remove comment in machoread.c (macho_symfile_read)
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63 #include "xml-support.h"
64
65 #include "memory-map.h"
66
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70
71 /* Temp hacks for tracepoint encoding migration. */
72 static char *target_buf;
73 static long target_buf_size;
74 /*static*/ void
75 encode_actions (struct breakpoint *t, struct bp_location *tloc,
76 char ***tdp_actions, char ***stepping_actions);
77
78 /* The size to align memory write packets, when practical. The protocol
79 does not guarantee any alignment, and gdb will generate short
80 writes and unaligned writes, but even as a best-effort attempt this
81 can improve bulk transfers. For instance, if a write is misaligned
82 relative to the target's data bus, the stub may need to make an extra
83 round trip fetching data from the target. This doesn't make a
84 huge difference, but it's easy to do, so we try to be helpful.
85
86 The alignment chosen is arbitrary; usually data bus width is
87 important here, not the possibly larger cache line size. */
88 enum { REMOTE_ALIGN_WRITES = 16 };
89
90 /* Prototypes for local functions. */
91 static void cleanup_sigint_signal_handler (void *dummy);
92 static void initialize_sigint_signal_handler (void);
93 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
94 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
95 int forever);
96
97 static void handle_remote_sigint (int);
98 static void handle_remote_sigint_twice (int);
99 static void async_remote_interrupt (gdb_client_data);
100 void async_remote_interrupt_twice (gdb_client_data);
101
102 static void remote_files_info (struct target_ops *ignore);
103
104 static void remote_prepare_to_store (struct regcache *regcache);
105
106 static void remote_open (char *name, int from_tty);
107
108 static void extended_remote_open (char *name, int from_tty);
109
110 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
111
112 static void remote_close (int quitting);
113
114 static void remote_mourn (struct target_ops *ops);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (struct target_ops *);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static void remote_kill (struct target_ops *ops);
127
128 static int tohex (int nib);
129
130 static int remote_can_async_p (void);
131
132 static int remote_is_async_p (void);
133
134 static void remote_async (void (*callback) (enum inferior_event_type event_type,
135 void *context), void *context);
136
137 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
138
139 static void remote_interrupt (int signo);
140
141 static void remote_interrupt_twice (int signo);
142
143 static void interrupt_query (void);
144
145 static void set_general_thread (struct ptid ptid);
146 static void set_continue_thread (struct ptid ptid);
147
148 static void get_offsets (void);
149
150 static void skip_frame (void);
151
152 static long read_frame (char **buf_p, long *sizeof_buf);
153
154 static int hexnumlen (ULONGEST num);
155
156 static void init_remote_ops (void);
157
158 static void init_extended_remote_ops (void);
159
160 static void remote_stop (ptid_t);
161
162 static int ishex (int ch, int *val);
163
164 static int stubhex (int ch);
165
166 static int hexnumstr (char *, ULONGEST);
167
168 static int hexnumnstr (char *, ULONGEST, int);
169
170 static CORE_ADDR remote_address_masked (CORE_ADDR);
171
172 static void print_packet (char *);
173
174 static void compare_sections_command (char *, int);
175
176 static void packet_command (char *, int);
177
178 static int stub_unpack_int (char *buff, int fieldlength);
179
180 static ptid_t remote_current_thread (ptid_t oldptid);
181
182 static void remote_find_new_threads (void);
183
184 static void record_currthread (ptid_t currthread);
185
186 static int fromhex (int a);
187
188 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
189
190 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
191
192 static int putpkt_binary (char *buf, int cnt);
193
194 static void check_binary_download (CORE_ADDR addr);
195
196 struct packet_config;
197
198 static void show_packet_config_cmd (struct packet_config *config);
199
200 static void update_packet_config (struct packet_config *config);
201
202 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
203 struct cmd_list_element *c);
204
205 static void show_remote_protocol_packet_cmd (struct ui_file *file,
206 int from_tty,
207 struct cmd_list_element *c,
208 const char *value);
209
210 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
211 static ptid_t read_ptid (char *buf, char **obuf);
212
213 static void remote_set_permissions (void);
214
215 struct remote_state;
216 static int remote_get_trace_status (struct trace_status *ts);
217
218 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
219
220 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
221
222 static void remote_query_supported (void);
223
224 static void remote_check_symbols (struct objfile *objfile);
225
226 void _initialize_remote (void);
227
228 struct stop_reply;
229 static struct stop_reply *stop_reply_xmalloc (void);
230 static void stop_reply_xfree (struct stop_reply *);
231 static void do_stop_reply_xfree (void *arg);
232 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
233 static void push_stop_reply (struct stop_reply *);
234 static void remote_get_pending_stop_replies (void);
235 static void discard_pending_stop_replies (int pid);
236 static int peek_stop_reply (ptid_t ptid);
237
238 static void remote_async_inferior_event_handler (gdb_client_data);
239 static void remote_async_get_pending_events_handler (gdb_client_data);
240
241 static void remote_terminal_ours (void);
242
243 static int remote_read_description_p (struct target_ops *target);
244
245 static void remote_console_output (char *msg);
246
247 /* The non-stop remote protocol provisions for one pending stop reply.
248 This is where we keep it until it is acknowledged. */
249
250 static struct stop_reply *pending_stop_reply = NULL;
251
252 /* For "remote". */
253
254 static struct cmd_list_element *remote_cmdlist;
255
256 /* For "set remote" and "show remote". */
257
258 static struct cmd_list_element *remote_set_cmdlist;
259 static struct cmd_list_element *remote_show_cmdlist;
260
261 /* Description of the remote protocol state for the currently
262 connected target. This is per-target state, and independent of the
263 selected architecture. */
264
265 struct remote_state
266 {
267 /* A buffer to use for incoming packets, and its current size. The
268 buffer is grown dynamically for larger incoming packets.
269 Outgoing packets may also be constructed in this buffer.
270 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
271 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
272 packets. */
273 char *buf;
274 long buf_size;
275
276 /* If we negotiated packet size explicitly (and thus can bypass
277 heuristics for the largest packet size that will not overflow
278 a buffer in the stub), this will be set to that packet size.
279 Otherwise zero, meaning to use the guessed size. */
280 long explicit_packet_size;
281
282 /* remote_wait is normally called when the target is running and
283 waits for a stop reply packet. But sometimes we need to call it
284 when the target is already stopped. We can send a "?" packet
285 and have remote_wait read the response. Or, if we already have
286 the response, we can stash it in BUF and tell remote_wait to
287 skip calling getpkt. This flag is set when BUF contains a
288 stop reply packet and the target is not waiting. */
289 int cached_wait_status;
290
291 /* True, if in no ack mode. That is, neither GDB nor the stub will
292 expect acks from each other. The connection is assumed to be
293 reliable. */
294 int noack_mode;
295
296 /* True if we're connected in extended remote mode. */
297 int extended;
298
299 /* True if the stub reported support for multi-process
300 extensions. */
301 int multi_process_aware;
302
303 /* True if we resumed the target and we're waiting for the target to
304 stop. In the mean time, we can't start another command/query.
305 The remote server wouldn't be ready to process it, so we'd
306 timeout waiting for a reply that would never come and eventually
307 we'd close the connection. This can happen in asynchronous mode
308 because we allow GDB commands while the target is running. */
309 int waiting_for_stop_reply;
310
311 /* True if the stub reports support for non-stop mode. */
312 int non_stop_aware;
313
314 /* True if the stub reports support for vCont;t. */
315 int support_vCont_t;
316
317 /* True if the stub reports support for conditional tracepoints. */
318 int cond_tracepoints;
319
320 /* True if the stub reports support for fast tracepoints. */
321 int fast_tracepoints;
322
323 /* True if the stub reports support for static tracepoints. */
324 int static_tracepoints;
325
326 /* True if the stub can continue running a trace while GDB is
327 disconnected. */
328 int disconnected_tracing;
329
330 /* True if the stub reports support for enabling and disabling
331 tracepoints while a trace experiment is running. */
332 int enable_disable_tracepoints;
333
334 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
335 responded to that. */
336 int ctrlc_pending_p;
337 };
338
339 /* Private data that we'll store in (struct thread_info)->private. */
340 struct private_thread_info
341 {
342 char *extra;
343 int core;
344 };
345
346 static void
347 free_private_thread_info (struct private_thread_info *info)
348 {
349 xfree (info->extra);
350 xfree (info);
351 }
352
353 /* Returns true if the multi-process extensions are in effect. */
354 static int
355 remote_multi_process_p (struct remote_state *rs)
356 {
357 return rs->extended && rs->multi_process_aware;
358 }
359
360 /* This data could be associated with a target, but we do not always
361 have access to the current target when we need it, so for now it is
362 static. This will be fine for as long as only one target is in use
363 at a time. */
364 static struct remote_state remote_state;
365
366 static struct remote_state *
367 get_remote_state_raw (void)
368 {
369 return &remote_state;
370 }
371
372 /* Description of the remote protocol for a given architecture. */
373
374 struct packet_reg
375 {
376 long offset; /* Offset into G packet. */
377 long regnum; /* GDB's internal register number. */
378 LONGEST pnum; /* Remote protocol register number. */
379 int in_g_packet; /* Always part of G packet. */
380 /* long size in bytes; == register_size (target_gdbarch, regnum);
381 at present. */
382 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
383 at present. */
384 };
385
386 struct remote_arch_state
387 {
388 /* Description of the remote protocol registers. */
389 long sizeof_g_packet;
390
391 /* Description of the remote protocol registers indexed by REGNUM
392 (making an array gdbarch_num_regs in size). */
393 struct packet_reg *regs;
394
395 /* This is the size (in chars) of the first response to the ``g''
396 packet. It is used as a heuristic when determining the maximum
397 size of memory-read and memory-write packets. A target will
398 typically only reserve a buffer large enough to hold the ``g''
399 packet. The size does not include packet overhead (headers and
400 trailers). */
401 long actual_register_packet_size;
402
403 /* This is the maximum size (in chars) of a non read/write packet.
404 It is also used as a cap on the size of read/write packets. */
405 long remote_packet_size;
406 };
407
408 long sizeof_pkt = 2000;
409
410 /* Utility: generate error from an incoming stub packet. */
411 static void
412 trace_error (char *buf)
413 {
414 if (*buf++ != 'E')
415 return; /* not an error msg */
416 switch (*buf)
417 {
418 case '1': /* malformed packet error */
419 if (*++buf == '0') /* general case: */
420 error (_("remote.c: error in outgoing packet."));
421 else
422 error (_("remote.c: error in outgoing packet at field #%ld."),
423 strtol (buf, NULL, 16));
424 case '2':
425 error (_("trace API error 0x%s."), ++buf);
426 default:
427 error (_("Target returns error code '%s'."), buf);
428 }
429 }
430
431 /* Utility: wait for reply from stub, while accepting "O" packets. */
432 static char *
433 remote_get_noisy_reply (char **buf_p,
434 long *sizeof_buf)
435 {
436 do /* Loop on reply from remote stub. */
437 {
438 char *buf;
439
440 QUIT; /* Allow user to bail out with ^C. */
441 getpkt (buf_p, sizeof_buf, 0);
442 buf = *buf_p;
443 if (buf[0] == 'E')
444 trace_error (buf);
445 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
446 {
447 ULONGEST ul;
448 CORE_ADDR from, to, org_to;
449 char *p, *pp;
450 int adjusted_size = 0;
451 volatile struct gdb_exception ex;
452
453 p = buf + strlen ("qRelocInsn:");
454 pp = unpack_varlen_hex (p, &ul);
455 if (*pp != ';')
456 error (_("invalid qRelocInsn packet: %s"), buf);
457 from = ul;
458
459 p = pp + 1;
460 unpack_varlen_hex (p, &ul);
461 to = ul;
462
463 org_to = to;
464
465 TRY_CATCH (ex, RETURN_MASK_ALL)
466 {
467 gdbarch_relocate_instruction (target_gdbarch, &to, from);
468 }
469 if (ex.reason >= 0)
470 {
471 adjusted_size = to - org_to;
472
473 sprintf (buf, "qRelocInsn:%x", adjusted_size);
474 putpkt (buf);
475 }
476 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
477 {
478 /* Propagate memory errors silently back to the target.
479 The stub may have limited the range of addresses we
480 can write to, for example. */
481 putpkt ("E01");
482 }
483 else
484 {
485 /* Something unexpectedly bad happened. Be verbose so
486 we can tell what, and propagate the error back to the
487 stub, so it doesn't get stuck waiting for a
488 response. */
489 exception_fprintf (gdb_stderr, ex,
490 _("warning: relocating instruction: "));
491 putpkt ("E01");
492 }
493 }
494 else if (buf[0] == 'O' && buf[1] != 'K')
495 remote_console_output (buf + 1); /* 'O' message from stub */
496 else
497 return buf; /* Here's the actual reply. */
498 }
499 while (1);
500 }
501
502 /* Handle for retreving the remote protocol data from gdbarch. */
503 static struct gdbarch_data *remote_gdbarch_data_handle;
504
505 static struct remote_arch_state *
506 get_remote_arch_state (void)
507 {
508 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
509 }
510
511 /* Fetch the global remote target state. */
512
513 static struct remote_state *
514 get_remote_state (void)
515 {
516 /* Make sure that the remote architecture state has been
517 initialized, because doing so might reallocate rs->buf. Any
518 function which calls getpkt also needs to be mindful of changes
519 to rs->buf, but this call limits the number of places which run
520 into trouble. */
521 get_remote_arch_state ();
522
523 return get_remote_state_raw ();
524 }
525
526 static int
527 compare_pnums (const void *lhs_, const void *rhs_)
528 {
529 const struct packet_reg * const *lhs = lhs_;
530 const struct packet_reg * const *rhs = rhs_;
531
532 if ((*lhs)->pnum < (*rhs)->pnum)
533 return -1;
534 else if ((*lhs)->pnum == (*rhs)->pnum)
535 return 0;
536 else
537 return 1;
538 }
539
540 static int
541 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
542 {
543 int regnum, num_remote_regs, offset;
544 struct packet_reg **remote_regs;
545
546 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
547 {
548 struct packet_reg *r = &regs[regnum];
549
550 if (register_size (gdbarch, regnum) == 0)
551 /* Do not try to fetch zero-sized (placeholder) registers. */
552 r->pnum = -1;
553 else
554 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
555
556 r->regnum = regnum;
557 }
558
559 /* Define the g/G packet format as the contents of each register
560 with a remote protocol number, in order of ascending protocol
561 number. */
562
563 remote_regs = alloca (gdbarch_num_regs (gdbarch)
564 * sizeof (struct packet_reg *));
565 for (num_remote_regs = 0, regnum = 0;
566 regnum < gdbarch_num_regs (gdbarch);
567 regnum++)
568 if (regs[regnum].pnum != -1)
569 remote_regs[num_remote_regs++] = &regs[regnum];
570
571 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
572 compare_pnums);
573
574 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
575 {
576 remote_regs[regnum]->in_g_packet = 1;
577 remote_regs[regnum]->offset = offset;
578 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
579 }
580
581 return offset;
582 }
583
584 /* Given the architecture described by GDBARCH, return the remote
585 protocol register's number and the register's offset in the g/G
586 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
587 If the target does not have a mapping for REGNUM, return false,
588 otherwise, return true. */
589
590 int
591 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
592 int *pnum, int *poffset)
593 {
594 int sizeof_g_packet;
595 struct packet_reg *regs;
596 struct cleanup *old_chain;
597
598 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
599
600 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
601 old_chain = make_cleanup (xfree, regs);
602
603 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
604
605 *pnum = regs[regnum].pnum;
606 *poffset = regs[regnum].offset;
607
608 do_cleanups (old_chain);
609
610 return *pnum != -1;
611 }
612
613 static void *
614 init_remote_state (struct gdbarch *gdbarch)
615 {
616 struct remote_state *rs = get_remote_state_raw ();
617 struct remote_arch_state *rsa;
618
619 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
620
621 /* Use the architecture to build a regnum<->pnum table, which will be
622 1:1 unless a feature set specifies otherwise. */
623 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
624 gdbarch_num_regs (gdbarch),
625 struct packet_reg);
626
627 /* Record the maximum possible size of the g packet - it may turn out
628 to be smaller. */
629 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
630
631 /* Default maximum number of characters in a packet body. Many
632 remote stubs have a hardwired buffer size of 400 bytes
633 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
634 as the maximum packet-size to ensure that the packet and an extra
635 NUL character can always fit in the buffer. This stops GDB
636 trashing stubs that try to squeeze an extra NUL into what is
637 already a full buffer (As of 1999-12-04 that was most stubs). */
638 rsa->remote_packet_size = 400 - 1;
639
640 /* This one is filled in when a ``g'' packet is received. */
641 rsa->actual_register_packet_size = 0;
642
643 /* Should rsa->sizeof_g_packet needs more space than the
644 default, adjust the size accordingly. Remember that each byte is
645 encoded as two characters. 32 is the overhead for the packet
646 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
647 (``$NN:G...#NN'') is a better guess, the below has been padded a
648 little. */
649 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
650 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
651
652 /* Make sure that the packet buffer is plenty big enough for
653 this architecture. */
654 if (rs->buf_size < rsa->remote_packet_size)
655 {
656 rs->buf_size = 2 * rsa->remote_packet_size;
657 rs->buf = xrealloc (rs->buf, rs->buf_size);
658 }
659
660 return rsa;
661 }
662
663 /* Return the current allowed size of a remote packet. This is
664 inferred from the current architecture, and should be used to
665 limit the length of outgoing packets. */
666 static long
667 get_remote_packet_size (void)
668 {
669 struct remote_state *rs = get_remote_state ();
670 struct remote_arch_state *rsa = get_remote_arch_state ();
671
672 if (rs->explicit_packet_size)
673 return rs->explicit_packet_size;
674
675 return rsa->remote_packet_size;
676 }
677
678 static struct packet_reg *
679 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
680 {
681 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
682 return NULL;
683 else
684 {
685 struct packet_reg *r = &rsa->regs[regnum];
686
687 gdb_assert (r->regnum == regnum);
688 return r;
689 }
690 }
691
692 static struct packet_reg *
693 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
694 {
695 int i;
696
697 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
698 {
699 struct packet_reg *r = &rsa->regs[i];
700
701 if (r->pnum == pnum)
702 return r;
703 }
704 return NULL;
705 }
706
707 /* FIXME: graces/2002-08-08: These variables should eventually be
708 bound to an instance of the target object (as in gdbarch-tdep()),
709 when such a thing exists. */
710
711 /* This is set to the data address of the access causing the target
712 to stop for a watchpoint. */
713 static CORE_ADDR remote_watch_data_address;
714
715 /* This is non-zero if target stopped for a watchpoint. */
716 static int remote_stopped_by_watchpoint_p;
717
718 static struct target_ops remote_ops;
719
720 static struct target_ops extended_remote_ops;
721
722 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
723 ``forever'' still use the normal timeout mechanism. This is
724 currently used by the ASYNC code to guarentee that target reads
725 during the initial connect always time-out. Once getpkt has been
726 modified to return a timeout indication and, in turn
727 remote_wait()/wait_for_inferior() have gained a timeout parameter
728 this can go away. */
729 static int wait_forever_enabled_p = 1;
730
731 /* Allow the user to specify what sequence to send to the remote
732 when he requests a program interruption: Although ^C is usually
733 what remote systems expect (this is the default, here), it is
734 sometimes preferable to send a break. On other systems such
735 as the Linux kernel, a break followed by g, which is Magic SysRq g
736 is required in order to interrupt the execution. */
737 const char interrupt_sequence_control_c[] = "Ctrl-C";
738 const char interrupt_sequence_break[] = "BREAK";
739 const char interrupt_sequence_break_g[] = "BREAK-g";
740 static const char *interrupt_sequence_modes[] =
741 {
742 interrupt_sequence_control_c,
743 interrupt_sequence_break,
744 interrupt_sequence_break_g,
745 NULL
746 };
747 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
748
749 static void
750 show_interrupt_sequence (struct ui_file *file, int from_tty,
751 struct cmd_list_element *c,
752 const char *value)
753 {
754 if (interrupt_sequence_mode == interrupt_sequence_control_c)
755 fprintf_filtered (file,
756 _("Send the ASCII ETX character (Ctrl-c) "
757 "to the remote target to interrupt the "
758 "execution of the program.\n"));
759 else if (interrupt_sequence_mode == interrupt_sequence_break)
760 fprintf_filtered (file,
761 _("send a break signal to the remote target "
762 "to interrupt the execution of the program.\n"));
763 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
764 fprintf_filtered (file,
765 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
766 "the remote target to interrupt the execution "
767 "of Linux kernel.\n"));
768 else
769 internal_error (__FILE__, __LINE__,
770 _("Invalid value for interrupt_sequence_mode: %s."),
771 interrupt_sequence_mode);
772 }
773
774 /* This boolean variable specifies whether interrupt_sequence is sent
775 to the remote target when gdb connects to it.
776 This is mostly needed when you debug the Linux kernel: The Linux kernel
777 expects BREAK g which is Magic SysRq g for connecting gdb. */
778 static int interrupt_on_connect = 0;
779
780 /* This variable is used to implement the "set/show remotebreak" commands.
781 Since these commands are now deprecated in favor of "set/show remote
782 interrupt-sequence", it no longer has any effect on the code. */
783 static int remote_break;
784
785 static void
786 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
787 {
788 if (remote_break)
789 interrupt_sequence_mode = interrupt_sequence_break;
790 else
791 interrupt_sequence_mode = interrupt_sequence_control_c;
792 }
793
794 static void
795 show_remotebreak (struct ui_file *file, int from_tty,
796 struct cmd_list_element *c,
797 const char *value)
798 {
799 }
800
801 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
802 remote_open knows that we don't have a file open when the program
803 starts. */
804 static struct serial *remote_desc = NULL;
805
806 /* This variable sets the number of bits in an address that are to be
807 sent in a memory ("M" or "m") packet. Normally, after stripping
808 leading zeros, the entire address would be sent. This variable
809 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
810 initial implementation of remote.c restricted the address sent in
811 memory packets to ``host::sizeof long'' bytes - (typically 32
812 bits). Consequently, for 64 bit targets, the upper 32 bits of an
813 address was never sent. Since fixing this bug may cause a break in
814 some remote targets this variable is principly provided to
815 facilitate backward compatibility. */
816
817 static int remote_address_size;
818
819 /* Temporary to track who currently owns the terminal. See
820 remote_terminal_* for more details. */
821
822 static int remote_async_terminal_ours_p;
823
824 /* The executable file to use for "run" on the remote side. */
825
826 static char *remote_exec_file = "";
827
828 \f
829 /* User configurable variables for the number of characters in a
830 memory read/write packet. MIN (rsa->remote_packet_size,
831 rsa->sizeof_g_packet) is the default. Some targets need smaller
832 values (fifo overruns, et.al.) and some users need larger values
833 (speed up transfers). The variables ``preferred_*'' (the user
834 request), ``current_*'' (what was actually set) and ``forced_*''
835 (Positive - a soft limit, negative - a hard limit). */
836
837 struct memory_packet_config
838 {
839 char *name;
840 long size;
841 int fixed_p;
842 };
843
844 /* Compute the current size of a read/write packet. Since this makes
845 use of ``actual_register_packet_size'' the computation is dynamic. */
846
847 static long
848 get_memory_packet_size (struct memory_packet_config *config)
849 {
850 struct remote_state *rs = get_remote_state ();
851 struct remote_arch_state *rsa = get_remote_arch_state ();
852
853 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
854 law?) that some hosts don't cope very well with large alloca()
855 calls. Eventually the alloca() code will be replaced by calls to
856 xmalloc() and make_cleanups() allowing this restriction to either
857 be lifted or removed. */
858 #ifndef MAX_REMOTE_PACKET_SIZE
859 #define MAX_REMOTE_PACKET_SIZE 16384
860 #endif
861 /* NOTE: 20 ensures we can write at least one byte. */
862 #ifndef MIN_REMOTE_PACKET_SIZE
863 #define MIN_REMOTE_PACKET_SIZE 20
864 #endif
865 long what_they_get;
866 if (config->fixed_p)
867 {
868 if (config->size <= 0)
869 what_they_get = MAX_REMOTE_PACKET_SIZE;
870 else
871 what_they_get = config->size;
872 }
873 else
874 {
875 what_they_get = get_remote_packet_size ();
876 /* Limit the packet to the size specified by the user. */
877 if (config->size > 0
878 && what_they_get > config->size)
879 what_they_get = config->size;
880
881 /* Limit it to the size of the targets ``g'' response unless we have
882 permission from the stub to use a larger packet size. */
883 if (rs->explicit_packet_size == 0
884 && rsa->actual_register_packet_size > 0
885 && what_they_get > rsa->actual_register_packet_size)
886 what_they_get = rsa->actual_register_packet_size;
887 }
888 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
889 what_they_get = MAX_REMOTE_PACKET_SIZE;
890 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
891 what_they_get = MIN_REMOTE_PACKET_SIZE;
892
893 /* Make sure there is room in the global buffer for this packet
894 (including its trailing NUL byte). */
895 if (rs->buf_size < what_they_get + 1)
896 {
897 rs->buf_size = 2 * what_they_get;
898 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
899 }
900
901 return what_they_get;
902 }
903
904 /* Update the size of a read/write packet. If they user wants
905 something really big then do a sanity check. */
906
907 static void
908 set_memory_packet_size (char *args, struct memory_packet_config *config)
909 {
910 int fixed_p = config->fixed_p;
911 long size = config->size;
912
913 if (args == NULL)
914 error (_("Argument required (integer, `fixed' or `limited')."));
915 else if (strcmp (args, "hard") == 0
916 || strcmp (args, "fixed") == 0)
917 fixed_p = 1;
918 else if (strcmp (args, "soft") == 0
919 || strcmp (args, "limit") == 0)
920 fixed_p = 0;
921 else
922 {
923 char *end;
924
925 size = strtoul (args, &end, 0);
926 if (args == end)
927 error (_("Invalid %s (bad syntax)."), config->name);
928 #if 0
929 /* Instead of explicitly capping the size of a packet to
930 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
931 instead allowed to set the size to something arbitrarily
932 large. */
933 if (size > MAX_REMOTE_PACKET_SIZE)
934 error (_("Invalid %s (too large)."), config->name);
935 #endif
936 }
937 /* Extra checks? */
938 if (fixed_p && !config->fixed_p)
939 {
940 if (! query (_("The target may not be able to correctly handle a %s\n"
941 "of %ld bytes. Change the packet size? "),
942 config->name, size))
943 error (_("Packet size not changed."));
944 }
945 /* Update the config. */
946 config->fixed_p = fixed_p;
947 config->size = size;
948 }
949
950 static void
951 show_memory_packet_size (struct memory_packet_config *config)
952 {
953 printf_filtered (_("The %s is %ld. "), config->name, config->size);
954 if (config->fixed_p)
955 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
956 get_memory_packet_size (config));
957 else
958 printf_filtered (_("Packets are limited to %ld bytes.\n"),
959 get_memory_packet_size (config));
960 }
961
962 static struct memory_packet_config memory_write_packet_config =
963 {
964 "memory-write-packet-size",
965 };
966
967 static void
968 set_memory_write_packet_size (char *args, int from_tty)
969 {
970 set_memory_packet_size (args, &memory_write_packet_config);
971 }
972
973 static void
974 show_memory_write_packet_size (char *args, int from_tty)
975 {
976 show_memory_packet_size (&memory_write_packet_config);
977 }
978
979 static long
980 get_memory_write_packet_size (void)
981 {
982 return get_memory_packet_size (&memory_write_packet_config);
983 }
984
985 static struct memory_packet_config memory_read_packet_config =
986 {
987 "memory-read-packet-size",
988 };
989
990 static void
991 set_memory_read_packet_size (char *args, int from_tty)
992 {
993 set_memory_packet_size (args, &memory_read_packet_config);
994 }
995
996 static void
997 show_memory_read_packet_size (char *args, int from_tty)
998 {
999 show_memory_packet_size (&memory_read_packet_config);
1000 }
1001
1002 static long
1003 get_memory_read_packet_size (void)
1004 {
1005 long size = get_memory_packet_size (&memory_read_packet_config);
1006
1007 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1008 extra buffer size argument before the memory read size can be
1009 increased beyond this. */
1010 if (size > get_remote_packet_size ())
1011 size = get_remote_packet_size ();
1012 return size;
1013 }
1014
1015 \f
1016 /* Generic configuration support for packets the stub optionally
1017 supports. Allows the user to specify the use of the packet as well
1018 as allowing GDB to auto-detect support in the remote stub. */
1019
1020 enum packet_support
1021 {
1022 PACKET_SUPPORT_UNKNOWN = 0,
1023 PACKET_ENABLE,
1024 PACKET_DISABLE
1025 };
1026
1027 struct packet_config
1028 {
1029 const char *name;
1030 const char *title;
1031 enum auto_boolean detect;
1032 enum packet_support support;
1033 };
1034
1035 /* Analyze a packet's return value and update the packet config
1036 accordingly. */
1037
1038 enum packet_result
1039 {
1040 PACKET_ERROR,
1041 PACKET_OK,
1042 PACKET_UNKNOWN
1043 };
1044
1045 static void
1046 update_packet_config (struct packet_config *config)
1047 {
1048 switch (config->detect)
1049 {
1050 case AUTO_BOOLEAN_TRUE:
1051 config->support = PACKET_ENABLE;
1052 break;
1053 case AUTO_BOOLEAN_FALSE:
1054 config->support = PACKET_DISABLE;
1055 break;
1056 case AUTO_BOOLEAN_AUTO:
1057 config->support = PACKET_SUPPORT_UNKNOWN;
1058 break;
1059 }
1060 }
1061
1062 static void
1063 show_packet_config_cmd (struct packet_config *config)
1064 {
1065 char *support = "internal-error";
1066
1067 switch (config->support)
1068 {
1069 case PACKET_ENABLE:
1070 support = "enabled";
1071 break;
1072 case PACKET_DISABLE:
1073 support = "disabled";
1074 break;
1075 case PACKET_SUPPORT_UNKNOWN:
1076 support = "unknown";
1077 break;
1078 }
1079 switch (config->detect)
1080 {
1081 case AUTO_BOOLEAN_AUTO:
1082 printf_filtered (_("Support for the `%s' packet "
1083 "is auto-detected, currently %s.\n"),
1084 config->name, support);
1085 break;
1086 case AUTO_BOOLEAN_TRUE:
1087 case AUTO_BOOLEAN_FALSE:
1088 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1089 config->name, support);
1090 break;
1091 }
1092 }
1093
1094 static void
1095 add_packet_config_cmd (struct packet_config *config, const char *name,
1096 const char *title, int legacy)
1097 {
1098 char *set_doc;
1099 char *show_doc;
1100 char *cmd_name;
1101
1102 config->name = name;
1103 config->title = title;
1104 config->detect = AUTO_BOOLEAN_AUTO;
1105 config->support = PACKET_SUPPORT_UNKNOWN;
1106 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1107 name, title);
1108 show_doc = xstrprintf ("Show current use of remote "
1109 "protocol `%s' (%s) packet",
1110 name, title);
1111 /* set/show TITLE-packet {auto,on,off} */
1112 cmd_name = xstrprintf ("%s-packet", title);
1113 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1114 &config->detect, set_doc,
1115 show_doc, NULL, /* help_doc */
1116 set_remote_protocol_packet_cmd,
1117 show_remote_protocol_packet_cmd,
1118 &remote_set_cmdlist, &remote_show_cmdlist);
1119 /* The command code copies the documentation strings. */
1120 xfree (set_doc);
1121 xfree (show_doc);
1122 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1123 if (legacy)
1124 {
1125 char *legacy_name;
1126
1127 legacy_name = xstrprintf ("%s-packet", name);
1128 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1129 &remote_set_cmdlist);
1130 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1131 &remote_show_cmdlist);
1132 }
1133 }
1134
1135 static enum packet_result
1136 packet_check_result (const char *buf)
1137 {
1138 if (buf[0] != '\0')
1139 {
1140 /* The stub recognized the packet request. Check that the
1141 operation succeeded. */
1142 if (buf[0] == 'E'
1143 && isxdigit (buf[1]) && isxdigit (buf[2])
1144 && buf[3] == '\0')
1145 /* "Enn" - definitly an error. */
1146 return PACKET_ERROR;
1147
1148 /* Always treat "E." as an error. This will be used for
1149 more verbose error messages, such as E.memtypes. */
1150 if (buf[0] == 'E' && buf[1] == '.')
1151 return PACKET_ERROR;
1152
1153 /* The packet may or may not be OK. Just assume it is. */
1154 return PACKET_OK;
1155 }
1156 else
1157 /* The stub does not support the packet. */
1158 return PACKET_UNKNOWN;
1159 }
1160
1161 static enum packet_result
1162 packet_ok (const char *buf, struct packet_config *config)
1163 {
1164 enum packet_result result;
1165
1166 result = packet_check_result (buf);
1167 switch (result)
1168 {
1169 case PACKET_OK:
1170 case PACKET_ERROR:
1171 /* The stub recognized the packet request. */
1172 switch (config->support)
1173 {
1174 case PACKET_SUPPORT_UNKNOWN:
1175 if (remote_debug)
1176 fprintf_unfiltered (gdb_stdlog,
1177 "Packet %s (%s) is supported\n",
1178 config->name, config->title);
1179 config->support = PACKET_ENABLE;
1180 break;
1181 case PACKET_DISABLE:
1182 internal_error (__FILE__, __LINE__,
1183 _("packet_ok: attempt to use a disabled packet"));
1184 break;
1185 case PACKET_ENABLE:
1186 break;
1187 }
1188 break;
1189 case PACKET_UNKNOWN:
1190 /* The stub does not support the packet. */
1191 switch (config->support)
1192 {
1193 case PACKET_ENABLE:
1194 if (config->detect == AUTO_BOOLEAN_AUTO)
1195 /* If the stub previously indicated that the packet was
1196 supported then there is a protocol error.. */
1197 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1198 config->name, config->title);
1199 else
1200 /* The user set it wrong. */
1201 error (_("Enabled packet %s (%s) not recognized by stub"),
1202 config->name, config->title);
1203 break;
1204 case PACKET_SUPPORT_UNKNOWN:
1205 if (remote_debug)
1206 fprintf_unfiltered (gdb_stdlog,
1207 "Packet %s (%s) is NOT supported\n",
1208 config->name, config->title);
1209 config->support = PACKET_DISABLE;
1210 break;
1211 case PACKET_DISABLE:
1212 break;
1213 }
1214 break;
1215 }
1216
1217 return result;
1218 }
1219
1220 enum {
1221 PACKET_vCont = 0,
1222 PACKET_X,
1223 PACKET_qSymbol,
1224 PACKET_P,
1225 PACKET_p,
1226 PACKET_Z0,
1227 PACKET_Z1,
1228 PACKET_Z2,
1229 PACKET_Z3,
1230 PACKET_Z4,
1231 PACKET_vFile_open,
1232 PACKET_vFile_pread,
1233 PACKET_vFile_pwrite,
1234 PACKET_vFile_close,
1235 PACKET_vFile_unlink,
1236 PACKET_qXfer_auxv,
1237 PACKET_qXfer_features,
1238 PACKET_qXfer_libraries,
1239 PACKET_qXfer_memory_map,
1240 PACKET_qXfer_spu_read,
1241 PACKET_qXfer_spu_write,
1242 PACKET_qXfer_osdata,
1243 PACKET_qXfer_threads,
1244 PACKET_qXfer_statictrace_read,
1245 PACKET_qXfer_traceframe_info,
1246 PACKET_qGetTIBAddr,
1247 PACKET_qGetTLSAddr,
1248 PACKET_qSupported,
1249 PACKET_QPassSignals,
1250 PACKET_qSearch_memory,
1251 PACKET_vAttach,
1252 PACKET_vRun,
1253 PACKET_QStartNoAckMode,
1254 PACKET_vKill,
1255 PACKET_qXfer_siginfo_read,
1256 PACKET_qXfer_siginfo_write,
1257 PACKET_qAttached,
1258 PACKET_ConditionalTracepoints,
1259 PACKET_FastTracepoints,
1260 PACKET_StaticTracepoints,
1261 PACKET_bc,
1262 PACKET_bs,
1263 PACKET_TracepointSource,
1264 PACKET_QAllow,
1265 PACKET_MAX
1266 };
1267
1268 static struct packet_config remote_protocol_packets[PACKET_MAX];
1269
1270 static void
1271 set_remote_protocol_packet_cmd (char *args, int from_tty,
1272 struct cmd_list_element *c)
1273 {
1274 struct packet_config *packet;
1275
1276 for (packet = remote_protocol_packets;
1277 packet < &remote_protocol_packets[PACKET_MAX];
1278 packet++)
1279 {
1280 if (&packet->detect == c->var)
1281 {
1282 update_packet_config (packet);
1283 return;
1284 }
1285 }
1286 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1287 c->name);
1288 }
1289
1290 static void
1291 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1292 struct cmd_list_element *c,
1293 const char *value)
1294 {
1295 struct packet_config *packet;
1296
1297 for (packet = remote_protocol_packets;
1298 packet < &remote_protocol_packets[PACKET_MAX];
1299 packet++)
1300 {
1301 if (&packet->detect == c->var)
1302 {
1303 show_packet_config_cmd (packet);
1304 return;
1305 }
1306 }
1307 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1308 c->name);
1309 }
1310
1311 /* Should we try one of the 'Z' requests? */
1312
1313 enum Z_packet_type
1314 {
1315 Z_PACKET_SOFTWARE_BP,
1316 Z_PACKET_HARDWARE_BP,
1317 Z_PACKET_WRITE_WP,
1318 Z_PACKET_READ_WP,
1319 Z_PACKET_ACCESS_WP,
1320 NR_Z_PACKET_TYPES
1321 };
1322
1323 /* For compatibility with older distributions. Provide a ``set remote
1324 Z-packet ...'' command that updates all the Z packet types. */
1325
1326 static enum auto_boolean remote_Z_packet_detect;
1327
1328 static void
1329 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1330 struct cmd_list_element *c)
1331 {
1332 int i;
1333
1334 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1335 {
1336 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1337 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1338 }
1339 }
1340
1341 static void
1342 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1343 struct cmd_list_element *c,
1344 const char *value)
1345 {
1346 int i;
1347
1348 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1349 {
1350 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1351 }
1352 }
1353
1354 /* Should we try the 'ThreadInfo' query packet?
1355
1356 This variable (NOT available to the user: auto-detect only!)
1357 determines whether GDB will use the new, simpler "ThreadInfo"
1358 query or the older, more complex syntax for thread queries.
1359 This is an auto-detect variable (set to true at each connect,
1360 and set to false when the target fails to recognize it). */
1361
1362 static int use_threadinfo_query;
1363 static int use_threadextra_query;
1364
1365 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1366 static struct async_signal_handler *sigint_remote_twice_token;
1367 static struct async_signal_handler *sigint_remote_token;
1368
1369 \f
1370 /* Asynchronous signal handle registered as event loop source for
1371 when we have pending events ready to be passed to the core. */
1372
1373 static struct async_event_handler *remote_async_inferior_event_token;
1374
1375 /* Asynchronous signal handle registered as event loop source for when
1376 the remote sent us a %Stop notification. The registered callback
1377 will do a vStopped sequence to pull the rest of the events out of
1378 the remote side into our event queue. */
1379
1380 static struct async_event_handler *remote_async_get_pending_events_token;
1381 \f
1382
1383 static ptid_t magic_null_ptid;
1384 static ptid_t not_sent_ptid;
1385 static ptid_t any_thread_ptid;
1386
1387 /* These are the threads which we last sent to the remote system. The
1388 TID member will be -1 for all or -2 for not sent yet. */
1389
1390 static ptid_t general_thread;
1391 static ptid_t continue_thread;
1392
1393 /* This the traceframe which we last selected on the remote system.
1394 It will be -1 if no traceframe is selected. */
1395 static int remote_traceframe_number = -1;
1396
1397 /* Find out if the stub attached to PID (and hence GDB should offer to
1398 detach instead of killing it when bailing out). */
1399
1400 static int
1401 remote_query_attached (int pid)
1402 {
1403 struct remote_state *rs = get_remote_state ();
1404
1405 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1406 return 0;
1407
1408 if (remote_multi_process_p (rs))
1409 sprintf (rs->buf, "qAttached:%x", pid);
1410 else
1411 sprintf (rs->buf, "qAttached");
1412
1413 putpkt (rs->buf);
1414 getpkt (&rs->buf, &rs->buf_size, 0);
1415
1416 switch (packet_ok (rs->buf,
1417 &remote_protocol_packets[PACKET_qAttached]))
1418 {
1419 case PACKET_OK:
1420 if (strcmp (rs->buf, "1") == 0)
1421 return 1;
1422 break;
1423 case PACKET_ERROR:
1424 warning (_("Remote failure reply: %s"), rs->buf);
1425 break;
1426 case PACKET_UNKNOWN:
1427 break;
1428 }
1429
1430 return 0;
1431 }
1432
1433 /* Add PID to GDB's inferior table. Since we can be connected to a
1434 remote system before before knowing about any inferior, mark the
1435 target with execution when we find the first inferior. If ATTACHED
1436 is 1, then we had just attached to this inferior. If it is 0, then
1437 we just created this inferior. If it is -1, then try querying the
1438 remote stub to find out if it had attached to the inferior or
1439 not. */
1440
1441 static struct inferior *
1442 remote_add_inferior (int pid, int attached)
1443 {
1444 struct inferior *inf;
1445
1446 /* Check whether this process we're learning about is to be
1447 considered attached, or if is to be considered to have been
1448 spawned by the stub. */
1449 if (attached == -1)
1450 attached = remote_query_attached (pid);
1451
1452 if (gdbarch_has_global_solist (target_gdbarch))
1453 {
1454 /* If the target shares code across all inferiors, then every
1455 attach adds a new inferior. */
1456 inf = add_inferior (pid);
1457
1458 /* ... and every inferior is bound to the same program space.
