_disable_randomization (int val)
7728 {
7729 struct remote_state *rs = get_remote_state ();
7730 char *reply;
7731
7732 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
7733 val);
7734 putpkt (rs->buf);
7735 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
7736 if (*reply == '\0')
7737 error (_("Target does not support QDisableRandomization."));
7738 if (strcmp (reply, "OK") != 0)
7739 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
7740 }
7741
7742 static int
7743 extended_remote_run (char *args)
7744 {
7745 struct remote_state *rs = get_remote_state ();
7746 int len;
7747
7748 /* If the user has disabled vRun support, or we have detected that
7749 support is not available, do not try it. */
7750 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7751 return -1;
7752
7753 strcpy (rs->buf, "vRun;");
7754 len = strlen (rs->buf);
7755
7756 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7757 error (_("Remote file name too long for run packet"));
7758 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7759
7760 gdb_assert (args != NULL);
7761 if (*args)
7762 {
7763 struct cleanup *back_to;
7764 int i;
7765 char **argv;
7766
7767 argv = gdb_buildargv (args);
7768 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7769 for (i = 0; argv[i] != NULL; i++)
7770 {
7771 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7772 error (_("Argument list too long for run packet"));
7773 rs->buf[len++] = ';';
7774 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7775 }
7776 do_cleanups (back_to);
7777 }
7778
7779 rs->buf[len++] = '\0';
7780
7781 putpkt (rs->buf);
7782 getpkt (&rs->buf, &rs->buf_size, 0);
7783
7784 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7785 {
7786 /* We have a wait response; we don't need it, though. All is well. */
7787 return 0;
7788 }
7789 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7790 /* It wasn't disabled before, but it is now. */
7791 return -1;
7792 else
7793 {
7794 if (remote_exec_file[0] == '\0')
7795 error (_("Running the default executable on the remote target failed; "
7796 "try \"set remote exec-file\"?"));
7797 else
7798 error (_("Running \"%s\" on the remote target failed"),
7799 remote_exec_file);
7800 }
7801 }
7802
7803 /* In the extended protocol we want to be able to do things like
7804 "run" and have them basically work as expected. So we need
7805 a special create_inferior function. We support changing the
7806 executable file and the command line arguments, but not the
7807 environment. */
7808
7809 static void
7810 extended_remote_create_inferior_1 (char *exec_file, char *args,
7811 char **env, int from_tty)
7812 {
7813 /* If running asynchronously, register the target file descriptor
7814 with the event loop. */
7815 if (target_can_async_p ())
7816 target_async (inferior_event_handler, 0);
7817
7818 /* Disable address space randomization if requested (and supported). */
7819 if (extended_remote_supports_disable_randomization ())
7820 extended_remote_disable_randomization (disable_randomization);
7821
7822 /* Now restart the remote server. */
7823 if (extended_remote_run (args) == -1)
7824 {
7825 /* vRun was not supported. Fail if we need it to do what the
7826 user requested. */
7827 if (remote_exec_file[0])
7828 error (_("Remote target does not support \"set remote exec-file\""));
7829 if (args[0])
7830 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7831
7832 /* Fall back to "R". */
7833 extended_remote_restart ();
7834 }
7835
7836 if (!have_inferiors ())
7837 {
7838 /* Clean up from the last time we ran, before we mark the target
7839 running again. This will mark breakpoints uninserted, and
7840 get_offsets may insert breakpoints. */
7841 init_thread_list ();
7842 init_wait_for_inferior ();
7843 }
7844
7845 add_current_inferior_and_thread ();
7846
7847 /* Get updated offsets, if the stub uses qOffsets. */
7848 get_offsets ();
7849 }
7850
7851 static void
7852 extended_remote_create_inferior (struct target_ops *ops,
7853 char *exec_file, char *args,
7854 char **env, int from_tty)
7855 {
7856 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7857 }
7858 \f
7859
7860 /* Given a location's target info BP_TGT and the packet buffer BUF, output
7861 the list of conditions (in agent expression bytecode format), if any, the
7862 target needs to evaluate. The output is placed into the packet buffer
7863 started from BUF and ended at BUF_END. */
7864
7865 static int
7866 remote_add_target_side_condition (struct gdbarch *gdbarch,
7867 struct bp_target_info *bp_tgt, char *buf,
7868 char *buf_end)
7869 {
7870 struct agent_expr *aexpr = NULL;
7871 int i, ix;
7872 char *pkt;
7873 char *buf_start = buf;
7874
7875 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
7876 return 0;
7877
7878 buf += strlen (buf);
7879 xsnprintf (buf, buf_end - buf, "%s", ";");
7880 buf++;
7881
7882 /* Send conditions to the target and free the vector. */
7883 for (ix = 0;
7884 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
7885 ix++)
7886 {
7887 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
7888 buf += strlen (buf);
7889 for (i = 0; i < aexpr->len; ++i)
7890 buf = pack_hex_byte (buf, aexpr->buf[i]);
7891 *buf = '\0';
7892 }
7893
7894 VEC_free (agent_expr_p, bp_tgt->conditions);
7895 return 0;
7896 }
7897
7898 static void
7899 remote_add_target_side_commands (struct gdbarch *gdbarch,
7900 struct bp_target_info *bp_tgt, char *buf)
7901 {
7902 struct agent_expr *aexpr = NULL;
7903 int i, ix;
7904
7905 if (VEC_empty (agent_expr_p, bp_tgt->tcommands))
7906 return;
7907
7908 buf += strlen (buf);
7909
7910 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
7911 buf += strlen (buf);
7912
7913 /* Concatenate all the agent expressions that are commands into the
7914 cmds parameter. */
7915 for (ix = 0;
7916 VEC_iterate (agent_expr_p, bp_tgt->tcommands, ix, aexpr);
7917 ix++)
7918 {
7919 sprintf (buf, "X%x,", aexpr->len);
7920 buf += strlen (buf);
7921 for (i = 0; i < aexpr->len; ++i)
7922 buf = pack_hex_byte (buf, aexpr->buf[i]);
7923 *buf = '\0';
7924 }
7925
7926 VEC_free (agent_expr_p, bp_tgt->tcommands);
7927 }
7928
7929 /* Insert a breakpoint. On targets that have software breakpoint
7930 support, we ask the remote target to do the work; on targets
7931 which don't, we insert a traditional memory breakpoint. */
7932
7933 static int
7934 remote_insert_breakpoint (struct gdbarch *gdbarch,
7935 struct bp_target_info *bp_tgt)
7936 {
7937 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7938 If it succeeds, then set the support to PACKET_ENABLE. If it
7939 fails, and the user has explicitly requested the Z support then
7940 report an error, otherwise, mark it disabled and go on. */
7941
7942 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7943 {
7944 CORE_ADDR addr = bp_tgt->placed_address;
7945 struct remote_state *rs;
7946 char *p, *endbuf;
7947 int bpsize;
7948 struct condition_list *cond = NULL;
7949
7950 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7951
7952 rs = get_remote_state ();
7953 p = rs->buf;
7954 endbuf = rs->buf + get_remote_packet_size ();
7955
7956 *(p++) = 'Z';
7957 *(p++) = '0';
7958 *(p++) = ',';
7959 addr = (ULONGEST) remote_address_masked (addr);
7960 p += hexnumstr (p, addr);
7961 xsnprintf (p, endbuf - p, ",%d", bpsize);
7962
7963 if (remote_supports_cond_breakpoints ())
7964 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
7965
7966 if (remote_can_run_breakpoint_commands ())
7967 remote_add_target_side_commands (gdbarch, bp_tgt, p);
7968
7969 putpkt (rs->buf);
7970 getpkt (&rs->buf, &rs->buf_size, 0);
7971
7972 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7973 {
7974 case PACKET_ERROR:
7975 return -1;
7976 case PACKET_OK:
7977 bp_tgt->placed_address = addr;
7978 bp_tgt->placed_size = bpsize;
7979 return 0;
7980 case PACKET_UNKNOWN:
7981 break;
7982 }
7983 }
7984
7985 return memory_insert_breakpoint (gdbarch, bp_tgt);
7986 }
7987
7988 static int
7989 remote_remove_breakpoint (struct gdbarch *gdbarch,
7990 struct bp_target_info *bp_tgt)
7991 {
7992 CORE_ADDR addr = bp_tgt->placed_address;
7993 struct remote_state *rs = get_remote_state ();
7994
7995 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7996 {
7997 char *p = rs->buf;
7998 char *endbuf = rs->buf + get_remote_packet_size ();
7999
8000 *(p++) = 'z';
8001 *(p++) = '0';
8002 *(p++) = ',';
8003
8004 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
8005 p += hexnumstr (p, addr);
8006 xsnprintf (p, endbuf - p, ",%d", bp_tgt->placed_size);
8007
8008 putpkt (rs->buf);
8009 getpkt (&rs->buf, &rs->buf_size, 0);
8010
8011 return (rs->buf[0] == 'E');
8012 }
8013
8014 return memory_remove_breakpoint (gdbarch, bp_tgt);
8015 }
8016
8017 static int
8018 watchpoint_to_Z_packet (int type)
8019 {
8020 switch (type)
8021 {
8022 case hw_write:
8023 return Z_PACKET_WRITE_WP;
8024 break;
8025 case hw_read:
8026 return Z_PACKET_READ_WP;
8027 break;
8028 case hw_access:
8029 return Z_PACKET_ACCESS_WP;
8030 break;
8031 default:
8032 internal_error (__FILE__, __LINE__,
8033 _("hw_bp_to_z: bad watchpoint type %d"), type);
8034 }
8035 }
8036
8037 static int
8038 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
8039 struct expression *cond)
8040 {
8041 struct remote_state *rs = get_remote_state ();
8042 char *endbuf = rs->buf + get_remote_packet_size ();
8043 char *p;
8044 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8045
8046 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8047 return 1;
8048
8049 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
8050 p = strchr (rs->buf, '\0');
8051 addr = remote_address_masked (addr);
8052 p += hexnumstr (p, (ULONGEST) addr);
8053 xsnprintf (p, endbuf - p, ",%x", len);
8054
8055 putpkt (rs->buf);
8056 getpkt (&rs->buf, &rs->buf_size, 0);
8057
8058 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8059 {
8060 case PACKET_ERROR:
8061 return -1;
8062 case PACKET_UNKNOWN:
8063 return 1;
8064 case PACKET_OK:
8065 return 0;
8066 }
8067 internal_error (__FILE__, __LINE__,
8068 _("remote_insert_watchpoint: reached end of function"));
8069 }
8070
8071 static int
8072 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
8073 CORE_ADDR start, int length)
8074 {
8075 CORE_ADDR diff = remote_address_masked (addr - start);
8076
8077 return diff < length;
8078 }
8079
8080
8081 static int
8082 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
8083 struct expression *cond)
8084 {
8085 struct remote_state *rs = get_remote_state ();
8086 char *endbuf = rs->buf + get_remote_packet_size ();
8087 char *p;
8088 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8089
8090 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8091 return -1;
8092
8093 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
8094 p = strchr (rs->buf, '\0');
8095 addr = remote_address_masked (addr);
8096 p += hexnumstr (p, (ULONGEST) addr);
8097 xsnprintf (p, endbuf - p, ",%x", len);
8098 putpkt (rs->buf);
8099 getpkt (&rs->buf, &rs->buf_size, 0);
8100
8101 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8102 {
8103 case PACKET_ERROR:
8104 case PACKET_UNKNOWN:
8105 return -1;
8106 case PACKET_OK:
8107 return 0;
8108 }
8109 internal_error (__FILE__, __LINE__,
8110 _("remote_remove_watchpoint: reached end of function"));
8111 }
8112
8113
8114 int remote_hw_watchpoint_limit = -1;
8115 int remote_hw_watchpoint_length_limit = -1;
8116 int remote_hw_breakpoint_limit = -1;
8117
8118 static int
8119 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
8120 {
8121 if (remote_hw_watchpoint_length_limit == 0)
8122 return 0;
8123 else if (remote_hw_watchpoint_length_limit < 0)
8124 return 1;
8125 else if (len <= remote_hw_watchpoint_length_limit)
8126 return 1;
8127 else
8128 return 0;
8129 }
8130
8131 static int
8132 remote_check_watch_resources (int type, int cnt, int ot)
8133 {
8134 if (type == bp_hardware_breakpoint)
8135 {
8136 if (remote_hw_breakpoint_limit == 0)
8137 return 0;
8138 else if (remote_hw_breakpoint_limit < 0)
8139 return 1;
8140 else if (cnt <= remote_hw_breakpoint_limit)
8141 return 1;
8142 }
8143 else
8144 {
8145 if (remote_hw_watchpoint_limit == 0)
8146 return 0;
8147 else if (remote_hw_watchpoint_limit < 0)
8148 return 1;
8149 else if (ot)
8150 return -1;
8151 else if (cnt <= remote_hw_watchpoint_limit)
8152 return 1;
8153 }
8154 return -1;
8155 }
8156
8157 static int
8158 remote_stopped_by_watchpoint (void)
8159 {
8160 return remote_stopped_by_watchpoint_p;
8161 }
8162
8163 static int
8164 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
8165 {
8166 int rc = 0;
8167
8168 if (remote_stopped_by_watchpoint ())
8169 {
8170 *addr_p = remote_watch_data_address;
8171 rc = 1;
8172 }
8173
8174 return rc;
8175 }
8176
8177
8178 static int
8179 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
8180 struct bp_target_info *bp_tgt)
8181 {
8182 CORE_ADDR addr;
8183 struct remote_state *rs;
8184 char *p, *endbuf;
8185 char *message;
8186
8187 /* The length field should be set to the size of a breakpoint
8188 instruction, even though we aren't inserting one ourselves. */
8189
8190 gdbarch_remote_breakpoint_from_pc
8191 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
8192
8193 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8194 return -1;
8195
8196 rs = get_remote_state ();
8197 p = rs->buf;
8198 endbuf = rs->buf + get_remote_packet_size ();
8199
8200 *(p++) = 'Z';
8201 *(p++) = '1';
8202 *(p++) = ',';
8203
8204 addr = remote_address_masked (bp_tgt->placed_address);
8205 p += hexnumstr (p, (ULONGEST) addr);
8206 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8207
8208 if (remote_supports_cond_breakpoints ())
8209 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8210
8211 if (remote_can_run_breakpoint_commands ())
8212 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8213
8214 putpkt (rs->buf);
8215 getpkt (&rs->buf, &rs->buf_size, 0);
8216
8217 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8218 {
8219 case PACKET_ERROR:
8220 if (rs->buf[1] == '.')
