gdb: Support printf 'z' size modifier
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include <algorithm>
79 #include <unordered_map>
80
81 /* The remote target. */
82
83 static const char remote_doc[] = N_("\
84 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
85 Specify the serial device it is connected to\n\
86 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
87
88 #define OPAQUETHREADBYTES 8
89
90 /* a 64 bit opaque identifier */
91 typedef unsigned char threadref[OPAQUETHREADBYTES];
92
93 struct gdb_ext_thread_info;
94 struct threads_listing_context;
95 typedef int (*rmt_thread_action) (threadref *ref, void *context);
96 struct protocol_feature;
97 struct packet_reg;
98
99 struct stop_reply;
100 typedef std::unique_ptr<stop_reply> stop_reply_up;
101
102 /* Generic configuration support for packets the stub optionally
103 supports. Allows the user to specify the use of the packet as well
104 as allowing GDB to auto-detect support in the remote stub. */
105
106 enum packet_support
107 {
108 PACKET_SUPPORT_UNKNOWN = 0,
109 PACKET_ENABLE,
110 PACKET_DISABLE
111 };
112
113 /* Analyze a packet's return value and update the packet config
114 accordingly. */
115
116 enum packet_result
117 {
118 PACKET_ERROR,
119 PACKET_OK,
120 PACKET_UNKNOWN
121 };
122
123 struct threads_listing_context;
124
125 /* Stub vCont actions support.
126
127 Each field is a boolean flag indicating whether the stub reports
128 support for the corresponding action. */
129
130 struct vCont_action_support
131 {
132 /* vCont;t */
133 bool t = false;
134
135 /* vCont;r */
136 bool r = false;
137
138 /* vCont;s */
139 bool s = false;
140
141 /* vCont;S */
142 bool S = false;
143 };
144
145 /* About this many threadids fit in a packet. */
146
147 #define MAXTHREADLISTRESULTS 32
148
149 /* Data for the vFile:pread readahead cache. */
150
151 struct readahead_cache
152 {
153 /* Invalidate the readahead cache. */
154 void invalidate ();
155
156 /* Invalidate the readahead cache if it is holding data for FD. */
157 void invalidate_fd (int fd);
158
159 /* Serve pread from the readahead cache. Returns number of bytes
160 read, or 0 if the request can't be served from the cache. */
161 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
162
163 /* The file descriptor for the file that is being cached. -1 if the
164 cache is invalid. */
165 int fd = -1;
166
167 /* The offset into the file that the cache buffer corresponds
168 to. */
169 ULONGEST offset = 0;
170
171 /* The buffer holding the cache contents. */
172 gdb_byte *buf = nullptr;
173 /* The buffer's size. We try to read as much as fits into a packet
174 at a time. */
175 size_t bufsize = 0;
176
177 /* Cache hit and miss counters. */
178 ULONGEST hit_count = 0;
179 ULONGEST miss_count = 0;
180 };
181
182 /* Description of the remote protocol for a given architecture. */
183
184 struct packet_reg
185 {
186 long offset; /* Offset into G packet. */
187 long regnum; /* GDB's internal register number. */
188 LONGEST pnum; /* Remote protocol register number. */
189 int in_g_packet; /* Always part of G packet. */
190 /* long size in bytes; == register_size (target_gdbarch (), regnum);
191 at present. */
192 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
193 at present. */
194 };
195
196 struct remote_arch_state
197 {
198 explicit remote_arch_state (struct gdbarch *gdbarch);
199
200 /* Description of the remote protocol registers. */
201 long sizeof_g_packet;
202
203 /* Description of the remote protocol registers indexed by REGNUM
204 (making an array gdbarch_num_regs in size). */
205 std::unique_ptr<packet_reg[]> regs;
206
207 /* This is the size (in chars) of the first response to the ``g''
208 packet. It is used as a heuristic when determining the maximum
209 size of memory-read and memory-write packets. A target will
210 typically only reserve a buffer large enough to hold the ``g''
211 packet. The size does not include packet overhead (headers and
212 trailers). */
213 long actual_register_packet_size;
214
215 /* This is the maximum size (in chars) of a non read/write packet.
216 It is also used as a cap on the size of read/write packets. */
217 long remote_packet_size;
218 };
219
220 /* Description of the remote protocol state for the currently
221 connected target. This is per-target state, and independent of the
222 selected architecture. */
223
224 class remote_state
225 {
226 public:
227
228 remote_state ();
229 ~remote_state ();
230
231 /* Get the remote arch state for GDBARCH. */
232 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
233
234 public: /* data */
235
236 /* A buffer to use for incoming packets, and its current size. The
237 buffer is grown dynamically for larger incoming packets.
238 Outgoing packets may also be constructed in this buffer.
239 The size of the buffer is always at least REMOTE_PACKET_SIZE;
240 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
241 packets. */
242 gdb::char_vector buf;
243
244 /* True if we're going through initial connection setup (finding out
245 about the remote side's threads, relocating symbols, etc.). */
246 bool starting_up = false;
247
248 /* If we negotiated packet size explicitly (and thus can bypass
249 heuristics for the largest packet size that will not overflow
250 a buffer in the stub), this will be set to that packet size.
251 Otherwise zero, meaning to use the guessed size. */
252 long explicit_packet_size = 0;
253
254 /* remote_wait is normally called when the target is running and
255 waits for a stop reply packet. But sometimes we need to call it
256 when the target is already stopped. We can send a "?" packet
257 and have remote_wait read the response. Or, if we already have
258 the response, we can stash it in BUF and tell remote_wait to
259 skip calling getpkt. This flag is set when BUF contains a
260 stop reply packet and the target is not waiting. */
261 int cached_wait_status = 0;
262
263 /* True, if in no ack mode. That is, neither GDB nor the stub will
264 expect acks from each other. The connection is assumed to be
265 reliable. */
266 bool noack_mode = false;
267
268 /* True if we're connected in extended remote mode. */
269 bool extended = false;
270
271 /* True if we resumed the target and we're waiting for the target to
272 stop. In the mean time, we can't start another command/query.
273 The remote server wouldn't be ready to process it, so we'd
274 timeout waiting for a reply that would never come and eventually
275 we'd close the connection. This can happen in asynchronous mode
276 because we allow GDB commands while the target is running. */
277 bool waiting_for_stop_reply = false;
278
279 /* The status of the stub support for the various vCont actions. */
280 vCont_action_support supports_vCont;
281
282 /* True if the user has pressed Ctrl-C, but the target hasn't
283 responded to that. */
284 bool ctrlc_pending_p = false;
285
286 /* True if we saw a Ctrl-C while reading or writing from/to the
287 remote descriptor. At that point it is not safe to send a remote
288 interrupt packet, so we instead remember we saw the Ctrl-C and
289 process it once we're done with sending/receiving the current
290 packet, which should be shortly. If however that takes too long,
291 and the user presses Ctrl-C again, we offer to disconnect. */
292 bool got_ctrlc_during_io = false;
293
294 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
295 remote_open knows that we don't have a file open when the program
296 starts. */
297 struct serial *remote_desc = nullptr;
298
299 /* These are the threads which we last sent to the remote system. The
300 TID member will be -1 for all or -2 for not sent yet. */
301 ptid_t general_thread = null_ptid;
302 ptid_t continue_thread = null_ptid;
303
304 /* This is the traceframe which we last selected on the remote system.
305 It will be -1 if no traceframe is selected. */
306 int remote_traceframe_number = -1;
307
308 char *last_pass_packet = nullptr;
309
310 /* The last QProgramSignals packet sent to the target. We bypass
311 sending a new program signals list down to the target if the new
312 packet is exactly the same as the last we sent. IOW, we only let
313 the target know about program signals list changes. */
314 char *last_program_signals_packet = nullptr;
315
316 gdb_signal last_sent_signal = GDB_SIGNAL_0;
317
318 bool last_sent_step = false;
319
320 /* The execution direction of the last resume we got. */
321 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
322
323 char *finished_object = nullptr;
324 char *finished_annex = nullptr;
325 ULONGEST finished_offset = 0;
326
327 /* Should we try the 'ThreadInfo' query packet?
328
329 This variable (NOT available to the user: auto-detect only!)
330 determines whether GDB will use the new, simpler "ThreadInfo"
331 query or the older, more complex syntax for thread queries.
332 This is an auto-detect variable (set to true at each connect,
333 and set to false when the target fails to recognize it). */
334 bool use_threadinfo_query = false;
335 bool use_threadextra_query = false;
336
337 threadref echo_nextthread {};
338 threadref nextthread {};
339 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
340
341 /* The state of remote notification. */
342 struct remote_notif_state *notif_state = nullptr;
343
344 /* The branch trace configuration. */
345 struct btrace_config btrace_config {};
346
347 /* The argument to the last "vFile:setfs:" packet we sent, used
348 to avoid sending repeated unnecessary "vFile:setfs:" packets.
349 Initialized to -1 to indicate that no "vFile:setfs:" packet
350 has yet been sent. */
351 int fs_pid = -1;
352
353 /* A readahead cache for vFile:pread. Often, reading a binary
354 involves a sequence of small reads. E.g., when parsing an ELF
355 file. A readahead cache helps mostly the case of remote
356 debugging on a connection with higher latency, due to the
357 request/reply nature of the RSP. We only cache data for a single
358 file descriptor at a time. */
359 struct readahead_cache readahead_cache;
360
361 /* The list of already fetched and acknowledged stop events. This
362 queue is used for notification Stop, and other notifications
363 don't need queue for their events, because the notification
364 events of Stop can't be consumed immediately, so that events
365 should be queued first, and be consumed by remote_wait_{ns,as}
366 one per time. Other notifications can consume their events
367 immediately, so queue is not needed for them. */
368 std::vector<stop_reply_up> stop_reply_queue;
369
370 /* Asynchronous signal handle registered as event loop source for
371 when we have pending events ready to be passed to the core. */
372 struct async_event_handler *remote_async_inferior_event_token = nullptr;
373
374 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
375 ``forever'' still use the normal timeout mechanism. This is
376 currently used by the ASYNC code to guarentee that target reads
377 during the initial connect always time-out. Once getpkt has been
378 modified to return a timeout indication and, in turn
379 remote_wait()/wait_for_inferior() have gained a timeout parameter
380 this can go away. */
381 int wait_forever_enabled_p = 1;
382
383 private:
384 /* Mapping of remote protocol data for each gdbarch. Usually there
385 is only one entry here, though we may see more with stubs that
386 support multi-process. */
387 std::unordered_map<struct gdbarch *, remote_arch_state>
388 m_arch_states;
389 };
390
391 static const target_info remote_target_info = {
392 "remote",
393 N_("Remote serial target in gdb-specific protocol"),
394 remote_doc
395 };
396
397 class remote_target : public process_stratum_target
398 {
399 public:
400 remote_target () = default;
401 ~remote_target () override;
402
403 const target_info &info () const override
404 { return remote_target_info; }
405
406 thread_control_capabilities get_thread_control_capabilities () override
407 { return tc_schedlock; }
408
409 /* Open a remote connection. */
410 static void open (const char *, int);
411
412 void close () override;
413
414 void detach (inferior *, int) override;
415 void disconnect (const char *, int) override;
416
417 void commit_resume () override;
418 void resume (ptid_t, int, enum gdb_signal) override;
419 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
420
421 void fetch_registers (struct regcache *, int) override;
422 void store_registers (struct regcache *, int) override;
423 void prepare_to_store (struct regcache *) override;
424
425 void files_info () override;
426
427 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
428
429 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
430 enum remove_bp_reason) override;
431
432
433 bool stopped_by_sw_breakpoint () override;
434 bool supports_stopped_by_sw_breakpoint () override;
435
436 bool stopped_by_hw_breakpoint () override;
437
438 bool supports_stopped_by_hw_breakpoint () override;
439
440 bool stopped_by_watchpoint () override;
441
442 bool stopped_data_address (CORE_ADDR *) override;
443
444 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
445
446 int can_use_hw_breakpoint (enum bptype, int, int) override;
447
448 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
449
450 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
451
452 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
453
454 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
455 struct expression *) override;
456
457 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
458 struct expression *) override;
459
460 void kill () override;
461
462 void load (const char *, int) override;
463
464 void mourn_inferior () override;
465
466 void pass_signals (gdb::array_view<const unsigned char>) override;
467
468 int set_syscall_catchpoint (int, bool, int,
469 gdb::array_view<const int>) override;
470
471 void program_signals (gdb::array_view<const unsigned char>) override;
472
473 bool thread_alive (ptid_t ptid) override;
474
475 const char *thread_name (struct thread_info *) override;
476
477 void update_thread_list () override;
478
479 std::string pid_to_str (ptid_t) override;
480
481 const char *extra_thread_info (struct thread_info *) override;
482
483 ptid_t get_ada_task_ptid (long lwp, long thread) override;
484
485 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
486 int handle_len,
487 inferior *inf) override;
488
489 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
490 override;
491
492 void stop (ptid_t) override;
493
494 void interrupt () override;
495
496 void pass_ctrlc () override;
497
498 enum target_xfer_status xfer_partial (enum target_object object,
499 const char *annex,
500 gdb_byte *readbuf,
501 const gdb_byte *writebuf,
502 ULONGEST offset, ULONGEST len,
503 ULONGEST *xfered_len) override;
504
505 ULONGEST get_memory_xfer_limit () override;
506
507 void rcmd (const char *command, struct ui_file *output) override;
508
509 char *pid_to_exec_file (int pid) override;
510
511 void log_command (const char *cmd) override
512 {
513 serial_log_command (this, cmd);
514 }
515
516 CORE_ADDR get_thread_local_address (ptid_t ptid,
517 CORE_ADDR load_module_addr,
518 CORE_ADDR offset) override;
519
520 bool can_execute_reverse () override;
521
522 std::vector<mem_region> memory_map () override;
523
524 void flash_erase (ULONGEST address, LONGEST length) override;
525
526 void flash_done () override;
527
528 const struct target_desc *read_description () override;
529
530 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
531 const gdb_byte *pattern, ULONGEST pattern_len,
532 CORE_ADDR *found_addrp) override;
533
534 bool can_async_p () override;
535
536 bool is_async_p () override;
537
538 void async (int) override;
539
540 void thread_events (int) override;
541
542 int can_do_single_step () override;
543
544 void terminal_inferior () override;
545
546 void terminal_ours () override;
547
548 bool supports_non_stop () override;
549
550 bool supports_multi_process () override;
551
552 bool supports_disable_randomization () override;
553
554 bool filesystem_is_local () override;
555
556
557 int fileio_open (struct inferior *inf, const char *filename,
558 int flags, int mode, int warn_if_slow,
559 int *target_errno) override;
560
561 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
562 ULONGEST offset, int *target_errno) override;
563
564 int fileio_pread (int fd, gdb_byte *read_buf, int len,
565 ULONGEST offset, int *target_errno) override;
566
567 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
568
569 int fileio_close (int fd, int *target_errno) override;
570
571 int fileio_unlink (struct inferior *inf,
572 const char *filename,
573 int *target_errno) override;
574
575 gdb::optional<std::string>
576 fileio_readlink (struct inferior *inf,
577 const char *filename,
578 int *target_errno) override;
579
580 bool supports_enable_disable_tracepoint () override;
581
582 bool supports_string_tracing () override;
583
584 bool supports_evaluation_of_breakpoint_conditions () override;
585
586 bool can_run_breakpoint_commands () override;
587
588 void trace_init () override;
589
590 void download_tracepoint (struct bp_location *location) override;
591
592 bool can_download_tracepoint () override;
593
594 void download_trace_state_variable (const trace_state_variable &tsv) override;
595
596 void enable_tracepoint (struct bp_location *location) override;
597
598 void disable_tracepoint (struct bp_location *location) override;
599
600 void trace_set_readonly_regions () override;
601
602 void trace_start () override;
603
604 int get_trace_status (struct trace_status *ts) override;
605
606 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
607 override;
608
609 void trace_stop () override;
610
611 int trace_find (enum trace_find_type type, int num,
612 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
613
614 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
615
616 int save_trace_data (const char *filename) override;
617
618 int upload_tracepoints (struct uploaded_tp **utpp) override;
619
620 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
621
622 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
623
624 int get_min_fast_tracepoint_insn_len () override;
625
626 void set_disconnected_tracing (int val) override;
627
628 void set_circular_trace_buffer (int val) override;
629
630 void set_trace_buffer_size (LONGEST val) override;
631
632 bool set_trace_notes (const char *user, const char *notes,
633 const char *stopnotes) override;
634
635 int core_of_thread (ptid_t ptid) override;
636
637 int verify_memory (const gdb_byte *data,
638 CORE_ADDR memaddr, ULONGEST size) override;
639
640
641 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
642
643 void set_permissions () override;
644
645 bool static_tracepoint_marker_at (CORE_ADDR,
646 struct static_tracepoint_marker *marker)
647 override;
648
649 std::vector<static_tracepoint_marker>
650 static_tracepoint_markers_by_strid (const char *id) override;
651
652 traceframe_info_up traceframe_info () override;
653
654 bool use_agent (bool use) override;
655 bool can_use_agent () override;
656
657 struct btrace_target_info *enable_btrace (ptid_t ptid,
658 const struct btrace_config *conf) override;
659
660 void disable_btrace (struct btrace_target_info *tinfo) override;
661
662 void teardown_btrace (struct btrace_target_info *tinfo) override;
663
664 enum btrace_error read_btrace (struct btrace_data *data,
665 struct btrace_target_info *btinfo,
666 enum btrace_read_type type) override;
667
668 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
669 bool augmented_libraries_svr4_read () override;
670 int follow_fork (int, int) override;
671 void follow_exec (struct inferior *, const char *) override;
672 int insert_fork_catchpoint (int) override;
673 int remove_fork_catchpoint (int) override;
674 int insert_vfork_catchpoint (int) override;
675 int remove_vfork_catchpoint (int) override;
676 int insert_exec_catchpoint (int) override;
677 int remove_exec_catchpoint (int) override;
678 enum exec_direction_kind execution_direction () override;
679
680 public: /* Remote specific methods. */
681
682 void remote_download_command_source (int num, ULONGEST addr,
683 struct command_line *cmds);
684
685 void remote_file_put (const char *local_file, const char *remote_file,
686 int from_tty);
687 void remote_file_get (const char *remote_file, const char *local_file,
688 int from_tty);
689 void remote_file_delete (const char *remote_file, int from_tty);
690
691 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
692 ULONGEST offset, int *remote_errno);
693 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
694 ULONGEST offset, int *remote_errno);
695 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
696 ULONGEST offset, int *remote_errno);
697
698 int remote_hostio_send_command (int command_bytes, int which_packet,
699 int *remote_errno, char **attachment,
700 int *attachment_len);
701 int remote_hostio_set_filesystem (struct inferior *inf,
702 int *remote_errno);
703 /* We should get rid of this and use fileio_open directly. */
704 int remote_hostio_open (struct inferior *inf, const char *filename,
705 int flags, int mode, int warn_if_slow,
706 int *remote_errno);
707 int remote_hostio_close (int fd, int *remote_errno);
708
709 int remote_hostio_unlink (inferior *inf, const char *filename,
710 int *remote_errno);
711
712 struct remote_state *get_remote_state ();
713
714 long get_remote_packet_size (void);
715 long get_memory_packet_size (struct memory_packet_config *config);
716
717 long get_memory_write_packet_size ();
718 long get_memory_read_packet_size ();
719
720 char *append_pending_thread_resumptions (char *p, char *endp,
721 ptid_t ptid);
722 static void open_1 (const char *name, int from_tty, int extended_p);
723 void start_remote (int from_tty, int extended_p);
724 void remote_detach_1 (struct inferior *inf, int from_tty);
725
726 char *append_resumption (char *p, char *endp,
727 ptid_t ptid, int step, gdb_signal siggnal);
728 int remote_resume_with_vcont (ptid_t ptid, int step,
729 gdb_signal siggnal);
730
731 void add_current_inferior_and_thread (char *wait_status);
732
733 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
734 int options);
735 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
736 int options);
737
738 ptid_t process_stop_reply (struct stop_reply *stop_reply,
739 target_waitstatus *status);
740
741 void remote_notice_new_inferior (ptid_t currthread, int executing);
742
743 void process_initial_stop_replies (int from_tty);
744
745 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
746
747 void btrace_sync_conf (const btrace_config *conf);
748
749 void remote_btrace_maybe_reopen ();
750
751 void remove_new_fork_children (threads_listing_context *context);
752 void kill_new_fork_children (int pid);
753 void discard_pending_stop_replies (struct inferior *inf);
754 int stop_reply_queue_length ();
755
756 void check_pending_events_prevent_wildcard_vcont
757 (int *may_global_wildcard_vcont);
758
759 void discard_pending_stop_replies_in_queue ();
760 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
761 struct stop_reply *queued_stop_reply (ptid_t ptid);
762 int peek_stop_reply (ptid_t ptid);
763 void remote_parse_stop_reply (const char *buf, stop_reply *event);
764
765 void remote_stop_ns (ptid_t ptid);
766 void remote_interrupt_as ();
767 void remote_interrupt_ns ();
768
769 char *remote_get_noisy_reply ();
770 int remote_query_attached (int pid);
771 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
772 int try_open_exec);
773
774 ptid_t remote_current_thread (ptid_t oldpid);
775 ptid_t get_current_thread (char *wait_status);
776
777 void set_thread (ptid_t ptid, int gen);
778 void set_general_thread (ptid_t ptid);
779 void set_continue_thread (ptid_t ptid);
780 void set_general_process ();
781
782 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
783
784 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
785 gdb_ext_thread_info *info);
786 int remote_get_threadinfo (threadref *threadid, int fieldset,
787 gdb_ext_thread_info *info);
788
789 int parse_threadlist_response (char *pkt, int result_limit,
790 threadref *original_echo,
791 threadref *resultlist,
792 int *doneflag);
793 int remote_get_threadlist (int startflag, threadref *nextthread,
794 int result_limit, int *done, int *result_count,
795 threadref *threadlist);
796
797 int remote_threadlist_iterator (rmt_thread_action stepfunction,
798 void *context, int looplimit);
799
800 int remote_get_threads_with_ql (threads_listing_context *context);
801 int remote_get_threads_with_qxfer (threads_listing_context *context);
802 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
803
804 void extended_remote_restart ();
805
806 void get_offsets ();
807
808 void remote_check_symbols ();
809
810 void remote_supported_packet (const struct protocol_feature *feature,
811 enum packet_support support,
812 const char *argument);
813
814 void remote_query_supported ();
815
816 void remote_packet_size (const protocol_feature *feature,
817 packet_support support, const char *value);
818
819 void remote_serial_quit_handler ();
820
821 void remote_detach_pid (int pid);
822
823 void remote_vcont_probe ();
824
825 void remote_resume_with_hc (ptid_t ptid, int step,
826 gdb_signal siggnal);
827
828 void send_interrupt_sequence ();
829 void interrupt_query ();
830
831 void remote_notif_get_pending_events (notif_client *nc);
832
833 int fetch_register_using_p (struct regcache *regcache,
834 packet_reg *reg);
835 int send_g_packet ();
836 void process_g_packet (struct regcache *regcache);
837 void fetch_registers_using_g (struct regcache *regcache);
838 int store_register_using_P (const struct regcache *regcache,
839 packet_reg *reg);
840 void store_registers_using_G (const struct regcache *regcache);
841
842 void set_remote_traceframe ();
843
844 void check_binary_download (CORE_ADDR addr);
845
846 target_xfer_status remote_write_bytes_aux (const char *header,
847 CORE_ADDR memaddr,
848 const gdb_byte *myaddr,
849 ULONGEST len_units,
850 int unit_size,
851 ULONGEST *xfered_len_units,
852 char packet_format,
853 int use_length);
854
855 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
856 const gdb_byte *myaddr, ULONGEST len,
857 int unit_size, ULONGEST *xfered_len);
858
859 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
860 ULONGEST len_units,
861 int unit_size, ULONGEST *xfered_len_units);
862
863 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
864 ULONGEST memaddr,
865 ULONGEST len,
866 int unit_size,
867 ULONGEST *xfered_len);
868
869 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
870 gdb_byte *myaddr, ULONGEST len,
871 int unit_size,
872 ULONGEST *xfered_len);
873
874 packet_result remote_send_printf (const char *format, ...)
875 ATTRIBUTE_PRINTF (2, 3);
876
877 target_xfer_status remote_flash_write (ULONGEST address,
878 ULONGEST length, ULONGEST *xfered_len,
879 const gdb_byte *data);
880
881 int readchar (int timeout);
882
883 void remote_serial_write (const char *str, int len);
884
885 int putpkt (const char *buf);
886 int putpkt_binary (const char *buf, int cnt);
887
888 int putpkt (const gdb::char_vector &buf)
889 {
890 return putpkt (buf.data ());
891 }
892
893 void skip_frame ();
894 long read_frame (gdb::char_vector *buf_p);
895 void getpkt (gdb::char_vector *buf, int forever);
896 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
897 int expecting_notif, int *is_notif);
898 int getpkt_sane (gdb::char_vector *buf, int forever);
899 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
900 int *is_notif);
901 int remote_vkill (int pid);
902 void remote_kill_k ();
903
904 void extended_remote_disable_randomization (int val);
905 int extended_remote_run (const std::string &args);
906
907 void send_environment_packet (const char *action,
908 const char *packet,
909 const char *value);
910
911 void extended_remote_environment_support ();
912 void extended_remote_set_inferior_cwd ();
913
914 target_xfer_status remote_write_qxfer (const char *object_name,
915 const char *annex,
916 const gdb_byte *writebuf,
917 ULONGEST offset, LONGEST len,
918 ULONGEST *xfered_len,
919 struct packet_config *packet);
920
921 target_xfer_status remote_read_qxfer (const char *object_name,
922 const char *annex,
923 gdb_byte *readbuf, ULONGEST offset,
924 LONGEST len,
925 ULONGEST *xfered_len,
926 struct packet_config *packet);
927
928 void push_stop_reply (struct stop_reply *new_event);
929
930 bool vcont_r_supported ();
931
932 void packet_command (const char *args, int from_tty);
933
934 private: /* data fields */
935
936 /* The remote state. Don't reference this directly. Use the
937 get_remote_state method instead. */
938 remote_state m_remote_state;
939 };
940
941 static const target_info extended_remote_target_info = {
942 "extended-remote",
943 N_("Extended remote serial target in gdb-specific protocol"),
944 remote_doc
945 };
946
947 /* Set up the extended remote target by extending the standard remote
948 target and adding to it. */
949
950 class extended_remote_target final : public remote_target
951 {
952 public:
953 const target_info &info () const override
954 { return extended_remote_target_info; }
955
956 /* Open an extended-remote connection. */
957 static void open (const char *, int);
958
959 bool can_create_inferior () override { return true; }
960 void create_inferior (const char *, const std::string &,
961 char **, int) override;
962
963 void detach (inferior *, int) override;
964
965 bool can_attach () override { return true; }
966 void attach (const char *, int) override;
967
968 void post_attach (int) override;
969 bool supports_disable_randomization () override;
970 };
971
972 /* Per-program-space data key. */
973 static const struct program_space_key<char, gdb::xfree_deleter<char>>
974 remote_pspace_data;
975
976 /* The variable registered as the control variable used by the
977 remote exec-file commands. While the remote exec-file setting is
978 per-program-space, the set/show machinery uses this as the
979 location of the remote exec-file value. */
980 static char *remote_exec_file_var;
981
982 /* The size to align memory write packets, when practical. The protocol
983 does not guarantee any alignment, and gdb will generate short
984 writes and unaligned writes, but even as a best-effort attempt this
985 can improve bulk transfers. For instance, if a write is misaligned
986 relative to the target's data bus, the stub may need to make an extra
987 round trip fetching data from the target. This doesn't make a
988 huge difference, but it's easy to do, so we try to be helpful.
989
990 The alignment chosen is arbitrary; usually data bus width is
991 important here, not the possibly larger cache line size. */
992 enum { REMOTE_ALIGN_WRITES = 16 };
993
994 /* Prototypes for local functions. */
995
996 static int hexnumlen (ULONGEST num);
997
998 static int stubhex (int ch);
999
1000 static int hexnumstr (char *, ULONGEST);
1001
1002 static int hexnumnstr (char *, ULONGEST, int);
1003
1004 static CORE_ADDR remote_address_masked (CORE_ADDR);
1005
1006 static void print_packet (const char *);
1007
1008 static int stub_unpack_int (char *buff, int fieldlength);
1009
1010 struct packet_config;
1011
1012 static void show_packet_config_cmd (struct packet_config *config);
1013
1014 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1015 int from_tty,
1016 struct cmd_list_element *c,
1017 const char *value);
1018
1019 static ptid_t read_ptid (const char *buf, const char **obuf);
1020
1021 static void remote_async_inferior_event_handler (gdb_client_data);
1022
1023 static bool remote_read_description_p (struct target_ops *target);
1024
1025 static void remote_console_output (const char *msg);
1026
1027 static void remote_btrace_reset (remote_state *rs);
1028
1029 static void remote_unpush_and_throw (void);
1030
1031 /* For "remote". */
1032
1033 static struct cmd_list_element *remote_cmdlist;
1034
1035 /* For "set remote" and "show remote". */
1036
1037 static struct cmd_list_element *remote_set_cmdlist;
1038 static struct cmd_list_element *remote_show_cmdlist;
1039
1040 /* Controls whether GDB is willing to use range stepping. */
1041
1042 static bool use_range_stepping = true;
1043
1044 /* The max number of chars in debug output. The rest of chars are
1045 omitted. */
1046
1047 #define REMOTE_DEBUG_MAX_CHAR 512
1048
1049 /* Private data that we'll store in (struct thread_info)->priv. */
1050 struct remote_thread_info : public private_thread_info
1051 {
1052 std::string extra;
1053 std::string name;
1054 int core = -1;
1055
1056 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1057 sequence of bytes. */
1058 gdb::byte_vector thread_handle;
1059
1060 /* Whether the target stopped for a breakpoint/watchpoint. */
1061 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1062
1063 /* This is set to the data address of the access causing the target
1064 to stop for a watchpoint. */
1065 CORE_ADDR watch_data_address = 0;
1066
1067 /* Fields used by the vCont action coalescing implemented in
1068 remote_resume / remote_commit_resume. remote_resume stores each
1069 thread's last resume request in these fields, so that a later
1070 remote_commit_resume knows which is the proper action for this
1071 thread to include in the vCont packet. */
1072
1073 /* True if the last target_resume call for this thread was a step
1074 request, false if a continue request. */
1075 int last_resume_step = 0;
1076
1077 /* The signal specified in the last target_resume call for this
1078 thread. */
1079 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1080
1081 /* Whether this thread was already vCont-resumed on the remote
1082 side. */
1083 int vcont_resumed = 0;
1084 };
1085
1086 remote_state::remote_state ()
1087 : buf (400)
1088 {
1089 }
1090
1091 remote_state::~remote_state ()
1092 {
1093 xfree (this->last_pass_packet);
1094 xfree (this->last_program_signals_packet);
1095 xfree (this->finished_object);
1096 xfree (this->finished_annex);
1097 }
1098
1099 /* Utility: generate error from an incoming stub packet. */
1100 static void
1101 trace_error (char *buf)
1102 {
1103 if (*buf++ != 'E')
1104 return; /* not an error msg */
1105 switch (*buf)
1106 {
1107 case '1': /* malformed packet error */
1108 if (*++buf == '0') /* general case: */
1109 error (_("remote.c: error in outgoing packet."));
1110 else
1111 error (_("remote.c: error in outgoing packet at field #%ld."),
1112 strtol (buf, NULL, 16));
1113 default:
1114 error (_("Target returns error code '%s'."), buf);
1115 }
1116 }
1117
1118 /* Utility: wait for reply from stub, while accepting "O" packets. */
1119
1120 char *
1121 remote_target::remote_get_noisy_reply ()
1122 {
1123 struct remote_state *rs = get_remote_state ();
1124
1125 do /* Loop on reply from remote stub. */
1126 {
1127 char *buf;
1128
1129 QUIT; /* Allow user to bail out with ^C. */
1130 getpkt (&rs->buf, 0);
1131 buf = rs->buf.data ();
1132 if (buf[0] == 'E')
1133 trace_error (buf);
1134 else if (startswith (buf, "qRelocInsn:"))
1135 {
1136 ULONGEST ul;
1137 CORE_ADDR from, to, org_to;
1138 const char *p, *pp;
1139 int adjusted_size = 0;
1140 int relocated = 0;
1141
1142 p = buf + strlen ("qRelocInsn:");
1143 pp = unpack_varlen_hex (p, &ul);
1144 if (*pp != ';')
1145 error (_("invalid qRelocInsn packet: %s"), buf);
1146 from = ul;
1147
1148 p = pp + 1;
1149 unpack_varlen_hex (p, &ul);
1150 to = ul;
1151
1152 org_to = to;
1153
1154 try
1155 {
1156 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1157 relocated = 1;
1158 }
1159 catch (const gdb_exception &ex)
1160 {
1161 if (ex.error == MEMORY_ERROR)
1162 {
1163 /* Propagate memory errors silently back to the
1164 target. The stub may have limited the range of
1165 addresses we can write to, for example. */
1166 }
1167 else
1168 {
1169 /* Something unexpectedly bad happened. Be verbose
1170 so we can tell what, and propagate the error back
1171 to the stub, so it doesn't get stuck waiting for
1172 a response. */
1173 exception_fprintf (gdb_stderr, ex,
1174 _("warning: relocating instruction: "));
1175 }
1176 putpkt ("E01");
1177 }
1178
1179 if (relocated)
1180 {
1181 adjusted_size = to - org_to;
1182
1183 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1184 putpkt (buf);
1185 }
1186 }
1187 else if (buf[0] == 'O' && buf[1] != 'K')
1188 remote_console_output (buf + 1); /* 'O' message from stub */
1189 else
1190 return buf; /* Here's the actual reply. */
1191 }
1192 while (1);
1193 }
1194
1195 struct remote_arch_state *
1196 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1197 {
1198 remote_arch_state *rsa;
1199
1200 auto it = this->m_arch_states.find (gdbarch);
1201 if (it == this->m_arch_states.end ())
1202 {
1203 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1204 std::forward_as_tuple (gdbarch),
1205 std::forward_as_tuple (gdbarch));
1206 rsa = &p.first->second;
1207
1208 /* Make sure that the packet buffer is plenty big enough for
1209 this architecture. */
1210 if (this->buf.size () < rsa->remote_packet_size)
1211 this->buf.resize (2 * rsa->remote_packet_size);
1212 }
1213 else
1214 rsa = &it->second;
1215
1216 return rsa;
1217 }
1218
1219 /* Fetch the global remote target state. */
1220
1221 remote_state *
1222 remote_target::get_remote_state ()
1223 {
1224 /* Make sure that the remote architecture state has been
1225 initialized, because doing so might reallocate rs->buf. Any
1226 function which calls getpkt also needs to be mindful of changes
1227 to rs->buf, but this call limits the number of places which run
1228 into trouble. */
1229 m_remote_state.get_remote_arch_state (target_gdbarch ());
1230
1231 return &m_remote_state;
1232 }
1233
1234 /* Fetch the remote exec-file from the current program space. */
1235
1236 static const char *
1237 get_remote_exec_file (void)
1238 {
1239 char *remote_exec_file;
1240
1241 remote_exec_file = remote_pspace_data.get (current_program_space);
1242 if (remote_exec_file == NULL)
1243 return "";
1244
1245 return remote_exec_file;
1246 }
1247
1248 /* Set the remote exec file for PSPACE. */
1249
1250 static void
1251 set_pspace_remote_exec_file (struct program_space *pspace,
1252 const char *remote_exec_file)
1253 {
1254 char *old_file = remote_pspace_data.get (pspace);
1255
1256 xfree (old_file);
1257 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1258 }
1259
1260 /* The "set/show remote exec-file" set command hook. */
1261
1262 static void
1263 set_remote_exec_file (const char *ignored, int from_tty,
1264 struct cmd_list_element *c)
1265 {
1266 gdb_assert (remote_exec_file_var != NULL);
1267 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1268 }
1269
1270 /* The "set/show remote exec-file" show command hook. */
1271
1272 static void
1273 show_remote_exec_file (struct ui_file *file, int from_tty,
1274 struct cmd_list_element *cmd, const char *value)
1275 {
1276 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1277 }
1278
1279 static int
1280 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1281 {
1282 int regnum, num_remote_regs, offset;
1283 struct packet_reg **remote_regs;
1284
1285 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1286 {
1287 struct packet_reg *r = &regs[regnum];
1288
1289 if (register_size (gdbarch, regnum) == 0)
1290 /* Do not try to fetch zero-sized (placeholder) registers. */
1291 r->pnum = -1;
1292 else
1293 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1294
1295 r->regnum = regnum;
1296 }
1297
1298 /* Define the g/G packet format as the contents of each register
1299 with a remote protocol number, in order of ascending protocol
1300 number. */
1301
1302 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1303 for (num_remote_regs = 0, regnum = 0;
1304 regnum < gdbarch_num_regs (gdbarch);
1305 regnum++)
1306 if (regs[regnum].pnum != -1)
1307 remote_regs[num_remote_regs++] = &regs[regnum];
1308
1309 std::sort (remote_regs, remote_regs + num_remote_regs,
1310 [] (const packet_reg *a, const packet_reg *b)
1311 { return a->pnum < b->pnum; });
1312
1313 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1314 {
1315 remote_regs[regnum]->in_g_packet = 1;
1316 remote_regs[regnum]->offset = offset;
1317 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1318 }
1319
1320 return offset;
1321 }
1322
1323 /* Given the architecture described by GDBARCH, return the remote
1324 protocol register's number and the register's offset in the g/G
1325 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1326 If the target does not have a mapping for REGNUM, return false,
1327 otherwise, return true. */
1328
1329 int
1330 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1331 int *pnum, int *poffset)
1332 {
1333 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1334
1335 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1336
1337 map_regcache_remote_table (gdbarch, regs.data ());
1338
1339 *pnum = regs[regnum].pnum;
1340 *poffset = regs[regnum].offset;
1341
1342 return *pnum != -1;
1343 }
1344
1345 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1346 {
1347 /* Use the architecture to build a regnum<->pnum table, which will be
1348 1:1 unless a feature set specifies otherwise. */
1349 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1350
1351 /* Record the maximum possible size of the g packet - it may turn out
1352 to be smaller. */
1353 this->sizeof_g_packet
1354 = map_regcache_remote_table (gdbarch, this->regs.get ());
1355
1356 /* Default maximum number of characters in a packet body. Many
1357 remote stubs have a hardwired buffer size of 400 bytes
1358 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1359 as the maximum packet-size to ensure that the packet and an extra
1360 NUL character can always fit in the buffer. This stops GDB
1361 trashing stubs that try to squeeze an extra NUL into what is
1362 already a full buffer (As of 1999-12-04 that was most stubs). */
1363 this->remote_packet_size = 400 - 1;
1364
1365 /* This one is filled in when a ``g'' packet is received. */
1366 this->actual_register_packet_size = 0;
1367
1368 /* Should rsa->sizeof_g_packet needs more space than the
1369 default, adjust the size accordingly. Remember that each byte is
1370 encoded as two characters. 32 is the overhead for the packet
1371 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1372 (``$NN:G...#NN'') is a better guess, the below has been padded a
1373 little. */
1374 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1375 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1376 }
1377
1378 /* Get a pointer to the current remote target. If not connected to a
1379 remote target, return NULL. */
1380
1381 static remote_target *
1382 get_current_remote_target ()
1383 {
1384 target_ops *proc_target = find_target_at (process_stratum);
1385 return dynamic_cast<remote_target *> (proc_target);
1386 }
1387
1388 /* Return the current allowed size of a remote packet. This is
1389 inferred from the current architecture, and should be used to
1390 limit the length of outgoing packets. */
1391 long
1392 remote_target::get_remote_packet_size ()
1393 {
1394 struct remote_state *rs = get_remote_state ();
1395 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1396
1397 if (rs->explicit_packet_size)
1398 return rs->explicit_packet_size;
1399
1400 return rsa->remote_packet_size;
1401 }
1402
1403 static struct packet_reg *
1404 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1405 long regnum)
1406 {
1407 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1408 return NULL;
1409 else
1410 {
1411 struct packet_reg *r = &rsa->regs[regnum];
1412
1413 gdb_assert (r->regnum == regnum);
1414 return r;
1415 }
1416 }
1417
1418 static struct packet_reg *
1419 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1420 LONGEST pnum)
1421 {
1422 int i;
1423
1424 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1425 {
1426 struct packet_reg *r = &rsa->regs[i];
1427
1428 if (r->pnum == pnum)
1429 return r;
1430 }
1431 return NULL;
1432 }
1433
1434 /* Allow the user to specify what sequence to send to the remote
1435 when he requests a program interruption: Although ^C is usually
1436 what remote systems expect (this is the default, here), it is
1437 sometimes preferable to send a break. On other systems such
1438 as the Linux kernel, a break followed by g, which is Magic SysRq g
1439 is required in order to interrupt the execution. */
1440 const char interrupt_sequence_control_c[] = "Ctrl-C";
1441 const char interrupt_sequence_break[] = "BREAK";
1442 const char interrupt_sequence_break_g[] = "BREAK-g";
1443 static const char *const interrupt_sequence_modes[] =
1444 {
1445 interrupt_sequence_control_c,
1446 interrupt_sequence_break,
1447 interrupt_sequence_break_g,
1448 NULL
1449 };
1450 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1451
1452 static void
1453 show_interrupt_sequence (struct ui_file *file, int from_tty,
1454 struct cmd_list_element *c,
1455 const char *value)
1456 {
1457 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1458 fprintf_filtered (file,
1459 _("Send the ASCII ETX character (Ctrl-c) "
1460 "to the remote target to interrupt the "
1461 "execution of the program.\n"));
1462 else if (interrupt_sequence_mode == interrupt_sequence_break)
1463 fprintf_filtered (file,
1464 _("send a break signal to the remote target "
1465 "to interrupt the execution of the program.\n"));
1466 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1467 fprintf_filtered (file,
1468 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1469 "the remote target to interrupt the execution "
1470 "of Linux kernel.\n"));
1471 else
1472 internal_error (__FILE__, __LINE__,
1473 _("Invalid value for interrupt_sequence_mode: %s."),
1474 interrupt_sequence_mode);
1475 }
1476
1477 /* This boolean variable specifies whether interrupt_sequence is sent
1478 to the remote target when gdb connects to it.
1479 This is mostly needed when you debug the Linux kernel: The Linux kernel
1480 expects BREAK g which is Magic SysRq g for connecting gdb. */
1481 static bool interrupt_on_connect = false;
1482
1483 /* This variable is used to implement the "set/show remotebreak" commands.
1484 Since these commands are now deprecated in favor of "set/show remote
1485 interrupt-sequence", it no longer has any effect on the code. */
1486 static bool remote_break;
1487
1488 static void
1489 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1490 {
1491 if (remote_break)
1492 interrupt_sequence_mode = interrupt_sequence_break;
1493 else
1494 interrupt_sequence_mode = interrupt_sequence_control_c;
1495 }
1496
1497 static void
1498 show_remotebreak (struct ui_file *file, int from_tty,
1499 struct cmd_list_element *c,
1500 const char *value)
1501 {
1502 }
1503
1504 /* This variable sets the number of bits in an address that are to be
1505 sent in a memory ("M" or "m") packet. Normally, after stripping
1506 leading zeros, the entire address would be sent. This variable
1507 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1508 initial implementation of remote.c restricted the address sent in
1509 memory packets to ``host::sizeof long'' bytes - (typically 32
1510 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1511 address was never sent. Since fixing this bug may cause a break in
1512 some remote targets this variable is principally provided to
1513 facilitate backward compatibility. */
1514
1515 static unsigned int remote_address_size;
1516
1517 \f
1518 /* User configurable variables for the number of characters in a
1519 memory read/write packet. MIN (rsa->remote_packet_size,
1520 rsa->sizeof_g_packet) is the default. Some targets need smaller
1521 values (fifo overruns, et.al.) and some users need larger values
1522 (speed up transfers). The variables ``preferred_*'' (the user
1523 request), ``current_*'' (what was actually set) and ``forced_*''
1524 (Positive - a soft limit, negative - a hard limit). */
1525
1526 struct memory_packet_config
1527 {
1528 const char *name;
1529 long size;
1530 int fixed_p;
1531 };
1532
1533 /* The default max memory-write-packet-size, when the setting is
1534 "fixed". The 16k is historical. (It came from older GDB's using
1535 alloca for buffers and the knowledge (folklore?) that some hosts
1536 don't cope very well with large alloca calls.) */
1537 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1538
1539 /* The minimum remote packet size for memory transfers. Ensures we
1540 can write at least one byte. */
1541 #define MIN_MEMORY_PACKET_SIZE 20
1542
1543 /* Get the memory packet size, assuming it is fixed. */
1544
1545 static long
1546 get_fixed_memory_packet_size (struct memory_packet_config *config)
1547 {
1548 gdb_assert (config->fixed_p);
1549
1550 if (config->size <= 0)
1551 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1552 else
1553 return config->size;
1554 }
1555
1556 /* Compute the current size of a read/write packet. Since this makes
1557 use of ``actual_register_packet_size'' the computation is dynamic. */
1558
1559 long
1560 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1561 {
1562 struct remote_state *rs = get_remote_state ();
1563 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1564
1565 long what_they_get;
1566 if (config->fixed_p)
1567 what_they_get = get_fixed_memory_packet_size (config);
1568 else
1569 {
1570 what_they_get = get_remote_packet_size ();
1571 /* Limit the packet to the size specified by the user. */
1572 if (config->size > 0
1573 && what_they_get > config->size)
1574 what_they_get = config->size;
1575
1576 /* Limit it to the size of the targets ``g'' response unless we have
1577 permission from the stub to use a larger packet size. */
1578 if (rs->explicit_packet_size == 0
1579 && rsa->actual_register_packet_size > 0
1580 && what_they_get > rsa->actual_register_packet_size)
1581 what_they_get = rsa->actual_register_packet_size;
1582 }
1583 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1584 what_they_get = MIN_MEMORY_PACKET_SIZE;
1585
1586 /* Make sure there is room in the global buffer for this packet
1587 (including its trailing NUL byte). */
1588 if (rs->buf.size () < what_they_get + 1)
1589 rs->buf.resize (2 * what_they_get);
1590
1591 return what_they_get;
1592 }
1593
1594 /* Update the size of a read/write packet. If they user wants
1595 something really big then do a sanity check. */
1596
1597 static void
1598 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1599 {
1600 int fixed_p = config->fixed_p;
1601 long size = config->size;
1602
1603 if (args == NULL)
1604 error (_("Argument required (integer, `fixed' or `limited')."));
1605 else if (strcmp (args, "hard") == 0
1606 || strcmp (args, "fixed") == 0)
1607 fixed_p = 1;
1608 else if (strcmp (args, "soft") == 0
1609 || strcmp (args, "limit") == 0)
1610 fixed_p = 0;
1611 else
1612 {
1613 char *end;
1614
1615 size = strtoul (args, &end, 0);
1616 if (args == end)
1617 error (_("Invalid %s (bad syntax)."), config->name);
1618
1619 /* Instead of explicitly capping the size of a packet to or
1620 disallowing it, the user is allowed to set the size to
1621 something arbitrarily large. */
1622 }
1623
1624 /* Extra checks? */
1625 if (fixed_p && !config->fixed_p)
1626 {
1627 /* So that the query shows the correct value. */
1628 long query_size = (size <= 0
1629 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1630 : size);
1631
1632 if (! query (_("The target may not be able to correctly handle a %s\n"
1633 "of %ld bytes. Change the packet size? "),
1634 config->name, query_size))
1635 error (_("Packet size not changed."));
1636 }
1637 /* Update the config. */
1638 config->fixed_p = fixed_p;
1639 config->size = size;
1640 }
1641
1642 static void
1643 show_memory_packet_size (struct memory_packet_config *config)
1644 {
1645 if (config->size == 0)
1646 printf_filtered (_("The %s is 0 (default). "), config->name);
1647 else
1648 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1649 if (config->fixed_p)
1650 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1651 get_fixed_memory_packet_size (config));
1652 else
1653 {
1654 remote_target *remote = get_current_remote_target ();
1655
1656 if (remote != NULL)
1657 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1658 remote->get_memory_packet_size (config));
1659 else
1660 puts_filtered ("The actual limit will be further reduced "
1661 "dependent on the target.\n");
1662 }
1663 }
1664
1665 static struct memory_packet_config memory_write_packet_config =
1666 {
1667 "memory-write-packet-size",
1668 };
1669
1670 static void
1671 set_memory_write_packet_size (const char *args, int from_tty)
1672 {
1673 set_memory_packet_size (args, &memory_write_packet_config);
1674 }
1675
1676 static void
1677 show_memory_write_packet_size (const char *args, int from_tty)
1678 {
1679 show_memory_packet_size (&memory_write_packet_config);
1680 }
1681
1682 /* Show the number of hardware watchpoints that can be used. */
1683
1684 static void
1685 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1686 struct cmd_list_element *c,
1687 const char *value)
1688 {
1689 fprintf_filtered (file, _("The maximum number of target hardware "
1690 "watchpoints is %s.\n"), value);
1691 }
1692
1693 /* Show the length limit (in bytes) for hardware watchpoints. */
1694
1695 static void
1696 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1697 struct cmd_list_element *c,
1698 const char *value)
1699 {
1700 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1701 "hardware watchpoint is %s.\n"), value);
1702 }
1703
1704 /* Show the number of hardware breakpoints that can be used. */
1705
1706 static void
1707 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1708 struct cmd_list_element *c,
1709 const char *value)
1710 {
1711 fprintf_filtered (file, _("The maximum number of target hardware "
1712 "breakpoints is %s.\n"), value);
1713 }
1714
1715 long
1716 remote_target::get_memory_write_packet_size ()
1717 {
1718 return get_memory_packet_size (&memory_write_packet_config);
1719 }
1720
1721 static struct memory_packet_config memory_read_packet_config =
1722 {
1723 "memory-read-packet-size",
1724 };
1725
1726 static void
1727 set_memory_read_packet_size (const char *args, int from_tty)
1728 {
1729 set_memory_packet_size (args, &memory_read_packet_config);
1730 }
1731
1732 static void
1733 show_memory_read_packet_size (const char *args, int from_tty)
1734 {
1735 show_memory_packet_size (&memory_read_packet_config);
1736 }
1737
1738 long
1739 remote_target::get_memory_read_packet_size ()
1740 {
1741 long size = get_memory_packet_size (&memory_read_packet_config);
1742
1743 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1744 extra buffer size argument before the memory read size can be
1745 increased beyond this. */
1746 if (size > get_remote_packet_size ())
1747 size = get_remote_packet_size ();
1748 return size;
1749 }
1750
1751 \f
1752
1753 struct packet_config
1754 {
1755 const char *name;
1756 const char *title;
1757
1758 /* If auto, GDB auto-detects support for this packet or feature,
1759 either through qSupported, or by trying the packet and looking
1760 at the response. If true, GDB assumes the target supports this
1761 packet. If false, the packet is disabled. Configs that don't
1762 have an associated command always have this set to auto. */
1763 enum auto_boolean detect;
1764
1765 /* Does the target support this packet? */
1766 enum packet_support support;
1767 };
1768
1769 static enum packet_support packet_config_support (struct packet_config *config);
1770 static enum packet_support packet_support (int packet);
1771
1772 static void
1773 show_packet_config_cmd (struct packet_config *config)
1774 {
1775 const char *support = "internal-error";
1776
1777 switch (packet_config_support (config))
1778 {
1779 case PACKET_ENABLE:
1780 support = "enabled";
1781 break;
1782 case PACKET_DISABLE:
1783 support = "disabled";
1784 break;
1785 case PACKET_SUPPORT_UNKNOWN:
1786 support = "unknown";
1787 break;
1788 }
1789 switch (config->detect)
1790 {
1791 case AUTO_BOOLEAN_AUTO:
1792 printf_filtered (_("Support for the `%s' packet "
1793 "is auto-detected, currently %s.\n"),
1794 config->name, support);
1795 break;
1796 case AUTO_BOOLEAN_TRUE:
1797 case AUTO_BOOLEAN_FALSE:
1798 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1799 config->name, support);
1800 break;
1801 }
1802 }
1803
1804 static void
1805 add_packet_config_cmd (struct packet_config *config, const char *name,
1806 const char *title, int legacy)
1807 {
1808 char *set_doc;
1809 char *show_doc;
1810 char *cmd_name;
1811
1812 config->name = name;
1813 config->title = title;
1814 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1815 name, title);
1816 show_doc = xstrprintf ("Show current use of remote "
1817 "protocol `%s' (%s) packet.",
1818 name, title);
1819 /* set/show TITLE-packet {auto,on,off} */
1820 cmd_name = xstrprintf ("%s-packet", title);
1821 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1822 &config->detect, set_doc,
1823 show_doc, NULL, /* help_doc */
1824 NULL,
1825 show_remote_protocol_packet_cmd,
1826 &remote_set_cmdlist, &remote_show_cmdlist);
1827 /* The command code copies the documentation strings. */
1828 xfree (set_doc);
1829 xfree (show_doc);
1830 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1831 if (legacy)
1832 {
1833 char *legacy_name;
1834
1835 legacy_name = xstrprintf ("%s-packet", name);
1836 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1837 &remote_set_cmdlist);
1838 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1839 &remote_show_cmdlist);
1840 }
1841 }
1842
1843 static enum packet_result
1844 packet_check_result (const char *buf)
1845 {
1846 if (buf[0] != '\0')
1847 {
1848 /* The stub recognized the packet request. Check that the
1849 operation succeeded. */
1850 if (buf[0] == 'E'
1851 && isxdigit (buf[1]) && isxdigit (buf[2])
1852 && buf[3] == '\0')
1853 /* "Enn" - definitely an error. */
1854 return PACKET_ERROR;
1855
1856 /* Always treat "E." as an error. This will be used for
1857 more verbose error messages, such as E.memtypes. */
1858 if (buf[0] == 'E' && buf[1] == '.')