1459 However, each inferior may still have its own address
1460 space. */
1461 inf->aspace = maybe_new_address_space ();
1462 inf->pspace = current_program_space;
1463 }
1464 else
1465 {
1466 /* In the traditional debugging scenario, there's a 1-1 match
1467 between program/address spaces. We simply bind the inferior
1468 to the program space's address space. */
1469 inf = current_inferior ();
1470 inferior_appeared (inf, pid);
1471 }
1472
1473 inf->attach_flag = attached;
1474
1475 return inf;
1476 }
1477
1478 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1479 according to RUNNING. */
1480
1481 static void
1482 remote_add_thread (ptid_t ptid, int running)
1483 {
1484 add_thread (ptid);
1485
1486 set_executing (ptid, running);
1487 set_running (ptid, running);
1488 }
1489
1490 /* Come here when we learn about a thread id from the remote target.
1491 It may be the first time we hear about such thread, so take the
1492 opportunity to add it to GDB's thread list. In case this is the
1493 first time we're noticing its corresponding inferior, add it to
1494 GDB's inferior list as well. */
1495
1496 static void
1497 remote_notice_new_inferior (ptid_t currthread, int running)
1498 {
1499 /* If this is a new thread, add it to GDB's thread list.
1500 If we leave it up to WFI to do this, bad things will happen. */
1501
1502 if (in_thread_list (currthread) && is_exited (currthread))
1503 {
1504 /* We're seeing an event on a thread id we knew had exited.
1505 This has to be a new thread reusing the old id. Add it. */
1506 remote_add_thread (currthread, running);
1507 return;
1508 }
1509
1510 if (!in_thread_list (currthread))
1511 {
1512 struct inferior *inf = NULL;
1513 int pid = ptid_get_pid (currthread);
1514
1515 if (ptid_is_pid (inferior_ptid)
1516 && pid == ptid_get_pid (inferior_ptid))
1517 {
1518 /* inferior_ptid has no thread member yet. This can happen
1519 with the vAttach -> remote_wait,"TAAthread:" path if the
1520 stub doesn't support qC. This is the first stop reported
1521 after an attach, so this is the main thread. Update the
1522 ptid in the thread list. */
1523 if (in_thread_list (pid_to_ptid (pid)))
1524 thread_change_ptid (inferior_ptid, currthread);
1525 else
1526 {
1527 remote_add_thread (currthread, running);
1528 inferior_ptid = currthread;
1529 }
1530 return;
1531 }
1532
1533 if (ptid_equal (magic_null_ptid, inferior_ptid))
1534 {
1535 /* inferior_ptid is not set yet. This can happen with the
1536 vRun -> remote_wait,"TAAthread:" path if the stub
1537 doesn't support qC. This is the first stop reported
1538 after an attach, so this is the main thread. Update the
1539 ptid in the thread list. */
1540 thread_change_ptid (inferior_ptid, currthread);
1541 return;
1542 }
1543
1544 /* When connecting to a target remote, or to a target
1545 extended-remote which already was debugging an inferior, we
1546 may not know about it yet. Add it before adding its child
1547 thread, so notifications are emitted in a sensible order. */
1548 if (!in_inferior_list (ptid_get_pid (currthread)))
1549 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1550
1551 /* This is really a new thread. Add it. */
1552 remote_add_thread (currthread, running);
1553
1554 /* If we found a new inferior, let the common code do whatever
1555 it needs to with it (e.g., read shared libraries, insert
1556 breakpoints). */
1557 if (inf != NULL)
1558 notice_new_inferior (currthread, running, 0);
1559 }
1560 }
1561
1562 /* Return the private thread data, creating it if necessary. */
1563
1564 struct private_thread_info *
1565 demand_private_info (ptid_t ptid)
1566 {
1567 struct thread_info *info = find_thread_ptid (ptid);
1568
1569 gdb_assert (info);
1570
1571 if (!info->private)
1572 {
1573 info->private = xmalloc (sizeof (*(info->private)));
1574 info->private_dtor = free_private_thread_info;
1575 info->private->core = -1;
1576 info->private->extra = 0;
1577 }
1578
1579 return info->private;
1580 }
1581
1582 /* Call this function as a result of
1583 1) A halt indication (T packet) containing a thread id
1584 2) A direct query of currthread
1585 3) Successful execution of set thread */
1586
1587 static void
1588 record_currthread (ptid_t currthread)
1589 {
1590 general_thread = currthread;
1591 }
1592
1593 static char *last_pass_packet;
1594
1595 /* If 'QPassSignals' is supported, tell the remote stub what signals
1596 it can simply pass through to the inferior without reporting. */
1597
1598 static void
1599 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1600 {
1601 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1602 {
1603 char *pass_packet, *p;
1604 int count = 0, i;
1605
1606 gdb_assert (numsigs < 256);
1607 for (i = 0; i < numsigs; i++)
1608 {
1609 if (pass_signals[i])
1610 count++;
1611 }
1612 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1613 strcpy (pass_packet, "QPassSignals:");
1614 p = pass_packet + strlen (pass_packet);
1615 for (i = 0; i < numsigs; i++)
1616 {
1617 if (pass_signals[i])
1618 {
1619 if (i >= 16)
1620 *p++ = tohex (i >> 4);
1621 *p++ = tohex (i & 15);
1622 if (count)
1623 *p++ = ';';
1624 else
1625 break;
1626 count--;
1627 }
1628 }
1629 *p = 0;
1630 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1631 {
1632 struct remote_state *rs = get_remote_state ();
1633 char *buf = rs->buf;
1634
1635 putpkt (pass_packet);
1636 getpkt (&rs->buf, &rs->buf_size, 0);
1637 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1638 if (last_pass_packet)
1639 xfree (last_pass_packet);
1640 last_pass_packet = pass_packet;
1641 }
1642 else
1643 xfree (pass_packet);
1644 }
1645 }
1646
1647 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1648 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1649 thread. If GEN is set, set the general thread, if not, then set
1650 the step/continue thread. */
1651 static void
1652 set_thread (struct ptid ptid, int gen)
1653 {
1654 struct remote_state *rs = get_remote_state ();
1655 ptid_t state = gen ? general_thread : continue_thread;
1656 char *buf = rs->buf;
1657 char *endbuf = rs->buf + get_remote_packet_size ();
1658
1659 if (ptid_equal (state, ptid))
1660 return;
1661
1662 *buf++ = 'H';
1663 *buf++ = gen ? 'g' : 'c';
1664 if (ptid_equal (ptid, magic_null_ptid))
1665 xsnprintf (buf, endbuf - buf, "0");
1666 else if (ptid_equal (ptid, any_thread_ptid))
1667 xsnprintf (buf, endbuf - buf, "0");
1668 else if (ptid_equal (ptid, minus_one_ptid))
1669 xsnprintf (buf, endbuf - buf, "-1");
1670 else
1671 write_ptid (buf, endbuf, ptid);
1672 putpkt (rs->buf);
1673 getpkt (&rs->buf, &rs->buf_size, 0);
1674 if (gen)
1675 general_thread = ptid;
1676 else
1677 continue_thread = ptid;
1678 }
1679
1680 static void
1681 set_general_thread (struct ptid ptid)
1682 {
1683 set_thread (ptid, 1);
1684 }
1685
1686 static void
1687 set_continue_thread (struct ptid ptid)
1688 {
1689 set_thread (ptid, 0);
1690 }
1691
1692 /* Change the remote current process. Which thread within the process
1693 ends up selected isn't important, as long as it is the same process
1694 as what INFERIOR_PTID points to.
1695
1696 This comes from that fact that there is no explicit notion of
1697 "selected process" in the protocol. The selected process for
1698 general operations is the process the selected general thread
1699 belongs to. */
1700
1701 static void
1702 set_general_process (void)
1703 {
1704 struct remote_state *rs = get_remote_state ();
1705
1706 /* If the remote can't handle multiple processes, don't bother. */
1707 if (!remote_multi_process_p (rs))
1708 return;
1709
1710 /* We only need to change the remote current thread if it's pointing
1711 at some other process. */
1712 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1713 set_general_thread (inferior_ptid);
1714 }
1715
1716 \f
1717 /* Return nonzero if the thread PTID is still alive on the remote
1718 system. */
1719
1720 static int
1721 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1722 {
1723 struct remote_state *rs = get_remote_state ();
1724 char *p, *endp;
1725
1726 if (ptid_equal (ptid, magic_null_ptid))
1727 /* The main thread is always alive. */
1728 return 1;
1729
1730 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1731 /* The main thread is always alive. This can happen after a
1732 vAttach, if the remote side doesn't support
1733 multi-threading. */
1734 return 1;
1735
1736 p = rs->buf;
1737 endp = rs->buf + get_remote_packet_size ();
1738
1739 *p++ = 'T';
1740 write_ptid (p, endp, ptid);
1741
1742 putpkt (rs->buf);
1743 getpkt (&rs->buf, &rs->buf_size, 0);
1744 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1745 }
1746
1747 /* About these extended threadlist and threadinfo packets. They are
1748 variable length packets but, the fields within them are often fixed
1749 length. They are redundent enough to send over UDP as is the
1750 remote protocol in general. There is a matching unit test module
1751 in libstub. */
1752
1753 #define OPAQUETHREADBYTES 8
1754
1755 /* a 64 bit opaque identifier */
1756 typedef unsigned char threadref[OPAQUETHREADBYTES];
1757
1758 /* WARNING: This threadref data structure comes from the remote O.S.,
1759 libstub protocol encoding, and remote.c. It is not particularly
1760 changable. */
1761
1762 /* Right now, the internal structure is int. We want it to be bigger.
1763 Plan to fix this. */
1764
1765 typedef int gdb_threadref; /* Internal GDB thread reference. */
1766
1767 /* gdb_ext_thread_info is an internal GDB data structure which is
1768 equivalent to the reply of the remote threadinfo packet. */
1769
1770 struct gdb_ext_thread_info
1771 {
1772 threadref threadid; /* External form of thread reference. */
1773 int active; /* Has state interesting to GDB?
1774 regs, stack. */
1775 char display[256]; /* Brief state display, name,
1776 blocked/suspended. */
1777 char shortname[32]; /* To be used to name threads. */
1778 char more_display[256]; /* Long info, statistics, queue depth,
1779 whatever. */
1780 };
1781
1782 /* The volume of remote transfers can be limited by submitting
1783 a mask containing bits specifying the desired information.
1784 Use a union of these values as the 'selection' parameter to
1785 get_thread_info. FIXME: Make these TAG names more thread specific. */
1786
1787 #define TAG_THREADID 1
1788 #define TAG_EXISTS 2
1789 #define TAG_DISPLAY 4
1790 #define TAG_THREADNAME 8
1791 #define TAG_MOREDISPLAY 16
1792
1793 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1794
1795 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1796
1797 static char *unpack_nibble (char *buf, int *val);
1798
1799 static char *pack_nibble (char *buf, int nibble);
1800
1801 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1802
1803 static char *unpack_byte (char *buf, int *value);
1804
1805 static char *pack_int (char *buf, int value);
1806
1807 static char *unpack_int (char *buf, int *value);
1808
1809 static char *unpack_string (char *src, char *dest, int length);
1810
1811 static char *pack_threadid (char *pkt, threadref *id);
1812
1813 static char *unpack_threadid (char *inbuf, threadref *id);
1814
1815 void int_to_threadref (threadref *id, int value);
1816
1817 static int threadref_to_int (threadref *ref);
1818
1819 static void copy_threadref (threadref *dest, threadref *src);
1820
1821 static int threadmatch (threadref *dest, threadref *src);
1822
1823 static char *pack_threadinfo_request (char *pkt, int mode,
1824 threadref *id);
1825
1826 static int remote_unpack_thread_info_response (char *pkt,
1827 threadref *expectedref,
1828 struct gdb_ext_thread_info
1829 *info);
1830
1831
1832 static int remote_get_threadinfo (threadref *threadid,
1833 int fieldset, /*TAG mask */
1834 struct gdb_ext_thread_info *info);
1835
1836 static char *pack_threadlist_request (char *pkt, int startflag,
1837 int threadcount,
1838 threadref *nextthread);
1839
1840 static int parse_threadlist_response (char *pkt,
1841 int result_limit,
1842 threadref *original_echo,
1843 threadref *resultlist,
1844 int *doneflag);
1845
1846 static int remote_get_threadlist (int startflag,
1847 threadref *nextthread,
1848 int result_limit,
1849 int *done,
1850 int *result_count,
1851 threadref *threadlist);
1852
1853 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1854
1855 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1856 void *context, int looplimit);
1857
1858 static int remote_newthread_step (threadref *ref, void *context);
1859
1860
1861 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1862 buffer we're allowed to write to. Returns
1863 BUF+CHARACTERS_WRITTEN. */
1864
1865 static char *
1866 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1867 {
1868 int pid, tid;
1869 struct remote_state *rs = get_remote_state ();
1870
1871 if (remote_multi_process_p (rs))
1872 {
1873 pid = ptid_get_pid (ptid);
1874 if (pid < 0)
1875 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1876 else
1877 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1878 }
1879 tid = ptid_get_tid (ptid);
1880 if (tid < 0)
1881 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1882 else
1883 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1884
1885 return buf;
1886 }
1887
1888 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1889 passed the last parsed char. Returns null_ptid on error. */
1890
1891 static ptid_t
1892 read_ptid (char *buf, char **obuf)
1893 {
1894 char *p = buf;
1895 char *pp;
1896 ULONGEST pid = 0, tid = 0;
1897
1898 if (*p == 'p')
1899 {
1900 /* Multi-process ptid. */
1901 pp = unpack_varlen_hex (p + 1, &pid);
1902 if (*pp != '.')
1903 error (_("invalid remote ptid: %s"), p);
1904
1905 p = pp;
1906 pp = unpack_varlen_hex (p + 1, &tid);
1907 if (obuf)
1908 *obuf = pp;
1909 return ptid_build (pid, 0, tid);
1910 }
1911
1912 /* No multi-process. Just a tid. */
1913 pp = unpack_varlen_hex (p, &tid);
1914
1915 /* Since the stub is not sending a process id, then default to
1916 what's in inferior_ptid, unless it's null at this point. If so,
1917 then since there's no way to know the pid of the reported
1918 threads, use the magic number. */
1919 if (ptid_equal (inferior_ptid, null_ptid))
1920 pid = ptid_get_pid (magic_null_ptid);
1921 else
1922 pid = ptid_get_pid (inferior_ptid);
1923
1924 if (obuf)
1925 *obuf = pp;
1926 return ptid_build (pid, 0, tid);
1927 }
1928
1929 /* Encode 64 bits in 16 chars of hex. */
1930
1931 static const char hexchars[] = "0123456789abcdef";
1932
1933 static int
1934 ishex (int ch, int *val)
1935 {
1936 if ((ch >= 'a') && (ch <= 'f'))
1937 {
1938 *val = ch - 'a' + 10;
1939 return 1;
1940 }
1941 if ((ch >= 'A') && (ch <= 'F'))
1942 {
1943 *val = ch - 'A' + 10;
1944 return 1;
1945 }
1946 if ((ch >= '0') && (ch <= '9'))
1947 {
1948 *val = ch - '0';
1949 return 1;
1950 }
1951 return 0;
1952 }
1953
1954 static int
1955 stubhex (int ch)
1956 {
1957 if (ch >= 'a' && ch <= 'f')
1958 return ch - 'a' + 10;
1959 if (ch >= '0' && ch <= '9')
1960 return ch - '0';
1961 if (ch >= 'A' && ch <= 'F')
1962 return ch - 'A' + 10;
1963 return -1;
1964 }
1965
1966 static int
1967 stub_unpack_int (char *buff, int fieldlength)
1968 {
1969 int nibble;
1970 int retval = 0;
1971
1972 while (fieldlength)
1973 {
1974 nibble = stubhex (*buff++);
1975 retval |= nibble;
1976 fieldlength--;
1977 if (fieldlength)
1978 retval = retval << 4;
1979 }
1980 return retval;
1981 }
1982
1983 char *
1984 unpack_varlen_hex (char *buff, /* packet to parse */
1985 ULONGEST *result)
1986 {
1987 int nibble;
1988 ULONGEST retval = 0;
1989
1990 while (ishex (*buff, &nibble))
1991 {
1992 buff++;
1993 retval = retval << 4;
1994 retval |= nibble & 0x0f;
1995 }
1996 *result = retval;
1997 return buff;
1998 }
1999
2000 static char *
2001 unpack_nibble (char *buf, int *val)
2002 {
2003 *val = fromhex (*buf++);
2004 return buf;
2005 }
2006
2007 static char *
2008 pack_nibble (char *buf, int nibble)
2009 {
2010 *buf++ = hexchars[(nibble & 0x0f)];
2011 return buf;
2012 }
2013
2014 static char *
2015 pack_hex_byte (char *pkt, int byte)
2016 {
2017 *pkt++ = hexchars[(byte >> 4) & 0xf];
2018 *pkt++ = hexchars[(byte & 0xf)];
2019 return pkt;
2020 }
2021
2022 static char *
2023 unpack_byte (char *buf, int *value)
2024 {
2025 *value = stub_unpack_int (buf, 2);
2026 return buf + 2;
2027 }
2028
2029 static char *
2030 pack_int (char *buf, int value)
2031 {
2032 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2033 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2034 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2035 buf = pack_hex_byte (buf, (value & 0xff));
2036 return buf;
2037 }
2038
2039 static char *
2040 unpack_int (char *buf, int *value)
2041 {
2042 *value = stub_unpack_int (buf, 8);
2043 return buf + 8;
2044 }
2045
2046 #if 0 /* Currently unused, uncomment when needed. */
2047 static char *pack_string (char *pkt, char *string);
2048
2049 static char *
2050 pack_string (char *pkt, char *string)
2051 {
2052 char ch;
2053 int len;
2054
2055 len = strlen (string);
2056 if (len > 200)
2057 len = 200; /* Bigger than most GDB packets, junk??? */
2058 pkt = pack_hex_byte (pkt, len);
2059 while (len-- > 0)
2060 {
2061 ch = *string++;
2062 if ((ch == '\0') || (ch == '#'))
2063 ch = '*'; /* Protect encapsulation. */
2064 *pkt++ = ch;
2065 }
2066 return pkt;
2067 }
2068 #endif /* 0 (unused) */
2069
2070 static char *
2071 unpack_string (char *src, char *dest, int length)
2072 {
2073 while (length--)
2074 *dest++ = *src++;
2075 *dest = '\0';
2076 return src;
2077 }
2078
2079 static char *
2080 pack_threadid (char *pkt, threadref *id)
2081 {
2082 char *limit;
2083 unsigned char *altid;
2084
2085 altid = (unsigned char *) id;
2086 limit = pkt + BUF_THREAD_ID_SIZE;
2087 while (pkt < limit)
2088 pkt = pack_hex_byte (pkt, *altid++);
2089 return pkt;
2090 }
2091
2092
2093 static char *
2094 unpack_threadid (char *inbuf, threadref *id)
2095 {
2096 char *altref;
2097 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2098 int x, y;
2099
2100 altref = (char *) id;
2101
2102 while (inbuf < limit)
2103 {
2104 x = stubhex (*inbuf++);
2105 y = stubhex (*inbuf++);
2106 *altref++ = (x << 4) | y;
2107 }
2108 return inbuf;
2109 }
2110
2111 /* Externally, threadrefs are 64 bits but internally, they are still
2112 ints. This is due to a mismatch of specifications. We would like
2113 to use 64bit thread references internally. This is an adapter
2114 function. */
2115
2116 void
2117 int_to_threadref (threadref *id, int value)
2118 {
2119 unsigned char *scan;
2120
2121 scan = (unsigned char *) id;
2122 {
2123 int i = 4;
2124 while (i--)
2125 *scan++ = 0;
2126 }
2127 *scan++ = (value >> 24) & 0xff;
2128 *scan++ = (value >> 16) & 0xff;
2129 *scan++ = (value >> 8) & 0xff;
2130 *scan++ = (value & 0xff);
2131 }
2132
2133 static int
2134 threadref_to_int (threadref *ref)
2135 {
2136 int i, value = 0;
2137 unsigned char *scan;
2138
2139 scan = *ref;
2140 scan += 4;
2141 i = 4;
2142 while (i-- > 0)
2143 value = (value << 8) | ((*scan++) & 0xff);
2144 return value;
2145 }
2146
2147 static void
2148 copy_threadref (threadref *dest, threadref *src)
2149 {
2150 int i;
2151 unsigned char *csrc, *cdest;
2152
2153 csrc = (unsigned char *) src;
2154 cdest = (unsigned char *) dest;
2155 i = 8;
2156 while (i--)
2157 *cdest++ = *csrc++;
2158 }
2159
2160 static int
2161 threadmatch (threadref *dest, threadref *src)
2162 {
2163 /* Things are broken right now, so just assume we got a match. */
2164 #if 0
2165 unsigned char *srcp, *destp;
2166 int i, result;
2167 srcp = (char *) src;
2168 destp = (char *) dest;
2169
2170 result = 1;
2171 while (i-- > 0)
2172 result &= (*srcp++ == *destp++) ? 1 : 0;
2173 return result;
2174 #endif
2175 return 1;
2176 }
2177
2178 /*
2179 threadid:1, # always request threadid
2180 context_exists:2,
2181 display:4,
2182 unique_name:8,
2183 more_display:16
2184 */
2185
2186 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2187
2188 static char *
2189 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2190 {
2191 *pkt++ = 'q'; /* Info Query */
2192 *pkt++ = 'P'; /* process or thread info */
2193 pkt = pack_int (pkt, mode); /* mode */
2194 pkt = pack_threadid (pkt, id); /* threadid */
2195 *pkt = '\0'; /* terminate */
2196 return pkt;
2197 }
2198
2199 /* These values tag the fields in a thread info response packet. */
2200 /* Tagging the fields allows us to request specific fields and to
2201 add more fields as time goes by. */
2202
2203 #define TAG_THREADID 1 /* Echo the thread identifier. */
2204 #define TAG_EXISTS 2 /* Is this process defined enough to
2205 fetch registers and its stack? */
2206 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2207 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2208 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2209 the process. */
2210
2211 static int
2212 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2213 struct gdb_ext_thread_info *info)
2214 {
2215 struct remote_state *rs = get_remote_state ();
2216 int mask, length;
2217 int tag;
2218 threadref ref;
2219 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2220 int retval = 1;
2221
2222 /* info->threadid = 0; FIXME: implement zero_threadref. */
2223 info->active = 0;
2224 info->display[0] = '\0';
2225 info->shortname[0] = '\0';
2226 info->more_display[0] = '\0';
2227
2228 /* Assume the characters indicating the packet type have been
2229 stripped. */
2230 pkt = unpack_int (pkt, &mask); /* arg mask */
2231 pkt = unpack_threadid (pkt, &ref);
2232
2233 if (mask == 0)
2234 warning (_("Incomplete response to threadinfo request."));
2235 if (!threadmatch (&ref, expectedref))
2236 { /* This is an answer to a different request. */
2237 warning (_("ERROR RMT Thread info mismatch."));
2238 return 0;
2239 }
2240 copy_threadref (&info->threadid, &ref);
2241
2242 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2243
2244 /* Packets are terminated with nulls. */
2245 while ((pkt < limit) && mask && *pkt)
2246 {
2247 pkt = unpack_int (pkt, &tag); /* tag */
2248 pkt = unpack_byte (pkt, &length); /* length */
2249 if (!(tag & mask)) /* Tags out of synch with mask. */
2250 {
2251 warning (_("ERROR RMT: threadinfo tag mismatch."));
2252 retval = 0;
2253 break;
2254 }
2255 if (tag == TAG_THREADID)
2256 {
2257 if (length != 16)
2258 {
2259 warning (_("ERROR RMT: length of threadid is not 16."));
2260 retval = 0;
2261 break;
2262 }
2263 pkt = unpack_threadid (pkt, &ref);
2264 mask = mask & ~TAG_THREADID;
2265 continue;
2266 }
2267 if (tag == TAG_EXISTS)
2268 {
2269 info->active = stub_unpack_int (pkt, length);
2270 pkt += length;
2271 mask = mask & ~(TAG_EXISTS);
2272 if (length > 8)
2273 {
2274 warning (_("ERROR RMT: 'exists' length too long."));
2275 retval = 0;
2276 break;
2277 }
2278 continue;
2279 }
2280 if (tag == TAG_THREADNAME)
2281 {
2282 pkt = unpack_string (pkt, &info->shortname[0], length);
2283 mask = mask & ~TAG_THREADNAME;
2284 continue;
2285 }
2286 if (tag == TAG_DISPLAY)
2287 {
2288 pkt = unpack_string (pkt, &info->display[0], length);
2289 mask = mask & ~TAG_DISPLAY;
2290 continue;
2291 }
2292 if (tag == TAG_MOREDISPLAY)
2293 {
2294 pkt = unpack_string (pkt, &info->more_display[0], length);
2295 mask = mask & ~TAG_MOREDISPLAY;
2296 continue;
2297 }
2298 warning (_("ERROR RMT: unknown thread info tag."));
2299 break; /* Not a tag we know about. */
2300 }
2301 return retval;
2302 }
2303
2304 static int
2305 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2306 struct gdb_ext_thread_info *info)
2307 {
2308 struct remote_state *rs = get_remote_state ();
2309 int result;
2310
2311 pack_threadinfo_request (rs->buf, fieldset, threadid);
2312 putpkt (rs->buf);
2313 getpkt (&rs->buf, &rs->buf_size, 0);
2314
2315 if (rs->buf[0] == '\0')
2316 return 0;
2317
2318 result = remote_unpack_thread_info_response (rs->buf + 2,
2319 threadid, info);
2320 return result;
2321 }
2322
2323 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2324
2325 static char *
2326 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2327 threadref *nextthread)
2328 {
2329 *pkt++ = 'q'; /* info query packet */
2330 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2331 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2332 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2333 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2334 *pkt = '\0';
2335 return pkt;
2336 }
2337
2338 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2339
2340 static int
2341 parse_threadlist_response (char *pkt, int result_limit,
2342 threadref *original_echo, threadref *resultlist,
2343 int *doneflag)
2344 {
2345 struct remote_state *rs = get_remote_state ();
2346 char *limit;
2347 int count, resultcount, done;
2348
2349 resultcount = 0;
2350 /* Assume the 'q' and 'M chars have been stripped. */
2351 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2352 /* done parse past here */
2353 pkt = unpack_byte (pkt, &count); /* count field */
2354 pkt = unpack_nibble (pkt, &done);
2355 /* The first threadid is the argument threadid. */
2356 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2357 while ((count-- > 0) && (pkt < limit))
2358 {
2359 pkt = unpack_threadid (pkt, resultlist++);
2360 if (resultcount++ >= result_limit)
2361 break;
2362 }
2363 if (doneflag)
2364 *doneflag = done;
2365 return resultcount;
2366 }
2367
2368 static int
2369 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2370 int *done, int *result_count, threadref *threadlist)
2371 {
2372 struct remote_state *rs = get_remote_state ();
2373 static threadref echo_nextthread;
2374 int result = 1;
2375
2376 /* Trancate result limit to be smaller than the packet size. */
2377 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2378 >= get_remote_packet_size ())
2379 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2380
2381 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2382 putpkt (rs->buf);
2383 getpkt (&rs->buf, &rs->buf_size, 0);
2384
2385 if (*rs->buf == '\0')
2386 return 0;
2387 else
2388 *result_count =
2389 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2390 threadlist, done);
2391
2392 if (!threadmatch (&echo_nextthread, nextthread))
2393 {
2394 /* FIXME: This is a good reason to drop the packet. */
2395 /* Possably, there is a duplicate response. */
2396 /* Possabilities :
2397 retransmit immediatly - race conditions
2398 retransmit after timeout - yes
2399 exit
2400 wait for packet, then exit
2401 */
2402 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2403 return 0; /* I choose simply exiting. */
2404 }
2405 if (*result_count <= 0)
2406 {
2407 if (*done != 1)
2408 {
2409 warning (_("RMT ERROR : failed to get remote thread list."));
2410 result = 0;
2411 }
2412 return result; /* break; */
2413 }
2414 if (*result_count > result_limit)
2415 {
2416 *result_count = 0;
2417 warning (_("RMT ERROR: threadlist response longer than requested."));
2418 return 0;
2419 }
2420 return result;
2421 }
2422
2423 /* This is the interface between remote and threads, remotes upper
2424 interface. */
2425
2426 /* remote_find_new_threads retrieves the thread list and for each
2427 thread in the list, looks up the thread in GDB's internal list,
2428 adding the thread if it does not already exist. This involves
2429 getting partial thread lists from the remote target so, polling the
2430 quit_flag is required. */
2431
2432
2433 /* About this many threadisds fit in a packet. */
2434
2435 #define MAXTHREADLISTRESULTS 32
2436
2437 static int
2438 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2439 int looplimit)
2440 {
2441 int done, i, result_count;
2442 int startflag = 1;
2443 int result = 1;
2444 int loopcount = 0;
2445 static threadref nextthread;
2446 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2447
2448 done = 0;
2449 while (!done)
2450 {
2451 if (loopcount++ > looplimit)
2452 {
2453 result = 0;
2454 warning (_("Remote fetch threadlist -infinite loop-."));
2455 break;
2456 }
2457 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2458 &done, &result_count, resultthreadlist))
2459 {
2460 result = 0;
2461 break;
2462 }
2463 /* Clear for later iterations. */
2464 startflag = 0;
2465 /* Setup to resume next batch of thread references, set nextthread. */
2466 if (result_count >= 1)
2467 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2468 i = 0;
2469 while (result_count--)
2470 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2471 break;
2472 }
2473 return result;
2474 }
2475
2476 static int
2477 remote_newthread_step (threadref *ref, void *context)
2478 {
2479 int pid = ptid_get_pid (inferior_ptid);
2480 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2481
2482 if (!in_thread_list (ptid))
2483 add_thread (ptid);
2484 return 1; /* continue iterator */
2485 }
2486
2487 #define CRAZY_MAX_THREADS 1000
2488
2489 static ptid_t
2490 remote_current_thread (ptid_t oldpid)
2491 {
2492 struct remote_state *rs = get_remote_state ();
2493
2494 putpkt ("qC");
2495 getpkt (&rs->buf, &rs->buf_size, 0);
2496 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2497 return read_ptid (&rs->buf[2], NULL);
2498 else
2499 return oldpid;
2500 }
2501
2502 /* Find new threads for info threads command.
2503 * Original version, using John Metzler's thread protocol.
2504 */
2505
2506 static void
2507 remote_find_new_threads (void)
2508 {
2509 remote_threadlist_iterator (remote_newthread_step, 0,
2510 CRAZY_MAX_THREADS);
2511 }
2512
2513 #if defined(HAVE_LIBEXPAT)
2514
2515 typedef struct thread_item
2516 {
2517 ptid_t ptid;
2518 char *extra;
2519 int core;
2520 } thread_item_t;
2521 DEF_VEC_O(thread_item_t);
2522
2523 struct threads_parsing_context
2524 {
2525 VEC (thread_item_t) *items;
2526 };
2527
2528 static void
2529 start_thread (struct gdb_xml_parser *parser,
2530 const struct gdb_xml_element *element,
2531 void *user_data, VEC(gdb_xml_value_s) *attributes)
2532 {
2533 struct threads_parsing_context *data = user_data;
2534
2535 struct thread_item item;
2536 char *id;
2537 struct gdb_xml_value *attr;
2538
2539 id = xml_find_attribute (attributes, "id")->value;
2540 item.ptid = read_ptid (id, NULL);
2541
2542 attr = xml_find_attribute (attributes, "core");
2543 if (attr != NULL)
2544 item.core = *(ULONGEST *) attr->value;
2545 else
2546 item.core = -1;
2547
2548 item.extra = 0;
2549
2550 VEC_safe_push (thread_item_t, data->items, &item);
2551 }
2552
2553 static void
2554 end_thread (struct gdb_xml_parser *parser,
2555 const struct gdb_xml_element *element,
2556 void *user_data, const char *body_text)
2557 {
2558 struct threads_parsing_context *data = user_data;
2559
2560 if (body_text && *body_text)
2561 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2562 }
2563
2564 const struct gdb_xml_attribute thread_attributes[] = {
2565 { "id", GDB_XML_AF_NONE, NULL, NULL },
2566 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2567 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2568 };
2569
2570 const struct gdb_xml_element thread_children[] = {
2571 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2572 };
2573
2574 const struct gdb_xml_element threads_children[] = {
2575 { "thread", thread_attributes, thread_children,
2576 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2577 start_thread, end_thread },
2578 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2579 };
2580
2581 const struct gdb_xml_element threads_elements[] = {
2582 { "threads", NULL, threads_children,
2583 GDB_XML_EF_NONE, NULL, NULL },
2584 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2585 };
2586
2587 /* Discard the contents of the constructed thread info context. */
2588
2589 static void
2590 clear_threads_parsing_context (void *p)
2591 {
2592 struct threads_parsing_context *context = p;
2593 int i;
2594 struct thread_item *item;
2595
2596 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2597 xfree (item->extra);
2598
2599 VEC_free (thread_item_t, context->items);
2600 }
2601
2602 #endif
2603
2604 /*
2605 * Find all threads for info threads command.
2606 * Uses new thread protocol contributed by Cisco.
2607 * Falls back and attempts to use the older method (above)
2608 * if the target doesn't respond to the new method.
2609 */
2610
2611 static void
2612 remote_threads_info (struct target_ops *ops)
2613 {
2614 struct remote_state *rs = get_remote_state ();
2615 char *bufp;
2616 ptid_t new_thread;
2617
2618 if (remote_desc == 0) /* paranoia */
2619 error (_("Command can only be used when connected to the remote target."));
2620
2621 #if defined(HAVE_LIBEXPAT)
2622 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2623 {
2624 char *xml = target_read_stralloc (&current_target,
2625 TARGET_OBJECT_THREADS, NULL);
2626
2627 struct cleanup *back_to = make_cleanup (xfree, xml);
2628
2629 if (xml && *xml)
2630 {
2631 struct threads_parsing_context context;
2632
2633 context.items = NULL;
2634 make_cleanup (clear_threads_parsing_context, &context);
2635
2636 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2637 threads_elements, xml, &context) == 0)
2638 {
2639 int i;
2640 struct thread_item *item;
2641
2642 for (i = 0;
2643 VEC_iterate (thread_item_t, context.items, i, item);
2644 ++i)
2645 {
2646 if (!ptid_equal (item->ptid, null_ptid))
2647 {
2648 struct private_thread_info *info;
2649 /* In non-stop mode, we assume new found threads
2650 are running until proven otherwise with a
2651 stop reply. In all-stop, we can only get
2652 here if all threads are stopped. */
2653 int running = non_stop ? 1 : 0;
2654
2655 remote_notice_new_inferior (item->ptid, running);
2656
2657 info = demand_private_info (item->ptid);
2658 info->core = item->core;
2659 info->extra = item->extra;
2660 item->extra = NULL;
2661 }
2662 }
2663 }
2664 }
2665
2666 do_cleanups (back_to);
2667 return;
2668 }
2669 #endif
2670
2671 if (use_threadinfo_query)
2672 {
2673 putpkt ("qfThreadInfo");
2674 getpkt (&rs->buf, &rs->buf_size, 0);
2675 bufp = rs->buf;
2676 if (bufp[0] != '\0') /* q packet recognized */
2677 {
2678 while (*bufp++ == 'm') /* reply contains one or more TID */
2679 {
2680 do
2681 {
2682 new_thread = read_ptid (bufp, &bufp);
2683 if (!ptid_equal (new_thread, null_ptid))
2684 {
2685 /* In non-stop mode, we assume new found threads
2686 are running until proven otherwise with a
2687 stop reply. In all-stop, we can only get
2688 here if all threads are stopped. */
2689 int running = non_stop ? 1 : 0;
2690
2691 remote_notice_new_inferior (new_thread, running);
2692 }
2693 }
2694 while (*bufp++ == ','); /* comma-separated list */
2695 putpkt ("qsThreadInfo");
2696 getpkt (&rs->buf, &rs->buf_size, 0);
2697 bufp = rs->buf;
2698 }
2699 return; /* done */
2700 }
2701 }
2702
2703 /* Only qfThreadInfo is supported in non-stop mode. */
2704 if (non_stop)
2705 return;
2706
2707 /* Else fall back to old method based on jmetzler protocol. */
2708 use_threadinfo_query = 0;
2709 remote_find_new_threads ();
2710 return;
2711 }
2712
2713 /*
2714 * Collect a descriptive string about the given thread.
2715 * The target may say anything it wants to about the thread
2716 * (typically info about its blocked / runnable state, name, etc.).
2717 * This string will appear in the info threads display.
2718 *
2719 * Optional: targets are not required to implement this function.
2720 */
2721
2722 static char *
2723 remote_threads_extra_info (struct thread_info *tp)
2724 {
2725 struct remote_state *rs = get_remote_state ();
2726 int result;
2727 int set;
2728 threadref id;
2729 struct gdb_ext_thread_info threadinfo;
2730 static char display_buf[100]; /* arbitrary... */
2731 int n = 0; /* position in display_buf */
2732
2733 if (remote_desc == 0) /* paranoia */
2734 internal_error (__FILE__, __LINE__,
2735 _("remote_threads_extra_info"));
2736
2737 if (ptid_equal (tp->ptid, magic_null_ptid)
2738 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2739 /* This is the main thread which was added by GDB. The remote
2740 server doesn't know about it. */
2741 return NULL;
2742
2743 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2744 {
2745 struct thread_info *info = find_thread_ptid (tp->ptid);
2746
2747 if (info && info->private)
2748 return info->private->extra;
2749 else
2750 return NULL;
2751 }
2752
2753 if (use_threadextra_query)
2754 {
2755 char *b = rs->buf;
2756 char *endb = rs->buf + get_remote_packet_size ();
2757
2758 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2759 b += strlen (b);
2760 write_ptid (b, endb, tp->ptid);
2761
2762 putpkt (rs->buf);
2763 getpkt (&rs->buf, &rs->buf_size, 0);
2764 if (rs->buf[0] != 0)
2765 {
2766 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2767 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2768 display_buf [result] = '\0';
2769 return display_buf;
2770 }
2771 }
2772
2773 /* If the above query fails, fall back to the old method. */
2774 use_threadextra_query = 0;
2775 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2776 | TAG_MOREDISPLAY | TAG_DISPLAY;
2777 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2778 if (remote_get_threadinfo (&id, set, &threadinfo))
2779 if (threadinfo.active)
2780 {
2781 if (*threadinfo.shortname)
2782 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2783 " Name: %s,", threadinfo.shortname);
2784 if (*threadinfo.display)
2785 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2786 " State: %s,", threadinfo.display);
2787 if (*threadinfo.more_display)
2788 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2789 " Priority: %s", threadinfo.more_display);
2790
2791 if (n > 0)
2792 {
2793 /* For purely cosmetic reasons, clear up trailing commas. */
2794 if (',' == display_buf[n-1])
2795 display_buf[n-1] = ' ';
2796 return display_buf;
2797 }
2798 }
2799 return NULL;
2800 }
2801 \f
2802
2803 static int
2804 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2805 struct static_tracepoint_marker *marker)
2806 {
2807 struct remote_state *rs = get_remote_state ();
2808 char *p = rs->buf;
2809
2810 sprintf (p, "qTSTMat:");
2811 p += strlen (p);
2812 p += hexnumstr (p, addr);
2813 putpkt (rs->buf);
2814 getpkt (&rs->buf, &rs->buf_size, 0);
2815 p = rs->buf;
2816
2817 if (*p == 'E')
2818 error (_("Remote failure reply: %s"), p);
2819
2820 if (*p++ == 'm')
2821 {
2822 parse_static_tracepoint_marker_definition (p, &p, marker);
2823 return 1;
2824 }
2825
2826 return 0;
2827 }
2828
2829 static void
2830 free_current_marker (void *arg)
2831 {
2832 struct static_tracepoint_marker **marker_p = arg;
2833
2834 if (*marker_p != NULL)
2835 {
2836 release_static_tracepoint_marker (*marker_p);
2837 xfree (*marker_p);
2838 }
2839 else
2840 *marker_p = NULL;
2841 }
2842
2843 static VEC(static_tracepoint_marker_p) *
2844 remote_static_tracepoint_markers_by_strid (const char *strid)
2845 {
2846 struct remote_state *rs = get_remote_state ();
2847 VEC(static_tracepoint_marker_p) *markers = NULL;
2848 struct static_tracepoint_marker *marker = NULL;
2849 struct cleanup *old_chain;
2850 char *p;
2851
2852 /* Ask for a first packet of static tracepoint marker
2853 definition. */
2854 putpkt ("qTfSTM");
2855 getpkt (&rs->buf, &rs->buf_size, 0);
2856 p = rs->buf;
2857 if (*p == 'E')
2858 error (_("Remote failure reply: %s"), p);
2859
2860 old_chain = make_cleanup (free_current_marker, &marker);
2861
2862 while (*p++ == 'm')
2863 {
2864 if (marker == NULL)
2865 marker = XCNEW (struct static_tracepoint_marker);
2866
2867 do
2868 {
2869 parse_static_tracepoint_marker_definition (p, &p, marker);
2870
2871 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2872 {
2873 VEC_safe_push (static_tracepoint_marker_p,
2874 markers, marker);
2875 marker = NULL;
2876 }
2877 else
2878 {
2879 release_static_tracepoint_marker (marker);
2880 memset (marker, 0, sizeof (*marker));
2881 }
2882 }
2883 while (*p++ == ','); /* comma-separated list */
2884 /* Ask for another packet of static tracepoint definition. */
2885 putpkt ("qTsSTM");
2886 getpkt (&rs->buf, &rs->buf_size, 0);
2887 p = rs->buf;
2888 }
2889
2890 do_cleanups (old_chain);
2891 return markers;
2892 }
2893
2894 \f
2895 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2896
2897 static ptid_t
2898 remote_get_ada_task_ptid (long lwp, long thread)
2899 {
2900 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2901 }
2902 \f
2903
2904 /* Restart the remote side; this is an extended protocol operation. */
2905
2906 static void
2907 extended_remote_restart (void)
2908 {
2909 struct remote_state *rs = get_remote_state ();
2910
2911 /* Send the restart command; for reasons I don't understand the
2912 remote side really expects a number after the "R". */
2913 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2914 putpkt (rs->buf);
2915
2916 remote_fileio_reset ();
2917 }
2918 \f
2919 /* Clean up connection to a remote debugger. */
2920
2921 static void
2922 remote_close (int quitting)
2923 {
2924 if (remote_desc == NULL)
2925 return; /* already closed */
2926
2927 /* Make sure we leave stdin registered in the event loop, and we
2928 don't leave the async SIGINT signal handler installed. */
2929 remote_terminal_ours ();
2930
2931 serial_close (remote_desc);
2932 remote_desc = NULL;
2933
2934 /* We don't have a connection to the remote stub anymore. Get rid
2935 of all the inferiors and their threads we were controlling.