8221 {
8222 message = strchr (rs->buf + 2, '.');
8223 if (message)
8224 error ("Remote failure reply: %s", message + 1);
8225 }
8226 return -1;
8227 case PACKET_UNKNOWN:
8228 return -1;
8229 case PACKET_OK:
8230 return 0;
8231 }
8232 internal_error (__FILE__, __LINE__,
8233 _("remote_insert_hw_breakpoint: reached end of function"));
8234 }
8235
8236
8237 static int
8238 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
8239 struct bp_target_info *bp_tgt)
8240 {
8241 CORE_ADDR addr;
8242 struct remote_state *rs = get_remote_state ();
8243 char *p = rs->buf;
8244 char *endbuf = rs->buf + get_remote_packet_size ();
8245
8246 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8247 return -1;
8248
8249 *(p++) = 'z';
8250 *(p++) = '1';
8251 *(p++) = ',';
8252
8253 addr = remote_address_masked (bp_tgt->placed_address);
8254 p += hexnumstr (p, (ULONGEST) addr);
8255 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8256
8257 putpkt (rs->buf);
8258 getpkt (&rs->buf, &rs->buf_size, 0);
8259
8260 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8261 {
8262 case PACKET_ERROR:
8263 case PACKET_UNKNOWN:
8264 return -1;
8265 case PACKET_OK:
8266 return 0;
8267 }
8268 internal_error (__FILE__, __LINE__,
8269 _("remote_remove_hw_breakpoint: reached end of function"));
8270 }
8271
8272 /* Table used by the crc32 function to calcuate the checksum. */
8273
8274 static unsigned long crc32_table[256] =
8275 {0, 0};
8276
8277 static unsigned long
8278 crc32 (const unsigned char *buf, int len, unsigned int crc)
8279 {
8280 if (!crc32_table[1])
8281 {
8282 /* Initialize the CRC table and the decoding table. */
8283 int i, j;
8284 unsigned int c;
8285
8286 for (i = 0; i < 256; i++)
8287 {
8288 for (c = i << 24, j = 8; j > 0; --j)
8289 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
8290 crc32_table[i] = c;
8291 }
8292 }
8293
8294 while (len--)
8295 {
8296 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
8297 buf++;
8298 }
8299 return crc;
8300 }
8301
8302 /* Verify memory using the "qCRC:" request. */
8303
8304 static int
8305 remote_verify_memory (struct target_ops *ops,
8306 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8307 {
8308 struct remote_state *rs = get_remote_state ();
8309 unsigned long host_crc, target_crc;
8310 char *tmp;
8311
8312 /* FIXME: assumes lma can fit into long. */
8313 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8314 (long) lma, (long) size);
8315 putpkt (rs->buf);
8316
8317 /* Be clever; compute the host_crc before waiting for target
8318 reply. */
8319 host_crc = crc32 (data, size, 0xffffffff);
8320
8321 getpkt (&rs->buf, &rs->buf_size, 0);
8322 if (rs->buf[0] == 'E')
8323 return -1;
8324
8325 if (rs->buf[0] != 'C')
8326 error (_("remote target does not support this operation"));
8327
8328 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8329 target_crc = target_crc * 16 + fromhex (*tmp);
8330
8331 return (host_crc == target_crc);
8332 }
8333
8334 /* compare-sections command
8335
8336 With no arguments, compares each loadable section in the exec bfd
8337 with the same memory range on the target, and reports mismatches.
8338 Useful for verifying the image on the target against the exec file. */
8339
8340 static void
8341 compare_sections_command (char *args, int from_tty)
8342 {
8343 asection *s;
8344 struct cleanup *old_chain;
8345 char *sectdata;
8346 const char *sectname;
8347 bfd_size_type size;
8348 bfd_vma lma;
8349 int matched = 0;
8350 int mismatched = 0;
8351 int res;
8352
8353 if (!exec_bfd)
8354 error (_("command cannot be used without an exec file"));
8355
8356 for (s = exec_bfd->sections; s; s = s->next)
8357 {
8358 if (!(s->flags & SEC_LOAD))
8359 continue; /* Skip non-loadable section. */
8360
8361 size = bfd_get_section_size (s);
8362 if (size == 0)
8363 continue; /* Skip zero-length section. */
8364
8365 sectname = bfd_get_section_name (exec_bfd, s);
8366 if (args && strcmp (args, sectname) != 0)
8367 continue; /* Not the section selected by user. */
8368
8369 matched = 1; /* Do this section. */
8370 lma = s->lma;
8371
8372 sectdata = xmalloc (size);
8373 old_chain = make_cleanup (xfree, sectdata);
8374 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8375
8376 res = target_verify_memory (sectdata, lma, size);
8377
8378 if (res == -1)
8379 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8380 paddress (target_gdbarch, lma),
8381 paddress (target_gdbarch, lma + size));
8382
8383 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8384 paddress (target_gdbarch, lma),
8385 paddress (target_gdbarch, lma + size));
8386 if (res)
8387 printf_filtered ("matched.\n");
8388 else
8389 {
8390 printf_filtered ("MIS-MATCHED!\n");
8391 mismatched++;
8392 }
8393
8394 do_cleanups (old_chain);
8395 }
8396 if (mismatched > 0)
8397 warning (_("One or more sections of the remote executable does not match\n\
8398 the loaded file\n"));
8399 if (args && !matched)
8400 printf_filtered (_("No loaded section named '%s'.\n"), args);
8401 }
8402
8403 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8404 into remote target. The number of bytes written to the remote
8405 target is returned, or -1 for error. */
8406
8407 static LONGEST
8408 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8409 const char *annex, const gdb_byte *writebuf,
8410 ULONGEST offset, LONGEST len,
8411 struct packet_config *packet)
8412 {
8413 int i, buf_len;
8414 ULONGEST n;
8415 struct remote_state *rs = get_remote_state ();
8416 int max_size = get_memory_write_packet_size ();
8417
8418 if (packet->support == PACKET_DISABLE)
8419 return -1;
8420
8421 /* Insert header. */
8422 i = snprintf (rs->buf, max_size,
8423 "qXfer:%s:write:%s:%s:",
8424 object_name, annex ? annex : "",
8425 phex_nz (offset, sizeof offset));
8426 max_size -= (i + 1);
8427
8428 /* Escape as much data as fits into rs->buf. */
8429 buf_len = remote_escape_output
8430 (writebuf, len, (rs->buf + i), &max_size, max_size);
8431
8432 if (putpkt_binary (rs->buf, i + buf_len) < 0
8433 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8434 || packet_ok (rs->buf, packet) != PACKET_OK)
8435 return -1;
8436
8437 unpack_varlen_hex (rs->buf, &n);
8438 return n;
8439 }
8440
8441 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8442 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8443 number of bytes read is returned, or 0 for EOF, or -1 for error.
8444 The number of bytes read may be less than LEN without indicating an
8445 EOF. PACKET is checked and updated to indicate whether the remote
8446 target supports this object. */
8447
8448 static LONGEST
8449 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8450 const char *annex,
8451 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8452 struct packet_config *packet)
8453 {
8454 static char *finished_object;
8455 static char *finished_annex;
8456 static ULONGEST finished_offset;
8457
8458 struct remote_state *rs = get_remote_state ();
8459 LONGEST i, n, packet_len;
8460
8461 if (packet->support == PACKET_DISABLE)
8462 return -1;
8463
8464 /* Check whether we've cached an end-of-object packet that matches
8465 this request. */
8466 if (finished_object)
8467 {
8468 if (strcmp (object_name, finished_object) == 0
8469 && strcmp (annex ? annex : "", finished_annex) == 0
8470 && offset == finished_offset)
8471 return 0;
8472
8473 /* Otherwise, we're now reading something different. Discard
8474 the cache. */
8475 xfree (finished_object);
8476 xfree (finished_annex);
8477 finished_object = NULL;
8478 finished_annex = NULL;
8479 }
8480
8481 /* Request only enough to fit in a single packet. The actual data
8482 may not, since we don't know how much of it will need to be escaped;
8483 the target is free to respond with slightly less data. We subtract
8484 five to account for the response type and the protocol frame. */
8485 n = min (get_remote_packet_size () - 5, len);
8486 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8487 object_name, annex ? annex : "",
8488 phex_nz (offset, sizeof offset),
8489 phex_nz (n, sizeof n));
8490 i = putpkt (rs->buf);
8491 if (i < 0)
8492 return -1;
8493
8494 rs->buf[0] = '\0';
8495 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8496 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8497 return -1;
8498
8499 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8500 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8501
8502 /* 'm' means there is (or at least might be) more data after this
8503 batch. That does not make sense unless there's at least one byte
8504 of data in this reply. */
8505 if (rs->buf[0] == 'm' && packet_len == 1)
8506 error (_("Remote qXfer reply contained no data."));
8507
8508 /* Got some data. */
8509 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8510
8511 /* 'l' is an EOF marker, possibly including a final block of data,
8512 or possibly empty. If we have the final block of a non-empty
8513 object, record this fact to bypass a subsequent partial read. */
8514 if (rs->buf[0] == 'l' && offset + i > 0)
8515 {
8516 finished_object = xstrdup (object_name);
8517 finished_annex = xstrdup (annex ? annex : "");
8518 finished_offset = offset + i;
8519 }
8520
8521 return i;
8522 }
8523
8524 static LONGEST
8525 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8526 const char *annex, gdb_byte *readbuf,
8527 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8528 {
8529 struct remote_state *rs;
8530 int i;
8531 char *p2;
8532 char query_type;
8533
8534 set_remote_traceframe ();
8535 set_general_thread (inferior_ptid);
8536
8537 rs = get_remote_state ();
8538
8539 /* Handle memory using the standard memory routines. */
8540 if (object == TARGET_OBJECT_MEMORY)
8541 {
8542 int xfered;
8543
8544 errno = 0;
8545
8546 /* If the remote target is connected but not running, we should
8547 pass this request down to a lower stratum (e.g. the executable
8548 file). */
8549 if (!target_has_execution)
8550 return 0;
8551
8552 if (writebuf != NULL)
8553 xfered = remote_write_bytes (offset, writebuf, len);
8554 else
8555 xfered = remote_read_bytes (offset, readbuf, len);
8556
8557 if (xfered > 0)
8558 return xfered;
8559 else if (xfered == 0 && errno == 0)
8560 return 0;
8561 else
8562 return -1;
8563 }
8564
8565 /* Handle SPU memory using qxfer packets. */
8566 if (object == TARGET_OBJECT_SPU)
8567 {
8568 if (readbuf)
8569 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8570 &remote_protocol_packets
8571 [PACKET_qXfer_spu_read]);
8572 else
8573 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8574 &remote_protocol_packets
8575 [PACKET_qXfer_spu_write]);
8576 }
8577
8578 /* Handle extra signal info using qxfer packets. */
8579 if (object == TARGET_OBJECT_SIGNAL_INFO)
8580 {
8581 if (readbuf)
8582 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8583 &remote_protocol_packets
8584 [PACKET_qXfer_siginfo_read]);
8585 else
8586 return remote_write_qxfer (ops, "siginfo", annex,
8587 writebuf, offset, len,
8588 &remote_protocol_packets
8589 [PACKET_qXfer_siginfo_write]);
8590 }
8591
8592 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8593 {
8594 if (readbuf)
8595 return remote_read_qxfer (ops, "statictrace", annex,
8596 readbuf, offset, len,
8597 &remote_protocol_packets
8598 [PACKET_qXfer_statictrace_read]);
8599 else
8600 return -1;
8601 }
8602
8603 /* Only handle flash writes. */
8604 if (writebuf != NULL)
8605 {
8606 LONGEST xfered;
8607
8608 switch (object)
8609 {
8610 case TARGET_OBJECT_FLASH:
8611 xfered = remote_flash_write (ops, offset, len, writebuf);
8612
8613 if (xfered > 0)
8614 return xfered;
8615 else if (xfered == 0 && errno == 0)
8616 return 0;
8617 else
8618 return -1;
8619
8620 default:
8621 return -1;
8622 }
8623 }
8624
8625 /* Map pre-existing objects onto letters. DO NOT do this for new
8626 objects!!! Instead specify new query packets. */
8627 switch (object)
8628 {
8629 case TARGET_OBJECT_AVR:
8630 query_type = 'R';
8631 break;
8632
8633 case TARGET_OBJECT_AUXV:
8634 gdb_assert (annex == NULL);
8635 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8636 &remote_protocol_packets[PACKET_qXfer_auxv]);
8637
8638 case TARGET_OBJECT_AVAILABLE_FEATURES:
8639 return remote_read_qxfer
8640 (ops, "features", annex, readbuf, offset, len,
8641 &remote_protocol_packets[PACKET_qXfer_features]);
8642
8643 case TARGET_OBJECT_LIBRARIES:
8644 return remote_read_qxfer
8645 (ops, "libraries", annex, readbuf, offset, len,
8646 &remote_protocol_packets[PACKET_qXfer_libraries]);
8647
8648 case TARGET_OBJECT_LIBRARIES_SVR4:
8649 return remote_read_qxfer
8650 (ops, "libraries-svr4", annex, readbuf, offset, len,
8651 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8652
8653 case TARGET_OBJECT_MEMORY_MAP:
8654 gdb_assert (annex == NULL);
8655 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8656 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8657
8658 case TARGET_OBJECT_OSDATA:
8659 /* Should only get here if we're connected. */
8660 gdb_assert (remote_desc);
8661 return remote_read_qxfer
8662 (ops, "osdata", annex, readbuf, offset, len,
8663 &remote_protocol_packets[PACKET_qXfer_osdata]);
8664
8665 case TARGET_OBJECT_THREADS:
8666 gdb_assert (annex == NULL);
8667 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8668 &remote_protocol_packets[PACKET_qXfer_threads]);
8669
8670 case TARGET_OBJECT_TRACEFRAME_INFO:
8671 gdb_assert (annex == NULL);
8672 return remote_read_qxfer
8673 (ops, "traceframe-info", annex, readbuf, offset, len,
8674 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8675
8676 case TARGET_OBJECT_FDPIC:
8677 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8678 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8679
8680 case TARGET_OBJECT_OPENVMS_UIB:
8681 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
8682 &remote_protocol_packets[PACKET_qXfer_uib]);
8683
8684 default:
8685 return -1;
8686 }
8687
8688 /* Note: a zero OFFSET and LEN can be used to query the minimum
8689 buffer size. */
8690 if (offset == 0 && len == 0)
8691 return (get_remote_packet_size ());
8692 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8693 large enough let the caller deal with it. */
8694 if (len < get_remote_packet_size ())
8695 return -1;
8696 len = get_remote_packet_size ();
8697
8698 /* Except for querying the minimum buffer size, target must be open. */
8699 if (!remote_desc)
8700 error (_("remote query is only available after target open"));
8701
8702 gdb_assert (annex != NULL);
8703 gdb_assert (readbuf != NULL);
8704
8705 p2 = rs->buf;
8706 *p2++ = 'q';
8707 *p2++ = query_type;
8708
8709 /* We used one buffer char for the remote protocol q command and
8710 another for the query type. As the remote protocol encapsulation
8711 uses 4 chars plus one extra in case we are debugging
8712 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8713 string. */
8714 i = 0;
8715 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8716 {
8717 /* Bad caller may have sent forbidden characters. */
8718 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8719 *p2++ = annex[i];
8720 i++;
8721 }
8722 *p2 = '\0';
8723 gdb_assert (annex[i] == '\0');
8724
8725 i = putpkt (rs->buf);
8726 if (i < 0)
8727 return i;
8728
8729 getpkt (&rs->buf, &rs->buf_size, 0);
8730 strcpy ((char *) readbuf, rs->buf);
8731
8732 return strlen ((char *) readbuf);
8733 }
8734
8735 static int
8736 remote_search_memory (struct target_ops* ops,
8737 CORE_ADDR start_addr, ULONGEST search_space_len,
8738 const gdb_byte *pattern, ULONGEST pattern_len,
8739 CORE_ADDR *found_addrp)
8740 {
8741 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
8742 struct remote_state *rs = get_remote_state ();
8743 int max_size = get_memory_write_packet_size ();
8744 struct packet_config *packet =
8745 &remote_protocol_packets[PACKET_qSearch_memory];
8746 /* Number of packet bytes used to encode the pattern;
8747 this could be more than PATTERN_LEN due to escape characters. */
8748 int escaped_pattern_len;
8749 /* Amount of pattern that was encodable in the packet. */
8750 int used_pattern_len;
8751 int i;
8752 int found;
8753 ULONGEST found_addr;
8754
8755 /* Don't go to the target if we don't have to.