1859 return PACKET_ERROR;
1860
1861 /* The packet may or may not be OK. Just assume it is. */
1862 return PACKET_OK;
1863 }
1864 else
1865 /* The stub does not support the packet. */
1866 return PACKET_UNKNOWN;
1867 }
1868
1869 static enum packet_result
1870 packet_check_result (const gdb::char_vector &buf)
1871 {
1872 return packet_check_result (buf.data ());
1873 }
1874
1875 static enum packet_result
1876 packet_ok (const char *buf, struct packet_config *config)
1877 {
1878 enum packet_result result;
1879
1880 if (config->detect != AUTO_BOOLEAN_TRUE
1881 && config->support == PACKET_DISABLE)
1882 internal_error (__FILE__, __LINE__,
1883 _("packet_ok: attempt to use a disabled packet"));
1884
1885 result = packet_check_result (buf);
1886 switch (result)
1887 {
1888 case PACKET_OK:
1889 case PACKET_ERROR:
1890 /* The stub recognized the packet request. */
1891 if (config->support == PACKET_SUPPORT_UNKNOWN)
1892 {
1893 if (remote_debug)
1894 fprintf_unfiltered (gdb_stdlog,
1895 "Packet %s (%s) is supported\n",
1896 config->name, config->title);
1897 config->support = PACKET_ENABLE;
1898 }
1899 break;
1900 case PACKET_UNKNOWN:
1901 /* The stub does not support the packet. */
1902 if (config->detect == AUTO_BOOLEAN_AUTO
1903 && config->support == PACKET_ENABLE)
1904 {
1905 /* If the stub previously indicated that the packet was
1906 supported then there is a protocol error. */
1907 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1908 config->name, config->title);
1909 }
1910 else if (config->detect == AUTO_BOOLEAN_TRUE)
1911 {
1912 /* The user set it wrong. */
1913 error (_("Enabled packet %s (%s) not recognized by stub"),
1914 config->name, config->title);
1915 }
1916
1917 if (remote_debug)
1918 fprintf_unfiltered (gdb_stdlog,
1919 "Packet %s (%s) is NOT supported\n",
1920 config->name, config->title);
1921 config->support = PACKET_DISABLE;
1922 break;
1923 }
1924
1925 return result;
1926 }
1927
1928 static enum packet_result
1929 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1930 {
1931 return packet_ok (buf.data (), config);
1932 }
1933
1934 enum {
1935 PACKET_vCont = 0,
1936 PACKET_X,
1937 PACKET_qSymbol,
1938 PACKET_P,
1939 PACKET_p,
1940 PACKET_Z0,
1941 PACKET_Z1,
1942 PACKET_Z2,
1943 PACKET_Z3,
1944 PACKET_Z4,
1945 PACKET_vFile_setfs,
1946 PACKET_vFile_open,
1947 PACKET_vFile_pread,
1948 PACKET_vFile_pwrite,
1949 PACKET_vFile_close,
1950 PACKET_vFile_unlink,
1951 PACKET_vFile_readlink,
1952 PACKET_vFile_fstat,
1953 PACKET_qXfer_auxv,
1954 PACKET_qXfer_features,
1955 PACKET_qXfer_exec_file,
1956 PACKET_qXfer_libraries,
1957 PACKET_qXfer_libraries_svr4,
1958 PACKET_qXfer_memory_map,
1959 PACKET_qXfer_osdata,
1960 PACKET_qXfer_threads,
1961 PACKET_qXfer_statictrace_read,
1962 PACKET_qXfer_traceframe_info,
1963 PACKET_qXfer_uib,
1964 PACKET_qGetTIBAddr,
1965 PACKET_qGetTLSAddr,
1966 PACKET_qSupported,
1967 PACKET_qTStatus,
1968 PACKET_QPassSignals,
1969 PACKET_QCatchSyscalls,
1970 PACKET_QProgramSignals,
1971 PACKET_QSetWorkingDir,
1972 PACKET_QStartupWithShell,
1973 PACKET_QEnvironmentHexEncoded,
1974 PACKET_QEnvironmentReset,
1975 PACKET_QEnvironmentUnset,
1976 PACKET_qCRC,
1977 PACKET_qSearch_memory,
1978 PACKET_vAttach,
1979 PACKET_vRun,
1980 PACKET_QStartNoAckMode,
1981 PACKET_vKill,
1982 PACKET_qXfer_siginfo_read,
1983 PACKET_qXfer_siginfo_write,
1984 PACKET_qAttached,
1985
1986 /* Support for conditional tracepoints. */
1987 PACKET_ConditionalTracepoints,
1988
1989 /* Support for target-side breakpoint conditions. */
1990 PACKET_ConditionalBreakpoints,
1991
1992 /* Support for target-side breakpoint commands. */
1993 PACKET_BreakpointCommands,
1994
1995 /* Support for fast tracepoints. */
1996 PACKET_FastTracepoints,
1997
1998 /* Support for static tracepoints. */
1999 PACKET_StaticTracepoints,
2000
2001 /* Support for installing tracepoints while a trace experiment is
2002 running. */
2003 PACKET_InstallInTrace,
2004
2005 PACKET_bc,
2006 PACKET_bs,
2007 PACKET_TracepointSource,
2008 PACKET_QAllow,
2009 PACKET_qXfer_fdpic,
2010 PACKET_QDisableRandomization,
2011 PACKET_QAgent,
2012 PACKET_QTBuffer_size,
2013 PACKET_Qbtrace_off,
2014 PACKET_Qbtrace_bts,
2015 PACKET_Qbtrace_pt,
2016 PACKET_qXfer_btrace,
2017
2018 /* Support for the QNonStop packet. */
2019 PACKET_QNonStop,
2020
2021 /* Support for the QThreadEvents packet. */
2022 PACKET_QThreadEvents,
2023
2024 /* Support for multi-process extensions. */
2025 PACKET_multiprocess_feature,
2026
2027 /* Support for enabling and disabling tracepoints while a trace
2028 experiment is running. */
2029 PACKET_EnableDisableTracepoints_feature,
2030
2031 /* Support for collecting strings using the tracenz bytecode. */
2032 PACKET_tracenz_feature,
2033
2034 /* Support for continuing to run a trace experiment while GDB is
2035 disconnected. */
2036 PACKET_DisconnectedTracing_feature,
2037
2038 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2039 PACKET_augmented_libraries_svr4_read_feature,
2040
2041 /* Support for the qXfer:btrace-conf:read packet. */
2042 PACKET_qXfer_btrace_conf,
2043
2044 /* Support for the Qbtrace-conf:bts:size packet. */
2045 PACKET_Qbtrace_conf_bts_size,
2046
2047 /* Support for swbreak+ feature. */
2048 PACKET_swbreak_feature,
2049
2050 /* Support for hwbreak+ feature. */
2051 PACKET_hwbreak_feature,
2052
2053 /* Support for fork events. */
2054 PACKET_fork_event_feature,
2055
2056 /* Support for vfork events. */
2057 PACKET_vfork_event_feature,
2058
2059 /* Support for the Qbtrace-conf:pt:size packet. */
2060 PACKET_Qbtrace_conf_pt_size,
2061
2062 /* Support for exec events. */
2063 PACKET_exec_event_feature,
2064
2065 /* Support for query supported vCont actions. */
2066 PACKET_vContSupported,
2067
2068 /* Support remote CTRL-C. */
2069 PACKET_vCtrlC,
2070
2071 /* Support TARGET_WAITKIND_NO_RESUMED. */
2072 PACKET_no_resumed,
2073
2074 PACKET_MAX
2075 };
2076
2077 static struct packet_config remote_protocol_packets[PACKET_MAX];
2078
2079 /* Returns the packet's corresponding "set remote foo-packet" command
2080 state. See struct packet_config for more details. */
2081
2082 static enum auto_boolean
2083 packet_set_cmd_state (int packet)
2084 {
2085 return remote_protocol_packets[packet].detect;
2086 }
2087
2088 /* Returns whether a given packet or feature is supported. This takes
2089 into account the state of the corresponding "set remote foo-packet"
2090 command, which may be used to bypass auto-detection. */
2091
2092 static enum packet_support
2093 packet_config_support (struct packet_config *config)
2094 {
2095 switch (config->detect)
2096 {
2097 case AUTO_BOOLEAN_TRUE:
2098 return PACKET_ENABLE;
2099 case AUTO_BOOLEAN_FALSE:
2100 return PACKET_DISABLE;
2101 case AUTO_BOOLEAN_AUTO:
2102 return config->support;
2103 default:
2104 gdb_assert_not_reached (_("bad switch"));
2105 }
2106 }
2107
2108 /* Same as packet_config_support, but takes the packet's enum value as
2109 argument. */
2110
2111 static enum packet_support
2112 packet_support (int packet)
2113 {
2114 struct packet_config *config = &remote_protocol_packets[packet];
2115
2116 return packet_config_support (config);
2117 }
2118
2119 static void
2120 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2121 struct cmd_list_element *c,
2122 const char *value)
2123 {
2124 struct packet_config *packet;
2125
2126 for (packet = remote_protocol_packets;
2127 packet < &remote_protocol_packets[PACKET_MAX];
2128 packet++)
2129 {
2130 if (&packet->detect == c->var)
2131 {
2132 show_packet_config_cmd (packet);
2133 return;
2134 }
2135 }
2136 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2137 c->name);
2138 }
2139
2140 /* Should we try one of the 'Z' requests? */
2141
2142 enum Z_packet_type
2143 {
2144 Z_PACKET_SOFTWARE_BP,
2145 Z_PACKET_HARDWARE_BP,
2146 Z_PACKET_WRITE_WP,
2147 Z_PACKET_READ_WP,
2148 Z_PACKET_ACCESS_WP,
2149 NR_Z_PACKET_TYPES
2150 };
2151
2152 /* For compatibility with older distributions. Provide a ``set remote
2153 Z-packet ...'' command that updates all the Z packet types. */
2154
2155 static enum auto_boolean remote_Z_packet_detect;
2156
2157 static void
2158 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2159 struct cmd_list_element *c)
2160 {
2161 int i;
2162
2163 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2164 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2165 }
2166
2167 static void
2168 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2169 struct cmd_list_element *c,
2170 const char *value)
2171 {
2172 int i;
2173
2174 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2175 {
2176 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2177 }
2178 }
2179
2180 /* Returns true if the multi-process extensions are in effect. */
2181
2182 static int
2183 remote_multi_process_p (struct remote_state *rs)
2184 {
2185 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2186 }
2187
2188 /* Returns true if fork events are supported. */
2189
2190 static int
2191 remote_fork_event_p (struct remote_state *rs)
2192 {
2193 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2194 }
2195
2196 /* Returns true if vfork events are supported. */
2197
2198 static int
2199 remote_vfork_event_p (struct remote_state *rs)
2200 {
2201 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2202 }
2203
2204 /* Returns true if exec events are supported. */
2205
2206 static int
2207 remote_exec_event_p (struct remote_state *rs)
2208 {
2209 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2210 }
2211
2212 /* Insert fork catchpoint target routine. If fork events are enabled
2213 then return success, nothing more to do. */
2214
2215 int
2216 remote_target::insert_fork_catchpoint (int pid)
2217 {
2218 struct remote_state *rs = get_remote_state ();
2219
2220 return !remote_fork_event_p (rs);
2221 }
2222
2223 /* Remove fork catchpoint target routine. Nothing to do, just
2224 return success. */
2225
2226 int
2227 remote_target::remove_fork_catchpoint (int pid)
2228 {
2229 return 0;
2230 }
2231
2232 /* Insert vfork catchpoint target routine. If vfork events are enabled
2233 then return success, nothing more to do. */
2234
2235 int
2236 remote_target::insert_vfork_catchpoint (int pid)
2237 {
2238 struct remote_state *rs = get_remote_state ();
2239
2240 return !remote_vfork_event_p (rs);
2241 }
2242
2243 /* Remove vfork catchpoint target routine. Nothing to do, just
2244 return success. */
2245
2246 int
2247 remote_target::remove_vfork_catchpoint (int pid)
2248 {
2249 return 0;
2250 }
2251
2252 /* Insert exec catchpoint target routine. If exec events are
2253 enabled, just return success. */
2254
2255 int
2256 remote_target::insert_exec_catchpoint (int pid)
2257 {
2258 struct remote_state *rs = get_remote_state ();
2259
2260 return !remote_exec_event_p (rs);
2261 }
2262
2263 /* Remove exec catchpoint target routine. Nothing to do, just
2264 return success. */
2265
2266 int
2267 remote_target::remove_exec_catchpoint (int pid)
2268 {
2269 return 0;
2270 }
2271
2272 \f
2273
2274 /* Take advantage of the fact that the TID field is not used, to tag
2275 special ptids with it set to != 0. */
2276 static const ptid_t magic_null_ptid (42000, -1, 1);
2277 static const ptid_t not_sent_ptid (42000, -2, 1);
2278 static const ptid_t any_thread_ptid (42000, 0, 1);
2279
2280 /* Find out if the stub attached to PID (and hence GDB should offer to
2281 detach instead of killing it when bailing out). */
2282
2283 int
2284 remote_target::remote_query_attached (int pid)
2285 {
2286 struct remote_state *rs = get_remote_state ();
2287 size_t size = get_remote_packet_size ();
2288
2289 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2290 return 0;
2291
2292 if (remote_multi_process_p (rs))
2293 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2294 else
2295 xsnprintf (rs->buf.data (), size, "qAttached");
2296
2297 putpkt (rs->buf);
2298 getpkt (&rs->buf, 0);
2299
2300 switch (packet_ok (rs->buf,
2301 &remote_protocol_packets[PACKET_qAttached]))
2302 {
2303 case PACKET_OK:
2304 if (strcmp (rs->buf.data (), "1") == 0)
2305 return 1;
2306 break;
2307 case PACKET_ERROR:
2308 warning (_("Remote failure reply: %s"), rs->buf.data ());
2309 break;
2310 case PACKET_UNKNOWN:
2311 break;
2312 }
2313
2314 return 0;
2315 }
2316
2317 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2318 has been invented by GDB, instead of reported by the target. Since
2319 we can be connected to a remote system before before knowing about
2320 any inferior, mark the target with execution when we find the first
2321 inferior. If ATTACHED is 1, then we had just attached to this
2322 inferior. If it is 0, then we just created this inferior. If it
2323 is -1, then try querying the remote stub to find out if it had
2324 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2325 attempt to open this inferior's executable as the main executable
2326 if no main executable is open already. */
2327
2328 inferior *
2329 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2330 int try_open_exec)
2331 {
2332 struct inferior *inf;
2333
2334 /* Check whether this process we're learning about is to be
2335 considered attached, or if is to be considered to have been
2336 spawned by the stub. */
2337 if (attached == -1)
2338 attached = remote_query_attached (pid);
2339
2340 if (gdbarch_has_global_solist (target_gdbarch ()))
2341 {
2342 /* If the target shares code across all inferiors, then every
2343 attach adds a new inferior. */
2344 inf = add_inferior (pid);
2345
2346 /* ... and every inferior is bound to the same program space.
2347 However, each inferior may still have its own address
2348 space. */
2349 inf->aspace = maybe_new_address_space ();
2350 inf->pspace = current_program_space;
2351 }
2352 else
2353 {
2354 /* In the traditional debugging scenario, there's a 1-1 match
2355 between program/address spaces. We simply bind the inferior
2356 to the program space's address space. */
2357 inf = current_inferior ();
2358 inferior_appeared (inf, pid);
2359 }
2360
2361 inf->attach_flag = attached;
2362 inf->fake_pid_p = fake_pid_p;
2363
2364 /* If no main executable is currently open then attempt to
2365 open the file that was executed to create this inferior. */
2366 if (try_open_exec && get_exec_file (0) == NULL)
2367 exec_file_locate_attach (pid, 0, 1);
2368
2369 return inf;
2370 }
2371
2372 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2373 static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2374
2375 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2376 according to RUNNING. */
2377
2378 thread_info *
2379 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2380 {
2381 struct remote_state *rs = get_remote_state ();
2382 struct thread_info *thread;
2383
2384 /* GDB historically didn't pull threads in the initial connection
2385 setup. If the remote target doesn't even have a concept of
2386 threads (e.g., a bare-metal target), even if internally we
2387 consider that a single-threaded target, mentioning a new thread
2388 might be confusing to the user. Be silent then, preserving the
2389 age old behavior. */
2390 if (rs->starting_up)
2391 thread = add_thread_silent (ptid);
2392 else
2393 thread = add_thread (ptid);
2394
2395 get_remote_thread_info (thread)->vcont_resumed = executing;
2396 set_executing (ptid, executing);
2397 set_running (ptid, running);
2398
2399 return thread;
2400 }
2401
2402 /* Come here when we learn about a thread id from the remote target.
2403 It may be the first time we hear about such thread, so take the
2404 opportunity to add it to GDB's thread list. In case this is the
2405 first time we're noticing its corresponding inferior, add it to
2406 GDB's inferior list as well. EXECUTING indicates whether the
2407 thread is (internally) executing or stopped. */
2408
2409 void
2410 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2411 {
2412 /* In non-stop mode, we assume new found threads are (externally)
2413 running until proven otherwise with a stop reply. In all-stop,
2414 we can only get here if all threads are stopped. */
2415 int running = target_is_non_stop_p () ? 1 : 0;
2416
2417 /* If this is a new thread, add it to GDB's thread list.
2418 If we leave it up to WFI to do this, bad things will happen. */
2419
2420 thread_info *tp = find_thread_ptid (currthread);
2421 if (tp != NULL && tp->state == THREAD_EXITED)
2422 {
2423 /* We're seeing an event on a thread id we knew had exited.
2424 This has to be a new thread reusing the old id. Add it. */
2425 remote_add_thread (currthread, running, executing);
2426 return;
2427 }
2428
2429 if (!in_thread_list (currthread))
2430 {
2431 struct inferior *inf = NULL;
2432 int pid = currthread.pid ();
2433
2434 if (inferior_ptid.is_pid ()
2435 && pid == inferior_ptid.pid ())
2436 {
2437 /* inferior_ptid has no thread member yet. This can happen
2438 with the vAttach -> remote_wait,"TAAthread:" path if the
2439 stub doesn't support qC. This is the first stop reported
2440 after an attach, so this is the main thread. Update the
2441 ptid in the thread list. */
2442 if (in_thread_list (ptid_t (pid)))
2443 thread_change_ptid (inferior_ptid, currthread);
2444 else
2445 {
2446 remote_add_thread (currthread, running, executing);
2447 inferior_ptid = currthread;
2448 }
2449 return;
2450 }
2451
2452 if (magic_null_ptid == inferior_ptid)
2453 {
2454 /* inferior_ptid is not set yet. This can happen with the
2455 vRun -> remote_wait,"TAAthread:" path if the stub
2456 doesn't support qC. This is the first stop reported
2457 after an attach, so this is the main thread. Update the
2458 ptid in the thread list. */
2459 thread_change_ptid (inferior_ptid, currthread);
2460 return;
2461 }
2462
2463 /* When connecting to a target remote, or to a target
2464 extended-remote which already was debugging an inferior, we
2465 may not know about it yet. Add it before adding its child
2466 thread, so notifications are emitted in a sensible order. */
2467 if (find_inferior_pid (currthread.pid ()) == NULL)
2468 {
2469 struct remote_state *rs = get_remote_state ();
2470 bool fake_pid_p = !remote_multi_process_p (rs);
2471
2472 inf = remote_add_inferior (fake_pid_p,
2473 currthread.pid (), -1, 1);
2474 }
2475
2476 /* This is really a new thread. Add it. */
2477 thread_info *new_thr
2478 = remote_add_thread (currthread, running, executing);
2479
2480 /* If we found a new inferior, let the common code do whatever
2481 it needs to with it (e.g., read shared libraries, insert
2482 breakpoints), unless we're just setting up an all-stop
2483 connection. */
2484 if (inf != NULL)
2485 {
2486 struct remote_state *rs = get_remote_state ();
2487
2488 if (!rs->starting_up)
2489 notice_new_inferior (new_thr, executing, 0);
2490 }
2491 }
2492 }
2493
2494 /* Return THREAD's private thread data, creating it if necessary. */
2495
2496 static remote_thread_info *
2497 get_remote_thread_info (thread_info *thread)
2498 {
2499 gdb_assert (thread != NULL);
2500
2501 if (thread->priv == NULL)
2502 thread->priv.reset (new remote_thread_info);
2503
2504 return static_cast<remote_thread_info *> (thread->priv.get ());
2505 }
2506
2507 static remote_thread_info *
2508 get_remote_thread_info (ptid_t ptid)
2509 {
2510 thread_info *thr = find_thread_ptid (ptid);
2511 return get_remote_thread_info (thr);
2512 }
2513
2514 /* Call this function as a result of
2515 1) A halt indication (T packet) containing a thread id
2516 2) A direct query of currthread
2517 3) Successful execution of set thread */
2518
2519 static void
2520 record_currthread (struct remote_state *rs, ptid_t currthread)
2521 {
2522 rs->general_thread = currthread;
2523 }
2524
2525 /* If 'QPassSignals' is supported, tell the remote stub what signals
2526 it can simply pass through to the inferior without reporting. */
2527
2528 void
2529 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2530 {
2531 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2532 {
2533 char *pass_packet, *p;
2534 int count = 0;
2535 struct remote_state *rs = get_remote_state ();
2536
2537 gdb_assert (pass_signals.size () < 256);
2538 for (size_t i = 0; i < pass_signals.size (); i++)
2539 {
2540 if (pass_signals[i])
2541 count++;
2542 }
2543 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2544 strcpy (pass_packet, "QPassSignals:");
2545 p = pass_packet + strlen (pass_packet);
2546 for (size_t i = 0; i < pass_signals.size (); i++)
2547 {
2548 if (pass_signals[i])
2549 {
2550 if (i >= 16)
2551 *p++ = tohex (i >> 4);
2552 *p++ = tohex (i & 15);
2553 if (count)
2554 *p++ = ';';
2555 else
2556 break;
2557 count--;
2558 }
2559 }
2560 *p = 0;
2561 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2562 {
2563 putpkt (pass_packet);
2564 getpkt (&rs->buf, 0);
2565 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2566 if (rs->last_pass_packet)
2567 xfree (rs->last_pass_packet);
2568 rs->last_pass_packet = pass_packet;
2569 }
2570 else
2571 xfree (pass_packet);
2572 }
2573 }
2574
2575 /* If 'QCatchSyscalls' is supported, tell the remote stub
2576 to report syscalls to GDB. */
2577
2578 int
2579 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2580 gdb::array_view<const int> syscall_counts)
2581 {
2582 const char *catch_packet;
2583 enum packet_result result;
2584 int n_sysno = 0;
2585
2586 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2587 {
2588 /* Not supported. */
2589 return 1;
2590 }
2591
2592 if (needed && any_count == 0)
2593 {
2594 /* Count how many syscalls are to be caught. */
2595 for (size_t i = 0; i < syscall_counts.size (); i++)
2596 {
2597 if (syscall_counts[i] != 0)
2598 n_sysno++;
2599 }
2600 }
2601
2602 if (remote_debug)
2603 {
2604 fprintf_unfiltered (gdb_stdlog,
2605 "remote_set_syscall_catchpoint "
2606 "pid %d needed %d any_count %d n_sysno %d\n",
2607 pid, needed, any_count, n_sysno);
2608 }
2609
2610 std::string built_packet;
2611 if (needed)
2612 {
2613 /* Prepare a packet with the sysno list, assuming max 8+1
2614 characters for a sysno. If the resulting packet size is too
2615 big, fallback on the non-selective packet. */
2616 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2617 built_packet.reserve (maxpktsz);
2618 built_packet = "QCatchSyscalls:1";
2619 if (any_count == 0)
2620 {
2621 /* Add in each syscall to be caught. */
2622 for (size_t i = 0; i < syscall_counts.size (); i++)
2623 {
2624 if (syscall_counts[i] != 0)
2625 string_appendf (built_packet, ";%zx", i);
2626 }
2627 }
2628 if (built_packet.size () > get_remote_packet_size ())
2629 {
2630 /* catch_packet too big. Fallback to less efficient
2631 non selective mode, with GDB doing the filtering. */
2632 catch_packet = "QCatchSyscalls:1";
2633 }
2634 else
2635 catch_packet = built_packet.c_str ();
2636 }
2637 else
2638 catch_packet = "QCatchSyscalls:0";
2639
2640 struct remote_state *rs = get_remote_state ();
2641
2642 putpkt (catch_packet);
2643 getpkt (&rs->buf, 0);
2644 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2645 if (result == PACKET_OK)
2646 return 0;
2647 else
2648 return -1;
2649 }
2650
2651 /* If 'QProgramSignals' is supported, tell the remote stub what
2652 signals it should pass through to the inferior when detaching. */
2653
2654 void
2655 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2656 {
2657 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2658 {
2659 char *packet, *p;
2660 int count = 0;
2661 struct remote_state *rs = get_remote_state ();
2662
2663 gdb_assert (signals.size () < 256);
2664 for (size_t i = 0; i < signals.size (); i++)
2665 {
2666 if (signals[i])
2667 count++;
2668 }
2669 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2670 strcpy (packet, "QProgramSignals:");
2671 p = packet + strlen (packet);
2672 for (size_t i = 0; i < signals.size (); i++)
2673 {
2674 if (signal_pass_state (i))
2675 {
2676 if (i >= 16)
2677 *p++ = tohex (i >> 4);
2678 *p++ = tohex (i & 15);
2679 if (count)
2680 *p++ = ';';
2681 else
2682 break;
2683 count--;
2684 }
2685 }
2686 *p = 0;
2687 if (!rs->last_program_signals_packet
2688 || strcmp (rs->last_program_signals_packet, packet) != 0)
2689 {
2690 putpkt (packet);
2691 getpkt (&rs->buf, 0);
2692 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2693 xfree (rs->last_program_signals_packet);
2694 rs->last_program_signals_packet = packet;
2695 }
2696 else
2697 xfree (packet);
2698 }
2699 }
2700
2701 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2702 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2703 thread. If GEN is set, set the general thread, if not, then set
2704 the step/continue thread. */
2705 void
2706 remote_target::set_thread (ptid_t ptid, int gen)
2707 {
2708 struct remote_state *rs = get_remote_state ();
2709 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2710 char *buf = rs->buf.data ();
2711 char *endbuf = buf + get_remote_packet_size ();
2712
2713 if (state == ptid)
2714 return;
2715
2716 *buf++ = 'H';
2717 *buf++ = gen ? 'g' : 'c';
2718 if (ptid == magic_null_ptid)
2719 xsnprintf (buf, endbuf - buf, "0");
2720 else if (ptid == any_thread_ptid)
2721 xsnprintf (buf, endbuf - buf, "0");
2722 else if (ptid == minus_one_ptid)
2723 xsnprintf (buf, endbuf - buf, "-1");
2724 else
2725 write_ptid (buf, endbuf, ptid);
2726 putpkt (rs->buf);
2727 getpkt (&rs->buf, 0);
2728 if (gen)
2729 rs->general_thread = ptid;
2730 else
2731 rs->continue_thread = ptid;
2732 }
2733
2734 void
2735 remote_target::set_general_thread (ptid_t ptid)
2736 {
2737 set_thread (ptid, 1);
2738 }
2739
2740 void
2741 remote_target::set_continue_thread (ptid_t ptid)
2742 {
2743 set_thread (ptid, 0);
2744 }
2745
2746 /* Change the remote current process. Which thread within the process
2747 ends up selected isn't important, as long as it is the same process
2748 as what INFERIOR_PTID points to.
2749
2750 This comes from that fact that there is no explicit notion of
2751 "selected process" in the protocol. The selected process for
2752 general operations is the process the selected general thread
2753 belongs to. */
2754
2755 void
2756 remote_target::set_general_process ()
2757 {
2758 struct remote_state *rs = get_remote_state ();
2759
2760 /* If the remote can't handle multiple processes, don't bother. */
2761 if (!remote_multi_process_p (rs))
2762 return;
2763
2764 /* We only need to change the remote current thread if it's pointing
2765 at some other process. */
2766 if (rs->general_thread.pid () != inferior_ptid.pid ())
2767 set_general_thread (inferior_ptid);
2768 }
2769
2770 \f
2771 /* Return nonzero if this is the main thread that we made up ourselves
2772 to model non-threaded targets as single-threaded. */
2773
2774 static int
2775 remote_thread_always_alive (ptid_t ptid)
2776 {
2777 if (ptid == magic_null_ptid)
2778 /* The main thread is always alive. */
2779 return 1;
2780
2781 if (ptid.pid () != 0 && ptid.lwp () == 0)
2782 /* The main thread is always alive. This can happen after a
2783 vAttach, if the remote side doesn't support
2784 multi-threading. */
2785 return 1;
2786
2787 return 0;
2788 }
2789
2790 /* Return nonzero if the thread PTID is still alive on the remote
2791 system. */
2792
2793 bool
2794 remote_target::thread_alive (ptid_t ptid)
2795 {
2796 struct remote_state *rs = get_remote_state ();
2797 char *p, *endp;
2798
2799 /* Check if this is a thread that we made up ourselves to model
2800 non-threaded targets as single-threaded. */
2801 if (remote_thread_always_alive (ptid))
2802 return 1;
2803
2804 p = rs->buf.data ();
2805 endp = p + get_remote_packet_size ();
2806
2807 *p++ = 'T';
2808 write_ptid (p, endp, ptid);
2809
2810 putpkt (rs->buf);
2811 getpkt (&rs->buf, 0);
2812 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2813 }
2814
2815 /* Return a pointer to a thread name if we know it and NULL otherwise.
2816 The thread_info object owns the memory for the name. */
2817
2818 const char *
2819 remote_target::thread_name (struct thread_info *info)
2820 {
2821 if (info->priv != NULL)
2822 {
2823 const std::string &name = get_remote_thread_info (info)->name;
2824 return !name.empty () ? name.c_str () : NULL;
2825 }
2826
2827 return NULL;
2828 }
2829
2830 /* About these extended threadlist and threadinfo packets. They are
2831 variable length packets but, the fields within them are often fixed
2832 length. They are redundant enough to send over UDP as is the
2833 remote protocol in general. There is a matching unit test module
2834 in libstub. */
2835
2836 /* WARNING: This threadref data structure comes from the remote O.S.,
2837 libstub protocol encoding, and remote.c. It is not particularly
2838 changable. */
2839
2840 /* Right now, the internal structure is int. We want it to be bigger.
2841 Plan to fix this. */
2842
2843 typedef int gdb_threadref; /* Internal GDB thread reference. */
2844
2845 /* gdb_ext_thread_info is an internal GDB data structure which is
2846 equivalent to the reply of the remote threadinfo packet. */
2847
2848 struct gdb_ext_thread_info
2849 {
2850 threadref threadid; /* External form of thread reference. */
2851 int active; /* Has state interesting to GDB?
2852 regs, stack. */
2853 char display[256]; /* Brief state display, name,
2854 blocked/suspended. */
2855 char shortname[32]; /* To be used to name threads. */
2856 char more_display[256]; /* Long info, statistics, queue depth,
2857 whatever. */
2858 };
2859
2860 /* The volume of remote transfers can be limited by submitting
2861 a mask containing bits specifying the desired information.
2862 Use a union of these values as the 'selection' parameter to
2863 get_thread_info. FIXME: Make these TAG names more thread specific. */
2864
2865 #define TAG_THREADID 1
2866 #define TAG_EXISTS 2
2867 #define TAG_DISPLAY 4
2868 #define TAG_THREADNAME 8
2869 #define TAG_MOREDISPLAY 16
2870
2871 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2872
2873 static char *unpack_nibble (char *buf, int *val);
2874
2875 static char *unpack_byte (char *buf, int *value);
2876
2877 static char *pack_int (char *buf, int value);
2878
2879 static char *unpack_int (char *buf, int *value);
2880
2881 static char *unpack_string (char *src, char *dest, int length);
2882
2883 static char *pack_threadid (char *pkt, threadref *id);
2884
2885 static char *unpack_threadid (char *inbuf, threadref *id);
2886
2887 void int_to_threadref (threadref *id, int value);
2888
2889 static int threadref_to_int (threadref *ref);
2890
2891 static void copy_threadref (threadref *dest, threadref *src);
2892
2893 static int threadmatch (threadref *dest, threadref *src);
2894
2895 static char *pack_threadinfo_request (char *pkt, int mode,
2896 threadref *id);
2897
2898 static char *pack_threadlist_request (char *pkt, int startflag,
2899 int threadcount,
2900 threadref *nextthread);
2901
2902 static int remote_newthread_step (threadref *ref, void *context);
2903
2904
2905 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2906 buffer we're allowed to write to. Returns
2907 BUF+CHARACTERS_WRITTEN. */
2908
2909 char *
2910 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2911 {
2912 int pid, tid;
2913 struct remote_state *rs = get_remote_state ();
2914
2915 if (remote_multi_process_p (rs))
2916 {
2917 pid = ptid.pid ();
2918 if (pid < 0)
2919 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2920 else
2921 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2922 }
2923 tid = ptid.lwp ();
2924 if (tid < 0)
2925 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2926 else
2927 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2928
2929 return buf;
2930 }
2931
2932 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2933 last parsed char. Returns null_ptid if no thread id is found, and
2934 throws an error if the thread id has an invalid format. */
2935
2936 static ptid_t
2937 read_ptid (const char *buf, const char **obuf)
2938 {
2939 const char *p = buf;
2940 const char *pp;
2941 ULONGEST pid = 0, tid = 0;
2942
2943 if (*p == 'p')
2944 {
2945 /* Multi-process ptid. */
2946 pp = unpack_varlen_hex (p + 1, &pid);
2947 if (*pp != '.')
2948 error (_("invalid remote ptid: %s"), p);
2949
2950 p = pp;
2951 pp = unpack_varlen_hex (p + 1, &tid);
2952 if (obuf)
2953 *obuf = pp;
2954 return ptid_t (pid, tid, 0);
2955 }
2956
2957 /* No multi-process. Just a tid. */
2958 pp = unpack_varlen_hex (p, &tid);
2959
2960 /* Return null_ptid when no thread id is found. */
2961 if (p == pp)
2962 {
2963 if (obuf)
2964 *obuf = pp;
2965 return null_ptid;
2966 }
2967
2968 /* Since the stub is not sending a process id, then default to
2969 what's in inferior_ptid, unless it's null at this point. If so,
2970 then since there's no way to know the pid of the reported
2971 threads, use the magic number. */
2972 if (inferior_ptid == null_ptid)
2973 pid = magic_null_ptid.pid ();
2974 else
2975 pid = inferior_ptid.pid ();
2976
2977 if (obuf)
2978 *obuf = pp;
2979 return ptid_t (pid, tid, 0);
2980 }
2981
2982 static int
2983 stubhex (int ch)
2984 {
2985 if (ch >= 'a' && ch <= 'f')
2986 return ch - 'a' + 10;
2987 if (ch >= '0' && ch <= '9')
2988 return ch - '0';
2989 if (ch >= 'A' && ch <= 'F')
2990 return ch - 'A' + 10;
2991 return -1;
2992 }
2993
2994 static int
2995 stub_unpack_int (char *buff, int fieldlength)
2996 {
2997 int nibble;
2998 int retval = 0;
2999
3000 while (fieldlength)
3001 {
3002 nibble = stubhex (*buff++);
3003 retval |= nibble;
3004 fieldlength--;
3005 if (fieldlength)
3006 retval = retval << 4;
3007 }
3008 return retval;
3009 }
3010
3011 static char *
3012 unpack_nibble (char *buf, int *val)
3013 {
3014 *val = fromhex (*buf++);
3015 return buf;
3016 }
3017
3018 static char *
3019 unpack_byte (char *buf, int *value)
3020 {
3021 *value = stub_unpack_int (buf, 2);
3022 return buf + 2;
3023 }
3024
3025 static char *
3026 pack_int (char *buf, int value)
3027 {
3028 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3029 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3030 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3031 buf = pack_hex_byte (buf, (value & 0xff));
3032 return buf;
3033 }
3034
3035 static char *
3036 unpack_int (char *buf, int *value)
3037 {
3038 *value = stub_unpack_int (buf, 8);
3039 return buf + 8;
3040 }
3041
3042 #if 0 /* Currently unused, uncomment when needed. */
3043 static char *pack_string (char *pkt, char *string);
3044
3045 static char *
3046 pack_string (char *pkt, char *string)
3047 {
3048 char ch;
3049 int len;
3050
3051 len = strlen (string);
3052 if (len > 200)
3053 len = 200; /* Bigger than most GDB packets, junk??? */
3054 pkt = pack_hex_byte (pkt, len);
3055 while (len-- > 0)
3056 {
3057 ch = *string++;
3058 if ((ch == '\0') || (ch == '#'))
3059 ch = '*'; /* Protect encapsulation. */
3060 *pkt++ = ch;
3061 }
3062 return pkt;
3063 }
3064 #endif /* 0 (unused) */
3065
3066 static char *
3067 unpack_string (char *src, char *dest, int length)
3068 {
3069 while (length--)
3070 *dest++ = *src++;
3071 *dest = '\0';
3072 return src;
3073 }
3074
3075 static char *
3076 pack_threadid (char *pkt, threadref *id)
3077 {
3078 char *limit;
3079 unsigned char *altid;
3080
3081 altid = (unsigned char *) id;
3082 limit = pkt + BUF_THREAD_ID_SIZE;
3083 while (pkt < limit)
3084 pkt = pack_hex_byte (pkt, *altid++);
3085 return pkt;
3086 }
3087
3088
3089 static char *
3090 unpack_threadid (char *inbuf, threadref *id)
3091 {
3092 char *altref;
3093 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3094 int x, y;
3095
3096 altref = (char *) id;
3097
3098 while (inbuf < limit)
3099 {
3100 x = stubhex (*inbuf++);
3101 y = stubhex (*inbuf++);
3102 *altref++ = (x << 4) | y;
3103 }
3104 return inbuf;
3105 }
3106
3107 /* Externally, threadrefs are 64 bits but internally, they are still
3108 ints. This is due to a mismatch of specifications. We would like
3109 to use 64bit thread references internally. This is an adapter
3110 function. */
3111
3112 void
3113 int_to_threadref (threadref *id, int value)
3114 {
3115 unsigned char *scan;
3116
3117 scan = (unsigned char *) id;
3118 {
3119 int i = 4;
3120 while (i--)
3121 *scan++ = 0;
3122 }
3123 *scan++ = (value >> 24) & 0xff;
3124 *scan++ = (value >> 16) & 0xff;
3125 *scan++ = (value >> 8) & 0xff;
3126 *scan++ = (value & 0xff);
3127 }
3128
3129 static int
3130 threadref_to_int (threadref *ref)
3131 {
3132 int i, value = 0;
3133 unsigned char *scan;
3134
3135 scan = *ref;
3136 scan += 4;
3137 i = 4;
3138 while (i-- > 0)
3139 value = (value << 8) | ((*scan++) & 0xff);
3140 return value;
3141 }
3142
3143 static void
3144 copy_threadref (threadref *dest, threadref *src)
3145 {
3146 int i;
3147 unsigned char *csrc, *cdest;
3148
3149 csrc = (unsigned char *) src;
3150 cdest = (unsigned char *) dest;
3151 i = 8;
3152 while (i--)
3153 *cdest++ = *csrc++;
3154 }
3155
3156 static int
3157 threadmatch (threadref *dest, threadref *src)
3158 {
3159 /* Things are broken right now, so just assume we got a match. */
3160 #if 0
3161 unsigned char *srcp, *destp;
3162 int i, result;
3163 srcp = (char *) src;
3164 destp = (char *) dest;
3165
3166 result = 1;
3167 while (i-- > 0)
3168 result &= (*srcp++ == *destp++) ? 1 : 0;
3169 return result;
3170 #endif
3171 return 1;
3172 }
3173
3174 /*
3175 threadid:1, # always request threadid
3176 context_exists:2,
3177 display:4,
3178 unique_name:8,
3179 more_display:16
3180 */
3181
3182 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3183
3184 static char *
3185 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3186 {
3187 *pkt++ = 'q'; /* Info Query */
3188 *pkt++ = 'P'; /* process or thread info */
3189 pkt = pack_int (pkt, mode); /* mode */
3190 pkt = pack_threadid (pkt, id); /* threadid */
3191 *pkt = '\0'; /* terminate */
3192 return pkt;
3193 }
3194
3195 /* These values tag the fields in a thread info response packet. */
3196 /* Tagging the fields allows us to request specific fields and to
3197 add more fields as time goes by. */
3198
3199 #define TAG_THREADID 1 /* Echo the thread identifier. */
3200 #define TAG_EXISTS 2 /* Is this process defined enough to
3201 fetch registers and its stack? */
3202 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3203 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3204 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3205 the process. */
3206
3207 int
3208 remote_target::remote_unpack_thread_info_response (char *pkt,
3209 threadref *expectedref,
3210 gdb_ext_thread_info *info)
3211 {
3212 struct remote_state *rs = get_remote_state ();
3213 int mask, length;
3214 int tag;
3215 threadref ref;
3216 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3217 int retval = 1;
3218
3219 /* info->threadid = 0; FIXME: implement zero_threadref. */
3220 info->active = 0;
3221 info->display[0] = '\0';
3222 info->shortname[0] = '\0';
3223 info->more_display[0] = '\0';
3224
3225 /* Assume the characters indicating the packet type have been
3226 stripped. */
3227 pkt = unpack_int (pkt, &mask); /* arg mask */
3228 pkt = unpack_threadid (pkt, &ref);
3229
3230 if (mask == 0)
3231 warning (_("Incomplete response to threadinfo request."));
3232 if (!threadmatch (&ref, expectedref))
3233 { /* This is an answer to a different request. */
3234 warning (_("ERROR RMT Thread info mismatch."));
3235 return 0;
3236 }
3237 copy_threadref (&info->threadid, &ref);
3238
3239 /* Loop on tagged fields , try to bail if something goes wrong. */
3240
3241 /* Packets are terminated with nulls. */
3242 while ((pkt < limit) && mask && *pkt)
3243 {
3244 pkt = unpack_int (pkt, &tag); /* tag */
3245 pkt = unpack_byte (pkt, &length); /* length */
3246 if (!(tag & mask)) /* Tags out of synch with mask. */
3247 {
3248 warning (_("ERROR RMT: threadinfo tag mismatch."));
3249 retval = 0;
3250 break;
3251 }
3252 if (tag == TAG_THREADID)
3253 {
3254 if (length != 16)
3255 {
3256 warning (_("ERROR RMT: length of threadid is not 16."));
3257 retval = 0;
3258 break;
3259 }
3260 pkt = unpack_threadid (pkt, &ref);
3261 mask = mask & ~TAG_THREADID;
3262 continue;
3263 }
3264 if (tag == TAG_EXISTS)
3265 {
3266 info->active = stub_unpack_int (pkt, length);
3267 pkt += length;
3268 mask = mask & ~(TAG_EXISTS);
3269 if (length > 8)
3270 {
3271 warning (_("ERROR RMT: 'exists' length too long."));
3272 retval = 0;
3273 break;
3274 }
3275 continue;
3276 }
3277 if (tag == TAG_THREADNAME)
3278 {
3279 pkt = unpack_string (pkt, &info->shortname[0], length);
3280 mask = mask & ~TAG_THREADNAME;
3281 continue;
3282 }
3283 if (tag == TAG_DISPLAY)
3284 {
3285 pkt = unpack_string (pkt, &info->display[0], length);
3286 mask = mask & ~TAG_DISPLAY;
3287 continue;
3288 }
3289 if (tag == TAG_MOREDISPLAY)
3290 {
3291 pkt = unpack_string (pkt, &info->more_display[0], length);
3292 mask = mask & ~TAG_MOREDISPLAY;
3293 continue;
3294 }
3295 warning (_("ERROR RMT: unknown thread info tag."));
3296 break; /* Not a tag we know about. */
3297 }
3298 return retval;
3299 }
3300
3301 int
3302 remote_target::remote_get_threadinfo (threadref *threadid,
3303 int fieldset,
3304 gdb_ext_thread_info *info)
3305 {
3306 struct remote_state *rs = get_remote_state ();
3307 int result;
3308
3309 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3310 putpkt (rs->buf);
3311 getpkt (&rs->buf, 0);
3312
3313 if (rs->buf[0] == '\0')
3314 return 0;
3315
3316 result = remote_unpack_thread_info_response (&rs->buf[2],
3317 threadid, info);
3318 return result;
3319 }
3320
3321 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3322
3323 static char *
3324 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3325 threadref *nextthread)
3326 {
3327 *pkt++ = 'q'; /* info query packet */
3328 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3329 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3330 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3331 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3332 *pkt = '\0';
3333 return pkt;
3334 }
3335
3336 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3337
3338 int
3339 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3340 threadref *original_echo,
3341 threadref *resultlist,
3342 int *doneflag)
3343 {
3344 struct remote_state *rs = get_remote_state ();
3345 char *limit;
3346 int count, resultcount, done;
3347
3348 resultcount = 0;
3349 /* Assume the 'q' and 'M chars have been stripped. */
3350 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3351 /* done parse past here */
3352 pkt = unpack_byte (pkt, &count); /* count field */
3353 pkt = unpack_nibble (pkt, &done);
3354 /* The first threadid is the argument threadid. */
3355 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3356 while ((count-- > 0) && (pkt < limit))
3357 {
3358 pkt = unpack_threadid (pkt, resultlist++);
3359 if (resultcount++ >= result_limit)
3360 break;
3361 }
3362 if (doneflag)
3363 *doneflag = done;
3364 return resultcount;
3365 }
3366
3367 /* Fetch the next batch of threads from the remote. Returns -1 if the
3368 qL packet is not supported, 0 on error and 1 on success. */
3369
3370 int
3371 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3372 int result_limit, int *done, int *result_count,
3373 threadref *threadlist)
3374 {
3375 struct remote_state *rs = get_remote_state ();
3376 int result = 1;
3377
3378 /* Truncate result limit to be smaller than the packet size. */
3379 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3380 >= get_remote_packet_size ())
3381 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3382
3383 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3384 nextthread);
3385 putpkt (rs->buf);
3386 getpkt (&rs->buf, 0);
3387 if (rs->buf[0] == '\0')
3388 {
3389 /* Packet not supported. */
3390 return -1;
3391 }
3392
3393 *result_count =
3394 parse_threadlist_response (&rs->buf[2], result_limit,
3395 &rs->echo_nextthread, threadlist, done);
3396
3397 if (!threadmatch (&rs->echo_nextthread, nextthread))
3398 {
3399 /* FIXME: This is a good reason to drop the packet. */
3400 /* Possibly, there is a duplicate response. */
3401 /* Possibilities :
3402 retransmit immediatly - race conditions
3403 retransmit after timeout - yes
3404 exit
3405 wait for packet, then exit
3406 */
3407 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3408 return 0; /* I choose simply exiting. */
3409 }
3410 if (*result_count <= 0)
3411 {
3412 if (*done != 1)
3413 {
3414 warning (_("RMT ERROR : failed to get remote thread list."));
3415 result = 0;
3416 }
3417 return result; /* break; */
3418 }
3419 if (*result_count > result_limit)
3420 {
3421 *result_count = 0;
3422 warning (_("RMT ERROR: threadlist response longer than requested."));
3423 return 0;
3424 }
3425 return result;
3426 }
3427
3428 /* Fetch the list of remote threads, with the qL packet, and call
3429 STEPFUNCTION for each thread found. Stops iterating and returns 1
3430 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3431 STEPFUNCTION returns false. If the packet is not supported,
3432 returns -1. */
3433
3434 int
3435 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3436 void *context, int looplimit)
3437 {
3438 struct remote_state *rs = get_remote_state ();
3439 int done, i, result_count;
3440 int startflag = 1;
3441 int result = 1;
3442 int loopcount = 0;
3443
3444 done = 0;
3445 while (!done)
3446 {
3447 if (loopcount++ > looplimit)
3448 {
3449 result = 0;
3450 warning (_("Remote fetch threadlist -infinite loop-."));
3451 break;
3452 }
3453 result = remote_get_threadlist (startflag, &rs->nextthread,
3454 MAXTHREADLISTRESULTS,
3455 &done, &result_count,
3456 rs->resultthreadlist);
3457 if (result <= 0)
3458 break;
3459 /* Clear for later iterations. */
3460 startflag = 0;
3461 /* Setup to resume next batch of thread references, set nextthread. */
3462 if (result_count >= 1)
3463 copy_threadref (&rs->nextthread,
3464 &rs->resultthreadlist[result_count - 1]);
3465 i = 0;
3466 while (result_count--)
3467 {
3468 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3469 {
3470 result = 0;
3471 break;
3472 }
3473 }
3474 }
3475 return result;
3476 }
3477
3478 /* A thread found on the remote target. */
3479
3480 struct thread_item
3481 {
3482 explicit thread_item (ptid_t ptid_)
3483 : ptid (ptid_)
3484 {}
3485
3486 thread_item (thread_item &&other) = default;
3487 thread_item &operator= (thread_item &&other) = default;
3488
3489 DISABLE_COPY_AND_ASSIGN (thread_item);
3490
3491 /* The thread's PTID. */
3492 ptid_t ptid;
3493
3494 /* The thread's extra info. */
3495 std::string extra;
3496
3497 /* The thread's name. */
3498 std::string name;
3499
3500 /* The core the thread was running on. -1 if not known. */
3501 int core = -1;
3502
3503 /* The thread handle associated with the thread. */
3504 gdb::byte_vector thread_handle;
3505 };
3506
3507 /* Context passed around to the various methods listing remote
3508 threads. As new threads are found, they're added to the ITEMS
3509 vector. */
3510
3511 struct threads_listing_context
3512 {
3513 /* Return true if this object contains an entry for a thread with ptid
3514 PTID. */
3515
3516 bool contains_thread (ptid_t ptid) const
3517 {
3518 auto match_ptid = [&] (const thread_item &item)
3519 {
3520 return item.ptid == ptid;
3521 };
3522
3523 auto it = std::find_if (this->items.begin (),
3524 this->items.end (),
3525 match_ptid);
3526
3527 return it != this->items.end ();
3528 }
3529
3530 /* Remove the thread with ptid PTID. */
3531
3532 void remove_thread (ptid_t ptid)
3533 {
3534 auto match_ptid = [&] (const thread_item &item)
3535 {
3536 return item.ptid == ptid;
3537 };
3538
3539 auto it = std::remove_if (this->items.begin (),
3540 this->items.end (),
3541 match_ptid);
3542
3543 if (it != this->items.end ())
3544 this->items.erase (it);
3545 }
3546
3547 /* The threads found on the remote target. */
3548 std::vector<thread_item> items;
3549 };
3550
3551 static int
3552 remote_newthread_step (threadref *ref, void *data)
3553 {
3554 struct threads_listing_context *context
3555 = (struct threads_listing_context *) data;
3556 int pid = inferior_ptid.pid ();
3557 int lwp = threadref_to_int (ref);
3558 ptid_t ptid (pid, lwp);
3559
3560 context->items.emplace_back (ptid);
3561
3562 return 1; /* continue iterator */
3563 }
3564
3565 #define CRAZY_MAX_THREADS 1000
3566
3567 ptid_t
3568 remote_target::remote_current_thread (ptid_t oldpid)
3569 {
3570 struct remote_state *rs = get_remote_state ();
3571
3572 putpkt ("qC");
3573 getpkt (&rs->buf, 0);
3574 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3575 {
3576 const char *obuf;
3577 ptid_t result;
3578
3579 result = read_ptid (&rs->buf[2], &obuf);
3580 if (*obuf != '\0' && remote_debug)
3581 fprintf_unfiltered (gdb_stdlog,
3582 "warning: garbage in qC reply\n");
3583
3584 return result;
3585 }
3586 else
3587 return oldpid;
3588 }
3589
3590 /* List remote threads using the deprecated qL packet. */
3591
3592 int
3593 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3594 {
3595 if (remote_threadlist_iterator (remote_newthread_step, context,
3596 CRAZY_MAX_THREADS) >= 0)
3597 return 1;
3598
3599 return 0;
3600 }
3601
3602 #if defined(HAVE_LIBEXPAT)
3603
3604 static void
3605 start_thread (struct gdb_xml_parser *parser,
3606 const struct gdb_xml_element *element,
3607 void *user_data,
3608 std::vector<gdb_xml_value> &attributes)
3609 {
3610 struct threads_listing_context *data
3611 = (struct threads_listing_context *) user_data;
3612 struct gdb_xml_value *attr;
3613
3614 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3615 ptid_t ptid = read_ptid (id, NULL);
3616
3617 data->items.emplace_back (ptid);
3618 thread_item &item = data->items.back ();
3619
3620 attr = xml_find_attribute (attributes, "core");
3621 if (attr != NULL)
3622 item.core = *(ULONGEST *) attr->value.get ();
3623
3624 attr = xml_find_attribute (attributes, "name");
3625 if (attr != NULL)
3626 item.name = (const char *) attr->value.get ();
3627
3628 attr = xml_find_attribute (attributes, "handle");
3629 if (attr != NULL)
3630 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3631 }
3632
3633 static void
3634 end_thread (struct gdb_xml_parser *parser,
3635 const struct gdb_xml_element *element,
3636 void *user_data, const char *body_text)
3637 {
3638 struct threads_listing_context *data
3639 = (struct threads_listing_context *) user_data;
3640
3641 if (body_text != NULL && *body_text != '\0')
3642 data->items.back ().extra = body_text;
3643 }
3644
3645 const struct gdb_xml_attribute thread_attributes[] = {
3646 { "id", GDB_XML_AF_NONE, NULL, NULL },
3647 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3648 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3649 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3650 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3651 };
3652
3653 const struct gdb_xml_element thread_children[] = {
3654 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3655 };
3656
3657 const struct gdb_xml_element threads_children[] = {
3658 { "thread", thread_attributes, thread_children,
3659 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3660 start_thread, end_thread },
3661 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3662 };
3663
3664 const struct gdb_xml_element threads_elements[] = {
3665 { "threads", NULL, threads_children,
3666 GDB_XML_EF_NONE, NULL, NULL },
3667 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3668 };
3669
3670 #endif
3671
3672 /* List remote threads using qXfer:threads:read. */
3673
3674 int
3675 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3676 {
3677 #if defined(HAVE_LIBEXPAT)
3678 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3679 {
3680 gdb::optional<gdb::char_vector> xml
3681 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3682
3683 if (xml && (*xml)[0] != '\0')
3684 {
3685 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3686 threads_elements, xml->data (), context);
3687 }
3688
3689 return 1;
3690 }
3691 #endif
3692
3693 return 0;
3694 }
3695
3696 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3697
3698 int
3699 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3700 {
3701 struct remote_state *rs = get_remote_state ();
3702
3703 if (rs->use_threadinfo_query)
3704 {
3705 const char *bufp;
3706
3707 putpkt ("qfThreadInfo");
3708 getpkt (&rs->buf, 0);
3709 bufp = rs->buf.data ();
3710 if (bufp[0] != '\0') /* q packet recognized */
3711 {
3712 while (*bufp++ == 'm') /* reply contains one or more TID */
3713 {
3714 do
3715 {
3716 ptid_t ptid = read_ptid (bufp, &bufp);
3717 context->items.emplace_back (ptid);
3718 }
3719 while (*bufp++ == ','); /* comma-separated list */
3720 putpkt ("qsThreadInfo");
3721 getpkt (&rs->buf, 0);
3722 bufp = rs->buf.data ();
3723 }
3724 return 1;
3725 }
3726 else
3727 {
3728 /* Packet not recognized. */
3729 rs->use_threadinfo_query = 0;
3730 }
3731 }
3732
3733 return 0;
3734 }
3735
3736 /* Implement the to_update_thread_list function for the remote
3737 targets. */
3738
3739 void
3740 remote_target::update_thread_list ()
3741 {
3742 struct threads_listing_context context;
3743 int got_list = 0;
3744
3745 /* We have a few different mechanisms to fetch the thread list. Try
3746 them all, starting with the most preferred one first, falling
3747 back to older methods. */
3748 if (remote_get_threads_with_qxfer (&context)
3749 || remote_get_threads_with_qthreadinfo (&context)
3750 || remote_get_threads_with_ql (&context))
3751 {
3752 got_list = 1;
3753
3754 if (context.items.empty ()
3755 && remote_thread_always_alive (inferior_ptid))
3756 {
3757 /* Some targets don't really support threads, but still
3758 reply an (empty) thread list in response to the thread
3759 listing packets, instead of replying "packet not
3760 supported". Exit early so we don't delete the main
3761 thread. */
3762 return;
3763 }
3764
3765 /* CONTEXT now holds the current thread list on the remote
3766 target end. Delete GDB-side threads no longer found on the
3767 target. */
3768 for (thread_info *tp : all_threads_safe ())
3769 {
3770 if (!context.contains_thread (tp->ptid))
3771 {
3772 /* Not found. */
3773 delete_thread (tp);
3774 }
3775 }
3776
3777 /* Remove any unreported fork child threads from CONTEXT so
3778 that we don't interfere with follow fork, which is where
3779 creation of such threads is handled. */
3780 remove_new_fork_children (&context);
3781
3782 /* And now add threads we don't know about yet to our list. */
3783 for (thread_item &item : context.items)
3784 {
3785 if (item.ptid != null_ptid)
3786 {
3787 /* In non-stop mode, we assume new found threads are
3788 executing until proven otherwise with a stop reply.