2936 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
2937 will be unable to find the thread corresponding to (pid, 0, 0). */
2938 inferior_ptid = null_ptid;
2939 discard_all_inferiors ();
2940
2941 /* We're no longer interested in any of these events. */
2942 discard_pending_stop_replies (-1);
2943
2944 if (remote_async_inferior_event_token)
2945 delete_async_event_handler (&remote_async_inferior_event_token);
2946 if (remote_async_get_pending_events_token)
2947 delete_async_event_handler (&remote_async_get_pending_events_token);
2948 }
2949
2950 /* Query the remote side for the text, data and bss offsets. */
2951
2952 static void
2953 get_offsets (void)
2954 {
2955 struct remote_state *rs = get_remote_state ();
2956 char *buf;
2957 char *ptr;
2958 int lose, num_segments = 0, do_sections, do_segments;
2959 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2960 struct section_offsets *offs;
2961 struct symfile_segment_data *data;
2962
2963 if (symfile_objfile == NULL)
2964 return;
2965
2966 putpkt ("qOffsets");
2967 getpkt (&rs->buf, &rs->buf_size, 0);
2968 buf = rs->buf;
2969
2970 if (buf[0] == '\000')
2971 return; /* Return silently. Stub doesn't support
2972 this command. */
2973 if (buf[0] == 'E')
2974 {
2975 warning (_("Remote failure reply: %s"), buf);
2976 return;
2977 }
2978
2979 /* Pick up each field in turn. This used to be done with scanf, but
2980 scanf will make trouble if CORE_ADDR size doesn't match
2981 conversion directives correctly. The following code will work
2982 with any size of CORE_ADDR. */
2983 text_addr = data_addr = bss_addr = 0;
2984 ptr = buf;
2985 lose = 0;
2986
2987 if (strncmp (ptr, "Text=", 5) == 0)
2988 {
2989 ptr += 5;
2990 /* Don't use strtol, could lose on big values. */
2991 while (*ptr && *ptr != ';')
2992 text_addr = (text_addr << 4) + fromhex (*ptr++);
2993
2994 if (strncmp (ptr, ";Data=", 6) == 0)
2995 {
2996 ptr += 6;
2997 while (*ptr && *ptr != ';')
2998 data_addr = (data_addr << 4) + fromhex (*ptr++);
2999 }
3000 else
3001 lose = 1;
3002
3003 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3004 {
3005 ptr += 5;
3006 while (*ptr && *ptr != ';')
3007 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3008
3009 if (bss_addr != data_addr)
3010 warning (_("Target reported unsupported offsets: %s"), buf);
3011 }
3012 else
3013 lose = 1;
3014 }
3015 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3016 {
3017 ptr += 8;
3018 /* Don't use strtol, could lose on big values. */
3019 while (*ptr && *ptr != ';')
3020 text_addr = (text_addr << 4) + fromhex (*ptr++);
3021 num_segments = 1;
3022
3023 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3024 {
3025 ptr += 9;
3026 while (*ptr && *ptr != ';')
3027 data_addr = (data_addr << 4) + fromhex (*ptr++);
3028 num_segments++;
3029 }
3030 }
3031 else
3032 lose = 1;
3033
3034 if (lose)
3035 error (_("Malformed response to offset query, %s"), buf);
3036 else if (*ptr != '\0')
3037 warning (_("Target reported unsupported offsets: %s"), buf);
3038
3039 offs = ((struct section_offsets *)
3040 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3041 memcpy (offs, symfile_objfile->section_offsets,
3042 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3043
3044 data = get_symfile_segment_data (symfile_objfile->obfd);
3045 do_segments = (data != NULL);
3046 do_sections = num_segments == 0;
3047
3048 if (num_segments > 0)
3049 {
3050 segments[0] = text_addr;
3051 segments[1] = data_addr;
3052 }
3053 /* If we have two segments, we can still try to relocate everything
3054 by assuming that the .text and .data offsets apply to the whole
3055 text and data segments. Convert the offsets given in the packet
3056 to base addresses for symfile_map_offsets_to_segments. */
3057 else if (data && data->num_segments == 2)
3058 {
3059 segments[0] = data->segment_bases[0] + text_addr;
3060 segments[1] = data->segment_bases[1] + data_addr;
3061 num_segments = 2;
3062 }
3063 /* If the object file has only one segment, assume that it is text
3064 rather than data; main programs with no writable data are rare,
3065 but programs with no code are useless. Of course the code might
3066 have ended up in the data segment... to detect that we would need
3067 the permissions here. */
3068 else if (data && data->num_segments == 1)
3069 {
3070 segments[0] = data->segment_bases[0] + text_addr;
3071 num_segments = 1;
3072 }
3073 /* There's no way to relocate by segment. */
3074 else
3075 do_segments = 0;
3076
3077 if (do_segments)
3078 {
3079 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3080 offs, num_segments, segments);
3081
3082 if (ret == 0 && !do_sections)
3083 error (_("Can not handle qOffsets TextSeg "
3084 "response with this symbol file"));
3085
3086 if (ret > 0)
3087 do_sections = 0;
3088 }
3089
3090 if (data)
3091 free_symfile_segment_data (data);
3092
3093 if (do_sections)
3094 {
3095 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3096
3097 /* This is a temporary kludge to force data and bss to use the
3098 same offsets because that's what nlmconv does now. The real
3099 solution requires changes to the stub and remote.c that I
3100 don't have time to do right now. */
3101
3102 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3103 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3104 }
3105
3106 objfile_relocate (symfile_objfile, offs);
3107 }
3108
3109 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3110 threads we know are stopped already. This is used during the
3111 initial remote connection in non-stop mode --- threads that are
3112 reported as already being stopped are left stopped. */
3113
3114 static int
3115 set_stop_requested_callback (struct thread_info *thread, void *data)
3116 {
3117 /* If we have a stop reply for this thread, it must be stopped. */
3118 if (peek_stop_reply (thread->ptid))
3119 set_stop_requested (thread->ptid, 1);
3120
3121 return 0;
3122 }
3123
3124 /* Send interrupt_sequence to remote target. */
3125 static void
3126 send_interrupt_sequence (void)
3127 {
3128 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3129 serial_write (remote_desc, "\x03", 1);
3130 else if (interrupt_sequence_mode == interrupt_sequence_break)
3131 serial_send_break (remote_desc);
3132 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3133 {
3134 serial_send_break (remote_desc);
3135 serial_write (remote_desc, "g", 1);
3136 }
3137 else
3138 internal_error (__FILE__, __LINE__,
3139 _("Invalid value for interrupt_sequence_mode: %s."),
3140 interrupt_sequence_mode);
3141 }
3142
3143 static void
3144 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3145 {
3146 struct remote_state *rs = get_remote_state ();
3147 struct packet_config *noack_config;
3148 char *wait_status = NULL;
3149
3150 immediate_quit++; /* Allow user to interrupt it. */
3151
3152 if (interrupt_on_connect)
3153 send_interrupt_sequence ();
3154
3155 /* Ack any packet which the remote side has already sent. */
3156 serial_write (remote_desc, "+", 1);
3157
3158 /* The first packet we send to the target is the optional "supported
3159 packets" request. If the target can answer this, it will tell us
3160 which later probes to skip. */
3161 remote_query_supported ();
3162
3163 /* If the stub wants to get a QAllow, compose one and send it. */
3164 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3165 remote_set_permissions ();
3166
3167 /* Next, we possibly activate noack mode.
3168
3169 If the QStartNoAckMode packet configuration is set to AUTO,
3170 enable noack mode if the stub reported a wish for it with
3171 qSupported.
3172
3173 If set to TRUE, then enable noack mode even if the stub didn't
3174 report it in qSupported. If the stub doesn't reply OK, the
3175 session ends with an error.
3176
3177 If FALSE, then don't activate noack mode, regardless of what the
3178 stub claimed should be the default with qSupported. */
3179
3180 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3181
3182 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3183 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3184 && noack_config->support == PACKET_ENABLE))
3185 {
3186 putpkt ("QStartNoAckMode");
3187 getpkt (&rs->buf, &rs->buf_size, 0);
3188 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3189 rs->noack_mode = 1;
3190 }
3191
3192 if (extended_p)
3193 {
3194 /* Tell the remote that we are using the extended protocol. */
3195 putpkt ("!");
3196 getpkt (&rs->buf, &rs->buf_size, 0);
3197 }
3198
3199 /* Next, if the target can specify a description, read it. We do
3200 this before anything involving memory or registers. */
3201 target_find_description ();
3202
3203 /* Next, now that we know something about the target, update the
3204 address spaces in the program spaces. */
3205 update_address_spaces ();
3206
3207 /* On OSs where the list of libraries is global to all
3208 processes, we fetch them early. */
3209 if (gdbarch_has_global_solist (target_gdbarch))
3210 solib_add (NULL, from_tty, target, auto_solib_add);
3211
3212 if (non_stop)
3213 {
3214 if (!rs->non_stop_aware)
3215 error (_("Non-stop mode requested, but remote "
3216 "does not support non-stop"));
3217
3218 putpkt ("QNonStop:1");
3219 getpkt (&rs->buf, &rs->buf_size, 0);
3220
3221 if (strcmp (rs->buf, "OK") != 0)
3222 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3223
3224 /* Find about threads and processes the stub is already
3225 controlling. We default to adding them in the running state.
3226 The '?' query below will then tell us about which threads are
3227 stopped. */
3228 remote_threads_info (target);
3229 }
3230 else if (rs->non_stop_aware)
3231 {
3232 /* Don't assume that the stub can operate in all-stop mode.
3233 Request it explicitely. */
3234 putpkt ("QNonStop:0");
3235 getpkt (&rs->buf, &rs->buf_size, 0);
3236
3237 if (strcmp (rs->buf, "OK") != 0)
3238 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3239 }
3240
3241 /* Check whether the target is running now. */
3242 putpkt ("?");
3243 getpkt (&rs->buf, &rs->buf_size, 0);
3244
3245 if (!non_stop)
3246 {
3247 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3248 {
3249 if (!extended_p)
3250 error (_("The target is not running (try extended-remote?)"));
3251
3252 /* We're connected, but not running. Drop out before we
3253 call start_remote. */
3254 return;
3255 }
3256 else
3257 {
3258 /* Save the reply for later. */
3259 wait_status = alloca (strlen (rs->buf) + 1);
3260 strcpy (wait_status, rs->buf);
3261 }
3262
3263 /* Let the stub know that we want it to return the thread. */
3264 set_continue_thread (minus_one_ptid);
3265
3266 /* Without this, some commands which require an active target
3267 (such as kill) won't work. This variable serves (at least)
3268 double duty as both the pid of the target process (if it has
3269 such), and as a flag indicating that a target is active.
3270 These functions should be split out into seperate variables,
3271 especially since GDB will someday have a notion of debugging
3272 several processes. */
3273 inferior_ptid = magic_null_ptid;
3274
3275 /* Now, if we have thread information, update inferior_ptid. */
3276 inferior_ptid = remote_current_thread (inferior_ptid);
3277
3278 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
3279
3280 /* Always add the main thread. */
3281 add_thread_silent (inferior_ptid);
3282
3283 /* init_wait_for_inferior should be called before get_offsets in order
3284 to manage `inserted' flag in bp loc in a correct state.
3285 breakpoint_init_inferior, called from init_wait_for_inferior, set
3286 `inserted' flag to 0, while before breakpoint_re_set, called from
3287 start_remote, set `inserted' flag to 1. In the initialization of
3288 inferior, breakpoint_init_inferior should be called first, and then
3289 breakpoint_re_set can be called. If this order is broken, state of
3290 `inserted' flag is wrong, and cause some problems on breakpoint
3291 manipulation. */
3292 init_wait_for_inferior ();
3293
3294 get_offsets (); /* Get text, data & bss offsets. */
3295
3296 /* If we could not find a description using qXfer, and we know
3297 how to do it some other way, try again. This is not
3298 supported for non-stop; it could be, but it is tricky if
3299 there are no stopped threads when we connect. */
3300 if (remote_read_description_p (target)
3301 && gdbarch_target_desc (target_gdbarch) == NULL)
3302 {
3303 target_clear_description ();
3304 target_find_description ();
3305 }
3306
3307 /* Use the previously fetched status. */
3308 gdb_assert (wait_status != NULL);
3309 strcpy (rs->buf, wait_status);
3310 rs->cached_wait_status = 1;
3311
3312 immediate_quit--;
3313 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3314 }
3315 else
3316 {
3317 /* Clear WFI global state. Do this before finding about new
3318 threads and inferiors, and setting the current inferior.
3319 Otherwise we would clear the proceed status of the current
3320 inferior when we want its stop_soon state to be preserved
3321 (see notice_new_inferior). */
3322 init_wait_for_inferior ();
3323
3324 /* In non-stop, we will either get an "OK", meaning that there
3325 are no stopped threads at this time; or, a regular stop
3326 reply. In the latter case, there may be more than one thread
3327 stopped --- we pull them all out using the vStopped
3328 mechanism. */
3329 if (strcmp (rs->buf, "OK") != 0)
3330 {
3331 struct stop_reply *stop_reply;
3332 struct cleanup *old_chain;
3333
3334 stop_reply = stop_reply_xmalloc ();
3335 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3336
3337 remote_parse_stop_reply (rs->buf, stop_reply);
3338 discard_cleanups (old_chain);
3339
3340 /* get_pending_stop_replies acks this one, and gets the rest
3341 out. */
3342 pending_stop_reply = stop_reply;
3343 remote_get_pending_stop_replies ();
3344
3345 /* Make sure that threads that were stopped remain
3346 stopped. */
3347 iterate_over_threads (set_stop_requested_callback, NULL);
3348 }
3349
3350 if (target_can_async_p ())
3351 target_async (inferior_event_handler, 0);
3352
3353 if (thread_count () == 0)
3354 {
3355 if (!extended_p)
3356 error (_("The target is not running (try extended-remote?)"));
3357
3358 /* We're connected, but not running. Drop out before we
3359 call start_remote. */
3360 return;
3361 }
3362
3363 /* Let the stub know that we want it to return the thread. */
3364
3365 /* Force the stub to choose a thread. */
3366 set_general_thread (null_ptid);
3367
3368 /* Query it. */
3369 inferior_ptid = remote_current_thread (minus_one_ptid);
3370 if (ptid_equal (inferior_ptid, minus_one_ptid))
3371 error (_("remote didn't report the current thread in non-stop mode"));
3372
3373 get_offsets (); /* Get text, data & bss offsets. */
3374
3375 /* In non-stop mode, any cached wait status will be stored in
3376 the stop reply queue. */
3377 gdb_assert (wait_status == NULL);
3378
3379 /* Report all signals during attach/startup. */
3380 remote_pass_signals (0, NULL);
3381 }
3382
3383 /* If we connected to a live target, do some additional setup. */
3384 if (target_has_execution)
3385 {
3386 if (exec_bfd) /* No use without an exec file. */
3387 remote_check_symbols (symfile_objfile);
3388 }
3389
3390 /* Possibly the target has been engaged in a trace run started
3391 previously; find out where things are at. */
3392 if (remote_get_trace_status (current_trace_status ()) != -1)
3393 {
3394 struct uploaded_tp *uploaded_tps = NULL;
3395 struct uploaded_tsv *uploaded_tsvs = NULL;
3396
3397 if (current_trace_status ()->running)
3398 printf_filtered (_("Trace is already running on the target.\n"));
3399
3400 /* Get trace state variables first, they may be checked when
3401 parsing uploaded commands. */
3402
3403 remote_upload_trace_state_variables (&uploaded_tsvs);
3404
3405 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3406
3407 remote_upload_tracepoints (&uploaded_tps);
3408
3409 merge_uploaded_tracepoints (&uploaded_tps);
3410 }
3411
3412 /* If breakpoints are global, insert them now. */
3413 if (gdbarch_has_global_breakpoints (target_gdbarch)
3414 && breakpoints_always_inserted_mode ())
3415 insert_breakpoints ();
3416 }
3417
3418 /* Open a connection to a remote debugger.
3419 NAME is the filename used for communication. */
3420
3421 static void
3422 remote_open (char *name, int from_tty)
3423 {
3424 remote_open_1 (name, from_tty, &remote_ops, 0);
3425 }
3426
3427 /* Open a connection to a remote debugger using the extended
3428 remote gdb protocol. NAME is the filename used for communication. */
3429
3430 static void
3431 extended_remote_open (char *name, int from_tty)
3432 {
3433 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3434 }
3435
3436 /* Generic code for opening a connection to a remote target. */
3437
3438 static void
3439 init_all_packet_configs (void)
3440 {
3441 int i;
3442
3443 for (i = 0; i < PACKET_MAX; i++)
3444 update_packet_config (&remote_protocol_packets[i]);
3445 }
3446
3447 /* Symbol look-up. */
3448
3449 static void
3450 remote_check_symbols (struct objfile *objfile)
3451 {
3452 struct remote_state *rs = get_remote_state ();
3453 char *msg, *reply, *tmp;
3454 struct minimal_symbol *sym;
3455 int end;
3456
3457 /* The remote side has no concept of inferiors that aren't running
3458 yet, it only knows about running processes. If we're connected
3459 but our current inferior is not running, we should not invite the
3460 remote target to request symbol lookups related to its
3461 (unrelated) current process. */
3462 if (!target_has_execution)
3463 return;
3464
3465 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3466 return;
3467
3468 /* Make sure the remote is pointing at the right process. Note
3469 there's no way to select "no process". */
3470 set_general_process ();
3471
3472 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3473 because we need both at the same time. */
3474 msg = alloca (get_remote_packet_size ());
3475
3476 /* Invite target to request symbol lookups. */
3477
3478 putpkt ("qSymbol::");
3479 getpkt (&rs->buf, &rs->buf_size, 0);
3480 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3481 reply = rs->buf;
3482
3483 while (strncmp (reply, "qSymbol:", 8) == 0)
3484 {
3485 tmp = &reply[8];
3486 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3487 msg[end] = '\0';
3488 sym = lookup_minimal_symbol (msg, NULL, NULL);
3489 if (sym == NULL)
3490 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3491 else
3492 {
3493 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3494 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3495
3496 /* If this is a function address, return the start of code
3497 instead of any data function descriptor. */
3498 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3499 sym_addr,
3500 &current_target);
3501
3502 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3503 phex_nz (sym_addr, addr_size), &reply[8]);
3504 }
3505
3506 putpkt (msg);
3507 getpkt (&rs->buf, &rs->buf_size, 0);
3508 reply = rs->buf;
3509 }
3510 }
3511
3512 static struct serial *
3513 remote_serial_open (char *name)
3514 {
3515 static int udp_warning = 0;
3516
3517 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3518 of in ser-tcp.c, because it is the remote protocol assuming that the
3519 serial connection is reliable and not the serial connection promising
3520 to be. */
3521 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3522 {
3523 warning (_("The remote protocol may be unreliable over UDP.\n"
3524 "Some events may be lost, rendering further debugging "
3525 "impossible."));
3526 udp_warning = 1;
3527 }
3528
3529 return serial_open (name);
3530 }
3531
3532 /* Inform the target of our permission settings. The permission flags
3533 work without this, but if the target knows the settings, it can do
3534 a couple things. First, it can add its own check, to catch cases
3535 that somehow manage to get by the permissions checks in target
3536 methods. Second, if the target is wired to disallow particular
3537 settings (for instance, a system in the field that is not set up to
3538 be able to stop at a breakpoint), it can object to any unavailable
3539 permissions. */
3540
3541 void
3542 remote_set_permissions (void)
3543 {
3544 struct remote_state *rs = get_remote_state ();
3545
3546 sprintf (rs->buf, "QAllow:"
3547 "WriteReg:%x;WriteMem:%x;"
3548 "InsertBreak:%x;InsertTrace:%x;"
3549 "InsertFastTrace:%x;Stop:%x",
3550 may_write_registers, may_write_memory,
3551 may_insert_breakpoints, may_insert_tracepoints,
3552 may_insert_fast_tracepoints, may_stop);
3553 putpkt (rs->buf);
3554 getpkt (&rs->buf, &rs->buf_size, 0);
3555
3556 /* If the target didn't like the packet, warn the user. Do not try
3557 to undo the user's settings, that would just be maddening. */
3558 if (strcmp (rs->buf, "OK") != 0)
3559 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3560 }
3561
3562 /* This type describes each known response to the qSupported
3563 packet. */
3564 struct protocol_feature
3565 {
3566 /* The name of this protocol feature. */
3567 const char *name;
3568
3569 /* The default for this protocol feature. */
3570 enum packet_support default_support;
3571
3572 /* The function to call when this feature is reported, or after
3573 qSupported processing if the feature is not supported.
3574 The first argument points to this structure. The second
3575 argument indicates whether the packet requested support be
3576 enabled, disabled, or probed (or the default, if this function
3577 is being called at the end of processing and this feature was
3578 not reported). The third argument may be NULL; if not NULL, it
3579 is a NUL-terminated string taken from the packet following
3580 this feature's name and an equals sign. */
3581 void (*func) (const struct protocol_feature *, enum packet_support,
3582 const char *);
3583
3584 /* The corresponding packet for this feature. Only used if
3585 FUNC is remote_supported_packet. */
3586 int packet;
3587 };
3588
3589 static void
3590 remote_supported_packet (const struct protocol_feature *feature,
3591 enum packet_support support,
3592 const char *argument)
3593 {
3594 if (argument)
3595 {
3596 warning (_("Remote qSupported response supplied an unexpected value for"
3597 " \"%s\"."), feature->name);
3598 return;
3599 }
3600
3601 if (remote_protocol_packets[feature->packet].support
3602 == PACKET_SUPPORT_UNKNOWN)
3603 remote_protocol_packets[feature->packet].support = support;
3604 }
3605
3606 static void
3607 remote_packet_size (const struct protocol_feature *feature,
3608 enum packet_support support, const char *value)
3609 {
3610 struct remote_state *rs = get_remote_state ();
3611
3612 int packet_size;
3613 char *value_end;
3614
3615 if (support != PACKET_ENABLE)
3616 return;
3617
3618 if (value == NULL || *value == '\0')
3619 {
3620 warning (_("Remote target reported \"%s\" without a size."),
3621 feature->name);
3622 return;
3623 }
3624
3625 errno = 0;
3626 packet_size = strtol (value, &value_end, 16);
3627 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3628 {
3629 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3630 feature->name, value);
3631 return;
3632 }
3633
3634 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3635 {
3636 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3637 packet_size, MAX_REMOTE_PACKET_SIZE);
3638 packet_size = MAX_REMOTE_PACKET_SIZE;
3639 }
3640
3641 /* Record the new maximum packet size. */
3642 rs->explicit_packet_size = packet_size;
3643 }
3644
3645 static void
3646 remote_multi_process_feature (const struct protocol_feature *feature,
3647 enum packet_support support, const char *value)
3648 {
3649 struct remote_state *rs = get_remote_state ();
3650
3651 rs->multi_process_aware = (support == PACKET_ENABLE);
3652 }
3653
3654 static void
3655 remote_non_stop_feature (const struct protocol_feature *feature,
3656 enum packet_support support, const char *value)
3657 {
3658 struct remote_state *rs = get_remote_state ();
3659
3660 rs->non_stop_aware = (support == PACKET_ENABLE);
3661 }
3662
3663 static void
3664 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3665 enum packet_support support,
3666 const char *value)
3667 {
3668 struct remote_state *rs = get_remote_state ();
3669
3670 rs->cond_tracepoints = (support == PACKET_ENABLE);
3671 }
3672
3673 static void
3674 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3675 enum packet_support support,
3676 const char *value)
3677 {
3678 struct remote_state *rs = get_remote_state ();
3679
3680 rs->fast_tracepoints = (support == PACKET_ENABLE);
3681 }
3682
3683 static void
3684 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3685 enum packet_support support,
3686 const char *value)
3687 {
3688 struct remote_state *rs = get_remote_state ();
3689
3690 rs->static_tracepoints = (support == PACKET_ENABLE);
3691 }
3692
3693 static void
3694 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3695 enum packet_support support,
3696 const char *value)
3697 {
3698 struct remote_state *rs = get_remote_state ();
3699
3700 rs->disconnected_tracing = (support == PACKET_ENABLE);
3701 }
3702
3703 static void
3704 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3705 enum packet_support support,
3706 const char *value)
3707 {
3708 struct remote_state *rs = get_remote_state ();
3709
3710 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3711 }
3712
3713 static struct protocol_feature remote_protocol_features[] = {
3714 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3715 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3716 PACKET_qXfer_auxv },
3717 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3718 PACKET_qXfer_features },
3719 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3720 PACKET_qXfer_libraries },
3721 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3722 PACKET_qXfer_memory_map },
3723 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3724 PACKET_qXfer_spu_read },
3725 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3726 PACKET_qXfer_spu_write },
3727 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3728 PACKET_qXfer_osdata },
3729 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3730 PACKET_qXfer_threads },
3731 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
3732 PACKET_qXfer_traceframe_info },
3733 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3734 PACKET_QPassSignals },
3735 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3736 PACKET_QStartNoAckMode },
3737 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3738 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3739 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3740 PACKET_qXfer_siginfo_read },
3741 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3742 PACKET_qXfer_siginfo_write },
3743 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3744 PACKET_ConditionalTracepoints },
3745 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3746 PACKET_FastTracepoints },
3747 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3748 PACKET_StaticTracepoints },
3749 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3750 -1 },
3751 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3752 PACKET_bc },
3753 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3754 PACKET_bs },
3755 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3756 PACKET_TracepointSource },
3757 { "QAllow", PACKET_DISABLE, remote_supported_packet,
3758 PACKET_QAllow },
3759 { "EnableDisableTracepoints", PACKET_DISABLE,
3760 remote_enable_disable_tracepoint_feature, -1 },
3761 };
3762
3763 static char *remote_support_xml;
3764
3765 /* Register string appended to "xmlRegisters=" in qSupported query. */
3766
3767 void
3768 register_remote_support_xml (const char *xml)
3769 {
3770 #if defined(HAVE_LIBEXPAT)
3771 if (remote_support_xml == NULL)
3772 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
3773 else
3774 {
3775 char *copy = xstrdup (remote_support_xml + 13);
3776 char *p = strtok (copy, ",");
3777
3778 do
3779 {
3780 if (strcmp (p, xml) == 0)
3781 {
3782 /* already there */
3783 xfree (copy);
3784 return;
3785 }
3786 }
3787 while ((p = strtok (NULL, ",")) != NULL);
3788 xfree (copy);
3789
3790 remote_support_xml = reconcat (remote_support_xml,
3791 remote_support_xml, ",", xml,
3792 (char *) NULL);
3793 }
3794 #endif
3795 }
3796
3797 static char *
3798 remote_query_supported_append (char *msg, const char *append)
3799 {
3800 if (msg)
3801 return reconcat (msg, msg, ";", append, (char *) NULL);
3802 else
3803 return xstrdup (append);
3804 }
3805
3806 static void
3807 remote_query_supported (void)
3808 {
3809 struct remote_state *rs = get_remote_state ();
3810 char *next;
3811 int i;
3812 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3813
3814 /* The packet support flags are handled differently for this packet
3815 than for most others. We treat an error, a disabled packet, and
3816 an empty response identically: any features which must be reported
3817 to be used will be automatically disabled. An empty buffer
3818 accomplishes this, since that is also the representation for a list
3819 containing no features. */
3820
3821 rs->buf[0] = 0;
3822 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3823 {
3824 char *q = NULL;
3825 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
3826
3827 if (rs->extended)
3828 q = remote_query_supported_append (q, "multiprocess+");
3829
3830 if (remote_support_xml)
3831 q = remote_query_supported_append (q, remote_support_xml);
3832
3833 q = remote_query_supported_append (q, "qRelocInsn+");
3834
3835 q = reconcat (q, "qSupported:", q, (char *) NULL);
3836 putpkt (q);
3837
3838 do_cleanups (old_chain);
3839
3840 getpkt (&rs->buf, &rs->buf_size, 0);
3841
3842 /* If an error occured, warn, but do not return - just reset the
3843 buffer to empty and go on to disable features. */
3844 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3845 == PACKET_ERROR)
3846 {
3847 warning (_("Remote failure reply: %s"), rs->buf);
3848 rs->buf[0] = 0;
3849 }
3850 }
3851
3852 memset (seen, 0, sizeof (seen));
3853
3854 next = rs->buf;
3855 while (*next)
3856 {
3857 enum packet_support is_supported;
3858 char *p, *end, *name_end, *value;
3859
3860 /* First separate out this item from the rest of the packet. If
3861 there's another item after this, we overwrite the separator
3862 (terminated strings are much easier to work with). */
3863 p = next;
3864 end = strchr (p, ';');
3865 if (end == NULL)
3866 {
3867 end = p + strlen (p);
3868 next = end;
3869 }
3870 else
3871 {
3872 *end = '\0';
3873 next = end + 1;
3874
3875 if (end == p)
3876 {
3877 warning (_("empty item in \"qSupported\" response"));
3878 continue;
3879 }
3880 }
3881
3882 name_end = strchr (p, '=');
3883 if (name_end)
3884 {
3885 /* This is a name=value entry. */
3886 is_supported = PACKET_ENABLE;
3887 value = name_end + 1;
3888 *name_end = '\0';
3889 }
3890 else
3891 {
3892 value = NULL;
3893 switch (end[-1])
3894 {
3895 case '+':
3896 is_supported = PACKET_ENABLE;
3897 break;
3898
3899 case '-':
3900 is_supported = PACKET_DISABLE;
3901 break;
3902
3903 case '?':
3904 is_supported = PACKET_SUPPORT_UNKNOWN;
3905 break;
3906
3907 default:
3908 warning (_("unrecognized item \"%s\" "
3909 "in \"qSupported\" response"), p);
3910 continue;
3911 }
3912 end[-1] = '\0';
3913 }
3914
3915 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3916 if (strcmp (remote_protocol_features[i].name, p) == 0)
3917 {
3918 const struct protocol_feature *feature;
3919
3920 seen[i] = 1;
3921 feature = &remote_protocol_features[i];
3922 feature->func (feature, is_supported, value);
3923 break;
3924 }
3925 }
3926
3927 /* If we increased the packet size, make sure to increase the global
3928 buffer size also. We delay this until after parsing the entire
3929 qSupported packet, because this is the same buffer we were
3930 parsing. */
3931 if (rs->buf_size < rs->explicit_packet_size)
3932 {
3933 rs->buf_size = rs->explicit_packet_size;
3934 rs->buf = xrealloc (rs->buf, rs->buf_size);
3935 }
3936
3937 /* Handle the defaults for unmentioned features. */
3938 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3939 if (!seen[i])
3940 {
3941 const struct protocol_feature *feature;
3942
3943 feature = &remote_protocol_features[i];
3944 feature->func (feature, feature->default_support, NULL);
3945 }
3946 }
3947
3948
3949 static void
3950 remote_open_1 (char *name, int from_tty,
3951 struct target_ops *target, int extended_p)
3952 {
3953 struct remote_state *rs = get_remote_state ();
3954
3955 if (name == 0)
3956 error (_("To open a remote debug connection, you need to specify what\n"
3957 "serial device is attached to the remote system\n"
3958 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3959
3960 /* See FIXME above. */
3961 if (!target_async_permitted)
3962 wait_forever_enabled_p = 1;
3963
3964 /* If we're connected to a running target, target_preopen will kill it.
3965 But if we're connected to a target system with no running process,
3966 then we will still be connected when it returns. Ask this question
3967 first, before target_preopen has a chance to kill anything. */
3968 if (remote_desc != NULL && !have_inferiors ())
3969 {
3970 if (!from_tty
3971 || query (_("Already connected to a remote target. Disconnect? ")))
3972 pop_target ();
3973 else
3974 error (_("Still connected."));
3975 }
3976
3977 target_preopen (from_tty);
3978
3979 unpush_target (target);
3980
3981 /* This time without a query. If we were connected to an
3982 extended-remote target and target_preopen killed the running
3983 process, we may still be connected. If we are starting "target
3984 remote" now, the extended-remote target will not have been
3985 removed by unpush_target. */
3986 if (remote_desc != NULL && !have_inferiors ())
3987 pop_target ();
3988
3989 /* Make sure we send the passed signals list the next time we resume. */
3990 xfree (last_pass_packet);
3991 last_pass_packet = NULL;
3992
3993 remote_fileio_reset ();
3994 reopen_exec_file ();
3995 reread_symbols ();
3996
3997 remote_desc = remote_serial_open (name);
3998 if (!remote_desc)
3999 perror_with_name (name);
4000
4001 if (baud_rate != -1)
4002 {
4003 if (serial_setbaudrate (remote_desc, baud_rate))
4004 {
4005 /* The requested speed could not be set. Error out to
4006 top level after closing remote_desc. Take care to
4007 set remote_desc to NULL to avoid closing remote_desc
4008 more than once. */
4009 serial_close (remote_desc);
4010 remote_desc = NULL;
4011 perror_with_name (name);
4012 }
4013 }
4014
4015 serial_raw (remote_desc);
4016
4017 /* If there is something sitting in the buffer we might take it as a
4018 response to a command, which would be bad. */
4019 serial_flush_input (remote_desc);
4020
4021 if (from_tty)
4022 {
4023 puts_filtered ("Remote debugging using ");
4024 puts_filtered (name);
4025 puts_filtered ("\n");
4026 }
4027 push_target (target); /* Switch to using remote target now. */
4028
4029 /* Register extra event sources in the event loop. */
4030 remote_async_inferior_event_token
4031 = create_async_event_handler (remote_async_inferior_event_handler,
4032 NULL);
4033 remote_async_get_pending_events_token
4034 = create_async_event_handler (remote_async_get_pending_events_handler,
4035 NULL);
4036
4037 /* Reset the target state; these things will be queried either by
4038 remote_query_supported or as they are needed. */
4039 init_all_packet_configs ();
4040 rs->cached_wait_status = 0;
4041 rs->explicit_packet_size = 0;
4042 rs->noack_mode = 0;
4043 rs->multi_process_aware = 0;
4044 rs->extended = extended_p;
4045 rs->non_stop_aware = 0;
4046 rs->waiting_for_stop_reply = 0;
4047 rs->ctrlc_pending_p = 0;
4048
4049 general_thread = not_sent_ptid;
4050 continue_thread = not_sent_ptid;
4051 remote_traceframe_number = -1;
4052
4053 /* Probe for ability to use "ThreadInfo" query, as required. */
4054 use_threadinfo_query = 1;
4055 use_threadextra_query = 1;
4056
4057 if (target_async_permitted)
4058 {
4059 /* With this target we start out by owning the terminal. */
4060 remote_async_terminal_ours_p = 1;
4061
4062 /* FIXME: cagney/1999-09-23: During the initial connection it is
4063 assumed that the target is already ready and able to respond to
4064 requests. Unfortunately remote_start_remote() eventually calls
4065 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4066 around this. Eventually a mechanism that allows
4067 wait_for_inferior() to expect/get timeouts will be
4068 implemented. */
4069 wait_forever_enabled_p = 0;
4070 }
4071
4072 /* First delete any symbols previously loaded from shared libraries. */
4073 no_shared_libraries (NULL, 0);
4074
4075 /* Start afresh. */
4076 init_thread_list ();
4077
4078 /* Start the remote connection. If error() or QUIT, discard this
4079 target (we'd otherwise be in an inconsistent state) and then
4080 propogate the error on up the exception chain. This ensures that
4081 the caller doesn't stumble along blindly assuming that the
4082 function succeeded. The CLI doesn't have this problem but other
4083 UI's, such as MI do.
4084
4085 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4086 this function should return an error indication letting the
4087 caller restore the previous state. Unfortunately the command
4088 ``target remote'' is directly wired to this function making that
4089 impossible. On a positive note, the CLI side of this problem has
4090 been fixed - the function set_cmd_context() makes it possible for
4091 all the ``target ....'' commands to share a common callback
4092 function. See cli-dump.c. */
4093 {
4094 volatile struct gdb_exception ex;
4095
4096 TRY_CATCH (ex, RETURN_MASK_ALL)
4097 {
4098 remote_start_remote (from_tty, target, extended_p);
4099 }
4100 if (ex.reason < 0)
4101 {
4102 /* Pop the partially set up target - unless something else did
4103 already before throwing the exception. */
4104 if (remote_desc != NULL)
4105 pop_target ();
4106 if (target_async_permitted)
4107 wait_forever_enabled_p = 1;
4108 throw_exception (ex);
4109 }
4110 }
4111
4112 if (target_async_permitted)
4113 wait_forever_enabled_p = 1;
4114 }
4115
4116 /* This takes a program previously attached to and detaches it. After
4117 this is done, GDB can be used to debug some other program. We
4118 better not have left any breakpoints in the target program or it'll
4119 die when it hits one. */
4120
4121 static void
4122 remote_detach_1 (char *args, int from_tty, int extended)
4123 {
4124 int pid = ptid_get_pid (inferior_ptid);
4125 struct remote_state *rs = get_remote_state ();
4126
4127 if (args)
4128 error (_("Argument given to \"detach\" when remotely debugging."));
4129
4130 if (!target_has_execution)
4131 error (_("No process to detach from."));
4132
4133 /* Tell the remote target to detach. */
4134 if (remote_multi_process_p (rs))
4135 sprintf (rs->buf, "D;%x", pid);
4136 else
4137 strcpy (rs->buf, "D");
4138
4139 putpkt (rs->buf);
4140 getpkt (&rs->buf, &rs->buf_size, 0);
4141
4142 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4143 ;
4144 else if (rs->buf[0] == '\0')
4145 error (_("Remote doesn't know how to detach"));
4146 else
4147 error (_("Can't detach process."));
4148
4149 if (from_tty)
4150 {
4151 if (remote_multi_process_p (rs))
4152 printf_filtered (_("Detached from remote %s.\n"),
4153 target_pid_to_str (pid_to_ptid (pid)));
4154 else
4155 {
4156 if (extended)
4157 puts_filtered (_("Detached from remote process.\n"));
4158 else
4159 puts_filtered (_("Ending remote debugging.\n"));
4160 }
4161 }
4162
4163 discard_pending_stop_replies (pid);
4164 target_mourn_inferior ();
4165 }
4166
4167 static void
4168 remote_detach (struct target_ops *ops, char *args, int from_tty)
4169 {
4170 remote_detach_1 (args, from_tty, 0);
4171 }
4172
4173 static void
4174 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4175 {
4176 remote_detach_1 (args, from_tty, 1);
4177 }
4178
4179 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4180
4181 static void
4182 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4183 {
4184 if (args)
4185 error (_("Argument given to \"disconnect\" when remotely debugging."));
4186
4187 /* Make sure we unpush even the extended remote targets; mourn
4188 won't do it. So call remote_mourn_1 directly instead of
4189 target_mourn_inferior. */
4190 remote_mourn_1 (target);
4191
4192 if (from_tty)
4193 puts_filtered ("Ending remote debugging.\n");
4194 }
4195
4196 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4197 be chatty about it. */
4198
4199 static void
4200 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4201 {
4202 struct remote_state *rs = get_remote_state ();
4203 int pid;
4204 char *wait_status = NULL;
4205
4206 pid = parse_pid_to_attach (args);
4207
4208 /* Remote PID can be freely equal to getpid, do not check it here the same
4209 way as in other targets. */
4210
4211 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4212 error (_("This target does not support attaching to a process"));
4213
4214 sprintf (rs->buf, "vAttach;%x", pid);
4215 putpkt (rs->buf);
4216 getpkt (&rs->buf, &rs->buf_size, 0);
4217
4218 if (packet_ok (rs->buf,
4219 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4220 {
4221 if (from_tty)
4222 printf_unfiltered (_("Attached to %s\n"),
4223 target_pid_to_str (pid_to_ptid (pid)));
4224
4225 if (!non_stop)
4226 {
4227 /* Save the reply for later. */
4228 wait_status = alloca (strlen (rs->buf) + 1);
4229 strcpy (wait_status, rs->buf);
4230 }
4231 else if (strcmp (rs->buf, "OK") != 0)
4232 error (_("Attaching to %s failed with: %s"),
4233 target_pid_to_str (pid_to_ptid (pid)),
4234 rs->buf);
4235 }
4236 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4237 error (_("This target does not support attaching to a process"));
4238 else
4239 error (_("Attaching to %s failed"),
4240 target_pid_to_str (pid_to_ptid (pid)));
4241
4242 set_current_inferior (remote_add_inferior (pid, 1));
4243
4244 inferior_ptid = pid_to_ptid (pid);
4245
4246 if (non_stop)
4247 {
4248 struct thread_info *thread;
4249
4250 /* Get list of threads. */
4251 remote_threads_info (target);
4252
4253 thread = first_thread_of_process (pid);
4254 if (thread)
4255 inferior_ptid = thread->ptid;
4256 else
4257 inferior_ptid = pid_to_ptid (pid);
4258
4259 /* Invalidate our notion of the remote current thread. */
4260 record_currthread (minus_one_ptid);
4261 }
4262 else
4263 {
4264 /* Now, if we have thread information, update inferior_ptid. */
4265 inferior_ptid = remote_current_thread (inferior_ptid);
4266
4267 /* Add the main thread to the thread list. */
4268 add_thread_silent (inferior_ptid);
4269 }
4270
4271 /* Next, if the target can specify a description, read it. We do
4272 this before anything involving memory or registers. */
4273 target_find_description ();
4274
4275 if (!non_stop)
4276 {
4277 /* Use the previously fetched status. */
4278 gdb_assert (wait_status != NULL);
4279
4280 if (target_can_async_p ())
4281 {
4282 struct stop_reply *stop_reply;
4283 struct cleanup *old_chain;
4284
4285 stop_reply = stop_reply_xmalloc ();
4286 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4287 remote_parse_stop_reply (wait_status, stop_reply);
4288 discard_cleanups (old_chain);
4289 push_stop_reply (stop_reply);
4290
4291 target_async (inferior_event_handler, 0);
4292 }
4293 else
4294 {
4295 gdb_assert (wait_status != NULL);
4296 strcpy (rs->buf, wait_status);
4297 rs->cached_wait_status = 1;
4298 }
4299 }
4300 else
4301 gdb_assert (wait_status == NULL);
4302 }
4303
4304 static void
4305 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4306 {
4307 extended_remote_attach_1 (ops, args, from_tty);
4308 }
4309
4310 /* Convert hex digit A to a number. */
4311
4312 static int
4313 fromhex (int a)
4314 {
4315 if (a >= '0' && a <= '9')
4316 return a - '0';
4317 else if (a >= 'a' && a <= 'f')
4318 return a - 'a' + 10;
4319 else if (a >= 'A' && a <= 'F')
4320 return a - 'A' + 10;
4321 else
4322 error (_("Reply contains invalid hex digit %d"), a);
4323 }
4324
4325 int
4326 hex2bin (const char *hex, gdb_byte *bin, int count)
4327 {
4328 int i;
4329
4330 for (i = 0; i < count; i++)
4331 {
4332 if (hex[0] == 0 || hex[1] == 0)
4333 {
4334 /* Hex string is short, or of uneven length.
