Constify strings in tracepoint.c, lookup_cmd and the completers.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <fcntl.h>
26 #include "inferior.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "exceptions.h"
30 #include "target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "remote-notif.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "gdb_assert.h"
41 #include "observer.h"
42 #include "solib.h"
43 #include "cli/cli-decode.h"
44 #include "cli/cli-setshow.h"
45 #include "target-descriptions.h"
46 #include "gdb_bfd.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63 #include "xml-support.h"
64
65 #include "memory-map.h"
66
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70 #include "agent.h"
71 #include "btrace.h"
72
73 /* Temp hacks for tracepoint encoding migration. */
74 static char *target_buf;
75 static long target_buf_size;
76
77 /* The size to align memory write packets, when practical. The protocol
78 does not guarantee any alignment, and gdb will generate short
79 writes and unaligned writes, but even as a best-effort attempt this
80 can improve bulk transfers. For instance, if a write is misaligned
81 relative to the target's data bus, the stub may need to make an extra
82 round trip fetching data from the target. This doesn't make a
83 huge difference, but it's easy to do, so we try to be helpful.
84
85 The alignment chosen is arbitrary; usually data bus width is
86 important here, not the possibly larger cache line size. */
87 enum { REMOTE_ALIGN_WRITES = 16 };
88
89 /* Prototypes for local functions. */
90 static void cleanup_sigint_signal_handler (void *dummy);
91 static void initialize_sigint_signal_handler (void);
92 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
93 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
94 int forever, int *is_notif);
95
96 static void handle_remote_sigint (int);
97 static void handle_remote_sigint_twice (int);
98 static void async_remote_interrupt (gdb_client_data);
99 void async_remote_interrupt_twice (gdb_client_data);
100
101 static void remote_files_info (struct target_ops *ignore);
102
103 static void remote_prepare_to_store (struct regcache *regcache);
104
105 static void remote_open (char *name, int from_tty);
106
107 static void extended_remote_open (char *name, int from_tty);
108
109 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
110
111 static void remote_close (int quitting);
112
113 static void remote_mourn (struct target_ops *ops);
114
115 static void extended_remote_restart (void);
116
117 static void extended_remote_mourn (struct target_ops *);
118
119 static void remote_mourn_1 (struct target_ops *);
120
121 static void remote_send (char **buf, long *sizeof_buf_p);
122
123 static int readchar (int timeout);
124
125 static void remote_kill (struct target_ops *ops);
126
127 static int tohex (int nib);
128
129 static int remote_can_async_p (void);
130
131 static int remote_is_async_p (void);
132
133 static void remote_async (void (*callback) (enum inferior_event_type event_type,
134 void *context), void *context);
135
136 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
137
138 static void remote_interrupt (int signo);
139
140 static void remote_interrupt_twice (int signo);
141
142 static void interrupt_query (void);
143
144 static void set_general_thread (struct ptid ptid);
145 static void set_continue_thread (struct ptid ptid);
146
147 static void get_offsets (void);
148
149 static void skip_frame (void);
150
151 static long read_frame (char **buf_p, long *sizeof_buf);
152
153 static int hexnumlen (ULONGEST num);
154
155 static void init_remote_ops (void);
156
157 static void init_extended_remote_ops (void);
158
159 static void remote_stop (ptid_t);
160
161 static int ishex (int ch, int *val);
162
163 static int stubhex (int ch);
164
165 static int hexnumstr (char *, ULONGEST);
166
167 static int hexnumnstr (char *, ULONGEST, int);
168
169 static CORE_ADDR remote_address_masked (CORE_ADDR);
170
171 static void print_packet (char *);
172
173 static void compare_sections_command (char *, int);
174
175 static void packet_command (char *, int);
176
177 static int stub_unpack_int (char *buff, int fieldlength);
178
179 static ptid_t remote_current_thread (ptid_t oldptid);
180
181 static void remote_find_new_threads (void);
182
183 static void record_currthread (ptid_t currthread);
184
185 static int fromhex (int a);
186
187 static int putpkt_binary (char *buf, int cnt);
188
189 static void check_binary_download (CORE_ADDR addr);
190
191 struct packet_config;
192
193 static void show_packet_config_cmd (struct packet_config *config);
194
195 static void update_packet_config (struct packet_config *config);
196
197 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
198 struct cmd_list_element *c);
199
200 static void show_remote_protocol_packet_cmd (struct ui_file *file,
201 int from_tty,
202 struct cmd_list_element *c,
203 const char *value);
204
205 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
206 static ptid_t read_ptid (char *buf, char **obuf);
207
208 static void remote_set_permissions (void);
209
210 struct remote_state;
211 static int remote_get_trace_status (struct trace_status *ts);
212
213 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
214
215 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
216
217 static void remote_query_supported (void);
218
219 static void remote_check_symbols (struct objfile *objfile);
220
221 void _initialize_remote (void);
222
223 struct stop_reply;
224 static void stop_reply_xfree (struct stop_reply *);
225 static void remote_parse_stop_reply (char *, struct stop_reply *);
226 static void push_stop_reply (struct stop_reply *);
227 static void discard_pending_stop_replies (struct inferior *);
228 static int peek_stop_reply (ptid_t ptid);
229
230 static void remote_async_inferior_event_handler (gdb_client_data);
231
232 static void remote_terminal_ours (void);
233
234 static int remote_read_description_p (struct target_ops *target);
235
236 static void remote_console_output (char *msg);
237
238 static int remote_supports_cond_breakpoints (void);
239
240 static int remote_can_run_breakpoint_commands (void);
241
242 /* For "remote". */
243
244 static struct cmd_list_element *remote_cmdlist;
245
246 /* For "set remote" and "show remote". */
247
248 static struct cmd_list_element *remote_set_cmdlist;
249 static struct cmd_list_element *remote_show_cmdlist;
250
251 /* Description of the remote protocol state for the currently
252 connected target. This is per-target state, and independent of the
253 selected architecture. */
254
255 struct remote_state
256 {
257 /* A buffer to use for incoming packets, and its current size. The
258 buffer is grown dynamically for larger incoming packets.