3789 In all-stop, we can only get here if all threads are
3790 stopped. */
3791 int executing = target_is_non_stop_p () ? 1 : 0;
3792
3793 remote_notice_new_inferior (item.ptid, executing);
3794
3795 thread_info *tp = find_thread_ptid (item.ptid);
3796 remote_thread_info *info = get_remote_thread_info (tp);
3797 info->core = item.core;
3798 info->extra = std::move (item.extra);
3799 info->name = std::move (item.name);
3800 info->thread_handle = std::move (item.thread_handle);
3801 }
3802 }
3803 }
3804
3805 if (!got_list)
3806 {
3807 /* If no thread listing method is supported, then query whether
3808 each known thread is alive, one by one, with the T packet.
3809 If the target doesn't support threads at all, then this is a
3810 no-op. See remote_thread_alive. */
3811 prune_threads ();
3812 }
3813 }
3814
3815 /*
3816 * Collect a descriptive string about the given thread.
3817 * The target may say anything it wants to about the thread
3818 * (typically info about its blocked / runnable state, name, etc.).
3819 * This string will appear in the info threads display.
3820 *
3821 * Optional: targets are not required to implement this function.
3822 */
3823
3824 const char *
3825 remote_target::extra_thread_info (thread_info *tp)
3826 {
3827 struct remote_state *rs = get_remote_state ();
3828 int set;
3829 threadref id;
3830 struct gdb_ext_thread_info threadinfo;
3831
3832 if (rs->remote_desc == 0) /* paranoia */
3833 internal_error (__FILE__, __LINE__,
3834 _("remote_threads_extra_info"));
3835
3836 if (tp->ptid == magic_null_ptid
3837 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3838 /* This is the main thread which was added by GDB. The remote
3839 server doesn't know about it. */
3840 return NULL;
3841
3842 std::string &extra = get_remote_thread_info (tp)->extra;
3843
3844 /* If already have cached info, use it. */
3845 if (!extra.empty ())
3846 return extra.c_str ();
3847
3848 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3849 {
3850 /* If we're using qXfer:threads:read, then the extra info is
3851 included in the XML. So if we didn't have anything cached,
3852 it's because there's really no extra info. */
3853 return NULL;
3854 }
3855
3856 if (rs->use_threadextra_query)
3857 {
3858 char *b = rs->buf.data ();
3859 char *endb = b + get_remote_packet_size ();
3860
3861 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3862 b += strlen (b);
3863 write_ptid (b, endb, tp->ptid);
3864
3865 putpkt (rs->buf);
3866 getpkt (&rs->buf, 0);
3867 if (rs->buf[0] != 0)
3868 {
3869 extra.resize (strlen (rs->buf.data ()) / 2);
3870 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3871 return extra.c_str ();
3872 }
3873 }
3874
3875 /* If the above query fails, fall back to the old method. */
3876 rs->use_threadextra_query = 0;
3877 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3878 | TAG_MOREDISPLAY | TAG_DISPLAY;
3879 int_to_threadref (&id, tp->ptid.lwp ());
3880 if (remote_get_threadinfo (&id, set, &threadinfo))
3881 if (threadinfo.active)
3882 {
3883 if (*threadinfo.shortname)
3884 string_appendf (extra, " Name: %s", threadinfo.shortname);
3885 if (*threadinfo.display)
3886 {
3887 if (!extra.empty ())
3888 extra += ',';
3889 string_appendf (extra, " State: %s", threadinfo.display);
3890 }
3891 if (*threadinfo.more_display)
3892 {
3893 if (!extra.empty ())
3894 extra += ',';
3895 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3896 }
3897 return extra.c_str ();
3898 }
3899 return NULL;
3900 }
3901 \f
3902
3903 bool
3904 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3905 struct static_tracepoint_marker *marker)
3906 {
3907 struct remote_state *rs = get_remote_state ();
3908 char *p = rs->buf.data ();
3909
3910 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3911 p += strlen (p);
3912 p += hexnumstr (p, addr);
3913 putpkt (rs->buf);
3914 getpkt (&rs->buf, 0);
3915 p = rs->buf.data ();
3916
3917 if (*p == 'E')
3918 error (_("Remote failure reply: %s"), p);
3919
3920 if (*p++ == 'm')
3921 {
3922 parse_static_tracepoint_marker_definition (p, NULL, marker);
3923 return true;
3924 }
3925
3926 return false;
3927 }
3928
3929 std::vector<static_tracepoint_marker>
3930 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3931 {
3932 struct remote_state *rs = get_remote_state ();
3933 std::vector<static_tracepoint_marker> markers;
3934 const char *p;
3935 static_tracepoint_marker marker;
3936
3937 /* Ask for a first packet of static tracepoint marker
3938 definition. */
3939 putpkt ("qTfSTM");
3940 getpkt (&rs->buf, 0);
3941 p = rs->buf.data ();
3942 if (*p == 'E')
3943 error (_("Remote failure reply: %s"), p);
3944
3945 while (*p++ == 'm')
3946 {
3947 do
3948 {
3949 parse_static_tracepoint_marker_definition (p, &p, &marker);
3950
3951 if (strid == NULL || marker.str_id == strid)
3952 markers.push_back (std::move (marker));
3953 }
3954 while (*p++ == ','); /* comma-separated list */
3955 /* Ask for another packet of static tracepoint definition. */
3956 putpkt ("qTsSTM");
3957 getpkt (&rs->buf, 0);
3958 p = rs->buf.data ();
3959 }
3960
3961 return markers;
3962 }
3963
3964 \f
3965 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3966
3967 ptid_t
3968 remote_target::get_ada_task_ptid (long lwp, long thread)
3969 {
3970 return ptid_t (inferior_ptid.pid (), lwp, 0);
3971 }
3972 \f
3973
3974 /* Restart the remote side; this is an extended protocol operation. */
3975
3976 void
3977 remote_target::extended_remote_restart ()
3978 {
3979 struct remote_state *rs = get_remote_state ();
3980
3981 /* Send the restart command; for reasons I don't understand the
3982 remote side really expects a number after the "R". */
3983 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
3984 putpkt (rs->buf);
3985
3986 remote_fileio_reset ();
3987 }
3988 \f
3989 /* Clean up connection to a remote debugger. */
3990
3991 void
3992 remote_target::close ()
3993 {
3994 /* Make sure we leave stdin registered in the event loop. */
3995 terminal_ours ();
3996
3997 /* We don't have a connection to the remote stub anymore. Get rid
3998 of all the inferiors and their threads we were controlling.
3999 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4000 will be unable to find the thread corresponding to (pid, 0, 0). */
4001 inferior_ptid = null_ptid;
4002 discard_all_inferiors ();
4003
4004 trace_reset_local_state ();
4005
4006 delete this;
4007 }
4008
4009 remote_target::~remote_target ()
4010 {
4011 struct remote_state *rs = get_remote_state ();
4012
4013 /* Check for NULL because we may get here with a partially
4014 constructed target/connection. */
4015 if (rs->remote_desc == nullptr)
4016 return;
4017
4018 serial_close (rs->remote_desc);
4019
4020 /* We are destroying the remote target, so we should discard
4021 everything of this target. */
4022 discard_pending_stop_replies_in_queue ();
4023
4024 if (rs->remote_async_inferior_event_token)
4025 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4026
4027 delete rs->notif_state;
4028 }
4029
4030 /* Query the remote side for the text, data and bss offsets. */
4031
4032 void
4033 remote_target::get_offsets ()
4034 {
4035 struct remote_state *rs = get_remote_state ();
4036 char *buf;
4037 char *ptr;
4038 int lose, num_segments = 0, do_sections, do_segments;
4039 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4040 struct section_offsets *offs;
4041 struct symfile_segment_data *data;
4042
4043 if (symfile_objfile == NULL)
4044 return;
4045
4046 putpkt ("qOffsets");
4047 getpkt (&rs->buf, 0);
4048 buf = rs->buf.data ();
4049
4050 if (buf[0] == '\000')
4051 return; /* Return silently. Stub doesn't support
4052 this command. */
4053 if (buf[0] == 'E')
4054 {
4055 warning (_("Remote failure reply: %s"), buf);
4056 return;
4057 }
4058
4059 /* Pick up each field in turn. This used to be done with scanf, but
4060 scanf will make trouble if CORE_ADDR size doesn't match
4061 conversion directives correctly. The following code will work
4062 with any size of CORE_ADDR. */
4063 text_addr = data_addr = bss_addr = 0;
4064 ptr = buf;
4065 lose = 0;
4066
4067 if (startswith (ptr, "Text="))
4068 {
4069 ptr += 5;
4070 /* Don't use strtol, could lose on big values. */
4071 while (*ptr && *ptr != ';')
4072 text_addr = (text_addr << 4) + fromhex (*ptr++);
4073
4074 if (startswith (ptr, ";Data="))
4075 {
4076 ptr += 6;
4077 while (*ptr && *ptr != ';')
4078 data_addr = (data_addr << 4) + fromhex (*ptr++);
4079 }
4080 else
4081 lose = 1;
4082
4083 if (!lose && startswith (ptr, ";Bss="))
4084 {
4085 ptr += 5;
4086 while (*ptr && *ptr != ';')
4087 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4088
4089 if (bss_addr != data_addr)
4090 warning (_("Target reported unsupported offsets: %s"), buf);
4091 }
4092 else
4093 lose = 1;
4094 }
4095 else if (startswith (ptr, "TextSeg="))
4096 {
4097 ptr += 8;
4098 /* Don't use strtol, could lose on big values. */
4099 while (*ptr && *ptr != ';')
4100 text_addr = (text_addr << 4) + fromhex (*ptr++);
4101 num_segments = 1;
4102
4103 if (startswith (ptr, ";DataSeg="))
4104 {
4105 ptr += 9;
4106 while (*ptr && *ptr != ';')
4107 data_addr = (data_addr << 4) + fromhex (*ptr++);
4108 num_segments++;
4109 }
4110 }
4111 else
4112 lose = 1;
4113
4114 if (lose)
4115 error (_("Malformed response to offset query, %s"), buf);
4116 else if (*ptr != '\0')
4117 warning (_("Target reported unsupported offsets: %s"), buf);
4118
4119 offs = ((struct section_offsets *)
4120 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
4121 memcpy (offs, symfile_objfile->section_offsets,
4122 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
4123
4124 data = get_symfile_segment_data (symfile_objfile->obfd);
4125 do_segments = (data != NULL);
4126 do_sections = num_segments == 0;
4127
4128 if (num_segments > 0)
4129 {
4130 segments[0] = text_addr;
4131 segments[1] = data_addr;
4132 }
4133 /* If we have two segments, we can still try to relocate everything
4134 by assuming that the .text and .data offsets apply to the whole
4135 text and data segments. Convert the offsets given in the packet
4136 to base addresses for symfile_map_offsets_to_segments. */
4137 else if (data && data->num_segments == 2)
4138 {
4139 segments[0] = data->segment_bases[0] + text_addr;
4140 segments[1] = data->segment_bases[1] + data_addr;
4141 num_segments = 2;
4142 }
4143 /* If the object file has only one segment, assume that it is text
4144 rather than data; main programs with no writable data are rare,
4145 but programs with no code are useless. Of course the code might
4146 have ended up in the data segment... to detect that we would need
4147 the permissions here. */
4148 else if (data && data->num_segments == 1)
4149 {
4150 segments[0] = data->segment_bases[0] + text_addr;
4151 num_segments = 1;
4152 }
4153 /* There's no way to relocate by segment. */
4154 else
4155 do_segments = 0;
4156
4157 if (do_segments)
4158 {
4159 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4160 offs, num_segments, segments);
4161
4162 if (ret == 0 && !do_sections)
4163 error (_("Can not handle qOffsets TextSeg "
4164 "response with this symbol file"));
4165
4166 if (ret > 0)
4167 do_sections = 0;
4168 }
4169
4170 if (data)
4171 free_symfile_segment_data (data);
4172
4173 if (do_sections)
4174 {
4175 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4176
4177 /* This is a temporary kludge to force data and bss to use the
4178 same offsets because that's what nlmconv does now. The real
4179 solution requires changes to the stub and remote.c that I
4180 don't have time to do right now. */
4181
4182 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4183 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4184 }
4185
4186 objfile_relocate (symfile_objfile, offs);
4187 }
4188
4189 /* Send interrupt_sequence to remote target. */
4190
4191 void
4192 remote_target::send_interrupt_sequence ()
4193 {
4194 struct remote_state *rs = get_remote_state ();
4195
4196 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4197 remote_serial_write ("\x03", 1);
4198 else if (interrupt_sequence_mode == interrupt_sequence_break)
4199 serial_send_break (rs->remote_desc);
4200 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4201 {
4202 serial_send_break (rs->remote_desc);
4203 remote_serial_write ("g", 1);
4204 }
4205 else
4206 internal_error (__FILE__, __LINE__,
4207 _("Invalid value for interrupt_sequence_mode: %s."),
4208 interrupt_sequence_mode);
4209 }
4210
4211
4212 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4213 and extract the PTID. Returns NULL_PTID if not found. */
4214
4215 static ptid_t
4216 stop_reply_extract_thread (char *stop_reply)
4217 {
4218 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4219 {
4220 const char *p;
4221
4222 /* Txx r:val ; r:val (...) */
4223 p = &stop_reply[3];
4224
4225 /* Look for "register" named "thread". */
4226 while (*p != '\0')
4227 {
4228 const char *p1;
4229
4230 p1 = strchr (p, ':');
4231 if (p1 == NULL)
4232 return null_ptid;
4233
4234 if (strncmp (p, "thread", p1 - p) == 0)
4235 return read_ptid (++p1, &p);
4236
4237 p1 = strchr (p, ';');
4238 if (p1 == NULL)
4239 return null_ptid;
4240 p1++;
4241
4242 p = p1;
4243 }
4244 }
4245
4246 return null_ptid;
4247 }
4248
4249 /* Determine the remote side's current thread. If we have a stop
4250 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4251 "thread" register we can extract the current thread from. If not,
4252 ask the remote which is the current thread with qC. The former
4253 method avoids a roundtrip. */
4254
4255 ptid_t
4256 remote_target::get_current_thread (char *wait_status)
4257 {
4258 ptid_t ptid = null_ptid;
4259
4260 /* Note we don't use remote_parse_stop_reply as that makes use of
4261 the target architecture, which we haven't yet fully determined at
4262 this point. */
4263 if (wait_status != NULL)
4264 ptid = stop_reply_extract_thread (wait_status);
4265 if (ptid == null_ptid)
4266 ptid = remote_current_thread (inferior_ptid);
4267
4268 return ptid;
4269 }
4270
4271 /* Query the remote target for which is the current thread/process,
4272 add it to our tables, and update INFERIOR_PTID. The caller is
4273 responsible for setting the state such that the remote end is ready
4274 to return the current thread.
4275
4276 This function is called after handling the '?' or 'vRun' packets,
4277 whose response is a stop reply from which we can also try
4278 extracting the thread. If the target doesn't support the explicit
4279 qC query, we infer the current thread from that stop reply, passed
4280 in in WAIT_STATUS, which may be NULL. */
4281
4282 void
4283 remote_target::add_current_inferior_and_thread (char *wait_status)
4284 {
4285 struct remote_state *rs = get_remote_state ();
4286 bool fake_pid_p = false;
4287
4288 inferior_ptid = null_ptid;
4289
4290 /* Now, if we have thread information, update inferior_ptid. */
4291 ptid_t curr_ptid = get_current_thread (wait_status);
4292
4293 if (curr_ptid != null_ptid)
4294 {
4295 if (!remote_multi_process_p (rs))
4296 fake_pid_p = true;
4297 }
4298 else
4299 {
4300 /* Without this, some commands which require an active target
4301 (such as kill) won't work. This variable serves (at least)
4302 double duty as both the pid of the target process (if it has
4303 such), and as a flag indicating that a target is active. */
4304 curr_ptid = magic_null_ptid;
4305 fake_pid_p = true;
4306 }
4307
4308 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4309
4310 /* Add the main thread and switch to it. Don't try reading
4311 registers yet, since we haven't fetched the target description
4312 yet. */
4313 thread_info *tp = add_thread_silent (curr_ptid);
4314 switch_to_thread_no_regs (tp);
4315 }
4316
4317 /* Print info about a thread that was found already stopped on
4318 connection. */
4319
4320 static void
4321 print_one_stopped_thread (struct thread_info *thread)
4322 {
4323 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4324
4325 switch_to_thread (thread);
4326 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4327 set_current_sal_from_frame (get_current_frame ());
4328
4329 thread->suspend.waitstatus_pending_p = 0;
4330
4331 if (ws->kind == TARGET_WAITKIND_STOPPED)
4332 {
4333 enum gdb_signal sig = ws->value.sig;
4334
4335 if (signal_print_state (sig))
4336 gdb::observers::signal_received.notify (sig);
4337 }
4338 gdb::observers::normal_stop.notify (NULL, 1);
4339 }
4340
4341 /* Process all initial stop replies the remote side sent in response
4342 to the ? packet. These indicate threads that were already stopped
4343 on initial connection. We mark these threads as stopped and print
4344 their current frame before giving the user the prompt. */
4345
4346 void
4347 remote_target::process_initial_stop_replies (int from_tty)
4348 {
4349 int pending_stop_replies = stop_reply_queue_length ();
4350 struct thread_info *selected = NULL;
4351 struct thread_info *lowest_stopped = NULL;
4352 struct thread_info *first = NULL;
4353
4354 /* Consume the initial pending events. */
4355 while (pending_stop_replies-- > 0)
4356 {
4357 ptid_t waiton_ptid = minus_one_ptid;
4358 ptid_t event_ptid;
4359 struct target_waitstatus ws;
4360 int ignore_event = 0;
4361
4362 memset (&ws, 0, sizeof (ws));
4363 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4364 if (remote_debug)
4365 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4366
4367 switch (ws.kind)
4368 {
4369 case TARGET_WAITKIND_IGNORE:
4370 case TARGET_WAITKIND_NO_RESUMED:
4371 case TARGET_WAITKIND_SIGNALLED:
4372 case TARGET_WAITKIND_EXITED:
4373 /* We shouldn't see these, but if we do, just ignore. */
4374 if (remote_debug)
4375 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4376 ignore_event = 1;
4377 break;
4378
4379 case TARGET_WAITKIND_EXECD:
4380 xfree (ws.value.execd_pathname);
4381 break;
4382 default:
4383 break;
4384 }
4385
4386 if (ignore_event)
4387 continue;
4388
4389 struct thread_info *evthread = find_thread_ptid (event_ptid);
4390
4391 if (ws.kind == TARGET_WAITKIND_STOPPED)
4392 {
4393 enum gdb_signal sig = ws.value.sig;
4394
4395 /* Stubs traditionally report SIGTRAP as initial signal,
4396 instead of signal 0. Suppress it. */
4397 if (sig == GDB_SIGNAL_TRAP)
4398 sig = GDB_SIGNAL_0;
4399 evthread->suspend.stop_signal = sig;
4400 ws.value.sig = sig;
4401 }
4402
4403 evthread->suspend.waitstatus = ws;
4404
4405 if (ws.kind != TARGET_WAITKIND_STOPPED
4406 || ws.value.sig != GDB_SIGNAL_0)
4407 evthread->suspend.waitstatus_pending_p = 1;
4408
4409 set_executing (event_ptid, 0);
4410 set_running (event_ptid, 0);
4411 get_remote_thread_info (evthread)->vcont_resumed = 0;
4412 }
4413
4414 /* "Notice" the new inferiors before anything related to
4415 registers/memory. */
4416 for (inferior *inf : all_non_exited_inferiors ())
4417 {
4418 inf->needs_setup = 1;
4419
4420 if (non_stop)
4421 {
4422 thread_info *thread = any_live_thread_of_inferior (inf);
4423 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4424 from_tty);
4425 }
4426 }
4427
4428 /* If all-stop on top of non-stop, pause all threads. Note this
4429 records the threads' stop pc, so must be done after "noticing"
4430 the inferiors. */
4431 if (!non_stop)
4432 {
4433 stop_all_threads ();
4434
4435 /* If all threads of an inferior were already stopped, we
4436 haven't setup the inferior yet. */
4437 for (inferior *inf : all_non_exited_inferiors ())
4438 {
4439 if (inf->needs_setup)
4440 {
4441 thread_info *thread = any_live_thread_of_inferior (inf);
4442 switch_to_thread_no_regs (thread);
4443 setup_inferior (0);
4444 }
4445 }
4446 }
4447
4448 /* Now go over all threads that are stopped, and print their current
4449 frame. If all-stop, then if there's a signalled thread, pick
4450 that as current. */
4451 for (thread_info *thread : all_non_exited_threads ())
4452 {
4453 if (first == NULL)
4454 first = thread;
4455
4456 if (!non_stop)
4457 thread->set_running (false);
4458 else if (thread->state != THREAD_STOPPED)
4459 continue;
4460
4461 if (selected == NULL
4462 && thread->suspend.waitstatus_pending_p)
4463 selected = thread;
4464
4465 if (lowest_stopped == NULL
4466 || thread->inf->num < lowest_stopped->inf->num
4467 || thread->per_inf_num < lowest_stopped->per_inf_num)
4468 lowest_stopped = thread;
4469
4470 if (non_stop)
4471 print_one_stopped_thread (thread);
4472 }
4473
4474 /* In all-stop, we only print the status of one thread, and leave
4475 others with their status pending. */
4476 if (!non_stop)
4477 {
4478 thread_info *thread = selected;
4479 if (thread == NULL)
4480 thread = lowest_stopped;
4481 if (thread == NULL)
4482 thread = first;
4483
4484 print_one_stopped_thread (thread);
4485 }
4486
4487 /* For "info program". */
4488 thread_info *thread = inferior_thread ();
4489 if (thread->state == THREAD_STOPPED)
4490 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4491 }
4492
4493 /* Start the remote connection and sync state. */
4494
4495 void
4496 remote_target::start_remote (int from_tty, int extended_p)
4497 {
4498 struct remote_state *rs = get_remote_state ();
4499 struct packet_config *noack_config;
4500 char *wait_status = NULL;
4501
4502 /* Signal other parts that we're going through the initial setup,
4503 and so things may not be stable yet. E.g., we don't try to
4504 install tracepoints until we've relocated symbols. Also, a
4505 Ctrl-C before we're connected and synced up can't interrupt the
4506 target. Instead, it offers to drop the (potentially wedged)
4507 connection. */
4508 rs->starting_up = 1;
4509
4510 QUIT;
4511
4512 if (interrupt_on_connect)
4513 send_interrupt_sequence ();
4514
4515 /* Ack any packet which the remote side has already sent. */
4516 remote_serial_write ("+", 1);
4517
4518 /* The first packet we send to the target is the optional "supported
4519 packets" request. If the target can answer this, it will tell us
4520 which later probes to skip. */
4521 remote_query_supported ();
4522
4523 /* If the stub wants to get a QAllow, compose one and send it. */
4524 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4525 set_permissions ();
4526
4527 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4528 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4529 as a reply to known packet. For packet "vFile:setfs:" it is an
4530 invalid reply and GDB would return error in
4531 remote_hostio_set_filesystem, making remote files access impossible.
4532 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4533 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4534 {
4535 const char v_mustreplyempty[] = "vMustReplyEmpty";
4536
4537 putpkt (v_mustreplyempty);
4538 getpkt (&rs->buf, 0);
4539 if (strcmp (rs->buf.data (), "OK") == 0)
4540 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4541 else if (strcmp (rs->buf.data (), "") != 0)
4542 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4543 rs->buf.data ());
4544 }
4545
4546 /* Next, we possibly activate noack mode.
4547
4548 If the QStartNoAckMode packet configuration is set to AUTO,
4549 enable noack mode if the stub reported a wish for it with
4550 qSupported.
4551
4552 If set to TRUE, then enable noack mode even if the stub didn't
4553 report it in qSupported. If the stub doesn't reply OK, the
4554 session ends with an error.
4555
4556 If FALSE, then don't activate noack mode, regardless of what the
4557 stub claimed should be the default with qSupported. */
4558
4559 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4560 if (packet_config_support (noack_config) != PACKET_DISABLE)
4561 {
4562 putpkt ("QStartNoAckMode");
4563 getpkt (&rs->buf, 0);
4564 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4565 rs->noack_mode = 1;
4566 }
4567
4568 if (extended_p)
4569 {
4570 /* Tell the remote that we are using the extended protocol. */
4571 putpkt ("!");
4572 getpkt (&rs->buf, 0);
4573 }
4574
4575 /* Let the target know which signals it is allowed to pass down to
4576 the program. */
4577 update_signals_program_target ();
4578
4579 /* Next, if the target can specify a description, read it. We do
4580 this before anything involving memory or registers. */
4581 target_find_description ();
4582
4583 /* Next, now that we know something about the target, update the
4584 address spaces in the program spaces. */
4585 update_address_spaces ();
4586
4587 /* On OSs where the list of libraries is global to all
4588 processes, we fetch them early. */
4589 if (gdbarch_has_global_solist (target_gdbarch ()))
4590 solib_add (NULL, from_tty, auto_solib_add);
4591
4592 if (target_is_non_stop_p ())
4593 {
4594 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4595 error (_("Non-stop mode requested, but remote "
4596 "does not support non-stop"));
4597
4598 putpkt ("QNonStop:1");
4599 getpkt (&rs->buf, 0);
4600
4601 if (strcmp (rs->buf.data (), "OK") != 0)
4602 error (_("Remote refused setting non-stop mode with: %s"),
4603 rs->buf.data ());
4604
4605 /* Find about threads and processes the stub is already
4606 controlling. We default to adding them in the running state.
4607 The '?' query below will then tell us about which threads are
4608 stopped. */
4609 this->update_thread_list ();
4610 }
4611 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4612 {
4613 /* Don't assume that the stub can operate in all-stop mode.
4614 Request it explicitly. */
4615 putpkt ("QNonStop:0");
4616 getpkt (&rs->buf, 0);
4617
4618 if (strcmp (rs->buf.data (), "OK") != 0)
4619 error (_("Remote refused setting all-stop mode with: %s"),
4620 rs->buf.data ());
4621 }
4622
4623 /* Upload TSVs regardless of whether the target is running or not. The
4624 remote stub, such as GDBserver, may have some predefined or builtin
4625 TSVs, even if the target is not running. */
4626 if (get_trace_status (current_trace_status ()) != -1)
4627 {
4628 struct uploaded_tsv *uploaded_tsvs = NULL;
4629
4630 upload_trace_state_variables (&uploaded_tsvs);
4631 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4632 }
4633
4634 /* Check whether the target is running now. */
4635 putpkt ("?");
4636 getpkt (&rs->buf, 0);
4637
4638 if (!target_is_non_stop_p ())
4639 {
4640 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4641 {
4642 if (!extended_p)
4643 error (_("The target is not running (try extended-remote?)"));
4644
4645 /* We're connected, but not running. Drop out before we
4646 call start_remote. */
4647 rs->starting_up = 0;
4648 return;
4649 }
4650 else
4651 {
4652 /* Save the reply for later. */
4653 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4654 strcpy (wait_status, rs->buf.data ());
4655 }
4656
4657 /* Fetch thread list. */
4658 target_update_thread_list ();
4659
4660 /* Let the stub know that we want it to return the thread. */
4661 set_continue_thread (minus_one_ptid);
4662
4663 if (thread_count () == 0)
4664 {
4665 /* Target has no concept of threads at all. GDB treats
4666 non-threaded target as single-threaded; add a main
4667 thread. */
4668 add_current_inferior_and_thread (wait_status);
4669 }
4670 else
4671 {
4672 /* We have thread information; select the thread the target
4673 says should be current. If we're reconnecting to a
4674 multi-threaded program, this will ideally be the thread
4675 that last reported an event before GDB disconnected. */
4676 inferior_ptid = get_current_thread (wait_status);
4677 if (inferior_ptid == null_ptid)
4678 {
4679 /* Odd... The target was able to list threads, but not
4680 tell us which thread was current (no "thread"
4681 register in T stop reply?). Just pick the first
4682 thread in the thread list then. */
4683
4684 if (remote_debug)
4685 fprintf_unfiltered (gdb_stdlog,
4686 "warning: couldn't determine remote "
4687 "current thread; picking first in list.\n");
4688
4689 inferior_ptid = inferior_list->thread_list->ptid;
4690 }
4691 }
4692
4693 /* init_wait_for_inferior should be called before get_offsets in order
4694 to manage `inserted' flag in bp loc in a correct state.
4695 breakpoint_init_inferior, called from init_wait_for_inferior, set
4696 `inserted' flag to 0, while before breakpoint_re_set, called from
4697 start_remote, set `inserted' flag to 1. In the initialization of
4698 inferior, breakpoint_init_inferior should be called first, and then
4699 breakpoint_re_set can be called. If this order is broken, state of
4700 `inserted' flag is wrong, and cause some problems on breakpoint
4701 manipulation. */
4702 init_wait_for_inferior ();
4703
4704 get_offsets (); /* Get text, data & bss offsets. */
4705
4706 /* If we could not find a description using qXfer, and we know
4707 how to do it some other way, try again. This is not
4708 supported for non-stop; it could be, but it is tricky if
4709 there are no stopped threads when we connect. */
4710 if (remote_read_description_p (this)
4711 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4712 {
4713 target_clear_description ();
4714 target_find_description ();
4715 }
4716
4717 /* Use the previously fetched status. */
4718 gdb_assert (wait_status != NULL);
4719 strcpy (rs->buf.data (), wait_status);
4720 rs->cached_wait_status = 1;
4721
4722 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4723 }
4724 else
4725 {
4726 /* Clear WFI global state. Do this before finding about new
4727 threads and inferiors, and setting the current inferior.
4728 Otherwise we would clear the proceed status of the current
4729 inferior when we want its stop_soon state to be preserved
4730 (see notice_new_inferior). */
4731 init_wait_for_inferior ();
4732
4733 /* In non-stop, we will either get an "OK", meaning that there
4734 are no stopped threads at this time; or, a regular stop
4735 reply. In the latter case, there may be more than one thread
4736 stopped --- we pull them all out using the vStopped
4737 mechanism. */
4738 if (strcmp (rs->buf.data (), "OK") != 0)
4739 {
4740 struct notif_client *notif = &notif_client_stop;
4741
4742 /* remote_notif_get_pending_replies acks this one, and gets
4743 the rest out. */
4744 rs->notif_state->pending_event[notif_client_stop.id]
4745 = remote_notif_parse (this, notif, rs->buf.data ());
4746 remote_notif_get_pending_events (notif);
4747 }
4748
4749 if (thread_count () == 0)
4750 {
4751 if (!extended_p)
4752 error (_("The target is not running (try extended-remote?)"));
4753
4754 /* We're connected, but not running. Drop out before we
4755 call start_remote. */
4756 rs->starting_up = 0;
4757 return;
4758 }
4759
4760 /* In non-stop mode, any cached wait status will be stored in
4761 the stop reply queue. */
4762 gdb_assert (wait_status == NULL);
4763
4764 /* Report all signals during attach/startup. */
4765 pass_signals ({});
4766
4767 /* If there are already stopped threads, mark them stopped and
4768 report their stops before giving the prompt to the user. */
4769 process_initial_stop_replies (from_tty);
4770
4771 if (target_can_async_p ())
4772 target_async (1);
4773 }
4774
4775 /* If we connected to a live target, do some additional setup. */
4776 if (target_has_execution)
4777 {
4778 if (symfile_objfile) /* No use without a symbol-file. */
4779 remote_check_symbols ();
4780 }
4781
4782 /* Possibly the target has been engaged in a trace run started
4783 previously; find out where things are at. */
4784 if (get_trace_status (current_trace_status ()) != -1)
4785 {
4786 struct uploaded_tp *uploaded_tps = NULL;
4787
4788 if (current_trace_status ()->running)
4789 printf_filtered (_("Trace is already running on the target.\n"));
4790
4791 upload_tracepoints (&uploaded_tps);
4792
4793 merge_uploaded_tracepoints (&uploaded_tps);
4794 }
4795
4796 /* Possibly the target has been engaged in a btrace record started
4797 previously; find out where things are at. */
4798 remote_btrace_maybe_reopen ();
4799
4800 /* The thread and inferior lists are now synchronized with the
4801 target, our symbols have been relocated, and we're merged the
4802 target's tracepoints with ours. We're done with basic start
4803 up. */
4804 rs->starting_up = 0;
4805
4806 /* Maybe breakpoints are global and need to be inserted now. */
4807 if (breakpoints_should_be_inserted_now ())
4808 insert_breakpoints ();
4809 }
4810
4811 /* Open a connection to a remote debugger.
4812 NAME is the filename used for communication. */
4813
4814 void
4815 remote_target::open (const char *name, int from_tty)
4816 {
4817 open_1 (name, from_tty, 0);
4818 }
4819
4820 /* Open a connection to a remote debugger using the extended
4821 remote gdb protocol. NAME is the filename used for communication. */
4822
4823 void
4824 extended_remote_target::open (const char *name, int from_tty)
4825 {
4826 open_1 (name, from_tty, 1 /*extended_p */);
4827 }
4828
4829 /* Reset all packets back to "unknown support". Called when opening a
4830 new connection to a remote target. */
4831
4832 static void
4833 reset_all_packet_configs_support (void)
4834 {
4835 int i;
4836
4837 for (i = 0; i < PACKET_MAX; i++)
4838 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4839 }
4840
4841 /* Initialize all packet configs. */
4842
4843 static void
4844 init_all_packet_configs (void)
4845 {
4846 int i;
4847
4848 for (i = 0; i < PACKET_MAX; i++)
4849 {
4850 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4851 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4852 }
4853 }
4854
4855 /* Symbol look-up. */
4856
4857 void
4858 remote_target::remote_check_symbols ()
4859 {
4860 char *tmp;
4861 int end;
4862
4863 /* The remote side has no concept of inferiors that aren't running
4864 yet, it only knows about running processes. If we're connected
4865 but our current inferior is not running, we should not invite the
4866 remote target to request symbol lookups related to its
4867 (unrelated) current process. */
4868 if (!target_has_execution)
4869 return;
4870
4871 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4872 return;
4873
4874 /* Make sure the remote is pointing at the right process. Note
4875 there's no way to select "no process". */
4876 set_general_process ();
4877
4878 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4879 because we need both at the same time. */
4880 gdb::char_vector msg (get_remote_packet_size ());
4881 gdb::char_vector reply (get_remote_packet_size ());
4882
4883 /* Invite target to request symbol lookups. */
4884
4885 putpkt ("qSymbol::");
4886 getpkt (&reply, 0);
4887 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4888
4889 while (startswith (reply.data (), "qSymbol:"))
4890 {
4891 struct bound_minimal_symbol sym;
4892
4893 tmp = &reply[8];
4894 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4895 strlen (tmp) / 2);
4896 msg[end] = '\0';
4897 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4898 if (sym.minsym == NULL)
4899 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4900 &reply[8]);
4901 else
4902 {
4903 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4904 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4905
4906 /* If this is a function address, return the start of code
4907 instead of any data function descriptor. */
4908 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4909 sym_addr,
4910 current_top_target ());
4911
4912 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4913 phex_nz (sym_addr, addr_size), &reply[8]);
4914 }
4915
4916 putpkt (msg.data ());
4917 getpkt (&reply, 0);
4918 }
4919 }
4920
4921 static struct serial *
4922 remote_serial_open (const char *name)
4923 {
4924 static int udp_warning = 0;
4925
4926 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4927 of in ser-tcp.c, because it is the remote protocol assuming that the
4928 serial connection is reliable and not the serial connection promising
4929 to be. */
4930 if (!udp_warning && startswith (name, "udp:"))
4931 {
4932 warning (_("The remote protocol may be unreliable over UDP.\n"
4933 "Some events may be lost, rendering further debugging "
4934 "impossible."));
4935 udp_warning = 1;
4936 }
4937
4938 return serial_open (name);
4939 }
4940
4941 /* Inform the target of our permission settings. The permission flags
4942 work without this, but if the target knows the settings, it can do
4943 a couple things. First, it can add its own check, to catch cases
4944 that somehow manage to get by the permissions checks in target
4945 methods. Second, if the target is wired to disallow particular
4946 settings (for instance, a system in the field that is not set up to
4947 be able to stop at a breakpoint), it can object to any unavailable
4948 permissions. */
4949
4950 void
4951 remote_target::set_permissions ()
4952 {
4953 struct remote_state *rs = get_remote_state ();
4954
4955 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
4956 "WriteReg:%x;WriteMem:%x;"
4957 "InsertBreak:%x;InsertTrace:%x;"
4958 "InsertFastTrace:%x;Stop:%x",
4959 may_write_registers, may_write_memory,
4960 may_insert_breakpoints, may_insert_tracepoints,
4961 may_insert_fast_tracepoints, may_stop);
4962 putpkt (rs->buf);
4963 getpkt (&rs->buf, 0);
4964
4965 /* If the target didn't like the packet, warn the user. Do not try
4966 to undo the user's settings, that would just be maddening. */
4967 if (strcmp (rs->buf.data (), "OK") != 0)
4968 warning (_("Remote refused setting permissions with: %s"),
4969 rs->buf.data ());
4970 }
4971
4972 /* This type describes each known response to the qSupported
4973 packet. */
4974 struct protocol_feature
4975 {
4976 /* The name of this protocol feature. */
4977 const char *name;
4978
4979 /* The default for this protocol feature. */
4980 enum packet_support default_support;
4981
4982 /* The function to call when this feature is reported, or after
4983 qSupported processing if the feature is not supported.
4984 The first argument points to this structure. The second
4985 argument indicates whether the packet requested support be
4986 enabled, disabled, or probed (or the default, if this function
4987 is being called at the end of processing and this feature was
4988 not reported). The third argument may be NULL; if not NULL, it
4989 is a NUL-terminated string taken from the packet following
4990 this feature's name and an equals sign. */
4991 void (*func) (remote_target *remote, const struct protocol_feature *,
4992 enum packet_support, const char *);
4993
4994 /* The corresponding packet for this feature. Only used if
4995 FUNC is remote_supported_packet. */
4996 int packet;
4997 };
4998
4999 static void
5000 remote_supported_packet (remote_target *remote,
5001 const struct protocol_feature *feature,
5002 enum packet_support support,
5003 const char *argument)
5004 {
5005 if (argument)
5006 {
5007 warning (_("Remote qSupported response supplied an unexpected value for"
5008 " \"%s\"."), feature->name);
5009 return;
5010 }
5011
5012 remote_protocol_packets[feature->packet].support = support;
5013 }
5014
5015 void
5016 remote_target::remote_packet_size (const protocol_feature *feature,
5017 enum packet_support support, const char *value)
5018 {
5019 struct remote_state *rs = get_remote_state ();
5020
5021 int packet_size;
5022 char *value_end;
5023
5024 if (support != PACKET_ENABLE)
5025 return;
5026
5027 if (value == NULL || *value == '\0')
5028 {
5029 warning (_("Remote target reported \"%s\" without a size."),
5030 feature->name);
5031 return;
5032 }
5033
5034 errno = 0;
5035 packet_size = strtol (value, &value_end, 16);
5036 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5037 {
5038 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5039 feature->name, value);
5040 return;
5041 }
5042
5043 /* Record the new maximum packet size. */
5044 rs->explicit_packet_size = packet_size;
5045 }
5046
5047 void
5048 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5049 enum packet_support support, const char *value)
5050 {
5051 remote->remote_packet_size (feature, support, value);
5052 }
5053
5054 static const struct protocol_feature remote_protocol_features[] = {
5055 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5056 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5057 PACKET_qXfer_auxv },
5058 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5059 PACKET_qXfer_exec_file },
5060 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5061 PACKET_qXfer_features },
5062 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5063 PACKET_qXfer_libraries },
5064 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5065 PACKET_qXfer_libraries_svr4 },
5066 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5067 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5068 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5069 PACKET_qXfer_memory_map },
5070 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5071 PACKET_qXfer_osdata },
5072 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5073 PACKET_qXfer_threads },
5074 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5075 PACKET_qXfer_traceframe_info },
5076 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5077 PACKET_QPassSignals },
5078 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5079 PACKET_QCatchSyscalls },
5080 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5081 PACKET_QProgramSignals },
5082 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5083 PACKET_QSetWorkingDir },
5084 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5085 PACKET_QStartupWithShell },
5086 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5087 PACKET_QEnvironmentHexEncoded },
5088 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5089 PACKET_QEnvironmentReset },
5090 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5091 PACKET_QEnvironmentUnset },
5092 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5093 PACKET_QStartNoAckMode },
5094 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5095 PACKET_multiprocess_feature },
5096 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5097 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5098 PACKET_qXfer_siginfo_read },
5099 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5100 PACKET_qXfer_siginfo_write },
5101 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5102 PACKET_ConditionalTracepoints },
5103 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5104 PACKET_ConditionalBreakpoints },
5105 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5106 PACKET_BreakpointCommands },
5107 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5108 PACKET_FastTracepoints },
5109 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5110 PACKET_StaticTracepoints },
5111 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5112 PACKET_InstallInTrace},
5113 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5114 PACKET_DisconnectedTracing_feature },
5115 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5116 PACKET_bc },
5117 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5118 PACKET_bs },
5119 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5120 PACKET_TracepointSource },
5121 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5122 PACKET_QAllow },
5123 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5124 PACKET_EnableDisableTracepoints_feature },
5125 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5126 PACKET_qXfer_fdpic },
5127 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5128 PACKET_qXfer_uib },
5129 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5130 PACKET_QDisableRandomization },
5131 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5132 { "QTBuffer:size", PACKET_DISABLE,
5133 remote_supported_packet, PACKET_QTBuffer_size},
5134 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5135 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5136 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5137 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5138 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5139 PACKET_qXfer_btrace },
5140 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5141 PACKET_qXfer_btrace_conf },
5142 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5143 PACKET_Qbtrace_conf_bts_size },
5144 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5145 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5146 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5147 PACKET_fork_event_feature },
5148 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5149 PACKET_vfork_event_feature },
5150 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5151 PACKET_exec_event_feature },
5152 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5153 PACKET_Qbtrace_conf_pt_size },
5154 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5155 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5156 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5157 };
5158
5159 static char *remote_support_xml;
5160
5161 /* Register string appended to "xmlRegisters=" in qSupported query. */
5162
5163 void
5164 register_remote_support_xml (const char *xml)
5165 {
5166 #if defined(HAVE_LIBEXPAT)
5167 if (remote_support_xml == NULL)
5168 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5169 else
5170 {
5171 char *copy = xstrdup (remote_support_xml + 13);
5172 char *saveptr;
5173 char *p = strtok_r (copy, ",", &saveptr);
5174
5175 do
5176 {
5177 if (strcmp (p, xml) == 0)
5178 {
5179 /* already there */
5180 xfree (copy);
5181 return;
5182 }
5183 }
5184 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5185 xfree (copy);
5186
5187 remote_support_xml = reconcat (remote_support_xml,
5188 remote_support_xml, ",", xml,
5189 (char *) NULL);
5190 }
5191 #endif
5192 }
5193
5194 static void
5195 remote_query_supported_append (std::string *msg, const char *append)
5196 {
5197 if (!msg->empty ())
5198 msg->append (";");
5199 msg->append (append);
5200 }
5201
5202 void
5203 remote_target::remote_query_supported ()
5204 {
5205 struct remote_state *rs = get_remote_state ();
5206 char *next;
5207 int i;
5208 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5209
5210 /* The packet support flags are handled differently for this packet
5211 than for most others. We treat an error, a disabled packet, and
5212 an empty response identically: any features which must be reported
5213 to be used will be automatically disabled. An empty buffer
5214 accomplishes this, since that is also the representation for a list
5215 containing no features. */
5216
5217 rs->buf[0] = 0;
5218 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5219 {
5220 std::string q;
5221
5222 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5223 remote_query_supported_append (&q, "multiprocess+");
5224
5225 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5226 remote_query_supported_append (&q, "swbreak+");
5227 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5228 remote_query_supported_append (&q, "hwbreak+");
5229
5230 remote_query_supported_append (&q, "qRelocInsn+");
5231
5232 if (packet_set_cmd_state (PACKET_fork_event_feature)
5233 != AUTO_BOOLEAN_FALSE)
5234 remote_query_supported_append (&q, "fork-events+");
5235 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5236 != AUTO_BOOLEAN_FALSE)
5237 remote_query_supported_append (&q, "vfork-events+");
5238 if (packet_set_cmd_state (PACKET_exec_event_feature)
5239 != AUTO_BOOLEAN_FALSE)
5240 remote_query_supported_append (&q, "exec-events+");
5241
5242 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5243 remote_query_supported_append (&q, "vContSupported+");
5244
5245 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5246 remote_query_supported_append (&q, "QThreadEvents+");
5247
5248 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5249 remote_query_supported_append (&q, "no-resumed+");
5250
5251 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5252 the qSupported:xmlRegisters=i386 handling. */
5253 if (remote_support_xml != NULL
5254 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5255 remote_query_supported_append (&q, remote_support_xml);
5256
5257 q = "qSupported:" + q;
5258 putpkt (q.c_str ());
5259
5260 getpkt (&rs->buf, 0);
5261
5262 /* If an error occured, warn, but do not return - just reset the
5263 buffer to empty and go on to disable features. */
5264 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5265 == PACKET_ERROR)
5266 {
5267 warning (_("Remote failure reply: %s"), rs->buf.data ());
5268 rs->buf[0] = 0;
5269 }
5270 }
5271
5272 memset (seen, 0, sizeof (seen));
5273
5274 next = rs->buf.data ();
5275 while (*next)
5276 {
5277 enum packet_support is_supported;
5278 char *p, *end, *name_end, *value;
5279
5280 /* First separate out this item from the rest of the packet. If
5281 there's another item after this, we overwrite the separator
5282 (terminated strings are much easier to work with). */
5283 p = next;
5284 end = strchr (p, ';');
5285 if (end == NULL)
5286 {
5287 end = p + strlen (p);
5288 next = end;
5289 }
5290 else
5291 {
5292 *end = '\0';
5293 next = end + 1;
5294
5295 if (end == p)
5296 {
5297 warning (_("empty item in \"qSupported\" response"));
5298 continue;
5299 }
5300 }
5301
5302 name_end = strchr (p, '=');
5303 if (name_end)
5304 {
5305 /* This is a name=value entry. */
5306 is_supported = PACKET_ENABLE;
5307 value = name_end + 1;
5308 *name_end = '\0';
5309 }
5310 else
5311 {
5312 value = NULL;
5313 switch (end[-1])
5314 {
5315 case '+':
5316 is_supported = PACKET_ENABLE;
5317 break;
5318
5319 case '-':
5320 is_supported = PACKET_DISABLE;
5321 break;
5322
5323 case '?':
5324 is_supported = PACKET_SUPPORT_UNKNOWN;
5325 break;
5326
5327 default:
5328 warning (_("unrecognized item \"%s\" "
5329 "in \"qSupported\" response"), p);
5330 continue;
5331 }
5332 end[-1] = '\0';
5333 }
5334
5335 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5336 if (strcmp (remote_protocol_features[i].name, p) == 0)
5337 {
5338 const struct protocol_feature *feature;
5339
5340 seen[i] = 1;
5341 feature = &remote_protocol_features[i];
5342 feature->func (this, feature, is_supported, value);
5343 break;
5344 }
5345 }
5346
5347 /* If we increased the packet size, make sure to increase the global
5348 buffer size also. We delay this until after parsing the entire
5349 qSupported packet, because this is the same buffer we were
5350 parsing. */
5351 if (rs->buf.size () < rs->explicit_packet_size)
5352 rs->buf.resize (rs->explicit_packet_size);
5353
5354 /* Handle the defaults for unmentioned features. */
5355 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5356 if (!seen[i])
5357 {
5358 const struct protocol_feature *feature;
5359
5360 feature = &remote_protocol_features[i];
5361 feature->func (this, feature, feature->default_support, NULL);
5362 }
5363 }
5364
5365 /* Serial QUIT handler for the remote serial descriptor.
5366
5367 Defers handling a Ctrl-C until we're done with the current
5368 command/response packet sequence, unless:
5369
5370 - We're setting up the connection. Don't send a remote interrupt
5371 request, as we're not fully synced yet. Quit immediately
5372 instead.
5373
5374 - The target has been resumed in the foreground
5375 (target_terminal::is_ours is false) with a synchronous resume
5376 packet, and we're blocked waiting for the stop reply, thus a
5377 Ctrl-C should be immediately sent to the target.
5378
5379 - We get a second Ctrl-C while still within the same serial read or
5380 write. In that case the serial is seemingly wedged --- offer to
5381 quit/disconnect.
5382
5383 - We see a second Ctrl-C without target response, after having
5384 previously interrupted the target. In that case the target/stub
5385 is probably wedged --- offer to quit/disconnect.
5386 */
5387
5388 void
5389 remote_target::remote_serial_quit_handler ()
5390 {
5391 struct remote_state *rs = get_remote_state ();
5392
5393 if (check_quit_flag ())
5394 {
5395 /* If we're starting up, we're not fully synced yet. Quit
5396 immediately. */
5397 if (rs->starting_up)
5398 quit ();
5399 else if (rs->got_ctrlc_during_io)
5400 {
5401 if (query (_("The target is not responding to GDB commands.\n"
5402 "Stop debugging it? ")))
5403 remote_unpush_and_throw ();
5404 }
5405 /* If ^C has already been sent once, offer to disconnect. */
5406 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5407 interrupt_query ();
5408 /* All-stop protocol, and blocked waiting for stop reply. Send
5409 an interrupt request. */
5410 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5411 target_interrupt ();
5412 else
5413 rs->got_ctrlc_during_io = 1;
5414 }
5415 }
5416
5417 /* The remote_target that is current while the quit handler is
5418 overridden with remote_serial_quit_handler. */
5419 static remote_target *curr_quit_handler_target;
5420
5421 static void
5422 remote_serial_quit_handler ()
5423 {
5424 curr_quit_handler_target->remote_serial_quit_handler ();
5425 }
5426
5427 /* Remove any of the remote.c targets from target stack. Upper targets depend
5428 on it so remove them first. */
5429
5430 static void
5431 remote_unpush_target (void)
5432 {
5433 pop_all_targets_at_and_above (process_stratum);
5434 }
5435
5436 static void
5437 remote_unpush_and_throw (void)
5438 {
5439 remote_unpush_target ();
5440 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5441 }
5442
5443 void
5444 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5445 {
5446 remote_target *curr_remote = get_current_remote_target ();
5447
5448 if (name == 0)
5449 error (_("To open a remote debug connection, you need to specify what\n"
5450 "serial device is attached to the remote system\n"
5451 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5452
5453 /* If we're connected to a running target, target_preopen will kill it.