4335 Return the count that has been converted so far. */
4336 return i;
4337 }
4338 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4339 hex += 2;
4340 }
4341 return i;
4342 }
4343
4344 /* Convert number NIB to a hex digit. */
4345
4346 static int
4347 tohex (int nib)
4348 {
4349 if (nib < 10)
4350 return '0' + nib;
4351 else
4352 return 'a' + nib - 10;
4353 }
4354
4355 int
4356 bin2hex (const gdb_byte *bin, char *hex, int count)
4357 {
4358 int i;
4359
4360 /* May use a length, or a nul-terminated string as input. */
4361 if (count == 0)
4362 count = strlen ((char *) bin);
4363
4364 for (i = 0; i < count; i++)
4365 {
4366 *hex++ = tohex ((*bin >> 4) & 0xf);
4367 *hex++ = tohex (*bin++ & 0xf);
4368 }
4369 *hex = 0;
4370 return i;
4371 }
4372 \f
4373 /* Check for the availability of vCont. This function should also check
4374 the response. */
4375
4376 static void
4377 remote_vcont_probe (struct remote_state *rs)
4378 {
4379 char *buf;
4380
4381 strcpy (rs->buf, "vCont?");
4382 putpkt (rs->buf);
4383 getpkt (&rs->buf, &rs->buf_size, 0);
4384 buf = rs->buf;
4385
4386 /* Make sure that the features we assume are supported. */
4387 if (strncmp (buf, "vCont", 5) == 0)
4388 {
4389 char *p = &buf[5];
4390 int support_s, support_S, support_c, support_C;
4391
4392 support_s = 0;
4393 support_S = 0;
4394 support_c = 0;
4395 support_C = 0;
4396 rs->support_vCont_t = 0;
4397 while (p && *p == ';')
4398 {
4399 p++;
4400 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4401 support_s = 1;
4402 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4403 support_S = 1;
4404 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4405 support_c = 1;
4406 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4407 support_C = 1;
4408 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4409 rs->support_vCont_t = 1;
4410
4411 p = strchr (p, ';');
4412 }
4413
4414 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4415 BUF will make packet_ok disable the packet. */
4416 if (!support_s || !support_S || !support_c || !support_C)
4417 buf[0] = 0;
4418 }
4419
4420 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4421 }
4422
4423 /* Helper function for building "vCont" resumptions. Write a
4424 resumption to P. ENDP points to one-passed-the-end of the buffer
4425 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4426 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4427 resumed thread should be single-stepped and/or signalled. If PTID
4428 equals minus_one_ptid, then all threads are resumed; if PTID
4429 represents a process, then all threads of the process are resumed;
4430 the thread to be stepped and/or signalled is given in the global
4431 INFERIOR_PTID. */
4432
4433 static char *
4434 append_resumption (char *p, char *endp,
4435 ptid_t ptid, int step, enum target_signal siggnal)
4436 {
4437 struct remote_state *rs = get_remote_state ();
4438
4439 if (step && siggnal != TARGET_SIGNAL_0)
4440 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4441 else if (step)
4442 p += xsnprintf (p, endp - p, ";s");
4443 else if (siggnal != TARGET_SIGNAL_0)
4444 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4445 else
4446 p += xsnprintf (p, endp - p, ";c");
4447
4448 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4449 {
4450 ptid_t nptid;
4451
4452 /* All (-1) threads of process. */
4453 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4454
4455 p += xsnprintf (p, endp - p, ":");
4456 p = write_ptid (p, endp, nptid);
4457 }
4458 else if (!ptid_equal (ptid, minus_one_ptid))
4459 {
4460 p += xsnprintf (p, endp - p, ":");
4461 p = write_ptid (p, endp, ptid);
4462 }
4463
4464 return p;
4465 }
4466
4467 /* Resume the remote inferior by using a "vCont" packet. The thread
4468 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4469 resumed thread should be single-stepped and/or signalled. If PTID
4470 equals minus_one_ptid, then all threads are resumed; the thread to
4471 be stepped and/or signalled is given in the global INFERIOR_PTID.
4472 This function returns non-zero iff it resumes the inferior.
4473
4474 This function issues a strict subset of all possible vCont commands at the
4475 moment. */
4476
4477 static int
4478 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
4479 {
4480 struct remote_state *rs = get_remote_state ();
4481 char *p;
4482 char *endp;
4483
4484 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4485 remote_vcont_probe (rs);
4486
4487 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4488 return 0;
4489
4490 p = rs->buf;
4491 endp = rs->buf + get_remote_packet_size ();
4492
4493 /* If we could generate a wider range of packets, we'd have to worry
4494 about overflowing BUF. Should there be a generic
4495 "multi-part-packet" packet? */
4496
4497 p += xsnprintf (p, endp - p, "vCont");
4498
4499 if (ptid_equal (ptid, magic_null_ptid))
4500 {
4501 /* MAGIC_NULL_PTID means that we don't have any active threads,
4502 so we don't have any TID numbers the inferior will
4503 understand. Make sure to only send forms that do not specify
4504 a TID. */
4505 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4506 }
4507 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4508 {
4509 /* Resume all threads (of all processes, or of a single
4510 process), with preference for INFERIOR_PTID. This assumes
4511 inferior_ptid belongs to the set of all threads we are about
4512 to resume. */
4513 if (step || siggnal != TARGET_SIGNAL_0)
4514 {
4515 /* Step inferior_ptid, with or without signal. */
4516 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4517 }
4518
4519 /* And continue others without a signal. */
4520 append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
4521 }
4522 else
4523 {
4524 /* Scheduler locking; resume only PTID. */
4525 append_resumption (p, endp, ptid, step, siggnal);
4526 }
4527
4528 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4529 putpkt (rs->buf);
4530
4531 if (non_stop)
4532 {
4533 /* In non-stop, the stub replies to vCont with "OK". The stop
4534 reply will be reported asynchronously by means of a `%Stop'
4535 notification. */
4536 getpkt (&rs->buf, &rs->buf_size, 0);
4537 if (strcmp (rs->buf, "OK") != 0)
4538 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4539 }
4540
4541 return 1;
4542 }
4543
4544 /* Tell the remote machine to resume. */
4545
4546 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
4547
4548 static int last_sent_step;
4549
4550 static void
4551 remote_resume (struct target_ops *ops,
4552 ptid_t ptid, int step, enum target_signal siggnal)
4553 {
4554 struct remote_state *rs = get_remote_state ();
4555 char *buf;
4556
4557 last_sent_signal = siggnal;
4558 last_sent_step = step;
4559
4560 /* The vCont packet doesn't need to specify threads via Hc. */
4561 /* No reverse support (yet) for vCont. */
4562 if (execution_direction != EXEC_REVERSE)
4563 if (remote_vcont_resume (ptid, step, siggnal))
4564 goto done;
4565
4566 /* All other supported resume packets do use Hc, so set the continue
4567 thread. */
4568 if (ptid_equal (ptid, minus_one_ptid))
4569 set_continue_thread (any_thread_ptid);
4570 else
4571 set_continue_thread (ptid);
4572
4573 buf = rs->buf;
4574 if (execution_direction == EXEC_REVERSE)
4575 {
4576 /* We don't pass signals to the target in reverse exec mode. */
4577 if (info_verbose && siggnal != TARGET_SIGNAL_0)
4578 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4579 siggnal);
4580
4581 if (step
4582 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4583 error (_("Remote reverse-step not supported."));
4584 if (!step
4585 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4586 error (_("Remote reverse-continue not supported."));
4587
4588 strcpy (buf, step ? "bs" : "bc");
4589 }
4590 else if (siggnal != TARGET_SIGNAL_0)
4591 {
4592 buf[0] = step ? 'S' : 'C';
4593 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4594 buf[2] = tohex (((int) siggnal) & 0xf);
4595 buf[3] = '\0';
4596 }
4597 else
4598 strcpy (buf, step ? "s" : "c");
4599
4600 putpkt (buf);
4601
4602 done:
4603 /* We are about to start executing the inferior, let's register it
4604 with the event loop. NOTE: this is the one place where all the
4605 execution commands end up. We could alternatively do this in each
4606 of the execution commands in infcmd.c. */
4607 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4608 into infcmd.c in order to allow inferior function calls to work
4609 NOT asynchronously. */
4610 if (target_can_async_p ())
4611 target_async (inferior_event_handler, 0);
4612
4613 /* We've just told the target to resume. The remote server will
4614 wait for the inferior to stop, and then send a stop reply. In
4615 the mean time, we can't start another command/query ourselves
4616 because the stub wouldn't be ready to process it. This applies
4617 only to the base all-stop protocol, however. In non-stop (which
4618 only supports vCont), the stub replies with an "OK", and is
4619 immediate able to process further serial input. */
4620 if (!non_stop)
4621 rs->waiting_for_stop_reply = 1;
4622 }
4623 \f
4624
4625 /* Set up the signal handler for SIGINT, while the target is
4626 executing, ovewriting the 'regular' SIGINT signal handler. */
4627 static void
4628 initialize_sigint_signal_handler (void)
4629 {
4630 signal (SIGINT, handle_remote_sigint);
4631 }
4632
4633 /* Signal handler for SIGINT, while the target is executing. */
4634 static void
4635 handle_remote_sigint (int sig)
4636 {
4637 signal (sig, handle_remote_sigint_twice);
4638 mark_async_signal_handler_wrapper (sigint_remote_token);
4639 }
4640
4641 /* Signal handler for SIGINT, installed after SIGINT has already been
4642 sent once. It will take effect the second time that the user sends
4643 a ^C. */
4644 static void
4645 handle_remote_sigint_twice (int sig)
4646 {
4647 signal (sig, handle_remote_sigint);
4648 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4649 }
4650
4651 /* Perform the real interruption of the target execution, in response
4652 to a ^C. */
4653 static void
4654 async_remote_interrupt (gdb_client_data arg)
4655 {
4656 if (remote_debug)
4657 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
4658
4659 target_stop (inferior_ptid);
4660 }
4661
4662 /* Perform interrupt, if the first attempt did not succeed. Just give
4663 up on the target alltogether. */
4664 void
4665 async_remote_interrupt_twice (gdb_client_data arg)
4666 {
4667 if (remote_debug)
4668 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
4669
4670 interrupt_query ();
4671 }
4672
4673 /* Reinstall the usual SIGINT handlers, after the target has
4674 stopped. */
4675 static void
4676 cleanup_sigint_signal_handler (void *dummy)
4677 {
4678 signal (SIGINT, handle_sigint);
4679 }
4680
4681 /* Send ^C to target to halt it. Target will respond, and send us a
4682 packet. */
4683 static void (*ofunc) (int);
4684
4685 /* The command line interface's stop routine. This function is installed
4686 as a signal handler for SIGINT. The first time a user requests a
4687 stop, we call remote_stop to send a break or ^C. If there is no
4688 response from the target (it didn't stop when the user requested it),
4689 we ask the user if he'd like to detach from the target. */
4690 static void
4691 remote_interrupt (int signo)
4692 {
4693 /* If this doesn't work, try more severe steps. */
4694 signal (signo, remote_interrupt_twice);
4695
4696 gdb_call_async_signal_handler (sigint_remote_token, 1);
4697 }
4698
4699 /* The user typed ^C twice. */
4700
4701 static void
4702 remote_interrupt_twice (int signo)
4703 {
4704 signal (signo, ofunc);
4705 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4706 signal (signo, remote_interrupt);
4707 }
4708
4709 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4710 thread, all threads of a remote process, or all threads of all
4711 processes. */
4712
4713 static void
4714 remote_stop_ns (ptid_t ptid)
4715 {
4716 struct remote_state *rs = get_remote_state ();
4717 char *p = rs->buf;
4718 char *endp = rs->buf + get_remote_packet_size ();
4719
4720 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4721 remote_vcont_probe (rs);
4722
4723 if (!rs->support_vCont_t)
4724 error (_("Remote server does not support stopping threads"));
4725
4726 if (ptid_equal (ptid, minus_one_ptid)
4727 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4728 p += xsnprintf (p, endp - p, "vCont;t");
4729 else
4730 {
4731 ptid_t nptid;
4732
4733 p += xsnprintf (p, endp - p, "vCont;t:");
4734
4735 if (ptid_is_pid (ptid))
4736 /* All (-1) threads of process. */
4737 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4738 else
4739 {
4740 /* Small optimization: if we already have a stop reply for
4741 this thread, no use in telling the stub we want this
4742 stopped. */
4743 if (peek_stop_reply (ptid))
4744 return;
4745
4746 nptid = ptid;
4747 }
4748
4749 write_ptid (p, endp, nptid);
4750 }
4751
4752 /* In non-stop, we get an immediate OK reply. The stop reply will
4753 come in asynchronously by notification. */
4754 putpkt (rs->buf);
4755 getpkt (&rs->buf, &rs->buf_size, 0);
4756 if (strcmp (rs->buf, "OK") != 0)
4757 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4758 }
4759
4760 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4761 remote target. It is undefined which thread of which process
4762 reports the stop. */
4763
4764 static void
4765 remote_stop_as (ptid_t ptid)
4766 {
4767 struct remote_state *rs = get_remote_state ();
4768
4769 rs->ctrlc_pending_p = 1;
4770
4771 /* If the inferior is stopped already, but the core didn't know
4772 about it yet, just ignore the request. The cached wait status
4773 will be collected in remote_wait. */
4774 if (rs->cached_wait_status)
4775 return;
4776
4777 /* Send interrupt_sequence to remote target. */
4778 send_interrupt_sequence ();
4779 }
4780
4781 /* This is the generic stop called via the target vector. When a target
4782 interrupt is requested, either by the command line or the GUI, we
4783 will eventually end up here. */
4784
4785 static void
4786 remote_stop (ptid_t ptid)
4787 {
4788 if (remote_debug)
4789 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4790
4791 if (non_stop)
4792 remote_stop_ns (ptid);
4793 else
4794 remote_stop_as (ptid);
4795 }
4796
4797 /* Ask the user what to do when an interrupt is received. */
4798
4799 static void
4800 interrupt_query (void)
4801 {
4802 target_terminal_ours ();
4803
4804 if (target_can_async_p ())
4805 {
4806 signal (SIGINT, handle_sigint);
4807 deprecated_throw_reason (RETURN_QUIT);
4808 }
4809 else
4810 {
4811 if (query (_("Interrupted while waiting for the program.\n\
4812 Give up (and stop debugging it)? ")))
4813 {
4814 pop_target ();
4815 deprecated_throw_reason (RETURN_QUIT);
4816 }
4817 }
4818
4819 target_terminal_inferior ();
4820 }
4821
4822 /* Enable/disable target terminal ownership. Most targets can use
4823 terminal groups to control terminal ownership. Remote targets are
4824 different in that explicit transfer of ownership to/from GDB/target
4825 is required. */
4826
4827 static void
4828 remote_terminal_inferior (void)
4829 {
4830 if (!target_async_permitted)
4831 /* Nothing to do. */
4832 return;
4833
4834 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4835 idempotent. The event-loop GDB talking to an asynchronous target
4836 with a synchronous command calls this function from both
4837 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
4838 transfer the terminal to the target when it shouldn't this guard
4839 can go away. */
4840 if (!remote_async_terminal_ours_p)
4841 return;
4842 delete_file_handler (input_fd);
4843 remote_async_terminal_ours_p = 0;
4844 initialize_sigint_signal_handler ();
4845 /* NOTE: At this point we could also register our selves as the
4846 recipient of all input. Any characters typed could then be
4847 passed on down to the target. */
4848 }
4849
4850 static void
4851 remote_terminal_ours (void)
4852 {
4853 if (!target_async_permitted)
4854 /* Nothing to do. */
4855 return;
4856
4857 /* See FIXME in remote_terminal_inferior. */
4858 if (remote_async_terminal_ours_p)
4859 return;
4860 cleanup_sigint_signal_handler (NULL);
4861 add_file_handler (input_fd, stdin_event_handler, 0);
4862 remote_async_terminal_ours_p = 1;
4863 }
4864
4865 static void
4866 remote_console_output (char *msg)
4867 {
4868 char *p;
4869
4870 for (p = msg; p[0] && p[1]; p += 2)
4871 {
4872 char tb[2];
4873 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4874
4875 tb[0] = c;
4876 tb[1] = 0;
4877 fputs_unfiltered (tb, gdb_stdtarg);
4878 }
4879 gdb_flush (gdb_stdtarg);
4880 }
4881
4882 typedef struct cached_reg
4883 {
4884 int num;
4885 gdb_byte data[MAX_REGISTER_SIZE];
4886 } cached_reg_t;
4887
4888 DEF_VEC_O(cached_reg_t);
4889
4890 struct stop_reply
4891 {
4892 struct stop_reply *next;
4893
4894 ptid_t ptid;
4895
4896 struct target_waitstatus ws;
4897
4898 VEC(cached_reg_t) *regcache;
4899
4900 int stopped_by_watchpoint_p;
4901 CORE_ADDR watch_data_address;
4902
4903 int solibs_changed;
4904 int replay_event;
4905
4906 int core;
4907 };
4908
4909 /* The list of already fetched and acknowledged stop events. */
4910 static struct stop_reply *stop_reply_queue;
4911
4912 static struct stop_reply *
4913 stop_reply_xmalloc (void)
4914 {
4915 struct stop_reply *r = XMALLOC (struct stop_reply);
4916
4917 r->next = NULL;
4918 return r;
4919 }
4920
4921 static void
4922 stop_reply_xfree (struct stop_reply *r)
4923 {
4924 if (r != NULL)
4925 {
4926 VEC_free (cached_reg_t, r->regcache);
4927 xfree (r);
4928 }
4929 }
4930
4931 /* Discard all pending stop replies of inferior PID. If PID is -1,
4932 discard everything. */
4933
4934 static void
4935 discard_pending_stop_replies (int pid)
4936 {
4937 struct stop_reply *prev = NULL, *reply, *next;
4938
4939 /* Discard the in-flight notification. */
4940 if (pending_stop_reply != NULL
4941 && (pid == -1
4942 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4943 {
4944 stop_reply_xfree (pending_stop_reply);
4945 pending_stop_reply = NULL;
4946 }
4947
4948 /* Discard the stop replies we have already pulled with
4949 vStopped. */
4950 for (reply = stop_reply_queue; reply; reply = next)
4951 {
4952 next = reply->next;
4953 if (pid == -1
4954 || ptid_get_pid (reply->ptid) == pid)
4955 {
4956 if (reply == stop_reply_queue)
4957 stop_reply_queue = reply->next;
4958 else
4959 prev->next = reply->next;
4960
4961 stop_reply_xfree (reply);
4962 }
4963 else
4964 prev = reply;
4965 }
4966 }
4967
4968 /* Cleanup wrapper. */
4969
4970 static void
4971 do_stop_reply_xfree (void *arg)
4972 {
4973 struct stop_reply *r = arg;
4974
4975 stop_reply_xfree (r);
4976 }
4977
4978 /* Look for a queued stop reply belonging to PTID. If one is found,
4979 remove it from the queue, and return it. Returns NULL if none is
4980 found. If there are still queued events left to process, tell the
4981 event loop to get back to target_wait soon. */
4982
4983 static struct stop_reply *
4984 queued_stop_reply (ptid_t ptid)
4985 {
4986 struct stop_reply *it;
4987 struct stop_reply **it_link;
4988
4989 it = stop_reply_queue;
4990 it_link = &stop_reply_queue;
4991 while (it)
4992 {
4993 if (ptid_match (it->ptid, ptid))
4994 {
4995 *it_link = it->next;
4996 it->next = NULL;
4997 break;
4998 }
4999
5000 it_link = &it->next;
5001 it = *it_link;
5002 }
5003
5004 if (stop_reply_queue)
5005 /* There's still at least an event left. */
5006 mark_async_event_handler (remote_async_inferior_event_token);
5007
5008 return it;
5009 }
5010
5011 /* Push a fully parsed stop reply in the stop reply queue. Since we
5012 know that we now have at least one queued event left to pass to the
5013 core side, tell the event loop to get back to target_wait soon. */
5014
5015 static void
5016 push_stop_reply (struct stop_reply *new_event)
5017 {
5018 struct stop_reply *event;
5019
5020 if (stop_reply_queue)
5021 {
5022 for (event = stop_reply_queue;
5023 event && event->next;
5024 event = event->next)
5025 ;
5026
5027 event->next = new_event;
5028 }
5029 else
5030 stop_reply_queue = new_event;
5031
5032 mark_async_event_handler (remote_async_inferior_event_token);
5033 }
5034
5035 /* Returns true if we have a stop reply for PTID. */
5036
5037 static int
5038 peek_stop_reply (ptid_t ptid)
5039 {
5040 struct stop_reply *it;
5041
5042 for (it = stop_reply_queue; it; it = it->next)
5043 if (ptid_equal (ptid, it->ptid))
5044 {
5045 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
5046 return 1;
5047 }
5048
5049 return 0;
5050 }
5051
5052 /* Parse the stop reply in BUF. Either the function succeeds, and the
5053 result is stored in EVENT, or throws an error. */
5054
5055 static void
5056 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5057 {
5058 struct remote_arch_state *rsa = get_remote_arch_state ();
5059 ULONGEST addr;
5060 char *p;
5061
5062 event->ptid = null_ptid;
5063 event->ws.kind = TARGET_WAITKIND_IGNORE;
5064 event->ws.value.integer = 0;
5065 event->solibs_changed = 0;
5066 event->replay_event = 0;
5067 event->stopped_by_watchpoint_p = 0;
5068 event->regcache = NULL;
5069 event->core = -1;
5070
5071 switch (buf[0])
5072 {
5073 case 'T': /* Status with PC, SP, FP, ... */
5074 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5075 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5076 ss = signal number
5077 n... = register number
5078 r... = register contents
5079 */
5080
5081 p = &buf[3]; /* after Txx */
5082 while (*p)
5083 {
5084 char *p1;
5085 char *p_temp;
5086 int fieldsize;
5087 LONGEST pnum = 0;
5088
5089 /* If the packet contains a register number, save it in
5090 pnum and set p1 to point to the character following it.
5091 Otherwise p1 points to p. */
5092
5093 /* If this packet is an awatch packet, don't parse the 'a'
5094 as a register number. */
5095
5096 if (strncmp (p, "awatch", strlen("awatch")) != 0
5097 && strncmp (p, "core", strlen ("core") != 0))
5098 {
5099 /* Read the ``P'' register number. */
5100 pnum = strtol (p, &p_temp, 16);
5101 p1 = p_temp;
5102 }
5103 else
5104 p1 = p;
5105
5106 if (p1 == p) /* No register number present here. */
5107 {
5108 p1 = strchr (p, ':');
5109 if (p1 == NULL)
5110 error (_("Malformed packet(a) (missing colon): %s\n\
5111 Packet: '%s'\n"),
5112 p, buf);
5113 if (strncmp (p, "thread", p1 - p) == 0)
5114 event->ptid = read_ptid (++p1, &p);
5115 else if ((strncmp (p, "watch", p1 - p) == 0)
5116 || (strncmp (p, "rwatch", p1 - p) == 0)
5117 || (strncmp (p, "awatch", p1 - p) == 0))
5118 {
5119 event->stopped_by_watchpoint_p = 1;
5120 p = unpack_varlen_hex (++p1, &addr);
5121 event->watch_data_address = (CORE_ADDR) addr;
5122 }
5123 else if (strncmp (p, "library", p1 - p) == 0)
5124 {
5125 p1++;
5126 p_temp = p1;
5127 while (*p_temp && *p_temp != ';')
5128 p_temp++;
5129
5130 event->solibs_changed = 1;
5131 p = p_temp;
5132 }
5133 else if (strncmp (p, "replaylog", p1 - p) == 0)
5134 {
5135 /* NO_HISTORY event.
5136 p1 will indicate "begin" or "end", but
5137 it makes no difference for now, so ignore it. */
5138 event->replay_event = 1;
5139 p_temp = strchr (p1 + 1, ';');
5140 if (p_temp)
5141 p = p_temp;
5142 }
5143 else if (strncmp (p, "core", p1 - p) == 0)
5144 {
5145 ULONGEST c;
5146
5147 p = unpack_varlen_hex (++p1, &c);
5148 event->core = c;
5149 }
5150 else
5151 {
5152 /* Silently skip unknown optional info. */
5153 p_temp = strchr (p1 + 1, ';');
5154 if (p_temp)
5155 p = p_temp;
5156 }
5157 }
5158 else
5159 {
5160 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5161 cached_reg_t cached_reg;
5162
5163 p = p1;
5164
5165 if (*p != ':')
5166 error (_("Malformed packet(b) (missing colon): %s\n\
5167 Packet: '%s'\n"),
5168 p, buf);
5169 ++p;
5170
5171 if (reg == NULL)
5172 error (_("Remote sent bad register number %s: %s\n\
5173 Packet: '%s'\n"),
5174 hex_string (pnum), p, buf);
5175
5176 cached_reg.num = reg->regnum;
5177
5178 fieldsize = hex2bin (p, cached_reg.data,
5179 register_size (target_gdbarch,
5180 reg->regnum));
5181 p += 2 * fieldsize;
5182 if (fieldsize < register_size (target_gdbarch,
5183 reg->regnum))
5184 warning (_("Remote reply is too short: %s"), buf);
5185
5186 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5187 }
5188
5189 if (*p != ';')
5190 error (_("Remote register badly formatted: %s\nhere: %s"),
5191 buf, p);
5192 ++p;
5193 }
5194 /* fall through */
5195 case 'S': /* Old style status, just signal only. */
5196 if (event->solibs_changed)
5197 event->ws.kind = TARGET_WAITKIND_LOADED;
5198 else if (event->replay_event)
5199 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5200 else
5201 {
5202 event->ws.kind = TARGET_WAITKIND_STOPPED;
5203 event->ws.value.sig = (enum target_signal)
5204 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5205 }
5206 break;
5207 case 'W': /* Target exited. */
5208 case 'X':
5209 {
5210 char *p;
5211 int pid;
5212 ULONGEST value;
5213
5214 /* GDB used to accept only 2 hex chars here. Stubs should
5215 only send more if they detect GDB supports multi-process
5216 support. */
5217 p = unpack_varlen_hex (&buf[1], &value);
5218
5219 if (buf[0] == 'W')
5220 {
5221 /* The remote process exited. */
5222 event->ws.kind = TARGET_WAITKIND_EXITED;
5223 event->ws.value.integer = value;
5224 }
5225 else
5226 {
5227 /* The remote process exited with a signal. */
5228 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5229 event->ws.value.sig = (enum target_signal) value;
5230 }
5231
5232 /* If no process is specified, assume inferior_ptid. */
5233 pid = ptid_get_pid (inferior_ptid);
5234 if (*p == '\0')
5235 ;
5236 else if (*p == ';')
5237 {
5238 p++;
5239
5240 if (p == '\0')
5241 ;
5242 else if (strncmp (p,
5243 "process:", sizeof ("process:") - 1) == 0)
5244 {
5245 ULONGEST upid;
5246
5247 p += sizeof ("process:") - 1;
5248 unpack_varlen_hex (p, &upid);
5249 pid = upid;
5250 }
5251 else
5252 error (_("unknown stop reply packet: %s"), buf);
5253 }
5254 else
5255 error (_("unknown stop reply packet: %s"), buf);
5256 event->ptid = pid_to_ptid (pid);
5257 }
5258 break;
5259 }
5260
5261 if (non_stop && ptid_equal (event->ptid, null_ptid))
5262 error (_("No process or thread specified in stop reply: %s"), buf);
5263 }
5264
5265 /* When the stub wants to tell GDB about a new stop reply, it sends a
5266 stop notification (%Stop). Those can come it at any time, hence,
5267 we have to make sure that any pending putpkt/getpkt sequence we're
5268 making is finished, before querying the stub for more events with
5269 vStopped. E.g., if we started a vStopped sequence immediatelly
5270 upon receiving the %Stop notification, something like this could
5271 happen:
5272
5273 1.1) --> Hg 1
5274 1.2) <-- OK
5275 1.3) --> g
5276 1.4) <-- %Stop
5277 1.5) --> vStopped
5278 1.6) <-- (registers reply to step #1.3)
5279
5280 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5281 query.
5282
5283 To solve this, whenever we parse a %Stop notification sucessfully,
5284 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5285 doing whatever we were doing:
5286
5287 2.1) --> Hg 1
5288 2.2) <-- OK
5289 2.3) --> g
5290 2.4) <-- %Stop
5291 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5292 2.5) <-- (registers reply to step #2.3)
5293
5294 Eventualy after step #2.5, we return to the event loop, which
5295 notices there's an event on the
5296 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5297 associated callback --- the function below. At this point, we're
5298 always safe to start a vStopped sequence. :
5299
5300 2.6) --> vStopped
5301 2.7) <-- T05 thread:2
5302 2.8) --> vStopped
5303 2.9) --> OK
5304 */
5305
5306 static void
5307 remote_get_pending_stop_replies (void)
5308 {
5309 struct remote_state *rs = get_remote_state ();
5310
5311 if (pending_stop_reply)
5312 {
5313 /* acknowledge */
5314 putpkt ("vStopped");
5315
5316 /* Now we can rely on it. */
5317 push_stop_reply (pending_stop_reply);
5318 pending_stop_reply = NULL;
5319
5320 while (1)
5321 {
5322 getpkt (&rs->buf, &rs->buf_size, 0);
5323 if (strcmp (rs->buf, "OK") == 0)
5324 break;
5325 else
5326 {
5327 struct cleanup *old_chain;
5328 struct stop_reply *stop_reply = stop_reply_xmalloc ();
5329
5330 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5331 remote_parse_stop_reply (rs->buf, stop_reply);
5332
5333 /* acknowledge */
5334 putpkt ("vStopped");
5335
5336 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
5337 {
5338 /* Now we can rely on it. */
5339 discard_cleanups (old_chain);
5340 push_stop_reply (stop_reply);
5341 }
5342 else
5343 /* We got an unknown stop reply. */
5344 do_cleanups (old_chain);
5345 }
5346 }
5347 }
5348 }
5349
5350
5351 /* Called when it is decided that STOP_REPLY holds the info of the
5352 event that is to be returned to the core. This function always
5353 destroys STOP_REPLY. */
5354
5355 static ptid_t
5356 process_stop_reply (struct stop_reply *stop_reply,
5357 struct target_waitstatus *status)
5358 {
5359 ptid_t ptid;
5360
5361 *status = stop_reply->ws;
5362 ptid = stop_reply->ptid;
5363
5364 /* If no thread/process was reported by the stub, assume the current
5365 inferior. */
5366 if (ptid_equal (ptid, null_ptid))
5367 ptid = inferior_ptid;
5368
5369 if (status->kind != TARGET_WAITKIND_EXITED
5370 && status->kind != TARGET_WAITKIND_SIGNALLED)
5371 {
5372 /* Expedited registers. */
5373 if (stop_reply->regcache)
5374 {
5375 struct regcache *regcache
5376 = get_thread_arch_regcache (ptid, target_gdbarch);
5377 cached_reg_t *reg;
5378 int ix;
5379
5380 for (ix = 0;
5381 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5382 ix++)
5383 regcache_raw_supply (regcache, reg->num, reg->data);
5384 VEC_free (cached_reg_t, stop_reply->regcache);
5385 }
5386
5387 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5388 remote_watch_data_address = stop_reply->watch_data_address;
5389
5390 remote_notice_new_inferior (ptid, 0);
5391 demand_private_info (ptid)->core = stop_reply->core;
5392 }
5393
5394 stop_reply_xfree (stop_reply);
5395 return ptid;
5396 }
5397
5398 /* The non-stop mode version of target_wait. */
5399
5400 static ptid_t
5401 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5402 {
5403 struct remote_state *rs = get_remote_state ();
5404 struct stop_reply *stop_reply;
5405 int ret;
5406
5407 /* If in non-stop mode, get out of getpkt even if a
5408 notification is received. */
5409
5410 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5411 0 /* forever */);
5412 while (1)
5413 {
5414 if (ret != -1)
5415 switch (rs->buf[0])
5416 {
5417 case 'E': /* Error of some sort. */
5418 /* We're out of sync with the target now. Did it continue
5419 or not? We can't tell which thread it was in non-stop,
5420 so just ignore this. */
5421 warning (_("Remote failure reply: %s"), rs->buf);
5422 break;
5423 case 'O': /* Console output. */
5424 remote_console_output (rs->buf + 1);
5425 break;
5426 default:
5427 warning (_("Invalid remote reply: %s"), rs->buf);
5428 break;
5429 }
5430
5431 /* Acknowledge a pending stop reply that may have arrived in the
5432 mean time. */
5433 if (pending_stop_reply != NULL)
5434 remote_get_pending_stop_replies ();
5435
5436 /* If indeed we noticed a stop reply, we're done. */
5437 stop_reply = queued_stop_reply (ptid);
5438 if (stop_reply != NULL)
5439 return process_stop_reply (stop_reply, status);
5440
5441 /* Still no event. If we're just polling for an event, then
5442 return to the event loop. */
5443 if (options & TARGET_WNOHANG)
5444 {
5445 status->kind = TARGET_WAITKIND_IGNORE;
5446 return minus_one_ptid;
5447 }
5448
5449 /* Otherwise do a blocking wait. */
5450 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5451 1 /* forever */);
5452 }
5453 }
5454
5455 /* Wait until the remote machine stops, then return, storing status in
5456 STATUS just as `wait' would. */
5457
5458 static ptid_t
5459 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5460 {
5461 struct remote_state *rs = get_remote_state ();
5462 ptid_t event_ptid = null_ptid;
5463 char *buf;
5464 struct stop_reply *stop_reply;
5465
5466 again:
5467
5468 status->kind = TARGET_WAITKIND_IGNORE;
5469 status->value.integer = 0;
5470
5471 stop_reply = queued_stop_reply (ptid);
5472 if (stop_reply != NULL)
5473 return process_stop_reply (stop_reply, status);
5474
5475 if (rs->cached_wait_status)
5476 /* Use the cached wait status, but only once. */
5477 rs->cached_wait_status = 0;
5478 else
5479 {
5480 int ret;
5481
5482 if (!target_is_async_p ())
5483 {
5484 ofunc = signal (SIGINT, remote_interrupt);
5485 /* If the user hit C-c before this packet, or between packets,
5486 pretend that it was hit right here. */
5487 if (quit_flag)
5488 {
5489 quit_flag = 0;
5490 remote_interrupt (SIGINT);
5491 }
5492 }
5493
5494 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5495 _never_ wait for ever -> test on target_is_async_p().