8756 This is done before checking packet->support to avoid the possibility that
8757 a success for this edge case means the facility works in general. */
8758 if (pattern_len > search_space_len)
8759 return 0;
8760 if (pattern_len == 0)
8761 {
8762 *found_addrp = start_addr;
8763 return 1;
8764 }
8765
8766 /* If we already know the packet isn't supported, fall back to the simple
8767 way of searching memory. */
8768
8769 if (packet->support == PACKET_DISABLE)
8770 {
8771 /* Target doesn't provided special support, fall back and use the
8772 standard support (copy memory and do the search here). */
8773 return simple_search_memory (ops, start_addr, search_space_len,
8774 pattern, pattern_len, found_addrp);
8775 }
8776
8777 /* Insert header. */
8778 i = snprintf (rs->buf, max_size,
8779 "qSearch:memory:%s;%s;",
8780 phex_nz (start_addr, addr_size),
8781 phex_nz (search_space_len, sizeof (search_space_len)));
8782 max_size -= (i + 1);
8783
8784 /* Escape as much data as fits into rs->buf. */
8785 escaped_pattern_len =
8786 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8787 &used_pattern_len, max_size);
8788
8789 /* Bail if the pattern is too large. */
8790 if (used_pattern_len != pattern_len)
8791 error (_("Pattern is too large to transmit to remote target."));
8792
8793 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8794 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8795 || packet_ok (rs->buf, packet) != PACKET_OK)
8796 {
8797 /* The request may not have worked because the command is not
8798 supported. If so, fall back to the simple way. */
8799 if (packet->support == PACKET_DISABLE)
8800 {
8801 return simple_search_memory (ops, start_addr, search_space_len,
8802 pattern, pattern_len, found_addrp);
8803 }
8804 return -1;
8805 }
8806
8807 if (rs->buf[0] == '0')
8808 found = 0;
8809 else if (rs->buf[0] == '1')
8810 {
8811 found = 1;
8812 if (rs->buf[1] != ',')
8813 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8814 unpack_varlen_hex (rs->buf + 2, &found_addr);
8815 *found_addrp = found_addr;
8816 }
8817 else
8818 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8819
8820 return found;
8821 }
8822
8823 static void
8824 remote_rcmd (char *command,
8825 struct ui_file *outbuf)
8826 {
8827 struct remote_state *rs = get_remote_state ();
8828 char *p = rs->buf;
8829
8830 if (!remote_desc)
8831 error (_("remote rcmd is only available after target open"));
8832
8833 /* Send a NULL command across as an empty command. */
8834 if (command == NULL)
8835 command = "";
8836
8837 /* The query prefix. */
8838 strcpy (rs->buf, "qRcmd,");
8839 p = strchr (rs->buf, '\0');
8840
8841 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
8842 > get_remote_packet_size ())
8843 error (_("\"monitor\" command ``%s'' is too long."), command);
8844
8845 /* Encode the actual command. */
8846 bin2hex ((gdb_byte *) command, p, 0);
8847
8848 if (putpkt (rs->buf) < 0)
8849 error (_("Communication problem with target."));
8850
8851 /* get/display the response */
8852 while (1)
8853 {
8854 char *buf;
8855
8856 /* XXX - see also remote_get_noisy_reply(). */
8857 QUIT; /* Allow user to bail out with ^C. */
8858 rs->buf[0] = '\0';
8859 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
8860 {
8861 /* Timeout. Continue to (try to) read responses.
8862 This is better than stopping with an error, assuming the stub
8863 is still executing the (long) monitor command.
8864 If needed, the user can interrupt gdb using C-c, obtaining
8865 an effect similar to stop on timeout. */
8866 continue;
8867 }
8868 buf = rs->buf;
8869 if (buf[0] == '\0')
8870 error (_("Target does not support this command."));
8871 if (buf[0] == 'O' && buf[1] != 'K')
8872 {
8873 remote_console_output (buf + 1); /* 'O' message from stub. */
8874 continue;
8875 }
8876 if (strcmp (buf, "OK") == 0)
8877 break;
8878 if (strlen (buf) == 3 && buf[0] == 'E'
8879 && isdigit (buf[1]) && isdigit (buf[2]))
8880 {
8881 error (_("Protocol error with Rcmd"));
8882 }
8883 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8884 {
8885 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8886
8887 fputc_unfiltered (c, outbuf);
8888 }
8889 break;
8890 }
8891 }
8892
8893 static VEC(mem_region_s) *
8894 remote_memory_map (struct target_ops *ops)
8895 {
8896 VEC(mem_region_s) *result = NULL;
8897 char *text = target_read_stralloc (&current_target,
8898 TARGET_OBJECT_MEMORY_MAP, NULL);
8899
8900 if (text)
8901 {
8902 struct cleanup *back_to = make_cleanup (xfree, text);
8903
8904 result = parse_memory_map (text);
8905 do_cleanups (back_to);
8906 }
8907
8908 return result;
8909 }
8910
8911 static void
8912 packet_command (char *args, int from_tty)
8913 {
8914 struct remote_state *rs = get_remote_state ();
8915
8916 if (!remote_desc)
8917 error (_("command can only be used with remote target"));
8918
8919 if (!args)
8920 error (_("remote-packet command requires packet text as argument"));
8921
8922 puts_filtered ("sending: ");
8923 print_packet (args);
8924 puts_filtered ("\n");
8925 putpkt (args);
8926
8927 getpkt (&rs->buf, &rs->buf_size, 0);
8928 puts_filtered ("received: ");
8929 print_packet (rs->buf);
8930 puts_filtered ("\n");
8931 }
8932
8933 #if 0
8934 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8935
8936 static void display_thread_info (struct gdb_ext_thread_info *info);
8937
8938 static void threadset_test_cmd (char *cmd, int tty);
8939
8940 static void threadalive_test (char *cmd, int tty);
8941
8942 static void threadlist_test_cmd (char *cmd, int tty);
8943
8944 int get_and_display_threadinfo (threadref *ref);
8945
8946 static void threadinfo_test_cmd (char *cmd, int tty);
8947
8948 static int thread_display_step (threadref *ref, void *context);
8949
8950 static void threadlist_update_test_cmd (char *cmd, int tty);
8951
8952 static void init_remote_threadtests (void);
8953
8954 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8955
8956 static void
8957 threadset_test_cmd (char *cmd, int tty)
8958 {
8959 int sample_thread = SAMPLE_THREAD;
8960
8961 printf_filtered (_("Remote threadset test\n"));
8962 set_general_thread (sample_thread);
8963 }
8964
8965
8966 static void
8967 threadalive_test (char *cmd, int tty)
8968 {
8969 int sample_thread = SAMPLE_THREAD;
8970 int pid = ptid_get_pid (inferior_ptid);
8971 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8972
8973 if (remote_thread_alive (ptid))
8974 printf_filtered ("PASS: Thread alive test\n");
8975 else
8976 printf_filtered ("FAIL: Thread alive test\n");
8977 }
8978
8979 void output_threadid (char *title, threadref *ref);
8980
8981 void
8982 output_threadid (char *title, threadref *ref)
8983 {
8984 char hexid[20];
8985
8986 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8987 hexid[16] = 0;
8988 printf_filtered ("%s %s\n", title, (&hexid[0]));
8989 }
8990
8991 static void
8992 threadlist_test_cmd (char *cmd, int tty)
8993 {
8994 int startflag = 1;
8995 threadref nextthread;
8996 int done, result_count;
8997 threadref threadlist[3];
8998
8999 printf_filtered ("Remote Threadlist test\n");
9000 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
9001 &result_count, &threadlist[0]))
9002 printf_filtered ("FAIL: threadlist test\n");
9003 else
9004 {
9005 threadref *scan = threadlist;
9006 threadref *limit = scan + result_count;
9007
9008 while (scan < limit)
9009 output_threadid (" thread ", scan++);
9010 }
9011 }
9012
9013 void
9014 display_thread_info (struct gdb_ext_thread_info *info)
9015 {
9016 output_threadid ("Threadid: ", &info->threadid);
9017 printf_filtered ("Name: %s\n ", info->shortname);
9018 printf_filtered ("State: %s\n", info->display);
9019 printf_filtered ("other: %s\n\n", info->more_display);
9020 }
9021
9022 int
9023 get_and_display_threadinfo (threadref *ref)
9024 {
9025 int result;
9026 int set;
9027 struct gdb_ext_thread_info threadinfo;
9028
9029 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
9030 | TAG_MOREDISPLAY | TAG_DISPLAY;
9031 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
9032 display_thread_info (&threadinfo);
9033 return result;
9034 }
9035
9036 static void
9037 threadinfo_test_cmd (char *cmd, int tty)
9038 {
9039 int athread = SAMPLE_THREAD;
9040 threadref thread;
9041 int set;
9042
9043 int_to_threadref (&thread, athread);
9044 printf_filtered ("Remote Threadinfo test\n");
9045 if (!get_and_display_threadinfo (&thread))
9046 printf_filtered ("FAIL cannot get thread info\n");
9047 }
9048
9049 static int
9050 thread_display_step (threadref *ref, void *context)
9051 {
9052 /* output_threadid(" threadstep ",ref); *//* simple test */
9053 return get_and_display_threadinfo (ref);
9054 }
9055
9056 static void
9057 threadlist_update_test_cmd (char *cmd, int tty)
9058 {
9059 printf_filtered ("Remote Threadlist update test\n");
9060 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
9061 }
9062
9063 static void
9064 init_remote_threadtests (void)
9065 {
9066 add_com ("tlist", class_obscure, threadlist_test_cmd,
9067 _("Fetch and print the remote list of "
9068 "thread identifiers, one pkt only"));
9069 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
9070 _("Fetch and display info about one thread"));
9071 add_com ("tset", class_obscure, threadset_test_cmd,
9072 _("Test setting to a different thread"));
9073 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
9074 _("Iterate through updating all remote thread info"));
9075 add_com ("talive", class_obscure, threadalive_test,
9076 _(" Remote thread alive test "));
9077 }
9078
9079 #endif /* 0 */
9080
9081 /* Convert a thread ID to a string. Returns the string in a static
9082 buffer. */
9083
9084 static char *
9085 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
9086 {
9087 static char buf[64];
9088 struct remote_state *rs = get_remote_state ();
9089
9090 if (ptid_equal (ptid, null_ptid))
9091 return normal_pid_to_str (ptid);
9092 else if (ptid_is_pid (ptid))
9093 {
9094 /* Printing an inferior target id. */
9095
9096 /* When multi-process extensions are off, there's no way in the
9097 remote protocol to know the remote process id, if there's any
9098 at all. There's one exception --- when we're connected with
9099 target extended-remote, and we manually attached to a process
9100 with "attach PID". We don't record anywhere a flag that
9101 allows us to distinguish that case from the case of
9102 connecting with extended-remote and the stub already being
9103 attached to a process, and reporting yes to qAttached, hence
9104 no smart special casing here. */
9105 if (!remote_multi_process_p (rs))
9106 {
9107 xsnprintf (buf, sizeof buf, "Remote target");
9108 return buf;
9109 }
9110
9111 return normal_pid_to_str (ptid);
9112 }
9113 else
9114 {
9115 if (ptid_equal (magic_null_ptid, ptid))
9116 xsnprintf (buf, sizeof buf, "Thread <main>");
9117 else if (rs->extended && remote_multi_process_p (rs))
9118 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
9119 ptid_get_pid (ptid), ptid_get_tid (ptid));
9120 else
9121 xsnprintf (buf, sizeof buf, "Thread %ld",
9122 ptid_get_tid (ptid));
9123 return buf;
9124 }
9125 }
9126
9127 /* Get the address of the thread local variable in OBJFILE which is
9128 stored at OFFSET within the thread local storage for thread PTID. */
9129
9130 static CORE_ADDR
9131 remote_get_thread_local_address (struct target_ops *ops,
9132 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
9133 {
9134 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
9135 {
9136 struct remote_state *rs = get_remote_state ();
9137 char *p = rs->buf;
9138 char *endp = rs->buf + get_remote_packet_size ();
9139 enum packet_result result;
9140
9141 strcpy (p, "qGetTLSAddr:");
9142 p += strlen (p);
9143 p = write_ptid (p, endp, ptid);
9144 *p++ = ',';
9145 p += hexnumstr (p, offset);
9146 *p++ = ',';
9147 p += hexnumstr (p, lm);
9148 *p++ = '\0';
9149
9150 putpkt (rs->buf);
9151 getpkt (&rs->buf, &rs->buf_size, 0);
9152 result = packet_ok (rs->buf,
9153 &remote_protocol_packets[PACKET_qGetTLSAddr]);
9154 if (result == PACKET_OK)
9155 {
9156 ULONGEST result;
9157
9158 unpack_varlen_hex (rs->buf, &result);
9159 return result;
9160 }
9161 else if (result == PACKET_UNKNOWN)
9162 throw_error (TLS_GENERIC_ERROR,
9163 _("Remote target doesn't support qGetTLSAddr packet"));
9164 else
9165 throw_error (TLS_GENERIC_ERROR,
9166 _("Remote target failed to process qGetTLSAddr request"));
9167 }
9168 else
9169 throw_error (TLS_GENERIC_ERROR,
9170 _("TLS not supported or disabled on this target"));
9171 /* Not reached. */
9172 return 0;
9173 }
9174
9175 /* Provide thread local base, i.e. Thread Information Block address.