5454 Ask this question first, before target_preopen has a chance to kill
5455 anything. */
5456 if (curr_remote != NULL && !have_inferiors ())
5457 {
5458 if (from_tty
5459 && !query (_("Already connected to a remote target. Disconnect? ")))
5460 error (_("Still connected."));
5461 }
5462
5463 /* Here the possibly existing remote target gets unpushed. */
5464 target_preopen (from_tty);
5465
5466 remote_fileio_reset ();
5467 reopen_exec_file ();
5468 reread_symbols ();
5469
5470 remote_target *remote
5471 = (extended_p ? new extended_remote_target () : new remote_target ());
5472 target_ops_up target_holder (remote);
5473
5474 remote_state *rs = remote->get_remote_state ();
5475
5476 /* See FIXME above. */
5477 if (!target_async_permitted)
5478 rs->wait_forever_enabled_p = 1;
5479
5480 rs->remote_desc = remote_serial_open (name);
5481 if (!rs->remote_desc)
5482 perror_with_name (name);
5483
5484 if (baud_rate != -1)
5485 {
5486 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5487 {
5488 /* The requested speed could not be set. Error out to
5489 top level after closing remote_desc. Take care to
5490 set remote_desc to NULL to avoid closing remote_desc
5491 more than once. */
5492 serial_close (rs->remote_desc);
5493 rs->remote_desc = NULL;
5494 perror_with_name (name);
5495 }
5496 }
5497
5498 serial_setparity (rs->remote_desc, serial_parity);
5499 serial_raw (rs->remote_desc);
5500
5501 /* If there is something sitting in the buffer we might take it as a
5502 response to a command, which would be bad. */
5503 serial_flush_input (rs->remote_desc);
5504
5505 if (from_tty)
5506 {
5507 puts_filtered ("Remote debugging using ");
5508 puts_filtered (name);
5509 puts_filtered ("\n");
5510 }
5511
5512 /* Switch to using the remote target now. */
5513 push_target (std::move (target_holder));
5514
5515 /* Register extra event sources in the event loop. */
5516 rs->remote_async_inferior_event_token
5517 = create_async_event_handler (remote_async_inferior_event_handler,
5518 remote);
5519 rs->notif_state = remote_notif_state_allocate (remote);
5520
5521 /* Reset the target state; these things will be queried either by
5522 remote_query_supported or as they are needed. */
5523 reset_all_packet_configs_support ();
5524 rs->cached_wait_status = 0;
5525 rs->explicit_packet_size = 0;
5526 rs->noack_mode = 0;
5527 rs->extended = extended_p;
5528 rs->waiting_for_stop_reply = 0;
5529 rs->ctrlc_pending_p = 0;
5530 rs->got_ctrlc_during_io = 0;
5531
5532 rs->general_thread = not_sent_ptid;
5533 rs->continue_thread = not_sent_ptid;
5534 rs->remote_traceframe_number = -1;
5535
5536 rs->last_resume_exec_dir = EXEC_FORWARD;
5537
5538 /* Probe for ability to use "ThreadInfo" query, as required. */
5539 rs->use_threadinfo_query = 1;
5540 rs->use_threadextra_query = 1;
5541
5542 rs->readahead_cache.invalidate ();
5543
5544 if (target_async_permitted)
5545 {
5546 /* FIXME: cagney/1999-09-23: During the initial connection it is
5547 assumed that the target is already ready and able to respond to
5548 requests. Unfortunately remote_start_remote() eventually calls
5549 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5550 around this. Eventually a mechanism that allows
5551 wait_for_inferior() to expect/get timeouts will be
5552 implemented. */
5553 rs->wait_forever_enabled_p = 0;
5554 }
5555
5556 /* First delete any symbols previously loaded from shared libraries. */
5557 no_shared_libraries (NULL, 0);
5558
5559 /* Start the remote connection. If error() or QUIT, discard this
5560 target (we'd otherwise be in an inconsistent state) and then
5561 propogate the error on up the exception chain. This ensures that
5562 the caller doesn't stumble along blindly assuming that the
5563 function succeeded. The CLI doesn't have this problem but other
5564 UI's, such as MI do.
5565
5566 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5567 this function should return an error indication letting the
5568 caller restore the previous state. Unfortunately the command
5569 ``target remote'' is directly wired to this function making that
5570 impossible. On a positive note, the CLI side of this problem has
5571 been fixed - the function set_cmd_context() makes it possible for
5572 all the ``target ....'' commands to share a common callback
5573 function. See cli-dump.c. */
5574 {
5575
5576 try
5577 {
5578 remote->start_remote (from_tty, extended_p);
5579 }
5580 catch (const gdb_exception &ex)
5581 {
5582 /* Pop the partially set up target - unless something else did
5583 already before throwing the exception. */
5584 if (ex.error != TARGET_CLOSE_ERROR)
5585 remote_unpush_target ();
5586 throw;
5587 }
5588 }
5589
5590 remote_btrace_reset (rs);
5591
5592 if (target_async_permitted)
5593 rs->wait_forever_enabled_p = 1;
5594 }
5595
5596 /* Detach the specified process. */
5597
5598 void
5599 remote_target::remote_detach_pid (int pid)
5600 {
5601 struct remote_state *rs = get_remote_state ();
5602
5603 /* This should not be necessary, but the handling for D;PID in
5604 GDBserver versions prior to 8.2 incorrectly assumes that the
5605 selected process points to the same process we're detaching,
5606 leading to misbehavior (and possibly GDBserver crashing) when it
5607 does not. Since it's easy and cheap, work around it by forcing
5608 GDBserver to select GDB's current process. */
5609 set_general_process ();
5610
5611 if (remote_multi_process_p (rs))
5612 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5613 else
5614 strcpy (rs->buf.data (), "D");
5615
5616 putpkt (rs->buf);
5617 getpkt (&rs->buf, 0);
5618
5619 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5620 ;
5621 else if (rs->buf[0] == '\0')
5622 error (_("Remote doesn't know how to detach"));
5623 else
5624 error (_("Can't detach process."));
5625 }
5626
5627 /* This detaches a program to which we previously attached, using
5628 inferior_ptid to identify the process. After this is done, GDB
5629 can be used to debug some other program. We better not have left
5630 any breakpoints in the target program or it'll die when it hits
5631 one. */
5632
5633 void
5634 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5635 {
5636 int pid = inferior_ptid.pid ();
5637 struct remote_state *rs = get_remote_state ();
5638 int is_fork_parent;
5639
5640 if (!target_has_execution)
5641 error (_("No process to detach from."));
5642
5643 target_announce_detach (from_tty);
5644
5645 /* Tell the remote target to detach. */
5646 remote_detach_pid (pid);
5647
5648 /* Exit only if this is the only active inferior. */
5649 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5650 puts_filtered (_("Ending remote debugging.\n"));
5651
5652 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5653
5654 /* Check to see if we are detaching a fork parent. Note that if we
5655 are detaching a fork child, tp == NULL. */
5656 is_fork_parent = (tp != NULL
5657 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5658
5659 /* If doing detach-on-fork, we don't mourn, because that will delete
5660 breakpoints that should be available for the followed inferior. */
5661 if (!is_fork_parent)
5662 {
5663 /* Save the pid as a string before mourning, since that will
5664 unpush the remote target, and we need the string after. */
5665 std::string infpid = target_pid_to_str (ptid_t (pid));
5666
5667 target_mourn_inferior (inferior_ptid);
5668 if (print_inferior_events)
5669 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5670 inf->num, infpid.c_str ());
5671 }
5672 else
5673 {
5674 inferior_ptid = null_ptid;
5675 detach_inferior (current_inferior ());
5676 }
5677 }
5678
5679 void
5680 remote_target::detach (inferior *inf, int from_tty)
5681 {
5682 remote_detach_1 (inf, from_tty);
5683 }
5684
5685 void
5686 extended_remote_target::detach (inferior *inf, int from_tty)
5687 {
5688 remote_detach_1 (inf, from_tty);
5689 }
5690
5691 /* Target follow-fork function for remote targets. On entry, and
5692 at return, the current inferior is the fork parent.
5693
5694 Note that although this is currently only used for extended-remote,
5695 it is named remote_follow_fork in anticipation of using it for the
5696 remote target as well. */
5697
5698 int
5699 remote_target::follow_fork (int follow_child, int detach_fork)
5700 {
5701 struct remote_state *rs = get_remote_state ();
5702 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5703
5704 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5705 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5706 {
5707 /* When following the parent and detaching the child, we detach
5708 the child here. For the case of following the child and
5709 detaching the parent, the detach is done in the target-
5710 independent follow fork code in infrun.c. We can't use
5711 target_detach when detaching an unfollowed child because
5712 the client side doesn't know anything about the child. */
5713 if (detach_fork && !follow_child)
5714 {
5715 /* Detach the fork child. */
5716 ptid_t child_ptid;
5717 pid_t child_pid;
5718
5719 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5720 child_pid = child_ptid.pid ();
5721
5722 remote_detach_pid (child_pid);
5723 }
5724 }
5725 return 0;
5726 }
5727
5728 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5729 in the program space of the new inferior. On entry and at return the
5730 current inferior is the exec'ing inferior. INF is the new exec'd
5731 inferior, which may be the same as the exec'ing inferior unless
5732 follow-exec-mode is "new". */
5733
5734 void
5735 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5736 {
5737 /* We know that this is a target file name, so if it has the "target:"
5738 prefix we strip it off before saving it in the program space. */
5739 if (is_target_filename (execd_pathname))
5740 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5741
5742 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5743 }
5744
5745 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5746
5747 void
5748 remote_target::disconnect (const char *args, int from_tty)
5749 {
5750 if (args)
5751 error (_("Argument given to \"disconnect\" when remotely debugging."));
5752
5753 /* Make sure we unpush even the extended remote targets. Calling
5754 target_mourn_inferior won't unpush, and remote_mourn won't
5755 unpush if there is more than one inferior left. */
5756 unpush_target (this);
5757 generic_mourn_inferior ();
5758
5759 if (from_tty)
5760 puts_filtered ("Ending remote debugging.\n");
5761 }
5762
5763 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5764 be chatty about it. */
5765
5766 void
5767 extended_remote_target::attach (const char *args, int from_tty)
5768 {
5769 struct remote_state *rs = get_remote_state ();
5770 int pid;
5771 char *wait_status = NULL;
5772
5773 pid = parse_pid_to_attach (args);
5774
5775 /* Remote PID can be freely equal to getpid, do not check it here the same
5776 way as in other targets. */
5777
5778 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5779 error (_("This target does not support attaching to a process"));
5780
5781 if (from_tty)
5782 {
5783 char *exec_file = get_exec_file (0);
5784
5785 if (exec_file)
5786 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5787 target_pid_to_str (ptid_t (pid)).c_str ());
5788 else
5789 printf_unfiltered (_("Attaching to %s\n"),
5790 target_pid_to_str (ptid_t (pid)).c_str ());
5791 }
5792
5793 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5794 putpkt (rs->buf);
5795 getpkt (&rs->buf, 0);
5796
5797 switch (packet_ok (rs->buf,
5798 &remote_protocol_packets[PACKET_vAttach]))
5799 {
5800 case PACKET_OK:
5801 if (!target_is_non_stop_p ())
5802 {
5803 /* Save the reply for later. */
5804 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5805 strcpy (wait_status, rs->buf.data ());
5806 }
5807 else if (strcmp (rs->buf.data (), "OK") != 0)
5808 error (_("Attaching to %s failed with: %s"),
5809 target_pid_to_str (ptid_t (pid)).c_str (),
5810 rs->buf.data ());
5811 break;
5812 case PACKET_UNKNOWN:
5813 error (_("This target does not support attaching to a process"));
5814 default:
5815 error (_("Attaching to %s failed"),
5816 target_pid_to_str (ptid_t (pid)).c_str ());
5817 }
5818
5819 set_current_inferior (remote_add_inferior (false, pid, 1, 0));
5820
5821 inferior_ptid = ptid_t (pid);
5822
5823 if (target_is_non_stop_p ())
5824 {
5825 struct thread_info *thread;
5826
5827 /* Get list of threads. */
5828 update_thread_list ();
5829
5830 thread = first_thread_of_inferior (current_inferior ());
5831 if (thread)
5832 inferior_ptid = thread->ptid;
5833 else
5834 inferior_ptid = ptid_t (pid);
5835
5836 /* Invalidate our notion of the remote current thread. */
5837 record_currthread (rs, minus_one_ptid);
5838 }
5839 else
5840 {
5841 /* Now, if we have thread information, update inferior_ptid. */
5842 inferior_ptid = remote_current_thread (inferior_ptid);
5843
5844 /* Add the main thread to the thread list. */
5845 thread_info *thr = add_thread_silent (inferior_ptid);
5846 /* Don't consider the thread stopped until we've processed the
5847 saved stop reply. */
5848 set_executing (thr->ptid, true);
5849 }
5850
5851 /* Next, if the target can specify a description, read it. We do
5852 this before anything involving memory or registers. */
5853 target_find_description ();
5854
5855 if (!target_is_non_stop_p ())
5856 {
5857 /* Use the previously fetched status. */
5858 gdb_assert (wait_status != NULL);
5859
5860 if (target_can_async_p ())
5861 {
5862 struct notif_event *reply
5863 = remote_notif_parse (this, &notif_client_stop, wait_status);
5864
5865 push_stop_reply ((struct stop_reply *) reply);
5866
5867 target_async (1);
5868 }
5869 else
5870 {
5871 gdb_assert (wait_status != NULL);
5872 strcpy (rs->buf.data (), wait_status);
5873 rs->cached_wait_status = 1;
5874 }
5875 }
5876 else
5877 gdb_assert (wait_status == NULL);
5878 }
5879
5880 /* Implementation of the to_post_attach method. */
5881
5882 void
5883 extended_remote_target::post_attach (int pid)
5884 {
5885 /* Get text, data & bss offsets. */
5886 get_offsets ();
5887
5888 /* In certain cases GDB might not have had the chance to start
5889 symbol lookup up until now. This could happen if the debugged
5890 binary is not using shared libraries, the vsyscall page is not
5891 present (on Linux) and the binary itself hadn't changed since the
5892 debugging process was started. */
5893 if (symfile_objfile != NULL)
5894 remote_check_symbols();
5895 }
5896
5897 \f
5898 /* Check for the availability of vCont. This function should also check
5899 the response. */
5900
5901 void
5902 remote_target::remote_vcont_probe ()
5903 {
5904 remote_state *rs = get_remote_state ();
5905 char *buf;
5906
5907 strcpy (rs->buf.data (), "vCont?");
5908 putpkt (rs->buf);
5909 getpkt (&rs->buf, 0);
5910 buf = rs->buf.data ();
5911
5912 /* Make sure that the features we assume are supported. */
5913 if (startswith (buf, "vCont"))
5914 {
5915 char *p = &buf[5];
5916 int support_c, support_C;
5917
5918 rs->supports_vCont.s = 0;
5919 rs->supports_vCont.S = 0;
5920 support_c = 0;
5921 support_C = 0;
5922 rs->supports_vCont.t = 0;
5923 rs->supports_vCont.r = 0;
5924 while (p && *p == ';')
5925 {
5926 p++;
5927 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5928 rs->supports_vCont.s = 1;
5929 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5930 rs->supports_vCont.S = 1;
5931 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5932 support_c = 1;
5933 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5934 support_C = 1;
5935 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5936 rs->supports_vCont.t = 1;
5937 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5938 rs->supports_vCont.r = 1;
5939
5940 p = strchr (p, ';');
5941 }
5942
5943 /* If c, and C are not all supported, we can't use vCont. Clearing
5944 BUF will make packet_ok disable the packet. */
5945 if (!support_c || !support_C)
5946 buf[0] = 0;
5947 }
5948
5949 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
5950 }
5951
5952 /* Helper function for building "vCont" resumptions. Write a
5953 resumption to P. ENDP points to one-passed-the-end of the buffer
5954 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5955 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5956 resumed thread should be single-stepped and/or signalled. If PTID
5957 equals minus_one_ptid, then all threads are resumed; if PTID
5958 represents a process, then all threads of the process are resumed;
5959 the thread to be stepped and/or signalled is given in the global
5960 INFERIOR_PTID. */
5961
5962 char *
5963 remote_target::append_resumption (char *p, char *endp,
5964 ptid_t ptid, int step, gdb_signal siggnal)
5965 {
5966 struct remote_state *rs = get_remote_state ();
5967
5968 if (step && siggnal != GDB_SIGNAL_0)
5969 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5970 else if (step
5971 /* GDB is willing to range step. */
5972 && use_range_stepping
5973 /* Target supports range stepping. */
5974 && rs->supports_vCont.r
5975 /* We don't currently support range stepping multiple
5976 threads with a wildcard (though the protocol allows it,
5977 so stubs shouldn't make an active effort to forbid
5978 it). */
5979 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
5980 {
5981 struct thread_info *tp;
5982
5983 if (ptid == minus_one_ptid)
5984 {
5985 /* If we don't know about the target thread's tid, then
5986 we're resuming magic_null_ptid (see caller). */
5987 tp = find_thread_ptid (magic_null_ptid);
5988 }
5989 else
5990 tp = find_thread_ptid (ptid);
5991 gdb_assert (tp != NULL);
5992
5993 if (tp->control.may_range_step)
5994 {
5995 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5996
5997 p += xsnprintf (p, endp - p, ";r%s,%s",
5998 phex_nz (tp->control.step_range_start,
5999 addr_size),
6000 phex_nz (tp->control.step_range_end,
6001 addr_size));
6002 }
6003 else
6004 p += xsnprintf (p, endp - p, ";s");
6005 }
6006 else if (step)
6007 p += xsnprintf (p, endp - p, ";s");
6008 else if (siggnal != GDB_SIGNAL_0)
6009 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6010 else
6011 p += xsnprintf (p, endp - p, ";c");
6012
6013 if (remote_multi_process_p (rs) && ptid.is_pid ())
6014 {
6015 ptid_t nptid;
6016
6017 /* All (-1) threads of process. */
6018 nptid = ptid_t (ptid.pid (), -1, 0);
6019
6020 p += xsnprintf (p, endp - p, ":");
6021 p = write_ptid (p, endp, nptid);
6022 }
6023 else if (ptid != minus_one_ptid)
6024 {
6025 p += xsnprintf (p, endp - p, ":");
6026 p = write_ptid (p, endp, ptid);
6027 }
6028
6029 return p;
6030 }
6031
6032 /* Clear the thread's private info on resume. */
6033
6034 static void
6035 resume_clear_thread_private_info (struct thread_info *thread)
6036 {
6037 if (thread->priv != NULL)
6038 {
6039 remote_thread_info *priv = get_remote_thread_info (thread);
6040
6041 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6042 priv->watch_data_address = 0;
6043 }
6044 }
6045
6046 /* Append a vCont continue-with-signal action for threads that have a
6047 non-zero stop signal. */
6048
6049 char *
6050 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6051 ptid_t ptid)
6052 {
6053 for (thread_info *thread : all_non_exited_threads (ptid))
6054 if (inferior_ptid != thread->ptid
6055 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6056 {
6057 p = append_resumption (p, endp, thread->ptid,
6058 0, thread->suspend.stop_signal);
6059 thread->suspend.stop_signal = GDB_SIGNAL_0;
6060 resume_clear_thread_private_info (thread);
6061 }
6062
6063 return p;
6064 }
6065
6066 /* Set the target running, using the packets that use Hc
6067 (c/s/C/S). */
6068
6069 void
6070 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6071 gdb_signal siggnal)
6072 {
6073 struct remote_state *rs = get_remote_state ();
6074 char *buf;
6075
6076 rs->last_sent_signal = siggnal;
6077 rs->last_sent_step = step;
6078
6079 /* The c/s/C/S resume packets use Hc, so set the continue
6080 thread. */
6081 if (ptid == minus_one_ptid)
6082 set_continue_thread (any_thread_ptid);
6083 else
6084 set_continue_thread (ptid);
6085
6086 for (thread_info *thread : all_non_exited_threads ())
6087 resume_clear_thread_private_info (thread);
6088
6089 buf = rs->buf.data ();
6090 if (::execution_direction == EXEC_REVERSE)
6091 {
6092 /* We don't pass signals to the target in reverse exec mode. */
6093 if (info_verbose && siggnal != GDB_SIGNAL_0)
6094 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6095 siggnal);
6096
6097 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6098 error (_("Remote reverse-step not supported."));
6099 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6100 error (_("Remote reverse-continue not supported."));
6101
6102 strcpy (buf, step ? "bs" : "bc");
6103 }
6104 else if (siggnal != GDB_SIGNAL_0)
6105 {
6106 buf[0] = step ? 'S' : 'C';
6107 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6108 buf[2] = tohex (((int) siggnal) & 0xf);
6109 buf[3] = '\0';
6110 }
6111 else
6112 strcpy (buf, step ? "s" : "c");
6113
6114 putpkt (buf);
6115 }
6116
6117 /* Resume the remote inferior by using a "vCont" packet. The thread
6118 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6119 resumed thread should be single-stepped and/or signalled. If PTID
6120 equals minus_one_ptid, then all threads are resumed; the thread to
6121 be stepped and/or signalled is given in the global INFERIOR_PTID.
6122 This function returns non-zero iff it resumes the inferior.
6123
6124 This function issues a strict subset of all possible vCont commands
6125 at the moment. */
6126
6127 int
6128 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6129 enum gdb_signal siggnal)
6130 {
6131 struct remote_state *rs = get_remote_state ();
6132 char *p;
6133 char *endp;
6134
6135 /* No reverse execution actions defined for vCont. */
6136 if (::execution_direction == EXEC_REVERSE)
6137 return 0;
6138
6139 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6140 remote_vcont_probe ();
6141
6142 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6143 return 0;
6144
6145 p = rs->buf.data ();
6146 endp = p + get_remote_packet_size ();
6147
6148 /* If we could generate a wider range of packets, we'd have to worry
6149 about overflowing BUF. Should there be a generic
6150 "multi-part-packet" packet? */
6151
6152 p += xsnprintf (p, endp - p, "vCont");
6153
6154 if (ptid == magic_null_ptid)
6155 {
6156 /* MAGIC_NULL_PTID means that we don't have any active threads,
6157 so we don't have any TID numbers the inferior will
6158 understand. Make sure to only send forms that do not specify
6159 a TID. */
6160 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6161 }
6162 else if (ptid == minus_one_ptid || ptid.is_pid ())
6163 {
6164 /* Resume all threads (of all processes, or of a single
6165 process), with preference for INFERIOR_PTID. This assumes
6166 inferior_ptid belongs to the set of all threads we are about
6167 to resume. */
6168 if (step || siggnal != GDB_SIGNAL_0)
6169 {
6170 /* Step inferior_ptid, with or without signal. */
6171 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6172 }
6173
6174 /* Also pass down any pending signaled resumption for other
6175 threads not the current. */
6176 p = append_pending_thread_resumptions (p, endp, ptid);
6177
6178 /* And continue others without a signal. */
6179 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6180 }
6181 else
6182 {
6183 /* Scheduler locking; resume only PTID. */
6184 append_resumption (p, endp, ptid, step, siggnal);
6185 }
6186
6187 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6188 putpkt (rs->buf);
6189
6190 if (target_is_non_stop_p ())
6191 {
6192 /* In non-stop, the stub replies to vCont with "OK". The stop
6193 reply will be reported asynchronously by means of a `%Stop'
6194 notification. */
6195 getpkt (&rs->buf, 0);
6196 if (strcmp (rs->buf.data (), "OK") != 0)
6197 error (_("Unexpected vCont reply in non-stop mode: %s"),
6198 rs->buf.data ());
6199 }
6200
6201 return 1;
6202 }
6203
6204 /* Tell the remote machine to resume. */
6205
6206 void
6207 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6208 {
6209 struct remote_state *rs = get_remote_state ();
6210
6211 /* When connected in non-stop mode, the core resumes threads
6212 individually. Resuming remote threads directly in target_resume
6213 would thus result in sending one packet per thread. Instead, to
6214 minimize roundtrip latency, here we just store the resume
6215 request; the actual remote resumption will be done in
6216 target_commit_resume / remote_commit_resume, where we'll be able
6217 to do vCont action coalescing. */
6218 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6219 {
6220 remote_thread_info *remote_thr;
6221
6222 if (minus_one_ptid == ptid || ptid.is_pid ())
6223 remote_thr = get_remote_thread_info (inferior_ptid);
6224 else
6225 remote_thr = get_remote_thread_info (ptid);
6226
6227 remote_thr->last_resume_step = step;
6228 remote_thr->last_resume_sig = siggnal;
6229 return;
6230 }
6231
6232 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6233 (explained in remote-notif.c:handle_notification) so
6234 remote_notif_process is not called. We need find a place where
6235 it is safe to start a 'vNotif' sequence. It is good to do it
6236 before resuming inferior, because inferior was stopped and no RSP
6237 traffic at that moment. */
6238 if (!target_is_non_stop_p ())
6239 remote_notif_process (rs->notif_state, &notif_client_stop);
6240
6241 rs->last_resume_exec_dir = ::execution_direction;
6242
6243 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6244 if (!remote_resume_with_vcont (ptid, step, siggnal))
6245 remote_resume_with_hc (ptid, step, siggnal);
6246
6247 /* We are about to start executing the inferior, let's register it
6248 with the event loop. NOTE: this is the one place where all the
6249 execution commands end up. We could alternatively do this in each
6250 of the execution commands in infcmd.c. */
6251 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6252 into infcmd.c in order to allow inferior function calls to work
6253 NOT asynchronously. */
6254 if (target_can_async_p ())
6255 target_async (1);
6256
6257 /* We've just told the target to resume. The remote server will
6258 wait for the inferior to stop, and then send a stop reply. In
6259 the mean time, we can't start another command/query ourselves
6260 because the stub wouldn't be ready to process it. This applies
6261 only to the base all-stop protocol, however. In non-stop (which
6262 only supports vCont), the stub replies with an "OK", and is
6263 immediate able to process further serial input. */
6264 if (!target_is_non_stop_p ())
6265 rs->waiting_for_stop_reply = 1;
6266 }
6267
6268 static int is_pending_fork_parent_thread (struct thread_info *thread);
6269
6270 /* Private per-inferior info for target remote processes. */
6271
6272 struct remote_inferior : public private_inferior
6273 {
6274 /* Whether we can send a wildcard vCont for this process. */
6275 bool may_wildcard_vcont = true;
6276 };
6277
6278 /* Get the remote private inferior data associated to INF. */
6279
6280 static remote_inferior *
6281 get_remote_inferior (inferior *inf)
6282 {
6283 if (inf->priv == NULL)
6284 inf->priv.reset (new remote_inferior);
6285
6286 return static_cast<remote_inferior *> (inf->priv.get ());
6287 }
6288
6289 /* Class used to track the construction of a vCont packet in the
6290 outgoing packet buffer. This is used to send multiple vCont
6291 packets if we have more actions than would fit a single packet. */
6292
6293 class vcont_builder
6294 {
6295 public:
6296 explicit vcont_builder (remote_target *remote)
6297 : m_remote (remote)
6298 {
6299 restart ();
6300 }
6301
6302 void flush ();
6303 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6304
6305 private:
6306 void restart ();
6307
6308 /* The remote target. */
6309 remote_target *m_remote;
6310
6311 /* Pointer to the first action. P points here if no action has been
6312 appended yet. */
6313 char *m_first_action;
6314
6315 /* Where the next action will be appended. */
6316 char *m_p;
6317
6318 /* The end of the buffer. Must never write past this. */
6319 char *m_endp;
6320 };
6321
6322 /* Prepare the outgoing buffer for a new vCont packet. */
6323
6324 void
6325 vcont_builder::restart ()
6326 {
6327 struct remote_state *rs = m_remote->get_remote_state ();
6328
6329 m_p = rs->buf.data ();
6330 m_endp = m_p + m_remote->get_remote_packet_size ();
6331 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6332 m_first_action = m_p;
6333 }
6334
6335 /* If the vCont packet being built has any action, send it to the
6336 remote end. */
6337
6338 void
6339 vcont_builder::flush ()
6340 {
6341 struct remote_state *rs;
6342
6343 if (m_p == m_first_action)
6344 return;
6345
6346 rs = m_remote->get_remote_state ();
6347 m_remote->putpkt (rs->buf);
6348 m_remote->getpkt (&rs->buf, 0);
6349 if (strcmp (rs->buf.data (), "OK") != 0)
6350 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6351 }
6352
6353 /* The largest action is range-stepping, with its two addresses. This
6354 is more than sufficient. If a new, bigger action is created, it'll
6355 quickly trigger a failed assertion in append_resumption (and we'll
6356 just bump this). */
6357 #define MAX_ACTION_SIZE 200
6358
6359 /* Append a new vCont action in the outgoing packet being built. If
6360 the action doesn't fit the packet along with previous actions, push
6361 what we've got so far to the remote end and start over a new vCont
6362 packet (with the new action). */
6363
6364 void
6365 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6366 {
6367 char buf[MAX_ACTION_SIZE + 1];
6368
6369 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6370 ptid, step, siggnal);
6371
6372 /* Check whether this new action would fit in the vCont packet along
6373 with previous actions. If not, send what we've got so far and
6374 start a new vCont packet. */
6375 size_t rsize = endp - buf;
6376 if (rsize > m_endp - m_p)
6377 {
6378 flush ();
6379 restart ();
6380
6381 /* Should now fit. */
6382 gdb_assert (rsize <= m_endp - m_p);
6383 }
6384
6385 memcpy (m_p, buf, rsize);
6386 m_p += rsize;
6387 *m_p = '\0';
6388 }
6389
6390 /* to_commit_resume implementation. */
6391
6392 void
6393 remote_target::commit_resume ()
6394 {
6395 int any_process_wildcard;
6396 int may_global_wildcard_vcont;
6397
6398 /* If connected in all-stop mode, we'd send the remote resume
6399 request directly from remote_resume. Likewise if
6400 reverse-debugging, as there are no defined vCont actions for
6401 reverse execution. */
6402 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6403 return;
6404
6405 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6406 instead of resuming all threads of each process individually.
6407 However, if any thread of a process must remain halted, we can't
6408 send wildcard resumes and must send one action per thread.
6409
6410 Care must be taken to not resume threads/processes the server
6411 side already told us are stopped, but the core doesn't know about
6412 yet, because the events are still in the vStopped notification
6413 queue. For example:
6414
6415 #1 => vCont s:p1.1;c
6416 #2 <= OK
6417 #3 <= %Stopped T05 p1.1
6418 #4 => vStopped
6419 #5 <= T05 p1.2
6420 #6 => vStopped
6421 #7 <= OK
6422 #8 (infrun handles the stop for p1.1 and continues stepping)
6423 #9 => vCont s:p1.1;c
6424
6425 The last vCont above would resume thread p1.2 by mistake, because
6426 the server has no idea that the event for p1.2 had not been
6427 handled yet.
6428
6429 The server side must similarly ignore resume actions for the
6430 thread that has a pending %Stopped notification (and any other
6431 threads with events pending), until GDB acks the notification
6432 with vStopped. Otherwise, e.g., the following case is
6433 mishandled:
6434
6435 #1 => g (or any other packet)
6436 #2 <= [registers]
6437 #3 <= %Stopped T05 p1.2
6438 #4 => vCont s:p1.1;c
6439 #5 <= OK
6440
6441 Above, the server must not resume thread p1.2. GDB can't know
6442 that p1.2 stopped until it acks the %Stopped notification, and
6443 since from GDB's perspective all threads should be running, it
6444 sends a "c" action.
6445
6446 Finally, special care must also be given to handling fork/vfork
6447 events. A (v)fork event actually tells us that two processes
6448 stopped -- the parent and the child. Until we follow the fork,
6449 we must not resume the child. Therefore, if we have a pending
6450 fork follow, we must not send a global wildcard resume action
6451 (vCont;c). We can still send process-wide wildcards though. */
6452
6453 /* Start by assuming a global wildcard (vCont;c) is possible. */
6454 may_global_wildcard_vcont = 1;
6455
6456 /* And assume every process is individually wildcard-able too. */
6457 for (inferior *inf : all_non_exited_inferiors ())
6458 {
6459 remote_inferior *priv = get_remote_inferior (inf);
6460
6461 priv->may_wildcard_vcont = true;
6462 }
6463
6464 /* Check for any pending events (not reported or processed yet) and
6465 disable process and global wildcard resumes appropriately. */
6466 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6467
6468 for (thread_info *tp : all_non_exited_threads ())
6469 {
6470 /* If a thread of a process is not meant to be resumed, then we
6471 can't wildcard that process. */
6472 if (!tp->executing)
6473 {
6474 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6475
6476 /* And if we can't wildcard a process, we can't wildcard
6477 everything either. */
6478 may_global_wildcard_vcont = 0;
6479 continue;
6480 }
6481
6482 /* If a thread is the parent of an unfollowed fork, then we
6483 can't do a global wildcard, as that would resume the fork
6484 child. */
6485 if (is_pending_fork_parent_thread (tp))
6486 may_global_wildcard_vcont = 0;
6487 }
6488
6489 /* Now let's build the vCont packet(s). Actions must be appended
6490 from narrower to wider scopes (thread -> process -> global). If
6491 we end up with too many actions for a single packet vcont_builder
6492 flushes the current vCont packet to the remote side and starts a
6493 new one. */
6494 struct vcont_builder vcont_builder (this);
6495
6496 /* Threads first. */
6497 for (thread_info *tp : all_non_exited_threads ())
6498 {
6499 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6500
6501 if (!tp->executing || remote_thr->vcont_resumed)
6502 continue;
6503
6504 gdb_assert (!thread_is_in_step_over_chain (tp));
6505
6506 if (!remote_thr->last_resume_step
6507 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6508 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6509 {
6510 /* We'll send a wildcard resume instead. */
6511 remote_thr->vcont_resumed = 1;
6512 continue;
6513 }
6514
6515 vcont_builder.push_action (tp->ptid,
6516 remote_thr->last_resume_step,
6517 remote_thr->last_resume_sig);
6518 remote_thr->vcont_resumed = 1;
6519 }
6520
6521 /* Now check whether we can send any process-wide wildcard. This is
6522 to avoid sending a global wildcard in the case nothing is
6523 supposed to be resumed. */
6524 any_process_wildcard = 0;
6525
6526 for (inferior *inf : all_non_exited_inferiors ())
6527 {
6528 if (get_remote_inferior (inf)->may_wildcard_vcont)
6529 {
6530 any_process_wildcard = 1;
6531 break;
6532 }
6533 }
6534
6535 if (any_process_wildcard)
6536 {
6537 /* If all processes are wildcard-able, then send a single "c"
6538 action, otherwise, send an "all (-1) threads of process"
6539 continue action for each running process, if any. */
6540 if (may_global_wildcard_vcont)
6541 {
6542 vcont_builder.push_action (minus_one_ptid,
6543 false, GDB_SIGNAL_0);
6544 }
6545 else
6546 {
6547 for (inferior *inf : all_non_exited_inferiors ())
6548 {
6549 if (get_remote_inferior (inf)->may_wildcard_vcont)
6550 {
6551 vcont_builder.push_action (ptid_t (inf->pid),
6552 false, GDB_SIGNAL_0);
6553 }
6554 }
6555 }
6556 }
6557
6558 vcont_builder.flush ();
6559 }
6560
6561 \f
6562
6563 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6564 thread, all threads of a remote process, or all threads of all
6565 processes. */
6566
6567 void
6568 remote_target::remote_stop_ns (ptid_t ptid)
6569 {
6570 struct remote_state *rs = get_remote_state ();
6571 char *p = rs->buf.data ();
6572 char *endp = p + get_remote_packet_size ();
6573
6574 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6575 remote_vcont_probe ();
6576
6577 if (!rs->supports_vCont.t)
6578 error (_("Remote server does not support stopping threads"));
6579
6580 if (ptid == minus_one_ptid
6581 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6582 p += xsnprintf (p, endp - p, "vCont;t");
6583 else
6584 {
6585 ptid_t nptid;
6586
6587 p += xsnprintf (p, endp - p, "vCont;t:");
6588
6589 if (ptid.is_pid ())
6590 /* All (-1) threads of process. */
6591 nptid = ptid_t (ptid.pid (), -1, 0);
6592 else
6593 {
6594 /* Small optimization: if we already have a stop reply for
6595 this thread, no use in telling the stub we want this
6596 stopped. */
6597 if (peek_stop_reply (ptid))
6598 return;
6599
6600 nptid = ptid;
6601 }
6602
6603 write_ptid (p, endp, nptid);
6604 }
6605
6606 /* In non-stop, we get an immediate OK reply. The stop reply will
6607 come in asynchronously by notification. */
6608 putpkt (rs->buf);
6609 getpkt (&rs->buf, 0);
6610 if (strcmp (rs->buf.data (), "OK") != 0)
6611 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6612 rs->buf.data ());
6613 }
6614
6615 /* All-stop version of target_interrupt. Sends a break or a ^C to
6616 interrupt the remote target. It is undefined which thread of which
6617 process reports the interrupt. */
6618
6619 void
6620 remote_target::remote_interrupt_as ()
6621 {
6622 struct remote_state *rs = get_remote_state ();
6623
6624 rs->ctrlc_pending_p = 1;
6625
6626 /* If the inferior is stopped already, but the core didn't know
6627 about it yet, just ignore the request. The cached wait status
6628 will be collected in remote_wait. */
6629 if (rs->cached_wait_status)
6630 return;
6631
6632 /* Send interrupt_sequence to remote target. */
6633 send_interrupt_sequence ();
6634 }
6635
6636 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6637 the remote target. It is undefined which thread of which process
6638 reports the interrupt. Throws an error if the packet is not
6639 supported by the server. */
6640
6641 void
6642 remote_target::remote_interrupt_ns ()
6643 {
6644 struct remote_state *rs = get_remote_state ();
6645 char *p = rs->buf.data ();
6646 char *endp = p + get_remote_packet_size ();
6647
6648 xsnprintf (p, endp - p, "vCtrlC");
6649
6650 /* In non-stop, we get an immediate OK reply. The stop reply will
6651 come in asynchronously by notification. */
6652 putpkt (rs->buf);
6653 getpkt (&rs->buf, 0);
6654
6655 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6656 {
6657 case PACKET_OK:
6658 break;
6659 case PACKET_UNKNOWN:
6660 error (_("No support for interrupting the remote target."));
6661 case PACKET_ERROR:
6662 error (_("Interrupting target failed: %s"), rs->buf.data ());
6663 }
6664 }
6665
6666 /* Implement the to_stop function for the remote targets. */
6667
6668 void
6669 remote_target::stop (ptid_t ptid)
6670 {
6671 if (remote_debug)
6672 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6673
6674 if (target_is_non_stop_p ())
6675 remote_stop_ns (ptid);
6676 else
6677 {
6678 /* We don't currently have a way to transparently pause the
6679 remote target in all-stop mode. Interrupt it instead. */
6680 remote_interrupt_as ();
6681 }
6682 }
6683
6684 /* Implement the to_interrupt function for the remote targets. */
6685
6686 void
6687 remote_target::interrupt ()
6688 {
6689 if (remote_debug)
6690 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6691
6692 if (target_is_non_stop_p ())
6693 remote_interrupt_ns ();
6694 else
6695 remote_interrupt_as ();
6696 }
6697
6698 /* Implement the to_pass_ctrlc function for the remote targets. */
6699
6700 void
6701 remote_target::pass_ctrlc ()
6702 {
6703 struct remote_state *rs = get_remote_state ();
6704
6705 if (remote_debug)
6706 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6707
6708 /* If we're starting up, we're not fully synced yet. Quit
6709 immediately. */
6710 if (rs->starting_up)
6711 quit ();
6712 /* If ^C has already been sent once, offer to disconnect. */
6713 else if (rs->ctrlc_pending_p)
6714 interrupt_query ();
6715 else
6716 target_interrupt ();
6717 }
6718
6719 /* Ask the user what to do when an interrupt is received. */
6720
6721 void
6722 remote_target::interrupt_query ()
6723 {
6724 struct remote_state *rs = get_remote_state ();
6725
6726 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6727 {
6728 if (query (_("The target is not responding to interrupt requests.\n"
6729 "Stop debugging it? ")))
6730 {
6731 remote_unpush_target ();
6732 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6733 }
6734 }
6735 else
6736 {
6737 if (query (_("Interrupted while waiting for the program.\n"
6738 "Give up waiting? ")))
6739 quit ();
6740 }
6741 }
6742
6743 /* Enable/disable target terminal ownership. Most targets can use
6744 terminal groups to control terminal ownership. Remote targets are
6745 different in that explicit transfer of ownership to/from GDB/target
6746 is required. */
6747
6748 void
6749 remote_target::terminal_inferior ()
6750 {
6751 /* NOTE: At this point we could also register our selves as the
6752 recipient of all input. Any characters typed could then be
6753 passed on down to the target. */
6754 }
6755
6756 void
6757 remote_target::terminal_ours ()
6758 {
6759 }
6760
6761 static void
6762 remote_console_output (const char *msg)
6763 {
6764 const char *p;
6765
6766 for (p = msg; p[0] && p[1]; p += 2)
6767 {
6768 char tb[2];
6769 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6770
6771 tb[0] = c;
6772 tb[1] = 0;
6773 fputs_unfiltered (tb, gdb_stdtarg);
6774 }
6775 gdb_flush (gdb_stdtarg);
6776 }
6777
6778 struct stop_reply : public notif_event
6779 {
6780 ~stop_reply ();
6781
6782 /* The identifier of the thread about this event */
6783 ptid_t ptid;
6784
6785 /* The remote state this event is associated with. When the remote
6786 connection, represented by a remote_state object, is closed,
6787 all the associated stop_reply events should be released. */
6788 struct remote_state *rs;
6789
6790 struct target_waitstatus ws;
6791
6792 /* The architecture associated with the expedited registers. */
6793 gdbarch *arch;
6794
6795 /* Expedited registers. This makes remote debugging a bit more
6796 efficient for those targets that provide critical registers as
6797 part of their normal status mechanism (as another roundtrip to
6798 fetch them is avoided). */
6799 std::vector<cached_reg_t> regcache;
6800
6801 enum target_stop_reason stop_reason;
6802
6803 CORE_ADDR watch_data_address;
6804
6805 int core;
6806 };
6807
6808 /* Return the length of the stop reply queue. */
6809
6810 int
6811 remote_target::stop_reply_queue_length ()
6812 {
6813 remote_state *rs = get_remote_state ();
6814 return rs->stop_reply_queue.size ();
6815 }
6816
6817 void
6818 remote_notif_stop_parse (remote_target *remote,
6819 struct notif_client *self, const char *buf,
6820 struct notif_event *event)
6821 {
6822 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6823 }
6824
6825 static void
6826 remote_notif_stop_ack (remote_target *remote,
6827 struct notif_client *self, const char *buf,
6828 struct notif_event *event)
6829 {
6830 struct stop_reply *stop_reply = (struct stop_reply *) event;
6831
6832 /* acknowledge */
6833 putpkt (remote, self->ack_command);
6834
6835 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6836 {
6837 /* We got an unknown stop reply. */
6838 error (_("Unknown stop reply"));
6839 }
6840
6841 remote->push_stop_reply (stop_reply);
6842 }
6843
6844 static int
6845 remote_notif_stop_can_get_pending_events (remote_target *remote,
6846 struct notif_client *self)
6847 {
6848 /* We can't get pending events in remote_notif_process for
6849 notification stop, and we have to do this in remote_wait_ns
6850 instead. If we fetch all queued events from stub, remote stub
6851 may exit and we have no chance to process them back in
6852 remote_wait_ns. */
6853 remote_state *rs = remote->get_remote_state ();
6854 mark_async_event_handler (rs->remote_async_inferior_event_token);
6855 return 0;
6856 }
6857
6858 stop_reply::~stop_reply ()
6859 {
6860 for (cached_reg_t &reg : regcache)
6861 xfree (reg.data);
6862 }
6863
6864 static notif_event_up
6865 remote_notif_stop_alloc_reply ()
6866 {
6867 return notif_event_up (new struct stop_reply ());
6868 }
6869
6870 /* A client of notification Stop. */
6871
6872 struct notif_client notif_client_stop =
6873 {
6874 "Stop",
6875 "vStopped",
6876 remote_notif_stop_parse,
6877 remote_notif_stop_ack,
6878 remote_notif_stop_can_get_pending_events,
6879 remote_notif_stop_alloc_reply,
6880 REMOTE_NOTIF_STOP,
6881 };
6882
6883 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6884 the pid of the process that owns the threads we want to check, or
6885 -1 if we want to check all threads. */
6886
6887 static int
6888 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6889 ptid_t thread_ptid)
6890 {
6891 if (ws->kind == TARGET_WAITKIND_FORKED
6892 || ws->kind == TARGET_WAITKIND_VFORKED)
6893 {
6894 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6895 return 1;
6896 }
6897
6898 return 0;
6899 }
6900
6901 /* Return the thread's pending status used to determine whether the
6902 thread is a fork parent stopped at a fork event. */
6903
6904 static struct target_waitstatus *
6905 thread_pending_fork_status (struct thread_info *thread)
6906 {
6907 if (thread->suspend.waitstatus_pending_p)
6908 return &thread->suspend.waitstatus;
6909 else
6910 return &thread->pending_follow;
6911 }
6912
6913 /* Determine if THREAD is a pending fork parent thread. */
6914
6915 static int
6916 is_pending_fork_parent_thread (struct thread_info *thread)
6917 {
6918 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6919 int pid = -1;
6920
6921 return is_pending_fork_parent (ws, pid, thread->ptid);
6922 }
6923
6924 /* If CONTEXT contains any fork child threads that have not been
6925 reported yet, remove them from the CONTEXT list. If such a
6926 thread exists it is because we are stopped at a fork catchpoint
6927 and have not yet called follow_fork, which will set up the
6928 host-side data structures for the new process. */
6929
6930 void
6931 remote_target::remove_new_fork_children (threads_listing_context *context)
6932 {
6933 int pid = -1;
6934 struct notif_client *notif = &notif_client_stop;
6935
6936 /* For any threads stopped at a fork event, remove the corresponding
6937 fork child threads from the CONTEXT list. */
6938 for (thread_info *thread : all_non_exited_threads ())
6939 {
6940 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6941
6942 if (is_pending_fork_parent (ws, pid, thread->ptid))
6943 context->remove_thread (ws->value.related_pid);
6944 }
6945
6946 /* Check for any pending fork events (not reported or processed yet)
6947 in process PID and remove those fork child threads from the
6948 CONTEXT list as well. */
6949 remote_notif_get_pending_events (notif);
6950 for (auto &event : get_remote_state ()->stop_reply_queue)
6951 if (event->ws.kind == TARGET_WAITKIND_FORKED
6952 || event->ws.kind == TARGET_WAITKIND_VFORKED
6953 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6954 context->remove_thread (event->ws.value.related_pid);
6955 }
6956
6957 /* Check whether any event pending in the vStopped queue would prevent
6958 a global or process wildcard vCont action. Clear
6959 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6960 and clear the event inferior's may_wildcard_vcont flag if we can't
6961 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6962
6963 void
6964 remote_target::check_pending_events_prevent_wildcard_vcont
6965 (int *may_global_wildcard)
6966 {
6967 struct notif_client *notif = &notif_client_stop;
6968
6969 remote_notif_get_pending_events (notif);
6970 for (auto &event : get_remote_state ()->stop_reply_queue)
6971 {
6972 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6973 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6974 continue;
6975
6976 if (event->ws.kind == TARGET_WAITKIND_FORKED
6977 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6978 *may_global_wildcard = 0;
6979
6980 struct inferior *inf = find_inferior_ptid (event->ptid);
6981
6982 /* This may be the first time we heard about this process.
6983 Regardless, we must not do a global wildcard resume, otherwise
6984 we'd resume this process too. */
6985 *may_global_wildcard = 0;
6986 if (inf != NULL)
6987 get_remote_inferior (inf)->may_wildcard_vcont = false;
6988 }
6989 }
6990
6991 /* Discard all pending stop replies of inferior INF. */
6992
6993 void
6994 remote_target::discard_pending_stop_replies (struct inferior *inf)
6995 {
6996 struct stop_reply *reply;
6997 struct remote_state *rs = get_remote_state ();
6998 struct remote_notif_state *rns = rs->notif_state;
6999
7000 /* This function can be notified when an inferior exists. When the
7001 target is not remote, the notification state is NULL. */
7002 if (rs->remote_desc == NULL)
7003 return;
7004
7005 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7006
7007 /* Discard the in-flight notification. */
7008 if (reply != NULL && reply->ptid.pid () == inf->pid)
7009 {
7010 delete reply;
7011 rns->pending_event[notif_client_stop.id] = NULL;
7012 }
7013
7014 /* Discard the stop replies we have already pulled with
7015 vStopped. */
7016 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7017 rs->stop_reply_queue.end (),
7018 [=] (const stop_reply_up &event)
7019 {
7020 return event->ptid.pid () == inf->pid;
7021 });
7022 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7023 }
7024
7025 /* Discard the stop replies for RS in stop_reply_queue. */
7026
7027 void
7028 remote_target::discard_pending_stop_replies_in_queue ()
7029 {
7030 remote_state *rs = get_remote_state ();
7031
7032 /* Discard the stop replies we have already pulled with
7033 vStopped. */
7034 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7035 rs->stop_reply_queue.end (),
7036 [=] (const stop_reply_up &event)
7037 {
7038 return event->rs == rs;
7039 });
7040 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7041 }
7042
7043 /* Remove the first reply in 'stop_reply_queue' which matches
7044 PTID. */
7045
7046 struct stop_reply *
7047 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7048 {
7049 remote_state *rs = get_remote_state ();
7050
7051 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7052 rs->stop_reply_queue.end (),
7053 [=] (const stop_reply_up &event)
7054 {
7055 return event->ptid.matches (ptid);
7056 });
7057 struct stop_reply *result;
7058 if (iter == rs->stop_reply_queue.end ())
7059 result = nullptr;
7060 else
7061 {
7062 result = iter->release ();
7063 rs->stop_reply_queue.erase (iter);
7064 }
7065
7066 if (notif_debug)
7067 fprintf_unfiltered (gdb_stdlog,
7068 "notif: discard queued event: 'Stop' in %s\n",
7069 target_pid_to_str (ptid).c_str ());
7070
7071 return result;
7072 }
7073
7074 /* Look for a queued stop reply belonging to PTID. If one is found,
7075 remove it from the queue, and return it. Returns NULL if none is
7076 found. If there are still queued events left to process, tell the
7077 event loop to get back to target_wait soon. */
7078
7079 struct stop_reply *
7080 remote_target::queued_stop_reply (ptid_t ptid)
7081 {
7082 remote_state *rs = get_remote_state ();
7083 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7084
7085 if (!rs->stop_reply_queue.empty ())
7086 {
7087 /* There's still at least an event left. */
7088 mark_async_event_handler (rs->remote_async_inferior_event_token);
7089 }
7090
7091 return r;
7092 }
7093
7094 /* Push a fully parsed stop reply in the stop reply queue. Since we
7095 know that we now have at least one queued event left to pass to the
7096 core side, tell the event loop to get back to target_wait soon. */
7097
7098 void
7099 remote_target::push_stop_reply (struct stop_reply *new_event)
7100 {
7101 remote_state *rs = get_remote_state ();
7102 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7103
7104 if (notif_debug)
7105 fprintf_unfiltered (gdb_stdlog,
7106 "notif: push 'Stop' %s to queue %d\n",
7107 target_pid_to_str (new_event->ptid).c_str (),
7108 int (rs->stop_reply_queue.size ()));
7109
7110 mark_async_event_handler (rs->remote_async_inferior_event_token);
7111 }
7112
7113 /* Returns true if we have a stop reply for PTID. */
7114
7115 int
7116 remote_target::peek_stop_reply (ptid_t ptid)
7117 {
7118 remote_state *rs = get_remote_state ();
7119 for (auto &event : rs->stop_reply_queue)
7120 if (ptid == event->ptid
7121 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7122 return 1;
7123 return 0;
7124 }
7125
7126 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7127 starting with P and ending with PEND matches PREFIX. */
7128
7129 static int
7130 strprefix (const char *p, const char *pend, const char *prefix)
7131 {
7132 for ( ; p < pend; p++, prefix++)
7133 if (*p != *prefix)
7134 return 0;
7135 return *prefix == '\0';
7136 }
7137
7138 /* Parse the stop reply in BUF. Either the function succeeds, and the
7139 result is stored in EVENT, or throws an error. */
7140
7141 void
7142 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7143 {
7144 remote_arch_state *rsa = NULL;
7145 ULONGEST addr;
7146 const char *p;
7147 int skipregs = 0;
7148
7149 event->ptid = null_ptid;
7150 event->rs = get_remote_state ();
7151 event->ws.kind = TARGET_WAITKIND_IGNORE;
7152 event->ws.value.integer = 0;
7153 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7154 event->regcache.clear ();
7155 event->core = -1;
7156
7157 switch (buf[0])
7158 {
7159 case 'T': /* Status with PC, SP, FP, ... */
7160 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7161 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7162 ss = signal number
7163 n... = register number
7164 r... = register contents
7165 */
7166
7167 p = &buf[3]; /* after Txx */
7168 while (*p)
7169 {
7170 const char *p1;
7171 int fieldsize;
7172
7173 p1 = strchr (p, ':');
7174 if (p1 == NULL)
7175 error (_("Malformed packet(a) (missing colon): %s\n\
7176 Packet: '%s'\n"),
7177 p, buf);
7178 if (p == p1)
7179 error (_("Malformed packet(a) (missing register number): %s\n\
7180 Packet: '%s'\n"),
7181 p, buf);
7182
7183 /* Some "registers" are actually extended stop information.
7184 Note if you're adding a new entry here: GDB 7.9 and
7185 earlier assume that all register "numbers" that start
7186 with an hex digit are real register numbers. Make sure
7187 the server only sends such a packet if it knows the
7188 client understands it. */
7189
7190 if (strprefix (p, p1, "thread"))
7191 event->ptid = read_ptid (++p1, &p);
7192 else if (strprefix (p, p1, "syscall_entry"))
7193 {
7194 ULONGEST sysno;
7195
7196 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7197 p = unpack_varlen_hex (++p1, &sysno);
7198 event->ws.value.syscall_number = (int) sysno;
7199 }
7200 else if (strprefix (p, p1, "syscall_return"))
7201 {
7202 ULONGEST sysno;
7203
7204 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7205 p = unpack_varlen_hex (++p1, &sysno);
7206 event->ws.value.syscall_number = (int) sysno;
7207 }
7208 else if (strprefix (p, p1, "watch")
7209 || strprefix (p, p1, "rwatch")
7210 || strprefix (p, p1, "awatch"))
7211 {
7212 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7213 p = unpack_varlen_hex (++p1, &addr);
7214 event->watch_data_address = (CORE_ADDR) addr;
7215 }
7216 else if (strprefix (p, p1, "swbreak"))
7217 {
7218 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7219
7220 /* Make sure the stub doesn't forget to indicate support
7221 with qSupported. */
7222 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7223 error (_("Unexpected swbreak stop reason"));
7224
7225 /* The value part is documented as "must be empty",
7226 though we ignore it, in case we ever decide to make
7227 use of it in a backward compatible way. */
7228 p = strchrnul (p1 + 1, ';');
7229 }
7230 else if (strprefix (p, p1, "hwbreak"))
7231 {
7232 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7233
7234 /* Make sure the stub doesn't forget to indicate support
7235 with qSupported. */
7236 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7237 error (_("Unexpected hwbreak stop reason"));
7238
7239 /* See above. */
7240 p = strchrnul (p1 + 1, ';');
7241 }
7242 else if (strprefix (p, p1, "library"))
7243 {
7244 event->ws.kind = TARGET_WAITKIND_LOADED;
7245 p = strchrnul (p1 + 1, ';');
7246 }
7247 else if (strprefix (p, p1, "replaylog"))
7248 {
7249 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7250 /* p1 will indicate "begin" or "end", but it makes
7251 no difference for now, so ignore it. */
7252 p = strchrnul (p1 + 1, ';');
7253 }
7254 else if (strprefix (p, p1, "core"))
7255 {
7256 ULONGEST c;
7257
7258 p = unpack_varlen_hex (++p1, &c);
7259 event->core = c;
7260 }
7261 else if (strprefix (p, p1, "fork"))
7262 {
7263 event->ws.value.related_pid = read_ptid (++p1, &p);
7264 event->ws.kind = TARGET_WAITKIND_FORKED;
7265 }
7266 else if (strprefix (p, p1, "vfork"))
7267 {
7268 event->ws.value.related_pid = read_ptid (++p1, &p);
7269 event->ws.kind = TARGET_WAITKIND_VFORKED;
7270 }
7271 else if (strprefix (p, p1, "vforkdone"))
7272 {
7273 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7274 p = strchrnul (p1 + 1, ';');
7275 }
7276 else if (strprefix (p, p1, "exec"))
7277 {
7278 ULONGEST ignored;
7279 int pathlen;
7280
7281 /* Determine the length of the execd pathname. */
7282 p = unpack_varlen_hex (++p1, &ignored);
7283 pathlen = (p - p1) / 2;
7284
7285 /* Save the pathname for event reporting and for
7286 the next run command. */
7287 gdb::unique_xmalloc_ptr<char[]> pathname
7288 ((char *) xmalloc (pathlen + 1));
7289 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7290 pathname[pathlen] = '\0';
7291
7292 /* This is freed during event handling. */
7293 event->ws.value.execd_pathname = pathname.release ();
7294 event->ws.kind = TARGET_WAITKIND_EXECD;
7295
7296 /* Skip the registers included in this packet, since
7297 they may be for an architecture different from the
7298 one used by the original program. */
7299 skipregs = 1;
7300 }
7301 else if (strprefix (p, p1, "create"))
7302 {
7303 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7304 p = strchrnul (p1 + 1, ';');
7305 }
7306 else
7307 {
7308 ULONGEST pnum;
7309 const char *p_temp;
7310
7311 if (skipregs)
7312 {
7313 p = strchrnul (p1 + 1, ';');
7314 p++;
7315 continue;
7316 }
7317
7318 /* Maybe a real ``P'' register number. */
7319 p_temp = unpack_varlen_hex (p, &pnum);
7320 /* If the first invalid character is the colon, we got a
7321 register number. Otherwise, it's an unknown stop
7322 reason. */
7323 if (p_temp == p1)
7324 {
7325 /* If we haven't parsed the event's thread yet, find
7326 it now, in order to find the architecture of the
7327 reported expedited registers. */
7328 if (event->ptid == null_ptid)
7329 {
7330 const char *thr = strstr (p1 + 1, ";thread:");
7331 if (thr != NULL)
7332 event->ptid = read_ptid (thr + strlen (";thread:"),
7333 NULL);
7334 else
7335 {
7336 /* Either the current thread hasn't changed,
7337 or the inferior is not multi-threaded.