5496 However, before we do that we need to ensure that the caller
5497 knows how to take the target into/out of async mode. */
5498 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5499 if (!target_is_async_p ())
5500 signal (SIGINT, ofunc);
5501 }
5502
5503 buf = rs->buf;
5504
5505 remote_stopped_by_watchpoint_p = 0;
5506
5507 /* We got something. */
5508 rs->waiting_for_stop_reply = 0;
5509
5510 /* Assume that the target has acknowledged Ctrl-C unless we receive
5511 an 'F' or 'O' packet. */
5512 if (buf[0] != 'F' && buf[0] != 'O')
5513 rs->ctrlc_pending_p = 0;
5514
5515 switch (buf[0])
5516 {
5517 case 'E': /* Error of some sort. */
5518 /* We're out of sync with the target now. Did it continue or
5519 not? Not is more likely, so report a stop. */
5520 warning (_("Remote failure reply: %s"), buf);
5521 status->kind = TARGET_WAITKIND_STOPPED;
5522 status->value.sig = TARGET_SIGNAL_0;
5523 break;
5524 case 'F': /* File-I/O request. */
5525 remote_fileio_request (buf, rs->ctrlc_pending_p);
5526 rs->ctrlc_pending_p = 0;
5527 break;
5528 case 'T': case 'S': case 'X': case 'W':
5529 {
5530 struct stop_reply *stop_reply;
5531 struct cleanup *old_chain;
5532
5533 stop_reply = stop_reply_xmalloc ();
5534 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5535 remote_parse_stop_reply (buf, stop_reply);
5536 discard_cleanups (old_chain);
5537 event_ptid = process_stop_reply (stop_reply, status);
5538 break;
5539 }
5540 case 'O': /* Console output. */
5541 remote_console_output (buf + 1);
5542
5543 /* The target didn't really stop; keep waiting. */
5544 rs->waiting_for_stop_reply = 1;
5545
5546 break;
5547 case '\0':
5548 if (last_sent_signal != TARGET_SIGNAL_0)
5549 {
5550 /* Zero length reply means that we tried 'S' or 'C' and the
5551 remote system doesn't support it. */
5552 target_terminal_ours_for_output ();
5553 printf_filtered
5554 ("Can't send signals to this remote system. %s not sent.\n",
5555 target_signal_to_name (last_sent_signal));
5556 last_sent_signal = TARGET_SIGNAL_0;
5557 target_terminal_inferior ();
5558
5559 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5560 putpkt ((char *) buf);
5561
5562 /* We just told the target to resume, so a stop reply is in
5563 order. */
5564 rs->waiting_for_stop_reply = 1;
5565 break;
5566 }
5567 /* else fallthrough */
5568 default:
5569 warning (_("Invalid remote reply: %s"), buf);
5570 /* Keep waiting. */
5571 rs->waiting_for_stop_reply = 1;
5572 break;
5573 }
5574
5575 if (status->kind == TARGET_WAITKIND_IGNORE)
5576 {
5577 /* Nothing interesting happened. If we're doing a non-blocking
5578 poll, we're done. Otherwise, go back to waiting. */
5579 if (options & TARGET_WNOHANG)
5580 return minus_one_ptid;
5581 else
5582 goto again;
5583 }
5584 else if (status->kind != TARGET_WAITKIND_EXITED
5585 && status->kind != TARGET_WAITKIND_SIGNALLED)
5586 {
5587 if (!ptid_equal (event_ptid, null_ptid))
5588 record_currthread (event_ptid);
5589 else
5590 event_ptid = inferior_ptid;
5591 }
5592 else
5593 /* A process exit. Invalidate our notion of current thread. */
5594 record_currthread (minus_one_ptid);
5595
5596 return event_ptid;
5597 }
5598
5599 /* Wait until the remote machine stops, then return, storing status in
5600 STATUS just as `wait' would. */
5601
5602 static ptid_t
5603 remote_wait (struct target_ops *ops,
5604 ptid_t ptid, struct target_waitstatus *status, int options)
5605 {
5606 ptid_t event_ptid;
5607
5608 if (non_stop)
5609 event_ptid = remote_wait_ns (ptid, status, options);
5610 else
5611 event_ptid = remote_wait_as (ptid, status, options);
5612
5613 if (target_can_async_p ())
5614 {
5615 /* If there are are events left in the queue tell the event loop
5616 to return here. */
5617 if (stop_reply_queue)
5618 mark_async_event_handler (remote_async_inferior_event_token);
5619 }
5620
5621 return event_ptid;
5622 }
5623
5624 /* Fetch a single register using a 'p' packet. */
5625
5626 static int
5627 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5628 {
5629 struct remote_state *rs = get_remote_state ();
5630 char *buf, *p;
5631 char regp[MAX_REGISTER_SIZE];
5632 int i;
5633
5634 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5635 return 0;
5636
5637 if (reg->pnum == -1)
5638 return 0;
5639
5640 p = rs->buf;
5641 *p++ = 'p';
5642 p += hexnumstr (p, reg->pnum);
5643 *p++ = '\0';
5644 putpkt (rs->buf);
5645 getpkt (&rs->buf, &rs->buf_size, 0);
5646
5647 buf = rs->buf;
5648
5649 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5650 {
5651 case PACKET_OK:
5652 break;
5653 case PACKET_UNKNOWN:
5654 return 0;
5655 case PACKET_ERROR:
5656 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5657 gdbarch_register_name (get_regcache_arch (regcache),
5658 reg->regnum),
5659 buf);
5660 }
5661
5662 /* If this register is unfetchable, tell the regcache. */
5663 if (buf[0] == 'x')
5664 {
5665 regcache_raw_supply (regcache, reg->regnum, NULL);
5666 return 1;
5667 }
5668
5669 /* Otherwise, parse and supply the value. */
5670 p = buf;
5671 i = 0;
5672 while (p[0] != 0)
5673 {
5674 if (p[1] == 0)
5675 error (_("fetch_register_using_p: early buf termination"));
5676
5677 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5678 p += 2;
5679 }
5680 regcache_raw_supply (regcache, reg->regnum, regp);
5681 return 1;
5682 }
5683
5684 /* Fetch the registers included in the target's 'g' packet. */
5685
5686 static int
5687 send_g_packet (void)
5688 {
5689 struct remote_state *rs = get_remote_state ();
5690 int buf_len;
5691
5692 sprintf (rs->buf, "g");
5693 remote_send (&rs->buf, &rs->buf_size);
5694
5695 /* We can get out of synch in various cases. If the first character
5696 in the buffer is not a hex character, assume that has happened
5697 and try to fetch another packet to read. */
5698 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5699 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5700 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5701 && rs->buf[0] != 'x') /* New: unavailable register value. */
5702 {
5703 if (remote_debug)
5704 fprintf_unfiltered (gdb_stdlog,
5705 "Bad register packet; fetching a new packet\n");
5706 getpkt (&rs->buf, &rs->buf_size, 0);
5707 }
5708
5709 buf_len = strlen (rs->buf);
5710
5711 /* Sanity check the received packet. */
5712 if (buf_len % 2 != 0)
5713 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5714
5715 return buf_len / 2;
5716 }
5717
5718 static void
5719 process_g_packet (struct regcache *regcache)
5720 {
5721 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5722 struct remote_state *rs = get_remote_state ();
5723 struct remote_arch_state *rsa = get_remote_arch_state ();
5724 int i, buf_len;
5725 char *p;
5726 char *regs;
5727
5728 buf_len = strlen (rs->buf);
5729
5730 /* Further sanity checks, with knowledge of the architecture. */
5731 if (buf_len > 2 * rsa->sizeof_g_packet)
5732 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5733
5734 /* Save the size of the packet sent to us by the target. It is used
5735 as a heuristic when determining the max size of packets that the
5736 target can safely receive. */
5737 if (rsa->actual_register_packet_size == 0)
5738 rsa->actual_register_packet_size = buf_len;
5739
5740 /* If this is smaller than we guessed the 'g' packet would be,
5741 update our records. A 'g' reply that doesn't include a register's
5742 value implies either that the register is not available, or that
5743 the 'p' packet must be used. */
5744 if (buf_len < 2 * rsa->sizeof_g_packet)
5745 {
5746 rsa->sizeof_g_packet = buf_len / 2;
5747
5748 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5749 {
5750 if (rsa->regs[i].pnum == -1)
5751 continue;
5752
5753 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5754 rsa->regs[i].in_g_packet = 0;
5755 else
5756 rsa->regs[i].in_g_packet = 1;
5757 }
5758 }
5759
5760 regs = alloca (rsa->sizeof_g_packet);
5761
5762 /* Unimplemented registers read as all bits zero. */
5763 memset (regs, 0, rsa->sizeof_g_packet);
5764
5765 /* Reply describes registers byte by byte, each byte encoded as two
5766 hex characters. Suck them all up, then supply them to the
5767 register cacheing/storage mechanism. */
5768
5769 p = rs->buf;
5770 for (i = 0; i < rsa->sizeof_g_packet; i++)
5771 {
5772 if (p[0] == 0 || p[1] == 0)
5773 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5774 internal_error (__FILE__, __LINE__,
5775 _("unexpected end of 'g' packet reply"));
5776
5777 if (p[0] == 'x' && p[1] == 'x')
5778 regs[i] = 0; /* 'x' */
5779 else
5780 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5781 p += 2;
5782 }
5783
5784 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5785 {
5786 struct packet_reg *r = &rsa->regs[i];
5787
5788 if (r->in_g_packet)
5789 {
5790 if (r->offset * 2 >= strlen (rs->buf))
5791 /* This shouldn't happen - we adjusted in_g_packet above. */
5792 internal_error (__FILE__, __LINE__,
5793 _("unexpected end of 'g' packet reply"));
5794 else if (rs->buf[r->offset * 2] == 'x')
5795 {
5796 gdb_assert (r->offset * 2 < strlen (rs->buf));
5797 /* The register isn't available, mark it as such (at
5798 the same time setting the value to zero). */
5799 regcache_raw_supply (regcache, r->regnum, NULL);
5800 }
5801 else
5802 regcache_raw_supply (regcache, r->regnum,
5803 regs + r->offset);
5804 }
5805 }
5806 }
5807
5808 static void
5809 fetch_registers_using_g (struct regcache *regcache)
5810 {
5811 send_g_packet ();
5812 process_g_packet (regcache);
5813 }
5814
5815 /* Make the remote selected traceframe match GDB's selected
5816 traceframe. */
5817
5818 static void
5819 set_remote_traceframe (void)
5820 {
5821 int newnum;
5822
5823 if (remote_traceframe_number == get_traceframe_number ())
5824 return;
5825
5826 /* Avoid recursion, remote_trace_find calls us again. */
5827 remote_traceframe_number = get_traceframe_number ();
5828
5829 newnum = target_trace_find (tfind_number,
5830 get_traceframe_number (), 0, 0, NULL);
5831
5832 /* Should not happen. If it does, all bets are off. */
5833 if (newnum != get_traceframe_number ())
5834 warning (_("could not set remote traceframe"));
5835 }
5836
5837 static void
5838 remote_fetch_registers (struct target_ops *ops,
5839 struct regcache *regcache, int regnum)
5840 {
5841 struct remote_arch_state *rsa = get_remote_arch_state ();
5842 int i;
5843
5844 set_remote_traceframe ();
5845 set_general_thread (inferior_ptid);
5846
5847 if (regnum >= 0)
5848 {
5849 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5850
5851 gdb_assert (reg != NULL);
5852
5853 /* If this register might be in the 'g' packet, try that first -
5854 we are likely to read more than one register. If this is the
5855 first 'g' packet, we might be overly optimistic about its
5856 contents, so fall back to 'p'. */
5857 if (reg->in_g_packet)
5858 {
5859 fetch_registers_using_g (regcache);
5860 if (reg->in_g_packet)
5861 return;
5862 }
5863
5864 if (fetch_register_using_p (regcache, reg))
5865 return;
5866
5867 /* This register is not available. */
5868 regcache_raw_supply (regcache, reg->regnum, NULL);
5869
5870 return;
5871 }
5872
5873 fetch_registers_using_g (regcache);
5874
5875 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5876 if (!rsa->regs[i].in_g_packet)
5877 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5878 {
5879 /* This register is not available. */
5880 regcache_raw_supply (regcache, i, NULL);
5881 }
5882 }
5883
5884 /* Prepare to store registers. Since we may send them all (using a
5885 'G' request), we have to read out the ones we don't want to change
5886 first. */
5887
5888 static void
5889 remote_prepare_to_store (struct regcache *regcache)
5890 {
5891 struct remote_arch_state *rsa = get_remote_arch_state ();
5892 int i;
5893 gdb_byte buf[MAX_REGISTER_SIZE];
5894
5895 /* Make sure the entire registers array is valid. */
5896 switch (remote_protocol_packets[PACKET_P].support)
5897 {
5898 case PACKET_DISABLE:
5899 case PACKET_SUPPORT_UNKNOWN:
5900 /* Make sure all the necessary registers are cached. */
5901 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5902 if (rsa->regs[i].in_g_packet)
5903 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5904 break;
5905 case PACKET_ENABLE:
5906 break;
5907 }
5908 }
5909
5910 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5911 packet was not recognized. */
5912
5913 static int
5914 store_register_using_P (const struct regcache *regcache,
5915 struct packet_reg *reg)
5916 {
5917 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5918 struct remote_state *rs = get_remote_state ();
5919 /* Try storing a single register. */
5920 char *buf = rs->buf;
5921 gdb_byte regp[MAX_REGISTER_SIZE];
5922 char *p;
5923
5924 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5925 return 0;
5926
5927 if (reg->pnum == -1)
5928 return 0;
5929
5930 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5931 p = buf + strlen (buf);
5932 regcache_raw_collect (regcache, reg->regnum, regp);
5933 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5934 putpkt (rs->buf);
5935 getpkt (&rs->buf, &rs->buf_size, 0);
5936
5937 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5938 {
5939 case PACKET_OK:
5940 return 1;
5941 case PACKET_ERROR:
5942 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
5943 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
5944 case PACKET_UNKNOWN:
5945 return 0;
5946 default:
5947 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5948 }
5949 }
5950
5951 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5952 contents of the register cache buffer. FIXME: ignores errors. */
5953
5954 static void
5955 store_registers_using_G (const struct regcache *regcache)
5956 {
5957 struct remote_state *rs = get_remote_state ();
5958 struct remote_arch_state *rsa = get_remote_arch_state ();
5959 gdb_byte *regs;
5960 char *p;
5961
5962 /* Extract all the registers in the regcache copying them into a
5963 local buffer. */
5964 {
5965 int i;
5966
5967 regs = alloca (rsa->sizeof_g_packet);
5968 memset (regs, 0, rsa->sizeof_g_packet);
5969 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5970 {
5971 struct packet_reg *r = &rsa->regs[i];
5972
5973 if (r->in_g_packet)
5974 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5975 }
5976 }
5977
5978 /* Command describes registers byte by byte,
5979 each byte encoded as two hex characters. */
5980 p = rs->buf;
5981 *p++ = 'G';
5982 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5983 updated. */
5984 bin2hex (regs, p, rsa->sizeof_g_packet);
5985 putpkt (rs->buf);
5986 getpkt (&rs->buf, &rs->buf_size, 0);
5987 if (packet_check_result (rs->buf) == PACKET_ERROR)
5988 error (_("Could not write registers; remote failure reply '%s'"),
5989 rs->buf);
5990 }
5991
5992 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5993 of the register cache buffer. FIXME: ignores errors. */
5994
5995 static void
5996 remote_store_registers (struct target_ops *ops,
5997 struct regcache *regcache, int regnum)
5998 {
5999 struct remote_arch_state *rsa = get_remote_arch_state ();
6000 int i;
6001
6002 set_remote_traceframe ();
6003 set_general_thread (inferior_ptid);
6004
6005 if (regnum >= 0)
6006 {
6007 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6008
6009 gdb_assert (reg != NULL);
6010
6011 /* Always prefer to store registers using the 'P' packet if
6012 possible; we often change only a small number of registers.
6013 Sometimes we change a larger number; we'd need help from a
6014 higher layer to know to use 'G'. */
6015 if (store_register_using_P (regcache, reg))
6016 return;
6017
6018 /* For now, don't complain if we have no way to write the
6019 register. GDB loses track of unavailable registers too
6020 easily. Some day, this may be an error. We don't have
6021 any way to read the register, either... */
6022 if (!reg->in_g_packet)
6023 return;
6024
6025 store_registers_using_G (regcache);
6026 return;
6027 }
6028
6029 store_registers_using_G (regcache);
6030
6031 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6032 if (!rsa->regs[i].in_g_packet)
6033 if (!store_register_using_P (regcache, &rsa->regs[i]))
6034 /* See above for why we do not issue an error here. */
6035 continue;
6036 }
6037 \f
6038
6039 /* Return the number of hex digits in num. */
6040
6041 static int
6042 hexnumlen (ULONGEST num)
6043 {
6044 int i;
6045
6046 for (i = 0; num != 0; i++)
6047 num >>= 4;
6048
6049 return max (i, 1);
6050 }
6051
6052 /* Set BUF to the minimum number of hex digits representing NUM. */
6053
6054 static int
6055 hexnumstr (char *buf, ULONGEST num)
6056 {
6057 int len = hexnumlen (num);
6058
6059 return hexnumnstr (buf, num, len);
6060 }
6061
6062
6063 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6064
6065 static int
6066 hexnumnstr (char *buf, ULONGEST num, int width)
6067 {
6068 int i;
6069
6070 buf[width] = '\0';
6071
6072 for (i = width - 1; i >= 0; i--)
6073 {
6074 buf[i] = "0123456789abcdef"[(num & 0xf)];
6075 num >>= 4;
6076 }
6077
6078 return width;
6079 }
6080
6081 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6082
6083 static CORE_ADDR
6084 remote_address_masked (CORE_ADDR addr)
6085 {
6086 int address_size = remote_address_size;
6087
6088 /* If "remoteaddresssize" was not set, default to target address size. */
6089 if (!address_size)
6090 address_size = gdbarch_addr_bit (target_gdbarch);
6091
6092 if (address_size > 0
6093 && address_size < (sizeof (ULONGEST) * 8))
6094 {
6095 /* Only create a mask when that mask can safely be constructed
6096 in a ULONGEST variable. */
6097 ULONGEST mask = 1;
6098
6099 mask = (mask << address_size) - 1;
6100 addr &= mask;
6101 }
6102 return addr;
6103 }
6104
6105 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6106 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6107 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6108 (which may be more than *OUT_LEN due to escape characters). The
6109 total number of bytes in the output buffer will be at most
6110 OUT_MAXLEN. */
6111
6112 static int
6113 remote_escape_output (const gdb_byte *buffer, int len,
6114 gdb_byte *out_buf, int *out_len,
6115 int out_maxlen)
6116 {
6117 int input_index, output_index;
6118
6119 output_index = 0;
6120 for (input_index = 0; input_index < len; input_index++)
6121 {
6122 gdb_byte b = buffer[input_index];
6123
6124 if (b == '$' || b == '#' || b == '}')
6125 {
6126 /* These must be escaped. */
6127 if (output_index + 2 > out_maxlen)
6128 break;
6129 out_buf[output_index++] = '}';
6130 out_buf[output_index++] = b ^ 0x20;
6131 }
6132 else
6133 {
6134 if (output_index + 1 > out_maxlen)
6135 break;
6136 out_buf[output_index++] = b;
6137 }
6138 }
6139
6140 *out_len = input_index;
6141 return output_index;
6142 }
6143
6144 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6145 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6146 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6147
6148 This function reverses remote_escape_output. It allows more
6149 escaped characters than that function does, in particular because
6150 '*' must be escaped to avoid the run-length encoding processing
6151 in reading packets. */
6152
6153 static int
6154 remote_unescape_input (const gdb_byte *buffer, int len,
6155 gdb_byte *out_buf, int out_maxlen)
6156 {
6157 int input_index, output_index;
6158 int escaped;
6159
6160 output_index = 0;
6161 escaped = 0;
6162 for (input_index = 0; input_index < len; input_index++)
6163 {
6164 gdb_byte b = buffer[input_index];
6165
6166 if (output_index + 1 > out_maxlen)
6167 {
6168 warning (_("Received too much data from remote target;"
6169 " ignoring overflow."));
6170 return output_index;
6171 }
6172
6173 if (escaped)
6174 {
6175 out_buf[output_index++] = b ^ 0x20;
6176 escaped = 0;
6177 }
6178 else if (b == '}')
6179 escaped = 1;
6180 else
6181 out_buf[output_index++] = b;
6182 }
6183
6184 if (escaped)
6185 error (_("Unmatched escape character in target response."));
6186
6187 return output_index;
6188 }
6189
6190 /* Determine whether the remote target supports binary downloading.
6191 This is accomplished by sending a no-op memory write of zero length
6192 to the target at the specified address. It does not suffice to send
6193 the whole packet, since many stubs strip the eighth bit and
6194 subsequently compute a wrong checksum, which causes real havoc with
6195 remote_write_bytes.
6196
6197 NOTE: This can still lose if the serial line is not eight-bit
6198 clean. In cases like this, the user should clear "remote
6199 X-packet". */
6200
6201 static void
6202 check_binary_download (CORE_ADDR addr)
6203 {
6204 struct remote_state *rs = get_remote_state ();
6205
6206 switch (remote_protocol_packets[PACKET_X].support)
6207 {
6208 case PACKET_DISABLE:
6209 break;
6210 case PACKET_ENABLE:
6211 break;
6212 case PACKET_SUPPORT_UNKNOWN:
6213 {
6214 char *p;
6215
6216 p = rs->buf;
6217 *p++ = 'X';
6218 p += hexnumstr (p, (ULONGEST) addr);
6219 *p++ = ',';
6220 p += hexnumstr (p, (ULONGEST) 0);
6221 *p++ = ':';
6222 *p = '\0';
6223
6224 putpkt_binary (rs->buf, (int) (p - rs->buf));
6225 getpkt (&rs->buf, &rs->buf_size, 0);
6226
6227 if (rs->buf[0] == '\0')
6228 {
6229 if (remote_debug)
6230 fprintf_unfiltered (gdb_stdlog,
6231 "binary downloading NOT "
6232 "supported by target\n");
6233 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6234 }
6235 else
6236 {
6237 if (remote_debug)
6238 fprintf_unfiltered (gdb_stdlog,
6239 "binary downloading supported by target\n");
6240 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6241 }
6242 break;
6243 }
6244 }
6245 }
6246
6247 /* Write memory data directly to the remote machine.
6248 This does not inform the data cache; the data cache uses this.
6249 HEADER is the starting part of the packet.
6250 MEMADDR is the address in the remote memory space.
6251 MYADDR is the address of the buffer in our space.
6252 LEN is the number of bytes.
6253 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6254 should send data as binary ('X'), or hex-encoded ('M').
6255
6256 The function creates packet of the form
6257 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6258
6259 where encoding of <DATA> is termined by PACKET_FORMAT.
6260
6261 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6262 are omitted.
6263
6264 Returns the number of bytes transferred, or 0 (setting errno) for
6265 error. Only transfer a single packet. */
6266
6267 static int
6268 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6269 const gdb_byte *myaddr, int len,
6270 char packet_format, int use_length)
6271 {
6272 struct remote_state *rs = get_remote_state ();
6273 char *p;
6274 char *plen = NULL;
6275 int plenlen = 0;
6276 int todo;
6277 int nr_bytes;
6278 int payload_size;
6279 int payload_length;
6280 int header_length;
6281
6282 if (packet_format != 'X' && packet_format != 'M')
6283 internal_error (__FILE__, __LINE__,
6284 _("remote_write_bytes_aux: bad packet format"));
6285
6286 if (len <= 0)
6287 return 0;
6288
6289 payload_size = get_memory_write_packet_size ();
6290
6291 /* The packet buffer will be large enough for the payload;
6292 get_memory_packet_size ensures this. */
6293 rs->buf[0] = '\0';
6294
6295 /* Compute the size of the actual payload by subtracting out the
6296 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6297
6298 payload_size -= strlen ("$,:#NN");
6299 if (!use_length)
6300 /* The comma won't be used. */
6301 payload_size += 1;
6302 header_length = strlen (header);
6303 payload_size -= header_length;
6304 payload_size -= hexnumlen (memaddr);
6305
6306 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6307
6308 strcat (rs->buf, header);
6309 p = rs->buf + strlen (header);
6310
6311 /* Compute a best guess of the number of bytes actually transfered. */
6312 if (packet_format == 'X')
6313 {
6314 /* Best guess at number of bytes that will fit. */
6315 todo = min (len, payload_size);
6316 if (use_length)
6317 payload_size -= hexnumlen (todo);
6318 todo = min (todo, payload_size);
6319 }
6320 else
6321 {
6322 /* Num bytes that will fit. */
6323 todo = min (len, payload_size / 2);
6324 if (use_length)
6325 payload_size -= hexnumlen (todo);
6326 todo = min (todo, payload_size / 2);
6327 }
6328
6329 if (todo <= 0)
6330 internal_error (__FILE__, __LINE__,
6331 _("minumum packet size too small to write data"));
6332
6333 /* If we already need another packet, then try to align the end
6334 of this packet to a useful boundary. */
6335 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6336 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6337
6338 /* Append "<memaddr>". */
6339 memaddr = remote_address_masked (memaddr);
6340 p += hexnumstr (p, (ULONGEST) memaddr);
6341
6342 if (use_length)
6343 {
6344 /* Append ",". */
6345 *p++ = ',';
6346
6347 /* Append <len>. Retain the location/size of <len>. It may need to
6348 be adjusted once the packet body has been created. */
6349 plen = p;
6350 plenlen = hexnumstr (p, (ULONGEST) todo);
6351 p += plenlen;
6352 }
6353
6354 /* Append ":". */
6355 *p++ = ':';
6356 *p = '\0';
6357
6358 /* Append the packet body. */
6359 if (packet_format == 'X')
6360 {
6361 /* Binary mode. Send target system values byte by byte, in
6362 increasing byte addresses. Only escape certain critical
6363 characters. */
6364 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6365 payload_size);
6366
6367 /* If not all TODO bytes fit, then we'll need another packet. Make
6368 a second try to keep the end of the packet aligned. Don't do
6369 this if the packet is tiny. */
6370 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6371 {
6372 int new_nr_bytes;
6373
6374 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6375 - memaddr);
6376 if (new_nr_bytes != nr_bytes)
6377 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6378 p, &nr_bytes,
6379 payload_size);
6380 }
6381
6382 p += payload_length;
6383 if (use_length && nr_bytes < todo)
6384 {
6385 /* Escape chars have filled up the buffer prematurely,
6386 and we have actually sent fewer bytes than planned.
6387 Fix-up the length field of the packet. Use the same
6388 number of characters as before. */
6389 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6390 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6391 }
6392 }
6393 else
6394 {
6395 /* Normal mode: Send target system values byte by byte, in
6396 increasing byte addresses. Each byte is encoded as a two hex
6397 value. */
6398 nr_bytes = bin2hex (myaddr, p, todo);
6399 p += 2 * nr_bytes;
6400 }
6401
6402 putpkt_binary (rs->buf, (int) (p - rs->buf));
6403 getpkt (&rs->buf, &rs->buf_size, 0);
6404
6405 if (rs->buf[0] == 'E')
6406 {
6407 /* There is no correspondance between what the remote protocol
6408 uses for errors and errno codes. We would like a cleaner way
6409 of representing errors (big enough to include errno codes,
6410 bfd_error codes, and others). But for now just return EIO. */
6411 errno = EIO;
6412 return 0;
6413 }
6414
6415 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6416 fewer bytes than we'd planned. */
6417 return nr_bytes;
6418 }
6419
6420 /* Write memory data directly to the remote machine.
6421 This does not inform the data cache; the data cache uses this.
6422 MEMADDR is the address in the remote memory space.
6423 MYADDR is the address of the buffer in our space.
6424 LEN is the number of bytes.
6425
6426 Returns number of bytes transferred, or 0 (setting errno) for
6427 error. Only transfer a single packet. */
6428
6429 static int
6430 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
6431 {
6432 char *packet_format = 0;
6433
6434 /* Check whether the target supports binary download. */
6435 check_binary_download (memaddr);
6436
6437 switch (remote_protocol_packets[PACKET_X].support)
6438 {
6439 case PACKET_ENABLE:
6440 packet_format = "X";
6441 break;
6442 case PACKET_DISABLE:
6443 packet_format = "M";
6444 break;
6445 case PACKET_SUPPORT_UNKNOWN:
6446 internal_error (__FILE__, __LINE__,
6447 _("remote_write_bytes: bad internal state"));
6448 default:
6449 internal_error (__FILE__, __LINE__, _("bad switch"));
6450 }
6451
6452 return remote_write_bytes_aux (packet_format,
6453 memaddr, myaddr, len, packet_format[0], 1);
6454 }
6455
6456 /* Read memory data directly from the remote machine.
6457 This does not use the data cache; the data cache uses this.
6458 MEMADDR is the address in the remote memory space.
6459 MYADDR is the address of the buffer in our space.
6460 LEN is the number of bytes.
6461
6462 Returns number of bytes transferred, or 0 for error. */
6463
6464 static int
6465 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6466 {
6467 struct remote_state *rs = get_remote_state ();
6468 int max_buf_size; /* Max size of packet output buffer. */
6469 char *p;
6470 int todo;
6471 int i;
6472
6473 if (len <= 0)
6474 return 0;
6475
6476 max_buf_size = get_memory_read_packet_size ();
6477 /* The packet buffer will be large enough for the payload;
6478 get_memory_packet_size ensures this. */
6479
6480 /* Number if bytes that will fit. */
6481 todo = min (len, max_buf_size / 2);
6482
6483 /* Construct "m"<memaddr>","<len>". */
6484 memaddr = remote_address_masked (memaddr);
6485 p = rs->buf;
6486 *p++ = 'm';
6487 p += hexnumstr (p, (ULONGEST) memaddr);
6488 *p++ = ',';
6489 p += hexnumstr (p, (ULONGEST) todo);
6490 *p = '\0';
6491 putpkt (rs->buf);
6492 getpkt (&rs->buf, &rs->buf_size, 0);
6493 if (rs->buf[0] == 'E'
6494 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6495 && rs->buf[3] == '\0')
6496 {
6497 /* There is no correspondance between what the remote protocol
6498 uses for errors and errno codes. We would like a cleaner way
6499 of representing errors (big enough to include errno codes,
6500 bfd_error codes, and others). But for now just return
6501 EIO. */
6502 errno = EIO;
6503 return 0;
6504 }
6505 /* Reply describes memory byte by byte, each byte encoded as two hex
6506 characters. */
6507 p = rs->buf;
6508 i = hex2bin (p, myaddr, todo);
6509 /* Return what we have. Let higher layers handle partial reads. */
6510 return i;
6511 }
6512 \f
6513
6514 /* Remote notification handler. */
6515
6516 static void
6517 handle_notification (char *buf, size_t length)
6518 {
6519 if (strncmp (buf, "Stop:", 5) == 0)
6520 {
6521 if (pending_stop_reply)
6522 {
6523 /* We've already parsed the in-flight stop-reply, but the
6524 stub for some reason thought we didn't, possibly due to
6525 timeout on its side. Just ignore it. */
6526 if (remote_debug)
6527 fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6528 }
6529 else
6530 {
6531 struct cleanup *old_chain;
6532 struct stop_reply *reply = stop_reply_xmalloc ();
6533
6534 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6535
6536 remote_parse_stop_reply (buf + 5, reply);
6537
6538 discard_cleanups (old_chain);
6539
6540 /* Be careful to only set it after parsing, since an error
6541 may be thrown then. */
6542 pending_stop_reply = reply;
6543
6544 /* Notify the event loop there's a stop reply to acknowledge
6545 and that there may be more events to fetch. */
6546 mark_async_event_handler (remote_async_get_pending_events_token);
6547
6548 if (remote_debug)
6549 fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6550 }
6551 }
6552 else
6553 /* We ignore notifications we don't recognize, for compatibility
6554 with newer stubs. */
6555 ;
6556 }
6557
6558 \f
6559 /* Read or write LEN bytes from inferior memory at MEMADDR,
6560 transferring to or from debugger address BUFFER. Write to inferior
6561 if SHOULD_WRITE is nonzero. Returns length of data written or
6562 read; 0 for error. TARGET is unused. */
6563
6564 static int
6565 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6566 int should_write, struct mem_attrib *attrib,
6567 struct target_ops *target)
6568 {
6569 int res;
6570
6571 set_remote_traceframe ();
6572 set_general_thread (inferior_ptid);
6573
6574 if (should_write)
6575 res = remote_write_bytes (mem_addr, buffer, mem_len);
6576 else
6577 res = remote_read_bytes (mem_addr, buffer, mem_len);
6578
6579 return res;
6580 }
6581
6582 /* Sends a packet with content determined by the printf format string
6583 FORMAT and the remaining arguments, then gets the reply. Returns
6584 whether the packet was a success, a failure, or unknown. */
6585
6586 static enum packet_result
6587 remote_send_printf (const char *format, ...)
6588 {
6589 struct remote_state *rs = get_remote_state ();
6590 int max_size = get_remote_packet_size ();
6591 va_list ap;
6592
6593 va_start (ap, format);
6594
6595 rs->buf[0] = '\0';
6596 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6597 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
6598
6599 if (putpkt (rs->buf) < 0)
6600 error (_("Communication problem with target."));
6601
6602 rs->buf[0] = '\0';
6603 getpkt (&rs->buf, &rs->buf_size, 0);
6604
6605 return packet_check_result (rs->buf);
6606 }
6607
6608 static void
6609 restore_remote_timeout (void *p)
6610 {
6611 int value = *(int *)p;
6612
6613 remote_timeout = value;
6614 }
6615
6616 /* Flash writing can take quite some time. We'll set
6617 effectively infinite timeout for flash operations.
6618 In future, we'll need to decide on a better approach. */
6619 static const int remote_flash_timeout = 1000;
6620
6621 static void
6622 remote_flash_erase (struct target_ops *ops,
6623 ULONGEST address, LONGEST length)
6624 {
6625 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6626 int saved_remote_timeout = remote_timeout;
6627 enum packet_result ret;
6628 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6629 &saved_remote_timeout);
6630
6631 remote_timeout = remote_flash_timeout;
6632
6633 ret = remote_send_printf ("vFlashErase:%s,%s",
6634 phex (address, addr_size),
6635 phex (length, 4));
6636 switch (ret)
6637 {
6638 case PACKET_UNKNOWN:
6639 error (_("Remote target does not support flash erase"));
6640 case PACKET_ERROR:
6641 error (_("Error erasing flash with vFlashErase packet"));
6642 default:
6643 break;
6644 }
6645
6646 do_cleanups (back_to);
6647 }
6648
6649 static LONGEST
6650 remote_flash_write (struct target_ops *ops,
6651 ULONGEST address, LONGEST length,
6652 const gdb_byte *data)
6653 {
6654 int saved_remote_timeout = remote_timeout;
6655 int ret;
6656 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6657 &saved_remote_timeout);
6658
6659 remote_timeout = remote_flash_timeout;
6660 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6661 do_cleanups (back_to);
6662
6663 return ret;
6664 }
6665
6666 static void
6667 remote_flash_done (struct target_ops *ops)
6668 {
6669 int saved_remote_timeout = remote_timeout;
6670 int ret;
6671 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6672 &saved_remote_timeout);
6673
6674 remote_timeout = remote_flash_timeout;
6675 ret = remote_send_printf ("vFlashDone");
6676 do_cleanups (back_to);
6677
6678 switch (ret)
6679 {
6680 case PACKET_UNKNOWN:
6681 error (_("Remote target does not support vFlashDone"));
6682 case PACKET_ERROR:
6683 error (_("Error finishing flash operation"));
6684 default:
6685 break;
6686 }
6687 }
6688
6689 static void
6690 remote_files_info (struct target_ops *ignore)
6691 {
6692 puts_filtered ("Debugging a target over a serial line.\n");
6693 }
6694 \f
6695 /* Stuff for dealing with the packets which are part of this protocol.
6696 See comment at top of file for details. */
6697
6698 /* Read a single character from the remote end. */
6699
6700 static int
6701 readchar (int timeout)
6702 {
6703 int ch;
6704
6705 ch = serial_readchar (remote_desc, timeout);
6706
6707 if (ch >= 0)
6708 return ch;
6709
6710 switch ((enum serial_rc) ch)
6711 {
6712 case SERIAL_EOF:
6713 pop_target ();
6714 error (_("Remote connection closed"));
6715 /* no return */
6716 case SERIAL_ERROR:
6717 pop_target ();
6718 perror_with_name (_("Remote communication error. "
6719 "Target disconnected."));
6720 /* no return */
6721 case SERIAL_TIMEOUT:
6722 break;
6723 }
6724 return ch;
6725 }
6726
6727 /* Send the command in *BUF to the remote machine, and read the reply
6728 into *BUF. Report an error if we get an error reply. Resize
6729 *BUF using xrealloc if necessary to hold the result, and update
6730 *SIZEOF_BUF. */
6731
6732 static void
6733 remote_send (char **buf,
6734 long *sizeof_buf)
6735 {
6736 putpkt (*buf);
6737 getpkt (buf, sizeof_buf, 0);
6738
6739 if ((*buf)[0] == 'E')
6740 error (_("Remote failure reply: %s"), *buf);
6741 }
6742
6743 /* Return a pointer to an xmalloc'ed string representing an escaped
6744 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6745 etc. The caller is responsible for releasing the returned
6746 memory. */
6747
6748 static char *
6749 escape_buffer (const char *buf, int n)
6750 {
6751 struct cleanup *old_chain;
6752 struct ui_file *stb;
6753 char *str;
6754
6755 stb = mem_fileopen ();
6756 old_chain = make_cleanup_ui_file_delete (stb);
6757
6758 fputstrn_unfiltered (buf, n, 0, stb);
6759 str = ui_file_xstrdup (stb, NULL);
6760 do_cleanups (old_chain);
6761 return str;
6762 }
6763
6764 /* Display a null-terminated packet on stdout, for debugging, using C
6765 string notation. */
6766
6767 static void
6768 print_packet (char *buf)
6769 {
6770 puts_filtered ("\"");
6771 fputstr_filtered (buf, '"', gdb_stdout);
6772 puts_filtered ("\"");
6773 }
6774
6775 int
6776 putpkt (char *buf)
6777 {
6778 return putpkt_binary (buf, strlen (buf));
6779 }
6780
6781 /* Send a packet to the remote machine, with error checking. The data
6782 of the packet is in BUF. The string in BUF can be at most
6783 get_remote_packet_size () - 5 to account for the $, # and checksum,
6784 and for a possible /0 if we are debugging (remote_debug) and want
6785 to print the sent packet as a string. */
6786
6787 static int
6788 putpkt_binary (char *buf, int cnt)
6789 {
6790 struct remote_state *rs = get_remote_state ();
6791 int i;
6792 unsigned char csum = 0;
6793 char *buf2 = alloca (cnt + 6);
6794
6795 int ch;
6796 int tcount = 0;
6797 char *p;
6798
6799 /* Catch cases like trying to read memory or listing threads while
6800 we're waiting for a stop reply. The remote server wouldn't be
6801 ready to handle this request, so we'd hang and timeout. We don't
6802 have to worry about this in synchronous mode, because in that
6803 case it's not possible to issue a command while the target is
6804 running. This is not a problem in non-stop mode, because in that
6805 case, the stub is always ready to process serial input. */
6806 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6807 error (_("Cannot execute this command while the target is running."));
6808
6809 /* We're sending out a new packet. Make sure we don't look at a
6810 stale cached response. */
6811 rs->cached_wait_status = 0;
6812
6813 /* Copy the packet into buffer BUF2, encapsulating it
6814 and giving it a checksum. */
6815
6816 p = buf2;
6817 *p++ = '$';
6818
6819 for (i = 0; i < cnt; i++)
6820 {
6821 csum += buf[i];
6822 *p++ = buf[i];
6823 }
6824 *p++ = '#';
6825 *p++ = tohex ((csum >> 4) & 0xf);
6826 *p++ = tohex (csum & 0xf);
6827
6828 /* Send it over and over until we get a positive ack. */
6829
6830 while (1)
6831 {
6832 int started_error_output = 0;
6833
6834 if (remote_debug)
6835 {
6836 struct cleanup *old_chain;
6837 char *str;
6838
6839 *p = '\0';
6840 str = escape_buffer (buf2, p - buf2);
6841 old_chain = make_cleanup (xfree, str);
6842 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6843 gdb_flush (gdb_stdlog);
6844 do_cleanups (old_chain);
6845 }
6846 if (serial_write (remote_desc, buf2, p - buf2))
6847 perror_with_name (_("putpkt: write failed"));
6848
6849 /* If this is a no acks version of the remote protocol, send the
6850 packet and move on. */
6851 if (rs->noack_mode)
6852 break;
6853
6854 /* Read until either a timeout occurs (-2) or '+' is read.