9176 Returns 1 if ptid is found and thread_local_base is non zero. */
9177
9178 static int
9179 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
9180 {
9181 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
9182 {
9183 struct remote_state *rs = get_remote_state ();
9184 char *p = rs->buf;
9185 char *endp = rs->buf + get_remote_packet_size ();
9186 enum packet_result result;
9187
9188 strcpy (p, "qGetTIBAddr:");
9189 p += strlen (p);
9190 p = write_ptid (p, endp, ptid);
9191 *p++ = '\0';
9192
9193 putpkt (rs->buf);
9194 getpkt (&rs->buf, &rs->buf_size, 0);
9195 result = packet_ok (rs->buf,
9196 &remote_protocol_packets[PACKET_qGetTIBAddr]);
9197 if (result == PACKET_OK)
9198 {
9199 ULONGEST result;
9200
9201 unpack_varlen_hex (rs->buf, &result);
9202 if (addr)
9203 *addr = (CORE_ADDR) result;
9204 return 1;
9205 }
9206 else if (result == PACKET_UNKNOWN)
9207 error (_("Remote target doesn't support qGetTIBAddr packet"));
9208 else
9209 error (_("Remote target failed to process qGetTIBAddr request"));
9210 }
9211 else
9212 error (_("qGetTIBAddr not supported or disabled on this target"));
9213 /* Not reached. */
9214 return 0;
9215 }
9216
9217 /* Support for inferring a target description based on the current
9218 architecture and the size of a 'g' packet. While the 'g' packet
9219 can have any size (since optional registers can be left off the
9220 end), some sizes are easily recognizable given knowledge of the
9221 approximate architecture. */
9222
9223 struct remote_g_packet_guess
9224 {
9225 int bytes;
9226 const struct target_desc *tdesc;
9227 };
9228 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
9229 DEF_VEC_O(remote_g_packet_guess_s);
9230
9231 struct remote_g_packet_data
9232 {
9233 VEC(remote_g_packet_guess_s) *guesses;
9234 };
9235
9236 static struct gdbarch_data *remote_g_packet_data_handle;
9237
9238 static void *
9239 remote_g_packet_data_init (struct obstack *obstack)
9240 {
9241 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
9242 }
9243
9244 void
9245 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
9246 const struct target_desc *tdesc)
9247 {
9248 struct remote_g_packet_data *data
9249 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
9250 struct remote_g_packet_guess new_guess, *guess;
9251 int ix;
9252
9253 gdb_assert (tdesc != NULL);
9254
9255 for (ix = 0;
9256 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9257 ix++)
9258 if (guess->bytes == bytes)
9259 internal_error (__FILE__, __LINE__,
9260 _("Duplicate g packet description added for size %d"),
9261 bytes);
9262
9263 new_guess.bytes = bytes;
9264 new_guess.tdesc = tdesc;
9265 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
9266 }
9267
9268 /* Return 1 if remote_read_description would do anything on this target
9269 and architecture, 0 otherwise. */
9270
9271 static int
9272 remote_read_description_p (struct target_ops *target)
9273 {
9274 struct remote_g_packet_data *data
9275 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
9276
9277 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9278 return 1;
9279
9280 return 0;
9281 }
9282
9283 static const struct target_desc *
9284 remote_read_description (struct target_ops *target)
9285 {
9286 struct remote_g_packet_data *data
9287 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
9288
9289 /* Do not try this during initial connection, when we do not know
9290 whether there is a running but stopped thread. */
9291 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9292 return NULL;
9293
9294 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9295 {
9296 struct remote_g_packet_guess *guess;
9297 int ix;
9298 int bytes = send_g_packet ();
9299
9300 for (ix = 0;
9301 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9302 ix++)
9303 if (guess->bytes == bytes)
9304 return guess->tdesc;
9305
9306 /* We discard the g packet. A minor optimization would be to
9307 hold on to it, and fill the register cache once we have selected
9308 an architecture, but it's too tricky to do safely. */
9309 }
9310
9311 return NULL;
9312 }
9313
9314 /* Remote file transfer support. This is host-initiated I/O, not
9315 target-initiated; for target-initiated, see remote-fileio.c. */
9316
9317 /* If *LEFT is at least the length of STRING, copy STRING to
9318 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9319 decrease *LEFT. Otherwise raise an error. */
9320
9321 static void
9322 remote_buffer_add_string (char **buffer, int *left, char *string)
9323 {
9324 int len = strlen (string);
9325
9326 if (len > *left)
9327 error (_("Packet too long for target."));
9328
9329 memcpy (*buffer, string, len);
9330 *buffer += len;
9331 *left -= len;
9332
9333 /* NUL-terminate the buffer as a convenience, if there is
9334 room. */
9335 if (*left)
9336 **buffer = '\0';
9337 }
9338
9339 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9340 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9341 decrease *LEFT. Otherwise raise an error. */
9342
9343 static void
9344 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9345 int len)
9346 {
9347 if (2 * len > *left)
9348 error (_("Packet too long for target."));
9349
9350 bin2hex (bytes, *buffer, len);
9351 *buffer += 2 * len;
9352 *left -= 2 * len;
9353
9354 /* NUL-terminate the buffer as a convenience, if there is
9355 room. */
9356 if (*left)
9357 **buffer = '\0';
9358 }
9359
9360 /* If *LEFT is large enough, convert VALUE to hex and add it to
9361 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9362 decrease *LEFT. Otherwise raise an error. */
9363
9364 static void
9365 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9366 {
9367 int len = hexnumlen (value);
9368
9369 if (len > *left)
9370 error (_("Packet too long for target."));
9371
9372 hexnumstr (*buffer, value);
9373 *buffer += len;
9374 *left -= len;
9375
9376 /* NUL-terminate the buffer as a convenience, if there is
9377 room. */
9378 if (*left)
9379 **buffer = '\0';
9380 }
9381
9382 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9383 value, *REMOTE_ERRNO to the remote error number or zero if none
9384 was included, and *ATTACHMENT to point to the start of the annex
9385 if any. The length of the packet isn't needed here; there may
9386 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9387
9388 Return 0 if the packet could be parsed, -1 if it could not. If
9389 -1 is returned, the other variables may not be initialized. */
9390
9391 static int
9392 remote_hostio_parse_result (char *buffer, int *retcode,
9393 int *remote_errno, char **attachment)
9394 {
9395 char *p, *p2;
9396
9397 *remote_errno = 0;
9398 *attachment = NULL;
9399
9400 if (buffer[0] != 'F')
9401 return -1;
9402
9403 errno = 0;
9404 *retcode = strtol (&buffer[1], &p, 16);
9405 if (errno != 0 || p == &buffer[1])
9406 return -1;
9407
9408 /* Check for ",errno". */
9409 if (*p == ',')
9410 {
9411 errno = 0;
9412 *remote_errno = strtol (p + 1, &p2, 16);
9413 if (errno != 0 || p + 1 == p2)
9414 return -1;
9415 p = p2;
9416 }
9417
9418 /* Check for ";attachment". If there is no attachment, the
9419 packet should end here. */
9420 if (*p == ';')
9421 {
9422 *attachment = p + 1;
9423 return 0;
9424 }
9425 else if (*p == '\0')
9426 return 0;
9427 else
9428 return -1;
9429 }
9430
9431 /* Send a prepared I/O packet to the target and read its response.
9432 The prepared packet is in the global RS->BUF before this function
9433 is called, and the answer is there when we return.
9434
9435 COMMAND_BYTES is the length of the request to send, which may include
9436 binary data. WHICH_PACKET is the packet configuration to check
9437 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9438 is set to the error number and -1 is returned. Otherwise the value
9439 returned by the function is returned.
9440
9441 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9442 attachment is expected; an error will be reported if there's a
9443 mismatch. If one is found, *ATTACHMENT will be set to point into
9444 the packet buffer and *ATTACHMENT_LEN will be set to the
9445 attachment's length. */
9446
9447 static int
9448 remote_hostio_send_command (int command_bytes, int which_packet,
9449 int *remote_errno, char **attachment,
9450 int *attachment_len)
9451 {
9452 struct remote_state *rs = get_remote_state ();
9453 int ret, bytes_read;
9454 char *attachment_tmp;
9455
9456 if (!remote_desc
9457 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9458 {
9459 *remote_errno = FILEIO_ENOSYS;
9460 return -1;
9461 }
9462
9463 putpkt_binary (rs->buf, command_bytes);
9464 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9465
9466 /* If it timed out, something is wrong. Don't try to parse the
9467 buffer. */
9468 if (bytes_read < 0)
9469 {
9470 *remote_errno = FILEIO_EINVAL;
9471 return -1;
9472 }
9473
9474 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9475 {
9476 case PACKET_ERROR:
9477 *remote_errno = FILEIO_EINVAL;
9478 return -1;
9479 case PACKET_UNKNOWN:
9480 *remote_errno = FILEIO_ENOSYS;
9481 return -1;
9482 case PACKET_OK:
9483 break;
9484 }
9485
9486 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9487 &attachment_tmp))
9488 {
9489 *remote_errno = FILEIO_EINVAL;
9490 return -1;
9491 }
9492
9493 /* Make sure we saw an attachment if and only if we expected one. */
9494 if ((attachment_tmp == NULL && attachment != NULL)
9495 || (attachment_tmp != NULL && attachment == NULL))
9496 {
9497 *remote_errno = FILEIO_EINVAL;
9498 return -1;
9499 }
9500
9501 /* If an attachment was found, it must point into the packet buffer;
9502 work out how many bytes there were. */
9503 if (attachment_tmp != NULL)
9504 {
9505 *attachment = attachment_tmp;
9506 *attachment_len = bytes_read - (*attachment - rs->buf);
9507 }
9508
9509 return ret;
9510 }
9511
9512 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9513 remote file descriptor, or -1 if an error occurs (and set
9514 *REMOTE_ERRNO). */
9515
9516 static int
9517 remote_hostio_open (const char *filename, int flags, int mode,
9518 int *remote_errno)
9519 {
9520 struct remote_state *rs = get_remote_state ();
9521 char *p = rs->buf;
9522 int left = get_remote_packet_size () - 1;
9523
9524 remote_buffer_add_string (&p, &left, "vFile:open:");
9525
9526 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9527 strlen (filename));
9528 remote_buffer_add_string (&p, &left, ",");
9529
9530 remote_buffer_add_int (&p, &left, flags);
9531 remote_buffer_add_string (&p, &left, ",");
9532
9533 remote_buffer_add_int (&p, &left, mode);
9534
9535 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9536 remote_errno, NULL, NULL);
9537 }
9538
9539 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9540 Return the number of bytes written, or -1 if an error occurs (and
9541 set *REMOTE_ERRNO). */
9542
9543 static int
9544 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9545 ULONGEST offset, int *remote_errno)
9546 {
9547 struct remote_state *rs = get_remote_state ();
9548 char *p = rs->buf;
9549 int left = get_remote_packet_size ();
9550 int out_len;
9551
9552 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9553
9554 remote_buffer_add_int (&p, &left, fd);
9555 remote_buffer_add_string (&p, &left, ",");
9556
9557 remote_buffer_add_int (&p, &left, offset);
9558 remote_buffer_add_string (&p, &left, ",");
9559
9560 p += remote_escape_output (write_buf, len, p, &out_len,
9561 get_remote_packet_size () - (p - rs->buf));
9562
9563 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9564 remote_errno, NULL, NULL);
9565 }
9566
9567 /* Read up to LEN bytes FD on the remote target into READ_BUF
9568 Return the number of bytes read, or -1 if an error occurs (and
9569 set *REMOTE_ERRNO). */
9570
9571 static int
9572 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9573 ULONGEST offset, int *remote_errno)
9574 {
9575 struct remote_state *rs = get_remote_state ();
9576 char *p = rs->buf;
9577 char *attachment;
9578 int left = get_remote_packet_size ();
9579 int ret, attachment_len;
9580 int read_len;
9581
9582 remote_buffer_add_string (&p, &left, "vFile:pread:");
9583
9584 remote_buffer_add_int (&p, &left, fd);
9585 remote_buffer_add_string (&p, &left, ",");
9586
9587 remote_buffer_add_int (&p, &left, len);
9588 remote_buffer_add_string (&p, &left, ",");
9589
9590 remote_buffer_add_int (&p, &left, offset);
9591
9592 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9593 remote_errno, &attachment,
9594 &attachment_len);
9595
9596 if (ret < 0)
9597 return ret;
9598
9599 read_len = remote_unescape_input (attachment, attachment_len,
9600 read_buf, len);
9601 if (read_len != ret)
9602 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9603
9604 return ret;
9605 }
9606
9607 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9608 (and set *REMOTE_ERRNO). */
9609
9610 static int
9611 remote_hostio_close (int fd, int *remote_errno)
9612 {
9613 struct remote_state *rs = get_remote_state ();
9614 char *p = rs->buf;
9615 int left = get_remote_packet_size () - 1;
9616
9617 remote_buffer_add_string (&p, &left, "vFile:close:");
9618
9619 remote_buffer_add_int (&p, &left, fd);
9620
9621 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9622 remote_errno, NULL, NULL);
9623 }
9624
9625 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9626 occurs (and set *REMOTE_ERRNO). */
9627
9628 static int
9629 remote_hostio_unlink (const char *filename, int *remote_errno)
9630 {
9631 struct remote_state *rs = get_remote_state ();
9632 char *p = rs->buf;
9633 int left = get_remote_packet_size () - 1;
9634
9635 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9636
9637 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9638 strlen (filename));
9639
9640 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9641 remote_errno, NULL, NULL);
9642 }
9643
9644 /* Read value of symbolic link FILENAME on the remote target. Return
9645 a null-terminated string allocated via xmalloc, or NULL if an error
9646 occurs (and set *REMOTE_ERRNO). */
9647
9648 static char *
9649 remote_hostio_readlink (const char *filename, int *remote_errno)
9650 {
9651 struct remote_state *rs = get_remote_state ();
9652 char *p = rs->buf;
9653 char *attachment;
9654 int left = get_remote_packet_size ();
9655 int len, attachment_len;
9656 int read_len;
9657 char *ret;
9658
9659 remote_buffer_add_string (&p, &left, "vFile:readlink:");
9660
9661 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9662 strlen (filename));
9663
9664 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
9665 remote_errno, &attachment,
9666 &attachment_len);
9667
9668 if (len < 0)
9669 return NULL;
9670
9671 ret = xmalloc (len + 1);
9672
9673 read_len = remote_unescape_input (attachment, attachment_len,
9674 ret, len);
9675 if (read_len != len)
9676 error (_("Readlink returned %d, but %d bytes."), len, read_len);
9677
9678 ret[len] = '\0';
9679 return ret;
9680 }
9681
9682 static int
9683 remote_fileio_errno_to_host (int errnum)
9684 {
9685 switch (errnum)
9686 {
9687 case FILEIO_EPERM:
9688 return EPERM;
9689 case FILEIO_ENOENT:
9690 return ENOENT;
9691 case FILEIO_EINTR:
9692 return EINTR;
9693 case FILEIO_EIO:
9694 return EIO;
9695 case FILEIO_EBADF:
9696 return EBADF;
9697 case FILEIO_EACCES:
9698 return EACCES;
9699 case FILEIO_EFAULT:
9700 return EFAULT;
9701 case FILEIO_EBUSY:
9702 return EBUSY;
9703 case FILEIO_EEXIST:
9704 return EEXIST;
9705 case FILEIO_ENODEV:
9706 return ENODEV;
9707 case FILEIO_ENOTDIR:
9708 return ENOTDIR;
9709 case FILEIO_EISDIR:
9710 return EISDIR;
9711 case FILEIO_EINVAL:
9712 return EINVAL;
9713 case FILEIO_ENFILE:
9714 return ENFILE;
9715 case FILEIO_EMFILE:
9716 return EMFILE;
9717 case FILEIO_EFBIG:
9718 return EFBIG;
9719 case FILEIO_ENOSPC:
9720 return ENOSPC;
9721 case FILEIO_ESPIPE:
9722 return ESPIPE;
9723 case FILEIO_EROFS:
9724 return EROFS;
9725 case FILEIO_ENOSYS:
9726 return ENOSYS;
9727 case FILEIO_ENAMETOOLONG:
9728 return ENAMETOOLONG;
9729 }
9730 return -1;
9731 }
9732
9733 static char *
9734 remote_hostio_error (int errnum)
9735 {
9736 int host_error = remote_fileio_errno_to_host (errnum);
9737
9738 if (host_error == -1)