7338 The event must be for the thread we last
7339 set as (or learned as being) current. */
7340 event->ptid = event->rs->general_thread;
7341 }
7342 }
7343
7344 if (rsa == NULL)
7345 {
7346 inferior *inf = (event->ptid == null_ptid
7347 ? NULL
7348 : find_inferior_ptid (event->ptid));
7349 /* If this is the first time we learn anything
7350 about this process, skip the registers
7351 included in this packet, since we don't yet
7352 know which architecture to use to parse them.
7353 We'll determine the architecture later when
7354 we process the stop reply and retrieve the
7355 target description, via
7356 remote_notice_new_inferior ->
7357 post_create_inferior. */
7358 if (inf == NULL)
7359 {
7360 p = strchrnul (p1 + 1, ';');
7361 p++;
7362 continue;
7363 }
7364
7365 event->arch = inf->gdbarch;
7366 rsa = event->rs->get_remote_arch_state (event->arch);
7367 }
7368
7369 packet_reg *reg
7370 = packet_reg_from_pnum (event->arch, rsa, pnum);
7371 cached_reg_t cached_reg;
7372
7373 if (reg == NULL)
7374 error (_("Remote sent bad register number %s: %s\n\
7375 Packet: '%s'\n"),
7376 hex_string (pnum), p, buf);
7377
7378 cached_reg.num = reg->regnum;
7379 cached_reg.data = (gdb_byte *)
7380 xmalloc (register_size (event->arch, reg->regnum));
7381
7382 p = p1 + 1;
7383 fieldsize = hex2bin (p, cached_reg.data,
7384 register_size (event->arch, reg->regnum));
7385 p += 2 * fieldsize;
7386 if (fieldsize < register_size (event->arch, reg->regnum))
7387 warning (_("Remote reply is too short: %s"), buf);
7388
7389 event->regcache.push_back (cached_reg);
7390 }
7391 else
7392 {
7393 /* Not a number. Silently skip unknown optional
7394 info. */
7395 p = strchrnul (p1 + 1, ';');
7396 }
7397 }
7398
7399 if (*p != ';')
7400 error (_("Remote register badly formatted: %s\nhere: %s"),
7401 buf, p);
7402 ++p;
7403 }
7404
7405 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7406 break;
7407
7408 /* fall through */
7409 case 'S': /* Old style status, just signal only. */
7410 {
7411 int sig;
7412
7413 event->ws.kind = TARGET_WAITKIND_STOPPED;
7414 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7415 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7416 event->ws.value.sig = (enum gdb_signal) sig;
7417 else
7418 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7419 }
7420 break;
7421 case 'w': /* Thread exited. */
7422 {
7423 ULONGEST value;
7424
7425 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7426 p = unpack_varlen_hex (&buf[1], &value);
7427 event->ws.value.integer = value;
7428 if (*p != ';')
7429 error (_("stop reply packet badly formatted: %s"), buf);
7430 event->ptid = read_ptid (++p, NULL);
7431 break;
7432 }
7433 case 'W': /* Target exited. */
7434 case 'X':
7435 {
7436 int pid;
7437 ULONGEST value;
7438
7439 /* GDB used to accept only 2 hex chars here. Stubs should
7440 only send more if they detect GDB supports multi-process
7441 support. */
7442 p = unpack_varlen_hex (&buf[1], &value);
7443
7444 if (buf[0] == 'W')
7445 {
7446 /* The remote process exited. */
7447 event->ws.kind = TARGET_WAITKIND_EXITED;
7448 event->ws.value.integer = value;
7449 }
7450 else
7451 {
7452 /* The remote process exited with a signal. */
7453 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7454 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7455 event->ws.value.sig = (enum gdb_signal) value;
7456 else
7457 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7458 }
7459
7460 /* If no process is specified, assume inferior_ptid. */
7461 pid = inferior_ptid.pid ();
7462 if (*p == '\0')
7463 ;
7464 else if (*p == ';')
7465 {
7466 p++;
7467
7468 if (*p == '\0')
7469 ;
7470 else if (startswith (p, "process:"))
7471 {
7472 ULONGEST upid;
7473
7474 p += sizeof ("process:") - 1;
7475 unpack_varlen_hex (p, &upid);
7476 pid = upid;
7477 }
7478 else
7479 error (_("unknown stop reply packet: %s"), buf);
7480 }
7481 else
7482 error (_("unknown stop reply packet: %s"), buf);
7483 event->ptid = ptid_t (pid);
7484 }
7485 break;
7486 case 'N':
7487 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7488 event->ptid = minus_one_ptid;
7489 break;
7490 }
7491
7492 if (target_is_non_stop_p () && event->ptid == null_ptid)
7493 error (_("No process or thread specified in stop reply: %s"), buf);
7494 }
7495
7496 /* When the stub wants to tell GDB about a new notification reply, it
7497 sends a notification (%Stop, for example). Those can come it at
7498 any time, hence, we have to make sure that any pending
7499 putpkt/getpkt sequence we're making is finished, before querying
7500 the stub for more events with the corresponding ack command
7501 (vStopped, for example). E.g., if we started a vStopped sequence
7502 immediately upon receiving the notification, something like this
7503 could happen:
7504
7505 1.1) --> Hg 1
7506 1.2) <-- OK
7507 1.3) --> g
7508 1.4) <-- %Stop
7509 1.5) --> vStopped
7510 1.6) <-- (registers reply to step #1.3)
7511
7512 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7513 query.
7514
7515 To solve this, whenever we parse a %Stop notification successfully,
7516 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7517 doing whatever we were doing:
7518
7519 2.1) --> Hg 1
7520 2.2) <-- OK
7521 2.3) --> g
7522 2.4) <-- %Stop
7523 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7524 2.5) <-- (registers reply to step #2.3)
7525
7526 Eventually after step #2.5, we return to the event loop, which
7527 notices there's an event on the
7528 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7529 associated callback --- the function below. At this point, we're
7530 always safe to start a vStopped sequence. :
7531
7532 2.6) --> vStopped
7533 2.7) <-- T05 thread:2
7534 2.8) --> vStopped
7535 2.9) --> OK
7536 */
7537
7538 void
7539 remote_target::remote_notif_get_pending_events (notif_client *nc)
7540 {
7541 struct remote_state *rs = get_remote_state ();
7542
7543 if (rs->notif_state->pending_event[nc->id] != NULL)
7544 {
7545 if (notif_debug)
7546 fprintf_unfiltered (gdb_stdlog,
7547 "notif: process: '%s' ack pending event\n",
7548 nc->name);
7549
7550 /* acknowledge */
7551 nc->ack (this, nc, rs->buf.data (),
7552 rs->notif_state->pending_event[nc->id]);
7553 rs->notif_state->pending_event[nc->id] = NULL;
7554
7555 while (1)
7556 {
7557 getpkt (&rs->buf, 0);
7558 if (strcmp (rs->buf.data (), "OK") == 0)
7559 break;
7560 else
7561 remote_notif_ack (this, nc, rs->buf.data ());
7562 }
7563 }
7564 else
7565 {
7566 if (notif_debug)
7567 fprintf_unfiltered (gdb_stdlog,
7568 "notif: process: '%s' no pending reply\n",
7569 nc->name);
7570 }
7571 }
7572
7573 /* Wrapper around remote_target::remote_notif_get_pending_events to
7574 avoid having to export the whole remote_target class. */
7575
7576 void
7577 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7578 {
7579 remote->remote_notif_get_pending_events (nc);
7580 }
7581
7582 /* Called when it is decided that STOP_REPLY holds the info of the
7583 event that is to be returned to the core. This function always
7584 destroys STOP_REPLY. */
7585
7586 ptid_t
7587 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7588 struct target_waitstatus *status)
7589 {
7590 ptid_t ptid;
7591
7592 *status = stop_reply->ws;
7593 ptid = stop_reply->ptid;
7594
7595 /* If no thread/process was reported by the stub, assume the current
7596 inferior. */
7597 if (ptid == null_ptid)
7598 ptid = inferior_ptid;
7599
7600 if (status->kind != TARGET_WAITKIND_EXITED
7601 && status->kind != TARGET_WAITKIND_SIGNALLED
7602 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7603 {
7604 /* Expedited registers. */
7605 if (!stop_reply->regcache.empty ())
7606 {
7607 struct regcache *regcache
7608 = get_thread_arch_regcache (ptid, stop_reply->arch);
7609
7610 for (cached_reg_t &reg : stop_reply->regcache)
7611 {
7612 regcache->raw_supply (reg.num, reg.data);
7613 xfree (reg.data);
7614 }
7615
7616 stop_reply->regcache.clear ();
7617 }
7618
7619 remote_notice_new_inferior (ptid, 0);
7620 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7621 remote_thr->core = stop_reply->core;
7622 remote_thr->stop_reason = stop_reply->stop_reason;
7623 remote_thr->watch_data_address = stop_reply->watch_data_address;
7624 remote_thr->vcont_resumed = 0;
7625 }
7626
7627 delete stop_reply;
7628 return ptid;
7629 }
7630
7631 /* The non-stop mode version of target_wait. */
7632
7633 ptid_t
7634 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7635 {
7636 struct remote_state *rs = get_remote_state ();
7637 struct stop_reply *stop_reply;
7638 int ret;
7639 int is_notif = 0;
7640
7641 /* If in non-stop mode, get out of getpkt even if a
7642 notification is received. */
7643
7644 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7645 while (1)
7646 {
7647 if (ret != -1 && !is_notif)
7648 switch (rs->buf[0])
7649 {
7650 case 'E': /* Error of some sort. */
7651 /* We're out of sync with the target now. Did it continue
7652 or not? We can't tell which thread it was in non-stop,
7653 so just ignore this. */
7654 warning (_("Remote failure reply: %s"), rs->buf.data ());
7655 break;
7656 case 'O': /* Console output. */
7657 remote_console_output (&rs->buf[1]);
7658 break;
7659 default:
7660 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7661 break;
7662 }
7663
7664 /* Acknowledge a pending stop reply that may have arrived in the
7665 mean time. */
7666 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7667 remote_notif_get_pending_events (&notif_client_stop);
7668
7669 /* If indeed we noticed a stop reply, we're done. */
7670 stop_reply = queued_stop_reply (ptid);
7671 if (stop_reply != NULL)
7672 return process_stop_reply (stop_reply, status);
7673
7674 /* Still no event. If we're just polling for an event, then
7675 return to the event loop. */
7676 if (options & TARGET_WNOHANG)
7677 {
7678 status->kind = TARGET_WAITKIND_IGNORE;
7679 return minus_one_ptid;
7680 }
7681
7682 /* Otherwise do a blocking wait. */
7683 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7684 }
7685 }
7686
7687 /* Wait until the remote machine stops, then return, storing status in
7688 STATUS just as `wait' would. */
7689
7690 ptid_t
7691 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7692 {
7693 struct remote_state *rs = get_remote_state ();
7694 ptid_t event_ptid = null_ptid;
7695 char *buf;
7696 struct stop_reply *stop_reply;
7697
7698 again:
7699
7700 status->kind = TARGET_WAITKIND_IGNORE;
7701 status->value.integer = 0;
7702
7703 stop_reply = queued_stop_reply (ptid);
7704 if (stop_reply != NULL)
7705 return process_stop_reply (stop_reply, status);
7706
7707 if (rs->cached_wait_status)
7708 /* Use the cached wait status, but only once. */
7709 rs->cached_wait_status = 0;
7710 else
7711 {
7712 int ret;
7713 int is_notif;
7714 int forever = ((options & TARGET_WNOHANG) == 0
7715 && rs->wait_forever_enabled_p);
7716
7717 if (!rs->waiting_for_stop_reply)
7718 {
7719 status->kind = TARGET_WAITKIND_NO_RESUMED;
7720 return minus_one_ptid;
7721 }
7722
7723 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7724 _never_ wait for ever -> test on target_is_async_p().
7725 However, before we do that we need to ensure that the caller
7726 knows how to take the target into/out of async mode. */
7727 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7728
7729 /* GDB gets a notification. Return to core as this event is
7730 not interesting. */
7731 if (ret != -1 && is_notif)
7732 return minus_one_ptid;
7733
7734 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7735 return minus_one_ptid;
7736 }
7737
7738 buf = rs->buf.data ();
7739
7740 /* Assume that the target has acknowledged Ctrl-C unless we receive
7741 an 'F' or 'O' packet. */
7742 if (buf[0] != 'F' && buf[0] != 'O')
7743 rs->ctrlc_pending_p = 0;
7744
7745 switch (buf[0])
7746 {
7747 case 'E': /* Error of some sort. */
7748 /* We're out of sync with the target now. Did it continue or
7749 not? Not is more likely, so report a stop. */
7750 rs->waiting_for_stop_reply = 0;
7751
7752 warning (_("Remote failure reply: %s"), buf);
7753 status->kind = TARGET_WAITKIND_STOPPED;
7754 status->value.sig = GDB_SIGNAL_0;
7755 break;
7756 case 'F': /* File-I/O request. */
7757 /* GDB may access the inferior memory while handling the File-I/O
7758 request, but we don't want GDB accessing memory while waiting
7759 for a stop reply. See the comments in putpkt_binary. Set
7760 waiting_for_stop_reply to 0 temporarily. */
7761 rs->waiting_for_stop_reply = 0;
7762 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7763 rs->ctrlc_pending_p = 0;
7764 /* GDB handled the File-I/O request, and the target is running
7765 again. Keep waiting for events. */
7766 rs->waiting_for_stop_reply = 1;
7767 break;
7768 case 'N': case 'T': case 'S': case 'X': case 'W':
7769 {
7770 /* There is a stop reply to handle. */
7771 rs->waiting_for_stop_reply = 0;
7772
7773 stop_reply
7774 = (struct stop_reply *) remote_notif_parse (this,
7775 &notif_client_stop,
7776 rs->buf.data ());
7777
7778 event_ptid = process_stop_reply (stop_reply, status);
7779 break;
7780 }
7781 case 'O': /* Console output. */
7782 remote_console_output (buf + 1);
7783 break;
7784 case '\0':
7785 if (rs->last_sent_signal != GDB_SIGNAL_0)
7786 {
7787 /* Zero length reply means that we tried 'S' or 'C' and the
7788 remote system doesn't support it. */
7789 target_terminal::ours_for_output ();
7790 printf_filtered
7791 ("Can't send signals to this remote system. %s not sent.\n",
7792 gdb_signal_to_name (rs->last_sent_signal));
7793 rs->last_sent_signal = GDB_SIGNAL_0;
7794 target_terminal::inferior ();
7795
7796 strcpy (buf, rs->last_sent_step ? "s" : "c");
7797 putpkt (buf);
7798 break;
7799 }
7800 /* fallthrough */
7801 default:
7802 warning (_("Invalid remote reply: %s"), buf);
7803 break;
7804 }
7805
7806 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7807 return minus_one_ptid;
7808 else if (status->kind == TARGET_WAITKIND_IGNORE)
7809 {
7810 /* Nothing interesting happened. If we're doing a non-blocking
7811 poll, we're done. Otherwise, go back to waiting. */
7812 if (options & TARGET_WNOHANG)
7813 return minus_one_ptid;
7814 else
7815 goto again;
7816 }
7817 else if (status->kind != TARGET_WAITKIND_EXITED
7818 && status->kind != TARGET_WAITKIND_SIGNALLED)
7819 {
7820 if (event_ptid != null_ptid)
7821 record_currthread (rs, event_ptid);
7822 else
7823 event_ptid = inferior_ptid;
7824 }
7825 else
7826 /* A process exit. Invalidate our notion of current thread. */
7827 record_currthread (rs, minus_one_ptid);
7828
7829 return event_ptid;
7830 }
7831
7832 /* Wait until the remote machine stops, then return, storing status in
7833 STATUS just as `wait' would. */
7834
7835 ptid_t
7836 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7837 {
7838 ptid_t event_ptid;
7839
7840 if (target_is_non_stop_p ())
7841 event_ptid = wait_ns (ptid, status, options);
7842 else
7843 event_ptid = wait_as (ptid, status, options);
7844
7845 if (target_is_async_p ())
7846 {
7847 remote_state *rs = get_remote_state ();
7848
7849 /* If there are are events left in the queue tell the event loop
7850 to return here. */
7851 if (!rs->stop_reply_queue.empty ())
7852 mark_async_event_handler (rs->remote_async_inferior_event_token);
7853 }
7854
7855 return event_ptid;
7856 }
7857
7858 /* Fetch a single register using a 'p' packet. */
7859
7860 int
7861 remote_target::fetch_register_using_p (struct regcache *regcache,
7862 packet_reg *reg)
7863 {
7864 struct gdbarch *gdbarch = regcache->arch ();
7865 struct remote_state *rs = get_remote_state ();
7866 char *buf, *p;
7867 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7868 int i;
7869
7870 if (packet_support (PACKET_p) == PACKET_DISABLE)
7871 return 0;
7872
7873 if (reg->pnum == -1)
7874 return 0;
7875
7876 p = rs->buf.data ();
7877 *p++ = 'p';
7878 p += hexnumstr (p, reg->pnum);
7879 *p++ = '\0';
7880 putpkt (rs->buf);
7881 getpkt (&rs->buf, 0);
7882
7883 buf = rs->buf.data ();
7884
7885 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
7886 {
7887 case PACKET_OK:
7888 break;
7889 case PACKET_UNKNOWN:
7890 return 0;
7891 case PACKET_ERROR:
7892 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7893 gdbarch_register_name (regcache->arch (),
7894 reg->regnum),
7895 buf);
7896 }
7897
7898 /* If this register is unfetchable, tell the regcache. */
7899 if (buf[0] == 'x')
7900 {
7901 regcache->raw_supply (reg->regnum, NULL);
7902 return 1;
7903 }
7904
7905 /* Otherwise, parse and supply the value. */
7906 p = buf;
7907 i = 0;
7908 while (p[0] != 0)
7909 {
7910 if (p[1] == 0)
7911 error (_("fetch_register_using_p: early buf termination"));
7912
7913 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7914 p += 2;
7915 }
7916 regcache->raw_supply (reg->regnum, regp);
7917 return 1;
7918 }
7919
7920 /* Fetch the registers included in the target's 'g' packet. */
7921
7922 int
7923 remote_target::send_g_packet ()
7924 {
7925 struct remote_state *rs = get_remote_state ();
7926 int buf_len;
7927
7928 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
7929 putpkt (rs->buf);
7930 getpkt (&rs->buf, 0);
7931 if (packet_check_result (rs->buf) == PACKET_ERROR)
7932 error (_("Could not read registers; remote failure reply '%s'"),
7933 rs->buf.data ());
7934
7935 /* We can get out of synch in various cases. If the first character
7936 in the buffer is not a hex character, assume that has happened
7937 and try to fetch another packet to read. */
7938 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7939 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7940 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7941 && rs->buf[0] != 'x') /* New: unavailable register value. */
7942 {
7943 if (remote_debug)
7944 fprintf_unfiltered (gdb_stdlog,
7945 "Bad register packet; fetching a new packet\n");
7946 getpkt (&rs->buf, 0);
7947 }
7948
7949 buf_len = strlen (rs->buf.data ());
7950
7951 /* Sanity check the received packet. */
7952 if (buf_len % 2 != 0)
7953 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
7954
7955 return buf_len / 2;
7956 }
7957
7958 void
7959 remote_target::process_g_packet (struct regcache *regcache)
7960 {
7961 struct gdbarch *gdbarch = regcache->arch ();
7962 struct remote_state *rs = get_remote_state ();
7963 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
7964 int i, buf_len;
7965 char *p;
7966 char *regs;
7967
7968 buf_len = strlen (rs->buf.data ());
7969
7970 /* Further sanity checks, with knowledge of the architecture. */
7971 if (buf_len > 2 * rsa->sizeof_g_packet)
7972 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7973 "bytes): %s"),
7974 rsa->sizeof_g_packet, buf_len / 2,
7975 rs->buf.data ());
7976
7977 /* Save the size of the packet sent to us by the target. It is used
7978 as a heuristic when determining the max size of packets that the
7979 target can safely receive. */
7980 if (rsa->actual_register_packet_size == 0)
7981 rsa->actual_register_packet_size = buf_len;
7982
7983 /* If this is smaller than we guessed the 'g' packet would be,
7984 update our records. A 'g' reply that doesn't include a register's
7985 value implies either that the register is not available, or that
7986 the 'p' packet must be used. */
7987 if (buf_len < 2 * rsa->sizeof_g_packet)
7988 {
7989 long sizeof_g_packet = buf_len / 2;
7990
7991 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7992 {
7993 long offset = rsa->regs[i].offset;
7994 long reg_size = register_size (gdbarch, i);
7995
7996 if (rsa->regs[i].pnum == -1)
7997 continue;
7998
7999 if (offset >= sizeof_g_packet)
8000 rsa->regs[i].in_g_packet = 0;
8001 else if (offset + reg_size > sizeof_g_packet)
8002 error (_("Truncated register %d in remote 'g' packet"), i);
8003 else
8004 rsa->regs[i].in_g_packet = 1;
8005 }
8006
8007 /* Looks valid enough, we can assume this is the correct length
8008 for a 'g' packet. It's important not to adjust
8009 rsa->sizeof_g_packet if we have truncated registers otherwise
8010 this "if" won't be run the next time the method is called
8011 with a packet of the same size and one of the internal errors
8012 below will trigger instead. */
8013 rsa->sizeof_g_packet = sizeof_g_packet;
8014 }
8015
8016 regs = (char *) alloca (rsa->sizeof_g_packet);
8017
8018 /* Unimplemented registers read as all bits zero. */
8019 memset (regs, 0, rsa->sizeof_g_packet);
8020
8021 /* Reply describes registers byte by byte, each byte encoded as two
8022 hex characters. Suck them all up, then supply them to the
8023 register cacheing/storage mechanism. */
8024
8025 p = rs->buf.data ();
8026 for (i = 0; i < rsa->sizeof_g_packet; i++)
8027 {
8028 if (p[0] == 0 || p[1] == 0)
8029 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8030 internal_error (__FILE__, __LINE__,
8031 _("unexpected end of 'g' packet reply"));
8032
8033 if (p[0] == 'x' && p[1] == 'x')
8034 regs[i] = 0; /* 'x' */
8035 else
8036 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8037 p += 2;
8038 }
8039
8040 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8041 {
8042 struct packet_reg *r = &rsa->regs[i];
8043 long reg_size = register_size (gdbarch, i);
8044
8045 if (r->in_g_packet)
8046 {
8047 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8048 /* This shouldn't happen - we adjusted in_g_packet above. */
8049 internal_error (__FILE__, __LINE__,
8050 _("unexpected end of 'g' packet reply"));
8051 else if (rs->buf[r->offset * 2] == 'x')
8052 {
8053 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8054 /* The register isn't available, mark it as such (at
8055 the same time setting the value to zero). */
8056 regcache->raw_supply (r->regnum, NULL);
8057 }
8058 else
8059 regcache->raw_supply (r->regnum, regs + r->offset);
8060 }
8061 }
8062 }
8063
8064 void
8065 remote_target::fetch_registers_using_g (struct regcache *regcache)
8066 {
8067 send_g_packet ();
8068 process_g_packet (regcache);
8069 }
8070
8071 /* Make the remote selected traceframe match GDB's selected
8072 traceframe. */
8073
8074 void
8075 remote_target::set_remote_traceframe ()
8076 {
8077 int newnum;
8078 struct remote_state *rs = get_remote_state ();
8079
8080 if (rs->remote_traceframe_number == get_traceframe_number ())
8081 return;
8082
8083 /* Avoid recursion, remote_trace_find calls us again. */
8084 rs->remote_traceframe_number = get_traceframe_number ();
8085
8086 newnum = target_trace_find (tfind_number,
8087 get_traceframe_number (), 0, 0, NULL);
8088
8089 /* Should not happen. If it does, all bets are off. */
8090 if (newnum != get_traceframe_number ())
8091 warning (_("could not set remote traceframe"));
8092 }
8093
8094 void
8095 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8096 {
8097 struct gdbarch *gdbarch = regcache->arch ();
8098 struct remote_state *rs = get_remote_state ();
8099 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8100 int i;
8101
8102 set_remote_traceframe ();
8103 set_general_thread (regcache->ptid ());
8104
8105 if (regnum >= 0)
8106 {
8107 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8108
8109 gdb_assert (reg != NULL);
8110
8111 /* If this register might be in the 'g' packet, try that first -
8112 we are likely to read more than one register. If this is the
8113 first 'g' packet, we might be overly optimistic about its
8114 contents, so fall back to 'p'. */
8115 if (reg->in_g_packet)
8116 {
8117 fetch_registers_using_g (regcache);
8118 if (reg->in_g_packet)
8119 return;
8120 }
8121
8122 if (fetch_register_using_p (regcache, reg))
8123 return;
8124
8125 /* This register is not available. */
8126 regcache->raw_supply (reg->regnum, NULL);
8127
8128 return;
8129 }
8130
8131 fetch_registers_using_g (regcache);
8132
8133 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8134 if (!rsa->regs[i].in_g_packet)
8135 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8136 {
8137 /* This register is not available. */
8138 regcache->raw_supply (i, NULL);
8139 }
8140 }
8141
8142 /* Prepare to store registers. Since we may send them all (using a
8143 'G' request), we have to read out the ones we don't want to change
8144 first. */
8145
8146 void
8147 remote_target::prepare_to_store (struct regcache *regcache)
8148 {
8149 struct remote_state *rs = get_remote_state ();
8150 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8151 int i;
8152
8153 /* Make sure the entire registers array is valid. */
8154 switch (packet_support (PACKET_P))
8155 {
8156 case PACKET_DISABLE:
8157 case PACKET_SUPPORT_UNKNOWN:
8158 /* Make sure all the necessary registers are cached. */
8159 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8160 if (rsa->regs[i].in_g_packet)
8161 regcache->raw_update (rsa->regs[i].regnum);
8162 break;
8163 case PACKET_ENABLE:
8164 break;
8165 }
8166 }
8167
8168 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8169 packet was not recognized. */
8170
8171 int
8172 remote_target::store_register_using_P (const struct regcache *regcache,
8173 packet_reg *reg)
8174 {
8175 struct gdbarch *gdbarch = regcache->arch ();
8176 struct remote_state *rs = get_remote_state ();
8177 /* Try storing a single register. */
8178 char *buf = rs->buf.data ();
8179 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8180 char *p;
8181
8182 if (packet_support (PACKET_P) == PACKET_DISABLE)
8183 return 0;
8184
8185 if (reg->pnum == -1)
8186 return 0;
8187
8188 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8189 p = buf + strlen (buf);
8190 regcache->raw_collect (reg->regnum, regp);
8191 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8192 putpkt (rs->buf);
8193 getpkt (&rs->buf, 0);
8194
8195 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8196 {
8197 case PACKET_OK:
8198 return 1;
8199 case PACKET_ERROR:
8200 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8201 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8202 case PACKET_UNKNOWN:
8203 return 0;
8204 default:
8205 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8206 }
8207 }
8208
8209 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8210 contents of the register cache buffer. FIXME: ignores errors. */
8211
8212 void
8213 remote_target::store_registers_using_G (const struct regcache *regcache)
8214 {
8215 struct remote_state *rs = get_remote_state ();
8216 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8217 gdb_byte *regs;
8218 char *p;
8219
8220 /* Extract all the registers in the regcache copying them into a
8221 local buffer. */
8222 {
8223 int i;
8224
8225 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8226 memset (regs, 0, rsa->sizeof_g_packet);
8227 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8228 {
8229 struct packet_reg *r = &rsa->regs[i];
8230
8231 if (r->in_g_packet)
8232 regcache->raw_collect (r->regnum, regs + r->offset);
8233 }
8234 }
8235
8236 /* Command describes registers byte by byte,
8237 each byte encoded as two hex characters. */
8238 p = rs->buf.data ();
8239 *p++ = 'G';
8240 bin2hex (regs, p, rsa->sizeof_g_packet);
8241 putpkt (rs->buf);
8242 getpkt (&rs->buf, 0);
8243 if (packet_check_result (rs->buf) == PACKET_ERROR)
8244 error (_("Could not write registers; remote failure reply '%s'"),
8245 rs->buf.data ());
8246 }
8247
8248 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8249 of the register cache buffer. FIXME: ignores errors. */
8250
8251 void
8252 remote_target::store_registers (struct regcache *regcache, int regnum)
8253 {
8254 struct gdbarch *gdbarch = regcache->arch ();
8255 struct remote_state *rs = get_remote_state ();
8256 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8257 int i;
8258
8259 set_remote_traceframe ();
8260 set_general_thread (regcache->ptid ());
8261
8262 if (regnum >= 0)
8263 {
8264 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8265
8266 gdb_assert (reg != NULL);
8267
8268 /* Always prefer to store registers using the 'P' packet if
8269 possible; we often change only a small number of registers.
8270 Sometimes we change a larger number; we'd need help from a
8271 higher layer to know to use 'G'. */
8272 if (store_register_using_P (regcache, reg))
8273 return;
8274
8275 /* For now, don't complain if we have no way to write the
8276 register. GDB loses track of unavailable registers too
8277 easily. Some day, this may be an error. We don't have
8278 any way to read the register, either... */
8279 if (!reg->in_g_packet)
8280 return;
8281
8282 store_registers_using_G (regcache);
8283 return;
8284 }
8285
8286 store_registers_using_G (regcache);
8287
8288 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8289 if (!rsa->regs[i].in_g_packet)
8290 if (!store_register_using_P (regcache, &rsa->regs[i]))
8291 /* See above for why we do not issue an error here. */
8292 continue;
8293 }
8294 \f
8295
8296 /* Return the number of hex digits in num. */
8297
8298 static int
8299 hexnumlen (ULONGEST num)
8300 {
8301 int i;
8302
8303 for (i = 0; num != 0; i++)
8304 num >>= 4;
8305
8306 return std::max (i, 1);
8307 }
8308
8309 /* Set BUF to the minimum number of hex digits representing NUM. */
8310
8311 static int
8312 hexnumstr (char *buf, ULONGEST num)
8313 {
8314 int len = hexnumlen (num);
8315
8316 return hexnumnstr (buf, num, len);
8317 }
8318
8319
8320 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8321
8322 static int
8323 hexnumnstr (char *buf, ULONGEST num, int width)
8324 {
8325 int i;
8326
8327 buf[width] = '\0';
8328
8329 for (i = width - 1; i >= 0; i--)
8330 {
8331 buf[i] = "0123456789abcdef"[(num & 0xf)];
8332 num >>= 4;
8333 }
8334
8335 return width;
8336 }
8337
8338 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8339
8340 static CORE_ADDR
8341 remote_address_masked (CORE_ADDR addr)
8342 {
8343 unsigned int address_size = remote_address_size;
8344
8345 /* If "remoteaddresssize" was not set, default to target address size. */
8346 if (!address_size)
8347 address_size = gdbarch_addr_bit (target_gdbarch ());
8348
8349 if (address_size > 0
8350 && address_size < (sizeof (ULONGEST) * 8))
8351 {
8352 /* Only create a mask when that mask can safely be constructed
8353 in a ULONGEST variable. */
8354 ULONGEST mask = 1;
8355
8356 mask = (mask << address_size) - 1;
8357 addr &= mask;
8358 }
8359 return addr;
8360 }
8361
8362 /* Determine whether the remote target supports binary downloading.
8363 This is accomplished by sending a no-op memory write of zero length
8364 to the target at the specified address. It does not suffice to send
8365 the whole packet, since many stubs strip the eighth bit and
8366 subsequently compute a wrong checksum, which causes real havoc with
8367 remote_write_bytes.
8368
8369 NOTE: This can still lose if the serial line is not eight-bit
8370 clean. In cases like this, the user should clear "remote
8371 X-packet". */
8372
8373 void
8374 remote_target::check_binary_download (CORE_ADDR addr)
8375 {
8376 struct remote_state *rs = get_remote_state ();
8377
8378 switch (packet_support (PACKET_X))
8379 {
8380 case PACKET_DISABLE:
8381 break;
8382 case PACKET_ENABLE:
8383 break;
8384 case PACKET_SUPPORT_UNKNOWN:
8385 {
8386 char *p;
8387
8388 p = rs->buf.data ();
8389 *p++ = 'X';
8390 p += hexnumstr (p, (ULONGEST) addr);
8391 *p++ = ',';
8392 p += hexnumstr (p, (ULONGEST) 0);
8393 *p++ = ':';
8394 *p = '\0';
8395
8396 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8397 getpkt (&rs->buf, 0);
8398
8399 if (rs->buf[0] == '\0')
8400 {
8401 if (remote_debug)
8402 fprintf_unfiltered (gdb_stdlog,
8403 "binary downloading NOT "
8404 "supported by target\n");
8405 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8406 }
8407 else
8408 {
8409 if (remote_debug)
8410 fprintf_unfiltered (gdb_stdlog,
8411 "binary downloading supported by target\n");
8412 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8413 }
8414 break;
8415 }
8416 }
8417 }
8418
8419 /* Helper function to resize the payload in order to try to get a good
8420 alignment. We try to write an amount of data such that the next write will
8421 start on an address aligned on REMOTE_ALIGN_WRITES. */
8422
8423 static int
8424 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8425 {
8426 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8427 }
8428
8429 /* Write memory data directly to the remote machine.
8430 This does not inform the data cache; the data cache uses this.
8431 HEADER is the starting part of the packet.
8432 MEMADDR is the address in the remote memory space.
8433 MYADDR is the address of the buffer in our space.
8434 LEN_UNITS is the number of addressable units to write.
8435 UNIT_SIZE is the length in bytes of an addressable unit.
8436 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8437 should send data as binary ('X'), or hex-encoded ('M').
8438
8439 The function creates packet of the form
8440 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8441
8442 where encoding of <DATA> is terminated by PACKET_FORMAT.
8443
8444 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8445 are omitted.
8446
8447 Return the transferred status, error or OK (an
8448 'enum target_xfer_status' value). Save the number of addressable units
8449 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8450
8451 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8452 exchange between gdb and the stub could look like (?? in place of the
8453 checksum):
8454
8455 -> $m1000,4#??
8456 <- aaaabbbbccccdddd
8457
8458 -> $M1000,3:eeeeffffeeee#??
8459 <- OK
8460
8461 -> $m1000,4#??
8462 <- eeeeffffeeeedddd */
8463
8464 target_xfer_status
8465 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8466 const gdb_byte *myaddr,
8467 ULONGEST len_units,
8468 int unit_size,
8469 ULONGEST *xfered_len_units,
8470 char packet_format, int use_length)
8471 {
8472 struct remote_state *rs = get_remote_state ();
8473 char *p;
8474 char *plen = NULL;
8475 int plenlen = 0;
8476 int todo_units;
8477 int units_written;
8478 int payload_capacity_bytes;
8479 int payload_length_bytes;
8480
8481 if (packet_format != 'X' && packet_format != 'M')
8482 internal_error (__FILE__, __LINE__,
8483 _("remote_write_bytes_aux: bad packet format"));
8484
8485 if (len_units == 0)
8486 return TARGET_XFER_EOF;
8487
8488 payload_capacity_bytes = get_memory_write_packet_size ();
8489
8490 /* The packet buffer will be large enough for the payload;
8491 get_memory_packet_size ensures this. */
8492 rs->buf[0] = '\0';
8493
8494 /* Compute the size of the actual payload by subtracting out the
8495 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8496
8497 payload_capacity_bytes -= strlen ("$,:#NN");
8498 if (!use_length)
8499 /* The comma won't be used. */
8500 payload_capacity_bytes += 1;
8501 payload_capacity_bytes -= strlen (header);
8502 payload_capacity_bytes -= hexnumlen (memaddr);
8503
8504 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8505
8506 strcat (rs->buf.data (), header);
8507 p = rs->buf.data () + strlen (header);
8508
8509 /* Compute a best guess of the number of bytes actually transfered. */
8510 if (packet_format == 'X')
8511 {
8512 /* Best guess at number of bytes that will fit. */
8513 todo_units = std::min (len_units,
8514 (ULONGEST) payload_capacity_bytes / unit_size);
8515 if (use_length)
8516 payload_capacity_bytes -= hexnumlen (todo_units);
8517 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8518 }
8519 else
8520 {
8521 /* Number of bytes that will fit. */
8522 todo_units
8523 = std::min (len_units,
8524 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8525 if (use_length)
8526 payload_capacity_bytes -= hexnumlen (todo_units);
8527 todo_units = std::min (todo_units,
8528 (payload_capacity_bytes / unit_size) / 2);
8529 }
8530
8531 if (todo_units <= 0)
8532 internal_error (__FILE__, __LINE__,
8533 _("minimum packet size too small to write data"));
8534
8535 /* If we already need another packet, then try to align the end
8536 of this packet to a useful boundary. */
8537 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8538 todo_units = align_for_efficient_write (todo_units, memaddr);
8539
8540 /* Append "<memaddr>". */
8541 memaddr = remote_address_masked (memaddr);
8542 p += hexnumstr (p, (ULONGEST) memaddr);
8543
8544 if (use_length)
8545 {
8546 /* Append ",". */
8547 *p++ = ',';
8548
8549 /* Append the length and retain its location and size. It may need to be
8550 adjusted once the packet body has been created. */
8551 plen = p;
8552 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8553 p += plenlen;
8554 }
8555
8556 /* Append ":". */
8557 *p++ = ':';
8558 *p = '\0';
8559
8560 /* Append the packet body. */
8561 if (packet_format == 'X')
8562 {
8563 /* Binary mode. Send target system values byte by byte, in
8564 increasing byte addresses. Only escape certain critical
8565 characters. */
8566 payload_length_bytes =
8567 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8568 &units_written, payload_capacity_bytes);
8569
8570 /* If not all TODO units fit, then we'll need another packet. Make
8571 a second try to keep the end of the packet aligned. Don't do
8572 this if the packet is tiny. */
8573 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8574 {
8575 int new_todo_units;
8576
8577 new_todo_units = align_for_efficient_write (units_written, memaddr);
8578
8579 if (new_todo_units != units_written)
8580 payload_length_bytes =
8581 remote_escape_output (myaddr, new_todo_units, unit_size,
8582 (gdb_byte *) p, &units_written,
8583 payload_capacity_bytes);
8584 }
8585
8586 p += payload_length_bytes;
8587 if (use_length && units_written < todo_units)
8588 {
8589 /* Escape chars have filled up the buffer prematurely,
8590 and we have actually sent fewer units than planned.
8591 Fix-up the length field of the packet. Use the same
8592 number of characters as before. */
8593 plen += hexnumnstr (plen, (ULONGEST) units_written,
8594 plenlen);
8595 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8596 }
8597 }
8598 else
8599 {
8600 /* Normal mode: Send target system values byte by byte, in
8601 increasing byte addresses. Each byte is encoded as a two hex
8602 value. */
8603 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8604 units_written = todo_units;
8605 }
8606
8607 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8608 getpkt (&rs->buf, 0);
8609
8610 if (rs->buf[0] == 'E')
8611 return TARGET_XFER_E_IO;
8612
8613 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8614 send fewer units than we'd planned. */
8615 *xfered_len_units = (ULONGEST) units_written;
8616 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8617 }
8618
8619 /* Write memory data directly to the remote machine.
8620 This does not inform the data cache; the data cache uses this.
8621 MEMADDR is the address in the remote memory space.
8622 MYADDR is the address of the buffer in our space.
8623 LEN is the number of bytes.
8624
8625 Return the transferred status, error or OK (an
8626 'enum target_xfer_status' value). Save the number of bytes
8627 transferred in *XFERED_LEN. Only transfer a single packet. */
8628
8629 target_xfer_status
8630 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8631 ULONGEST len, int unit_size,
8632 ULONGEST *xfered_len)
8633 {
8634 const char *packet_format = NULL;
8635
8636 /* Check whether the target supports binary download. */
8637 check_binary_download (memaddr);
8638
8639 switch (packet_support (PACKET_X))
8640 {
8641 case PACKET_ENABLE:
8642 packet_format = "X";
8643 break;
8644 case PACKET_DISABLE:
8645 packet_format = "M";
8646 break;
8647 case PACKET_SUPPORT_UNKNOWN:
8648 internal_error (__FILE__, __LINE__,
8649 _("remote_write_bytes: bad internal state"));
8650 default:
8651 internal_error (__FILE__, __LINE__, _("bad switch"));
8652 }
8653
8654 return remote_write_bytes_aux (packet_format,
8655 memaddr, myaddr, len, unit_size, xfered_len,
8656 packet_format[0], 1);
8657 }
8658
8659 /* Read memory data directly from the remote machine.
8660 This does not use the data cache; the data cache uses this.
8661 MEMADDR is the address in the remote memory space.
8662 MYADDR is the address of the buffer in our space.
8663 LEN_UNITS is the number of addressable memory units to read..
8664 UNIT_SIZE is the length in bytes of an addressable unit.
8665
8666 Return the transferred status, error or OK (an
8667 'enum target_xfer_status' value). Save the number of bytes
8668 transferred in *XFERED_LEN_UNITS.
8669
8670 See the comment of remote_write_bytes_aux for an example of
8671 memory read/write exchange between gdb and the stub. */
8672
8673 target_xfer_status
8674 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8675 ULONGEST len_units,
8676 int unit_size, ULONGEST *xfered_len_units)
8677 {
8678 struct remote_state *rs = get_remote_state ();
8679 int buf_size_bytes; /* Max size of packet output buffer. */
8680 char *p;
8681 int todo_units;
8682 int decoded_bytes;
8683
8684 buf_size_bytes = get_memory_read_packet_size ();
8685 /* The packet buffer will be large enough for the payload;
8686 get_memory_packet_size ensures this. */
8687
8688 /* Number of units that will fit. */
8689 todo_units = std::min (len_units,
8690 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8691
8692 /* Construct "m"<memaddr>","<len>". */
8693 memaddr = remote_address_masked (memaddr);
8694 p = rs->buf.data ();
8695 *p++ = 'm';
8696 p += hexnumstr (p, (ULONGEST) memaddr);
8697 *p++ = ',';
8698 p += hexnumstr (p, (ULONGEST) todo_units);
8699 *p = '\0';
8700 putpkt (rs->buf);
8701 getpkt (&rs->buf, 0);
8702 if (rs->buf[0] == 'E'
8703 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8704 && rs->buf[3] == '\0')
8705 return TARGET_XFER_E_IO;
8706 /* Reply describes memory byte by byte, each byte encoded as two hex
8707 characters. */
8708 p = rs->buf.data ();
8709 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8710 /* Return what we have. Let higher layers handle partial reads. */
8711 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8712 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8713 }
8714
8715 /* Using the set of read-only target sections of remote, read live
8716 read-only memory.
8717
8718 For interface/parameters/return description see target.h,
8719 to_xfer_partial. */
8720
8721 target_xfer_status
8722 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8723 ULONGEST memaddr,
8724 ULONGEST len,
8725 int unit_size,
8726 ULONGEST *xfered_len)
8727 {
8728 struct target_section *secp;
8729 struct target_section_table *table;
8730
8731 secp = target_section_by_addr (this, memaddr);
8732 if (secp != NULL
8733 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
8734 {
8735 struct target_section *p;
8736 ULONGEST memend = memaddr + len;
8737
8738 table = target_get_section_table (this);
8739
8740 for (p = table->sections; p < table->sections_end; p++)
8741 {
8742 if (memaddr >= p->addr)
8743 {
8744 if (memend <= p->endaddr)
8745 {
8746 /* Entire transfer is within this section. */
8747 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8748 xfered_len);
8749 }
8750 else if (memaddr >= p->endaddr)
8751 {
8752 /* This section ends before the transfer starts. */
8753 continue;
8754 }
8755 else
8756 {
8757 /* This section overlaps the transfer. Just do half. */
8758 len = p->endaddr - memaddr;
8759 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8760 xfered_len);
8761 }
8762 }
8763 }
8764 }
8765
8766 return TARGET_XFER_EOF;
8767 }
8768
8769 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8770 first if the requested memory is unavailable in traceframe.
8771 Otherwise, fall back to remote_read_bytes_1. */
8772
8773 target_xfer_status
8774 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8775 gdb_byte *myaddr, ULONGEST len, int unit_size,
8776 ULONGEST *xfered_len)
8777 {
8778 if (len == 0)
8779 return TARGET_XFER_EOF;
8780
8781 if (get_traceframe_number () != -1)
8782 {
8783 std::vector<mem_range> available;
8784
8785 /* If we fail to get the set of available memory, then the
8786 target does not support querying traceframe info, and so we
8787 attempt reading from the traceframe anyway (assuming the
8788 target implements the old QTro packet then). */
8789 if (traceframe_available_memory (&available, memaddr, len))
8790 {
8791 if (available.empty () || available[0].start != memaddr)
8792 {
8793 enum target_xfer_status res;
8794
8795 /* Don't read into the traceframe's available
8796 memory. */
8797 if (!available.empty ())
8798 {
8799 LONGEST oldlen = len;
8800
8801 len = available[0].start - memaddr;
8802 gdb_assert (len <= oldlen);
8803 }
8804
8805 /* This goes through the topmost target again. */
8806 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8807 len, unit_size, xfered_len);
8808 if (res == TARGET_XFER_OK)
8809 return TARGET_XFER_OK;
8810 else
8811 {
8812 /* No use trying further, we know some memory starting
8813 at MEMADDR isn't available. */
8814 *xfered_len = len;
8815 return (*xfered_len != 0) ?
8816 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8817 }
8818 }
8819
8820 /* Don't try to read more than how much is available, in
8821 case the target implements the deprecated QTro packet to
8822 cater for older GDBs (the target's knowledge of read-only
8823 sections may be outdated by now). */
8824 len = available[0].length;
8825 }
8826 }
8827
8828 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8829 }
8830
8831 \f
8832
8833 /* Sends a packet with content determined by the printf format string
8834 FORMAT and the remaining arguments, then gets the reply. Returns
8835 whether the packet was a success, a failure, or unknown. */
8836
8837 packet_result
8838 remote_target::remote_send_printf (const char *format, ...)
8839 {
8840 struct remote_state *rs = get_remote_state ();
8841 int max_size = get_remote_packet_size ();
8842 va_list ap;
8843
8844 va_start (ap, format);
8845
8846 rs->buf[0] = '\0';
8847 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8848
8849 va_end (ap);
8850
8851 if (size >= max_size)
8852 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8853
8854 if (putpkt (rs->buf) < 0)
8855 error (_("Communication problem with target."));
8856
8857 rs->buf[0] = '\0';
8858 getpkt (&rs->buf, 0);
8859
8860 return packet_check_result (rs->buf);
8861 }
8862
8863 /* Flash writing can take quite some time. We'll set
8864 effectively infinite timeout for flash operations.
8865 In future, we'll need to decide on a better approach. */
8866 static const int remote_flash_timeout = 1000;
8867
8868 void
8869 remote_target::flash_erase (ULONGEST address, LONGEST length)
8870 {
8871 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8872 enum packet_result ret;
8873 scoped_restore restore_timeout
8874 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8875
8876 ret = remote_send_printf ("vFlashErase:%s,%s",
8877 phex (address, addr_size),
8878 phex (length, 4));
8879 switch (ret)
8880 {
8881 case PACKET_UNKNOWN:
8882 error (_("Remote target does not support flash erase"));
8883 case PACKET_ERROR:
8884 error (_("Error erasing flash with vFlashErase packet"));
8885 default:
8886 break;
8887 }
8888 }
8889
8890 target_xfer_status
8891 remote_target::remote_flash_write (ULONGEST address,
8892 ULONGEST length, ULONGEST *xfered_len,
8893 const gdb_byte *data)
8894 {
8895 scoped_restore restore_timeout
8896 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8897 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8898 xfered_len,'X', 0);
8899 }
8900
8901 void
8902 remote_target::flash_done ()
8903 {
8904 int ret;
8905
8906 scoped_restore restore_timeout
8907 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8908
8909 ret = remote_send_printf ("vFlashDone");
8910
8911 switch (ret)
8912 {
8913 case PACKET_UNKNOWN:
8914 error (_("Remote target does not support vFlashDone"));
8915 case PACKET_ERROR:
8916 error (_("Error finishing flash operation"));
8917 default:
8918 break;
8919 }
8920 }
8921
8922 void
8923 remote_target::files_info ()
8924 {
8925 puts_filtered ("Debugging a target over a serial line.\n");
8926 }
8927 \f
8928 /* Stuff for dealing with the packets which are part of this protocol.
8929 See comment at top of file for details. */
8930
8931 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8932 error to higher layers. Called when a serial error is detected.
8933 The exception message is STRING, followed by a colon and a blank,
8934 the system error message for errno at function entry and final dot
8935 for output compatibility with throw_perror_with_name. */
8936
8937 static void
8938 unpush_and_perror (const char *string)
8939 {
8940 int saved_errno = errno;
8941
8942 remote_unpush_target ();
8943 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8944 safe_strerror (saved_errno));
8945 }
8946
8947 /* Read a single character from the remote end. The current quit
8948 handler is overridden to avoid quitting in the middle of packet
8949 sequence, as that would break communication with the remote server.
8950 See remote_serial_quit_handler for more detail. */
8951
8952 int
8953 remote_target::readchar (int timeout)
8954 {
8955 int ch;
8956 struct remote_state *rs = get_remote_state ();
8957
8958 {
8959 scoped_restore restore_quit_target
8960 = make_scoped_restore (&curr_quit_handler_target, this);
8961 scoped_restore restore_quit
8962 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
8963
8964 rs->got_ctrlc_during_io = 0;
8965
8966 ch = serial_readchar (rs->remote_desc, timeout);
8967
8968 if (rs->got_ctrlc_during_io)
8969 set_quit_flag ();
8970 }
8971
8972 if (ch >= 0)
8973 return ch;
8974
8975 switch ((enum serial_rc) ch)
8976 {
8977 case SERIAL_EOF:
8978 remote_unpush_target ();
8979 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8980 /* no return */
8981 case SERIAL_ERROR:
8982 unpush_and_perror (_("Remote communication error. "
8983 "Target disconnected."));
8984 /* no return */
8985 case SERIAL_TIMEOUT:
8986 break;
8987 }
8988 return ch;
8989 }
8990
8991 /* Wrapper for serial_write that closes the target and throws if
8992 writing fails. The current quit handler is overridden to avoid
8993 quitting in the middle of packet sequence, as that would break
8994 communication with the remote server. See
8995 remote_serial_quit_handler for more detail. */
8996
8997 void
8998 remote_target::remote_serial_write (const char *str, int len)
8999 {
9000 struct remote_state *rs = get_remote_state ();
9001
9002 scoped_restore restore_quit_target
9003 = make_scoped_restore (&curr_quit_handler_target, this);
9004 scoped_restore restore_quit
9005 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9006
9007 rs->got_ctrlc_during_io = 0;
9008
9009 if (serial_write (rs->remote_desc, str, len))
9010 {
9011 unpush_and_perror (_("Remote communication error. "
9012 "Target disconnected."));
9013 }
9014
9015 if (rs->got_ctrlc_during_io)
9016 set_quit_flag ();
9017 }
9018
9019 /* Return a string representing an escaped version of BUF, of len N.
9020 E.g. \n is converted to \\n, \t to \\t, etc. */
9021
9022 static std::string
9023 escape_buffer (const char *buf, int n)
9024 {
9025 string_file stb;
9026
9027 stb.putstrn (buf, n, '\\');
9028 return std::move (stb.string ());
9029 }
9030
9031 /* Display a null-terminated packet on stdout, for debugging, using C
9032 string notation. */
9033
9034 static void
9035 print_packet (const char *buf)
9036 {
9037 puts_filtered ("\"");
9038 fputstr_filtered (buf, '"', gdb_stdout);
9039 puts_filtered ("\"");
9040 }
9041
9042 int
9043 remote_target::putpkt (const char *buf)
9044 {
9045 return putpkt_binary (buf, strlen (buf));
9046 }
9047
9048 /* Wrapper around remote_target::putpkt to avoid exporting
9049 remote_target. */
9050
9051 int
9052 putpkt (remote_target *remote, const char *buf)
9053 {
9054 return remote->putpkt (buf);
9055 }
9056
9057 /* Send a packet to the remote machine, with error checking. The data
9058 of the packet is in BUF. The string in BUF can be at most
9059 get_remote_packet_size () - 5 to account for the $, # and checksum,
9060 and for a possible /0 if we are debugging (remote_debug) and want
9061 to print the sent packet as a string. */
9062
9063 int
9064 remote_target::putpkt_binary (const char *buf, int cnt)
9065 {
9066 struct remote_state *rs = get_remote_state ();
9067 int i;
9068 unsigned char csum = 0;
9069 gdb::def_vector<char> data (cnt + 6);
9070 char *buf2 = data.data ();
9071
9072 int ch;
9073 int tcount = 0;
9074 char *p;
9075
9076 /* Catch cases like trying to read memory or listing threads while
9077 we're waiting for a stop reply. The remote server wouldn't be
9078 ready to handle this request, so we'd hang and timeout. We don't
9079 have to worry about this in synchronous mode, because in that
9080 case it's not possible to issue a command while the target is
9081 running. This is not a problem in non-stop mode, because in that
9082 case, the stub is always ready to process serial input. */
9083 if (!target_is_non_stop_p ()
9084 && target_is_async_p ()
9085 && rs->waiting_for_stop_reply)
9086 {
9087 error (_("Cannot execute this command while the target is running.\n"
9088 "Use the \"interrupt\" command to stop the target\n"
9089 "and then try again."));
9090 }
9091
9092 /* We're sending out a new packet. Make sure we don't look at a
9093 stale cached response. */
9094 rs->cached_wait_status = 0;
9095
9096 /* Copy the packet into buffer BUF2, encapsulating it
9097 and giving it a checksum. */
9098
9099 p = buf2;
9100 *p++ = '$';
9101
9102 for (i = 0; i < cnt; i++)
9103 {
9104 csum += buf[i];
9105 *p++ = buf[i];
9106 }
9107 *p++ = '#';
9108 *p++ = tohex ((csum >> 4) & 0xf);
9109 *p++ = tohex (csum & 0xf);
9110
9111 /* Send it over and over until we get a positive ack. */
9112
9113 while (1)
9114 {
9115 int started_error_output = 0;
9116
9117 if (remote_debug)
9118 {
9119 *p = '\0';
9120
9121 int len = (int) (p - buf2);
9122
9123 std::string str
9124 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
9125
9126 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9127
9128 if (len > REMOTE_DEBUG_MAX_CHAR)
9129 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9130 len - REMOTE_DEBUG_MAX_CHAR);
9131
9132 fprintf_unfiltered (gdb_stdlog, "...");
9133
9134 gdb_flush (gdb_stdlog);
9135 }
9136 remote_serial_write (buf2, p - buf2);
9137
9138 /* If this is a no acks version of the remote protocol, send the
9139 packet and move on. */
9140 if (rs->noack_mode)
9141 break;
9142
9143 /* Read until either a timeout occurs (-2) or '+' is read.