6855 Handle any notification that arrives in the mean time. */
6856 while (1)
6857 {
6858 ch = readchar (remote_timeout);
6859
6860 if (remote_debug)
6861 {
6862 switch (ch)
6863 {
6864 case '+':
6865 case '-':
6866 case SERIAL_TIMEOUT:
6867 case '$':
6868 case '%':
6869 if (started_error_output)
6870 {
6871 putchar_unfiltered ('\n');
6872 started_error_output = 0;
6873 }
6874 }
6875 }
6876
6877 switch (ch)
6878 {
6879 case '+':
6880 if (remote_debug)
6881 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6882 return 1;
6883 case '-':
6884 if (remote_debug)
6885 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6886 /* FALLTHROUGH */
6887 case SERIAL_TIMEOUT:
6888 tcount++;
6889 if (tcount > 3)
6890 return 0;
6891 break; /* Retransmit buffer. */
6892 case '$':
6893 {
6894 if (remote_debug)
6895 fprintf_unfiltered (gdb_stdlog,
6896 "Packet instead of Ack, ignoring it\n");
6897 /* It's probably an old response sent because an ACK
6898 was lost. Gobble up the packet and ack it so it
6899 doesn't get retransmitted when we resend this
6900 packet. */
6901 skip_frame ();
6902 serial_write (remote_desc, "+", 1);
6903 continue; /* Now, go look for +. */
6904 }
6905
6906 case '%':
6907 {
6908 int val;
6909
6910 /* If we got a notification, handle it, and go back to looking
6911 for an ack. */
6912 /* We've found the start of a notification. Now
6913 collect the data. */
6914 val = read_frame (&rs->buf, &rs->buf_size);
6915 if (val >= 0)
6916 {
6917 if (remote_debug)
6918 {
6919 struct cleanup *old_chain;
6920 char *str;
6921
6922 str = escape_buffer (rs->buf, val);
6923 old_chain = make_cleanup (xfree, str);
6924 fprintf_unfiltered (gdb_stdlog,
6925 " Notification received: %s\n",
6926 str);
6927 do_cleanups (old_chain);
6928 }
6929 handle_notification (rs->buf, val);
6930 /* We're in sync now, rewait for the ack. */
6931 tcount = 0;
6932 }
6933 else
6934 {
6935 if (remote_debug)
6936 {
6937 if (!started_error_output)
6938 {
6939 started_error_output = 1;
6940 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6941 }
6942 fputc_unfiltered (ch & 0177, gdb_stdlog);
6943 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6944 }
6945 }
6946 continue;
6947 }
6948 /* fall-through */
6949 default:
6950 if (remote_debug)
6951 {
6952 if (!started_error_output)
6953 {
6954 started_error_output = 1;
6955 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6956 }
6957 fputc_unfiltered (ch & 0177, gdb_stdlog);
6958 }
6959 continue;
6960 }
6961 break; /* Here to retransmit. */
6962 }
6963
6964 #if 0
6965 /* This is wrong. If doing a long backtrace, the user should be
6966 able to get out next time we call QUIT, without anything as
6967 violent as interrupt_query. If we want to provide a way out of
6968 here without getting to the next QUIT, it should be based on
6969 hitting ^C twice as in remote_wait. */
6970 if (quit_flag)
6971 {
6972 quit_flag = 0;
6973 interrupt_query ();
6974 }
6975 #endif
6976 }
6977 return 0;
6978 }
6979
6980 /* Come here after finding the start of a frame when we expected an
6981 ack. Do our best to discard the rest of this packet. */
6982
6983 static void
6984 skip_frame (void)
6985 {
6986 int c;
6987
6988 while (1)
6989 {
6990 c = readchar (remote_timeout);
6991 switch (c)
6992 {
6993 case SERIAL_TIMEOUT:
6994 /* Nothing we can do. */
6995 return;
6996 case '#':
6997 /* Discard the two bytes of checksum and stop. */
6998 c = readchar (remote_timeout);
6999 if (c >= 0)
7000 c = readchar (remote_timeout);
7001
7002 return;
7003 case '*': /* Run length encoding. */
7004 /* Discard the repeat count. */
7005 c = readchar (remote_timeout);
7006 if (c < 0)
7007 return;
7008 break;
7009 default:
7010 /* A regular character. */
7011 break;
7012 }
7013 }
7014 }
7015
7016 /* Come here after finding the start of the frame. Collect the rest
7017 into *BUF, verifying the checksum, length, and handling run-length
7018 compression. NUL terminate the buffer. If there is not enough room,
7019 expand *BUF using xrealloc.
7020
7021 Returns -1 on error, number of characters in buffer (ignoring the
7022 trailing NULL) on success. (could be extended to return one of the
7023 SERIAL status indications). */
7024
7025 static long
7026 read_frame (char **buf_p,
7027 long *sizeof_buf)
7028 {
7029 unsigned char csum;
7030 long bc;
7031 int c;
7032 char *buf = *buf_p;
7033 struct remote_state *rs = get_remote_state ();
7034
7035 csum = 0;
7036 bc = 0;
7037
7038 while (1)
7039 {
7040 c = readchar (remote_timeout);
7041 switch (c)
7042 {
7043 case SERIAL_TIMEOUT:
7044 if (remote_debug)
7045 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7046 return -1;
7047 case '$':
7048 if (remote_debug)
7049 fputs_filtered ("Saw new packet start in middle of old one\n",
7050 gdb_stdlog);
7051 return -1; /* Start a new packet, count retries. */
7052 case '#':
7053 {
7054 unsigned char pktcsum;
7055 int check_0 = 0;
7056 int check_1 = 0;
7057
7058 buf[bc] = '\0';
7059
7060 check_0 = readchar (remote_timeout);
7061 if (check_0 >= 0)
7062 check_1 = readchar (remote_timeout);
7063
7064 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7065 {
7066 if (remote_debug)
7067 fputs_filtered ("Timeout in checksum, retrying\n",
7068 gdb_stdlog);
7069 return -1;
7070 }
7071 else if (check_0 < 0 || check_1 < 0)
7072 {
7073 if (remote_debug)
7074 fputs_filtered ("Communication error in checksum\n",
7075 gdb_stdlog);
7076 return -1;
7077 }
7078
7079 /* Don't recompute the checksum; with no ack packets we
7080 don't have any way to indicate a packet retransmission
7081 is necessary. */
7082 if (rs->noack_mode)
7083 return bc;
7084
7085 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7086 if (csum == pktcsum)
7087 return bc;
7088
7089 if (remote_debug)
7090 {
7091 struct cleanup *old_chain;
7092 char *str;
7093
7094 str = escape_buffer (buf, bc);
7095 old_chain = make_cleanup (xfree, str);
7096 fprintf_unfiltered (gdb_stdlog,
7097 "Bad checksum, sentsum=0x%x, "
7098 "csum=0x%x, buf=%s\n",
7099 pktcsum, csum, str);
7100 do_cleanups (old_chain);
7101 }
7102 /* Number of characters in buffer ignoring trailing
7103 NULL. */
7104 return -1;
7105 }
7106 case '*': /* Run length encoding. */
7107 {
7108 int repeat;
7109
7110 csum += c;
7111 c = readchar (remote_timeout);
7112 csum += c;
7113 repeat = c - ' ' + 3; /* Compute repeat count. */
7114
7115 /* The character before ``*'' is repeated. */
7116
7117 if (repeat > 0 && repeat <= 255 && bc > 0)
7118 {
7119 if (bc + repeat - 1 >= *sizeof_buf - 1)
7120 {
7121 /* Make some more room in the buffer. */
7122 *sizeof_buf += repeat;
7123 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7124 buf = *buf_p;
7125 }
7126
7127 memset (&buf[bc], buf[bc - 1], repeat);
7128 bc += repeat;
7129 continue;
7130 }
7131
7132 buf[bc] = '\0';
7133 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7134 return -1;
7135 }
7136 default:
7137 if (bc >= *sizeof_buf - 1)
7138 {
7139 /* Make some more room in the buffer. */
7140 *sizeof_buf *= 2;
7141 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7142 buf = *buf_p;
7143 }
7144
7145 buf[bc++] = c;
7146 csum += c;
7147 continue;
7148 }
7149 }
7150 }
7151
7152 /* Read a packet from the remote machine, with error checking, and
7153 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7154 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7155 rather than timing out; this is used (in synchronous mode) to wait
7156 for a target that is is executing user code to stop. */
7157 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7158 don't have to change all the calls to getpkt to deal with the
7159 return value, because at the moment I don't know what the right
7160 thing to do it for those. */
7161 void
7162 getpkt (char **buf,
7163 long *sizeof_buf,
7164 int forever)
7165 {
7166 int timed_out;
7167
7168 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7169 }
7170
7171
7172 /* Read a packet from the remote machine, with error checking, and
7173 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7174 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7175 rather than timing out; this is used (in synchronous mode) to wait
7176 for a target that is is executing user code to stop. If FOREVER ==
7177 0, this function is allowed to time out gracefully and return an
7178 indication of this to the caller. Otherwise return the number of
7179 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7180 enough reason to return to the caller. */
7181
7182 static int
7183 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7184 int expecting_notif)
7185 {
7186 struct remote_state *rs = get_remote_state ();
7187 int c;
7188 int tries;
7189 int timeout;
7190 int val = -1;
7191
7192 /* We're reading a new response. Make sure we don't look at a
7193 previously cached response. */
7194 rs->cached_wait_status = 0;
7195
7196 strcpy (*buf, "timeout");
7197
7198 if (forever)
7199 timeout = watchdog > 0 ? watchdog : -1;
7200 else if (expecting_notif)
7201 timeout = 0; /* There should already be a char in the buffer. If
7202 not, bail out. */
7203 else
7204 timeout = remote_timeout;
7205
7206 #define MAX_TRIES 3
7207
7208 /* Process any number of notifications, and then return when
7209 we get a packet. */
7210 for (;;)
7211 {
7212 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7213 times. */
7214 for (tries = 1; tries <= MAX_TRIES; tries++)
7215 {
7216 /* This can loop forever if the remote side sends us
7217 characters continuously, but if it pauses, we'll get
7218 SERIAL_TIMEOUT from readchar because of timeout. Then
7219 we'll count that as a retry.
7220
7221 Note that even when forever is set, we will only wait
7222 forever prior to the start of a packet. After that, we
7223 expect characters to arrive at a brisk pace. They should
7224 show up within remote_timeout intervals. */
7225 do
7226 c = readchar (timeout);
7227 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7228
7229 if (c == SERIAL_TIMEOUT)
7230 {
7231 if (expecting_notif)
7232 return -1; /* Don't complain, it's normal to not get
7233 anything in this case. */
7234
7235 if (forever) /* Watchdog went off? Kill the target. */
7236 {
7237 QUIT;
7238 pop_target ();
7239 error (_("Watchdog timeout has expired. Target detached."));
7240 }
7241 if (remote_debug)
7242 fputs_filtered ("Timed out.\n", gdb_stdlog);
7243 }
7244 else
7245 {
7246 /* We've found the start of a packet or notification.
7247 Now collect the data. */
7248 val = read_frame (buf, sizeof_buf);
7249 if (val >= 0)
7250 break;
7251 }
7252
7253 serial_write (remote_desc, "-", 1);
7254 }
7255
7256 if (tries > MAX_TRIES)
7257 {
7258 /* We have tried hard enough, and just can't receive the
7259 packet/notification. Give up. */
7260 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7261
7262 /* Skip the ack char if we're in no-ack mode. */
7263 if (!rs->noack_mode)
7264 serial_write (remote_desc, "+", 1);
7265 return -1;
7266 }
7267
7268 /* If we got an ordinary packet, return that to our caller. */
7269 if (c == '$')
7270 {
7271 if (remote_debug)
7272 {
7273 struct cleanup *old_chain;
7274 char *str;
7275
7276 str = escape_buffer (*buf, val);
7277 old_chain = make_cleanup (xfree, str);
7278 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7279 do_cleanups (old_chain);
7280 }
7281
7282 /* Skip the ack char if we're in no-ack mode. */
7283 if (!rs->noack_mode)
7284 serial_write (remote_desc, "+", 1);
7285 return val;
7286 }
7287
7288 /* If we got a notification, handle it, and go back to looking
7289 for a packet. */
7290 else
7291 {
7292 gdb_assert (c == '%');
7293
7294 if (remote_debug)
7295 {
7296 struct cleanup *old_chain;
7297 char *str;
7298
7299 str = escape_buffer (*buf, val);
7300 old_chain = make_cleanup (xfree, str);
7301 fprintf_unfiltered (gdb_stdlog,
7302 " Notification received: %s\n",
7303 str);
7304 do_cleanups (old_chain);
7305 }
7306
7307 handle_notification (*buf, val);
7308
7309 /* Notifications require no acknowledgement. */
7310
7311 if (expecting_notif)
7312 return -1;
7313 }
7314 }
7315 }
7316
7317 static int
7318 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7319 {
7320 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
7321 }
7322
7323 static int
7324 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
7325 {
7326 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
7327 }
7328
7329 \f
7330 static void
7331 remote_kill (struct target_ops *ops)
7332 {
7333 /* Use catch_errors so the user can quit from gdb even when we
7334 aren't on speaking terms with the remote system. */
7335 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
7336
7337 /* Don't wait for it to die. I'm not really sure it matters whether
7338 we do or not. For the existing stubs, kill is a noop. */
7339 target_mourn_inferior ();
7340 }
7341
7342 static int
7343 remote_vkill (int pid, struct remote_state *rs)
7344 {
7345 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7346 return -1;
7347
7348 /* Tell the remote target to detach. */
7349 sprintf (rs->buf, "vKill;%x", pid);
7350 putpkt (rs->buf);
7351 getpkt (&rs->buf, &rs->buf_size, 0);
7352
7353 if (packet_ok (rs->buf,
7354 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7355 return 0;
7356 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7357 return -1;
7358 else
7359 return 1;
7360 }
7361
7362 static void
7363 extended_remote_kill (struct target_ops *ops)
7364 {
7365 int res;
7366 int pid = ptid_get_pid (inferior_ptid);
7367 struct remote_state *rs = get_remote_state ();
7368
7369 res = remote_vkill (pid, rs);
7370 if (res == -1 && !remote_multi_process_p (rs))
7371 {
7372 /* Don't try 'k' on a multi-process aware stub -- it has no way
7373 to specify the pid. */
7374
7375 putpkt ("k");
7376 #if 0
7377 getpkt (&rs->buf, &rs->buf_size, 0);
7378 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7379 res = 1;
7380 #else
7381 /* Don't wait for it to die. I'm not really sure it matters whether
7382 we do or not. For the existing stubs, kill is a noop. */
7383 res = 0;
7384 #endif
7385 }
7386
7387 if (res != 0)
7388 error (_("Can't kill process"));
7389
7390 target_mourn_inferior ();
7391 }
7392
7393 static void
7394 remote_mourn (struct target_ops *ops)
7395 {
7396 remote_mourn_1 (ops);
7397 }
7398
7399 /* Worker function for remote_mourn. */
7400 static void
7401 remote_mourn_1 (struct target_ops *target)
7402 {
7403 unpush_target (target);
7404
7405 /* remote_close takes care of doing most of the clean up. */
7406 generic_mourn_inferior ();
7407 }
7408
7409 static void
7410 extended_remote_mourn_1 (struct target_ops *target)
7411 {
7412 struct remote_state *rs = get_remote_state ();
7413
7414 /* In case we got here due to an error, but we're going to stay
7415 connected. */
7416 rs->waiting_for_stop_reply = 0;
7417
7418 /* We're no longer interested in these events. */
7419 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7420
7421 /* If the current general thread belonged to the process we just
7422 detached from or has exited, the remote side current general
7423 thread becomes undefined. Considering a case like this:
7424
7425 - We just got here due to a detach.
7426 - The process that we're detaching from happens to immediately
7427 report a global breakpoint being hit in non-stop mode, in the
7428 same thread we had selected before.
7429 - GDB attaches to this process again.
7430 - This event happens to be the next event we handle.
7431
7432 GDB would consider that the current general thread didn't need to
7433 be set on the stub side (with Hg), since for all it knew,
7434 GENERAL_THREAD hadn't changed.
7435
7436 Notice that although in all-stop mode, the remote server always
7437 sets the current thread to the thread reporting the stop event,
7438 that doesn't happen in non-stop mode; in non-stop, the stub *must
7439 not* change the current thread when reporting a breakpoint hit,
7440 due to the decoupling of event reporting and event handling.
7441
7442 To keep things simple, we always invalidate our notion of the
7443 current thread. */
7444 record_currthread (minus_one_ptid);
7445
7446 /* Unlike "target remote", we do not want to unpush the target; then
7447 the next time the user says "run", we won't be connected. */
7448
7449 /* Call common code to mark the inferior as not running. */
7450 generic_mourn_inferior ();
7451
7452 if (!have_inferiors ())
7453 {
7454 if (!remote_multi_process_p (rs))
7455 {
7456 /* Check whether the target is running now - some remote stubs
7457 automatically restart after kill. */
7458 putpkt ("?");
7459 getpkt (&rs->buf, &rs->buf_size, 0);
7460
7461 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7462 {
7463 /* Assume that the target has been restarted. Set
7464 inferior_ptid so that bits of core GDB realizes
7465 there's something here, e.g., so that the user can
7466 say "kill" again. */
7467 inferior_ptid = magic_null_ptid;
7468 }
7469 }
7470 }
7471 }
7472
7473 static void
7474 extended_remote_mourn (struct target_ops *ops)
7475 {
7476 extended_remote_mourn_1 (ops);
7477 }
7478
7479 static int
7480 extended_remote_run (char *args)
7481 {
7482 struct remote_state *rs = get_remote_state ();
7483 int len;
7484
7485 /* If the user has disabled vRun support, or we have detected that
7486 support is not available, do not try it. */
7487 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7488 return -1;
7489
7490 strcpy (rs->buf, "vRun;");
7491 len = strlen (rs->buf);
7492
7493 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7494 error (_("Remote file name too long for run packet"));
7495 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7496
7497 gdb_assert (args != NULL);
7498 if (*args)
7499 {
7500 struct cleanup *back_to;
7501 int i;
7502 char **argv;
7503
7504 argv = gdb_buildargv (args);
7505 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7506 for (i = 0; argv[i] != NULL; i++)
7507 {
7508 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7509 error (_("Argument list too long for run packet"));
7510 rs->buf[len++] = ';';
7511 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7512 }
7513 do_cleanups (back_to);
7514 }
7515
7516 rs->buf[len++] = '\0';
7517
7518 putpkt (rs->buf);
7519 getpkt (&rs->buf, &rs->buf_size, 0);
7520
7521 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7522 {
7523 /* We have a wait response; we don't need it, though. All is well. */
7524 return 0;
7525 }
7526 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7527 /* It wasn't disabled before, but it is now. */
7528 return -1;
7529 else
7530 {
7531 if (remote_exec_file[0] == '\0')
7532 error (_("Running the default executable on the remote target failed; "
7533 "try \"set remote exec-file\"?"));
7534 else
7535 error (_("Running \"%s\" on the remote target failed"),
7536 remote_exec_file);
7537 }
7538 }
7539
7540 /* In the extended protocol we want to be able to do things like
7541 "run" and have them basically work as expected. So we need
7542 a special create_inferior function. We support changing the
7543 executable file and the command line arguments, but not the
7544 environment. */
7545
7546 static void
7547 extended_remote_create_inferior_1 (char *exec_file, char *args,
7548 char **env, int from_tty)
7549 {
7550 /* If running asynchronously, register the target file descriptor
7551 with the event loop. */
7552 if (target_can_async_p ())
7553 target_async (inferior_event_handler, 0);
7554
7555 /* Now restart the remote server. */
7556 if (extended_remote_run (args) == -1)
7557 {
7558 /* vRun was not supported. Fail if we need it to do what the
7559 user requested. */
7560 if (remote_exec_file[0])
7561 error (_("Remote target does not support \"set remote exec-file\""));
7562 if (args[0])
7563 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7564
7565 /* Fall back to "R". */
7566 extended_remote_restart ();
7567 }
7568
7569 if (!have_inferiors ())
7570 {
7571 /* Clean up from the last time we ran, before we mark the target
7572 running again. This will mark breakpoints uninserted, and
7573 get_offsets may insert breakpoints. */
7574 init_thread_list ();
7575 init_wait_for_inferior ();
7576 }
7577
7578 /* Now mark the inferior as running before we do anything else. */
7579 inferior_ptid = magic_null_ptid;
7580
7581 /* Now, if we have thread information, update inferior_ptid. */
7582 inferior_ptid = remote_current_thread (inferior_ptid);
7583
7584 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
7585 add_thread_silent (inferior_ptid);
7586
7587 /* Get updated offsets, if the stub uses qOffsets. */
7588 get_offsets ();
7589 }
7590
7591 static void
7592 extended_remote_create_inferior (struct target_ops *ops,
7593 char *exec_file, char *args,
7594 char **env, int from_tty)
7595 {
7596 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7597 }
7598 \f
7599
7600 /* Insert a breakpoint. On targets that have software breakpoint
7601 support, we ask the remote target to do the work; on targets
7602 which don't, we insert a traditional memory breakpoint. */
7603
7604 static int
7605 remote_insert_breakpoint (struct gdbarch *gdbarch,
7606 struct bp_target_info *bp_tgt)
7607 {
7608 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7609 If it succeeds, then set the support to PACKET_ENABLE. If it
7610 fails, and the user has explicitly requested the Z support then
7611 report an error, otherwise, mark it disabled and go on. */
7612
7613 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7614 {
7615 CORE_ADDR addr = bp_tgt->placed_address;
7616 struct remote_state *rs;
7617 char *p;
7618 int bpsize;
7619
7620 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7621
7622 rs = get_remote_state ();
7623 p = rs->buf;
7624
7625 *(p++) = 'Z';
7626 *(p++) = '0';
7627 *(p++) = ',';
7628 addr = (ULONGEST) remote_address_masked (addr);
7629 p += hexnumstr (p, addr);
7630 sprintf (p, ",%d", bpsize);
7631
7632 putpkt (rs->buf);
7633 getpkt (&rs->buf, &rs->buf_size, 0);
7634
7635 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7636 {
7637 case PACKET_ERROR:
7638 return -1;
7639 case PACKET_OK:
7640 bp_tgt->placed_address = addr;
7641 bp_tgt->placed_size = bpsize;
7642 return 0;
7643 case PACKET_UNKNOWN:
7644 break;
7645 }
7646 }
7647
7648 return memory_insert_breakpoint (gdbarch, bp_tgt);
7649 }
7650
7651 static int
7652 remote_remove_breakpoint (struct gdbarch *gdbarch,
7653 struct bp_target_info *bp_tgt)
7654 {
7655 CORE_ADDR addr = bp_tgt->placed_address;
7656 struct remote_state *rs = get_remote_state ();
7657
7658 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7659 {
7660 char *p = rs->buf;
7661
7662 *(p++) = 'z';
7663 *(p++) = '0';
7664 *(p++) = ',';
7665
7666 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
7667 p += hexnumstr (p, addr);
7668 sprintf (p, ",%d", bp_tgt->placed_size);
7669
7670 putpkt (rs->buf);
7671 getpkt (&rs->buf, &rs->buf_size, 0);
7672
7673 return (rs->buf[0] == 'E');
7674 }
7675
7676 return memory_remove_breakpoint (gdbarch, bp_tgt);
7677 }
7678
7679 static int
7680 watchpoint_to_Z_packet (int type)
7681 {
7682 switch (type)
7683 {
7684 case hw_write:
7685 return Z_PACKET_WRITE_WP;
7686 break;
7687 case hw_read:
7688 return Z_PACKET_READ_WP;
7689 break;
7690 case hw_access:
7691 return Z_PACKET_ACCESS_WP;
7692 break;
7693 default:
7694 internal_error (__FILE__, __LINE__,
7695 _("hw_bp_to_z: bad watchpoint type %d"), type);
7696 }
7697 }
7698
7699 static int
7700 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
7701 struct expression *cond)
7702 {
7703 struct remote_state *rs = get_remote_state ();
7704 char *p;
7705 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7706
7707 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7708 return 1;
7709
7710 sprintf (rs->buf, "Z%x,", packet);
7711 p = strchr (rs->buf, '\0');
7712 addr = remote_address_masked (addr);
7713 p += hexnumstr (p, (ULONGEST) addr);
7714 sprintf (p, ",%x", len);
7715
7716 putpkt (rs->buf);
7717 getpkt (&rs->buf, &rs->buf_size, 0);
7718
7719 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7720 {
7721 case PACKET_ERROR:
7722 return -1;
7723 case PACKET_UNKNOWN:
7724 return 1;
7725 case PACKET_OK:
7726 return 0;
7727 }
7728 internal_error (__FILE__, __LINE__,
7729 _("remote_insert_watchpoint: reached end of function"));
7730 }
7731
7732
7733 static int
7734 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
7735 struct expression *cond)
7736 {
7737 struct remote_state *rs = get_remote_state ();
7738 char *p;
7739 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7740
7741 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7742 return -1;
7743
7744 sprintf (rs->buf, "z%x,", packet);
7745 p = strchr (rs->buf, '\0');
7746 addr = remote_address_masked (addr);
7747 p += hexnumstr (p, (ULONGEST) addr);
7748 sprintf (p, ",%x", len);
7749 putpkt (rs->buf);
7750 getpkt (&rs->buf, &rs->buf_size, 0);
7751
7752 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7753 {
7754 case PACKET_ERROR:
7755 case PACKET_UNKNOWN:
7756 return -1;
7757 case PACKET_OK:
7758 return 0;
7759 }
7760 internal_error (__FILE__, __LINE__,
7761 _("remote_remove_watchpoint: reached end of function"));
7762 }
7763
7764
7765 int remote_hw_watchpoint_limit = -1;
7766 int remote_hw_breakpoint_limit = -1;
7767
7768 static int
7769 remote_check_watch_resources (int type, int cnt, int ot)
7770 {
7771 if (type == bp_hardware_breakpoint)
7772 {
7773 if (remote_hw_breakpoint_limit == 0)
7774 return 0;
7775 else if (remote_hw_breakpoint_limit < 0)
7776 return 1;
7777 else if (cnt <= remote_hw_breakpoint_limit)
7778 return 1;
7779 }
7780 else
7781 {
7782 if (remote_hw_watchpoint_limit == 0)
7783 return 0;
7784 else if (remote_hw_watchpoint_limit < 0)
7785 return 1;
7786 else if (ot)
7787 return -1;
7788 else if (cnt <= remote_hw_watchpoint_limit)
7789 return 1;
7790 }
7791 return -1;
7792 }
7793
7794 static int
7795 remote_stopped_by_watchpoint (void)
7796 {
7797 return remote_stopped_by_watchpoint_p;
7798 }
7799
7800 static int
7801 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7802 {
7803 int rc = 0;
7804
7805 if (remote_stopped_by_watchpoint ())
7806 {
7807 *addr_p = remote_watch_data_address;
7808 rc = 1;
7809 }
7810
7811 return rc;
7812 }
7813
7814
7815 static int
7816 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
7817 struct bp_target_info *bp_tgt)
7818 {
7819 CORE_ADDR addr;
7820 struct remote_state *rs;
7821 char *p;
7822
7823 /* The length field should be set to the size of a breakpoint
7824 instruction, even though we aren't inserting one ourselves. */
7825
7826 gdbarch_remote_breakpoint_from_pc
7827 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7828
7829 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7830 return -1;
7831
7832 rs = get_remote_state ();
7833 p = rs->buf;
7834
7835 *(p++) = 'Z';
7836 *(p++) = '1';
7837 *(p++) = ',';
7838
7839 addr = remote_address_masked (bp_tgt->placed_address);
7840 p += hexnumstr (p, (ULONGEST) addr);
7841 sprintf (p, ",%x", bp_tgt->placed_size);
7842
7843 putpkt (rs->buf);
7844 getpkt (&rs->buf, &rs->buf_size, 0);
7845
7846 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7847 {
7848 case PACKET_ERROR:
7849 case PACKET_UNKNOWN:
7850 return -1;
7851 case PACKET_OK:
7852 return 0;
7853 }
7854 internal_error (__FILE__, __LINE__,
7855 _("remote_insert_hw_breakpoint: reached end of function"));
7856 }
7857
7858
7859 static int
7860 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
7861 struct bp_target_info *bp_tgt)
7862 {
7863 CORE_ADDR addr;
7864 struct remote_state *rs = get_remote_state ();
7865 char *p = rs->buf;
7866
7867 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7868 return -1;
7869
7870 *(p++) = 'z';
7871 *(p++) = '1';
7872 *(p++) = ',';
7873
7874 addr = remote_address_masked (bp_tgt->placed_address);
7875 p += hexnumstr (p, (ULONGEST) addr);
7876 sprintf (p, ",%x", bp_tgt->placed_size);
7877
7878 putpkt (rs->buf);
7879 getpkt (&rs->buf, &rs->buf_size, 0);
7880
7881 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7882 {
7883 case PACKET_ERROR:
7884 case PACKET_UNKNOWN:
7885 return -1;
7886 case PACKET_OK:
7887 return 0;
7888 }
7889 internal_error (__FILE__, __LINE__,
7890 _("remote_remove_hw_breakpoint: reached end of function"));
7891 }
7892
7893 /* Table used by the crc32 function to calcuate the checksum. */
7894
7895 static unsigned long crc32_table[256] =
7896 {0, 0};
7897
7898 static unsigned long
7899 crc32 (const unsigned char *buf, int len, unsigned int crc)
7900 {
7901 if (!crc32_table[1])
7902 {
7903 /* Initialize the CRC table and the decoding table. */
7904 int i, j;
7905 unsigned int c;
7906
7907 for (i = 0; i < 256; i++)
7908 {
7909 for (c = i << 24, j = 8; j > 0; --j)
7910 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7911 crc32_table[i] = c;
7912 }
7913 }
7914
7915 while (len--)
7916 {
7917 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7918 buf++;
7919 }
7920 return crc;
7921 }
7922
7923 /* Verify memory using the "qCRC:" request. */
7924
7925 static int
7926 remote_verify_memory (struct target_ops *ops,
7927 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
7928 {
7929 struct remote_state *rs = get_remote_state ();
7930 unsigned long host_crc, target_crc;
7931 char *tmp;
7932
7933 /* FIXME: assumes lma can fit into long. */
7934 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7935 (long) lma, (long) size);
7936 putpkt (rs->buf);
7937
7938 /* Be clever; compute the host_crc before waiting for target
7939 reply. */
7940 host_crc = crc32 (data, size, 0xffffffff);
7941
7942 getpkt (&rs->buf, &rs->buf_size, 0);
7943 if (rs->buf[0] == 'E')
7944 return -1;
7945
7946 if (rs->buf[0] != 'C')
7947 error (_("remote target does not support this operation"));
7948
7949 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7950 target_crc = target_crc * 16 + fromhex (*tmp);
7951
7952 return (host_crc == target_crc);
7953 }
7954
7955 /* compare-sections command
7956
7957 With no arguments, compares each loadable section in the exec bfd
7958 with the same memory range on the target, and reports mismatches.
7959 Useful for verifying the image on the target against the exec file. */
7960
7961 static void
7962 compare_sections_command (char *args, int from_tty)
7963 {
7964 asection *s;
7965 struct cleanup *old_chain;
7966 char *sectdata;
7967 const char *sectname;
7968 bfd_size_type size;
7969 bfd_vma lma;
7970 int matched = 0;
7971 int mismatched = 0;
7972 int res;
7973
7974 if (!exec_bfd)
7975 error (_("command cannot be used without an exec file"));
7976
7977 for (s = exec_bfd->sections; s; s = s->next)
7978 {
7979 if (!(s->flags & SEC_LOAD))
7980 continue; /* Skip non-loadable section. */
7981
7982 size = bfd_get_section_size (s);
7983 if (size == 0)
7984 continue; /* Skip zero-length section. */
7985
7986 sectname = bfd_get_section_name (exec_bfd, s);
7987 if (args && strcmp (args, sectname) != 0)
7988 continue; /* Not the section selected by user. */
7989
7990 matched = 1; /* Do this section. */
7991 lma = s->lma;
7992
7993 sectdata = xmalloc (size);
7994 old_chain = make_cleanup (xfree, sectdata);
7995 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7996
7997 res = target_verify_memory (sectdata, lma, size);
7998
7999 if (res == -1)
8000 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8001 paddress (target_gdbarch, lma),
8002 paddress (target_gdbarch, lma + size));
8003
8004 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8005 paddress (target_gdbarch, lma),
8006 paddress (target_gdbarch, lma + size));
8007 if (res)
8008 printf_filtered ("matched.\n");
8009 else
8010 {
8011 printf_filtered ("MIS-MATCHED!\n");
8012 mismatched++;
8013 }
8014
8015 do_cleanups (old_chain);
8016 }
8017 if (mismatched > 0)
8018 warning (_("One or more sections of the remote executable does not match\n\
8019 the loaded file\n"));
8020 if (args && !matched)
8021 printf_filtered (_("No loaded section named '%s'.\n"), args);
8022 }
8023
8024 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8025 into remote target. The number of bytes written to the remote
8026 target is returned, or -1 for error. */
8027
8028 static LONGEST
8029 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8030 const char *annex, const gdb_byte *writebuf,
8031 ULONGEST offset, LONGEST len,
8032 struct packet_config *packet)
8033 {
8034 int i, buf_len;
8035 ULONGEST n;
8036 struct remote_state *rs = get_remote_state ();
8037 int max_size = get_memory_write_packet_size ();
8038
8039 if (packet->support == PACKET_DISABLE)
8040 return -1;
8041
8042 /* Insert header. */
8043 i = snprintf (rs->buf, max_size,
8044 "qXfer:%s:write:%s:%s:",
8045 object_name, annex ? annex : "",
8046 phex_nz (offset, sizeof offset));
8047 max_size -= (i + 1);
8048
8049 /* Escape as much data as fits into rs->buf. */
8050 buf_len = remote_escape_output
8051 (writebuf, len, (rs->buf + i), &max_size, max_size);
8052
8053 if (putpkt_binary (rs->buf, i + buf_len) < 0
8054 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8055 || packet_ok (rs->buf, packet) != PACKET_OK)
8056 return -1;
8057
8058 unpack_varlen_hex (rs->buf, &n);
8059 return n;
8060 }
8061
8062 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8063 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8064 number of bytes read is returned, or 0 for EOF, or -1 for error.
8065 The number of bytes read may be less than LEN without indicating an
8066 EOF. PACKET is checked and updated to indicate whether the remote
8067 target supports this object. */
8068
8069 static LONGEST
8070 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8071 const char *annex,
8072 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8073 struct packet_config *packet)
8074 {
8075 static char *finished_object;
8076 static char *finished_annex;
8077 static ULONGEST finished_offset;
8078
8079 struct remote_state *rs = get_remote_state ();
8080 LONGEST i, n, packet_len;
8081
8082 if (packet->support == PACKET_DISABLE)
8083 return -1;
8084
8085 /* Check whether we've cached an end-of-object packet that matches
8086 this request. */
8087 if (finished_object)
8088 {
8089 if (strcmp (object_name, finished_object) == 0
8090 && strcmp (annex ? annex : "", finished_annex) == 0
8091 && offset == finished_offset)
8092 return 0;
8093
8094 /* Otherwise, we're now reading something different. Discard
8095 the cache. */
8096 xfree (finished_object);
8097 xfree (finished_annex);
8098 finished_object = NULL;
8099 finished_annex = NULL;
8100 }
8101
8102 /* Request only enough to fit in a single packet. The actual data
8103 may not, since we don't know how much of it will need to be escaped;
8104 the target is free to respond with slightly less data. We subtract
8105 five to account for the response type and the protocol frame. */
8106 n = min (get_remote_packet_size () - 5, len);
8107 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8108 object_name, annex ? annex : "",
8109 phex_nz (offset, sizeof offset),
8110 phex_nz (n, sizeof n));
8111 i = putpkt (rs->buf);
8112 if (i < 0)
8113 return -1;
8114
8115 rs->buf[0] = '\0';
8116 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8117 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8118 return -1;
8119
8120 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8121 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8122
8123 /* 'm' means there is (or at least might be) more data after this
8124 batch. That does not make sense unless there's at least one byte
8125 of data in this reply. */
8126 if (rs->buf[0] == 'm' && packet_len == 1)
8127 error (_("Remote qXfer reply contained no data."));
8128
8129 /* Got some data. */
8130 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8131
8132 /* 'l' is an EOF marker, possibly including a final block of data,
8133 or possibly empty. If we have the final block of a non-empty
8134 object, record this fact to bypass a subsequent partial read. */
8135 if (rs->buf[0] == 'l' && offset + i > 0)
8136 {
8137 finished_object = xstrdup (object_name);
8138 finished_annex = xstrdup (annex ? annex : "");
8139 finished_offset = offset + i;
8140 }
8141
8142 return i;
8143 }
8144
8145 static LONGEST
8146 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8147 const char *annex, gdb_byte *readbuf,
8148 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8149 {
8150 struct remote_state *rs;
8151 int i;
8152 char *p2;
8153 char query_type;
8154
8155 set_remote_traceframe ();
8156 set_general_thread (inferior_ptid);
8157
8158 rs = get_remote_state ();
8159
8160 /* Handle memory using the standard memory routines. */
8161 if (object == TARGET_OBJECT_MEMORY)
8162 {
8163 int xfered;
8164
8165 errno = 0;
8166
8167 /* If the remote target is connected but not running, we should
8168 pass this request down to a lower stratum (e.g. the executable
8169 file). */
8170 if (!target_has_execution)
8171 return 0;
8172
8173 if (writebuf != NULL)
8174 xfered = remote_write_bytes (offset, writebuf, len);
8175 else
8176 xfered = remote_read_bytes (offset, readbuf, len);
8177
8178 if (xfered > 0)
8179 return xfered;
8180 else if (xfered == 0 && errno == 0)
8181 return 0;
8182 else
8183 return -1;
8184 }
8185
8186 /* Handle SPU memory using qxfer packets. */
8187 if (object == TARGET_OBJECT_SPU)
8188 {
8189 if (readbuf)
8190 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8191 &remote_protocol_packets
8192 [PACKET_qXfer_spu_read]);
8193 else
8194 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8195 &remote_protocol_packets
8196 [PACKET_qXfer_spu_write]);
8197 }
8198
8199 /* Handle extra signal info using qxfer packets. */
8200 if (object == TARGET_OBJECT_SIGNAL_INFO)
8201 {
8202 if (readbuf)
8203 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8204 &remote_protocol_packets
8205 [PACKET_qXfer_siginfo_read]);
8206 else
8207 return remote_write_qxfer (ops, "siginfo", annex,
8208 writebuf, offset, len,
8209 &remote_protocol_packets
8210 [PACKET_qXfer_siginfo_write]);
8211 }
8212
8213 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8214 {
8215 if (readbuf)
8216 return remote_read_qxfer (ops, "statictrace", annex,
8217 readbuf, offset, len,
8218 &remote_protocol_packets
8219 [PACKET_qXfer_statictrace_read]);
8220 else
8221 return -1;
8222 }
8223
8224 /* Only handle flash writes. */
8225 if (writebuf != NULL)
8226 {
8227 LONGEST xfered;
8228
8229 switch (object)
8230 {
8231 case TARGET_OBJECT_FLASH:
8232 xfered = remote_flash_write (ops, offset, len, writebuf);
8233
8234 if (xfered > 0)
8235 return xfered;
8236 else if (xfered == 0 && errno == 0)
8237 return 0;
8238 else
8239 return -1;
8240
8241 default:
8242 return -1;
8243 }
8244 }
8245
8246 /* Map pre-existing objects onto letters. DO NOT do this for new
8247 objects!!! Instead specify new query packets. */
8248 switch (object)
8249 {
8250 case TARGET_OBJECT_AVR:
8251 query_type = 'R';
8252 break;
8253
8254 case TARGET_OBJECT_AUXV:
8255 gdb_assert (annex == NULL);
8256 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8257 &remote_protocol_packets[PACKET_qXfer_auxv]);
8258
8259 case TARGET_OBJECT_AVAILABLE_FEATURES:
8260 return remote_read_qxfer
8261 (ops, "features", annex, readbuf, offset, len,
8262 &remote_protocol_packets[PACKET_qXfer_features]);
8263
8264 case TARGET_OBJECT_LIBRARIES:
8265 return remote_read_qxfer
8266 (ops, "libraries", annex, readbuf, offset, len,
8267 &remote_protocol_packets[PACKET_qXfer_libraries]);
8268
8269 case TARGET_OBJECT_MEMORY_MAP:
8270 gdb_assert (annex == NULL);
8271 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8272 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8273
8274 case TARGET_OBJECT_OSDATA:
8275 /* Should only get here if we're connected. */
8276 gdb_assert (remote_desc);
8277 return remote_read_qxfer
8278 (ops, "osdata", annex, readbuf, offset, len,
8279 &remote_protocol_packets[PACKET_qXfer_osdata]);
8280
8281 case TARGET_OBJECT_THREADS:
8282 gdb_assert (annex == NULL);
8283 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8284 &remote_protocol_packets[PACKET_qXfer_threads]);
8285
8286 case TARGET_OBJECT_TRACEFRAME_INFO:
8287 gdb_assert (annex == NULL);
8288 return remote_read_qxfer
8289 (ops, "traceframe-info", annex, readbuf, offset, len,
8290 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8291 default:
8292 return -1;
8293 }
8294
8295 /* Note: a zero OFFSET and LEN can be used to query the minimum
8296 buffer size. */
8297 if (offset == 0 && len == 0)
8298 return (get_remote_packet_size ());
8299 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8300 large enough let the caller deal with it. */
8301 if (len < get_remote_packet_size ())
8302 return -1;
8303 len = get_remote_packet_size ();
8304
8305 /* Except for querying the minimum buffer size, target must be open. */
8306 if (!remote_desc)
8307 error (_("remote query is only available after target open"));
8308
8309 gdb_assert (annex != NULL);
8310 gdb_assert (readbuf != NULL);
8311
8312 p2 = rs->buf;
8313 *p2++ = 'q';
8314 *p2++ = query_type;
8315
8316 /* We used one buffer char for the remote protocol q command and
8317 another for the query type. As the remote protocol encapsulation
8318 uses 4 chars plus one extra in case we are debugging
8319 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8320 string. */
8321 i = 0;
8322 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8323 {
8324 /* Bad caller may have sent forbidden characters. */
8325 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8326 *p2++ = annex[i];
8327 i++;
8328 }
8329 *p2 = '\0';
8330 gdb_assert (annex[i] == '\0');
8331
8332 i = putpkt (rs->buf);
8333 if (i < 0)
8334 return i;
8335
8336 getpkt (&rs->buf, &rs->buf_size, 0);
8337 strcpy ((char *) readbuf, rs->buf);
8338
8339 return strlen ((char *) readbuf);
8340 }
8341
8342 static int
8343 remote_search_memory (struct target_ops* ops,
8344 CORE_ADDR start_addr, ULONGEST search_space_len,
8345 const gdb_byte *pattern, ULONGEST pattern_len,
8346 CORE_ADDR *found_addrp)
8347 {
8348 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
8349 struct remote_state *rs = get_remote_state ();
8350 int max_size = get_memory_write_packet_size ();
8351 struct packet_config *packet =
8352 &remote_protocol_packets[PACKET_qSearch_memory];
8353 /* Number of packet bytes used to encode the pattern;
8354 this could be more than PATTERN_LEN due to escape characters. */
8355 int escaped_pattern_len;
8356 /* Amount of pattern that was encodable in the packet. */
8357 int used_pattern_len;
8358 int i;
8359 int found;
8360 ULONGEST found_addr;
8361
8362 /* Don't go to the target if we don't have to.