9739 error (_("Unknown remote I/O error %d"), errnum);
9740 else
9741 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9742 }
9743
9744 static void
9745 remote_hostio_close_cleanup (void *opaque)
9746 {
9747 int fd = *(int *) opaque;
9748 int remote_errno;
9749
9750 remote_hostio_close (fd, &remote_errno);
9751 }
9752
9753
9754 static void *
9755 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9756 {
9757 const char *filename = bfd_get_filename (abfd);
9758 int fd, remote_errno;
9759 int *stream;
9760
9761 gdb_assert (remote_filename_p (filename));
9762
9763 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9764 if (fd == -1)
9765 {
9766 errno = remote_fileio_errno_to_host (remote_errno);
9767 bfd_set_error (bfd_error_system_call);
9768 return NULL;
9769 }
9770
9771 stream = xmalloc (sizeof (int));
9772 *stream = fd;
9773 return stream;
9774 }
9775
9776 static int
9777 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9778 {
9779 int fd = *(int *)stream;
9780 int remote_errno;
9781
9782 xfree (stream);
9783
9784 /* Ignore errors on close; these may happen if the remote
9785 connection was already torn down. */
9786 remote_hostio_close (fd, &remote_errno);
9787
9788 return 1;
9789 }
9790
9791 static file_ptr
9792 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9793 file_ptr nbytes, file_ptr offset)
9794 {
9795 int fd = *(int *)stream;
9796 int remote_errno;
9797 file_ptr pos, bytes;
9798
9799 pos = 0;
9800 while (nbytes > pos)
9801 {
9802 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9803 offset + pos, &remote_errno);
9804 if (bytes == 0)
9805 /* Success, but no bytes, means end-of-file. */
9806 break;
9807 if (bytes == -1)
9808 {
9809 errno = remote_fileio_errno_to_host (remote_errno);
9810 bfd_set_error (bfd_error_system_call);
9811 return -1;
9812 }
9813
9814 pos += bytes;
9815 }
9816
9817 return pos;
9818 }
9819
9820 static int
9821 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9822 {
9823 /* FIXME: We should probably implement remote_hostio_stat. */
9824 sb->st_size = INT_MAX;
9825 return 0;
9826 }
9827
9828 int
9829 remote_filename_p (const char *filename)
9830 {
9831 return strncmp (filename, "remote:", 7) == 0;
9832 }
9833
9834 bfd *
9835 remote_bfd_open (const char *remote_file, const char *target)
9836 {
9837 bfd *abfd = gdb_bfd_openr_iovec (remote_file, target,
9838 remote_bfd_iovec_open, NULL,
9839 remote_bfd_iovec_pread,
9840 remote_bfd_iovec_close,
9841 remote_bfd_iovec_stat);
9842
9843 return abfd;
9844 }
9845
9846 void
9847 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9848 {
9849 struct cleanup *back_to, *close_cleanup;
9850 int retcode, fd, remote_errno, bytes, io_size;
9851 FILE *file;
9852 gdb_byte *buffer;
9853 int bytes_in_buffer;
9854 int saw_eof;
9855 ULONGEST offset;
9856
9857 if (!remote_desc)
9858 error (_("command can only be used with remote target"));
9859
9860 file = fopen (local_file, "rb");
9861 if (file == NULL)
9862 perror_with_name (local_file);
9863 back_to = make_cleanup_fclose (file);
9864
9865 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9866 | FILEIO_O_TRUNC),
9867 0700, &remote_errno);
9868 if (fd == -1)
9869 remote_hostio_error (remote_errno);
9870
9871 /* Send up to this many bytes at once. They won't all fit in the
9872 remote packet limit, so we'll transfer slightly fewer. */
9873 io_size = get_remote_packet_size ();
9874 buffer = xmalloc (io_size);
9875 make_cleanup (xfree, buffer);
9876
9877 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9878
9879 bytes_in_buffer = 0;
9880 saw_eof = 0;
9881 offset = 0;
9882 while (bytes_in_buffer || !saw_eof)
9883 {
9884 if (!saw_eof)
9885 {
9886 bytes = fread (buffer + bytes_in_buffer, 1,
9887 io_size - bytes_in_buffer,
9888 file);
9889 if (bytes == 0)
9890 {
9891 if (ferror (file))
9892 error (_("Error reading %s."), local_file);
9893 else
9894 {
9895 /* EOF. Unless there is something still in the
9896 buffer from the last iteration, we are done. */
9897 saw_eof = 1;
9898 if (bytes_in_buffer == 0)
9899 break;
9900 }
9901 }
9902 }
9903 else
9904 bytes = 0;
9905
9906 bytes += bytes_in_buffer;
9907 bytes_in_buffer = 0;
9908
9909 retcode = remote_hostio_pwrite (fd, buffer, bytes,
9910 offset, &remote_errno);
9911
9912 if (retcode < 0)
9913 remote_hostio_error (remote_errno);
9914 else if (retcode == 0)
9915 error (_("Remote write of %d bytes returned 0!"), bytes);
9916 else if (retcode < bytes)
9917 {
9918 /* Short write. Save the rest of the read data for the next
9919 write. */
9920 bytes_in_buffer = bytes - retcode;
9921 memmove (buffer, buffer + retcode, bytes_in_buffer);
9922 }
9923
9924 offset += retcode;
9925 }
9926
9927 discard_cleanups (close_cleanup);
9928 if (remote_hostio_close (fd, &remote_errno))
9929 remote_hostio_error (remote_errno);
9930
9931 if (from_tty)
9932 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9933 do_cleanups (back_to);
9934 }
9935
9936 void
9937 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9938 {
9939 struct cleanup *back_to, *close_cleanup;
9940 int fd, remote_errno, bytes, io_size;
9941 FILE *file;
9942 gdb_byte *buffer;
9943 ULONGEST offset;
9944
9945 if (!remote_desc)
9946 error (_("command can only be used with remote target"));
9947
9948 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9949 if (fd == -1)
9950 remote_hostio_error (remote_errno);
9951
9952 file = fopen (local_file, "wb");
9953 if (file == NULL)
9954 perror_with_name (local_file);
9955 back_to = make_cleanup_fclose (file);
9956
9957 /* Send up to this many bytes at once. They won't all fit in the
9958 remote packet limit, so we'll transfer slightly fewer. */
9959 io_size = get_remote_packet_size ();
9960 buffer = xmalloc (io_size);
9961 make_cleanup (xfree, buffer);
9962
9963 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9964
9965 offset = 0;
9966 while (1)
9967 {
9968 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9969 if (bytes == 0)
9970 /* Success, but no bytes, means end-of-file. */
9971 break;
9972 if (bytes == -1)
9973 remote_hostio_error (remote_errno);
9974
9975 offset += bytes;
9976
9977 bytes = fwrite (buffer, 1, bytes, file);
9978 if (bytes == 0)
9979 perror_with_name (local_file);
9980 }
9981
9982 discard_cleanups (close_cleanup);
9983 if (remote_hostio_close (fd, &remote_errno))
9984 remote_hostio_error (remote_errno);
9985
9986 if (from_tty)
9987 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9988 do_cleanups (back_to);
9989 }
9990
9991 void
9992 remote_file_delete (const char *remote_file, int from_tty)
9993 {
9994 int retcode, remote_errno;
9995
9996 if (!remote_desc)
9997 error (_("command can only be used with remote target"));
9998
9999 retcode = remote_hostio_unlink (remote_file, &remote_errno);
10000 if (retcode == -1)
10001 remote_hostio_error (remote_errno);
10002
10003 if (from_tty)
10004 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
10005 }
10006
10007 static void
10008 remote_put_command (char *args, int from_tty)
10009 {
10010 struct cleanup *back_to;
10011 char **argv;
10012
10013 if (args == NULL)
10014 error_no_arg (_("file to put"));
10015
10016 argv = gdb_buildargv (args);
10017 back_to = make_cleanup_freeargv (argv);
10018 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10019 error (_("Invalid parameters to remote put"));
10020
10021 remote_file_put (argv[0], argv[1], from_tty);
10022
10023 do_cleanups (back_to);
10024 }
10025
10026 static void
10027 remote_get_command (char *args, int from_tty)
10028 {
10029 struct cleanup *back_to;
10030 char **argv;
10031
10032 if (args == NULL)
10033 error_no_arg (_("file to get"));
10034
10035 argv = gdb_buildargv (args);
10036 back_to = make_cleanup_freeargv (argv);
10037 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10038 error (_("Invalid parameters to remote get"));
10039
10040 remote_file_get (argv[0], argv[1], from_tty);
10041
10042 do_cleanups (back_to);
10043 }
10044
10045 static void
10046 remote_delete_command (char *args, int from_tty)
10047 {
10048 struct cleanup *back_to;
10049 char **argv;
10050
10051 if (args == NULL)
10052 error_no_arg (_("file to delete"));
10053
10054 argv = gdb_buildargv (args);
10055 back_to = make_cleanup_freeargv (argv);
10056 if (argv[0] == NULL || argv[1] != NULL)
10057 error (_("Invalid parameters to remote delete"));
10058
10059 remote_file_delete (argv[0], from_tty);
10060
10061 do_cleanups (back_to);
10062 }
10063
10064 static void
10065 remote_command (char *args, int from_tty)
10066 {
10067 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
10068 }
10069
10070 static int
10071 remote_can_execute_reverse (void)
10072 {
10073 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
10074 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
10075 return 1;
10076 else
10077 return 0;
10078 }
10079
10080 static int
10081 remote_supports_non_stop (void)
10082 {
10083 return 1;
10084 }
10085
10086 static int
10087 remote_supports_disable_randomization (void)
10088 {
10089 /* Only supported in extended mode. */
10090 return 0;
10091 }
10092
10093 static int
10094 remote_supports_multi_process (void)
10095 {
10096 struct remote_state *rs = get_remote_state ();
10097
10098 /* Only extended-remote handles being attached to multiple
10099 processes, even though plain remote can use the multi-process
10100 thread id extensions, so that GDB knows the target process's
10101 PID. */
10102 return rs->extended && remote_multi_process_p (rs);
10103 }
10104
10105 static int
10106 remote_supports_cond_tracepoints (void)
10107 {
10108 struct remote_state *rs = get_remote_state ();
10109
10110 return rs->cond_tracepoints;
10111 }
10112
10113 static int
10114 remote_supports_cond_breakpoints (void)
10115 {
10116 struct remote_state *rs = get_remote_state ();
10117
10118 return rs->cond_breakpoints;
10119 }
10120
10121 static int
10122 remote_supports_fast_tracepoints (void)
10123 {
10124 struct remote_state *rs = get_remote_state ();
10125
10126 return rs->fast_tracepoints;
10127 }
10128
10129 static int
10130 remote_supports_static_tracepoints (void)
10131 {
10132 struct remote_state *rs = get_remote_state ();
10133
10134 return rs->static_tracepoints;
10135 }
10136
10137 static int
10138 remote_supports_install_in_trace (void)
10139 {
10140 struct remote_state *rs = get_remote_state ();
10141
10142 return rs->install_in_trace;
10143 }
10144
10145 static int
10146 remote_supports_enable_disable_tracepoint (void)
10147 {
10148 struct remote_state *rs = get_remote_state ();
10149
10150 return rs->enable_disable_tracepoints;
10151 }
10152
10153 static int
10154 remote_supports_string_tracing (void)
10155 {
10156 struct remote_state *rs = get_remote_state ();
10157
10158 return rs->string_tracing;
10159 }
10160
10161 static int
10162 remote_can_run_breakpoint_commands (void)
10163 {
10164 struct remote_state *rs = get_remote_state ();
10165
10166 return rs->breakpoint_commands;
10167 }
10168
10169 static void
10170 remote_trace_init (void)
10171 {
10172 putpkt ("QTinit");
10173 remote_get_noisy_reply (&target_buf, &target_buf_size);
10174 if (strcmp (target_buf, "OK") != 0)
10175 error (_("Target does not support this command."));
10176 }
10177
10178 static void free_actions_list (char **actions_list);
10179 static void free_actions_list_cleanup_wrapper (void *);
10180 static void
10181 free_actions_list_cleanup_wrapper (void *al)
10182 {
10183 free_actions_list (al);
10184 }
10185
10186 static void
10187 free_actions_list (char **actions_list)
10188 {
10189 int ndx;
10190
10191 if (actions_list == 0)
10192 return;
10193
10194 for (ndx = 0; actions_list[ndx]; ndx++)
10195 xfree (actions_list[ndx]);
10196
10197 xfree (actions_list);
10198 }
10199
10200 /* Recursive routine to walk through command list including loops, and
10201 download packets for each command. */
10202
10203 static void
10204 remote_download_command_source (int num, ULONGEST addr,
10205 struct command_line *cmds)
10206 {
10207 struct remote_state *rs = get_remote_state ();
10208 struct command_line *cmd;
10209
10210 for (cmd = cmds; cmd; cmd = cmd->next)
10211 {
10212 QUIT; /* Allow user to bail out with ^C. */
10213 strcpy (rs->buf, "QTDPsrc:");
10214 encode_source_string (num, addr, "cmd", cmd->line,
10215 rs->buf + strlen (rs->buf),
10216 rs->buf_size - strlen (rs->buf));
10217 putpkt (rs->buf);
10218 remote_get_noisy_reply (&target_buf, &target_buf_size);
10219 if (strcmp (target_buf, "OK"))
10220 warning (_("Target does not support source download."));
10221
10222 if (cmd->control_type == while_control
10223 || cmd->control_type == while_stepping_control)
10224 {
10225 remote_download_command_source (num, addr, *cmd->body_list);
10226
10227 QUIT; /* Allow user to bail out with ^C. */
10228 strcpy (rs->buf, "QTDPsrc:");
10229 encode_source_string (num, addr, "cmd", "end",
10230 rs->buf + strlen (rs->buf),
10231 rs->buf_size - strlen (rs->buf));
10232 putpkt (rs->buf);
10233 remote_get_noisy_reply (&target_buf, &target_buf_size);
10234 if (strcmp (target_buf, "OK"))
10235 warning (_("Target does not support source download."));
10236 }
10237 }
10238 }
10239
10240 static void
10241 remote_download_tracepoint (struct bp_location *loc)
10242 {
10243 #define BUF_SIZE 2048
10244
10245 CORE_ADDR tpaddr;
10246 char addrbuf[40];
10247 char buf[BUF_SIZE];
10248 char **tdp_actions;
10249 char **stepping_actions;
10250 int ndx;
10251 struct cleanup *old_chain = NULL;
10252 struct agent_expr *aexpr;
10253 struct cleanup *aexpr_chain = NULL;
10254 char *pkt;
10255 struct breakpoint *b = loc->owner;
10256 struct tracepoint *t = (struct tracepoint *) b;
10257
10258 encode_actions (loc->owner, loc, &tdp_actions, &stepping_actions);
10259 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
10260 tdp_actions);
10261 (void) make_cleanup (free_actions_list_cleanup_wrapper,
10262 stepping_actions);
10263
10264 tpaddr = loc->address;
10265 sprintf_vma (addrbuf, tpaddr);
10266 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
10267 addrbuf, /* address */
10268 (b->enable_state == bp_enabled ? 'E' : 'D'),
10269 t->step_count, t->pass_count);
10270 /* Fast tracepoints are mostly handled by the target, but we can
10271 tell the target how big of an instruction block should be moved
10272 around. */
10273 if (b->type == bp_fast_tracepoint)
10274 {
10275 /* Only test for support at download time; we may not know
10276 target capabilities at definition time. */
10277 if (remote_supports_fast_tracepoints ())
10278 {
10279 int isize;
10280
10281 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
10282 tpaddr, &isize, NULL))
10283 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
10284 isize);
10285 else
10286 /* If it passed validation at definition but fails now,
10287 something is very wrong. */
10288 internal_error (__FILE__, __LINE__,
10289 _("Fast tracepoint not "
10290 "valid during download"));
10291 }
10292 else
10293 /* Fast tracepoints are functionally identical to regular
10294 tracepoints, so don't take lack of support as a reason to
10295 give up on the trace run. */
10296 warning (_("Target does not support fast tracepoints, "
10297 "downloading %d as regular tracepoint"), b->number);
10298 }
10299 else if (b->type == bp_static_tracepoint)
10300 {
10301 /* Only test for support at download time; we may not know
10302 target capabilities at definition time. */
10303 if (remote_supports_static_tracepoints ())
10304 {
10305 struct static_tracepoint_marker marker;
10306
10307 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10308 strcat (buf, ":S");
10309 else
10310 error (_("Static tracepoint not valid during download"));
10311 }
10312 else
10313 /* Fast tracepoints are functionally identical to regular
10314 tracepoints, so don't take lack of support as a reason
10315 to give up on the trace run. */
10316 error (_("Target does not support static tracepoints"));
10317 }
10318 /* If the tracepoint has a conditional, make it into an agent
10319 expression and append to the definition. */
10320 if (loc->cond)
10321 {
10322 /* Only test support at download time, we may not know target
10323 capabilities at definition time. */