9144 Handle any notification that arrives in the mean time. */
9145 while (1)
9146 {
9147 ch = readchar (remote_timeout);
9148
9149 if (remote_debug)
9150 {
9151 switch (ch)
9152 {
9153 case '+':
9154 case '-':
9155 case SERIAL_TIMEOUT:
9156 case '$':
9157 case '%':
9158 if (started_error_output)
9159 {
9160 putchar_unfiltered ('\n');
9161 started_error_output = 0;
9162 }
9163 }
9164 }
9165
9166 switch (ch)
9167 {
9168 case '+':
9169 if (remote_debug)
9170 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9171 return 1;
9172 case '-':
9173 if (remote_debug)
9174 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9175 /* FALLTHROUGH */
9176 case SERIAL_TIMEOUT:
9177 tcount++;
9178 if (tcount > 3)
9179 return 0;
9180 break; /* Retransmit buffer. */
9181 case '$':
9182 {
9183 if (remote_debug)
9184 fprintf_unfiltered (gdb_stdlog,
9185 "Packet instead of Ack, ignoring it\n");
9186 /* It's probably an old response sent because an ACK
9187 was lost. Gobble up the packet and ack it so it
9188 doesn't get retransmitted when we resend this
9189 packet. */
9190 skip_frame ();
9191 remote_serial_write ("+", 1);
9192 continue; /* Now, go look for +. */
9193 }
9194
9195 case '%':
9196 {
9197 int val;
9198
9199 /* If we got a notification, handle it, and go back to looking
9200 for an ack. */
9201 /* We've found the start of a notification. Now
9202 collect the data. */
9203 val = read_frame (&rs->buf);
9204 if (val >= 0)
9205 {
9206 if (remote_debug)
9207 {
9208 std::string str = escape_buffer (rs->buf.data (), val);
9209
9210 fprintf_unfiltered (gdb_stdlog,
9211 " Notification received: %s\n",
9212 str.c_str ());
9213 }
9214 handle_notification (rs->notif_state, rs->buf.data ());
9215 /* We're in sync now, rewait for the ack. */
9216 tcount = 0;
9217 }
9218 else
9219 {
9220 if (remote_debug)
9221 {
9222 if (!started_error_output)
9223 {
9224 started_error_output = 1;
9225 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9226 }
9227 fputc_unfiltered (ch & 0177, gdb_stdlog);
9228 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9229 }
9230 }
9231 continue;
9232 }
9233 /* fall-through */
9234 default:
9235 if (remote_debug)
9236 {
9237 if (!started_error_output)
9238 {
9239 started_error_output = 1;
9240 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9241 }
9242 fputc_unfiltered (ch & 0177, gdb_stdlog);
9243 }
9244 continue;
9245 }
9246 break; /* Here to retransmit. */
9247 }
9248
9249 #if 0
9250 /* This is wrong. If doing a long backtrace, the user should be
9251 able to get out next time we call QUIT, without anything as
9252 violent as interrupt_query. If we want to provide a way out of
9253 here without getting to the next QUIT, it should be based on
9254 hitting ^C twice as in remote_wait. */
9255 if (quit_flag)
9256 {
9257 quit_flag = 0;
9258 interrupt_query ();
9259 }
9260 #endif
9261 }
9262
9263 return 0;
9264 }
9265
9266 /* Come here after finding the start of a frame when we expected an
9267 ack. Do our best to discard the rest of this packet. */
9268
9269 void
9270 remote_target::skip_frame ()
9271 {
9272 int c;
9273
9274 while (1)
9275 {
9276 c = readchar (remote_timeout);
9277 switch (c)
9278 {
9279 case SERIAL_TIMEOUT:
9280 /* Nothing we can do. */
9281 return;
9282 case '#':
9283 /* Discard the two bytes of checksum and stop. */
9284 c = readchar (remote_timeout);
9285 if (c >= 0)
9286 c = readchar (remote_timeout);
9287
9288 return;
9289 case '*': /* Run length encoding. */
9290 /* Discard the repeat count. */
9291 c = readchar (remote_timeout);
9292 if (c < 0)
9293 return;
9294 break;
9295 default:
9296 /* A regular character. */
9297 break;
9298 }
9299 }
9300 }
9301
9302 /* Come here after finding the start of the frame. Collect the rest
9303 into *BUF, verifying the checksum, length, and handling run-length
9304 compression. NUL terminate the buffer. If there is not enough room,
9305 expand *BUF.
9306
9307 Returns -1 on error, number of characters in buffer (ignoring the
9308 trailing NULL) on success. (could be extended to return one of the
9309 SERIAL status indications). */
9310
9311 long
9312 remote_target::read_frame (gdb::char_vector *buf_p)
9313 {
9314 unsigned char csum;
9315 long bc;
9316 int c;
9317 char *buf = buf_p->data ();
9318 struct remote_state *rs = get_remote_state ();
9319
9320 csum = 0;
9321 bc = 0;
9322
9323 while (1)
9324 {
9325 c = readchar (remote_timeout);
9326 switch (c)
9327 {
9328 case SERIAL_TIMEOUT:
9329 if (remote_debug)
9330 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9331 return -1;
9332 case '$':
9333 if (remote_debug)
9334 fputs_filtered ("Saw new packet start in middle of old one\n",
9335 gdb_stdlog);
9336 return -1; /* Start a new packet, count retries. */
9337 case '#':
9338 {
9339 unsigned char pktcsum;
9340 int check_0 = 0;
9341 int check_1 = 0;
9342
9343 buf[bc] = '\0';
9344
9345 check_0 = readchar (remote_timeout);
9346 if (check_0 >= 0)
9347 check_1 = readchar (remote_timeout);
9348
9349 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9350 {
9351 if (remote_debug)
9352 fputs_filtered ("Timeout in checksum, retrying\n",
9353 gdb_stdlog);
9354 return -1;
9355 }
9356 else if (check_0 < 0 || check_1 < 0)
9357 {
9358 if (remote_debug)
9359 fputs_filtered ("Communication error in checksum\n",
9360 gdb_stdlog);
9361 return -1;
9362 }
9363
9364 /* Don't recompute the checksum; with no ack packets we
9365 don't have any way to indicate a packet retransmission
9366 is necessary. */
9367 if (rs->noack_mode)
9368 return bc;
9369
9370 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9371 if (csum == pktcsum)
9372 return bc;
9373
9374 if (remote_debug)
9375 {
9376 std::string str = escape_buffer (buf, bc);
9377
9378 fprintf_unfiltered (gdb_stdlog,
9379 "Bad checksum, sentsum=0x%x, "
9380 "csum=0x%x, buf=%s\n",
9381 pktcsum, csum, str.c_str ());
9382 }
9383 /* Number of characters in buffer ignoring trailing
9384 NULL. */
9385 return -1;
9386 }
9387 case '*': /* Run length encoding. */
9388 {
9389 int repeat;
9390
9391 csum += c;
9392 c = readchar (remote_timeout);
9393 csum += c;
9394 repeat = c - ' ' + 3; /* Compute repeat count. */
9395
9396 /* The character before ``*'' is repeated. */
9397
9398 if (repeat > 0 && repeat <= 255 && bc > 0)
9399 {
9400 if (bc + repeat - 1 >= buf_p->size () - 1)
9401 {
9402 /* Make some more room in the buffer. */
9403 buf_p->resize (buf_p->size () + repeat);
9404 buf = buf_p->data ();
9405 }
9406
9407 memset (&buf[bc], buf[bc - 1], repeat);
9408 bc += repeat;
9409 continue;
9410 }
9411
9412 buf[bc] = '\0';
9413 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9414 return -1;
9415 }
9416 default:
9417 if (bc >= buf_p->size () - 1)
9418 {
9419 /* Make some more room in the buffer. */
9420 buf_p->resize (buf_p->size () * 2);
9421 buf = buf_p->data ();
9422 }
9423
9424 buf[bc++] = c;
9425 csum += c;
9426 continue;
9427 }
9428 }
9429 }
9430
9431 /* Set this to the maximum number of seconds to wait instead of waiting forever
9432 in target_wait(). If this timer times out, then it generates an error and
9433 the command is aborted. This replaces most of the need for timeouts in the
9434 GDB test suite, and makes it possible to distinguish between a hung target
9435 and one with slow communications. */
9436
9437 static int watchdog = 0;
9438 static void
9439 show_watchdog (struct ui_file *file, int from_tty,
9440 struct cmd_list_element *c, const char *value)
9441 {
9442 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9443 }
9444
9445 /* Read a packet from the remote machine, with error checking, and
9446 store it in *BUF. Resize *BUF if necessary to hold the result. If
9447 FOREVER, wait forever rather than timing out; this is used (in
9448 synchronous mode) to wait for a target that is is executing user
9449 code to stop. */
9450 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9451 don't have to change all the calls to getpkt to deal with the
9452 return value, because at the moment I don't know what the right
9453 thing to do it for those. */
9454
9455 void
9456 remote_target::getpkt (gdb::char_vector *buf, int forever)
9457 {
9458 getpkt_sane (buf, forever);
9459 }
9460
9461
9462 /* Read a packet from the remote machine, with error checking, and
9463 store it in *BUF. Resize *BUF if necessary to hold the result. If
9464 FOREVER, wait forever rather than timing out; this is used (in
9465 synchronous mode) to wait for a target that is is executing user
9466 code to stop. If FOREVER == 0, this function is allowed to time
9467 out gracefully and return an indication of this to the caller.
9468 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9469 consider receiving a notification enough reason to return to the
9470 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9471 holds a notification or not (a regular packet). */
9472
9473 int
9474 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9475 int forever, int expecting_notif,
9476 int *is_notif)
9477 {
9478 struct remote_state *rs = get_remote_state ();
9479 int c;
9480 int tries;
9481 int timeout;
9482 int val = -1;
9483
9484 /* We're reading a new response. Make sure we don't look at a
9485 previously cached response. */
9486 rs->cached_wait_status = 0;
9487
9488 strcpy (buf->data (), "timeout");
9489
9490 if (forever)
9491 timeout = watchdog > 0 ? watchdog : -1;
9492 else if (expecting_notif)
9493 timeout = 0; /* There should already be a char in the buffer. If
9494 not, bail out. */
9495 else
9496 timeout = remote_timeout;
9497
9498 #define MAX_TRIES 3
9499
9500 /* Process any number of notifications, and then return when
9501 we get a packet. */
9502 for (;;)
9503 {
9504 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9505 times. */
9506 for (tries = 1; tries <= MAX_TRIES; tries++)
9507 {
9508 /* This can loop forever if the remote side sends us
9509 characters continuously, but if it pauses, we'll get
9510 SERIAL_TIMEOUT from readchar because of timeout. Then
9511 we'll count that as a retry.
9512
9513 Note that even when forever is set, we will only wait
9514 forever prior to the start of a packet. After that, we
9515 expect characters to arrive at a brisk pace. They should
9516 show up within remote_timeout intervals. */
9517 do
9518 c = readchar (timeout);
9519 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9520
9521 if (c == SERIAL_TIMEOUT)
9522 {
9523 if (expecting_notif)
9524 return -1; /* Don't complain, it's normal to not get
9525 anything in this case. */
9526
9527 if (forever) /* Watchdog went off? Kill the target. */
9528 {
9529 remote_unpush_target ();
9530 throw_error (TARGET_CLOSE_ERROR,
9531 _("Watchdog timeout has expired. "
9532 "Target detached."));
9533 }
9534 if (remote_debug)
9535 fputs_filtered ("Timed out.\n", gdb_stdlog);
9536 }
9537 else
9538 {
9539 /* We've found the start of a packet or notification.
9540 Now collect the data. */
9541 val = read_frame (buf);
9542 if (val >= 0)
9543 break;
9544 }
9545
9546 remote_serial_write ("-", 1);
9547 }
9548
9549 if (tries > MAX_TRIES)
9550 {
9551 /* We have tried hard enough, and just can't receive the
9552 packet/notification. Give up. */
9553 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9554
9555 /* Skip the ack char if we're in no-ack mode. */
9556 if (!rs->noack_mode)
9557 remote_serial_write ("+", 1);
9558 return -1;
9559 }
9560
9561 /* If we got an ordinary packet, return that to our caller. */
9562 if (c == '$')
9563 {
9564 if (remote_debug)
9565 {
9566 std::string str
9567 = escape_buffer (buf->data (),
9568 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9569
9570 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9571 str.c_str ());
9572
9573 if (val > REMOTE_DEBUG_MAX_CHAR)
9574 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9575 val - REMOTE_DEBUG_MAX_CHAR);
9576
9577 fprintf_unfiltered (gdb_stdlog, "\n");
9578 }
9579
9580 /* Skip the ack char if we're in no-ack mode. */
9581 if (!rs->noack_mode)
9582 remote_serial_write ("+", 1);
9583 if (is_notif != NULL)
9584 *is_notif = 0;
9585 return val;
9586 }
9587
9588 /* If we got a notification, handle it, and go back to looking
9589 for a packet. */
9590 else
9591 {
9592 gdb_assert (c == '%');
9593
9594 if (remote_debug)
9595 {
9596 std::string str = escape_buffer (buf->data (), val);
9597
9598 fprintf_unfiltered (gdb_stdlog,
9599 " Notification received: %s\n",
9600 str.c_str ());
9601 }
9602 if (is_notif != NULL)
9603 *is_notif = 1;
9604
9605 handle_notification (rs->notif_state, buf->data ());
9606
9607 /* Notifications require no acknowledgement. */
9608
9609 if (expecting_notif)
9610 return val;
9611 }
9612 }
9613 }
9614
9615 int
9616 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9617 {
9618 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9619 }
9620
9621 int
9622 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9623 int *is_notif)
9624 {
9625 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9626 }
9627
9628 /* Kill any new fork children of process PID that haven't been
9629 processed by follow_fork. */
9630
9631 void
9632 remote_target::kill_new_fork_children (int pid)
9633 {
9634 remote_state *rs = get_remote_state ();
9635 struct notif_client *notif = &notif_client_stop;
9636
9637 /* Kill the fork child threads of any threads in process PID
9638 that are stopped at a fork event. */
9639 for (thread_info *thread : all_non_exited_threads ())
9640 {
9641 struct target_waitstatus *ws = &thread->pending_follow;
9642
9643 if (is_pending_fork_parent (ws, pid, thread->ptid))
9644 {
9645 int child_pid = ws->value.related_pid.pid ();
9646 int res;
9647
9648 res = remote_vkill (child_pid);
9649 if (res != 0)
9650 error (_("Can't kill fork child process %d"), child_pid);
9651 }
9652 }
9653
9654 /* Check for any pending fork events (not reported or processed yet)
9655 in process PID and kill those fork child threads as well. */
9656 remote_notif_get_pending_events (notif);
9657 for (auto &event : rs->stop_reply_queue)
9658 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9659 {
9660 int child_pid = event->ws.value.related_pid.pid ();
9661 int res;
9662
9663 res = remote_vkill (child_pid);
9664 if (res != 0)
9665 error (_("Can't kill fork child process %d"), child_pid);
9666 }
9667 }
9668
9669 \f
9670 /* Target hook to kill the current inferior. */
9671
9672 void
9673 remote_target::kill ()
9674 {
9675 int res = -1;
9676 int pid = inferior_ptid.pid ();
9677 struct remote_state *rs = get_remote_state ();
9678
9679 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9680 {
9681 /* If we're stopped while forking and we haven't followed yet,
9682 kill the child task. We need to do this before killing the
9683 parent task because if this is a vfork then the parent will
9684 be sleeping. */
9685 kill_new_fork_children (pid);
9686
9687 res = remote_vkill (pid);
9688 if (res == 0)
9689 {
9690 target_mourn_inferior (inferior_ptid);
9691 return;
9692 }
9693 }
9694
9695 /* If we are in 'target remote' mode and we are killing the only
9696 inferior, then we will tell gdbserver to exit and unpush the
9697 target. */
9698 if (res == -1 && !remote_multi_process_p (rs)
9699 && number_of_live_inferiors () == 1)
9700 {
9701 remote_kill_k ();
9702
9703 /* We've killed the remote end, we get to mourn it. If we are
9704 not in extended mode, mourning the inferior also unpushes
9705 remote_ops from the target stack, which closes the remote
9706 connection. */
9707 target_mourn_inferior (inferior_ptid);
9708
9709 return;
9710 }
9711
9712 error (_("Can't kill process"));
9713 }
9714
9715 /* Send a kill request to the target using the 'vKill' packet. */
9716
9717 int
9718 remote_target::remote_vkill (int pid)
9719 {
9720 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9721 return -1;
9722
9723 remote_state *rs = get_remote_state ();
9724
9725 /* Tell the remote target to detach. */
9726 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9727 putpkt (rs->buf);
9728 getpkt (&rs->buf, 0);
9729
9730 switch (packet_ok (rs->buf,
9731 &remote_protocol_packets[PACKET_vKill]))
9732 {
9733 case PACKET_OK:
9734 return 0;
9735 case PACKET_ERROR:
9736 return 1;
9737 case PACKET_UNKNOWN:
9738 return -1;
9739 default:
9740 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9741 }
9742 }
9743
9744 /* Send a kill request to the target using the 'k' packet. */
9745
9746 void
9747 remote_target::remote_kill_k ()
9748 {
9749 /* Catch errors so the user can quit from gdb even when we
9750 aren't on speaking terms with the remote system. */
9751 try
9752 {
9753 putpkt ("k");
9754 }
9755 catch (const gdb_exception_error &ex)
9756 {
9757 if (ex.error == TARGET_CLOSE_ERROR)
9758 {
9759 /* If we got an (EOF) error that caused the target
9760 to go away, then we're done, that's what we wanted.
9761 "k" is susceptible to cause a premature EOF, given
9762 that the remote server isn't actually required to
9763 reply to "k", and it can happen that it doesn't
9764 even get to reply ACK to the "k". */
9765 return;
9766 }
9767
9768 /* Otherwise, something went wrong. We didn't actually kill
9769 the target. Just propagate the exception, and let the
9770 user or higher layers decide what to do. */
9771 throw;
9772 }
9773 }
9774
9775 void
9776 remote_target::mourn_inferior ()
9777 {
9778 struct remote_state *rs = get_remote_state ();
9779
9780 /* We're no longer interested in notification events of an inferior
9781 that exited or was killed/detached. */
9782 discard_pending_stop_replies (current_inferior ());
9783
9784 /* In 'target remote' mode with one inferior, we close the connection. */
9785 if (!rs->extended && number_of_live_inferiors () <= 1)
9786 {
9787 unpush_target (this);
9788
9789 /* remote_close takes care of doing most of the clean up. */
9790 generic_mourn_inferior ();
9791 return;
9792 }
9793
9794 /* In case we got here due to an error, but we're going to stay
9795 connected. */
9796 rs->waiting_for_stop_reply = 0;
9797
9798 /* If the current general thread belonged to the process we just
9799 detached from or has exited, the remote side current general
9800 thread becomes undefined. Considering a case like this:
9801
9802 - We just got here due to a detach.
9803 - The process that we're detaching from happens to immediately
9804 report a global breakpoint being hit in non-stop mode, in the
9805 same thread we had selected before.
9806 - GDB attaches to this process again.
9807 - This event happens to be the next event we handle.
9808
9809 GDB would consider that the current general thread didn't need to
9810 be set on the stub side (with Hg), since for all it knew,
9811 GENERAL_THREAD hadn't changed.
9812
9813 Notice that although in all-stop mode, the remote server always
9814 sets the current thread to the thread reporting the stop event,
9815 that doesn't happen in non-stop mode; in non-stop, the stub *must
9816 not* change the current thread when reporting a breakpoint hit,
9817 due to the decoupling of event reporting and event handling.
9818
9819 To keep things simple, we always invalidate our notion of the
9820 current thread. */
9821 record_currthread (rs, minus_one_ptid);
9822
9823 /* Call common code to mark the inferior as not running. */
9824 generic_mourn_inferior ();
9825
9826 if (!have_inferiors ())
9827 {
9828 if (!remote_multi_process_p (rs))
9829 {
9830 /* Check whether the target is running now - some remote stubs
9831 automatically restart after kill. */
9832 putpkt ("?");
9833 getpkt (&rs->buf, 0);
9834
9835 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9836 {
9837 /* Assume that the target has been restarted. Set
9838 inferior_ptid so that bits of core GDB realizes
9839 there's something here, e.g., so that the user can
9840 say "kill" again. */
9841 inferior_ptid = magic_null_ptid;
9842 }
9843 }
9844 }
9845 }
9846
9847 bool
9848 extended_remote_target::supports_disable_randomization ()
9849 {
9850 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9851 }
9852
9853 void
9854 remote_target::extended_remote_disable_randomization (int val)
9855 {
9856 struct remote_state *rs = get_remote_state ();
9857 char *reply;
9858
9859 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9860 "QDisableRandomization:%x", val);
9861 putpkt (rs->buf);
9862 reply = remote_get_noisy_reply ();
9863 if (*reply == '\0')
9864 error (_("Target does not support QDisableRandomization."));
9865 if (strcmp (reply, "OK") != 0)
9866 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9867 }
9868
9869 int
9870 remote_target::extended_remote_run (const std::string &args)
9871 {
9872 struct remote_state *rs = get_remote_state ();
9873 int len;
9874 const char *remote_exec_file = get_remote_exec_file ();
9875
9876 /* If the user has disabled vRun support, or we have detected that
9877 support is not available, do not try it. */
9878 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9879 return -1;
9880
9881 strcpy (rs->buf.data (), "vRun;");
9882 len = strlen (rs->buf.data ());
9883
9884 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9885 error (_("Remote file name too long for run packet"));
9886 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
9887 strlen (remote_exec_file));
9888
9889 if (!args.empty ())
9890 {
9891 int i;
9892
9893 gdb_argv argv (args.c_str ());
9894 for (i = 0; argv[i] != NULL; i++)
9895 {
9896 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9897 error (_("Argument list too long for run packet"));
9898 rs->buf[len++] = ';';
9899 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
9900 strlen (argv[i]));
9901 }
9902 }
9903
9904 rs->buf[len++] = '\0';
9905
9906 putpkt (rs->buf);
9907 getpkt (&rs->buf, 0);
9908
9909 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9910 {
9911 case PACKET_OK:
9912 /* We have a wait response. All is well. */
9913 return 0;
9914 case PACKET_UNKNOWN:
9915 return -1;
9916 case PACKET_ERROR:
9917 if (remote_exec_file[0] == '\0')
9918 error (_("Running the default executable on the remote target failed; "
9919 "try \"set remote exec-file\"?"));
9920 else
9921 error (_("Running \"%s\" on the remote target failed"),
9922 remote_exec_file);
9923 default:
9924 gdb_assert_not_reached (_("bad switch"));
9925 }
9926 }
9927
9928 /* Helper function to send set/unset environment packets. ACTION is
9929 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9930 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9931 sent. */
9932
9933 void
9934 remote_target::send_environment_packet (const char *action,
9935 const char *packet,
9936 const char *value)
9937 {
9938 remote_state *rs = get_remote_state ();
9939
9940 /* Convert the environment variable to an hex string, which
9941 is the best format to be transmitted over the wire. */
9942 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9943 strlen (value));
9944
9945 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9946 "%s:%s", packet, encoded_value.c_str ());
9947
9948 putpkt (rs->buf);
9949 getpkt (&rs->buf, 0);
9950 if (strcmp (rs->buf.data (), "OK") != 0)
9951 warning (_("Unable to %s environment variable '%s' on remote."),
9952 action, value);
9953 }
9954
9955 /* Helper function to handle the QEnvironment* packets. */
9956
9957 void
9958 remote_target::extended_remote_environment_support ()
9959 {
9960 remote_state *rs = get_remote_state ();
9961
9962 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9963 {
9964 putpkt ("QEnvironmentReset");
9965 getpkt (&rs->buf, 0);
9966 if (strcmp (rs->buf.data (), "OK") != 0)
9967 warning (_("Unable to reset environment on remote."));
9968 }
9969
9970 gdb_environ *e = &current_inferior ()->environment;
9971
9972 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9973 for (const std::string &el : e->user_set_env ())
9974 send_environment_packet ("set", "QEnvironmentHexEncoded",
9975 el.c_str ());
9976
9977 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9978 for (const std::string &el : e->user_unset_env ())
9979 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
9980 }
9981
9982 /* Helper function to set the current working directory for the
9983 inferior in the remote target. */
9984
9985 void
9986 remote_target::extended_remote_set_inferior_cwd ()
9987 {
9988 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
9989 {
9990 const char *inferior_cwd = get_inferior_cwd ();
9991 remote_state *rs = get_remote_state ();
9992
9993 if (inferior_cwd != NULL)
9994 {
9995 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
9996 strlen (inferior_cwd));
9997
9998 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9999 "QSetWorkingDir:%s", hexpath.c_str ());
10000 }
10001 else
10002 {
10003 /* An empty inferior_cwd means that the user wants us to
10004 reset the remote server's inferior's cwd. */
10005 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10006 "QSetWorkingDir:");
10007 }
10008
10009 putpkt (rs->buf);
10010 getpkt (&rs->buf, 0);
10011 if (packet_ok (rs->buf,
10012 &remote_protocol_packets[PACKET_QSetWorkingDir])
10013 != PACKET_OK)
10014 error (_("\
10015 Remote replied unexpectedly while setting the inferior's working\n\
10016 directory: %s"),
10017 rs->buf.data ());
10018
10019 }
10020 }
10021
10022 /* In the extended protocol we want to be able to do things like
10023 "run" and have them basically work as expected. So we need
10024 a special create_inferior function. We support changing the
10025 executable file and the command line arguments, but not the
10026 environment. */
10027
10028 void
10029 extended_remote_target::create_inferior (const char *exec_file,
10030 const std::string &args,
10031 char **env, int from_tty)
10032 {
10033 int run_worked;
10034 char *stop_reply;
10035 struct remote_state *rs = get_remote_state ();
10036 const char *remote_exec_file = get_remote_exec_file ();
10037
10038 /* If running asynchronously, register the target file descriptor
10039 with the event loop. */
10040 if (target_can_async_p ())
10041 target_async (1);
10042
10043 /* Disable address space randomization if requested (and supported). */
10044 if (supports_disable_randomization ())
10045 extended_remote_disable_randomization (disable_randomization);
10046
10047 /* If startup-with-shell is on, we inform gdbserver to start the
10048 remote inferior using a shell. */
10049 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10050 {
10051 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10052 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10053 putpkt (rs->buf);
10054 getpkt (&rs->buf, 0);
10055 if (strcmp (rs->buf.data (), "OK") != 0)
10056 error (_("\
10057 Remote replied unexpectedly while setting startup-with-shell: %s"),
10058 rs->buf.data ());
10059 }
10060
10061 extended_remote_environment_support ();
10062
10063 extended_remote_set_inferior_cwd ();
10064
10065 /* Now restart the remote server. */
10066 run_worked = extended_remote_run (args) != -1;
10067 if (!run_worked)
10068 {
10069 /* vRun was not supported. Fail if we need it to do what the
10070 user requested. */
10071 if (remote_exec_file[0])
10072 error (_("Remote target does not support \"set remote exec-file\""));
10073 if (!args.empty ())
10074 error (_("Remote target does not support \"set args\" or run ARGS"));
10075
10076 /* Fall back to "R". */
10077 extended_remote_restart ();
10078 }
10079
10080 /* vRun's success return is a stop reply. */
10081 stop_reply = run_worked ? rs->buf.data () : NULL;
10082 add_current_inferior_and_thread (stop_reply);
10083
10084 /* Get updated offsets, if the stub uses qOffsets. */
10085 get_offsets ();
10086 }
10087 \f
10088
10089 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10090 the list of conditions (in agent expression bytecode format), if any, the
10091 target needs to evaluate. The output is placed into the packet buffer
10092 started from BUF and ended at BUF_END. */
10093
10094 static int
10095 remote_add_target_side_condition (struct gdbarch *gdbarch,
10096 struct bp_target_info *bp_tgt, char *buf,
10097 char *buf_end)
10098 {
10099 if (bp_tgt->conditions.empty ())
10100 return 0;
10101
10102 buf += strlen (buf);
10103 xsnprintf (buf, buf_end - buf, "%s", ";");
10104 buf++;
10105
10106 /* Send conditions to the target. */
10107 for (agent_expr *aexpr : bp_tgt->conditions)
10108 {
10109 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10110 buf += strlen (buf);
10111 for (int i = 0; i < aexpr->len; ++i)
10112 buf = pack_hex_byte (buf, aexpr->buf[i]);
10113 *buf = '\0';
10114 }
10115 return 0;
10116 }
10117
10118 static void
10119 remote_add_target_side_commands (struct gdbarch *gdbarch,
10120 struct bp_target_info *bp_tgt, char *buf)
10121 {
10122 if (bp_tgt->tcommands.empty ())
10123 return;
10124
10125 buf += strlen (buf);
10126
10127 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10128 buf += strlen (buf);
10129
10130 /* Concatenate all the agent expressions that are commands into the
10131 cmds parameter. */
10132 for (agent_expr *aexpr : bp_tgt->tcommands)
10133 {
10134 sprintf (buf, "X%x,", aexpr->len);
10135 buf += strlen (buf);
10136 for (int i = 0; i < aexpr->len; ++i)
10137 buf = pack_hex_byte (buf, aexpr->buf[i]);
10138 *buf = '\0';
10139 }
10140 }
10141
10142 /* Insert a breakpoint. On targets that have software breakpoint
10143 support, we ask the remote target to do the work; on targets
10144 which don't, we insert a traditional memory breakpoint. */
10145
10146 int
10147 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10148 struct bp_target_info *bp_tgt)
10149 {
10150 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10151 If it succeeds, then set the support to PACKET_ENABLE. If it
10152 fails, and the user has explicitly requested the Z support then
10153 report an error, otherwise, mark it disabled and go on. */
10154
10155 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10156 {
10157 CORE_ADDR addr = bp_tgt->reqstd_address;
10158 struct remote_state *rs;
10159 char *p, *endbuf;
10160
10161 /* Make sure the remote is pointing at the right process, if
10162 necessary. */
10163 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10164 set_general_process ();
10165
10166 rs = get_remote_state ();
10167 p = rs->buf.data ();
10168 endbuf = p + get_remote_packet_size ();
10169
10170 *(p++) = 'Z';
10171 *(p++) = '0';
10172 *(p++) = ',';
10173 addr = (ULONGEST) remote_address_masked (addr);
10174 p += hexnumstr (p, addr);
10175 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10176
10177 if (supports_evaluation_of_breakpoint_conditions ())
10178 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10179
10180 if (can_run_breakpoint_commands ())
10181 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10182
10183 putpkt (rs->buf);
10184 getpkt (&rs->buf, 0);
10185
10186 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10187 {
10188 case PACKET_ERROR:
10189 return -1;
10190 case PACKET_OK:
10191 return 0;
10192 case PACKET_UNKNOWN:
10193 break;
10194 }
10195 }
10196
10197 /* If this breakpoint has target-side commands but this stub doesn't
10198 support Z0 packets, throw error. */
10199 if (!bp_tgt->tcommands.empty ())
10200 throw_error (NOT_SUPPORTED_ERROR, _("\
10201 Target doesn't support breakpoints that have target side commands."));
10202
10203 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10204 }
10205
10206 int
10207 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10208 struct bp_target_info *bp_tgt,
10209 enum remove_bp_reason reason)
10210 {
10211 CORE_ADDR addr = bp_tgt->placed_address;
10212 struct remote_state *rs = get_remote_state ();
10213
10214 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10215 {
10216 char *p = rs->buf.data ();
10217 char *endbuf = p + get_remote_packet_size ();
10218
10219 /* Make sure the remote is pointing at the right process, if
10220 necessary. */
10221 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10222 set_general_process ();
10223
10224 *(p++) = 'z';
10225 *(p++) = '0';
10226 *(p++) = ',';
10227
10228 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10229 p += hexnumstr (p, addr);
10230 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10231
10232 putpkt (rs->buf);
10233 getpkt (&rs->buf, 0);
10234
10235 return (rs->buf[0] == 'E');
10236 }
10237
10238 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10239 }
10240
10241 static enum Z_packet_type
10242 watchpoint_to_Z_packet (int type)
10243 {
10244 switch (type)
10245 {
10246 case hw_write:
10247 return Z_PACKET_WRITE_WP;
10248 break;
10249 case hw_read:
10250 return Z_PACKET_READ_WP;
10251 break;
10252 case hw_access:
10253 return Z_PACKET_ACCESS_WP;
10254 break;
10255 default:
10256 internal_error (__FILE__, __LINE__,
10257 _("hw_bp_to_z: bad watchpoint type %d"), type);
10258 }
10259 }
10260
10261 int
10262 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10263 enum target_hw_bp_type type, struct expression *cond)
10264 {
10265 struct remote_state *rs = get_remote_state ();
10266 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10267 char *p;
10268 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10269
10270 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10271 return 1;
10272
10273 /* Make sure the remote is pointing at the right process, if
10274 necessary. */
10275 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10276 set_general_process ();
10277
10278 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10279 p = strchr (rs->buf.data (), '\0');
10280 addr = remote_address_masked (addr);
10281 p += hexnumstr (p, (ULONGEST) addr);
10282 xsnprintf (p, endbuf - p, ",%x", len);
10283
10284 putpkt (rs->buf);
10285 getpkt (&rs->buf, 0);
10286
10287 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10288 {
10289 case PACKET_ERROR:
10290 return -1;
10291 case PACKET_UNKNOWN:
10292 return 1;
10293 case PACKET_OK:
10294 return 0;
10295 }
10296 internal_error (__FILE__, __LINE__,
10297 _("remote_insert_watchpoint: reached end of function"));
10298 }
10299
10300 bool
10301 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10302 CORE_ADDR start, int length)
10303 {
10304 CORE_ADDR diff = remote_address_masked (addr - start);
10305
10306 return diff < length;
10307 }
10308
10309
10310 int
10311 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10312 enum target_hw_bp_type type, struct expression *cond)
10313 {
10314 struct remote_state *rs = get_remote_state ();
10315 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10316 char *p;
10317 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10318
10319 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10320 return -1;
10321
10322 /* Make sure the remote is pointing at the right process, if
10323 necessary. */
10324 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10325 set_general_process ();
10326
10327 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10328 p = strchr (rs->buf.data (), '\0');
10329 addr = remote_address_masked (addr);
10330 p += hexnumstr (p, (ULONGEST) addr);
10331 xsnprintf (p, endbuf - p, ",%x", len);
10332 putpkt (rs->buf);
10333 getpkt (&rs->buf, 0);
10334
10335 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10336 {
10337 case PACKET_ERROR:
10338 case PACKET_UNKNOWN:
10339 return -1;
10340 case PACKET_OK:
10341 return 0;
10342 }
10343 internal_error (__FILE__, __LINE__,
10344 _("remote_remove_watchpoint: reached end of function"));
10345 }
10346
10347
10348 static int remote_hw_watchpoint_limit = -1;
10349 static int remote_hw_watchpoint_length_limit = -1;
10350 static int remote_hw_breakpoint_limit = -1;
10351
10352 int
10353 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10354 {
10355 if (remote_hw_watchpoint_length_limit == 0)
10356 return 0;
10357 else if (remote_hw_watchpoint_length_limit < 0)
10358 return 1;
10359 else if (len <= remote_hw_watchpoint_length_limit)
10360 return 1;
10361 else
10362 return 0;
10363 }
10364
10365 int
10366 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10367 {
10368 if (type == bp_hardware_breakpoint)
10369 {
10370 if (remote_hw_breakpoint_limit == 0)
10371 return 0;
10372 else if (remote_hw_breakpoint_limit < 0)
10373 return 1;
10374 else if (cnt <= remote_hw_breakpoint_limit)
10375 return 1;
10376 }
10377 else
10378 {
10379 if (remote_hw_watchpoint_limit == 0)
10380 return 0;
10381 else if (remote_hw_watchpoint_limit < 0)
10382 return 1;
10383 else if (ot)
10384 return -1;
10385 else if (cnt <= remote_hw_watchpoint_limit)
10386 return 1;
10387 }
10388 return -1;
10389 }
10390
10391 /* The to_stopped_by_sw_breakpoint method of target remote. */
10392
10393 bool
10394 remote_target::stopped_by_sw_breakpoint ()
10395 {
10396 struct thread_info *thread = inferior_thread ();
10397
10398 return (thread->priv != NULL
10399 && (get_remote_thread_info (thread)->stop_reason
10400 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10401 }
10402
10403 /* The to_supports_stopped_by_sw_breakpoint method of target
10404 remote. */
10405
10406 bool
10407 remote_target::supports_stopped_by_sw_breakpoint ()
10408 {
10409 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10410 }
10411
10412 /* The to_stopped_by_hw_breakpoint method of target remote. */
10413
10414 bool
10415 remote_target::stopped_by_hw_breakpoint ()
10416 {
10417 struct thread_info *thread = inferior_thread ();
10418
10419 return (thread->priv != NULL
10420 && (get_remote_thread_info (thread)->stop_reason
10421 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10422 }
10423
10424 /* The to_supports_stopped_by_hw_breakpoint method of target
10425 remote. */
10426
10427 bool
10428 remote_target::supports_stopped_by_hw_breakpoint ()
10429 {
10430 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10431 }
10432
10433 bool
10434 remote_target::stopped_by_watchpoint ()
10435 {
10436 struct thread_info *thread = inferior_thread ();
10437
10438 return (thread->priv != NULL
10439 && (get_remote_thread_info (thread)->stop_reason
10440 == TARGET_STOPPED_BY_WATCHPOINT));
10441 }
10442
10443 bool
10444 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10445 {
10446 struct thread_info *thread = inferior_thread ();
10447
10448 if (thread->priv != NULL
10449 && (get_remote_thread_info (thread)->stop_reason
10450 == TARGET_STOPPED_BY_WATCHPOINT))
10451 {
10452 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10453 return true;
10454 }
10455
10456 return false;
10457 }
10458
10459
10460 int
10461 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10462 struct bp_target_info *bp_tgt)
10463 {
10464 CORE_ADDR addr = bp_tgt->reqstd_address;
10465 struct remote_state *rs;
10466 char *p, *endbuf;
10467 char *message;
10468
10469 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10470 return -1;
10471
10472 /* Make sure the remote is pointing at the right process, if
10473 necessary. */
10474 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10475 set_general_process ();
10476
10477 rs = get_remote_state ();
10478 p = rs->buf.data ();
10479 endbuf = p + get_remote_packet_size ();
10480
10481 *(p++) = 'Z';
10482 *(p++) = '1';
10483 *(p++) = ',';
10484
10485 addr = remote_address_masked (addr);
10486 p += hexnumstr (p, (ULONGEST) addr);
10487 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10488
10489 if (supports_evaluation_of_breakpoint_conditions ())
10490 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10491
10492 if (can_run_breakpoint_commands ())
10493 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10494
10495 putpkt (rs->buf);
10496 getpkt (&rs->buf, 0);
10497
10498 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10499 {
10500 case PACKET_ERROR:
10501 if (rs->buf[1] == '.')
10502 {
10503 message = strchr (&rs->buf[2], '.');
10504 if (message)
10505 error (_("Remote failure reply: %s"), message + 1);
10506 }
10507 return -1;
10508 case PACKET_UNKNOWN:
10509 return -1;
10510 case PACKET_OK:
10511 return 0;
10512 }
10513 internal_error (__FILE__, __LINE__,
10514 _("remote_insert_hw_breakpoint: reached end of function"));
10515 }
10516
10517
10518 int
10519 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10520 struct bp_target_info *bp_tgt)
10521 {
10522 CORE_ADDR addr;
10523 struct remote_state *rs = get_remote_state ();
10524 char *p = rs->buf.data ();
10525 char *endbuf = p + get_remote_packet_size ();
10526
10527 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10528 return -1;
10529
10530 /* Make sure the remote is pointing at the right process, if
10531 necessary. */
10532 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10533 set_general_process ();
10534
10535 *(p++) = 'z';
10536 *(p++) = '1';
10537 *(p++) = ',';
10538
10539 addr = remote_address_masked (bp_tgt->placed_address);
10540 p += hexnumstr (p, (ULONGEST) addr);
10541 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10542
10543 putpkt (rs->buf);
10544 getpkt (&rs->buf, 0);
10545
10546 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10547 {
10548 case PACKET_ERROR:
10549 case PACKET_UNKNOWN:
10550 return -1;
10551 case PACKET_OK:
10552 return 0;
10553 }
10554 internal_error (__FILE__, __LINE__,
10555 _("remote_remove_hw_breakpoint: reached end of function"));
10556 }
10557
10558 /* Verify memory using the "qCRC:" request. */
10559
10560 int
10561 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10562 {
10563 struct remote_state *rs = get_remote_state ();
10564 unsigned long host_crc, target_crc;
10565 char *tmp;
10566
10567 /* It doesn't make sense to use qCRC if the remote target is
10568 connected but not running. */
10569 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10570 {
10571 enum packet_result result;
10572
10573 /* Make sure the remote is pointing at the right process. */
10574 set_general_process ();
10575
10576 /* FIXME: assumes lma can fit into long. */
10577 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10578 (long) lma, (long) size);
10579 putpkt (rs->buf);
10580
10581 /* Be clever; compute the host_crc before waiting for target
10582 reply. */
10583 host_crc = xcrc32 (data, size, 0xffffffff);
10584
10585 getpkt (&rs->buf, 0);
10586
10587 result = packet_ok (rs->buf,
10588 &remote_protocol_packets[PACKET_qCRC]);
10589 if (result == PACKET_ERROR)
10590 return -1;
10591 else if (result == PACKET_OK)
10592 {
10593 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10594 target_crc = target_crc * 16 + fromhex (*tmp);
10595
10596 return (host_crc == target_crc);
10597 }
10598 }
10599
10600 return simple_verify_memory (this, data, lma, size);
10601 }
10602
10603 /* compare-sections command
10604
10605 With no arguments, compares each loadable section in the exec bfd
10606 with the same memory range on the target, and reports mismatches.
10607 Useful for verifying the image on the target against the exec file. */
10608
10609 static void
10610 compare_sections_command (const char *args, int from_tty)
10611 {
10612 asection *s;
10613 const char *sectname;
10614 bfd_size_type size;
10615 bfd_vma lma;
10616 int matched = 0;
10617 int mismatched = 0;
10618 int res;
10619 int read_only = 0;
10620
10621 if (!exec_bfd)
10622 error (_("command cannot be used without an exec file"));
10623
10624 if (args != NULL && strcmp (args, "-r") == 0)
10625 {
10626 read_only = 1;
10627 args = NULL;
10628 }
10629
10630 for (s = exec_bfd->sections; s; s = s->next)
10631 {
10632 if (!(s->flags & SEC_LOAD))
10633 continue; /* Skip non-loadable section. */
10634
10635 if (read_only && (s->flags & SEC_READONLY) == 0)
10636 continue; /* Skip writeable sections */
10637
10638 size = bfd_section_size (s);
10639 if (size == 0)
10640 continue; /* Skip zero-length section. */
10641
10642 sectname = bfd_section_name (s);
10643 if (args && strcmp (args, sectname) != 0)
10644 continue; /* Not the section selected by user. */
10645
10646 matched = 1; /* Do this section. */
10647 lma = s->lma;
10648
10649 gdb::byte_vector sectdata (size);
10650 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10651
10652 res = target_verify_memory (sectdata.data (), lma, size);
10653
10654 if (res == -1)
10655 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10656 paddress (target_gdbarch (), lma),
10657 paddress (target_gdbarch (), lma + size));
10658
10659 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10660 paddress (target_gdbarch (), lma),
10661 paddress (target_gdbarch (), lma + size));
10662 if (res)
10663 printf_filtered ("matched.\n");
10664 else
10665 {
10666 printf_filtered ("MIS-MATCHED!\n");
10667 mismatched++;
10668 }
10669 }
10670 if (mismatched > 0)
10671 warning (_("One or more sections of the target image does not match\n\
10672 the loaded file\n"));
10673 if (args && !matched)
10674 printf_filtered (_("No loaded section named '%s'.\n"), args);
10675 }
10676
10677 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10678 into remote target. The number of bytes written to the remote
10679 target is returned, or -1 for error. */
10680
10681 target_xfer_status
10682 remote_target::remote_write_qxfer (const char *object_name,
10683 const char *annex, const gdb_byte *writebuf,
10684 ULONGEST offset, LONGEST len,
10685 ULONGEST *xfered_len,
10686 struct packet_config *packet)
10687 {
10688 int i, buf_len;
10689 ULONGEST n;
10690 struct remote_state *rs = get_remote_state ();
10691 int max_size = get_memory_write_packet_size ();
10692
10693 if (packet_config_support (packet) == PACKET_DISABLE)
10694 return TARGET_XFER_E_IO;
10695
10696 /* Insert header. */
10697 i = snprintf (rs->buf.data (), max_size,
10698 "qXfer:%s:write:%s:%s:",
10699 object_name, annex ? annex : "",
10700 phex_nz (offset, sizeof offset));
10701 max_size -= (i + 1);
10702
10703 /* Escape as much data as fits into rs->buf. */
10704 buf_len = remote_escape_output
10705 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10706
10707 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10708 || getpkt_sane (&rs->buf, 0) < 0
10709 || packet_ok (rs->buf, packet) != PACKET_OK)
10710 return TARGET_XFER_E_IO;
10711
10712 unpack_varlen_hex (rs->buf.data (), &n);
10713
10714 *xfered_len = n;
10715 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10716 }
10717
10718 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10719 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10720 number of bytes read is returned, or 0 for EOF, or -1 for error.
10721 The number of bytes read may be less than LEN without indicating an
10722 EOF. PACKET is checked and updated to indicate whether the remote
10723 target supports this object. */
10724
10725 target_xfer_status
10726 remote_target::remote_read_qxfer (const char *object_name,
10727 const char *annex,
10728 gdb_byte *readbuf, ULONGEST offset,
10729 LONGEST len,
10730 ULONGEST *xfered_len,
10731 struct packet_config *packet)
10732 {
10733 struct remote_state *rs = get_remote_state ();
10734 LONGEST i, n, packet_len;
10735
10736 if (packet_config_support (packet) == PACKET_DISABLE)
10737 return TARGET_XFER_E_IO;
10738
10739 /* Check whether we've cached an end-of-object packet that matches
10740 this request. */
10741 if (rs->finished_object)
10742 {
10743 if (strcmp (object_name, rs->finished_object) == 0
10744 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10745 && offset == rs->finished_offset)
10746 return TARGET_XFER_EOF;
10747
10748
10749 /* Otherwise, we're now reading something different. Discard
10750 the cache. */
10751 xfree (rs->finished_object);
10752 xfree (rs->finished_annex);
10753 rs->finished_object = NULL;
10754 rs->finished_annex = NULL;
10755 }
10756
10757 /* Request only enough to fit in a single packet. The actual data
10758 may not, since we don't know how much of it will need to be escaped;
10759 the target is free to respond with slightly less data. We subtract
10760 five to account for the response type and the protocol frame. */
10761 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10762 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10763 "qXfer:%s:read:%s:%s,%s",
10764 object_name, annex ? annex : "",
10765 phex_nz (offset, sizeof offset),
10766 phex_nz (n, sizeof n));
10767 i = putpkt (rs->buf);
10768 if (i < 0)
10769 return TARGET_XFER_E_IO;
10770
10771 rs->buf[0] = '\0';
10772 packet_len = getpkt_sane (&rs->buf, 0);
10773 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10774 return TARGET_XFER_E_IO;
10775
10776 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10777 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10778
10779 /* 'm' means there is (or at least might be) more data after this
10780 batch. That does not make sense unless there's at least one byte
10781 of data in this reply. */
10782 if (rs->buf[0] == 'm' && packet_len == 1)
10783 error (_("Remote qXfer reply contained no data."));
10784
10785 /* Got some data. */
10786 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10787 packet_len - 1, readbuf, n);
10788
10789 /* 'l' is an EOF marker, possibly including a final block of data,
10790 or possibly empty. If we have the final block of a non-empty
10791 object, record this fact to bypass a subsequent partial read. */
10792 if (rs->buf[0] == 'l' && offset + i > 0)
10793 {
10794 rs->finished_object = xstrdup (object_name);
10795 rs->finished_annex = xstrdup (annex ? annex : "");
10796 rs->finished_offset = offset + i;
10797 }
10798
10799 if (i == 0)
10800 return TARGET_XFER_EOF;
10801 else
10802 {
10803 *xfered_len = i;
10804 return TARGET_XFER_OK;
10805 }
10806 }
10807
10808 enum target_xfer_status
10809 remote_target::xfer_partial (enum target_object object,
10810 const char *annex, gdb_byte *readbuf,
10811 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10812 ULONGEST *xfered_len)
10813 {
10814 struct remote_state *rs;
10815 int i;
10816 char *p2;
10817 char query_type;
10818 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10819
10820 set_remote_traceframe ();
10821 set_general_thread (inferior_ptid);
10822
10823 rs = get_remote_state ();
10824
10825 /* Handle memory using the standard memory routines. */
10826 if (object == TARGET_OBJECT_MEMORY)
10827 {
10828 /* If the remote target is connected but not running, we should
10829 pass this request down to a lower stratum (e.g. the executable
10830 file). */
10831 if (!target_has_execution)
10832 return TARGET_XFER_EOF;
10833
10834 if (writebuf != NULL)
10835 return remote_write_bytes (offset, writebuf, len, unit_size,
10836 xfered_len);
10837 else
10838 return remote_read_bytes (offset, readbuf, len, unit_size,
10839 xfered_len);
10840 }
10841
10842 /* Handle extra signal info using qxfer packets. */
10843 if (object == TARGET_OBJECT_SIGNAL_INFO)
10844 {
10845 if (readbuf)
10846 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10847 xfered_len, &remote_protocol_packets
10848 [PACKET_qXfer_siginfo_read]);
10849 else
10850 return remote_write_qxfer ("siginfo", annex,
10851 writebuf, offset, len, xfered_len,
10852 &remote_protocol_packets
10853 [PACKET_qXfer_siginfo_write]);
10854 }
10855
10856 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10857 {
10858 if (readbuf)
10859 return remote_read_qxfer ("statictrace", annex,
10860 readbuf, offset, len, xfered_len,
10861 &remote_protocol_packets
10862 [PACKET_qXfer_statictrace_read]);
10863 else
10864 return TARGET_XFER_E_IO;
10865 }
10866
10867 /* Only handle flash writes. */
10868 if (writebuf != NULL)
10869 {
10870 switch (object)
10871 {
10872 case TARGET_OBJECT_FLASH:
10873 return remote_flash_write (offset, len, xfered_len,
10874 writebuf);
10875
10876 default:
10877 return TARGET_XFER_E_IO;
10878 }
10879 }
10880
10881 /* Map pre-existing objects onto letters. DO NOT do this for new
10882 objects!!! Instead specify new query packets. */
10883 switch (object)
10884 {
10885 case TARGET_OBJECT_AVR:
10886 query_type = 'R';
10887 break;
10888
10889 case TARGET_OBJECT_AUXV:
10890 gdb_assert (annex == NULL);
10891 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10892 xfered_len,
10893 &remote_protocol_packets[PACKET_qXfer_auxv]);
10894
10895 case TARGET_OBJECT_AVAILABLE_FEATURES:
10896 return remote_read_qxfer
10897 ("features", annex, readbuf, offset, len, xfered_len,
10898 &remote_protocol_packets[PACKET_qXfer_features]);
10899
10900 case TARGET_OBJECT_LIBRARIES:
10901 return remote_read_qxfer
10902 ("libraries", annex, readbuf, offset, len, xfered_len,
10903 &remote_protocol_packets[PACKET_qXfer_libraries]);
10904
10905 case TARGET_OBJECT_LIBRARIES_SVR4:
10906 return remote_read_qxfer
10907 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10908 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10909
10910 case TARGET_OBJECT_MEMORY_MAP:
10911 gdb_assert (annex == NULL);
10912 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10913 xfered_len,
10914 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10915
10916 case TARGET_OBJECT_OSDATA:
10917 /* Should only get here if we're connected. */
10918 gdb_assert (rs->remote_desc);
10919 return remote_read_qxfer
10920 ("osdata", annex, readbuf, offset, len, xfered_len,
10921 &remote_protocol_packets[PACKET_qXfer_osdata]);
10922
10923 case TARGET_OBJECT_THREADS:
10924 gdb_assert (annex == NULL);
10925 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10926 xfered_len,
10927 &remote_protocol_packets[PACKET_qXfer_threads]);
10928
10929 case TARGET_OBJECT_TRACEFRAME_INFO:
10930 gdb_assert (annex == NULL);
10931 return remote_read_qxfer
10932 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
10933 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10934
10935 case TARGET_OBJECT_FDPIC:
10936 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
10937 xfered_len,
10938 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10939
10940 case TARGET_OBJECT_OPENVMS_UIB:
10941 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
10942 xfered_len,
10943 &remote_protocol_packets[PACKET_qXfer_uib]);
10944
10945 case TARGET_OBJECT_BTRACE:
10946 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
10947 xfered_len,
10948 &remote_protocol_packets[PACKET_qXfer_btrace]);
10949
10950 case TARGET_OBJECT_BTRACE_CONF:
10951 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
10952 len, xfered_len,
10953 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10954
10955 case TARGET_OBJECT_EXEC_FILE:
10956 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
10957 len, xfered_len,
10958 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10959
10960 default:
10961 return TARGET_XFER_E_IO;
10962 }
10963
10964 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10965 large enough let the caller deal with it. */
10966 if (len < get_remote_packet_size ())
10967 return TARGET_XFER_E_IO;
10968 len = get_remote_packet_size ();
10969
10970 /* Except for querying the minimum buffer size, target must be open. */
10971 if (!rs->remote_desc)
10972 error (_("remote query is only available after target open"));
10973
10974 gdb_assert (annex != NULL);
10975 gdb_assert (readbuf != NULL);
10976
10977 p2 = rs->buf.data ();
10978 *p2++ = 'q';
10979 *p2++ = query_type;
10980
10981 /* We used one buffer char for the remote protocol q command and
10982 another for the query type. As the remote protocol encapsulation
10983 uses 4 chars plus one extra in case we are debugging
10984 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10985 string. */
10986 i = 0;
10987 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10988 {
10989 /* Bad caller may have sent forbidden characters. */
10990 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10991 *p2++ = annex[i];
10992 i++;
10993 }
10994 *p2 = '\0';
10995 gdb_assert (annex[i] == '\0');
10996
10997 i = putpkt (rs->buf);
10998 if (i < 0)
10999 return TARGET_XFER_E_IO;
11000
11001 getpkt (&rs->buf, 0);
11002 strcpy ((char *) readbuf, rs->buf.data ());
11003
11004 *xfered_len = strlen ((char *) readbuf);
11005 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11006 }
11007
11008 /* Implementation of to_get_memory_xfer_limit. */
11009
11010 ULONGEST
11011 remote_target::get_memory_xfer_limit ()
11012 {
11013 return get_memory_write_packet_size ();
11014 }
11015
11016 int
11017 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11018 const gdb_byte *pattern, ULONGEST pattern_len,
11019 CORE_ADDR *found_addrp)
11020 {
11021 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11022 struct remote_state *rs = get_remote_state ();
11023 int max_size = get_memory_write_packet_size ();
11024 struct packet_config *packet =
11025 &remote_protocol_packets[PACKET_qSearch_memory];
11026 /* Number of packet bytes used to encode the pattern;
11027 this could be more than PATTERN_LEN due to escape characters. */
11028 int escaped_pattern_len;
11029 /* Amount of pattern that was encodable in the packet. */
11030 int used_pattern_len;
11031 int i;
11032 int found;
11033 ULONGEST found_addr;
11034
11035 /* Don't go to the target if we don't have to. This is done before
11036 checking packet_config_support to avoid the possibility that a
11037 success for this edge case means the facility works in
11038 general. */
11039 if (pattern_len > search_space_len)
11040 return 0;
11041 if (pattern_len == 0)
11042 {
11043 *found_addrp = start_addr;
11044 return 1;
11045 }
11046
11047 /* If we already know the packet isn't supported, fall back to the simple
11048 way of searching memory. */
11049
11050 if (packet_config_support (packet) == PACKET_DISABLE)
11051 {
11052 /* Target doesn't provided special support, fall back and use the
11053 standard support (copy memory and do the search here). */
11054 return simple_search_memory (this, start_addr, search_space_len,
11055 pattern, pattern_len, found_addrp);
11056 }
11057
11058 /* Make sure the remote is pointing at the right process. */
11059 set_general_process ();
11060
11061 /* Insert header. */
11062 i = snprintf (rs->buf.data (), max_size,
11063 "qSearch:memory:%s;%s;",
11064 phex_nz (start_addr, addr_size),
11065 phex_nz (search_space_len, sizeof (search_space_len)));
11066 max_size -= (i + 1);
11067
11068 /* Escape as much data as fits into rs->buf. */
11069 escaped_pattern_len =
11070 remote_escape_output (pattern, pattern_len, 1,
11071 (gdb_byte *) rs->buf.data () + i,
11072 &used_pattern_len, max_size);
11073
11074 /* Bail if the pattern is too large. */
11075 if (used_pattern_len != pattern_len)
11076 error (_("Pattern is too large to transmit to remote target."));
11077
11078 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11079 || getpkt_sane (&rs->buf, 0) < 0
11080 || packet_ok (rs->buf, packet) != PACKET_OK)
11081 {
11082 /* The request may not have worked because the command is not
11083 supported. If so, fall back to the simple way. */
11084 if (packet_config_support (packet) == PACKET_DISABLE)
11085 {
11086 return simple_search_memory (this, start_addr, search_space_len,
11087 pattern, pattern_len, found_addrp);
11088 }
11089 return -1;
11090 }
11091
11092 if (rs->buf[0] == '0')
11093 found = 0;
11094 else if (rs->buf[0] == '1')
11095 {
11096 found = 1;
11097 if (rs->buf[1] != ',')
11098 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11099 unpack_varlen_hex (&rs->buf[2], &found_addr);
11100 *found_addrp = found_addr;
11101 }
11102 else
11103 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11104
11105 return found;
11106 }
11107
11108 void
11109 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11110 {
11111 struct remote_state *rs = get_remote_state ();
11112 char *p = rs->buf.data ();
11113
11114 if (!rs->remote_desc)
11115 error (_("remote rcmd is only available after target open"));
11116
11117 /* Send a NULL command across as an empty command. */
11118 if (command == NULL)
11119 command = "";
11120
11121 /* The query prefix. */
11122 strcpy (rs->buf.data (), "qRcmd,");
11123 p = strchr (rs->buf.data (), '\0');
11124
11125 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11126 > get_remote_packet_size ())
11127 error (_("\"monitor\" command ``%s'' is too long."), command);
11128
11129 /* Encode the actual command. */
11130 bin2hex ((const gdb_byte *) command, p, strlen (command));
11131
11132 if (putpkt (rs->buf) < 0)
11133 error (_("Communication problem with target."));
11134
11135 /* get/display the response */
11136 while (1)
11137 {
11138 char *buf;
11139
11140 /* XXX - see also remote_get_noisy_reply(). */
11141 QUIT; /* Allow user to bail out with ^C. */
11142 rs->buf[0] = '\0';
11143 if (getpkt_sane (&rs->buf, 0) == -1)
11144 {
11145 /* Timeout. Continue to (try to) read responses.