8363 This is done before checking packet->support to avoid the possibility that
8364 a success for this edge case means the facility works in general. */
8365 if (pattern_len > search_space_len)
8366 return 0;
8367 if (pattern_len == 0)
8368 {
8369 *found_addrp = start_addr;
8370 return 1;
8371 }
8372
8373 /* If we already know the packet isn't supported, fall back to the simple
8374 way of searching memory. */
8375
8376 if (packet->support == PACKET_DISABLE)
8377 {
8378 /* Target doesn't provided special support, fall back and use the
8379 standard support (copy memory and do the search here). */
8380 return simple_search_memory (ops, start_addr, search_space_len,
8381 pattern, pattern_len, found_addrp);
8382 }
8383
8384 /* Insert header. */
8385 i = snprintf (rs->buf, max_size,
8386 "qSearch:memory:%s;%s;",
8387 phex_nz (start_addr, addr_size),
8388 phex_nz (search_space_len, sizeof (search_space_len)));
8389 max_size -= (i + 1);
8390
8391 /* Escape as much data as fits into rs->buf. */
8392 escaped_pattern_len =
8393 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8394 &used_pattern_len, max_size);
8395
8396 /* Bail if the pattern is too large. */
8397 if (used_pattern_len != pattern_len)
8398 error (_("Pattern is too large to transmit to remote target."));
8399
8400 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8401 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8402 || packet_ok (rs->buf, packet) != PACKET_OK)
8403 {
8404 /* The request may not have worked because the command is not
8405 supported. If so, fall back to the simple way. */
8406 if (packet->support == PACKET_DISABLE)
8407 {
8408 return simple_search_memory (ops, start_addr, search_space_len,
8409 pattern, pattern_len, found_addrp);
8410 }
8411 return -1;
8412 }
8413
8414 if (rs->buf[0] == '0')
8415 found = 0;
8416 else if (rs->buf[0] == '1')
8417 {
8418 found = 1;
8419 if (rs->buf[1] != ',')
8420 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8421 unpack_varlen_hex (rs->buf + 2, &found_addr);
8422 *found_addrp = found_addr;
8423 }
8424 else
8425 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8426
8427 return found;
8428 }
8429
8430 static void
8431 remote_rcmd (char *command,
8432 struct ui_file *outbuf)
8433 {
8434 struct remote_state *rs = get_remote_state ();
8435 char *p = rs->buf;
8436
8437 if (!remote_desc)
8438 error (_("remote rcmd is only available after target open"));
8439
8440 /* Send a NULL command across as an empty command. */
8441 if (command == NULL)
8442 command = "";
8443
8444 /* The query prefix. */
8445 strcpy (rs->buf, "qRcmd,");
8446 p = strchr (rs->buf, '\0');
8447
8448 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
8449 > get_remote_packet_size ())
8450 error (_("\"monitor\" command ``%s'' is too long."), command);
8451
8452 /* Encode the actual command. */
8453 bin2hex ((gdb_byte *) command, p, 0);
8454
8455 if (putpkt (rs->buf) < 0)
8456 error (_("Communication problem with target."));
8457
8458 /* get/display the response */
8459 while (1)
8460 {
8461 char *buf;
8462
8463 /* XXX - see also remote_get_noisy_reply(). */
8464 rs->buf[0] = '\0';
8465 getpkt (&rs->buf, &rs->buf_size, 0);
8466 buf = rs->buf;
8467 if (buf[0] == '\0')
8468 error (_("Target does not support this command."));
8469 if (buf[0] == 'O' && buf[1] != 'K')
8470 {
8471 remote_console_output (buf + 1); /* 'O' message from stub. */
8472 continue;
8473 }
8474 if (strcmp (buf, "OK") == 0)
8475 break;
8476 if (strlen (buf) == 3 && buf[0] == 'E'
8477 && isdigit (buf[1]) && isdigit (buf[2]))
8478 {
8479 error (_("Protocol error with Rcmd"));
8480 }
8481 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8482 {
8483 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8484
8485 fputc_unfiltered (c, outbuf);
8486 }
8487 break;
8488 }
8489 }
8490
8491 static VEC(mem_region_s) *
8492 remote_memory_map (struct target_ops *ops)
8493 {
8494 VEC(mem_region_s) *result = NULL;
8495 char *text = target_read_stralloc (&current_target,
8496 TARGET_OBJECT_MEMORY_MAP, NULL);
8497
8498 if (text)
8499 {
8500 struct cleanup *back_to = make_cleanup (xfree, text);
8501
8502 result = parse_memory_map (text);
8503 do_cleanups (back_to);
8504 }
8505
8506 return result;
8507 }
8508
8509 static void
8510 packet_command (char *args, int from_tty)
8511 {
8512 struct remote_state *rs = get_remote_state ();
8513
8514 if (!remote_desc)
8515 error (_("command can only be used with remote target"));
8516
8517 if (!args)
8518 error (_("remote-packet command requires packet text as argument"));
8519
8520 puts_filtered ("sending: ");
8521 print_packet (args);
8522 puts_filtered ("\n");
8523 putpkt (args);
8524
8525 getpkt (&rs->buf, &rs->buf_size, 0);
8526 puts_filtered ("received: ");
8527 print_packet (rs->buf);
8528 puts_filtered ("\n");
8529 }
8530
8531 #if 0
8532 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8533
8534 static void display_thread_info (struct gdb_ext_thread_info *info);
8535
8536 static void threadset_test_cmd (char *cmd, int tty);
8537
8538 static void threadalive_test (char *cmd, int tty);
8539
8540 static void threadlist_test_cmd (char *cmd, int tty);
8541
8542 int get_and_display_threadinfo (threadref *ref);
8543
8544 static void threadinfo_test_cmd (char *cmd, int tty);
8545
8546 static int thread_display_step (threadref *ref, void *context);
8547
8548 static void threadlist_update_test_cmd (char *cmd, int tty);
8549
8550 static void init_remote_threadtests (void);
8551
8552 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8553
8554 static void
8555 threadset_test_cmd (char *cmd, int tty)
8556 {
8557 int sample_thread = SAMPLE_THREAD;
8558
8559 printf_filtered (_("Remote threadset test\n"));
8560 set_general_thread (sample_thread);
8561 }
8562
8563
8564 static void
8565 threadalive_test (char *cmd, int tty)
8566 {
8567 int sample_thread = SAMPLE_THREAD;
8568 int pid = ptid_get_pid (inferior_ptid);
8569 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8570
8571 if (remote_thread_alive (ptid))
8572 printf_filtered ("PASS: Thread alive test\n");
8573 else
8574 printf_filtered ("FAIL: Thread alive test\n");
8575 }
8576
8577 void output_threadid (char *title, threadref *ref);
8578
8579 void
8580 output_threadid (char *title, threadref *ref)
8581 {
8582 char hexid[20];
8583
8584 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8585 hexid[16] = 0;
8586 printf_filtered ("%s %s\n", title, (&hexid[0]));
8587 }
8588
8589 static void
8590 threadlist_test_cmd (char *cmd, int tty)
8591 {
8592 int startflag = 1;
8593 threadref nextthread;
8594 int done, result_count;
8595 threadref threadlist[3];
8596
8597 printf_filtered ("Remote Threadlist test\n");
8598 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8599 &result_count, &threadlist[0]))
8600 printf_filtered ("FAIL: threadlist test\n");
8601 else
8602 {
8603 threadref *scan = threadlist;
8604 threadref *limit = scan + result_count;
8605
8606 while (scan < limit)
8607 output_threadid (" thread ", scan++);
8608 }
8609 }
8610
8611 void
8612 display_thread_info (struct gdb_ext_thread_info *info)
8613 {
8614 output_threadid ("Threadid: ", &info->threadid);
8615 printf_filtered ("Name: %s\n ", info->shortname);
8616 printf_filtered ("State: %s\n", info->display);
8617 printf_filtered ("other: %s\n\n", info->more_display);
8618 }
8619
8620 int
8621 get_and_display_threadinfo (threadref *ref)
8622 {
8623 int result;
8624 int set;
8625 struct gdb_ext_thread_info threadinfo;
8626
8627 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
8628 | TAG_MOREDISPLAY | TAG_DISPLAY;
8629 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
8630 display_thread_info (&threadinfo);
8631 return result;
8632 }
8633
8634 static void
8635 threadinfo_test_cmd (char *cmd, int tty)
8636 {
8637 int athread = SAMPLE_THREAD;
8638 threadref thread;
8639 int set;
8640
8641 int_to_threadref (&thread, athread);
8642 printf_filtered ("Remote Threadinfo test\n");
8643 if (!get_and_display_threadinfo (&thread))
8644 printf_filtered ("FAIL cannot get thread info\n");
8645 }
8646
8647 static int
8648 thread_display_step (threadref *ref, void *context)
8649 {
8650 /* output_threadid(" threadstep ",ref); *//* simple test */
8651 return get_and_display_threadinfo (ref);
8652 }
8653
8654 static void
8655 threadlist_update_test_cmd (char *cmd, int tty)
8656 {
8657 printf_filtered ("Remote Threadlist update test\n");
8658 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
8659 }
8660
8661 static void
8662 init_remote_threadtests (void)
8663 {
8664 add_com ("tlist", class_obscure, threadlist_test_cmd,
8665 _("Fetch and print the remote list of "
8666 "thread identifiers, one pkt only"));
8667 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
8668 _("Fetch and display info about one thread"));
8669 add_com ("tset", class_obscure, threadset_test_cmd,
8670 _("Test setting to a different thread"));
8671 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
8672 _("Iterate through updating all remote thread info"));
8673 add_com ("talive", class_obscure, threadalive_test,
8674 _(" Remote thread alive test "));
8675 }
8676
8677 #endif /* 0 */
8678
8679 /* Convert a thread ID to a string. Returns the string in a static
8680 buffer. */
8681
8682 static char *
8683 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
8684 {
8685 static char buf[64];
8686 struct remote_state *rs = get_remote_state ();
8687
8688 if (ptid_is_pid (ptid))
8689 {
8690 /* Printing an inferior target id. */
8691
8692 /* When multi-process extensions are off, there's no way in the
8693 remote protocol to know the remote process id, if there's any
8694 at all. There's one exception --- when we're connected with
8695 target extended-remote, and we manually attached to a process
8696 with "attach PID". We don't record anywhere a flag that
8697 allows us to distinguish that case from the case of
8698 connecting with extended-remote and the stub already being
8699 attached to a process, and reporting yes to qAttached, hence
8700 no smart special casing here. */
8701 if (!remote_multi_process_p (rs))
8702 {
8703 xsnprintf (buf, sizeof buf, "Remote target");
8704 return buf;
8705 }
8706
8707 return normal_pid_to_str (ptid);
8708 }
8709 else
8710 {
8711 if (ptid_equal (magic_null_ptid, ptid))
8712 xsnprintf (buf, sizeof buf, "Thread <main>");
8713 else if (remote_multi_process_p (rs))
8714 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
8715 ptid_get_pid (ptid), ptid_get_tid (ptid));
8716 else
8717 xsnprintf (buf, sizeof buf, "Thread %ld",
8718 ptid_get_tid (ptid));
8719 return buf;
8720 }
8721 }
8722
8723 /* Get the address of the thread local variable in OBJFILE which is
8724 stored at OFFSET within the thread local storage for thread PTID. */
8725
8726 static CORE_ADDR
8727 remote_get_thread_local_address (struct target_ops *ops,
8728 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
8729 {
8730 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
8731 {
8732 struct remote_state *rs = get_remote_state ();
8733 char *p = rs->buf;
8734 char *endp = rs->buf + get_remote_packet_size ();
8735 enum packet_result result;
8736
8737 strcpy (p, "qGetTLSAddr:");
8738 p += strlen (p);
8739 p = write_ptid (p, endp, ptid);
8740 *p++ = ',';
8741 p += hexnumstr (p, offset);
8742 *p++ = ',';
8743 p += hexnumstr (p, lm);
8744 *p++ = '\0';
8745
8746 putpkt (rs->buf);
8747 getpkt (&rs->buf, &rs->buf_size, 0);
8748 result = packet_ok (rs->buf,
8749 &remote_protocol_packets[PACKET_qGetTLSAddr]);
8750 if (result == PACKET_OK)
8751 {
8752 ULONGEST result;
8753
8754 unpack_varlen_hex (rs->buf, &result);
8755 return result;
8756 }
8757 else if (result == PACKET_UNKNOWN)
8758 throw_error (TLS_GENERIC_ERROR,
8759 _("Remote target doesn't support qGetTLSAddr packet"));
8760 else
8761 throw_error (TLS_GENERIC_ERROR,
8762 _("Remote target failed to process qGetTLSAddr request"));
8763 }
8764 else
8765 throw_error (TLS_GENERIC_ERROR,
8766 _("TLS not supported or disabled on this target"));
8767 /* Not reached. */
8768 return 0;
8769 }
8770
8771 /* Provide thread local base, i.e. Thread Information Block address.
8772 Returns 1 if ptid is found and thread_local_base is non zero. */
8773
8774 int
8775 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
8776 {
8777 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
8778 {
8779 struct remote_state *rs = get_remote_state ();
8780 char *p = rs->buf;
8781 char *endp = rs->buf + get_remote_packet_size ();
8782 enum packet_result result;
8783
8784 strcpy (p, "qGetTIBAddr:");
8785 p += strlen (p);
8786 p = write_ptid (p, endp, ptid);
8787 *p++ = '\0';
8788
8789 putpkt (rs->buf);
8790 getpkt (&rs->buf, &rs->buf_size, 0);
8791 result = packet_ok (rs->buf,
8792 &remote_protocol_packets[PACKET_qGetTIBAddr]);
8793 if (result == PACKET_OK)
8794 {
8795 ULONGEST result;
8796
8797 unpack_varlen_hex (rs->buf, &result);
8798 if (addr)
8799 *addr = (CORE_ADDR) result;
8800 return 1;
8801 }
8802 else if (result == PACKET_UNKNOWN)
8803 error (_("Remote target doesn't support qGetTIBAddr packet"));
8804 else
8805 error (_("Remote target failed to process qGetTIBAddr request"));
8806 }
8807 else
8808 error (_("qGetTIBAddr not supported or disabled on this target"));
8809 /* Not reached. */
8810 return 0;
8811 }
8812
8813 /* Support for inferring a target description based on the current
8814 architecture and the size of a 'g' packet. While the 'g' packet
8815 can have any size (since optional registers can be left off the
8816 end), some sizes are easily recognizable given knowledge of the
8817 approximate architecture. */
8818
8819 struct remote_g_packet_guess
8820 {
8821 int bytes;
8822 const struct target_desc *tdesc;
8823 };
8824 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
8825 DEF_VEC_O(remote_g_packet_guess_s);
8826
8827 struct remote_g_packet_data
8828 {
8829 VEC(remote_g_packet_guess_s) *guesses;
8830 };
8831
8832 static struct gdbarch_data *remote_g_packet_data_handle;
8833
8834 static void *
8835 remote_g_packet_data_init (struct obstack *obstack)
8836 {
8837 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
8838 }
8839
8840 void
8841 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
8842 const struct target_desc *tdesc)
8843 {
8844 struct remote_g_packet_data *data
8845 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
8846 struct remote_g_packet_guess new_guess, *guess;
8847 int ix;
8848
8849 gdb_assert (tdesc != NULL);
8850
8851 for (ix = 0;
8852 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8853 ix++)
8854 if (guess->bytes == bytes)
8855 internal_error (__FILE__, __LINE__,
8856 _("Duplicate g packet description added for size %d"),
8857 bytes);
8858
8859 new_guess.bytes = bytes;
8860 new_guess.tdesc = tdesc;
8861 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
8862 }
8863
8864 /* Return 1 if remote_read_description would do anything on this target
8865 and architecture, 0 otherwise. */
8866
8867 static int
8868 remote_read_description_p (struct target_ops *target)
8869 {
8870 struct remote_g_packet_data *data
8871 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8872
8873 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8874 return 1;
8875
8876 return 0;
8877 }
8878
8879 static const struct target_desc *
8880 remote_read_description (struct target_ops *target)
8881 {
8882 struct remote_g_packet_data *data
8883 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8884
8885 /* Do not try this during initial connection, when we do not know
8886 whether there is a running but stopped thread. */
8887 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8888 return NULL;
8889
8890 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8891 {
8892 struct remote_g_packet_guess *guess;
8893 int ix;
8894 int bytes = send_g_packet ();
8895
8896 for (ix = 0;
8897 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8898 ix++)
8899 if (guess->bytes == bytes)
8900 return guess->tdesc;
8901
8902 /* We discard the g packet. A minor optimization would be to
8903 hold on to it, and fill the register cache once we have selected
8904 an architecture, but it's too tricky to do safely. */
8905 }
8906
8907 return NULL;
8908 }
8909
8910 /* Remote file transfer support. This is host-initiated I/O, not
8911 target-initiated; for target-initiated, see remote-fileio.c. */
8912
8913 /* If *LEFT is at least the length of STRING, copy STRING to
8914 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8915 decrease *LEFT. Otherwise raise an error. */
8916
8917 static void
8918 remote_buffer_add_string (char **buffer, int *left, char *string)
8919 {
8920 int len = strlen (string);
8921
8922 if (len > *left)
8923 error (_("Packet too long for target."));
8924
8925 memcpy (*buffer, string, len);
8926 *buffer += len;
8927 *left -= len;
8928
8929 /* NUL-terminate the buffer as a convenience, if there is
8930 room. */
8931 if (*left)
8932 **buffer = '\0';
8933 }
8934
8935 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8936 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8937 decrease *LEFT. Otherwise raise an error. */
8938
8939 static void
8940 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8941 int len)
8942 {
8943 if (2 * len > *left)
8944 error (_("Packet too long for target."));
8945
8946 bin2hex (bytes, *buffer, len);
8947 *buffer += 2 * len;
8948 *left -= 2 * len;
8949
8950 /* NUL-terminate the buffer as a convenience, if there is
8951 room. */
8952 if (*left)
8953 **buffer = '\0';
8954 }
8955
8956 /* If *LEFT is large enough, convert VALUE to hex and add it to
8957 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8958 decrease *LEFT. Otherwise raise an error. */
8959
8960 static void
8961 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8962 {
8963 int len = hexnumlen (value);
8964
8965 if (len > *left)
8966 error (_("Packet too long for target."));
8967
8968 hexnumstr (*buffer, value);
8969 *buffer += len;
8970 *left -= len;
8971
8972 /* NUL-terminate the buffer as a convenience, if there is
8973 room. */
8974 if (*left)
8975 **buffer = '\0';
8976 }
8977
8978 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
8979 value, *REMOTE_ERRNO to the remote error number or zero if none
8980 was included, and *ATTACHMENT to point to the start of the annex
8981 if any. The length of the packet isn't needed here; there may
8982 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8983
8984 Return 0 if the packet could be parsed, -1 if it could not. If
8985 -1 is returned, the other variables may not be initialized. */
8986
8987 static int
8988 remote_hostio_parse_result (char *buffer, int *retcode,
8989 int *remote_errno, char **attachment)
8990 {
8991 char *p, *p2;
8992
8993 *remote_errno = 0;
8994 *attachment = NULL;
8995
8996 if (buffer[0] != 'F')
8997 return -1;
8998
8999 errno = 0;
9000 *retcode = strtol (&buffer[1], &p, 16);
9001 if (errno != 0 || p == &buffer[1])
9002 return -1;
9003
9004 /* Check for ",errno". */
9005 if (*p == ',')
9006 {
9007 errno = 0;
9008 *remote_errno = strtol (p + 1, &p2, 16);
9009 if (errno != 0 || p + 1 == p2)
9010 return -1;
9011 p = p2;
9012 }
9013
9014 /* Check for ";attachment". If there is no attachment, the
9015 packet should end here. */
9016 if (*p == ';')
9017 {
9018 *attachment = p + 1;
9019 return 0;
9020 }
9021 else if (*p == '\0')
9022 return 0;
9023 else
9024 return -1;
9025 }
9026
9027 /* Send a prepared I/O packet to the target and read its response.
9028 The prepared packet is in the global RS->BUF before this function
9029 is called, and the answer is there when we return.
9030
9031 COMMAND_BYTES is the length of the request to send, which may include
9032 binary data. WHICH_PACKET is the packet configuration to check
9033 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9034 is set to the error number and -1 is returned. Otherwise the value
9035 returned by the function is returned.
9036
9037 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9038 attachment is expected; an error will be reported if there's a
9039 mismatch. If one is found, *ATTACHMENT will be set to point into
9040 the packet buffer and *ATTACHMENT_LEN will be set to the
9041 attachment's length. */
9042
9043 static int
9044 remote_hostio_send_command (int command_bytes, int which_packet,
9045 int *remote_errno, char **attachment,
9046 int *attachment_len)
9047 {
9048 struct remote_state *rs = get_remote_state ();
9049 int ret, bytes_read;
9050 char *attachment_tmp;
9051
9052 if (!remote_desc
9053 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9054 {
9055 *remote_errno = FILEIO_ENOSYS;
9056 return -1;
9057 }
9058
9059 putpkt_binary (rs->buf, command_bytes);
9060 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9061
9062 /* If it timed out, something is wrong. Don't try to parse the
9063 buffer. */
9064 if (bytes_read < 0)
9065 {
9066 *remote_errno = FILEIO_EINVAL;
9067 return -1;
9068 }
9069
9070 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9071 {
9072 case PACKET_ERROR:
9073 *remote_errno = FILEIO_EINVAL;
9074 return -1;
9075 case PACKET_UNKNOWN:
9076 *remote_errno = FILEIO_ENOSYS;
9077 return -1;
9078 case PACKET_OK:
9079 break;
9080 }
9081
9082 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9083 &attachment_tmp))
9084 {
9085 *remote_errno = FILEIO_EINVAL;
9086 return -1;
9087 }
9088
9089 /* Make sure we saw an attachment if and only if we expected one. */
9090 if ((attachment_tmp == NULL && attachment != NULL)
9091 || (attachment_tmp != NULL && attachment == NULL))
9092 {
9093 *remote_errno = FILEIO_EINVAL;
9094 return -1;
9095 }
9096
9097 /* If an attachment was found, it must point into the packet buffer;
9098 work out how many bytes there were. */
9099 if (attachment_tmp != NULL)
9100 {
9101 *attachment = attachment_tmp;
9102 *attachment_len = bytes_read - (*attachment - rs->buf);
9103 }
9104
9105 return ret;
9106 }
9107
9108 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9109 remote file descriptor, or -1 if an error occurs (and set
9110 *REMOTE_ERRNO). */
9111
9112 static int
9113 remote_hostio_open (const char *filename, int flags, int mode,
9114 int *remote_errno)
9115 {
9116 struct remote_state *rs = get_remote_state ();
9117 char *p = rs->buf;
9118 int left = get_remote_packet_size () - 1;
9119
9120 remote_buffer_add_string (&p, &left, "vFile:open:");
9121
9122 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9123 strlen (filename));
9124 remote_buffer_add_string (&p, &left, ",");
9125
9126 remote_buffer_add_int (&p, &left, flags);
9127 remote_buffer_add_string (&p, &left, ",");
9128
9129 remote_buffer_add_int (&p, &left, mode);
9130
9131 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9132 remote_errno, NULL, NULL);
9133 }
9134
9135 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9136 Return the number of bytes written, or -1 if an error occurs (and
9137 set *REMOTE_ERRNO). */
9138
9139 static int
9140 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9141 ULONGEST offset, int *remote_errno)
9142 {
9143 struct remote_state *rs = get_remote_state ();
9144 char *p = rs->buf;
9145 int left = get_remote_packet_size ();
9146 int out_len;
9147
9148 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9149
9150 remote_buffer_add_int (&p, &left, fd);
9151 remote_buffer_add_string (&p, &left, ",");
9152
9153 remote_buffer_add_int (&p, &left, offset);
9154 remote_buffer_add_string (&p, &left, ",");
9155
9156 p += remote_escape_output (write_buf, len, p, &out_len,
9157 get_remote_packet_size () - (p - rs->buf));
9158
9159 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9160 remote_errno, NULL, NULL);
9161 }
9162
9163 /* Read up to LEN bytes FD on the remote target into READ_BUF
9164 Return the number of bytes read, or -1 if an error occurs (and
9165 set *REMOTE_ERRNO). */
9166
9167 static int
9168 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9169 ULONGEST offset, int *remote_errno)
9170 {
9171 struct remote_state *rs = get_remote_state ();
9172 char *p = rs->buf;
9173 char *attachment;
9174 int left = get_remote_packet_size ();
9175 int ret, attachment_len;
9176 int read_len;
9177
9178 remote_buffer_add_string (&p, &left, "vFile:pread:");
9179
9180 remote_buffer_add_int (&p, &left, fd);
9181 remote_buffer_add_string (&p, &left, ",");
9182
9183 remote_buffer_add_int (&p, &left, len);
9184 remote_buffer_add_string (&p, &left, ",");
9185
9186 remote_buffer_add_int (&p, &left, offset);
9187
9188 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9189 remote_errno, &attachment,
9190 &attachment_len);
9191
9192 if (ret < 0)
9193 return ret;
9194
9195 read_len = remote_unescape_input (attachment, attachment_len,
9196 read_buf, len);
9197 if (read_len != ret)
9198 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9199
9200 return ret;
9201 }
9202
9203 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9204 (and set *REMOTE_ERRNO). */
9205
9206 static int
9207 remote_hostio_close (int fd, int *remote_errno)
9208 {
9209 struct remote_state *rs = get_remote_state ();
9210 char *p = rs->buf;
9211 int left = get_remote_packet_size () - 1;
9212
9213 remote_buffer_add_string (&p, &left, "vFile:close:");
9214
9215 remote_buffer_add_int (&p, &left, fd);
9216
9217 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9218 remote_errno, NULL, NULL);
9219 }
9220
9221 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9222 occurs (and set *REMOTE_ERRNO). */
9223
9224 static int
9225 remote_hostio_unlink (const char *filename, int *remote_errno)
9226 {
9227 struct remote_state *rs = get_remote_state ();
9228 char *p = rs->buf;
9229 int left = get_remote_packet_size () - 1;
9230
9231 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9232
9233 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9234 strlen (filename));
9235
9236 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9237 remote_errno, NULL, NULL);
9238 }
9239
9240 static int
9241 remote_fileio_errno_to_host (int errnum)
9242 {
9243 switch (errnum)
9244 {
9245 case FILEIO_EPERM:
9246 return EPERM;
9247 case FILEIO_ENOENT:
9248 return ENOENT;
9249 case FILEIO_EINTR:
9250 return EINTR;
9251 case FILEIO_EIO:
9252 return EIO;
9253 case FILEIO_EBADF:
9254 return EBADF;
9255 case FILEIO_EACCES:
9256 return EACCES;
9257 case FILEIO_EFAULT:
9258 return EFAULT;
9259 case FILEIO_EBUSY:
9260 return EBUSY;
9261 case FILEIO_EEXIST:
9262 return EEXIST;
9263 case FILEIO_ENODEV:
9264 return ENODEV;
9265 case FILEIO_ENOTDIR:
9266 return ENOTDIR;
9267 case FILEIO_EISDIR:
9268 return EISDIR;
9269 case FILEIO_EINVAL:
9270 return EINVAL;
9271 case FILEIO_ENFILE:
9272 return ENFILE;
9273 case FILEIO_EMFILE:
9274 return EMFILE;
9275 case FILEIO_EFBIG:
9276 return EFBIG;
9277 case FILEIO_ENOSPC:
9278 return ENOSPC;
9279 case FILEIO_ESPIPE:
9280 return ESPIPE;
9281 case FILEIO_EROFS:
9282 return EROFS;
9283 case FILEIO_ENOSYS:
9284 return ENOSYS;
9285 case FILEIO_ENAMETOOLONG:
9286 return ENAMETOOLONG;
9287 }
9288 return -1;
9289 }
9290
9291 static char *
9292 remote_hostio_error (int errnum)
9293 {
9294 int host_error = remote_fileio_errno_to_host (errnum);
9295
9296 if (host_error == -1)
9297 error (_("Unknown remote I/O error %d"), errnum);
9298 else
9299 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9300 }
9301
9302 static void
9303 remote_hostio_close_cleanup (void *opaque)
9304 {
9305 int fd = *(int *) opaque;
9306 int remote_errno;
9307
9308 remote_hostio_close (fd, &remote_errno);
9309 }
9310
9311
9312 static void *
9313 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9314 {
9315 const char *filename = bfd_get_filename (abfd);
9316 int fd, remote_errno;
9317 int *stream;
9318
9319 gdb_assert (remote_filename_p (filename));
9320
9321 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9322 if (fd == -1)
9323 {
9324 errno = remote_fileio_errno_to_host (remote_errno);
9325 bfd_set_error (bfd_error_system_call);
9326 return NULL;
9327 }
9328
9329 stream = xmalloc (sizeof (int));
9330 *stream = fd;
9331 return stream;
9332 }
9333
9334 static int
9335 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9336 {
9337 int fd = *(int *)stream;
9338 int remote_errno;
9339
9340 xfree (stream);
9341
9342 /* Ignore errors on close; these may happen if the remote
9343 connection was already torn down. */
9344 remote_hostio_close (fd, &remote_errno);
9345
9346 return 1;
9347 }
9348
9349 static file_ptr
9350 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9351 file_ptr nbytes, file_ptr offset)
9352 {
9353 int fd = *(int *)stream;
9354 int remote_errno;
9355 file_ptr pos, bytes;
9356
9357 pos = 0;
9358 while (nbytes > pos)
9359 {
9360 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9361 offset + pos, &remote_errno);
9362 if (bytes == 0)
9363 /* Success, but no bytes, means end-of-file. */
9364 break;
9365 if (bytes == -1)
9366 {
9367 errno = remote_fileio_errno_to_host (remote_errno);
9368 bfd_set_error (bfd_error_system_call);
9369 return -1;
9370 }
9371
9372 pos += bytes;
9373 }
9374
9375 return pos;
9376 }
9377
9378 static int
9379 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9380 {
9381 /* FIXME: We should probably implement remote_hostio_stat. */
9382 sb->st_size = INT_MAX;
9383 return 0;
9384 }
9385
9386 int
9387 remote_filename_p (const char *filename)
9388 {
9389 return strncmp (filename, "remote:", 7) == 0;
9390 }
9391
9392 bfd *
9393 remote_bfd_open (const char *remote_file, const char *target)
9394 {
9395 return bfd_openr_iovec (remote_file, target,
9396 remote_bfd_iovec_open, NULL,
9397 remote_bfd_iovec_pread,
9398 remote_bfd_iovec_close,
9399 remote_bfd_iovec_stat);
9400 }
9401
9402 void
9403 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9404 {
9405 struct cleanup *back_to, *close_cleanup;
9406 int retcode, fd, remote_errno, bytes, io_size;
9407 FILE *file;
9408 gdb_byte *buffer;
9409 int bytes_in_buffer;
9410 int saw_eof;
9411 ULONGEST offset;
9412
9413 if (!remote_desc)
9414 error (_("command can only be used with remote target"));
9415
9416 file = fopen (local_file, "rb");
9417 if (file == NULL)
9418 perror_with_name (local_file);
9419 back_to = make_cleanup_fclose (file);
9420
9421 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9422 | FILEIO_O_TRUNC),
9423 0700, &remote_errno);
9424 if (fd == -1)
9425 remote_hostio_error (remote_errno);
9426
9427 /* Send up to this many bytes at once. They won't all fit in the
9428 remote packet limit, so we'll transfer slightly fewer. */
9429 io_size = get_remote_packet_size ();
9430 buffer = xmalloc (io_size);
9431 make_cleanup (xfree, buffer);
9432
9433 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9434
9435 bytes_in_buffer = 0;
9436 saw_eof = 0;
9437 offset = 0;
9438 while (bytes_in_buffer || !saw_eof)
9439 {
9440 if (!saw_eof)
9441 {
9442 bytes = fread (buffer + bytes_in_buffer, 1,
9443 io_size - bytes_in_buffer,
9444 file);
9445 if (bytes == 0)
9446 {
9447 if (ferror (file))
9448 error (_("Error reading %s."), local_file);
9449 else
9450 {
9451 /* EOF. Unless there is something still in the
9452 buffer from the last iteration, we are done. */
9453 saw_eof = 1;
9454 if (bytes_in_buffer == 0)
9455 break;
9456 }
9457 }
9458 }
9459 else
9460 bytes = 0;
9461
9462 bytes += bytes_in_buffer;
9463 bytes_in_buffer = 0;
9464
9465 retcode = remote_hostio_pwrite (fd, buffer, bytes,
9466 offset, &remote_errno);
9467
9468 if (retcode < 0)
9469 remote_hostio_error (remote_errno);
9470 else if (retcode == 0)
9471 error (_("Remote write of %d bytes returned 0!"), bytes);
9472 else if (retcode < bytes)
9473 {
9474 /* Short write. Save the rest of the read data for the next
9475 write. */
9476 bytes_in_buffer = bytes - retcode;
9477 memmove (buffer, buffer + retcode, bytes_in_buffer);
9478 }
9479
9480 offset += retcode;
9481 }
9482
9483 discard_cleanups (close_cleanup);
9484 if (remote_hostio_close (fd, &remote_errno))
9485 remote_hostio_error (remote_errno);
9486
9487 if (from_tty)
9488 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9489 do_cleanups (back_to);
9490 }
9491
9492 void
9493 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9494 {
9495 struct cleanup *back_to, *close_cleanup;
9496 int fd, remote_errno, bytes, io_size;
9497 FILE *file;
9498 gdb_byte *buffer;
9499 ULONGEST offset;
9500
9501 if (!remote_desc)
9502 error (_("command can only be used with remote target"));
9503
9504 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9505 if (fd == -1)
9506 remote_hostio_error (remote_errno);
9507
9508 file = fopen (local_file, "wb");
9509 if (file == NULL)
9510 perror_with_name (local_file);
9511 back_to = make_cleanup_fclose (file);
9512
9513 /* Send up to this many bytes at once. They won't all fit in the
9514 remote packet limit, so we'll transfer slightly fewer. */
9515 io_size = get_remote_packet_size ();
9516 buffer = xmalloc (io_size);
9517 make_cleanup (xfree, buffer);
9518
9519 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9520
9521 offset = 0;
9522 while (1)
9523 {
9524 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9525 if (bytes == 0)
9526 /* Success, but no bytes, means end-of-file. */
9527 break;
9528 if (bytes == -1)
9529 remote_hostio_error (remote_errno);
9530
9531 offset += bytes;
9532
9533 bytes = fwrite (buffer, 1, bytes, file);
9534 if (bytes == 0)
9535 perror_with_name (local_file);
9536 }
9537
9538 discard_cleanups (close_cleanup);
9539 if (remote_hostio_close (fd, &remote_errno))
9540 remote_hostio_error (remote_errno);
9541
9542 if (from_tty)
9543 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9544 do_cleanups (back_to);
9545 }
9546
9547 void
9548 remote_file_delete (const char *remote_file, int from_tty)
9549 {
9550 int retcode, remote_errno;
9551
9552 if (!remote_desc)
9553 error (_("command can only be used with remote target"));
9554
9555 retcode = remote_hostio_unlink (remote_file, &remote_errno);
9556 if (retcode == -1)
9557 remote_hostio_error (remote_errno);
9558
9559 if (from_tty)
9560 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9561 }
9562
9563 static void
9564 remote_put_command (char *args, int from_tty)
9565 {
9566 struct cleanup *back_to;
9567 char **argv;
9568
9569 if (args == NULL)
9570 error_no_arg (_("file to put"));
9571
9572 argv = gdb_buildargv (args);
9573 back_to = make_cleanup_freeargv (argv);
9574 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9575 error (_("Invalid parameters to remote put"));
9576
9577 remote_file_put (argv[0], argv[1], from_tty);
9578
9579 do_cleanups (back_to);
9580 }
9581
9582 static void
9583 remote_get_command (char *args, int from_tty)
9584 {
9585 struct cleanup *back_to;
9586 char **argv;
9587
9588 if (args == NULL)
9589 error_no_arg (_("file to get"));
9590
9591 argv = gdb_buildargv (args);
9592 back_to = make_cleanup_freeargv (argv);
9593 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9594 error (_("Invalid parameters to remote get"));
9595
9596 remote_file_get (argv[0], argv[1], from_tty);
9597
9598 do_cleanups (back_to);
9599 }
9600
9601 static void
9602 remote_delete_command (char *args, int from_tty)
9603 {
9604 struct cleanup *back_to;
9605 char **argv;
9606
9607 if (args == NULL)
9608 error_no_arg (_("file to delete"));
9609
9610 argv = gdb_buildargv (args);
9611 back_to = make_cleanup_freeargv (argv);
9612 if (argv[0] == NULL || argv[1] != NULL)
9613 error (_("Invalid parameters to remote delete"));
9614
9615 remote_file_delete (argv[0], from_tty);
9616
9617 do_cleanups (back_to);
9618 }
9619
9620 static void
9621 remote_command (char *args, int from_tty)
9622 {
9623 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
9624 }
9625
9626 static int
9627 remote_can_execute_reverse (void)
9628 {
9629 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
9630 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
9631 return 1;
9632 else
9633 return 0;
9634 }
9635
9636 static int
9637 remote_supports_non_stop (void)
9638 {
9639 return 1;
9640 }
9641
9642 static int
9643 remote_supports_multi_process (void)
9644 {
9645 struct remote_state *rs = get_remote_state ();
9646
9647 return remote_multi_process_p (rs);
9648 }
9649
9650 int
9651 remote_supports_cond_tracepoints (void)
9652 {
9653 struct remote_state *rs = get_remote_state ();
9654
9655 return rs->cond_tracepoints;
9656 }
9657
9658 int
9659 remote_supports_fast_tracepoints (void)
9660 {
9661 struct remote_state *rs = get_remote_state ();
9662
9663 return rs->fast_tracepoints;
9664 }
9665
9666 static int
9667 remote_supports_static_tracepoints (void)
9668 {
9669 struct remote_state *rs = get_remote_state ();
9670
9671 return rs->static_tracepoints;
9672 }
9673
9674 static int
9675 remote_supports_enable_disable_tracepoint (void)
9676 {
9677 struct remote_state *rs = get_remote_state ();
9678
9679 return rs->enable_disable_tracepoints;
9680 }
9681
9682 static void
9683 remote_trace_init (void)
9684 {
9685 putpkt ("QTinit");
9686 remote_get_noisy_reply (&target_buf, &target_buf_size);
9687 if (strcmp (target_buf, "OK") != 0)
9688 error (_("Target does not support this command."));
9689 }
9690
9691 static void free_actions_list (char **actions_list);
9692 static void free_actions_list_cleanup_wrapper (void *);
9693 static void
9694 free_actions_list_cleanup_wrapper (void *al)
9695 {
9696 free_actions_list (al);
9697 }
9698
9699 static void
9700 free_actions_list (char **actions_list)
9701 {
9702 int ndx;
9703
9704 if (actions_list == 0)
9705 return;
9706
9707 for (ndx = 0; actions_list[ndx]; ndx++)
9708 xfree (actions_list[ndx]);
9709
9710 xfree (actions_list);
9711 }
9712
9713 /* Recursive routine to walk through command list including loops, and
9714 download packets for each command. */
9715
9716 static void
9717 remote_download_command_source (int num, ULONGEST addr,
9718 struct command_line *cmds)
9719 {
9720 struct remote_state *rs = get_remote_state ();
9721 struct command_line *cmd;
9722
9723 for (cmd = cmds; cmd; cmd = cmd->next)
9724 {
9725 QUIT; /* Allow user to bail out with ^C. */
9726 strcpy (rs->buf, "QTDPsrc:");
9727 encode_source_string (num, addr, "cmd", cmd->line,
9728 rs->buf + strlen (rs->buf),
9729 rs->buf_size - strlen (rs->buf));
9730 putpkt (rs->buf);
9731 remote_get_noisy_reply (&target_buf, &target_buf_size);
9732 if (strcmp (target_buf, "OK"))
9733 warning (_("Target does not support source download."));
9734
9735 if (cmd->control_type == while_control
9736 || cmd->control_type == while_stepping_control)
9737 {
9738 remote_download_command_source (num, addr, *cmd->body_list);
9739
9740 QUIT; /* Allow user to bail out with ^C. */
9741 strcpy (rs->buf, "QTDPsrc:");
9742 encode_source_string (num, addr, "cmd", "end",
9743 rs->buf + strlen (rs->buf),
9744 rs->buf_size - strlen (rs->buf));
9745 putpkt (rs->buf);
9746 remote_get_noisy_reply (&target_buf, &target_buf_size);
9747 if (strcmp (target_buf, "OK"))
9748 warning (_("Target does not support source download."));
9749 }
9750 }
9751 }
9752
9753 static void
9754 remote_download_tracepoint (struct breakpoint *t)
9755 {
9756 struct bp_location *loc;
9757 CORE_ADDR tpaddr;
9758 char addrbuf[40];
9759 char buf[2048];
9760 char **tdp_actions;
9761 char **stepping_actions;
9762 int ndx;
9763 struct cleanup *old_chain = NULL;
9764 struct agent_expr *aexpr;
9765 struct cleanup *aexpr_chain = NULL;
9766 char *pkt;
9767
9768 /* Iterate over all the tracepoint locations. It's up to the target to
9769 notice multiple tracepoint packets with the same number but different
9770 addresses, and treat them as multiple locations. */
9771 for (loc = t->loc; loc; loc = loc->next)
9772 {
9773 encode_actions (t, loc, &tdp_actions, &stepping_actions);
9774 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
9775 tdp_actions);
9776 (void) make_cleanup (free_actions_list_cleanup_wrapper,
9777 stepping_actions);
9778
9779 tpaddr = loc->address;
9780 sprintf_vma (addrbuf, tpaddr);
9781 sprintf (buf, "QTDP:%x:%s:%c:%lx:%x", t->number,
9782 addrbuf, /* address */
9783 (t->enable_state == bp_enabled ? 'E' : 'D'),
9784 t->step_count, t->pass_count);
9785 /* Fast tracepoints are mostly handled by the target, but we can
9786 tell the target how big of an instruction block should be moved
9787 around. */
9788 if (t->type == bp_fast_tracepoint)
9789 {
9790 /* Only test for support at download time; we may not know
9791 target capabilities at definition time. */
9792 if (remote_supports_fast_tracepoints ())
9793 {
9794 int isize;
9795
9796 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
9797 tpaddr, &isize, NULL))
9798 sprintf (buf + strlen (buf), ":F%x", isize);
9799 else
9800 /* If it passed validation at definition but fails now,
9801 something is very wrong. */
9802 internal_error (__FILE__, __LINE__,
9803 _("Fast tracepoint not "
9804 "valid during download"));
9805 }
9806 else
9807 /* Fast tracepoints are functionally identical to regular