10324 if (remote_supports_cond_tracepoints ())
10325 {
10326 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10327 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10328 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
10329 aexpr->len);
10330 pkt = buf + strlen (buf);
10331 for (ndx = 0; ndx < aexpr->len; ++ndx)
10332 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10333 *pkt = '\0';
10334 do_cleanups (aexpr_chain);
10335 }
10336 else
10337 warning (_("Target does not support conditional tracepoints, "
10338 "ignoring tp %d cond"), b->number);
10339 }
10340
10341 if (b->commands || *default_collect)
10342 strcat (buf, "-");
10343 putpkt (buf);
10344 remote_get_noisy_reply (&target_buf, &target_buf_size);
10345 if (strcmp (target_buf, "OK"))
10346 error (_("Target does not support tracepoints."));
10347
10348 /* do_single_steps (t); */
10349 if (tdp_actions)
10350 {
10351 for (ndx = 0; tdp_actions[ndx]; ndx++)
10352 {
10353 QUIT; /* Allow user to bail out with ^C. */
10354 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
10355 b->number, addrbuf, /* address */
10356 tdp_actions[ndx],
10357 ((tdp_actions[ndx + 1] || stepping_actions)
10358 ? '-' : 0));
10359 putpkt (buf);
10360 remote_get_noisy_reply (&target_buf,
10361 &target_buf_size);
10362 if (strcmp (target_buf, "OK"))
10363 error (_("Error on target while setting tracepoints."));
10364 }
10365 }
10366 if (stepping_actions)
10367 {
10368 for (ndx = 0; stepping_actions[ndx]; ndx++)
10369 {
10370 QUIT; /* Allow user to bail out with ^C. */
10371 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
10372 b->number, addrbuf, /* address */
10373 ((ndx == 0) ? "S" : ""),
10374 stepping_actions[ndx],
10375 (stepping_actions[ndx + 1] ? "-" : ""));
10376 putpkt (buf);
10377 remote_get_noisy_reply (&target_buf,
10378 &target_buf_size);
10379 if (strcmp (target_buf, "OK"))
10380 error (_("Error on target while setting tracepoints."));
10381 }
10382 }
10383
10384 if (remote_protocol_packets[PACKET_TracepointSource].support
10385 == PACKET_ENABLE)
10386 {
10387 if (b->addr_string)
10388 {
10389 strcpy (buf, "QTDPsrc:");
10390 encode_source_string (b->number, loc->address,
10391 "at", b->addr_string, buf + strlen (buf),
10392 2048 - strlen (buf));
10393
10394 putpkt (buf);
10395 remote_get_noisy_reply (&target_buf, &target_buf_size);
10396 if (strcmp (target_buf, "OK"))
10397 warning (_("Target does not support source download."));
10398 }
10399 if (b->cond_string)
10400 {
10401 strcpy (buf, "QTDPsrc:");
10402 encode_source_string (b->number, loc->address,
10403 "cond", b->cond_string, buf + strlen (buf),
10404 2048 - strlen (buf));
10405 putpkt (buf);
10406 remote_get_noisy_reply (&target_buf, &target_buf_size);
10407 if (strcmp (target_buf, "OK"))
10408 warning (_("Target does not support source download."));
10409 }
10410 remote_download_command_source (b->number, loc->address,
10411 breakpoint_commands (b));
10412 }
10413
10414 do_cleanups (old_chain);
10415 }
10416
10417 static int
10418 remote_can_download_tracepoint (void)
10419 {
10420 struct remote_state *rs = get_remote_state ();
10421 struct trace_status *ts;
10422 int status;
10423
10424 /* Don't try to install tracepoints until we've relocated our
10425 symbols, and fetched and merged the target's tracepoint list with
10426 ours. */
10427 if (rs->starting_up)
10428 return 0;
10429
10430 ts = current_trace_status ();
10431 status = remote_get_trace_status (ts);
10432
10433 if (status == -1 || !ts->running_known || !ts->running)
10434 return 0;
10435
10436 /* If we are in a tracing experiment, but remote stub doesn't support
10437 installing tracepoint in trace, we have to return. */
10438 if (!remote_supports_install_in_trace ())
10439 return 0;
10440
10441 return 1;
10442 }
10443
10444
10445 static void
10446 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10447 {
10448 struct remote_state *rs = get_remote_state ();
10449 char *p;
10450
10451 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
10452 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
10453 tsv->builtin);
10454 p = rs->buf + strlen (rs->buf);
10455 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10456 error (_("Trace state variable name too long for tsv definition packet"));
10457 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10458 *p++ = '\0';
10459 putpkt (rs->buf);
10460 remote_get_noisy_reply (&target_buf, &target_buf_size);
10461 if (*target_buf == '\0')
10462 error (_("Target does not support this command."));
10463 if (strcmp (target_buf, "OK") != 0)
10464 error (_("Error on target while downloading trace state variable."));
10465 }
10466
10467 static void
10468 remote_enable_tracepoint (struct bp_location *location)
10469 {
10470 struct remote_state *rs = get_remote_state ();
10471 char addr_buf[40];
10472
10473 sprintf_vma (addr_buf, location->address);
10474 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
10475 location->owner->number, addr_buf);
10476 putpkt (rs->buf);
10477 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10478 if (*rs->buf == '\0')
10479 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10480 if (strcmp (rs->buf, "OK") != 0)
10481 error (_("Error on target while enabling tracepoint."));
10482 }
10483
10484 static void
10485 remote_disable_tracepoint (struct bp_location *location)
10486 {
10487 struct remote_state *rs = get_remote_state ();
10488 char addr_buf[40];
10489
10490 sprintf_vma (addr_buf, location->address);
10491 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
10492 location->owner->number, addr_buf);
10493 putpkt (rs->buf);
10494 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10495 if (*rs->buf == '\0')
10496 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10497 if (strcmp (rs->buf, "OK") != 0)
10498 error (_("Error on target while disabling tracepoint."));
10499 }
10500
10501 static void
10502 remote_trace_set_readonly_regions (void)
10503 {
10504 asection *s;
10505 bfd *abfd = NULL;
10506 bfd_size_type size;
10507 bfd_vma vma;
10508 int anysecs = 0;
10509 int offset = 0;
10510
10511 if (!exec_bfd)
10512 return; /* No information to give. */
10513
10514 strcpy (target_buf, "QTro");
10515 for (s = exec_bfd->sections; s; s = s->next)
10516 {
10517 char tmp1[40], tmp2[40];
10518 int sec_length;
10519
10520 if ((s->flags & SEC_LOAD) == 0 ||
10521 /* (s->flags & SEC_CODE) == 0 || */
10522 (s->flags & SEC_READONLY) == 0)
10523 continue;
10524
10525 anysecs = 1;
10526 vma = bfd_get_section_vma (abfd, s);
10527 size = bfd_get_section_size (s);
10528 sprintf_vma (tmp1, vma);
10529 sprintf_vma (tmp2, vma + size);
10530 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10531 if (offset + sec_length + 1 > target_buf_size)
10532 {
10533 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10534 != PACKET_ENABLE)
10535 warning (_("\
10536 Too many sections for read-only sections definition packet."));
10537 break;
10538 }
10539 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
10540 tmp1, tmp2);
10541 offset += sec_length;
10542 }
10543 if (anysecs)
10544 {
10545 putpkt (target_buf);
10546 getpkt (&target_buf, &target_buf_size, 0);
10547 }
10548 }
10549
10550 static void
10551 remote_trace_start (void)
10552 {
10553 putpkt ("QTStart");
10554 remote_get_noisy_reply (&target_buf, &target_buf_size);
10555 if (*target_buf == '\0')
10556 error (_("Target does not support this command."));
10557 if (strcmp (target_buf, "OK") != 0)
10558 error (_("Bogus reply from target: %s"), target_buf);
10559 }
10560
10561 static int
10562 remote_get_trace_status (struct trace_status *ts)
10563 {
10564 /* Initialize it just to avoid a GCC false warning. */
10565 char *p = NULL;
10566 /* FIXME we need to get register block size some other way. */
10567 extern int trace_regblock_size;
10568 volatile struct gdb_exception ex;
10569
10570 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10571
10572 putpkt ("qTStatus");
10573
10574 TRY_CATCH (ex, RETURN_MASK_ERROR)
10575 {
10576 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10577 }
10578 if (ex.reason < 0)
10579 {
10580 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10581 return -1;
10582 }
10583
10584 /* If the remote target doesn't do tracing, flag it. */
10585 if (*p == '\0')
10586 return -1;
10587
10588 /* We're working with a live target. */
10589 ts->from_file = 0;
10590
10591 if (*p++ != 'T')
10592 error (_("Bogus trace status reply from target: %s"), target_buf);
10593
10594 /* Function 'parse_trace_status' sets default value of each field of
10595 'ts' at first, so we don't have to do it here. */
10596 parse_trace_status (p, ts);
10597
10598 return ts->running;
10599 }
10600
10601 static void
10602 remote_get_tracepoint_status (struct breakpoint *bp,
10603 struct uploaded_tp *utp)
10604 {
10605 struct remote_state *rs = get_remote_state ();
10606 char *reply;
10607 struct bp_location *loc;
10608 struct tracepoint *tp = (struct tracepoint *) bp;
10609 size_t size = get_remote_packet_size ();
10610
10611 if (tp)
10612 {
10613 tp->base.hit_count = 0;
10614 tp->traceframe_usage = 0;
10615 for (loc = tp->base.loc; loc; loc = loc->next)
10616 {
10617 /* If the tracepoint was never downloaded, don't go asking for
10618 any status. */
10619 if (tp->number_on_target == 0)
10620 continue;
10621 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
10622 phex_nz (loc->address, 0));
10623 putpkt (rs->buf);
10624 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10625 if (reply && *reply)
10626 {
10627 if (*reply == 'V')
10628 parse_tracepoint_status (reply + 1, bp, utp);
10629 }
10630 }
10631 }
10632 else if (utp)
10633 {
10634 utp->hit_count = 0;
10635 utp->traceframe_usage = 0;
10636 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
10637 phex_nz (utp->addr, 0));
10638 putpkt (rs->buf);
10639 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10640 if (reply && *reply)
10641 {
10642 if (*reply == 'V')
10643 parse_tracepoint_status (reply + 1, bp, utp);
10644 }
10645 }
10646 }
10647
10648 static void
10649 remote_trace_stop (void)
10650 {
10651 putpkt ("QTStop");
10652 remote_get_noisy_reply (&target_buf, &target_buf_size);
10653 if (*target_buf == '\0')
10654 error (_("Target does not support this command."));
10655 if (strcmp (target_buf, "OK") != 0)
10656 error (_("Bogus reply from target: %s"), target_buf);
10657 }
10658
10659 static int
10660 remote_trace_find (enum trace_find_type type, int num,
10661 ULONGEST addr1, ULONGEST addr2,
10662 int *tpp)
10663 {
10664 struct remote_state *rs = get_remote_state ();
10665 char *endbuf = rs->buf + get_remote_packet_size ();
10666 char *p, *reply;
10667 int target_frameno = -1, target_tracept = -1;
10668
10669 /* Lookups other than by absolute frame number depend on the current
10670 trace selected, so make sure it is correct on the remote end
10671 first. */
10672 if (type != tfind_number)
10673 set_remote_traceframe ();
10674
10675 p = rs->buf;
10676 strcpy (p, "QTFrame:");
10677 p = strchr (p, '\0');
10678 switch (type)
10679 {
10680 case tfind_number:
10681 xsnprintf (p, endbuf - p, "%x", num);
10682 break;
10683 case tfind_pc:
10684 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
10685 break;
10686 case tfind_tp:
10687 xsnprintf (p, endbuf - p, "tdp:%x", num);
10688 break;
10689 case tfind_range:
10690 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
10691 phex_nz (addr2, 0));
10692 break;
10693 case tfind_outside:
10694 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
10695 phex_nz (addr2, 0));
10696 break;
10697 default:
10698 error (_("Unknown trace find type %d"), type);
10699 }
10700
10701 putpkt (rs->buf);
10702 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10703 if (*reply == '\0')
10704 error (_("Target does not support this command."));
10705
10706 while (reply && *reply)
10707 switch (*reply)
10708 {
10709 case 'F':
10710 p = ++reply;
10711 target_frameno = (int) strtol (p, &reply, 16);
10712 if (reply == p)
10713 error (_("Unable to parse trace frame number"));
10714 /* Don't update our remote traceframe number cache on failure
10715 to select a remote traceframe. */
10716 if (target_frameno == -1)
10717 return -1;
10718 break;
10719 case 'T':
10720 p = ++reply;
10721 target_tracept = (int) strtol (p, &reply, 16);
10722 if (reply == p)
10723 error (_("Unable to parse tracepoint number"));
10724 break;
10725 case 'O': /* "OK"? */
10726 if (reply[1] == 'K' && reply[2] == '\0')
10727 reply += 2;
10728 else
10729 error (_("Bogus reply from target: %s"), reply);
10730 break;
10731 default:
10732 error (_("Bogus reply from target: %s"), reply);
10733 }
10734 if (tpp)
10735 *tpp = target_tracept;
10736
10737 remote_traceframe_number = target_frameno;
10738 return target_frameno;
10739 }
10740
10741 static int
10742 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10743 {
10744 struct remote_state *rs = get_remote_state ();
10745 char *reply;
10746 ULONGEST uval;
10747
10748 set_remote_traceframe ();
10749
10750 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
10751 putpkt (rs->buf);
10752 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10753 if (reply && *reply)
10754 {
10755 if (*reply == 'V')
10756 {
10757 unpack_varlen_hex (reply + 1, &uval);
10758 *val = (LONGEST) uval;
10759 return 1;
10760 }
10761 }
10762 return 0;
10763 }
10764
10765 static int
10766 remote_save_trace_data (const char *filename)
10767 {
10768 struct remote_state *rs = get_remote_state ();
10769 char *p, *reply;
10770
10771 p = rs->buf;
10772 strcpy (p, "QTSave:");
10773 p += strlen (p);
10774 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10775 error (_("Remote file name too long for trace save packet"));
10776 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10777 *p++ = '\0';
10778 putpkt (rs->buf);
10779 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10780 if (*reply == '\0')
10781 error (_("Target does not support this command."));
10782 if (strcmp (reply, "OK") != 0)
10783 error (_("Bogus reply from target: %s"), reply);
10784 return 0;
10785 }
10786
10787 /* This is basically a memory transfer, but needs to be its own packet
10788 because we don't know how the target actually organizes its trace
10789 memory, plus we want to be able to ask for as much as possible, but
10790 not be unhappy if we don't get as much as we ask for. */
10791
10792 static LONGEST
10793 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10794 {
10795 struct remote_state *rs = get_remote_state ();
10796 char *reply;
10797 char *p;
10798 int rslt;
10799
10800 p = rs->buf;
10801 strcpy (p, "qTBuffer:");
10802 p += strlen (p);
10803 p += hexnumstr (p, offset);
10804 *p++ = ',';
10805 p += hexnumstr (p, len);
10806 *p++ = '\0';
10807
10808 putpkt (rs->buf);
10809 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10810 if (reply && *reply)
10811 {
10812 /* 'l' by itself means we're at the end of the buffer and
10813 there is nothing more to get. */
10814 if (*reply == 'l')
10815 return 0;
10816
10817 /* Convert the reply into binary. Limit the number of bytes to
10818 convert according to our passed-in buffer size, rather than
10819 what was returned in the packet; if the target is
10820 unexpectedly generous and gives us a bigger reply than we
10821 asked for, we don't want to crash. */
10822 rslt = hex2bin (target_buf, buf, len);
10823 return rslt;
10824 }
10825
10826 /* Something went wrong, flag as an error. */
10827 return -1;
10828 }
10829
10830 static void
10831 remote_set_disconnected_tracing (int val)
10832 {
10833 struct remote_state *rs = get_remote_state ();
10834
10835 if (rs->disconnected_tracing)
10836 {
10837 char *reply;
10838
10839 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
10840 putpkt (rs->buf);
10841 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10842 if (*reply == '\0')
10843 error (_("Target does not support this command."));
10844 if (strcmp (reply, "OK") != 0)
10845 error (_("Bogus reply from target: %s"), reply);
10846 }
10847 else if (val)
10848 warning (_("Target does not support disconnected tracing."));
10849 }
10850