11146 This is better than stopping with an error, assuming the stub
11147 is still executing the (long) monitor command.
11148 If needed, the user can interrupt gdb using C-c, obtaining
11149 an effect similar to stop on timeout. */
11150 continue;
11151 }
11152 buf = rs->buf.data ();
11153 if (buf[0] == '\0')
11154 error (_("Target does not support this command."));
11155 if (buf[0] == 'O' && buf[1] != 'K')
11156 {
11157 remote_console_output (buf + 1); /* 'O' message from stub. */
11158 continue;
11159 }
11160 if (strcmp (buf, "OK") == 0)
11161 break;
11162 if (strlen (buf) == 3 && buf[0] == 'E'
11163 && isdigit (buf[1]) && isdigit (buf[2]))
11164 {
11165 error (_("Protocol error with Rcmd"));
11166 }
11167 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11168 {
11169 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11170
11171 fputc_unfiltered (c, outbuf);
11172 }
11173 break;
11174 }
11175 }
11176
11177 std::vector<mem_region>
11178 remote_target::memory_map ()
11179 {
11180 std::vector<mem_region> result;
11181 gdb::optional<gdb::char_vector> text
11182 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11183
11184 if (text)
11185 result = parse_memory_map (text->data ());
11186
11187 return result;
11188 }
11189
11190 static void
11191 packet_command (const char *args, int from_tty)
11192 {
11193 remote_target *remote = get_current_remote_target ();
11194
11195 if (remote == nullptr)
11196 error (_("command can only be used with remote target"));
11197
11198 remote->packet_command (args, from_tty);
11199 }
11200
11201 void
11202 remote_target::packet_command (const char *args, int from_tty)
11203 {
11204 if (!args)
11205 error (_("remote-packet command requires packet text as argument"));
11206
11207 puts_filtered ("sending: ");
11208 print_packet (args);
11209 puts_filtered ("\n");
11210 putpkt (args);
11211
11212 remote_state *rs = get_remote_state ();
11213
11214 getpkt (&rs->buf, 0);
11215 puts_filtered ("received: ");
11216 print_packet (rs->buf.data ());
11217 puts_filtered ("\n");
11218 }
11219
11220 #if 0
11221 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11222
11223 static void display_thread_info (struct gdb_ext_thread_info *info);
11224
11225 static void threadset_test_cmd (char *cmd, int tty);
11226
11227 static void threadalive_test (char *cmd, int tty);
11228
11229 static void threadlist_test_cmd (char *cmd, int tty);
11230
11231 int get_and_display_threadinfo (threadref *ref);
11232
11233 static void threadinfo_test_cmd (char *cmd, int tty);
11234
11235 static int thread_display_step (threadref *ref, void *context);
11236
11237 static void threadlist_update_test_cmd (char *cmd, int tty);
11238
11239 static void init_remote_threadtests (void);
11240
11241 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11242
11243 static void
11244 threadset_test_cmd (const char *cmd, int tty)
11245 {
11246 int sample_thread = SAMPLE_THREAD;
11247
11248 printf_filtered (_("Remote threadset test\n"));
11249 set_general_thread (sample_thread);
11250 }
11251
11252
11253 static void
11254 threadalive_test (const char *cmd, int tty)
11255 {
11256 int sample_thread = SAMPLE_THREAD;
11257 int pid = inferior_ptid.pid ();
11258 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11259
11260 if (remote_thread_alive (ptid))
11261 printf_filtered ("PASS: Thread alive test\n");
11262 else
11263 printf_filtered ("FAIL: Thread alive test\n");
11264 }
11265
11266 void output_threadid (char *title, threadref *ref);
11267
11268 void
11269 output_threadid (char *title, threadref *ref)
11270 {
11271 char hexid[20];
11272
11273 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11274 hexid[16] = 0;
11275 printf_filtered ("%s %s\n", title, (&hexid[0]));
11276 }
11277
11278 static void
11279 threadlist_test_cmd (const char *cmd, int tty)
11280 {
11281 int startflag = 1;
11282 threadref nextthread;
11283 int done, result_count;
11284 threadref threadlist[3];
11285
11286 printf_filtered ("Remote Threadlist test\n");
11287 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11288 &result_count, &threadlist[0]))
11289 printf_filtered ("FAIL: threadlist test\n");
11290 else
11291 {
11292 threadref *scan = threadlist;
11293 threadref *limit = scan + result_count;
11294
11295 while (scan < limit)
11296 output_threadid (" thread ", scan++);
11297 }
11298 }
11299
11300 void
11301 display_thread_info (struct gdb_ext_thread_info *info)
11302 {
11303 output_threadid ("Threadid: ", &info->threadid);
11304 printf_filtered ("Name: %s\n ", info->shortname);
11305 printf_filtered ("State: %s\n", info->display);
11306 printf_filtered ("other: %s\n\n", info->more_display);
11307 }
11308
11309 int
11310 get_and_display_threadinfo (threadref *ref)
11311 {
11312 int result;
11313 int set;
11314 struct gdb_ext_thread_info threadinfo;
11315
11316 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11317 | TAG_MOREDISPLAY | TAG_DISPLAY;
11318 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11319 display_thread_info (&threadinfo);
11320 return result;
11321 }
11322
11323 static void
11324 threadinfo_test_cmd (const char *cmd, int tty)
11325 {
11326 int athread = SAMPLE_THREAD;
11327 threadref thread;
11328 int set;
11329
11330 int_to_threadref (&thread, athread);
11331 printf_filtered ("Remote Threadinfo test\n");
11332 if (!get_and_display_threadinfo (&thread))
11333 printf_filtered ("FAIL cannot get thread info\n");
11334 }
11335
11336 static int
11337 thread_display_step (threadref *ref, void *context)
11338 {
11339 /* output_threadid(" threadstep ",ref); *//* simple test */
11340 return get_and_display_threadinfo (ref);
11341 }
11342
11343 static void
11344 threadlist_update_test_cmd (const char *cmd, int tty)
11345 {
11346 printf_filtered ("Remote Threadlist update test\n");
11347 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11348 }
11349
11350 static void
11351 init_remote_threadtests (void)
11352 {
11353 add_com ("tlist", class_obscure, threadlist_test_cmd,
11354 _("Fetch and print the remote list of "
11355 "thread identifiers, one pkt only."));
11356 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11357 _("Fetch and display info about one thread."));
11358 add_com ("tset", class_obscure, threadset_test_cmd,
11359 _("Test setting to a different thread."));
11360 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11361 _("Iterate through updating all remote thread info."));
11362 add_com ("talive", class_obscure, threadalive_test,
11363 _("Remote thread alive test."));
11364 }
11365
11366 #endif /* 0 */
11367
11368 /* Convert a thread ID to a string. */
11369
11370 std::string
11371 remote_target::pid_to_str (ptid_t ptid)
11372 {
11373 struct remote_state *rs = get_remote_state ();
11374
11375 if (ptid == null_ptid)
11376 return normal_pid_to_str (ptid);
11377 else if (ptid.is_pid ())
11378 {
11379 /* Printing an inferior target id. */
11380
11381 /* When multi-process extensions are off, there's no way in the
11382 remote protocol to know the remote process id, if there's any
11383 at all. There's one exception --- when we're connected with
11384 target extended-remote, and we manually attached to a process
11385 with "attach PID". We don't record anywhere a flag that
11386 allows us to distinguish that case from the case of
11387 connecting with extended-remote and the stub already being
11388 attached to a process, and reporting yes to qAttached, hence
11389 no smart special casing here. */
11390 if (!remote_multi_process_p (rs))
11391 return "Remote target";
11392
11393 return normal_pid_to_str (ptid);
11394 }
11395 else
11396 {
11397 if (magic_null_ptid == ptid)
11398 return "Thread <main>";
11399 else if (remote_multi_process_p (rs))
11400 if (ptid.lwp () == 0)
11401 return normal_pid_to_str (ptid);
11402 else
11403 return string_printf ("Thread %d.%ld",
11404 ptid.pid (), ptid.lwp ());
11405 else
11406 return string_printf ("Thread %ld", ptid.lwp ());
11407 }
11408 }
11409
11410 /* Get the address of the thread local variable in OBJFILE which is
11411 stored at OFFSET within the thread local storage for thread PTID. */
11412
11413 CORE_ADDR
11414 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11415 CORE_ADDR offset)
11416 {
11417 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11418 {
11419 struct remote_state *rs = get_remote_state ();
11420 char *p = rs->buf.data ();
11421 char *endp = p + get_remote_packet_size ();
11422 enum packet_result result;
11423
11424 strcpy (p, "qGetTLSAddr:");
11425 p += strlen (p);
11426 p = write_ptid (p, endp, ptid);
11427 *p++ = ',';
11428 p += hexnumstr (p, offset);
11429 *p++ = ',';
11430 p += hexnumstr (p, lm);
11431 *p++ = '\0';
11432
11433 putpkt (rs->buf);
11434 getpkt (&rs->buf, 0);
11435 result = packet_ok (rs->buf,
11436 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11437 if (result == PACKET_OK)
11438 {
11439 ULONGEST addr;
11440
11441 unpack_varlen_hex (rs->buf.data (), &addr);
11442 return addr;
11443 }
11444 else if (result == PACKET_UNKNOWN)
11445 throw_error (TLS_GENERIC_ERROR,
11446 _("Remote target doesn't support qGetTLSAddr packet"));
11447 else
11448 throw_error (TLS_GENERIC_ERROR,
11449 _("Remote target failed to process qGetTLSAddr request"));
11450 }
11451 else
11452 throw_error (TLS_GENERIC_ERROR,
11453 _("TLS not supported or disabled on this target"));
11454 /* Not reached. */
11455 return 0;
11456 }
11457
11458 /* Provide thread local base, i.e. Thread Information Block address.
11459 Returns 1 if ptid is found and thread_local_base is non zero. */
11460
11461 bool
11462 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11463 {
11464 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11465 {
11466 struct remote_state *rs = get_remote_state ();
11467 char *p = rs->buf.data ();
11468 char *endp = p + get_remote_packet_size ();
11469 enum packet_result result;
11470
11471 strcpy (p, "qGetTIBAddr:");
11472 p += strlen (p);
11473 p = write_ptid (p, endp, ptid);
11474 *p++ = '\0';
11475
11476 putpkt (rs->buf);
11477 getpkt (&rs->buf, 0);
11478 result = packet_ok (rs->buf,
11479 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11480 if (result == PACKET_OK)
11481 {
11482 ULONGEST val;
11483 unpack_varlen_hex (rs->buf.data (), &val);
11484 if (addr)
11485 *addr = (CORE_ADDR) val;
11486 return true;
11487 }
11488 else if (result == PACKET_UNKNOWN)
11489 error (_("Remote target doesn't support qGetTIBAddr packet"));
11490 else
11491 error (_("Remote target failed to process qGetTIBAddr request"));
11492 }
11493 else
11494 error (_("qGetTIBAddr not supported or disabled on this target"));
11495 /* Not reached. */
11496 return false;
11497 }
11498
11499 /* Support for inferring a target description based on the current
11500 architecture and the size of a 'g' packet. While the 'g' packet
11501 can have any size (since optional registers can be left off the
11502 end), some sizes are easily recognizable given knowledge of the
11503 approximate architecture. */
11504
11505 struct remote_g_packet_guess
11506 {
11507 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11508 : bytes (bytes_),
11509 tdesc (tdesc_)
11510 {
11511 }
11512
11513 int bytes;
11514 const struct target_desc *tdesc;
11515 };
11516
11517 struct remote_g_packet_data : public allocate_on_obstack
11518 {
11519 std::vector<remote_g_packet_guess> guesses;
11520 };
11521
11522 static struct gdbarch_data *remote_g_packet_data_handle;
11523
11524 static void *
11525 remote_g_packet_data_init (struct obstack *obstack)
11526 {
11527 return new (obstack) remote_g_packet_data;
11528 }
11529
11530 void
11531 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11532 const struct target_desc *tdesc)
11533 {
11534 struct remote_g_packet_data *data
11535 = ((struct remote_g_packet_data *)
11536 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11537
11538 gdb_assert (tdesc != NULL);
11539
11540 for (const remote_g_packet_guess &guess : data->guesses)
11541 if (guess.bytes == bytes)
11542 internal_error (__FILE__, __LINE__,
11543 _("Duplicate g packet description added for size %d"),
11544 bytes);
11545
11546 data->guesses.emplace_back (bytes, tdesc);
11547 }
11548
11549 /* Return true if remote_read_description would do anything on this target
11550 and architecture, false otherwise. */
11551
11552 static bool
11553 remote_read_description_p (struct target_ops *target)
11554 {
11555 struct remote_g_packet_data *data
11556 = ((struct remote_g_packet_data *)
11557 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11558
11559 return !data->guesses.empty ();
11560 }
11561
11562 const struct target_desc *
11563 remote_target::read_description ()
11564 {
11565 struct remote_g_packet_data *data
11566 = ((struct remote_g_packet_data *)
11567 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11568
11569 /* Do not try this during initial connection, when we do not know
11570 whether there is a running but stopped thread. */
11571 if (!target_has_execution || inferior_ptid == null_ptid)
11572 return beneath ()->read_description ();
11573
11574 if (!data->guesses.empty ())
11575 {
11576 int bytes = send_g_packet ();
11577
11578 for (const remote_g_packet_guess &guess : data->guesses)
11579 if (guess.bytes == bytes)
11580 return guess.tdesc;
11581
11582 /* We discard the g packet. A minor optimization would be to
11583 hold on to it, and fill the register cache once we have selected
11584 an architecture, but it's too tricky to do safely. */
11585 }
11586
11587 return beneath ()->read_description ();
11588 }
11589
11590 /* Remote file transfer support. This is host-initiated I/O, not
11591 target-initiated; for target-initiated, see remote-fileio.c. */
11592
11593 /* If *LEFT is at least the length of STRING, copy STRING to
11594 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11595 decrease *LEFT. Otherwise raise an error. */
11596
11597 static void
11598 remote_buffer_add_string (char **buffer, int *left, const char *string)
11599 {
11600 int len = strlen (string);
11601
11602 if (len > *left)
11603 error (_("Packet too long for target."));
11604
11605 memcpy (*buffer, string, len);
11606 *buffer += len;
11607 *left -= len;
11608
11609 /* NUL-terminate the buffer as a convenience, if there is
11610 room. */
11611 if (*left)
11612 **buffer = '\0';
11613 }
11614
11615 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11616 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11617 decrease *LEFT. Otherwise raise an error. */
11618
11619 static void
11620 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11621 int len)
11622 {
11623 if (2 * len > *left)
11624 error (_("Packet too long for target."));
11625
11626 bin2hex (bytes, *buffer, len);
11627 *buffer += 2 * len;
11628 *left -= 2 * len;
11629
11630 /* NUL-terminate the buffer as a convenience, if there is
11631 room. */
11632 if (*left)
11633 **buffer = '\0';
11634 }
11635
11636 /* If *LEFT is large enough, convert VALUE to hex and add it to
11637 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11638 decrease *LEFT. Otherwise raise an error. */
11639
11640 static void
11641 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11642 {
11643 int len = hexnumlen (value);
11644
11645 if (len > *left)
11646 error (_("Packet too long for target."));
11647
11648 hexnumstr (*buffer, value);
11649 *buffer += len;
11650 *left -= len;
11651
11652 /* NUL-terminate the buffer as a convenience, if there is
11653 room. */
11654 if (*left)
11655 **buffer = '\0';
11656 }
11657
11658 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11659 value, *REMOTE_ERRNO to the remote error number or zero if none
11660 was included, and *ATTACHMENT to point to the start of the annex
11661 if any. The length of the packet isn't needed here; there may
11662 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11663
11664 Return 0 if the packet could be parsed, -1 if it could not. If
11665 -1 is returned, the other variables may not be initialized. */
11666
11667 static int
11668 remote_hostio_parse_result (char *buffer, int *retcode,
11669 int *remote_errno, char **attachment)
11670 {
11671 char *p, *p2;
11672
11673 *remote_errno = 0;
11674 *attachment = NULL;
11675
11676 if (buffer[0] != 'F')
11677 return -1;
11678
11679 errno = 0;
11680 *retcode = strtol (&buffer[1], &p, 16);
11681 if (errno != 0 || p == &buffer[1])
11682 return -1;
11683
11684 /* Check for ",errno". */
11685 if (*p == ',')
11686 {
11687 errno = 0;
11688 *remote_errno = strtol (p + 1, &p2, 16);
11689 if (errno != 0 || p + 1 == p2)
11690 return -1;
11691 p = p2;
11692 }
11693
11694 /* Check for ";attachment". If there is no attachment, the
11695 packet should end here. */
11696 if (*p == ';')
11697 {
11698 *attachment = p + 1;
11699 return 0;
11700 }
11701 else if (*p == '\0')
11702 return 0;
11703 else
11704 return -1;
11705 }
11706
11707 /* Send a prepared I/O packet to the target and read its response.
11708 The prepared packet is in the global RS->BUF before this function
11709 is called, and the answer is there when we return.
11710
11711 COMMAND_BYTES is the length of the request to send, which may include
11712 binary data. WHICH_PACKET is the packet configuration to check
11713 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11714 is set to the error number and -1 is returned. Otherwise the value
11715 returned by the function is returned.
11716
11717 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11718 attachment is expected; an error will be reported if there's a
11719 mismatch. If one is found, *ATTACHMENT will be set to point into
11720 the packet buffer and *ATTACHMENT_LEN will be set to the
11721 attachment's length. */
11722
11723 int
11724 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11725 int *remote_errno, char **attachment,
11726 int *attachment_len)
11727 {
11728 struct remote_state *rs = get_remote_state ();
11729 int ret, bytes_read;
11730 char *attachment_tmp;
11731
11732 if (packet_support (which_packet) == PACKET_DISABLE)
11733 {
11734 *remote_errno = FILEIO_ENOSYS;
11735 return -1;
11736 }
11737
11738 putpkt_binary (rs->buf.data (), command_bytes);
11739 bytes_read = getpkt_sane (&rs->buf, 0);
11740
11741 /* If it timed out, something is wrong. Don't try to parse the
11742 buffer. */
11743 if (bytes_read < 0)
11744 {
11745 *remote_errno = FILEIO_EINVAL;
11746 return -1;
11747 }
11748
11749 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11750 {
11751 case PACKET_ERROR:
11752 *remote_errno = FILEIO_EINVAL;
11753 return -1;
11754 case PACKET_UNKNOWN:
11755 *remote_errno = FILEIO_ENOSYS;
11756 return -1;
11757 case PACKET_OK:
11758 break;
11759 }
11760
11761 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11762 &attachment_tmp))
11763 {
11764 *remote_errno = FILEIO_EINVAL;
11765 return -1;
11766 }
11767
11768 /* Make sure we saw an attachment if and only if we expected one. */
11769 if ((attachment_tmp == NULL && attachment != NULL)
11770 || (attachment_tmp != NULL && attachment == NULL))
11771 {
11772 *remote_errno = FILEIO_EINVAL;
11773 return -1;
11774 }
11775
11776 /* If an attachment was found, it must point into the packet buffer;
11777 work out how many bytes there were. */
11778 if (attachment_tmp != NULL)
11779 {
11780 *attachment = attachment_tmp;
11781 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11782 }
11783
11784 return ret;
11785 }
11786
11787 /* See declaration.h. */
11788
11789 void
11790 readahead_cache::invalidate ()
11791 {
11792 this->fd = -1;
11793 }
11794
11795 /* See declaration.h. */
11796
11797 void
11798 readahead_cache::invalidate_fd (int fd)
11799 {
11800 if (this->fd == fd)
11801 this->fd = -1;
11802 }
11803
11804 /* Set the filesystem remote_hostio functions that take FILENAME
11805 arguments will use. Return 0 on success, or -1 if an error
11806 occurs (and set *REMOTE_ERRNO). */
11807
11808 int
11809 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11810 int *remote_errno)
11811 {
11812 struct remote_state *rs = get_remote_state ();
11813 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11814 char *p = rs->buf.data ();
11815 int left = get_remote_packet_size () - 1;
11816 char arg[9];
11817 int ret;
11818
11819 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11820 return 0;
11821
11822 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11823 return 0;
11824
11825 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11826
11827 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11828 remote_buffer_add_string (&p, &left, arg);
11829
11830 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11831 remote_errno, NULL, NULL);
11832
11833 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11834 return 0;
11835
11836 if (ret == 0)
11837 rs->fs_pid = required_pid;
11838
11839 return ret;
11840 }
11841
11842 /* Implementation of to_fileio_open. */
11843
11844 int
11845 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11846 int flags, int mode, int warn_if_slow,
11847 int *remote_errno)
11848 {
11849 struct remote_state *rs = get_remote_state ();
11850 char *p = rs->buf.data ();
11851 int left = get_remote_packet_size () - 1;
11852
11853 if (warn_if_slow)
11854 {
11855 static int warning_issued = 0;
11856
11857 printf_unfiltered (_("Reading %s from remote target...\n"),
11858 filename);
11859
11860 if (!warning_issued)
11861 {
11862 warning (_("File transfers from remote targets can be slow."
11863 " Use \"set sysroot\" to access files locally"
11864 " instead."));
11865 warning_issued = 1;
11866 }
11867 }
11868
11869 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11870 return -1;
11871
11872 remote_buffer_add_string (&p, &left, "vFile:open:");
11873
11874 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11875 strlen (filename));
11876 remote_buffer_add_string (&p, &left, ",");
11877
11878 remote_buffer_add_int (&p, &left, flags);
11879 remote_buffer_add_string (&p, &left, ",");
11880
11881 remote_buffer_add_int (&p, &left, mode);
11882
11883 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
11884 remote_errno, NULL, NULL);
11885 }
11886
11887 int
11888 remote_target::fileio_open (struct inferior *inf, const char *filename,
11889 int flags, int mode, int warn_if_slow,
11890 int *remote_errno)
11891 {
11892 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
11893 remote_errno);
11894 }
11895
11896 /* Implementation of to_fileio_pwrite. */
11897
11898 int
11899 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
11900 ULONGEST offset, int *remote_errno)
11901 {
11902 struct remote_state *rs = get_remote_state ();
11903 char *p = rs->buf.data ();
11904 int left = get_remote_packet_size ();
11905 int out_len;
11906
11907 rs->readahead_cache.invalidate_fd (fd);
11908
11909 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11910
11911 remote_buffer_add_int (&p, &left, fd);
11912 remote_buffer_add_string (&p, &left, ",");
11913
11914 remote_buffer_add_int (&p, &left, offset);
11915 remote_buffer_add_string (&p, &left, ",");
11916
11917 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11918 (get_remote_packet_size ()
11919 - (p - rs->buf.data ())));
11920
11921 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
11922 remote_errno, NULL, NULL);
11923 }
11924
11925 int
11926 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
11927 ULONGEST offset, int *remote_errno)
11928 {
11929 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
11930 }
11931
11932 /* Helper for the implementation of to_fileio_pread. Read the file
11933 from the remote side with vFile:pread. */
11934
11935 int
11936 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
11937 ULONGEST offset, int *remote_errno)
11938 {
11939 struct remote_state *rs = get_remote_state ();
11940 char *p = rs->buf.data ();
11941 char *attachment;
11942 int left = get_remote_packet_size ();
11943 int ret, attachment_len;
11944 int read_len;
11945
11946 remote_buffer_add_string (&p, &left, "vFile:pread:");
11947
11948 remote_buffer_add_int (&p, &left, fd);
11949 remote_buffer_add_string (&p, &left, ",");
11950
11951 remote_buffer_add_int (&p, &left, len);
11952 remote_buffer_add_string (&p, &left, ",");
11953
11954 remote_buffer_add_int (&p, &left, offset);
11955
11956 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
11957 remote_errno, &attachment,
11958 &attachment_len);
11959
11960 if (ret < 0)
11961 return ret;
11962
11963 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11964 read_buf, len);
11965 if (read_len != ret)
11966 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11967
11968 return ret;
11969 }
11970
11971 /* See declaration.h. */
11972
11973 int
11974 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
11975 ULONGEST offset)
11976 {
11977 if (this->fd == fd
11978 && this->offset <= offset
11979 && offset < this->offset + this->bufsize)
11980 {
11981 ULONGEST max = this->offset + this->bufsize;
11982
11983 if (offset + len > max)
11984 len = max - offset;
11985
11986 memcpy (read_buf, this->buf + offset - this->offset, len);
11987 return len;
11988 }
11989
11990 return 0;
11991 }
11992
11993 /* Implementation of to_fileio_pread. */
11994
11995 int
11996 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
11997 ULONGEST offset, int *remote_errno)
11998 {
11999 int ret;
12000 struct remote_state *rs = get_remote_state ();
12001 readahead_cache *cache = &rs->readahead_cache;
12002
12003 ret = cache->pread (fd, read_buf, len, offset);
12004 if (ret > 0)
12005 {
12006 cache->hit_count++;
12007
12008 if (remote_debug)
12009 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12010 pulongest (cache->hit_count));
12011 return ret;
12012 }
12013
12014 cache->miss_count++;
12015 if (remote_debug)
12016 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12017 pulongest (cache->miss_count));
12018
12019 cache->fd = fd;
12020 cache->offset = offset;
12021 cache->bufsize = get_remote_packet_size ();
12022 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12023
12024 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12025 cache->offset, remote_errno);
12026 if (ret <= 0)
12027 {
12028 cache->invalidate_fd (fd);
12029 return ret;
12030 }
12031
12032 cache->bufsize = ret;
12033 return cache->pread (fd, read_buf, len, offset);
12034 }
12035
12036 int
12037 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12038 ULONGEST offset, int *remote_errno)
12039 {
12040 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12041 }
12042
12043 /* Implementation of to_fileio_close. */
12044
12045 int
12046 remote_target::remote_hostio_close (int fd, int *remote_errno)
12047 {
12048 struct remote_state *rs = get_remote_state ();
12049 char *p = rs->buf.data ();
12050 int left = get_remote_packet_size () - 1;
12051
12052 rs->readahead_cache.invalidate_fd (fd);
12053
12054 remote_buffer_add_string (&p, &left, "vFile:close:");
12055
12056 remote_buffer_add_int (&p, &left, fd);
12057
12058 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12059 remote_errno, NULL, NULL);
12060 }
12061
12062 int
12063 remote_target::fileio_close (int fd, int *remote_errno)
12064 {
12065 return remote_hostio_close (fd, remote_errno);
12066 }
12067
12068 /* Implementation of to_fileio_unlink. */
12069
12070 int
12071 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12072 int *remote_errno)
12073 {
12074 struct remote_state *rs = get_remote_state ();
12075 char *p = rs->buf.data ();
12076 int left = get_remote_packet_size () - 1;
12077
12078 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12079 return -1;
12080
12081 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12082
12083 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12084 strlen (filename));
12085
12086 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12087 remote_errno, NULL, NULL);
12088 }
12089
12090 int
12091 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12092 int *remote_errno)
12093 {
12094 return remote_hostio_unlink (inf, filename, remote_errno);
12095 }
12096
12097 /* Implementation of to_fileio_readlink. */
12098
12099 gdb::optional<std::string>
12100 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12101 int *remote_errno)
12102 {
12103 struct remote_state *rs = get_remote_state ();
12104 char *p = rs->buf.data ();
12105 char *attachment;
12106 int left = get_remote_packet_size ();
12107 int len, attachment_len;
12108 int read_len;
12109
12110 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12111 return {};
12112
12113 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12114
12115 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12116 strlen (filename));
12117
12118 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12119 remote_errno, &attachment,
12120 &attachment_len);
12121
12122 if (len < 0)
12123 return {};
12124
12125 std::string ret (len, '\0');
12126
12127 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12128 (gdb_byte *) &ret[0], len);
12129 if (read_len != len)
12130 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12131
12132 return ret;
12133 }
12134
12135 /* Implementation of to_fileio_fstat. */
12136
12137 int
12138 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12139 {
12140 struct remote_state *rs = get_remote_state ();
12141 char *p = rs->buf.data ();
12142 int left = get_remote_packet_size ();
12143 int attachment_len, ret;
12144 char *attachment;
12145 struct fio_stat fst;
12146 int read_len;
12147
12148 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12149
12150 remote_buffer_add_int (&p, &left, fd);
12151
12152 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12153 remote_errno, &attachment,
12154 &attachment_len);
12155 if (ret < 0)
12156 {
12157 if (*remote_errno != FILEIO_ENOSYS)
12158 return ret;
12159
12160 /* Strictly we should return -1, ENOSYS here, but when
12161 "set sysroot remote:" was implemented in August 2008
12162 BFD's need for a stat function was sidestepped with
12163 this hack. This was not remedied until March 2015
12164 so we retain the previous behavior to avoid breaking
12165 compatibility.
12166
12167 Note that the memset is a March 2015 addition; older
12168 GDBs set st_size *and nothing else* so the structure
12169 would have garbage in all other fields. This might
12170 break something but retaining the previous behavior
12171 here would be just too wrong. */
12172
12173 memset (st, 0, sizeof (struct stat));
12174 st->st_size = INT_MAX;
12175 return 0;
12176 }
12177
12178 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12179 (gdb_byte *) &fst, sizeof (fst));
12180
12181 if (read_len != ret)
12182 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12183
12184 if (read_len != sizeof (fst))
12185 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12186 read_len, (int) sizeof (fst));
12187
12188 remote_fileio_to_host_stat (&fst, st);
12189
12190 return 0;
12191 }
12192
12193 /* Implementation of to_filesystem_is_local. */
12194
12195 bool
12196 remote_target::filesystem_is_local ()
12197 {
12198 /* Valgrind GDB presents itself as a remote target but works
12199 on the local filesystem: it does not implement remote get
12200 and users are not expected to set a sysroot. To handle
12201 this case we treat the remote filesystem as local if the
12202 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12203 does not support vFile:open. */
12204 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12205 {
12206 enum packet_support ps = packet_support (PACKET_vFile_open);
12207
12208 if (ps == PACKET_SUPPORT_UNKNOWN)
12209 {
12210 int fd, remote_errno;
12211
12212 /* Try opening a file to probe support. The supplied
12213 filename is irrelevant, we only care about whether
12214 the stub recognizes the packet or not. */
12215 fd = remote_hostio_open (NULL, "just probing",
12216 FILEIO_O_RDONLY, 0700, 0,
12217 &remote_errno);
12218
12219 if (fd >= 0)
12220 remote_hostio_close (fd, &remote_errno);
12221
12222 ps = packet_support (PACKET_vFile_open);
12223 }
12224
12225 if (ps == PACKET_DISABLE)
12226 {
12227 static int warning_issued = 0;
12228
12229 if (!warning_issued)
12230 {
12231 warning (_("remote target does not support file"
12232 " transfer, attempting to access files"
12233 " from local filesystem."));
12234 warning_issued = 1;
12235 }
12236
12237 return true;
12238 }
12239 }
12240
12241 return false;
12242 }
12243
12244 static int
12245 remote_fileio_errno_to_host (int errnum)
12246 {
12247 switch (errnum)
12248 {
12249 case FILEIO_EPERM:
12250 return EPERM;
12251 case FILEIO_ENOENT:
12252 return ENOENT;
12253 case FILEIO_EINTR:
12254 return EINTR;
12255 case FILEIO_EIO:
12256 return EIO;
12257 case FILEIO_EBADF:
12258 return EBADF;
12259 case FILEIO_EACCES:
12260 return EACCES;
12261 case FILEIO_EFAULT:
12262 return EFAULT;
12263 case FILEIO_EBUSY:
12264 return EBUSY;
12265 case FILEIO_EEXIST:
12266 return EEXIST;
12267 case FILEIO_ENODEV:
12268 return ENODEV;
12269 case FILEIO_ENOTDIR:
12270 return ENOTDIR;
12271 case FILEIO_EISDIR:
12272 return EISDIR;
12273 case FILEIO_EINVAL:
12274 return EINVAL;
12275 case FILEIO_ENFILE:
12276 return ENFILE;
12277 case FILEIO_EMFILE:
12278 return EMFILE;
12279 case FILEIO_EFBIG:
12280 return EFBIG;
12281 case FILEIO_ENOSPC:
12282 return ENOSPC;
12283 case FILEIO_ESPIPE:
12284 return ESPIPE;
12285 case FILEIO_EROFS:
12286 return EROFS;
12287 case FILEIO_ENOSYS:
12288 return ENOSYS;
12289 case FILEIO_ENAMETOOLONG:
12290 return ENAMETOOLONG;
12291 }
12292 return -1;
12293 }
12294
12295 static char *
12296 remote_hostio_error (int errnum)
12297 {
12298 int host_error = remote_fileio_errno_to_host (errnum);
12299
12300 if (host_error == -1)
12301 error (_("Unknown remote I/O error %d"), errnum);
12302 else
12303 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12304 }
12305
12306 /* A RAII wrapper around a remote file descriptor. */
12307
12308 class scoped_remote_fd
12309 {
12310 public:
12311 scoped_remote_fd (remote_target *remote, int fd)
12312 : m_remote (remote), m_fd (fd)
12313 {
12314 }
12315
12316 ~scoped_remote_fd ()
12317 {
12318 if (m_fd != -1)
12319 {
12320 try
12321 {
12322 int remote_errno;
12323 m_remote->remote_hostio_close (m_fd, &remote_errno);
12324 }
12325 catch (...)