9808 tracepoints, so don't take lack of support as a reason to
9809 give up on the trace run. */
9810 warning (_("Target does not support fast tracepoints, "
9811 "downloading %d as regular tracepoint"), t->number);
9812 }
9813 else if (t->type == bp_static_tracepoint)
9814 {
9815 /* Only test for support at download time; we may not know
9816 target capabilities at definition time. */
9817 if (remote_supports_static_tracepoints ())
9818 {
9819 struct static_tracepoint_marker marker;
9820
9821 if (target_static_tracepoint_marker_at (tpaddr, &marker))
9822 strcat (buf, ":S");
9823 else
9824 error (_("Static tracepoint not valid during download"));
9825 }
9826 else
9827 /* Fast tracepoints are functionally identical to regular
9828 tracepoints, so don't take lack of support as a reason
9829 to give up on the trace run. */
9830 error (_("Target does not support static tracepoints"));
9831 }
9832 /* If the tracepoint has a conditional, make it into an agent
9833 expression and append to the definition. */
9834 if (loc->cond)
9835 {
9836 /* Only test support at download time, we may not know target
9837 capabilities at definition time. */
9838 if (remote_supports_cond_tracepoints ())
9839 {
9840 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
9841 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
9842 sprintf (buf + strlen (buf), ":X%x,", aexpr->len);
9843 pkt = buf + strlen (buf);
9844 for (ndx = 0; ndx < aexpr->len; ++ndx)
9845 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
9846 *pkt = '\0';
9847 do_cleanups (aexpr_chain);
9848 }
9849 else
9850 warning (_("Target does not support conditional tracepoints, "
9851 "ignoring tp %d cond"), t->number);
9852 }
9853
9854 if (t->commands || *default_collect)
9855 strcat (buf, "-");
9856 putpkt (buf);
9857 remote_get_noisy_reply (&target_buf, &target_buf_size);
9858 if (strcmp (target_buf, "OK"))
9859 error (_("Target does not support tracepoints."));
9860
9861 /* do_single_steps (t); */
9862 if (tdp_actions)
9863 {
9864 for (ndx = 0; tdp_actions[ndx]; ndx++)
9865 {
9866 QUIT; /* Allow user to bail out with ^C. */
9867 sprintf (buf, "QTDP:-%x:%s:%s%c",
9868 t->number, addrbuf, /* address */
9869 tdp_actions[ndx],
9870 ((tdp_actions[ndx + 1] || stepping_actions)
9871 ? '-' : 0));
9872 putpkt (buf);
9873 remote_get_noisy_reply (&target_buf,
9874 &target_buf_size);
9875 if (strcmp (target_buf, "OK"))
9876 error (_("Error on target while setting tracepoints."));
9877 }
9878 }
9879 if (stepping_actions)
9880 {
9881 for (ndx = 0; stepping_actions[ndx]; ndx++)
9882 {
9883 QUIT; /* Allow user to bail out with ^C. */
9884 sprintf (buf, "QTDP:-%x:%s:%s%s%s",
9885 t->number, addrbuf, /* address */
9886 ((ndx == 0) ? "S" : ""),
9887 stepping_actions[ndx],
9888 (stepping_actions[ndx + 1] ? "-" : ""));
9889 putpkt (buf);
9890 remote_get_noisy_reply (&target_buf,
9891 &target_buf_size);
9892 if (strcmp (target_buf, "OK"))
9893 error (_("Error on target while setting tracepoints."));
9894 }
9895 }
9896
9897 if (remote_protocol_packets[PACKET_TracepointSource].support
9898 == PACKET_ENABLE)
9899 {
9900 if (t->addr_string)
9901 {
9902 strcpy (buf, "QTDPsrc:");
9903 encode_source_string (t->number, loc->address,
9904 "at", t->addr_string, buf + strlen (buf),
9905 2048 - strlen (buf));
9906
9907 putpkt (buf);
9908 remote_get_noisy_reply (&target_buf, &target_buf_size);
9909 if (strcmp (target_buf, "OK"))
9910 warning (_("Target does not support source download."));
9911 }
9912 if (t->cond_string)
9913 {
9914 strcpy (buf, "QTDPsrc:");
9915 encode_source_string (t->number, loc->address,
9916 "cond", t->cond_string, buf + strlen (buf),
9917 2048 - strlen (buf));
9918 putpkt (buf);
9919 remote_get_noisy_reply (&target_buf, &target_buf_size);
9920 if (strcmp (target_buf, "OK"))
9921 warning (_("Target does not support source download."));
9922 }
9923 remote_download_command_source (t->number, loc->address,
9924 breakpoint_commands (t));
9925 }
9926
9927 do_cleanups (old_chain);
9928 }
9929 }
9930
9931 static void
9932 remote_download_trace_state_variable (struct trace_state_variable *tsv)
9933 {
9934 struct remote_state *rs = get_remote_state ();
9935 char *p;
9936
9937 sprintf (rs->buf, "QTDV:%x:%s:%x:",
9938 tsv->number, phex ((ULONGEST) tsv->initial_value, 8), tsv->builtin);
9939 p = rs->buf + strlen (rs->buf);
9940 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
9941 error (_("Trace state variable name too long for tsv definition packet"));
9942 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
9943 *p++ = '\0';
9944 putpkt (rs->buf);
9945 remote_get_noisy_reply (&target_buf, &target_buf_size);
9946 if (*target_buf == '\0')
9947 error (_("Target does not support this command."));
9948 if (strcmp (target_buf, "OK") != 0)
9949 error (_("Error on target while downloading trace state variable."));
9950 }
9951
9952 static void
9953 remote_enable_tracepoint (struct bp_location *location)
9954 {
9955 struct remote_state *rs = get_remote_state ();
9956 char addr_buf[40];
9957
9958 sprintf_vma (addr_buf, location->address);
9959 sprintf (rs->buf, "QTEnable:%x:%s", location->owner->number, addr_buf);
9960 putpkt (rs->buf);
9961 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
9962 if (*rs->buf == '\0')
9963 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
9964 if (strcmp (rs->buf, "OK") != 0)
9965 error (_("Error on target while enabling tracepoint."));
9966 }
9967
9968 static void
9969 remote_disable_tracepoint (struct bp_location *location)
9970 {
9971 struct remote_state *rs = get_remote_state ();
9972 char addr_buf[40];
9973
9974 sprintf_vma (addr_buf, location->address);
9975 sprintf (rs->buf, "QTDisable:%x:%s", location->owner->number, addr_buf);
9976 putpkt (rs->buf);
9977 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
9978 if (*rs->buf == '\0')
9979 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
9980 if (strcmp (rs->buf, "OK") != 0)
9981 error (_("Error on target while disabling tracepoint."));
9982 }
9983
9984 static void
9985 remote_trace_set_readonly_regions (void)
9986 {
9987 asection *s;
9988 bfd_size_type size;
9989 bfd_vma vma;
9990 int anysecs = 0;
9991 int offset = 0;
9992
9993 if (!exec_bfd)
9994 return; /* No information to give. */
9995
9996 strcpy (target_buf, "QTro");
9997 for (s = exec_bfd->sections; s; s = s->next)
9998 {
9999 char tmp1[40], tmp2[40];
10000 int sec_length;
10001
10002 if ((s->flags & SEC_LOAD) == 0 ||
10003 /* (s->flags & SEC_CODE) == 0 || */
10004 (s->flags & SEC_READONLY) == 0)
10005 continue;
10006
10007 anysecs = 1;
10008 vma = bfd_get_section_vma (,s);
10009 size = bfd_get_section_size (s);
10010 sprintf_vma (tmp1, vma);
10011 sprintf_vma (tmp2, vma + size);
10012 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10013 if (offset + sec_length + 1 > target_buf_size)
10014 {
10015 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10016 != PACKET_ENABLE)
10017 warning (_("\
10018 Too many sections for read-only sections definition packet."));
10019 break;
10020 }
10021 sprintf (target_buf + offset, ":%s,%s", tmp1, tmp2);
10022 offset += sec_length;
10023 }
10024 if (anysecs)
10025 {
10026 putpkt (target_buf);
10027 getpkt (&target_buf, &target_buf_size, 0);
10028 }
10029 }
10030
10031 static void
10032 remote_trace_start (void)
10033 {
10034 putpkt ("QTStart");
10035 remote_get_noisy_reply (&target_buf, &target_buf_size);
10036 if (*target_buf == '\0')
10037 error (_("Target does not support this command."));
10038 if (strcmp (target_buf, "OK") != 0)
10039 error (_("Bogus reply from target: %s"), target_buf);
10040 }
10041
10042 static int
10043 remote_get_trace_status (struct trace_status *ts)
10044 {
10045 char *p;
10046 /* FIXME we need to get register block size some other way. */
10047 extern int trace_regblock_size;
10048
10049 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10050
10051 putpkt ("qTStatus");
10052 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10053
10054 /* If the remote target doesn't do tracing, flag it. */
10055 if (*p == '\0')
10056 return -1;
10057
10058 /* We're working with a live target. */
10059 ts->from_file = 0;
10060
10061 /* Set some defaults. */
10062 ts->running_known = 0;
10063 ts->stop_reason = trace_stop_reason_unknown;
10064 ts->traceframe_count = -1;
10065 ts->buffer_free = 0;
10066
10067 if (*p++ != 'T')
10068 error (_("Bogus trace status reply from target: %s"), target_buf);
10069
10070 parse_trace_status (p, ts);
10071
10072 return ts->running;
10073 }
10074
10075 static void
10076 remote_trace_stop (void)
10077 {
10078 putpkt ("QTStop");
10079 remote_get_noisy_reply (&target_buf, &target_buf_size);
10080 if (*target_buf == '\0')
10081 error (_("Target does not support this command."));
10082 if (strcmp (target_buf, "OK") != 0)
10083 error (_("Bogus reply from target: %s"), target_buf);
10084 }
10085
10086 static int
10087 remote_trace_find (enum trace_find_type type, int num,
10088 ULONGEST addr1, ULONGEST addr2,
10089 int *tpp)
10090 {
10091 struct remote_state *rs = get_remote_state ();
10092 char *p, *reply;
10093 int target_frameno = -1, target_tracept = -1;
10094
10095 /* Lookups other than by absolute frame number depend on the current
10096 trace selected, so make sure it is correct on the remote end
10097 first. */
10098 if (type != tfind_number)
10099 set_remote_traceframe ();
10100
10101 p = rs->buf;
10102 strcpy (p, "QTFrame:");
10103 p = strchr (p, '\0');
10104 switch (type)
10105 {
10106 case tfind_number:
10107 sprintf (p, "%x", num);
10108 break;
10109 case tfind_pc:
10110 sprintf (p, "pc:%s", phex_nz (addr1, 0));
10111 break;
10112 case tfind_tp:
10113 sprintf (p, "tdp:%x", num);
10114 break;
10115 case tfind_range:
10116 sprintf (p, "range:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10117 break;
10118 case tfind_outside:
10119 sprintf (p, "outside:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10120 break;
10121 default:
10122 error (_("Unknown trace find type %d"), type);
10123 }
10124
10125 putpkt (rs->buf);
10126 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10127 if (*reply == '\0')
10128 error (_("Target does not support this command."));
10129
10130 while (reply && *reply)
10131 switch (*reply)
10132 {
10133 case 'F':
10134 p = ++reply;
10135 target_frameno = (int) strtol (p, &reply, 16);
10136 if (reply == p)
10137 error (_("Unable to parse trace frame number"));
10138 /* Don't update our remote traceframe number cache on failure
10139 to select a remote traceframe. */
10140 if (target_frameno == -1)
10141 return -1;
10142 break;
10143 case 'T':
10144 p = ++reply;
10145 target_tracept = (int) strtol (p, &reply, 16);
10146 if (reply == p)
10147 error (_("Unable to parse tracepoint number"));
10148 break;
10149 case 'O': /* "OK"? */
10150 if (reply[1] == 'K' && reply[2] == '\0')
10151 reply += 2;
10152 else
10153 error (_("Bogus reply from target: %s"), reply);
10154 break;
10155 default:
10156 error (_("Bogus reply from target: %s"), reply);
10157 }
10158 if (tpp)
10159 *tpp = target_tracept;
10160
10161 remote_traceframe_number = target_frameno;
10162 return target_frameno;
10163 }
10164
10165 static int
10166 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10167 {
10168 struct remote_state *rs = get_remote_state ();
10169 char *reply;
10170 ULONGEST uval;
10171
10172 set_remote_traceframe ();
10173
10174 sprintf (rs->buf, "qTV:%x", tsvnum);
10175 putpkt (rs->buf);
10176 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10177 if (reply && *reply)
10178 {
10179 if (*reply == 'V')
10180 {
10181 unpack_varlen_hex (reply + 1, &uval);
10182 *val = (LONGEST) uval;
10183 return 1;
10184 }
10185 }
10186 return 0;
10187 }
10188
10189 static int
10190 remote_save_trace_data (const char *filename)
10191 {
10192 struct remote_state *rs = get_remote_state ();
10193 char *p, *reply;
10194
10195 p = rs->buf;
10196 strcpy (p, "QTSave:");
10197 p += strlen (p);
10198 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10199 error (_("Remote file name too long for trace save packet"));
10200 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10201 *p++ = '\0';
10202 putpkt (rs->buf);
10203 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10204 if (*reply != '\0')
10205 error (_("Target does not support this command."));
10206 if (strcmp (reply, "OK") != 0)
10207 error (_("Bogus reply from target: %s"), reply);
10208 return 0;
10209 }
10210
10211 /* This is basically a memory transfer, but needs to be its own packet
10212 because we don't know how the target actually organizes its trace
10213 memory, plus we want to be able to ask for as much as possible, but
10214 not be unhappy if we don't get as much as we ask for. */
10215
10216 static LONGEST
10217 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10218 {
10219 struct remote_state *rs = get_remote_state ();
10220 char *reply;
10221 char *p;
10222 int rslt;
10223
10224 p = rs->buf;
10225 strcpy (p, "qTBuffer:");
10226 p += strlen (p);
10227 p += hexnumstr (p, offset);
10228 *p++ = ',';
10229 p += hexnumstr (p, len);
10230 *p++ = '\0';
10231
10232 putpkt (rs->buf);
10233 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10234 if (reply && *reply)
10235 {
10236 /* 'l' by itself means we're at the end of the buffer and
10237 there is nothing more to get. */
10238 if (*reply == 'l')
10239 return 0;
10240
10241 /* Convert the reply into binary. Limit the number of bytes to
10242 convert according to our passed-in buffer size, rather than
10243 what was returned in the packet; if the target is
10244 unexpectedly generous and gives us a bigger reply than we
10245 asked for, we don't want to crash. */
10246 rslt = hex2bin (target_buf, buf, len);
10247 return rslt;
10248 }
10249
10250 /* Something went wrong, flag as an error. */
10251 return -1;
10252 }
10253
10254 static void
10255 remote_set_disconnected_tracing (int val)
10256 {
10257 struct remote_state *rs = get_remote_state ();
10258
10259 if (rs->disconnected_tracing)
10260 {
10261 char *reply;
10262
10263 sprintf (rs->buf, "QTDisconnected:%x", val);
10264 putpkt (rs->buf);
10265 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10266 if (*reply == '\0')
10267 error (_("Target does not support this command."));
10268 if (strcmp (reply, "OK") != 0)
10269 error (_("Bogus reply from target: %s"), reply);
10270 }
10271 else if (val)
10272 warning (_("Target does not support disconnected tracing."));
10273 }
10274
10275 static int
10276 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
10277 {
10278 struct thread_info *info = find_thread_ptid (ptid);
10279
10280 if (info && info->private)
10281 return info->private->core;
10282 return -1;
10283 }
10284
10285 static void
10286 remote_set_circular_trace_buffer (int val)
10287 {
10288 struct remote_state *rs = get_remote_state ();
10289 char *reply;
10290
10291 sprintf (rs->buf, "QTBuffer:circular:%x", val);
10292 putpkt (rs->buf);
10293 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10294 if (*reply == '\0')
10295 error (_("Target does not support this command."));
10296 if (strcmp (reply, "OK") != 0)
10297 error (_("Bogus reply from target: %s"), reply);
10298 }
10299
10300 static struct traceframe_info *
10301 remote_traceframe_info (void)
10302 {
10303 char *text;
10304
10305 text = target_read_stralloc (&current_target,
10306 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
10307 if (text != NULL)
10308 {
10309 struct traceframe_info *info;
10310 struct cleanup *back_to = make_cleanup (xfree, text);
10311
10312 info = parse_traceframe_info (text);
10313 do_cleanups (back_to);
10314 return info;
10315 }
10316
10317 return NULL;
10318 }
10319
10320 static void
10321 init_remote_ops (void)
10322 {
10323 remote_ops.to_shortname = "remote";
10324 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
10325 remote_ops.to_doc =
10326 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10327 Specify the serial device it is connected to\n\
10328 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
10329 remote_ops.to_open = remote_open;
10330 remote_ops.to_close = remote_close;
10331 remote_ops.to_detach = remote_detach;
10332 remote_ops.to_disconnect = remote_disconnect;
10333 remote_ops.to_resume = remote_resume;
10334 remote_ops.to_wait = remote_wait;
10335 remote_ops.to_fetch_registers = remote_fetch_registers;
10336 remote_ops.to_store_registers = remote_store_registers;
10337 remote_ops.to_prepare_to_store = remote_prepare_to_store;
10338 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
10339 remote_ops.to_files_info = remote_files_info;
10340 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
10341 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
10342 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
10343 remote_ops.to_stopped_data_address = remote_stopped_data_address;
10344 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
10345 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
10346 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
10347 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
10348 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
10349 remote_ops.to_kill = remote_kill;
10350 remote_ops.to_load = generic_load;
10351 remote_ops.to_mourn_inferior = remote_mourn;
10352 remote_ops.to_pass_signals = remote_pass_signals;
10353 remote_ops.to_thread_alive = remote_thread_alive;
10354 remote_ops.to_find_new_threads = remote_threads_info;
10355 remote_ops.to_pid_to_str = remote_pid_to_str;
10356 remote_ops.to_extra_thread_info = remote_threads_extra_info;
10357 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
10358 remote_ops.to_stop = remote_stop;
10359 remote_ops.to_xfer_partial = remote_xfer_partial;
10360 remote_ops.to_rcmd = remote_rcmd;
10361 remote_ops.to_log_command = serial_log_command;
10362 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
10363 remote_ops.to_stratum = process_stratum;
10364 remote_ops.to_has_all_memory = default_child_has_all_memory;
10365 remote_ops.to_has_memory = default_child_has_memory;
10366 remote_ops.to_has_stack = default_child_has_stack;
10367 remote_ops.to_has_registers = default_child_has_registers;
10368 remote_ops.to_has_execution = default_child_has_execution;
10369 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
10370 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
10371 remote_ops.to_magic = OPS_MAGIC;
10372 remote_ops.to_memory_map = remote_memory_map;
10373 remote_ops.to_flash_erase = remote_flash_erase;
10374 remote_ops.to_flash_done = remote_flash_done;
10375 remote_ops.to_read_description = remote_read_description;
10376 remote_ops.to_search_memory = remote_search_memory;
10377 remote_ops.to_can_async_p = remote_can_async_p;
10378 remote_ops.to_is_async_p = remote_is_async_p;
10379 remote_ops.to_async = remote_async;
10380 remote_ops.to_terminal_inferior = remote_terminal_inferior;
10381 remote_ops.to_terminal_ours = remote_terminal_ours;
10382 remote_ops.to_supports_non_stop = remote_supports_non_stop;
10383 remote_ops.to_supports_multi_process = remote_supports_multi_process;
10384 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
10385 remote_ops.to_trace_init = remote_trace_init;
10386 remote_ops.to_download_tracepoint = remote_download_tracepoint;
10387 remote_ops.to_download_trace_state_variable
10388 = remote_download_trace_state_variable;
10389 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
10390 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
10391 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
10392 remote_ops.to_trace_start = remote_trace_start;
10393 remote_ops.to_get_trace_status = remote_get_trace_status;
10394 remote_ops.to_trace_stop = remote_trace_stop;
10395 remote_ops.to_trace_find = remote_trace_find;
10396 remote_ops.to_get_trace_state_variable_value
10397 = remote_get_trace_state_variable_value;
10398 remote_ops.to_save_trace_data = remote_save_trace_data;
10399 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
10400 remote_ops.to_upload_trace_state_variables
10401 = remote_upload_trace_state_variables;
10402 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
10403 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
10404 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
10405 remote_ops.to_core_of_thread = remote_core_of_thread;
10406 remote_ops.to_verify_memory = remote_verify_memory;
10407 remote_ops.to_get_tib_address = remote_get_tib_address;
10408 remote_ops.to_set_permissions = remote_set_permissions;
10409 remote_ops.to_static_tracepoint_marker_at
10410 = remote_static_tracepoint_marker_at;
10411 remote_ops.to_static_tracepoint_markers_by_strid
10412 = remote_static_tracepoint_markers_by_strid;
10413 remote_ops.to_traceframe_info = remote_traceframe_info;
10414 }
10415
10416 /* Set up the extended remote vector by making a copy of the standard
10417 remote vector and adding to it. */
10418
10419 static void
10420 init_extended_remote_ops (void)
10421 {
10422 extended_remote_ops = remote_ops;
10423
10424 extended_remote_ops.to_shortname = "extended-remote";
10425 extended_remote_ops.to_longname =
10426 "Extended remote serial target in gdb-specific protocol";
10427 extended_remote_ops.to_doc =
10428 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10429 Specify the serial device it is connected to (e.g. /dev/ttya).";
10430 extended_remote_ops.to_open = extended_remote_open;
10431 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
10432 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
10433 extended_remote_ops.to_detach = extended_remote_detach;
10434 extended_remote_ops.to_attach = extended_remote_attach;
10435 extended_remote_ops.to_kill = extended_remote_kill;
10436 }
10437
10438 static int
10439 remote_can_async_p (void)
10440 {
10441 if (!target_async_permitted)
10442 /* We only enable async when the user specifically asks for it. */
10443 return 0;
10444
10445 /* We're async whenever the serial device is. */
10446 return serial_can_async_p (remote_desc);
10447 }
10448
10449 static int
10450 remote_is_async_p (void)
10451 {
10452 if (!target_async_permitted)
10453 /* We only enable async when the user specifically asks for it. */
10454 return 0;
10455
10456 /* We're async whenever the serial device is. */
10457 return serial_is_async_p (remote_desc);
10458 }
10459
10460 /* Pass the SERIAL event on and up to the client. One day this code
10461 will be able to delay notifying the client of an event until the
10462 point where an entire packet has been received. */
10463
10464 static void (*async_client_callback) (enum inferior_event_type event_type,
10465 void *context);
10466 static void *async_client_context;
10467 static serial_event_ftype remote_async_serial_handler;
10468
10469 static void
10470 remote_async_serial_handler (struct serial *scb, void *context)
10471 {
10472 /* Don't propogate error information up to the client. Instead let
10473 the client find out about the error by querying the target. */
10474 async_client_callback (INF_REG_EVENT, async_client_context);
10475 }
10476
10477 static void
10478 remote_async_inferior_event_handler (gdb_client_data data)
10479 {
10480 inferior_event_handler (INF_REG_EVENT, NULL);
10481 }
10482
10483 static void
10484 remote_async_get_pending_events_handler (gdb_client_data data)
10485 {
10486 remote_get_pending_stop_replies ();
10487 }
10488
10489 static void
10490 remote_async (void (*callback) (enum inferior_event_type event_type,
10491 void *context), void *context)
10492 {
10493 if (callback != NULL)
10494 {
10495 serial_async (remote_desc, remote_async_serial_handler, NULL);
10496 async_client_callback = callback;
10497 async_client_context = context;
10498 }
10499 else
10500 serial_async (remote_desc, NULL, NULL);
10501 }
10502
10503 static void
10504 set_remote_cmd (char *args, int from_tty)
10505 {
10506 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
10507 }
10508
10509 static void
10510 show_remote_cmd (char *args, int from_tty)
10511 {
10512 /* We can't just use cmd_show_list here, because we want to skip
10513 the redundant "show remote Z-packet" and the legacy aliases. */
10514 struct cleanup *showlist_chain;
10515 struct cmd_list_element *list = remote_show_cmdlist;
10516
10517 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
10518 for (; list != NULL; list = list->next)
10519 if (strcmp (list->name, "Z-packet") == 0)
10520 continue;
10521 else if (list->type == not_set_cmd)
10522 /* Alias commands are exactly like the original, except they
10523 don't have the normal type. */
10524 continue;
10525 else
10526 {
10527 struct cleanup *option_chain
10528 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
10529
10530 ui_out_field_string (uiout, "name", list->name);
10531 ui_out_text (uiout, ": ");
10532 if (list->type == show_cmd)
10533 do_setshow_command ((char *) NULL, from_tty, list);
10534 else
10535 cmd_func (list, NULL, from_tty);
10536 /* Close the tuple. */
10537 do_cleanups (option_chain);
10538 }
10539
10540 /* Close the tuple. */
10541 do_cleanups (showlist_chain);
10542 }
10543
10544
10545 /* Function to be called whenever a new objfile (shlib) is detected. */
10546 static void
10547 remote_new_objfile (struct objfile *objfile)
10548 {
10549 if (remote_desc != 0) /* Have a remote connection. */
10550 remote_check_symbols (objfile);
10551 }
10552
10553 /* Pull all the tracepoints defined on the target and create local
10554 data structures representing them. We don't want to create real
10555 tracepoints yet, we don't want to mess up the user's existing
10556 collection. */
10557
10558 static int
10559 remote_upload_tracepoints (struct uploaded_tp **utpp)
10560 {
10561 struct remote_state *rs = get_remote_state ();
10562 char *p;
10563
10564 /* Ask for a first packet of tracepoint definition. */
10565 putpkt ("qTfP");
10566 getpkt (&rs->buf, &rs->buf_size, 0);
10567 p = rs->buf;
10568 while (*p && *p != 'l')
10569 {
10570 parse_tracepoint_definition (p, utpp);
10571 /* Ask for another packet of tracepoint definition. */
10572 putpkt ("qTsP");
10573 getpkt (&rs->buf, &rs->buf_size, 0);
10574 p = rs->buf;
10575 }
10576 return 0;
10577 }
10578
10579 static int
10580 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
10581 {
10582 struct remote_state *rs = get_remote_state ();
10583 char *p;
10584
10585 /* Ask for a first packet of variable definition. */
10586 putpkt ("qTfV");
10587 getpkt (&rs->buf, &rs->buf_size, 0);
10588 p = rs->buf;
10589 while (*p && *p != 'l')
10590 {
10591 parse_tsv_definition (p, utsvp);
10592 /* Ask for another packet of variable definition. */
10593 putpkt ("qTsV");
10594 getpkt (&rs->buf, &rs->buf_size, 0);
10595 p = rs->buf;
10596 }
10597 return 0;
10598 }
10599
10600 void
10601 _initialize_remote (void)
10602 {
10603 struct remote_state *rs;
10604 struct cmd_list_element *cmd;
10605 char *cmd_name;
10606
10607 /* architecture specific data */
10608 remote_gdbarch_data_handle =
10609 gdbarch_data_register_post_init (init_remote_state);
10610 remote_g_packet_data_handle =
10611 gdbarch_data_register_pre_init (remote_g_packet_data_init);
10612
10613 /* Initialize the per-target state. At the moment there is only one
10614 of these, not one per target. Only one target is active at a
10615 time. The default buffer size is unimportant; it will be expanded
10616 whenever a larger buffer is needed. */
10617 rs = get_remote_state_raw ();
10618 rs->buf_size = 400;
10619 rs->buf = xmalloc (rs->buf_size);
10620
10621 init_remote_ops ();
10622 add_target (&remote_ops);
10623
10624 init_extended_remote_ops ();
10625 add_target (&extended_remote_ops);
10626
10627 /* Hook into new objfile notification. */
10628 observer_attach_new_objfile (remote_new_objfile);
10629
10630 /* Set up signal handlers. */
10631 sigint_remote_token =
10632 create_async_signal_handler (async_remote_interrupt, NULL);
10633 sigint_remote_twice_token =
10634 create_async_signal_handler (async_remote_interrupt_twice, NULL);
10635
10636 #if 0
10637 init_remote_threadtests ();
10638 #endif
10639
10640 /* set/show remote ... */
10641
10642 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
10643 Remote protocol specific variables\n\
10644 Configure various remote-protocol specific variables such as\n\
10645 the packets being used"),
10646 &remote_set_cmdlist, "set remote ",
10647 0 /* allow-unknown */, &setlist);
10648 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
10649 Remote protocol specific variables\n\
10650 Configure various remote-protocol specific variables such as\n\
10651 the packets being used"),
10652 &remote_show_cmdlist, "show remote ",
10653 0 /* allow-unknown */, &showlist);
10654
10655 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
10656 Compare section data on target to the exec file.\n\
10657 Argument is a single section name (default: all loaded sections)."),
10658 &cmdlist);
10659
10660 add_cmd ("packet", class_maintenance, packet_command, _("\
10661 Send an arbitrary packet to a remote target.\n\
10662 maintenance packet TEXT\n\
10663 If GDB is talking to an inferior via the GDB serial protocol, then\n\
10664 this command sends the string TEXT to the inferior, and displays the\n\
10665 response packet. GDB supplies the initial `$' character, and the\n\
10666 terminating `#' character and checksum."),
10667 &maintenancelist);
10668
10669 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
10670 Set whether to send break if interrupted."), _("\
10671 Show whether to send break if interrupted."), _("\
10672 If set, a break, instead of a cntrl-c, is sent to the remote target."),
10673 set_remotebreak, show_remotebreak,
10674 &setlist, &showlist);
10675 cmd_name = "remotebreak";
10676 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
10677 deprecate_cmd (cmd, "set remote interrupt-sequence");
10678 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
10679 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
10680 deprecate_cmd (cmd, "show remote interrupt-sequence");
10681
10682 add_setshow_enum_cmd ("interrupt-sequence", class_support,
10683 interrupt_sequence_modes, &interrupt_sequence_mode,
10684 _("\
10685 Set interrupt sequence to remote target."), _("\
10686 Show interrupt sequence to remote target."), _("\
10687 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
10688 NULL, show_interrupt_sequence,
10689 &remote_set_cmdlist,
10690 &remote_show_cmdlist);
10691
10692 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
10693 &interrupt_on_connect, _("\
10694 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10695 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10696 If set, interrupt sequence is sent to remote target."),
10697 NULL, NULL,
10698 &remote_set_cmdlist, &remote_show_cmdlist);
10699
10700 /* Install commands for configuring memory read/write packets. */
10701
10702 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
10703 Set the maximum number of bytes per memory write packet (deprecated)."),
10704 &setlist);
10705 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
10706 Show the maximum number of bytes per memory write packet (deprecated)."),
10707 &showlist);
10708 add_cmd ("memory-write-packet-size", no_class,
10709 set_memory_write_packet_size, _("\
10710 Set the maximum number of bytes per memory-write packet.\n\
10711 Specify the number of bytes in a packet or 0 (zero) for the\n\
10712 default packet size. The actual limit is further reduced\n\
10713 dependent on the target. Specify ``fixed'' to disable the\n\
10714 further restriction and ``limit'' to enable that restriction."),
10715 &remote_set_cmdlist);
10716 add_cmd ("memory-read-packet-size", no_class,
10717 set_memory_read_packet_size, _("\
10718 Set the maximum number of bytes per memory-read packet.\n\
10719 Specify the number of bytes in a packet or 0 (zero) for the\n\
10720 default packet size. The actual limit is further reduced\n\
10721 dependent on the target. Specify ``fixed'' to disable the\n\
10722 further restriction and ``limit'' to enable that restriction."),
10723 &remote_set_cmdlist);
10724 add_cmd ("memory-write-packet-size", no_class,
10725 show_memory_write_packet_size,
10726 _("Show the maximum number of bytes per memory-write packet."),
10727 &remote_show_cmdlist);
10728 add_cmd ("memory-read-packet-size", no_class,
10729 show_memory_read_packet_size,
10730 _("Show the maximum number of bytes per memory-read packet."),
10731 &remote_show_cmdlist);
10732
10733 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
10734 &remote_hw_watchpoint_limit, _("\
10735 Set the maximum number of target hardware watchpoints."), _("\
10736 Show the maximum number of target hardware watchpoints."), _("\
10737 Specify a negative limit for unlimited."),
10738 NULL, NULL, /* FIXME: i18n: The maximum
10739 number of target hardware
10740 watchpoints is %s. */
10741 &remote_set_cmdlist, &remote_show_cmdlist);
10742 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
10743 &remote_hw_breakpoint_limit, _("\
10744 Set the maximum number of target hardware breakpoints."), _("\
10745 Show the maximum number of target hardware breakpoints."), _("\
10746 Specify a negative limit for unlimited."),
10747 NULL, NULL, /* FIXME: i18n: The maximum
10748 number of target hardware
10749 breakpoints is %s. */
10750 &remote_set_cmdlist, &remote_show_cmdlist);
10751
10752 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
10753 &remote_address_size, _("\
10754 Set the maximum size of the address (in bits) in a memory packet."), _("\
10755 Show the maximum size of the address (in bits) in a memory packet."), NULL,
10756 NULL,
10757 NULL, /* FIXME: i18n: */
10758 &setlist, &showlist);
10759
10760 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
10761 "X", "binary-download", 1);
10762
10763 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
10764 "vCont", "verbose-resume", 0);
10765
10766 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
10767 "QPassSignals", "pass-signals", 0);
10768
10769 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
10770 "qSymbol", "symbol-lookup", 0);
10771
10772 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
10773 "P", "set-register", 1);
10774
10775 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
10776 "p", "fetch-register", 1);
10777
10778 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
10779 "Z0", "software-breakpoint", 0);
10780
10781 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
10782 "Z1", "hardware-breakpoint", 0);
10783
10784 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
10785 "Z2", "write-watchpoint", 0);
10786
10787 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
10788 "Z3", "read-watchpoint", 0);
10789
10790 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
10791 "Z4", "access-watchpoint", 0);
10792
10793 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
10794 "qXfer:auxv:read", "read-aux-vector", 0);
10795
10796 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
10797 "qXfer:features:read", "target-features", 0);
10798
10799 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
10800 "qXfer:libraries:read", "library-info", 0);
10801
10802 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
10803 "qXfer:memory-map:read", "memory-map", 0);
10804
10805 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
10806 "qXfer:spu:read", "read-spu-object", 0);
10807
10808 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
10809 "qXfer:spu:write", "write-spu-object", 0);
10810
10811 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
10812 "qXfer:osdata:read", "osdata", 0);
10813
10814 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
10815 "qXfer:threads:read", "threads", 0);
10816
10817 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
10818 "qXfer:siginfo:read", "read-siginfo-object", 0);
10819
10820 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
10821 "qXfer:siginfo:write", "write-siginfo-object", 0);
10822
10823 add_packet_config_cmd
10824 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
10825 "qXfer:trace-frame-info:read", "traceframe-info", 0);
10826
10827 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
10828 "qGetTLSAddr", "get-thread-local-storage-address",
10829 0);
10830
10831 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
10832 "qGetTIBAddr", "get-thread-information-block-address",
10833 0);
10834
10835 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
10836 "bc", "reverse-continue", 0);
10837
10838 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
10839 "bs", "reverse-step", 0);
10840
10841 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
10842 "qSupported", "supported-packets", 0);
10843
10844 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
10845 "qSearch:memory", "search-memory", 0);
10846
10847 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
10848 "vFile:open", "hostio-open", 0);
10849
10850 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
10851 "vFile:pread", "hostio-pread", 0);
10852
10853 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
10854 "vFile:pwrite", "hostio-pwrite", 0);
10855
10856 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
10857 "vFile:close", "hostio-close", 0);
10858
10859 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
10860 "vFile:unlink", "hostio-unlink", 0);
10861
10862 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
10863 "vAttach", "attach", 0);
10864
10865 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
10866 "vRun", "run", 0);
10867
10868 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
10869 "QStartNoAckMode", "noack", 0);
10870
10871 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
10872 "vKill", "kill", 0);
10873
10874 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
10875 "qAttached", "query-attached", 0);
10876
10877 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
10878 "ConditionalTracepoints",
10879 "conditional-tracepoints", 0);
10880 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
10881 "FastTracepoints", "fast-tracepoints", 0);
10882
10883 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
10884 "TracepointSource", "TracepointSource", 0);
10885
10886 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
10887 "QAllow", "allow", 0);
10888
10889 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
10890 "StaticTracepoints", "static-tracepoints", 0);
10891
10892 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
10893 "qXfer:statictrace:read", "read-sdata-object", 0);
10894
10895 /* Keep the old ``set remote Z-packet ...'' working. Each individual
10896 Z sub-packet has its own set and show commands, but users may
10897 have sets to this variable in their .gdbinit files (or in their
10898 documentation). */
10899 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
10900 &remote_Z_packet_detect, _("\
10901 Set use of remote protocol `Z' packets"), _("\
10902 Show use of remote protocol `Z' packets "), _("\
10903 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
10904 packets."),
10905 set_remote_protocol_Z_packet_cmd,
10906 show_remote_protocol_Z_packet_cmd,
10907 /* FIXME: i18n: Use of remote protocol
10908 `Z' packets is %s. */
10909 &remote_set_cmdlist, &remote_show_cmdlist);
10910
10911 add_prefix_cmd ("remote", class_files, remote_command, _("\
10912 Manipulate files on the remote system\n\
10913 Transfer files to and from the remote target system."),
10914 &remote_cmdlist, "remote ",
10915 0 /* allow-unknown */, &cmdlist);
10916
10917 add_cmd ("put", class_files, remote_put_command,
10918 _("Copy a local file to the remote system."),
10919 &remote_cmdlist);
10920
10921 add_cmd ("get", class_files, remote_get_command,
10922 _("Copy a remote file to the local system."),
10923 &remote_cmdlist);
10924
10925 add_cmd ("delete", class_files, remote_delete_command,
10926 _("Delete a remote file."),
10927 &remote_cmdlist);
10928
10929 remote_exec_file = xstrdup ("");
10930 add_setshow_string_noescape_cmd ("exec-file", class_files,
10931 &remote_exec_file, _("\
10932 Set the remote pathname for \"run\""), _("\
10933 Show the remote pathname for \"run\""), NULL, NULL, NULL,
10934 &remote_set_cmdlist, &remote_show_cmdlist);
10935
10936 /* Eventually initialize fileio. See fileio.c */
10937 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
10938
10939 /* Take advantage of the fact that the LWP field is not used, to tag
10940 special ptids with it set to != 0. */
10941 magic_null_ptid = ptid_build (42000, 1, -1);
10942 not_sent_ptid = ptid_build (42000, 1, -2);
10943 any_thread_ptid = ptid_build (42000, 1, 0);
10944
10945 target_buf_size = 2048;
10946 target_buf = xmalloc (target_buf_size);
10947 }
10948
This page took 0.280317 seconds and 4 git commands to generate.