10851 static int
10852 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
10853 {
10854 struct thread_info *info = find_thread_ptid (ptid);
10855
10856 if (info && info->private)
10857 return info->private->core;
10858 return -1;
10859 }
10860
10861 static void
10862 remote_set_circular_trace_buffer (int val)
10863 {
10864 struct remote_state *rs = get_remote_state ();
10865 char *reply;
10866
10867 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
10868 putpkt (rs->buf);
10869 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10870 if (*reply == '\0')
10871 error (_("Target does not support this command."));
10872 if (strcmp (reply, "OK") != 0)
10873 error (_("Bogus reply from target: %s"), reply);
10874 }
10875
10876 static struct traceframe_info *
10877 remote_traceframe_info (void)
10878 {
10879 char *text;
10880
10881 text = target_read_stralloc (&current_target,
10882 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
10883 if (text != NULL)
10884 {
10885 struct traceframe_info *info;
10886 struct cleanup *back_to = make_cleanup (xfree, text);
10887
10888 info = parse_traceframe_info (text);
10889 do_cleanups (back_to);
10890 return info;
10891 }
10892
10893 return NULL;
10894 }
10895
10896 /* Handle the qTMinFTPILen packet. Returns the minimum length of
10897 instruction on which a fast tracepoint may be placed. Returns -1
10898 if the packet is not supported, and 0 if the minimum instruction
10899 length is unknown. */
10900
10901 static int
10902 remote_get_min_fast_tracepoint_insn_len (void)
10903 {
10904 struct remote_state *rs = get_remote_state ();
10905 char *reply;
10906
10907 /* If we're not debugging a process yet, the IPA can't be
10908 loaded. */
10909 if (!target_has_execution)
10910 return 0;
10911
10912 /* Make sure the remote is pointing at the right process. */
10913 set_general_process ();
10914
10915 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
10916 putpkt (rs->buf);
10917 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10918 if (*reply == '\0')
10919 return -1;
10920 else
10921 {
10922 ULONGEST min_insn_len;
10923
10924 unpack_varlen_hex (reply, &min_insn_len);
10925
10926 return (int) min_insn_len;
10927 }
10928 }
10929
10930 static int
10931 remote_set_trace_notes (char *user, char *notes, char *stop_notes)
10932 {
10933 struct remote_state *rs = get_remote_state ();
10934 char *reply;
10935 char *buf = rs->buf;
10936 char *endbuf = rs->buf + get_remote_packet_size ();
10937 int nbytes;
10938
10939 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
10940 if (user)
10941 {
10942 buf += xsnprintf (buf, endbuf - buf, "user:");
10943 nbytes = bin2hex (user, buf, 0);
10944 buf += 2 * nbytes;
10945 *buf++ = ';';
10946 }
10947 if (notes)
10948 {
10949 buf += xsnprintf (buf, endbuf - buf, "notes:");
10950 nbytes = bin2hex (notes, buf, 0);
10951 buf += 2 * nbytes;
10952 *buf++ = ';';
10953 }
10954 if (stop_notes)
10955 {
10956 buf += xsnprintf (buf, endbuf - buf, "tstop:");
10957 nbytes = bin2hex (stop_notes, buf, 0);
10958 buf += 2 * nbytes;
10959 *buf++ = ';';
10960 }
10961 /* Ensure the buffer is terminated. */
10962 *buf = '\0';
10963
10964 putpkt (rs->buf);
10965 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10966 if (*reply == '\0')
10967 return 0;
10968
10969 if (strcmp (reply, "OK") != 0)
10970 error (_("Bogus reply from target: %s"), reply);
10971
10972 return 1;
10973 }
10974
10975 static int
10976 remote_use_agent (int use)
10977 {
10978 if (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE)
10979 {
10980 struct remote_state *rs = get_remote_state ();
10981
10982 /* If the stub supports QAgent. */
10983 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
10984 putpkt (rs->buf);
10985 getpkt (&rs->buf, &rs->buf_size, 0);
10986
10987 if (strcmp (rs->buf, "OK") == 0)
10988 {
10989 use_agent = use;
10990 return 1;
10991 }
10992 }
10993
10994 return 0;
10995 }
10996
10997 static int
10998 remote_can_use_agent (void)
10999 {
11000 return (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE);
11001 }
11002
11003 static void
11004 init_remote_ops (void)
11005 {
11006 remote_ops.to_shortname = "remote";
11007 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
11008 remote_ops.to_doc =
11009 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11010 Specify the serial device it is connected to\n\
11011 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
11012 remote_ops.to_open = remote_open;
11013 remote_ops.to_close = remote_close;
11014 remote_ops.to_detach = remote_detach;
11015 remote_ops.to_disconnect = remote_disconnect;
11016 remote_ops.to_resume = remote_resume;
11017 remote_ops.to_wait = remote_wait;
11018 remote_ops.to_fetch_registers = remote_fetch_registers;
11019 remote_ops.to_store_registers = remote_store_registers;
11020 remote_ops.to_prepare_to_store = remote_prepare_to_store;
11021 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
11022 remote_ops.to_files_info = remote_files_info;
11023 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
11024 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
11025 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
11026 remote_ops.to_stopped_data_address = remote_stopped_data_address;
11027 remote_ops.to_watchpoint_addr_within_range =
11028 remote_watchpoint_addr_within_range;
11029 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
11030 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
11031 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
11032 remote_ops.to_region_ok_for_hw_watchpoint
11033 = remote_region_ok_for_hw_watchpoint;
11034 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
11035 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
11036 remote_ops.to_kill = remote_kill;
11037 remote_ops.to_load = generic_load;
11038 remote_ops.to_mourn_inferior = remote_mourn;
11039 remote_ops.to_pass_signals = remote_pass_signals;
11040 remote_ops.to_program_signals = remote_program_signals;
11041 remote_ops.to_thread_alive = remote_thread_alive;
11042 remote_ops.to_find_new_threads = remote_threads_info;
11043 remote_ops.to_pid_to_str = remote_pid_to_str;
11044 remote_ops.to_extra_thread_info = remote_threads_extra_info;
11045 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
11046 remote_ops.to_stop = remote_stop;
11047 remote_ops.to_xfer_partial = remote_xfer_partial;
11048 remote_ops.to_rcmd = remote_rcmd;
11049 remote_ops.to_log_command = serial_log_command;
11050 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
11051 remote_ops.to_stratum = process_stratum;
11052 remote_ops.to_has_all_memory = default_child_has_all_memory;
11053 remote_ops.to_has_memory = default_child_has_memory;
11054 remote_ops.to_has_stack = default_child_has_stack;
11055 remote_ops.to_has_registers = default_child_has_registers;
11056 remote_ops.to_has_execution = default_child_has_execution;
11057 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
11058 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
11059 remote_ops.to_magic = OPS_MAGIC;
11060 remote_ops.to_memory_map = remote_memory_map;
11061 remote_ops.to_flash_erase = remote_flash_erase;
11062 remote_ops.to_flash_done = remote_flash_done;
11063 remote_ops.to_read_description = remote_read_description;
11064 remote_ops.to_search_memory = remote_search_memory;
11065 remote_ops.to_can_async_p = remote_can_async_p;
11066 remote_ops.to_is_async_p = remote_is_async_p;
11067 remote_ops.to_async = remote_async;
11068 remote_ops.to_terminal_inferior = remote_terminal_inferior;
11069 remote_ops.to_terminal_ours = remote_terminal_ours;
11070 remote_ops.to_supports_non_stop = remote_supports_non_stop;
11071 remote_ops.to_supports_multi_process = remote_supports_multi_process;
11072 remote_ops.to_supports_disable_randomization
11073 = remote_supports_disable_randomization;
11074 remote_ops.to_fileio_open = remote_hostio_open;
11075 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
11076 remote_ops.to_fileio_pread = remote_hostio_pread;
11077 remote_ops.to_fileio_close = remote_hostio_close;
11078 remote_ops.to_fileio_unlink = remote_hostio_unlink;
11079 remote_ops.to_fileio_readlink = remote_hostio_readlink;
11080 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
11081 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
11082 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
11083 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
11084 remote_ops.to_trace_init = remote_trace_init;
11085 remote_ops.to_download_tracepoint = remote_download_tracepoint;
11086 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
11087 remote_ops.to_download_trace_state_variable
11088 = remote_download_trace_state_variable;
11089 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
11090 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
11091 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
11092 remote_ops.to_trace_start = remote_trace_start;
11093 remote_ops.to_get_trace_status = remote_get_trace_status;
11094 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
11095 remote_ops.to_trace_stop = remote_trace_stop;
11096 remote_ops.to_trace_find = remote_trace_find;
11097 remote_ops.to_get_trace_state_variable_value
11098 = remote_get_trace_state_variable_value;
11099 remote_ops.to_save_trace_data = remote_save_trace_data;
11100 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
11101 remote_ops.to_upload_trace_state_variables
11102 = remote_upload_trace_state_variables;
11103 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
11104 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
11105 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
11106 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
11107 remote_ops.to_set_trace_notes = remote_set_trace_notes;
11108 remote_ops.to_core_of_thread = remote_core_of_thread;
11109 remote_ops.to_verify_memory = remote_verify_memory;
11110 remote_ops.to_get_tib_address = remote_get_tib_address;
11111 remote_ops.to_set_permissions = remote_set_permissions;
11112 remote_ops.to_static_tracepoint_marker_at
11113 = remote_static_tracepoint_marker_at;
11114 remote_ops.to_static_tracepoint_markers_by_strid
11115 = remote_static_tracepoint_markers_by_strid;
11116 remote_ops.to_traceframe_info = remote_traceframe_info;
11117 remote_ops.to_use_agent = remote_use_agent;
11118 remote_ops.to_can_use_agent = remote_can_use_agent;
11119 }
11120
11121 /* Set up the extended remote vector by making a copy of the standard
11122 remote vector and adding to it. */
11123
11124 static void
11125 init_extended_remote_ops (void)
11126 {
11127 extended_remote_ops = remote_ops;
11128
11129 extended_remote_ops.to_shortname = "extended-remote";
11130 extended_remote_ops.to_longname =
11131 "Extended remote serial target in gdb-specific protocol";
11132 extended_remote_ops.to_doc =
11133 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11134 Specify the serial device it is connected to (e.g. /dev/ttya).";
11135 extended_remote_ops.to_open = extended_remote_open;
11136 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
11137 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
11138 extended_remote_ops.to_detach = extended_remote_detach;
11139 extended_remote_ops.to_attach = extended_remote_attach;
11140 extended_remote_ops.to_kill = extended_remote_kill;
11141 extended_remote_ops.to_supports_disable_randomization
11142 = extended_remote_supports_disable_randomization;
11143 }
11144
11145 static int
11146 remote_can_async_p (void)
11147 {
11148 if (!target_async_permitted)
11149 /* We only enable async when the user specifically asks for it. */
11150 return 0;
11151
11152 /* We're async whenever the serial device is. */
11153 return serial_can_async_p (remote_desc);
11154 }
11155
11156 static int
11157 remote_is_async_p (void)
11158 {
11159 if (!target_async_permitted)
11160 /* We only enable async when the user specifically asks for it. */
11161 return 0;
11162
11163 /* We're async whenever the serial device is. */
11164 return serial_is_async_p (remote_desc);
11165 }
11166
11167 /* Pass the SERIAL event on and up to the client. One day this code
11168 will be able to delay notifying the client of an event until the
11169 point where an entire packet has been received. */
11170
11171 static void (*async_client_callback) (enum inferior_event_type event_type,
11172 void *context);
11173 static void *async_client_context;
11174 static serial_event_ftype remote_async_serial_handler;
11175
11176 static void
11177 remote_async_serial_handler (struct serial *scb, void *context)
11178 {
11179 /* Don't propogate error information up to the client. Instead let
11180 the client find out about the error by querying the target. */
11181 async_client_callback (INF_REG_EVENT, async_client_context);
11182 }
11183
11184 static void
11185 remote_async_inferior_event_handler (gdb_client_data data)
11186 {
11187 inferior_event_handler (INF_REG_EVENT, NULL);
11188 }
11189
11190 static void
11191 remote_async_get_pending_events_handler (gdb_client_data data)
11192 {
11193 remote_get_pending_stop_replies ();
11194 }
11195
11196 static void
11197 remote_async (void (*callback) (enum inferior_event_type event_type,
11198 void *context), void *context)
11199 {
11200 if (callback != NULL)
11201 {
11202 serial_async (remote_desc, remote_async_serial_handler, NULL);
11203 async_client_callback = callback;
11204 async_client_context = context;
11205 }
11206 else
11207 serial_async (remote_desc, NULL, NULL);
11208 }
11209
11210 static void
11211 set_remote_cmd (char *args, int from_tty)
11212 {
11213 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
11214 }
11215
11216 static void
11217 show_remote_cmd (char *args, int from_tty)
11218 {
11219 /* We can't just use cmd_show_list here, because we want to skip
11220 the redundant "show remote Z-packet" and the legacy aliases. */
11221 struct cleanup *showlist_chain;
11222 struct cmd_list_element *list = remote_show_cmdlist;
11223 struct ui_out *uiout = current_uiout;
11224
11225 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
11226 for (; list != NULL; list = list->next)
11227 if (strcmp (list->name, "Z-packet") == 0)
11228 continue;
11229 else if (list->type == not_set_cmd)
11230 /* Alias commands are exactly like the original, except they
11231 don't have the normal type. */
11232 continue;
11233 else
11234 {
11235 struct cleanup *option_chain
11236 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
11237
11238 ui_out_field_string (uiout, "name", list->name);
11239 ui_out_text (uiout, ": ");
11240 if (list->type == show_cmd)
11241 do_show_command ((char *) NULL, from_tty, list);
11242 else
11243 cmd_func (list, NULL, from_tty);
11244 /* Close the tuple. */
11245 do_cleanups (option_chain);
11246 }
11247
11248 /* Close the tuple. */
11249 do_cleanups (showlist_chain);
11250 }
11251
11252
11253 /* Function to be called whenever a new objfile (shlib) is detected. */
11254 static void
11255 remote_new_objfile (struct objfile *objfile)
11256 {
11257 if (remote_desc != 0) /* Have a remote connection. */
11258 remote_check_symbols (objfile);
11259 }
11260
11261 /* Pull all the tracepoints defined on the target and create local
11262 data structures representing them. We don't want to create real
11263 tracepoints yet, we don't want to mess up the user's existing
11264 collection. */
11265
11266 static int
11267 remote_upload_tracepoints (struct uploaded_tp **utpp)
11268 {
11269 struct remote_state *rs = get_remote_state ();
11270 char *p;
11271
11272 /* Ask for a first packet of tracepoint definition. */
11273 putpkt ("qTfP");
11274 getpkt (&rs->buf, &rs->buf_size, 0);
11275 p = rs->buf;
11276 while (*p && *p != 'l')
11277 {
11278 parse_tracepoint_definition (p, utpp);
11279 /* Ask for another packet of tracepoint definition. */
11280 putpkt ("qTsP");
11281 getpkt (&rs->buf, &rs->buf_size, 0);
11282 p = rs->buf;
11283 }
11284 return 0;
11285 }
11286
11287 static int
11288 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
11289 {
11290 struct remote_state *rs = get_remote_state ();
11291 char *p;
11292