12326 {
12327 /* Swallow exception before it escapes the dtor. If
12328 something goes wrong, likely the connection is gone,
12329 and there's nothing else that can be done. */
12330 }
12331 }
12332 }
12333
12334 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12335
12336 /* Release ownership of the file descriptor, and return it. */
12337 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12338 {
12339 int fd = m_fd;
12340 m_fd = -1;
12341 return fd;
12342 }
12343
12344 /* Return the owned file descriptor. */
12345 int get () const noexcept
12346 {
12347 return m_fd;
12348 }
12349
12350 private:
12351 /* The remote target. */
12352 remote_target *m_remote;
12353
12354 /* The owned remote I/O file descriptor. */
12355 int m_fd;
12356 };
12357
12358 void
12359 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12360 {
12361 remote_target *remote = get_current_remote_target ();
12362
12363 if (remote == nullptr)
12364 error (_("command can only be used with remote target"));
12365
12366 remote->remote_file_put (local_file, remote_file, from_tty);
12367 }
12368
12369 void
12370 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12371 int from_tty)
12372 {
12373 int retcode, remote_errno, bytes, io_size;
12374 int bytes_in_buffer;
12375 int saw_eof;
12376 ULONGEST offset;
12377
12378 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12379 if (file == NULL)
12380 perror_with_name (local_file);
12381
12382 scoped_remote_fd fd
12383 (this, remote_hostio_open (NULL,
12384 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12385 | FILEIO_O_TRUNC),
12386 0700, 0, &remote_errno));
12387 if (fd.get () == -1)
12388 remote_hostio_error (remote_errno);
12389
12390 /* Send up to this many bytes at once. They won't all fit in the
12391 remote packet limit, so we'll transfer slightly fewer. */
12392 io_size = get_remote_packet_size ();
12393 gdb::byte_vector buffer (io_size);
12394
12395 bytes_in_buffer = 0;
12396 saw_eof = 0;
12397 offset = 0;
12398 while (bytes_in_buffer || !saw_eof)
12399 {
12400 if (!saw_eof)
12401 {
12402 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12403 io_size - bytes_in_buffer,
12404 file.get ());
12405 if (bytes == 0)
12406 {
12407 if (ferror (file.get ()))
12408 error (_("Error reading %s."), local_file);
12409 else
12410 {
12411 /* EOF. Unless there is something still in the
12412 buffer from the last iteration, we are done. */
12413 saw_eof = 1;
12414 if (bytes_in_buffer == 0)
12415 break;
12416 }
12417 }
12418 }
12419 else
12420 bytes = 0;
12421
12422 bytes += bytes_in_buffer;
12423 bytes_in_buffer = 0;
12424
12425 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12426 offset, &remote_errno);
12427
12428 if (retcode < 0)
12429 remote_hostio_error (remote_errno);
12430 else if (retcode == 0)
12431 error (_("Remote write of %d bytes returned 0!"), bytes);
12432 else if (retcode < bytes)
12433 {
12434 /* Short write. Save the rest of the read data for the next
12435 write. */
12436 bytes_in_buffer = bytes - retcode;
12437 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12438 }
12439
12440 offset += retcode;
12441 }
12442
12443 if (remote_hostio_close (fd.release (), &remote_errno))
12444 remote_hostio_error (remote_errno);
12445
12446 if (from_tty)
12447 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12448 }
12449
12450 void
12451 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12452 {
12453 remote_target *remote = get_current_remote_target ();
12454
12455 if (remote == nullptr)
12456 error (_("command can only be used with remote target"));
12457
12458 remote->remote_file_get (remote_file, local_file, from_tty);
12459 }
12460
12461 void
12462 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12463 int from_tty)
12464 {
12465 int remote_errno, bytes, io_size;
12466 ULONGEST offset;
12467
12468 scoped_remote_fd fd
12469 (this, remote_hostio_open (NULL,
12470 remote_file, FILEIO_O_RDONLY, 0, 0,
12471 &remote_errno));
12472 if (fd.get () == -1)
12473 remote_hostio_error (remote_errno);
12474
12475 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12476 if (file == NULL)
12477 perror_with_name (local_file);
12478
12479 /* Send up to this many bytes at once. They won't all fit in the
12480 remote packet limit, so we'll transfer slightly fewer. */
12481 io_size = get_remote_packet_size ();
12482 gdb::byte_vector buffer (io_size);
12483
12484 offset = 0;
12485 while (1)
12486 {
12487 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12488 &remote_errno);
12489 if (bytes == 0)
12490 /* Success, but no bytes, means end-of-file. */
12491 break;
12492 if (bytes == -1)
12493 remote_hostio_error (remote_errno);
12494
12495 offset += bytes;
12496
12497 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12498 if (bytes == 0)
12499 perror_with_name (local_file);
12500 }
12501
12502 if (remote_hostio_close (fd.release (), &remote_errno))
12503 remote_hostio_error (remote_errno);
12504
12505 if (from_tty)
12506 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12507 }
12508
12509 void
12510 remote_file_delete (const char *remote_file, int from_tty)
12511 {
12512 remote_target *remote = get_current_remote_target ();
12513
12514 if (remote == nullptr)
12515 error (_("command can only be used with remote target"));
12516
12517 remote->remote_file_delete (remote_file, from_tty);
12518 }
12519
12520 void
12521 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12522 {
12523 int retcode, remote_errno;
12524
12525 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12526 if (retcode == -1)
12527 remote_hostio_error (remote_errno);
12528
12529 if (from_tty)
12530 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12531 }
12532
12533 static void
12534 remote_put_command (const char *args, int from_tty)
12535 {
12536 if (args == NULL)
12537 error_no_arg (_("file to put"));
12538
12539 gdb_argv argv (args);
12540 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12541 error (_("Invalid parameters to remote put"));
12542
12543 remote_file_put (argv[0], argv[1], from_tty);
12544 }
12545
12546 static void
12547 remote_get_command (const char *args, int from_tty)
12548 {
12549 if (args == NULL)
12550 error_no_arg (_("file to get"));
12551
12552 gdb_argv argv (args);
12553 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12554 error (_("Invalid parameters to remote get"));
12555
12556 remote_file_get (argv[0], argv[1], from_tty);
12557 }
12558
12559 static void
12560 remote_delete_command (const char *args, int from_tty)
12561 {
12562 if (args == NULL)
12563 error_no_arg (_("file to delete"));
12564
12565 gdb_argv argv (args);
12566 if (argv[0] == NULL || argv[1] != NULL)
12567 error (_("Invalid parameters to remote delete"));
12568
12569 remote_file_delete (argv[0], from_tty);
12570 }
12571
12572 static void
12573 remote_command (const char *args, int from_tty)
12574 {
12575 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12576 }
12577
12578 bool
12579 remote_target::can_execute_reverse ()
12580 {
12581 if (packet_support (PACKET_bs) == PACKET_ENABLE
12582 || packet_support (PACKET_bc) == PACKET_ENABLE)
12583 return true;
12584 else
12585 return false;
12586 }
12587
12588 bool
12589 remote_target::supports_non_stop ()
12590 {
12591 return true;
12592 }
12593
12594 bool
12595 remote_target::supports_disable_randomization ()
12596 {
12597 /* Only supported in extended mode. */
12598 return false;
12599 }
12600
12601 bool
12602 remote_target::supports_multi_process ()
12603 {
12604 struct remote_state *rs = get_remote_state ();
12605
12606 return remote_multi_process_p (rs);
12607 }
12608
12609 static int
12610 remote_supports_cond_tracepoints ()
12611 {
12612 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12613 }
12614
12615 bool
12616 remote_target::supports_evaluation_of_breakpoint_conditions ()
12617 {
12618 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12619 }
12620
12621 static int
12622 remote_supports_fast_tracepoints ()
12623 {
12624 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12625 }
12626
12627 static int
12628 remote_supports_static_tracepoints ()
12629 {
12630 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12631 }
12632
12633 static int
12634 remote_supports_install_in_trace ()
12635 {
12636 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12637 }
12638
12639 bool
12640 remote_target::supports_enable_disable_tracepoint ()
12641 {
12642 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12643 == PACKET_ENABLE);
12644 }
12645
12646 bool
12647 remote_target::supports_string_tracing ()
12648 {
12649 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12650 }
12651
12652 bool
12653 remote_target::can_run_breakpoint_commands ()
12654 {
12655 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12656 }
12657
12658 void
12659 remote_target::trace_init ()
12660 {
12661 struct remote_state *rs = get_remote_state ();
12662
12663 putpkt ("QTinit");
12664 remote_get_noisy_reply ();
12665 if (strcmp (rs->buf.data (), "OK") != 0)
12666 error (_("Target does not support this command."));
12667 }
12668
12669 /* Recursive routine to walk through command list including loops, and
12670 download packets for each command. */
12671
12672 void
12673 remote_target::remote_download_command_source (int num, ULONGEST addr,
12674 struct command_line *cmds)
12675 {
12676 struct remote_state *rs = get_remote_state ();
12677 struct command_line *cmd;
12678
12679 for (cmd = cmds; cmd; cmd = cmd->next)
12680 {
12681 QUIT; /* Allow user to bail out with ^C. */
12682 strcpy (rs->buf.data (), "QTDPsrc:");
12683 encode_source_string (num, addr, "cmd", cmd->line,
12684 rs->buf.data () + strlen (rs->buf.data ()),
12685 rs->buf.size () - strlen (rs->buf.data ()));
12686 putpkt (rs->buf);
12687 remote_get_noisy_reply ();
12688 if (strcmp (rs->buf.data (), "OK"))
12689 warning (_("Target does not support source download."));
12690
12691 if (cmd->control_type == while_control
12692 || cmd->control_type == while_stepping_control)
12693 {
12694 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12695
12696 QUIT; /* Allow user to bail out with ^C. */
12697 strcpy (rs->buf.data (), "QTDPsrc:");
12698 encode_source_string (num, addr, "cmd", "end",
12699 rs->buf.data () + strlen (rs->buf.data ()),
12700 rs->buf.size () - strlen (rs->buf.data ()));
12701 putpkt (rs->buf);
12702 remote_get_noisy_reply ();
12703 if (strcmp (rs->buf.data (), "OK"))
12704 warning (_("Target does not support source download."));
12705 }
12706 }
12707 }
12708
12709 void
12710 remote_target::download_tracepoint (struct bp_location *loc)
12711 {
12712 CORE_ADDR tpaddr;
12713 char addrbuf[40];
12714 std::vector<std::string> tdp_actions;
12715 std::vector<std::string> stepping_actions;
12716 char *pkt;
12717 struct breakpoint *b = loc->owner;
12718 struct tracepoint *t = (struct tracepoint *) b;
12719 struct remote_state *rs = get_remote_state ();
12720 int ret;
12721 const char *err_msg = _("Tracepoint packet too large for target.");
12722 size_t size_left;
12723
12724 /* We use a buffer other than rs->buf because we'll build strings
12725 across multiple statements, and other statements in between could
12726 modify rs->buf. */
12727 gdb::char_vector buf (get_remote_packet_size ());
12728
12729 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12730
12731 tpaddr = loc->address;
12732 sprintf_vma (addrbuf, tpaddr);
12733 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12734 b->number, addrbuf, /* address */
12735 (b->enable_state == bp_enabled ? 'E' : 'D'),
12736 t->step_count, t->pass_count);
12737
12738 if (ret < 0 || ret >= buf.size ())
12739 error ("%s", err_msg);
12740
12741 /* Fast tracepoints are mostly handled by the target, but we can
12742 tell the target how big of an instruction block should be moved
12743 around. */
12744 if (b->type == bp_fast_tracepoint)
12745 {
12746 /* Only test for support at download time; we may not know
12747 target capabilities at definition time. */
12748 if (remote_supports_fast_tracepoints ())
12749 {
12750 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12751 NULL))
12752 {
12753 size_left = buf.size () - strlen (buf.data ());
12754 ret = snprintf (buf.data () + strlen (buf.data ()),
12755 size_left, ":F%x",
12756 gdb_insn_length (loc->gdbarch, tpaddr));
12757
12758 if (ret < 0 || ret >= size_left)
12759 error ("%s", err_msg);
12760 }
12761 else
12762 /* If it passed validation at definition but fails now,
12763 something is very wrong. */
12764 internal_error (__FILE__, __LINE__,
12765 _("Fast tracepoint not "
12766 "valid during download"));
12767 }
12768 else
12769 /* Fast tracepoints are functionally identical to regular
12770 tracepoints, so don't take lack of support as a reason to
12771 give up on the trace run. */
12772 warning (_("Target does not support fast tracepoints, "
12773 "downloading %d as regular tracepoint"), b->number);
12774 }
12775 else if (b->type == bp_static_tracepoint)
12776 {
12777 /* Only test for support at download time; we may not know
12778 target capabilities at definition time. */
12779 if (remote_supports_static_tracepoints ())
12780 {
12781 struct static_tracepoint_marker marker;
12782
12783 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12784 {
12785 size_left = buf.size () - strlen (buf.data ());
12786 ret = snprintf (buf.data () + strlen (buf.data ()),
12787 size_left, ":S");
12788
12789 if (ret < 0 || ret >= size_left)
12790 error ("%s", err_msg);
12791 }
12792 else
12793 error (_("Static tracepoint not valid during download"));
12794 }
12795 else
12796 /* Fast tracepoints are functionally identical to regular
12797 tracepoints, so don't take lack of support as a reason
12798 to give up on the trace run. */
12799 error (_("Target does not support static tracepoints"));
12800 }
12801 /* If the tracepoint has a conditional, make it into an agent
12802 expression and append to the definition. */
12803 if (loc->cond)
12804 {
12805 /* Only test support at download time, we may not know target
12806 capabilities at definition time. */
12807 if (remote_supports_cond_tracepoints ())
12808 {
12809 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12810 loc->cond.get ());
12811
12812 size_left = buf.size () - strlen (buf.data ());
12813
12814 ret = snprintf (buf.data () + strlen (buf.data ()),
12815 size_left, ":X%x,", aexpr->len);
12816
12817 if (ret < 0 || ret >= size_left)
12818 error ("%s", err_msg);
12819
12820 size_left = buf.size () - strlen (buf.data ());
12821
12822 /* Two bytes to encode each aexpr byte, plus the terminating
12823 null byte. */
12824 if (aexpr->len * 2 + 1 > size_left)
12825 error ("%s", err_msg);
12826
12827 pkt = buf.data () + strlen (buf.data ());
12828
12829 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12830 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12831 *pkt = '\0';
12832 }
12833 else
12834 warning (_("Target does not support conditional tracepoints, "
12835 "ignoring tp %d cond"), b->number);
12836 }
12837
12838 if (b->commands || *default_collect)
12839 {
12840 size_left = buf.size () - strlen (buf.data ());
12841
12842 ret = snprintf (buf.data () + strlen (buf.data ()),
12843 size_left, "-");
12844
12845 if (ret < 0 || ret >= size_left)
12846 error ("%s", err_msg);
12847 }
12848
12849 putpkt (buf.data ());
12850 remote_get_noisy_reply ();
12851 if (strcmp (rs->buf.data (), "OK"))
12852 error (_("Target does not support tracepoints."));
12853
12854 /* do_single_steps (t); */
12855 for (auto action_it = tdp_actions.begin ();
12856 action_it != tdp_actions.end (); action_it++)
12857 {
12858 QUIT; /* Allow user to bail out with ^C. */
12859
12860 bool has_more = ((action_it + 1) != tdp_actions.end ()
12861 || !stepping_actions.empty ());
12862
12863 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12864 b->number, addrbuf, /* address */
12865 action_it->c_str (),
12866 has_more ? '-' : 0);
12867
12868 if (ret < 0 || ret >= buf.size ())
12869 error ("%s", err_msg);
12870
12871 putpkt (buf.data ());
12872 remote_get_noisy_reply ();
12873 if (strcmp (rs->buf.data (), "OK"))
12874 error (_("Error on target while setting tracepoints."));
12875 }
12876
12877 for (auto action_it = stepping_actions.begin ();
12878 action_it != stepping_actions.end (); action_it++)
12879 {
12880 QUIT; /* Allow user to bail out with ^C. */
12881
12882 bool is_first = action_it == stepping_actions.begin ();
12883 bool has_more = (action_it + 1) != stepping_actions.end ();
12884
12885 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
12886 b->number, addrbuf, /* address */
12887 is_first ? "S" : "",
12888 action_it->c_str (),
12889 has_more ? "-" : "");
12890
12891 if (ret < 0 || ret >= buf.size ())
12892 error ("%s", err_msg);
12893
12894 putpkt (buf.data ());
12895 remote_get_noisy_reply ();
12896 if (strcmp (rs->buf.data (), "OK"))
12897 error (_("Error on target while setting tracepoints."));
12898 }
12899
12900 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12901 {
12902 if (b->location != NULL)
12903 {
12904 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12905
12906 if (ret < 0 || ret >= buf.size ())
12907 error ("%s", err_msg);
12908
12909 encode_source_string (b->number, loc->address, "at",
12910 event_location_to_string (b->location.get ()),
12911 buf.data () + strlen (buf.data ()),
12912 buf.size () - strlen (buf.data ()));
12913 putpkt (buf.data ());
12914 remote_get_noisy_reply ();
12915 if (strcmp (rs->buf.data (), "OK"))
12916 warning (_("Target does not support source download."));
12917 }
12918 if (b->cond_string)
12919 {
12920 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12921
12922 if (ret < 0 || ret >= buf.size ())
12923 error ("%s", err_msg);
12924
12925 encode_source_string (b->number, loc->address,
12926 "cond", b->cond_string,
12927 buf.data () + strlen (buf.data ()),
12928 buf.size () - strlen (buf.data ()));
12929 putpkt (buf.data ());
12930 remote_get_noisy_reply ();
12931 if (strcmp (rs->buf.data (), "OK"))
12932 warning (_("Target does not support source download."));
12933 }
12934 remote_download_command_source (b->number, loc->address,
12935 breakpoint_commands (b));
12936 }
12937 }
12938
12939 bool
12940 remote_target::can_download_tracepoint ()
12941 {
12942 struct remote_state *rs = get_remote_state ();
12943 struct trace_status *ts;
12944 int status;
12945
12946 /* Don't try to install tracepoints until we've relocated our
12947 symbols, and fetched and merged the target's tracepoint list with
12948 ours. */
12949 if (rs->starting_up)
12950 return false;
12951
12952 ts = current_trace_status ();
12953 status = get_trace_status (ts);
12954
12955 if (status == -1 || !ts->running_known || !ts->running)
12956 return false;
12957
12958 /* If we are in a tracing experiment, but remote stub doesn't support
12959 installing tracepoint in trace, we have to return. */
12960 if (!remote_supports_install_in_trace ())
12961 return false;
12962
12963 return true;
12964 }
12965
12966
12967 void
12968 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
12969 {
12970 struct remote_state *rs = get_remote_state ();
12971 char *p;
12972
12973 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
12974 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
12975 tsv.builtin);
12976 p = rs->buf.data () + strlen (rs->buf.data ());
12977 if ((p - rs->buf.data ()) + tsv.name.length () * 2
12978 >= get_remote_packet_size ())
12979 error (_("Trace state variable name too long for tsv definition packet"));
12980 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
12981 *p++ = '\0';
12982 putpkt (rs->buf);
12983 remote_get_noisy_reply ();
12984 if (rs->buf[0] == '\0')
12985 error (_("Target does not support this command."));
12986 if (strcmp (rs->buf.data (), "OK") != 0)
12987 error (_("Error on target while downloading trace state variable."));
12988 }
12989
12990 void
12991 remote_target::enable_tracepoint (struct bp_location *location)
12992 {
12993 struct remote_state *rs = get_remote_state ();
12994 char addr_buf[40];
12995
12996 sprintf_vma (addr_buf, location->address);
12997 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
12998 location->owner->number, addr_buf);
12999 putpkt (rs->buf);
13000 remote_get_noisy_reply ();
13001 if (rs->buf[0] == '\0')
13002 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13003 if (strcmp (rs->buf.data (), "OK") != 0)
13004 error (_("Error on target while enabling tracepoint."));
13005 }
13006
13007 void
13008 remote_target::disable_tracepoint (struct bp_location *location)
13009 {
13010 struct remote_state *rs = get_remote_state ();
13011 char addr_buf[40];
13012
13013 sprintf_vma (addr_buf, location->address);
13014 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13015 location->owner->number, addr_buf);
13016 putpkt (rs->buf);
13017 remote_get_noisy_reply ();
13018 if (rs->buf[0] == '\0')
13019 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13020 if (strcmp (rs->buf.data (), "OK") != 0)
13021 error (_("Error on target while disabling tracepoint."));
13022 }
13023
13024 void
13025 remote_target::trace_set_readonly_regions ()
13026 {
13027 asection *s;
13028 bfd_size_type size;
13029 bfd_vma vma;
13030 int anysecs = 0;
13031 int offset = 0;
13032
13033 if (!exec_bfd)
13034 return; /* No information to give. */
13035
13036 struct remote_state *rs = get_remote_state ();
13037
13038 strcpy (rs->buf.data (), "QTro");
13039 offset = strlen (rs->buf.data ());
13040 for (s = exec_bfd->sections; s; s = s->next)
13041 {
13042 char tmp1[40], tmp2[40];
13043 int sec_length;
13044
13045 if ((s->flags & SEC_LOAD) == 0 ||
13046 /* (s->flags & SEC_CODE) == 0 || */
13047 (s->flags & SEC_READONLY) == 0)
13048 continue;
13049
13050 anysecs = 1;
13051 vma = bfd_section_vma (s);
13052 size = bfd_section_size (s);
13053 sprintf_vma (tmp1, vma);
13054 sprintf_vma (tmp2, vma + size);
13055 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13056 if (offset + sec_length + 1 > rs->buf.size ())
13057 {
13058 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13059 warning (_("\
13060 Too many sections for read-only sections definition packet."));
13061 break;
13062 }
13063 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13064 tmp1, tmp2);
13065 offset += sec_length;
13066 }
13067 if (anysecs)
13068 {
13069 putpkt (rs->buf);
13070 getpkt (&rs->buf, 0);
13071 }
13072 }
13073
13074 void
13075 remote_target::trace_start ()
13076 {
13077 struct remote_state *rs = get_remote_state ();
13078
13079 putpkt ("QTStart");
13080 remote_get_noisy_reply ();
13081 if (rs->buf[0] == '\0')
13082 error (_("Target does not support this command."));
13083 if (strcmp (rs->buf.data (), "OK") != 0)
13084 error (_("Bogus reply from target: %s"), rs->buf.data ());
13085 }
13086
13087 int
13088 remote_target::get_trace_status (struct trace_status *ts)
13089 {
13090 /* Initialize it just to avoid a GCC false warning. */
13091 char *p = NULL;
13092 enum packet_result result;
13093 struct remote_state *rs = get_remote_state ();
13094
13095 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13096 return -1;
13097
13098 /* FIXME we need to get register block size some other way. */
13099 trace_regblock_size
13100 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13101
13102 putpkt ("qTStatus");
13103
13104 try
13105 {
13106 p = remote_get_noisy_reply ();
13107 }
13108 catch (const gdb_exception_error &ex)
13109 {
13110 if (ex.error != TARGET_CLOSE_ERROR)
13111 {
13112 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13113 return -1;
13114 }
13115 throw;
13116 }
13117
13118 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13119
13120 /* If the remote target doesn't do tracing, flag it. */
13121 if (result == PACKET_UNKNOWN)
13122 return -1;
13123
13124 /* We're working with a live target. */
13125 ts->filename = NULL;
13126
13127 if (*p++ != 'T')
13128 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13129
13130 /* Function 'parse_trace_status' sets default value of each field of
13131 'ts' at first, so we don't have to do it here. */
13132 parse_trace_status (p, ts);
13133
13134 return ts->running;
13135 }
13136
13137 void
13138 remote_target::get_tracepoint_status (struct breakpoint *bp,
13139 struct uploaded_tp *utp)
13140 {
13141 struct remote_state *rs = get_remote_state ();
13142 char *reply;
13143 struct bp_location *loc;
13144 struct tracepoint *tp = (struct tracepoint *) bp;
13145 size_t size = get_remote_packet_size ();
13146
13147 if (tp)
13148 {
13149 tp->hit_count = 0;
13150 tp->traceframe_usage = 0;
13151 for (loc = tp->loc; loc; loc = loc->next)
13152 {
13153 /* If the tracepoint was never downloaded, don't go asking for
13154 any status. */
13155 if (tp->number_on_target == 0)
13156 continue;
13157 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13158 phex_nz (loc->address, 0));
13159 putpkt (rs->buf);
13160 reply = remote_get_noisy_reply ();
13161 if (reply && *reply)
13162 {
13163 if (*reply == 'V')
13164 parse_tracepoint_status (reply + 1, bp, utp);
13165 }
13166 }
13167 }
13168 else if (utp)
13169 {
13170 utp->hit_count = 0;
13171 utp->traceframe_usage = 0;
13172 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13173 phex_nz (utp->addr, 0));
13174 putpkt (rs->buf);
13175 reply = remote_get_noisy_reply ();
13176 if (reply && *reply)
13177 {
13178 if (*reply == 'V')
13179 parse_tracepoint_status (reply + 1, bp, utp);
13180 }
13181 }
13182 }
13183
13184 void
13185 remote_target::trace_stop ()
13186 {
13187 struct remote_state *rs = get_remote_state ();
13188
13189 putpkt ("QTStop");
13190 remote_get_noisy_reply ();
13191 if (rs->buf[0] == '\0')
13192 error (_("Target does not support this command."));
13193 if (strcmp (rs->buf.data (), "OK") != 0)
13194 error (_("Bogus reply from target: %s"), rs->buf.data ());
13195 }
13196
13197 int
13198 remote_target::trace_find (enum trace_find_type type, int num,
13199 CORE_ADDR addr1, CORE_ADDR addr2,
13200 int *tpp)
13201 {
13202 struct remote_state *rs = get_remote_state ();
13203 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13204 char *p, *reply;
13205 int target_frameno = -1, target_tracept = -1;
13206
13207 /* Lookups other than by absolute frame number depend on the current
13208 trace selected, so make sure it is correct on the remote end
13209 first. */
13210 if (type != tfind_number)
13211 set_remote_traceframe ();
13212
13213 p = rs->buf.data ();
13214 strcpy (p, "QTFrame:");
13215 p = strchr (p, '\0');
13216 switch (type)
13217 {
13218 case tfind_number:
13219 xsnprintf (p, endbuf - p, "%x", num);
13220 break;
13221 case tfind_pc:
13222 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13223 break;
13224 case tfind_tp:
13225 xsnprintf (p, endbuf - p, "tdp:%x", num);
13226 break;
13227 case tfind_range:
13228 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13229 phex_nz (addr2, 0));
13230 break;
13231 case tfind_outside:
13232 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13233 phex_nz (addr2, 0));
13234 break;
13235 default:
13236 error (_("Unknown trace find type %d"), type);
13237 }
13238
13239 putpkt (rs->buf);
13240 reply = remote_get_noisy_reply ();
13241 if (*reply == '\0')
13242 error (_("Target does not support this command."));
13243
13244 while (reply && *reply)
13245 switch (*reply)
13246 {
13247 case 'F':
13248 p = ++reply;
13249 target_frameno = (int) strtol (p, &reply, 16);
13250 if (reply == p)
13251 error (_("Unable to parse trace frame number"));
13252 /* Don't update our remote traceframe number cache on failure
13253 to select a remote traceframe. */
13254 if (target_frameno == -1)
13255 return -1;
13256 break;
13257 case 'T':
13258 p = ++reply;
13259 target_tracept = (int) strtol (p, &reply, 16);
13260 if (reply == p)
13261 error (_("Unable to parse tracepoint number"));
13262 break;
13263 case 'O': /* "OK"? */
13264 if (reply[1] == 'K' && reply[2] == '\0')
13265 reply += 2;
13266 else
13267 error (_("Bogus reply from target: %s"), reply);
13268 break;
13269 default:
13270 error (_("Bogus reply from target: %s"), reply);
13271 }
13272 if (tpp)
13273 *tpp = target_tracept;
13274
13275 rs->remote_traceframe_number = target_frameno;
13276 return target_frameno;
13277 }
13278
13279 bool
13280 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13281 {
13282 struct remote_state *rs = get_remote_state ();
13283 char *reply;
13284 ULONGEST uval;
13285
13286 set_remote_traceframe ();
13287
13288 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13289 putpkt (rs->buf);
13290 reply = remote_get_noisy_reply ();
13291 if (reply && *reply)
13292 {
13293 if (*reply == 'V')
13294 {
13295 unpack_varlen_hex (reply + 1, &uval);
13296 *val = (LONGEST) uval;
13297 return true;
13298 }
13299 }
13300 return false;
13301 }
13302
13303 int
13304 remote_target::save_trace_data (const char *filename)
13305 {
13306 struct remote_state *rs = get_remote_state ();
13307 char *p, *reply;
13308
13309 p = rs->buf.data ();
13310 strcpy (p, "QTSave:");
13311 p += strlen (p);
13312 if ((p - rs->buf.data ()) + strlen (filename) * 2
13313 >= get_remote_packet_size ())
13314 error (_("Remote file name too long for trace save packet"));
13315 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13316 *p++ = '\0';
13317 putpkt (rs->buf);
13318 reply = remote_get_noisy_reply ();
13319 if (*reply == '\0')
13320 error (_("Target does not support this command."));
13321 if (strcmp (reply, "OK") != 0)
13322 error (_("Bogus reply from target: %s"), reply);
13323 return 0;
13324 }
13325
13326 /* This is basically a memory transfer, but needs to be its own packet
13327 because we don't know how the target actually organizes its trace
13328 memory, plus we want to be able to ask for as much as possible, but
13329 not be unhappy if we don't get as much as we ask for. */
13330
13331 LONGEST
13332 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13333 {
13334 struct remote_state *rs = get_remote_state ();
13335 char *reply;
13336 char *p;
13337 int rslt;
13338
13339 p = rs->buf.data ();
13340 strcpy (p, "qTBuffer:");
13341 p += strlen (p);
13342 p += hexnumstr (p, offset);
13343 *p++ = ',';
13344 p += hexnumstr (p, len);
13345 *p++ = '\0';
13346
13347 putpkt (rs->buf);
13348 reply = remote_get_noisy_reply ();
13349 if (reply && *reply)
13350 {
13351 /* 'l' by itself means we're at the end of the buffer and
13352 there is nothing more to get. */
13353 if (*reply == 'l')
13354 return 0;
13355
13356 /* Convert the reply into binary. Limit the number of bytes to
13357 convert according to our passed-in buffer size, rather than
13358 what was returned in the packet; if the target is
13359 unexpectedly generous and gives us a bigger reply than we
13360 asked for, we don't want to crash. */
13361 rslt = hex2bin (reply, buf, len);
13362 return rslt;
13363 }
13364
13365 /* Something went wrong, flag as an error. */
13366 return -1;
13367 }
13368
13369 void
13370 remote_target::set_disconnected_tracing (int val)
13371 {
13372 struct remote_state *rs = get_remote_state ();
13373
13374 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13375 {
13376 char *reply;
13377
13378 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13379 "QTDisconnected:%x", val);
13380 putpkt (rs->buf);
13381 reply = remote_get_noisy_reply ();
13382 if (*reply == '\0')
13383 error (_("Target does not support this command."));
13384 if (strcmp (reply, "OK") != 0)
13385 error (_("Bogus reply from target: %s"), reply);
13386 }
13387 else if (val)
13388 warning (_("Target does not support disconnected tracing."));
13389 }
13390
13391 int
13392 remote_target::core_of_thread (ptid_t ptid)
13393 {
13394 struct thread_info *info = find_thread_ptid (ptid);
13395
13396 if (info != NULL && info->priv != NULL)
13397 return get_remote_thread_info (info)->core;
13398
13399 return -1;
13400 }
13401
13402 void
13403 remote_target::set_circular_trace_buffer (int val)
13404 {
13405 struct remote_state *rs = get_remote_state ();
13406 char *reply;
13407
13408 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13409 "QTBuffer:circular:%x", val);
13410 putpkt (rs->buf);
13411 reply = remote_get_noisy_reply ();
13412 if (*reply == '\0')
13413 error (_("Target does not support this command."));
13414 if (strcmp (reply, "OK") != 0)
13415 error (_("Bogus reply from target: %s"), reply);
13416 }
13417
13418 traceframe_info_up
13419 remote_target::traceframe_info ()
13420 {
13421 gdb::optional<gdb::char_vector> text
13422 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13423 NULL);
13424 if (text)
13425 return parse_traceframe_info (text->data ());
13426
13427 return NULL;
13428 }
13429
13430 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13431 instruction on which a fast tracepoint may be placed. Returns -1
13432 if the packet is not supported, and 0 if the minimum instruction
13433 length is unknown. */
13434
13435 int
13436 remote_target::get_min_fast_tracepoint_insn_len ()
13437 {
13438 struct remote_state *rs = get_remote_state ();
13439 char *reply;
13440
13441 /* If we're not debugging a process yet, the IPA can't be
13442 loaded. */
13443 if (!target_has_execution)
13444 return 0;
13445
13446 /* Make sure the remote is pointing at the right process. */
13447 set_general_process ();
13448
13449 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13450 putpkt (rs->buf);
13451 reply = remote_get_noisy_reply ();
13452 if (*reply == '\0')
13453 return -1;
13454 else
13455 {
13456 ULONGEST min_insn_len;
13457
13458 unpack_varlen_hex (reply, &min_insn_len);
13459
13460 return (int) min_insn_len;
13461 }
13462 }
13463
13464 void
13465 remote_target::set_trace_buffer_size (LONGEST val)
13466 {
13467 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13468 {
13469 struct remote_state *rs = get_remote_state ();
13470 char *buf = rs->buf.data ();
13471 char *endbuf = buf + get_remote_packet_size ();
13472 enum packet_result result;
13473
13474 gdb_assert (val >= 0 || val == -1);
13475 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13476 /* Send -1 as literal "-1" to avoid host size dependency. */
13477 if (val < 0)
13478 {
13479 *buf++ = '-';
13480 buf += hexnumstr (buf, (ULONGEST) -val);
13481 }
13482 else
13483 buf += hexnumstr (buf, (ULONGEST) val);
13484
13485 putpkt (rs->buf);
13486 remote_get_noisy_reply ();
13487 result = packet_ok (rs->buf,
13488 &remote_protocol_packets[PACKET_QTBuffer_size]);
13489
13490 if (result != PACKET_OK)
13491 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13492 }
13493 }
13494
13495 bool
13496 remote_target::set_trace_notes (const char *user, const char *notes,
13497 const char *stop_notes)
13498 {
13499 struct remote_state *rs = get_remote_state ();
13500 char *reply;
13501 char *buf = rs->buf.data ();
13502 char *endbuf = buf + get_remote_packet_size ();
13503 int nbytes;
13504
13505 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13506 if (user)
13507 {
13508 buf += xsnprintf (buf, endbuf - buf, "user:");
13509 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13510 buf += 2 * nbytes;
13511 *buf++ = ';';
13512 }
13513 if (notes)
13514 {
13515 buf += xsnprintf (buf, endbuf - buf, "notes:");
13516 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13517 buf += 2 * nbytes;
13518 *buf++ = ';';
13519 }
13520 if (stop_notes)
13521 {
13522 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13523 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13524 buf += 2 * nbytes;
13525 *buf++ = ';';
13526 }
13527 /* Ensure the buffer is terminated. */
13528 *buf = '\0';
13529
13530 putpkt (rs->buf);
13531 reply = remote_get_noisy_reply ();
13532 if (*reply == '\0')
13533 return false;
13534
13535 if (strcmp (reply, "OK") != 0)
13536 error (_("Bogus reply from target: %s"), reply);
13537
13538 return true;
13539 }
13540
13541 bool
13542 remote_target::use_agent (bool use)
13543 {
13544 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13545 {
13546 struct remote_state *rs = get_remote_state ();
13547
13548 /* If the stub supports QAgent. */
13549 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13550 putpkt (rs->buf);
13551 getpkt (&rs->buf, 0);
13552
13553 if (strcmp (rs->buf.data (), "OK") == 0)
13554 {
13555 ::use_agent = use;
13556 return true;
13557 }
13558 }
13559
13560 return false;
13561 }
13562
13563 bool
13564 remote_target::can_use_agent ()
13565 {
13566 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13567 }
13568
13569 struct btrace_target_info
13570 {
13571 /* The ptid of the traced thread. */
13572 ptid_t ptid;
13573
13574 /* The obtained branch trace configuration. */
13575 struct btrace_config conf;
13576 };
13577
13578 /* Reset our idea of our target's btrace configuration. */
13579
13580 static void
13581 remote_btrace_reset (remote_state *rs)
13582 {
13583 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13584 }
13585
13586 /* Synchronize the configuration with the target. */
13587
13588 void
13589 remote_target::btrace_sync_conf (const btrace_config *conf)
13590 {
13591 struct packet_config *packet;
13592 struct remote_state *rs;
13593 char *buf, *pos, *endbuf;
13594
13595 rs = get_remote_state ();
13596 buf = rs->buf.data ();
13597 endbuf = buf + get_remote_packet_size ();
13598
13599 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13600 if (packet_config_support (packet) == PACKET_ENABLE
13601 && conf->bts.size != rs->btrace_config.bts.size)
13602 {
13603 pos = buf;
13604 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13605 conf->bts.size);
13606
13607 putpkt (buf);
13608 getpkt (&rs->buf, 0);
13609
13610 if (packet_ok (buf, packet) == PACKET_ERROR)
13611 {
13612 if (buf[0] == 'E' && buf[1] == '.')
13613 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13614 else
13615 error (_("Failed to configure the BTS buffer size."));
13616 }
13617
13618 rs->btrace_config.bts.size = conf->bts.size;
13619 }
13620
13621 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13622 if (packet_config_support (packet) == PACKET_ENABLE
13623 && conf->pt.size != rs->btrace_config.pt.size)
13624 {
13625 pos = buf;
13626 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13627 conf->pt.size);
13628
13629 putpkt (buf);
13630 getpkt (&rs->buf, 0);
13631
13632 if (packet_ok (buf, packet) == PACKET_ERROR)
13633 {
13634 if (buf[0] == 'E' && buf[1] == '.')
13635 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13636 else
13637 error (_("Failed to configure the trace buffer size."));
13638 }
13639
13640 rs->btrace_config.pt.size = conf->pt.size;
13641 }
13642 }
13643
13644 /* Read the current thread's btrace configuration from the target and
13645 store it into CONF. */
13646
13647 static void
13648 btrace_read_config (struct btrace_config *conf)
13649 {
13650 gdb::optional<gdb::char_vector> xml
13651 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13652 if (xml)
13653 parse_xml_btrace_conf (conf, xml->data ());
13654 }
13655
13656 /* Maybe reopen target btrace. */
13657
13658 void
13659 remote_target::remote_btrace_maybe_reopen ()
13660 {
13661 struct remote_state *rs = get_remote_state ();
13662 int btrace_target_pushed = 0;
13663 #if !defined (HAVE_LIBIPT)
13664 int warned = 0;
13665 #endif
13666
13667 /* Don't bother walking the entirety of the remote thread list when
13668 we know the feature isn't supported by the remote. */
13669 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13670 return;
13671
13672 scoped_restore_current_thread restore_thread;
13673
13674 for (thread_info *tp : all_non_exited_threads ())
13675 {
13676 set_general_thread (tp->ptid);
13677
13678 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13679 btrace_read_config (&rs->btrace_config);
13680
13681 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13682 continue;
13683
13684 #if !defined (HAVE_LIBIPT)
13685 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13686 {
13687 if (!warned)
13688 {
13689 warned = 1;
13690 warning (_("Target is recording using Intel Processor Trace "
13691 "but support was disabled at compile time."));
13692 }
13693
13694 continue;
13695 }
13696 #endif /* !defined (HAVE_LIBIPT) */
13697
13698 /* Push target, once, but before anything else happens. This way our
13699 changes to the threads will be cleaned up by unpushing the target
13700 in case btrace_read_config () throws. */
13701 if (!btrace_target_pushed)
13702 {
13703 btrace_target_pushed = 1;
13704 record_btrace_push_target ();
13705 printf_filtered (_("Target is recording using %s.\n"),
13706 btrace_format_string (rs->btrace_config.format));
13707 }
13708
13709 tp->btrace.target = XCNEW (struct btrace_target_info);
13710 tp->btrace.target->ptid = tp->ptid;
13711 tp->btrace.target->conf = rs->btrace_config;
13712 }
13713 }
13714
13715 /* Enable branch tracing. */
13716
13717 struct btrace_target_info *
13718 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13719 {
13720 struct btrace_target_info *tinfo = NULL;
13721 struct packet_config *packet = NULL;
13722 struct remote_state *rs = get_remote_state ();
13723 char *buf = rs->buf.data ();
13724 char *endbuf = buf + get_remote_packet_size ();
13725
13726 switch (conf->format)
13727 {
13728 case BTRACE_FORMAT_BTS:
13729 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13730 break;
13731
13732 case BTRACE_FORMAT_PT:
13733 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13734 break;
13735 }
13736
13737 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13738 error (_("Target does not support branch tracing."));
13739
13740 btrace_sync_conf (conf);
13741
13742 set_general_thread (ptid);
13743
13744 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13745 putpkt (rs->buf);
13746 getpkt (&rs->buf, 0);
13747
13748 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13749 {
13750 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13751 error (_("Could not enable branch tracing for %s: %s"),
13752 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13753 else
13754 error (_("Could not enable branch tracing for %s."),
13755 target_pid_to_str (ptid).c_str ());
13756 }
13757
13758 tinfo = XCNEW (struct btrace_target_info);
13759 tinfo->ptid = ptid;
13760
13761 /* If we fail to read the configuration, we lose some information, but the
13762 tracing itself is not impacted. */
13763 try
13764 {
13765 btrace_read_config (&tinfo->conf);
13766 }
13767 catch (const gdb_exception_error &err)
13768 {
13769 if (err.message != NULL)
13770 warning ("%s", err.what ());
13771 }
13772
13773 return tinfo;
13774 }
13775
13776 /* Disable branch tracing. */
13777
13778 void
13779 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13780 {
13781 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13782 struct remote_state *rs = get_remote_state ();
13783 char *buf = rs->buf.data ();
13784 char *endbuf = buf + get_remote_packet_size ();
13785
13786 if (packet_config_support (packet) != PACKET_ENABLE)
13787 error (_("Target does not support branch tracing."));
13788
13789 set_general_thread (tinfo->ptid);
13790
13791 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13792 putpkt (rs->buf);
13793 getpkt (&rs->buf, 0);
13794
13795 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13796 {
13797 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13798 error (_("Could not disable branch tracing for %s: %s"),
13799 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13800 else
13801 error (_("Could not disable branch tracing for %s."),
13802 target_pid_to_str (tinfo->ptid).c_str ());
13803 }
13804
13805 xfree (tinfo);
13806 }
13807
13808 /* Teardown branch tracing. */
13809
13810 void
13811 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13812 {
13813 /* We must not talk to the target during teardown. */
13814 xfree (tinfo);
13815 }
13816
13817 /* Read the branch trace. */
13818
13819 enum btrace_error
13820 remote_target::read_btrace (struct btrace_data *btrace,
13821 struct btrace_target_info *tinfo,
13822 enum btrace_read_type type)
13823 {
13824 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13825 const char *annex;
13826
13827 if (packet_config_support (packet) != PACKET_ENABLE)
13828 error (_("Target does not support branch tracing."));
13829
13830 #if !defined(HAVE_LIBEXPAT)
13831 error (_("Cannot process branch tracing result. XML parsing not supported."));
13832 #endif
13833
13834 switch (type)
13835 {
13836 case BTRACE_READ_ALL:
13837 annex = "all";
13838 break;
13839 case BTRACE_READ_NEW:
13840 annex = "new";
13841 break;
13842 case BTRACE_READ_DELTA:
13843 annex = "delta";
13844 break;
13845 default:
13846 internal_error (__FILE__, __LINE__,
13847 _("Bad branch tracing read type: %u."),
13848 (unsigned int) type);
13849 }
13850
13851 gdb::optional<gdb::char_vector> xml
13852 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13853 if (!xml)
13854 return BTRACE_ERR_UNKNOWN;
13855
13856 parse_xml_btrace (btrace, xml->data ());
13857
13858 return BTRACE_ERR_NONE;
13859 }
13860
13861 const struct btrace_config *
13862 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13863 {
13864 return &tinfo->conf;
13865 }
13866
13867 bool
13868 remote_target::augmented_libraries_svr4_read ()
13869 {
13870 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13871 == PACKET_ENABLE);
13872 }
13873
13874 /* Implementation of to_load. */
13875
13876 void
13877 remote_target::load (const char *name, int from_tty)
13878 {
13879 generic_load (name, from_tty);
13880 }
13881
13882 /* Accepts an integer PID; returns a string representing a file that
13883 can be opened on the remote side to get the symbols for the child
13884 process. Returns NULL if the operation is not supported. */
13885
13886 char *
13887 remote_target::pid_to_exec_file (int pid)
13888 {
13889 static gdb::optional<gdb::char_vector> filename;
13890 struct inferior *inf;
13891 char *annex = NULL;
13892
13893 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13894 return NULL;
13895
13896 inf = find_inferior_pid (pid);
13897 if (inf == NULL)
13898 internal_error (__FILE__, __LINE__,
13899 _("not currently attached to process %d"), pid);
13900
13901 if (!inf->fake_pid_p)
13902 {
13903 const int annex_size = 9;
13904
13905 annex = (char *) alloca (annex_size);
13906 xsnprintf (annex, annex_size, "%x", pid);
13907 }
13908
13909 filename = target_read_stralloc (current_top_target (),
13910 TARGET_OBJECT_EXEC_FILE, annex);
13911
13912 return filename ? filename->data () : nullptr;
13913 }
13914
13915 /* Implement the to_can_do_single_step target_ops method. */
13916
13917 int
13918 remote_target::can_do_single_step ()
13919 {
13920 /* We can only tell whether target supports single step or not by
13921 supported s and S vCont actions if the stub supports vContSupported
13922 feature. If the stub doesn't support vContSupported feature,
13923 we have conservatively to think target doesn't supports single
13924 step. */
13925 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13926 {
13927 struct remote_state *rs = get_remote_state ();
13928
13929 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13930 remote_vcont_probe ();
13931
13932 return rs->supports_vCont.s && rs->supports_vCont.S;
13933 }
13934 else
13935 return 0;
13936 }
13937
13938 /* Implementation of the to_execution_direction method for the remote
13939 target. */
13940
13941 enum exec_direction_kind
13942 remote_target::execution_direction ()
13943 {
13944 struct remote_state *rs = get_remote_state ();
13945
13946 return rs->last_resume_exec_dir;
13947 }
13948
13949 /* Return pointer to the thread_info struct which corresponds to
13950 THREAD_HANDLE (having length HANDLE_LEN). */
13951
13952 thread_info *
13953 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
13954 int handle_len,
13955 inferior *inf)
13956 {
13957 for (thread_info *tp : all_non_exited_threads ())
13958 {
13959 remote_thread_info *priv = get_remote_thread_info (tp);
13960
13961 if (tp->inf == inf && priv != NULL)
13962 {
13963 if (handle_len != priv->thread_handle.size ())
13964 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13965 handle_len, priv->thread_handle.size ());
13966 if (memcmp (thread_handle, priv->thread_handle.data (),
13967 handle_len) == 0)
13968 return tp;
13969 }
13970 }
13971
13972 return NULL;
13973 }
13974
13975 gdb::byte_vector
13976 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
13977 {
13978 remote_thread_info *priv = get_remote_thread_info (tp);
13979 return priv->thread_handle;
13980 }
13981
13982 bool
13983 remote_target::can_async_p ()
13984 {
13985 struct remote_state *rs = get_remote_state ();
13986
13987 /* We don't go async if the user has explicitly prevented it with the
13988 "maint set target-async" command. */
13989 if (!target_async_permitted)
13990 return false;
13991
13992 /* We're async whenever the serial device is. */
13993 return serial_can_async_p (rs->remote_desc);
13994 }
13995
13996 bool
13997 remote_target::is_async_p ()
13998 {
13999 struct remote_state *rs = get_remote_state ();
14000
14001 if (!target_async_permitted)
14002 /* We only enable async when the user specifically asks for it. */
14003 return false;
14004
14005 /* We're async whenever the serial device is. */
14006 return serial_is_async_p (rs->remote_desc);
14007 }
14008
14009 /* Pass the SERIAL event on and up to the client. One day this code
14010 will be able to delay notifying the client of an event until the
14011 point where an entire packet has been received. */
14012
14013 static serial_event_ftype remote_async_serial_handler;
14014
14015 static void
14016 remote_async_serial_handler (struct serial *scb, void *context)
14017 {
14018 /* Don't propogate error information up to the client. Instead let
14019 the client find out about the error by querying the target. */
14020 inferior_event_handler (INF_REG_EVENT, NULL);
14021 }
14022
14023 static void
14024 remote_async_inferior_event_handler (gdb_client_data data)
14025 {
14026 inferior_event_handler (INF_REG_EVENT, data);
14027 }
14028
14029 void
14030 remote_target::async (int enable)
14031 {
14032 struct remote_state *rs = get_remote_state ();
14033
14034 if (enable)
14035 {
14036 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14037
14038 /* If there are pending events in the stop reply queue tell the
14039 event loop to process them. */
14040 if (!rs->stop_reply_queue.empty ())
14041 mark_async_event_handler (rs->remote_async_inferior_event_token);
14042 /* For simplicity, below we clear the pending events token
14043 without remembering whether it is marked, so here we always
14044 mark it. If there's actually no pending notification to
14045 process, this ends up being a no-op (other than a spurious
14046 event-loop wakeup). */
14047 if (target_is_non_stop_p ())
14048 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14049 }
14050 else
14051 {
14052 serial_async (rs->remote_desc, NULL, NULL);
14053 /* If the core is disabling async, it doesn't want to be
14054 disturbed with target events. Clear all async event sources
14055 too. */
14056 clear_async_event_handler (rs->remote_async_inferior_event_token);
14057 if (target_is_non_stop_p ())
14058 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14059 }
14060 }
14061
14062 /* Implementation of the to_thread_events method. */
14063
14064 void
14065 remote_target::thread_events (int enable)
14066 {
14067 struct remote_state *rs = get_remote_state ();
14068 size_t size = get_remote_packet_size ();
14069
14070 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14071 return;
14072
14073 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14074 putpkt (rs->buf);
14075 getpkt (&rs->buf, 0);
14076
14077 switch (packet_ok (rs->buf,
14078 &remote_protocol_packets[PACKET_QThreadEvents]))
14079 {
14080 case PACKET_OK:
14081 if (strcmp (rs->buf.data (), "OK") != 0)
14082 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14083 break;
14084 case PACKET_ERROR:
14085 warning (_("Remote failure reply: %s"), rs->buf.data ());
14086 break;
14087 case PACKET_UNKNOWN:
14088 break;
14089 }
14090 }
14091
14092 static void
14093 set_remote_cmd (const char *args, int from_tty)
14094 {
14095 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14096 }
14097
14098 static void
14099 show_remote_cmd (const char *args, int from_tty)
14100 {
14101 /* We can't just use cmd_show_list here, because we want to skip
14102 the redundant "show remote Z-packet" and the legacy aliases. */
14103 struct cmd_list_element *list = remote_show_cmdlist;
14104 struct ui_out *uiout = current_uiout;
14105
14106 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14107 for (; list != NULL; list = list->next)
14108 if (strcmp (list->name, "Z-packet") == 0)
14109 continue;
14110 else if (list->type == not_set_cmd)
14111 /* Alias commands are exactly like the original, except they
14112 don't have the normal type. */
14113 continue;
14114 else
14115 {
14116 ui_out_emit_tuple option_emitter (uiout, "option");
14117
14118 uiout->field_string ("name", list->name);
14119 uiout->text (": ");
14120 if (list->type == show_cmd)
14121 do_show_command (NULL, from_tty, list);
14122 else
14123 cmd_func (list, NULL, from_tty);
14124 }
14125 }
14126
14127
14128 /* Function to be called whenever a new objfile (shlib) is detected. */
14129 static void
14130 remote_new_objfile (struct objfile *objfile)
14131 {
14132 remote_target *remote = get_current_remote_target ();
14133
14134 if (remote != NULL) /* Have a remote connection. */
14135 remote->remote_check_symbols ();
14136 }
14137
14138 /* Pull all the tracepoints defined on the target and create local
14139 data structures representing them. We don't want to create real
14140 tracepoints yet, we don't want to mess up the user's existing
14141 collection. */
14142
14143 int
14144 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14145 {
14146 struct remote_state *rs = get_remote_state ();
14147 char *p;
14148
14149 /* Ask for a first packet of tracepoint definition. */
14150 putpkt ("qTfP");
14151 getpkt (&rs->buf, 0);
14152 p = rs->buf.data ();
14153 while (*p && *p != 'l')
14154 {
14155 parse_tracepoint_definition (p, utpp);
14156 /* Ask for another packet of tracepoint definition. */
14157 putpkt ("qTsP");
14158 getpkt (&rs->buf, 0);
14159 p = rs->buf.data ();
14160 }
14161 return 0;
14162 }
14163
14164 int
14165 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14166 {
14167 struct remote_state *rs = get_remote_state ();
14168 char *p;
14169
14170 /* Ask for a first packet of variable definition. */
14171 putpkt ("qTfV");
14172 getpkt (&rs->buf, 0);
14173 p = rs->buf.data ();
14174 while (*p && *p != 'l')
14175 {
14176 parse_tsv_definition (p, utsvp);
14177 /* Ask for another packet of variable definition. */
14178 putpkt ("qTsV");
14179 getpkt (&rs->buf, 0);
14180 p = rs->buf.data ();
14181 }
14182 return 0;
14183 }
14184
14185 /* The "set/show range-stepping" show hook. */
14186
14187 static void
14188 show_range_stepping (struct ui_file *file, int from_tty,
14189 struct cmd_list_element *c,
14190 const char *value)
14191 {
14192 fprintf_filtered (file,
14193 _("Debugger's willingness to use range stepping "
14194 "is %s.\n"), value);
14195 }
14196
14197 /* Return true if the vCont;r action is supported by the remote
14198 stub. */
14199
14200 bool
14201 remote_target::vcont_r_supported ()
14202 {
14203 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14204 remote_vcont_probe ();
14205
14206 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14207 && get_remote_state ()->supports_vCont.r);
14208 }
14209
14210 /* The "set/show range-stepping" set hook. */
14211
14212 static void
14213 set_range_stepping (const char *ignore_args, int from_tty,
14214 struct cmd_list_element *c)
14215 {
14216 /* When enabling, check whether range stepping is actually supported
14217 by the target, and warn if not. */
14218 if (use_range_stepping)
14219 {
14220 remote_target *remote = get_current_remote_target ();
14221 if (remote == NULL
14222 || !remote->vcont_r_supported ())
14223 warning (_("Range stepping is not supported by the current target"));
14224 }
14225 }
14226
14227 void
14228 _initialize_remote (void)
14229 {
14230 struct cmd_list_element *cmd;
14231 const char *cmd_name;
14232
14233 /* architecture specific data */
14234 remote_g_packet_data_handle =
14235 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14236
14237 add_target (remote_target_info, remote_target::open);
14238 add_target (extended_remote_target_info, extended_remote_target::open);
14239
14240 /* Hook into new objfile notification. */
14241 gdb::observers::new_objfile.attach (remote_new_objfile);
14242
14243 #if 0
14244 init_remote_threadtests ();
14245 #endif
14246
14247 /* set/show remote ... */
14248
14249 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14250 Remote protocol specific variables.\n\
14251 Configure various remote-protocol specific variables such as\n\
14252 the packets being used."),
14253 &remote_set_cmdlist, "set remote ",
14254 0 /* allow-unknown */, &setlist);
14255 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14256 Remote protocol specific variables.\n\
14257 Configure various remote-protocol specific variables such as\n\
14258 the packets being used."),
14259 &remote_show_cmdlist, "show remote ",
14260 0 /* allow-unknown */, &showlist);
14261
14262 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14263 Compare section data on target to the exec file.\n\
14264 Argument is a single section name (default: all loaded sections).\n\
14265 To compare only read-only loaded sections, specify the -r option."),
14266 &cmdlist);
14267
14268 add_cmd ("packet", class_maintenance, packet_command, _("\
14269 Send an arbitrary packet to a remote target.\n\
14270 maintenance packet TEXT\n\
14271 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14272 this command sends the string TEXT to the inferior, and displays the\n\
14273 response packet. GDB supplies the initial `$' character, and the\n\
14274 terminating `#' character and checksum."),
14275 &maintenancelist);
14276
14277 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14278 Set whether to send break if interrupted."), _("\
14279 Show whether to send break if interrupted."), _("\
14280 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14281 set_remotebreak, show_remotebreak,
14282 &setlist, &showlist);
14283 cmd_name = "remotebreak";
14284 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14285 deprecate_cmd (cmd, "set remote interrupt-sequence");
14286 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14287 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14288 deprecate_cmd (cmd, "show remote interrupt-sequence");
14289
14290 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14291 interrupt_sequence_modes, &interrupt_sequence_mode,
14292 _("\
14293 Set interrupt sequence to remote target."), _("\
14294 Show interrupt sequence to remote target."), _("\
14295 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14296 NULL, show_interrupt_sequence,
14297 &remote_set_cmdlist,
14298 &remote_show_cmdlist);
14299
14300 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14301 &interrupt_on_connect, _("\
14302 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14303 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14304 If set, interrupt sequence is sent to remote target."),
14305 NULL, NULL,
14306 &remote_set_cmdlist, &remote_show_cmdlist);
14307
14308 /* Install commands for configuring memory read/write packets. */
14309
14310 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14311 Set the maximum number of bytes per memory write packet (deprecated)."),
14312 &setlist);
14313 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14314 Show the maximum number of bytes per memory write packet (deprecated)."),
14315 &showlist);
14316 add_cmd ("memory-write-packet-size", no_class,
14317 set_memory_write_packet_size, _("\
14318 Set the maximum number of bytes per memory-write packet.\n\
14319 Specify the number of bytes in a packet or 0 (zero) for the\n\
14320 default packet size. The actual limit is further reduced\n\
14321 dependent on the target. Specify ``fixed'' to disable the\n\
14322 further restriction and ``limit'' to enable that restriction."),
14323 &remote_set_cmdlist);
14324 add_cmd ("memory-read-packet-size", no_class,
14325 set_memory_read_packet_size, _("\
14326 Set the maximum number of bytes per memory-read packet.\n\
14327 Specify the number of bytes in a packet or 0 (zero) for the\n\
14328 default packet size. The actual limit is further reduced\n\
14329 dependent on the target. Specify ``fixed'' to disable the\n\
14330 further restriction and ``limit'' to enable that restriction."),
14331 &remote_set_cmdlist);
14332 add_cmd ("memory-write-packet-size", no_class,
14333 show_memory_write_packet_size,
14334 _("Show the maximum number of bytes per memory-write packet."),
14335 &remote_show_cmdlist);
14336 add_cmd ("memory-read-packet-size", no_class,
14337 show_memory_read_packet_size,
14338 _("Show the maximum number of bytes per memory-read packet."),
14339 &remote_show_cmdlist);
14340
14341 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14342 &remote_hw_watchpoint_limit, _("\
14343 Set the maximum number of target hardware watchpoints."), _("\
14344 Show the maximum number of target hardware watchpoints."), _("\
14345 Specify \"unlimited\" for unlimited hardware watchpoints."),
14346 NULL, show_hardware_watchpoint_limit,
14347 &remote_set_cmdlist,
14348 &remote_show_cmdlist);
14349 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14350 no_class,
14351 &remote_hw_watchpoint_length_limit, _("\
14352 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14353 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14354 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14355 NULL, show_hardware_watchpoint_length_limit,
14356 &remote_set_cmdlist, &remote_show_cmdlist);
14357 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14358 &remote_hw_breakpoint_limit, _("\
14359 Set the maximum number of target hardware breakpoints."), _("\
14360 Show the maximum number of target hardware breakpoints."), _("\
14361 Specify \"unlimited\" for unlimited hardware breakpoints."),
14362 NULL, show_hardware_breakpoint_limit,
14363 &remote_set_cmdlist, &remote_show_cmdlist);
14364
14365 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14366 &remote_address_size, _("\
14367 Set the maximum size of the address (in bits) in a memory packet."), _("\
14368 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14369 NULL,
14370 NULL, /* FIXME: i18n: */
14371 &setlist, &showlist);
14372
14373 init_all_packet_configs ();
14374
14375 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14376 "X", "binary-download", 1);
14377
14378 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14379 "vCont", "verbose-resume", 0);
14380
14381 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14382 "QPassSignals", "pass-signals", 0);
14383
14384 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14385 "QCatchSyscalls", "catch-syscalls", 0);
14386
14387 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14388 "QProgramSignals", "program-signals", 0);
14389
14390 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14391 "QSetWorkingDir", "set-working-dir", 0);
14392
14393 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14394 "QStartupWithShell", "startup-with-shell", 0);
14395
14396 add_packet_config_cmd (&remote_protocol_packets
14397 [PACKET_QEnvironmentHexEncoded],
14398 "QEnvironmentHexEncoded", "environment-hex-encoded",
14399 0);
14400
14401 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14402 "QEnvironmentReset", "environment-reset",
14403 0);
14404
14405 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14406 "QEnvironmentUnset", "environment-unset",
14407 0);
14408
14409 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14410 "qSymbol", "symbol-lookup", 0);
14411
14412 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14413 "P", "set-register", 1);
14414
14415 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14416 "p", "fetch-register", 1);
14417
14418 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14419 "Z0", "software-breakpoint", 0);
14420
14421 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14422 "Z1", "hardware-breakpoint", 0);
14423
14424 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14425 "Z2", "write-watchpoint", 0);
14426
14427 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14428 "Z3", "read-watchpoint", 0);
14429
14430 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14431 "Z4", "access-watchpoint", 0);
14432
14433 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14434 "qXfer:auxv:read", "read-aux-vector", 0);
14435
14436 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14437 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14438
14439 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14440 "qXfer:features:read", "target-features", 0);
14441
14442 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14443 "qXfer:libraries:read", "library-info", 0);
14444
14445 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14446 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14447
14448 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14449 "qXfer:memory-map:read", "memory-map", 0);
14450
14451 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14452 "qXfer:osdata:read", "osdata", 0);
14453
14454 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14455 "qXfer:threads:read", "threads", 0);
14456
14457 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14458 "qXfer:siginfo:read", "read-siginfo-object", 0);
14459
14460 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14461 "qXfer:siginfo:write", "write-siginfo-object", 0);
14462
14463 add_packet_config_cmd
14464 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14465 "qXfer:traceframe-info:read", "traceframe-info", 0);
14466
14467 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14468 "qXfer:uib:read", "unwind-info-block", 0);
14469
14470 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14471 "qGetTLSAddr", "get-thread-local-storage-address",
14472 0);
14473
14474 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14475 "qGetTIBAddr", "get-thread-information-block-address",
14476 0);
14477
14478 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14479 "bc", "reverse-continue", 0);
14480
14481 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14482 "bs", "reverse-step", 0);
14483
14484 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14485 "qSupported", "supported-packets", 0);
14486
14487 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14488 "qSearch:memory", "search-memory", 0);
14489
14490 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14491 "qTStatus", "trace-status", 0);
14492
14493 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14494 "vFile:setfs", "hostio-setfs", 0);
14495
14496 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14497 "vFile:open", "hostio-open", 0);
14498
14499 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14500 "vFile:pread", "hostio-pread", 0);
14501
14502 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14503 "vFile:pwrite", "hostio-pwrite", 0);
14504
14505 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14506 "vFile:close", "hostio-close", 0);
14507
14508 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14509 "vFile:unlink", "hostio-unlink", 0);
14510
14511 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14512 "vFile:readlink", "hostio-readlink", 0);
14513
14514 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14515 "vFile:fstat", "hostio-fstat", 0);
14516
14517 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14518 "vAttach", "attach", 0);
14519
14520 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14521 "vRun", "run", 0);
14522
14523 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14524 "QStartNoAckMode", "noack", 0);
14525
14526 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14527 "vKill", "kill", 0);
14528
14529 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14530 "qAttached", "query-attached", 0);
14531
14532 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14533 "ConditionalTracepoints",
14534 "conditional-tracepoints", 0);
14535
14536 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14537 "ConditionalBreakpoints",
14538 "conditional-breakpoints", 0);
14539
14540 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14541 "BreakpointCommands",
14542 "breakpoint-commands", 0);
14543
14544 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14545 "FastTracepoints", "fast-tracepoints", 0);
14546
14547 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14548 "TracepointSource", "TracepointSource", 0);
14549
14550 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14551 "QAllow", "allow", 0);
14552
14553 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14554 "StaticTracepoints", "static-tracepoints", 0);
14555
14556 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14557 "InstallInTrace", "install-in-trace", 0);
14558
14559 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14560 "qXfer:statictrace:read", "read-sdata-object", 0);
14561
14562 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14563 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14564
14565 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14566 "QDisableRandomization", "disable-randomization", 0);
14567
14568 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14569 "QAgent", "agent", 0);
14570
14571 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14572 "QTBuffer:size", "trace-buffer-size", 0);
14573
14574 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14575 "Qbtrace:off", "disable-btrace", 0);
14576
14577 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14578 "Qbtrace:bts", "enable-btrace-bts", 0);
14579
14580 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14581 "Qbtrace:pt", "enable-btrace-pt", 0);
14582
14583 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14584 "qXfer:btrace", "read-btrace", 0);
14585
14586 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14587 "qXfer:btrace-conf", "read-btrace-conf", 0);
14588
14589 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14590 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14591
14592 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14593 "multiprocess-feature", "multiprocess-feature", 0);
14594
14595 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14596 "swbreak-feature", "swbreak-feature", 0);
14597
14598 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14599 "hwbreak-feature", "hwbreak-feature", 0);
14600
14601 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14602 "fork-event-feature", "fork-event-feature", 0);
14603
14604 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14605 "vfork-event-feature", "vfork-event-feature", 0);
14606
14607 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14608 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14609
14610 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14611 "vContSupported", "verbose-resume-supported", 0);
14612
14613 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14614 "exec-event-feature", "exec-event-feature", 0);
14615
14616 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14617 "vCtrlC", "ctrl-c", 0);
14618
14619 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14620 "QThreadEvents", "thread-events", 0);
14621
14622 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14623 "N stop reply", "no-resumed-stop-reply", 0);
14624
14625 /* Assert that we've registered "set remote foo-packet" commands
14626 for all packet configs. */
14627 {
14628 int i;
14629
14630 for (i = 0; i < PACKET_MAX; i++)
14631 {
14632 /* Ideally all configs would have a command associated. Some
14633 still don't though. */
14634 int excepted;
14635
14636 switch (i)
14637 {
14638 case PACKET_QNonStop:
14639 case PACKET_EnableDisableTracepoints_feature:
14640 case PACKET_tracenz_feature:
14641 case PACKET_DisconnectedTracing_feature:
14642 case PACKET_augmented_libraries_svr4_read_feature:
14643 case PACKET_qCRC:
14644 /* Additions to this list need to be well justified:
14645 pre-existing packets are OK; new packets are not. */
14646 excepted = 1;
14647 break;
14648 default:
14649 excepted = 0;
14650 break;
14651 }
14652
14653 /* This catches both forgetting to add a config command, and
14654 forgetting to remove a packet from the exception list. */
14655 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14656 }
14657 }
14658
14659 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14660 Z sub-packet has its own set and show commands, but users may
14661 have sets to this variable in their .gdbinit files (or in their
14662 documentation). */
14663 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14664 &remote_Z_packet_detect, _("\
14665 Set use of remote protocol `Z' packets."), _("\
14666 Show use of remote protocol `Z' packets."), _("\
14667 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14668 packets."),
14669 set_remote_protocol_Z_packet_cmd,
14670 show_remote_protocol_Z_packet_cmd,
14671 /* FIXME: i18n: Use of remote protocol
14672 `Z' packets is %s. */
14673 &remote_set_cmdlist, &remote_show_cmdlist);
14674
14675 add_prefix_cmd ("remote", class_files, remote_command, _("\
14676 Manipulate files on the remote system.\n\
14677 Transfer files to and from the remote target system."),
14678 &remote_cmdlist, "remote ",
14679 0 /* allow-unknown */, &cmdlist);
14680
14681 add_cmd ("put", class_files, remote_put_command,
14682 _("Copy a local file to the remote system."),
14683 &remote_cmdlist);
14684
14685 add_cmd ("get", class_files, remote_get_command,
14686 _("Copy a remote file to the local system."),
14687 &remote_cmdlist);
14688
14689 add_cmd ("delete", class_files, remote_delete_command,
14690 _("Delete a remote file."),
14691 &remote_cmdlist);
14692
14693 add_setshow_string_noescape_cmd ("exec-file", class_files,
14694 &remote_exec_file_var, _("\
14695 Set the remote pathname for \"run\"."), _("\
14696 Show the remote pathname for \"run\"."), NULL,
14697 set_remote_exec_file,
14698 show_remote_exec_file,
14699 &remote_set_cmdlist,
14700 &remote_show_cmdlist);
14701
14702 add_setshow_boolean_cmd ("range-stepping", class_run,
14703 &use_range_stepping, _("\
14704 Enable or disable range stepping."), _("\
14705 Show whether target-assisted range stepping is enabled."), _("\
14706 If on, and the target supports it, when stepping a source line, GDB\n\
14707 tells the target to step the corresponding range of addresses itself instead\n\
14708 of issuing multiple single-steps. This speeds up source level\n\
14709 stepping. If off, GDB always issues single-steps, even if range\n\
14710 stepping is supported by the target. The default is on."),
14711 set_range_stepping,
14712 show_range_stepping,
14713 &setlist,
14714 &showlist);
14715
14716 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
14717 Set watchdog timer."), _("\
14718 Show watchdog timer."), _("\
14719 When non-zero, this timeout is used instead of waiting forever for a target\n\
14720 to finish a low-level step or continue operation. If the specified amount\n\
14721 of time passes without a response from the target, an error occurs."),
14722 NULL,
14723 show_watchdog,
14724 &setlist, &showlist);
14725
14726 /* Eventually initialize fileio. See fileio.c */
14727 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14728 }
This page took 0.500405 seconds and 4 git commands to generate.