11293 /* Ask for a first packet of variable definition. */
11294 putpkt ("qTfV");
11295 getpkt (&rs->buf, &rs->buf_size, 0);
11296 p = rs->buf;
11297 while (*p && *p != 'l')
11298 {
11299 parse_tsv_definition (p, utsvp);
11300 /* Ask for another packet of variable definition. */
11301 putpkt ("qTsV");
11302 getpkt (&rs->buf, &rs->buf_size, 0);
11303 p = rs->buf;
11304 }
11305 return 0;
11306 }
11307
11308 void
11309 _initialize_remote (void)
11310 {
11311 struct remote_state *rs;
11312 struct cmd_list_element *cmd;
11313 char *cmd_name;
11314
11315 /* architecture specific data */
11316 remote_gdbarch_data_handle =
11317 gdbarch_data_register_post_init (init_remote_state);
11318 remote_g_packet_data_handle =
11319 gdbarch_data_register_pre_init (remote_g_packet_data_init);
11320
11321 /* Initialize the per-target state. At the moment there is only one
11322 of these, not one per target. Only one target is active at a
11323 time. The default buffer size is unimportant; it will be expanded
11324 whenever a larger buffer is needed. */
11325 rs = get_remote_state_raw ();
11326 rs->buf_size = 400;
11327 rs->buf = xmalloc (rs->buf_size);
11328
11329 init_remote_ops ();
11330 add_target (&remote_ops);
11331
11332 init_extended_remote_ops ();
11333 add_target (&extended_remote_ops);
11334
11335 /* Hook into new objfile notification. */
11336 observer_attach_new_objfile (remote_new_objfile);
11337
11338 /* Set up signal handlers. */
11339 sigint_remote_token =
11340 create_async_signal_handler (async_remote_interrupt, NULL);
11341 sigint_remote_twice_token =
11342 create_async_signal_handler (async_remote_interrupt_twice, NULL);
11343
11344 #if 0
11345 init_remote_threadtests ();
11346 #endif
11347
11348 /* set/show remote ... */
11349
11350 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
11351 Remote protocol specific variables\n\
11352 Configure various remote-protocol specific variables such as\n\
11353 the packets being used"),
11354 &remote_set_cmdlist, "set remote ",
11355 0 /* allow-unknown */, &setlist);
11356 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11357 Remote protocol specific variables\n\
11358 Configure various remote-protocol specific variables such as\n\
11359 the packets being used"),
11360 &remote_show_cmdlist, "show remote ",
11361 0 /* allow-unknown */, &showlist);
11362
11363 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11364 Compare section data on target to the exec file.\n\
11365 Argument is a single section name (default: all loaded sections)."),
11366 &cmdlist);
11367
11368 add_cmd ("packet", class_maintenance, packet_command, _("\
11369 Send an arbitrary packet to a remote target.\n\
11370 maintenance packet TEXT\n\
11371 If GDB is talking to an inferior via the GDB serial protocol, then\n\
11372 this command sends the string TEXT to the inferior, and displays the\n\
11373 response packet. GDB supplies the initial `$' character, and the\n\
11374 terminating `#' character and checksum."),
11375 &maintenancelist);
11376
11377 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11378 Set whether to send break if interrupted."), _("\
11379 Show whether to send break if interrupted."), _("\
11380 If set, a break, instead of a cntrl-c, is sent to the remote target."),
11381 set_remotebreak, show_remotebreak,
11382 &setlist, &showlist);
11383 cmd_name = "remotebreak";
11384 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11385 deprecate_cmd (cmd, "set remote interrupt-sequence");
11386 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11387 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11388 deprecate_cmd (cmd, "show remote interrupt-sequence");
11389
11390 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11391 interrupt_sequence_modes, &interrupt_sequence_mode,
11392 _("\
11393 Set interrupt sequence to remote target."), _("\
11394 Show interrupt sequence to remote target."), _("\
11395 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11396 NULL, show_interrupt_sequence,
11397 &remote_set_cmdlist,
11398 &remote_show_cmdlist);
11399
11400 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
11401 &interrupt_on_connect, _("\
11402 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11403 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11404 If set, interrupt sequence is sent to remote target."),
11405 NULL, NULL,
11406 &remote_set_cmdlist, &remote_show_cmdlist);
11407
11408 /* Install commands for configuring memory read/write packets. */
11409
11410 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
11411 Set the maximum number of bytes per memory write packet (deprecated)."),
11412 &setlist);
11413 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
11414 Show the maximum number of bytes per memory write packet (deprecated)."),
11415 &showlist);
11416 add_cmd ("memory-write-packet-size", no_class,
11417 set_memory_write_packet_size, _("\
11418 Set the maximum number of bytes per memory-write packet.\n\
11419 Specify the number of bytes in a packet or 0 (zero) for the\n\
11420 default packet size. The actual limit is further reduced\n\
11421 dependent on the target. Specify ``fixed'' to disable the\n\
11422 further restriction and ``limit'' to enable that restriction."),
11423 &remote_set_cmdlist);
11424 add_cmd ("memory-read-packet-size", no_class,
11425 set_memory_read_packet_size, _("\
11426 Set the maximum number of bytes per memory-read packet.\n\
11427 Specify the number of bytes in a packet or 0 (zero) for the\n\
11428 default packet size. The actual limit is further reduced\n\
11429 dependent on the target. Specify ``fixed'' to disable the\n\
11430 further restriction and ``limit'' to enable that restriction."),
11431 &remote_set_cmdlist);
11432 add_cmd ("memory-write-packet-size", no_class,
11433 show_memory_write_packet_size,
11434 _("Show the maximum number of bytes per memory-write packet."),
11435 &remote_show_cmdlist);
11436 add_cmd ("memory-read-packet-size", no_class,
11437 show_memory_read_packet_size,
11438 _("Show the maximum number of bytes per memory-read packet."),
11439 &remote_show_cmdlist);
11440
11441 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
11442 &remote_hw_watchpoint_limit, _("\
11443 Set the maximum number of target hardware watchpoints."), _("\
11444 Show the maximum number of target hardware watchpoints."), _("\
11445 Specify a negative limit for unlimited."),
11446 NULL, NULL, /* FIXME: i18n: The maximum
11447 number of target hardware
11448 watchpoints is %s. */
11449 &remote_set_cmdlist, &remote_show_cmdlist);
11450 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
11451 &remote_hw_watchpoint_length_limit, _("\
11452 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
11453 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
11454 Specify a negative limit for unlimited."),
11455 NULL, NULL, /* FIXME: i18n: The maximum
11456 length (in bytes) of a target
11457 hardware watchpoint is %s. */
11458 &remote_set_cmdlist, &remote_show_cmdlist);
11459 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
11460 &remote_hw_breakpoint_limit, _("\
11461 Set the maximum number of target hardware breakpoints."), _("\
11462 Show the maximum number of target hardware breakpoints."), _("\
11463 Specify a negative limit for unlimited."),
11464 NULL, NULL, /* FIXME: i18n: The maximum
11465 number of target hardware
11466 breakpoints is %s. */
11467 &remote_set_cmdlist, &remote_show_cmdlist);
11468
11469 add_setshow_uinteger_cmd ("remoteaddresssize", class_obscure,
11470 &remote_address_size, _("\
11471 Set the maximum size of the address (in bits) in a memory packet."), _("\
11472 Show the maximum size of the address (in bits) in a memory packet."), NULL,
11473 NULL,
11474 NULL, /* FIXME: i18n: */
11475 &setlist, &showlist);
11476
11477 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
11478 "X", "binary-download", 1);
11479
11480 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
11481 "vCont", "verbose-resume", 0);
11482
11483 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
11484 "QPassSignals", "pass-signals", 0);
11485
11486 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
11487 "QProgramSignals", "program-signals", 0);
11488
11489 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
11490 "qSymbol", "symbol-lookup", 0);
11491
11492 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
11493 "P", "set-register", 1);
11494
11495 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
11496 "p", "fetch-register", 1);
11497
11498 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
11499 "Z0", "software-breakpoint", 0);
11500
11501 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
11502 "Z1", "hardware-breakpoint", 0);
11503
11504 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
11505 "Z2", "write-watchpoint", 0);
11506
11507 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
11508 "Z3", "read-watchpoint", 0);
11509
11510 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
11511 "Z4", "access-watchpoint", 0);
11512
11513 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
11514 "qXfer:auxv:read", "read-aux-vector", 0);
11515
11516 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
11517 "qXfer:features:read", "target-features", 0);
11518
11519 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
11520 "qXfer:libraries:read", "library-info", 0);
11521
11522 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
11523 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
11524
11525 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
11526 "qXfer:memory-map:read", "memory-map", 0);
11527
11528 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
11529 "qXfer:spu:read", "read-spu-object", 0);
11530
11531 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
11532 "qXfer:spu:write", "write-spu-object", 0);
11533
11534 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
11535 "qXfer:osdata:read", "osdata", 0);
11536
11537 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
11538 "qXfer:threads:read", "threads", 0);
11539
11540 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
11541 "qXfer:siginfo:read", "read-siginfo-object", 0);
11542
11543 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
11544 "qXfer:siginfo:write", "write-siginfo-object", 0);
11545
11546 add_packet_config_cmd
11547 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
11548 "qXfer:trace-frame-info:read", "traceframe-info", 0);
11549
11550 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
11551 "qXfer:uib:read", "unwind-info-block", 0);
11552
11553 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
11554 "qGetTLSAddr", "get-thread-local-storage-address",
11555 0);
11556
11557 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
11558 "qGetTIBAddr", "get-thread-information-block-address",
11559 0);
11560
11561 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
11562 "bc", "reverse-continue", 0);
11563
11564 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
11565 "bs", "reverse-step", 0);
11566
11567 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
11568 "qSupported", "supported-packets", 0);
11569
11570 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
11571 "qSearch:memory", "search-memory", 0);
11572
11573 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
11574 "vFile:open", "hostio-open", 0);
11575
11576 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
11577 "vFile:pread", "hostio-pread", 0);
11578
11579 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
11580 "vFile:pwrite", "hostio-pwrite", 0);
11581
11582 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
11583 "vFile:close", "hostio-close", 0);
11584
11585 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
11586 "vFile:unlink", "hostio-unlink", 0);
11587
11588 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
11589 "vFile:readlink", "hostio-readlink", 0);
11590
11591 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
11592 "vAttach", "attach", 0);
11593
11594 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
11595 "vRun", "run", 0);
11596
11597 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
11598 "QStartNoAckMode", "noack", 0);
11599
11600 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
11601 "vKill", "kill", 0);
11602
11603 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
11604 "qAttached", "query-attached", 0);
11605
11606 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
11607 "ConditionalTracepoints",
11608 "conditional-tracepoints", 0);
11609
11610 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
11611 "ConditionalBreakpoints",
11612 "conditional-breakpoints", 0);
11613
11614 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
11615 "BreakpointCommands",
11616 "breakpoint-commands", 0);
11617
11618 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
11619 "FastTracepoints", "fast-tracepoints", 0);
11620
11621 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
11622 "TracepointSource", "TracepointSource", 0);
11623
11624 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
11625 "QAllow", "allow", 0);
11626
11627 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
11628 "StaticTracepoints", "static-tracepoints", 0);
11629
11630 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
11631 "InstallInTrace", "install-in-trace", 0);
11632
11633 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
11634 "qXfer:statictrace:read", "read-sdata-object", 0);
11635
11636 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
11637 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
11638
11639 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
11640 "QDisableRandomization", "disable-randomization", 0);
11641
11642 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
11643 "QAgent", "agent", 0);
11644
11645 /* Keep the old ``set remote Z-packet ...'' working. Each individual
11646 Z sub-packet has its own set and show commands, but users may
11647 have sets to this variable in their .gdbinit files (or in their
11648 documentation). */
11649 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
11650 &remote_Z_packet_detect, _("\
11651 Set use of remote protocol `Z' packets"), _("\
11652 Show use of remote protocol `Z' packets "), _("\
11653 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
11654 packets."),
11655 set_remote_protocol_Z_packet_cmd,
11656 show_remote_protocol_Z_packet_cmd,
11657 /* FIXME: i18n: Use of remote protocol
11658 `Z' packets is %s. */
11659 &remote_set_cmdlist, &remote_show_cmdlist);
11660
11661 add_prefix_cmd ("remote", class_files, remote_command, _("\
11662 Manipulate files on the remote system\n\
11663 Transfer files to and from the remote target system."),
11664 &remote_cmdlist, "remote ",
11665 0 /* allow-unknown */, &cmdlist);
11666
11667 add_cmd ("put", class_files, remote_put_command,
11668 _("Copy a local file to the remote system."),
11669 &remote_cmdlist);
11670
11671 add_cmd ("get", class_files, remote_get_command,
11672 _("Copy a remote file to the local system."),
11673 &remote_cmdlist);
11674
11675 add_cmd ("delete", class_files, remote_delete_command,
11676 _("Delete a remote file."),
11677 &remote_cmdlist);
11678
11679 remote_exec_file = xstrdup ("");
11680 add_setshow_string_noescape_cmd ("exec-file", class_files,
11681 &remote_exec_file, _("\
11682 Set the remote pathname for \"run\""), _("\
11683 Show the remote pathname for \"run\""), NULL, NULL, NULL,
11684 &remote_set_cmdlist, &remote_show_cmdlist);
11685
11686 /* Eventually initialize fileio. See fileio.c */
11687 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
11688
11689 /* Take advantage of the fact that the LWP field is not used, to tag
11690 special ptids with it set to != 0. */
11691 magic_null_ptid = ptid_build (42000, 1, -1);
11692 not_sent_ptid = ptid_build (42000, 1, -2);
11693 any_thread_ptid = ptid_build (42000, 1, 0);
11694
11695 target_buf_size = 2048;
11696 target_buf = xmalloc (target_buf_size);
11697 }
11698
This page took 0.307803 seconds and 4 git commands to generate.