259 Outgoing packets may also be constructed in this buffer.
260 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
261 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
262 packets. */
263 char *buf;
264 long buf_size;
265
266 /* True if we're going through initial connection setup (finding out
267 about the remote side's threads, relocating symbols, etc.). */
268 int starting_up;
269
270 /* If we negotiated packet size explicitly (and thus can bypass
271 heuristics for the largest packet size that will not overflow
272 a buffer in the stub), this will be set to that packet size.
273 Otherwise zero, meaning to use the guessed size. */
274 long explicit_packet_size;
275
276 /* remote_wait is normally called when the target is running and
277 waits for a stop reply packet. But sometimes we need to call it
278 when the target is already stopped. We can send a "?" packet
279 and have remote_wait read the response. Or, if we already have
280 the response, we can stash it in BUF and tell remote_wait to
281 skip calling getpkt. This flag is set when BUF contains a
282 stop reply packet and the target is not waiting. */
283 int cached_wait_status;
284
285 /* True, if in no ack mode. That is, neither GDB nor the stub will
286 expect acks from each other. The connection is assumed to be
287 reliable. */
288 int noack_mode;
289
290 /* True if we're connected in extended remote mode. */
291 int extended;
292
293 /* True if the stub reported support for multi-process
294 extensions. */
295 int multi_process_aware;
296
297 /* True if we resumed the target and we're waiting for the target to
298 stop. In the mean time, we can't start another command/query.
299 The remote server wouldn't be ready to process it, so we'd
300 timeout waiting for a reply that would never come and eventually
301 we'd close the connection. This can happen in asynchronous mode
302 because we allow GDB commands while the target is running. */
303 int waiting_for_stop_reply;
304
305 /* True if the stub reports support for non-stop mode. */
306 int non_stop_aware;
307
308 /* True if the stub reports support for vCont;t. */
309 int support_vCont_t;
310
311 /* True if the stub reports support for conditional tracepoints. */
312 int cond_tracepoints;
313
314 /* True if the stub reports support for target-side breakpoint
315 conditions. */
316 int cond_breakpoints;
317
318 /* True if the stub reports support for target-side breakpoint
319 commands. */
320 int breakpoint_commands;
321
322 /* True if the stub reports support for fast tracepoints. */
323 int fast_tracepoints;
324
325 /* True if the stub reports support for static tracepoints. */
326 int static_tracepoints;
327
328 /* True if the stub reports support for installing tracepoint while
329 tracing. */
330 int install_in_trace;
331
332 /* True if the stub can continue running a trace while GDB is
333 disconnected. */
334 int disconnected_tracing;
335
336 /* True if the stub reports support for enabling and disabling
337 tracepoints while a trace experiment is running. */
338 int enable_disable_tracepoints;
339
340 /* True if the stub can collect strings using tracenz bytecode. */
341 int string_tracing;
342
343 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
344 responded to that. */
345 int ctrlc_pending_p;
346 };
347
348 /* Private data that we'll store in (struct thread_info)->private. */
349 struct private_thread_info
350 {
351 char *extra;
352 int core;
353 };
354
355 static void
356 free_private_thread_info (struct private_thread_info *info)
357 {
358 xfree (info->extra);
359 xfree (info);
360 }
361
362 /* Returns true if the multi-process extensions are in effect. */
363 static int
364 remote_multi_process_p (struct remote_state *rs)
365 {
366 return rs->multi_process_aware;
367 }
368
369 /* This data could be associated with a target, but we do not always
370 have access to the current target when we need it, so for now it is
371 static. This will be fine for as long as only one target is in use
372 at a time. */
373 static struct remote_state remote_state;
374
375 static struct remote_state *
376 get_remote_state_raw (void)
377 {
378 return &remote_state;
379 }
380
381 /* Description of the remote protocol for a given architecture. */
382
383 struct packet_reg
384 {
385 long offset; /* Offset into G packet. */
386 long regnum; /* GDB's internal register number. */
387 LONGEST pnum; /* Remote protocol register number. */
388 int in_g_packet; /* Always part of G packet. */
389 /* long size in bytes; == register_size (target_gdbarch (), regnum);
390 at present. */
391 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
392 at present. */
393 };
394
395 struct remote_arch_state
396 {
397 /* Description of the remote protocol registers. */
398 long sizeof_g_packet;
399
400 /* Description of the remote protocol registers indexed by REGNUM
401 (making an array gdbarch_num_regs in size). */
402 struct packet_reg *regs;
403
404 /* This is the size (in chars) of the first response to the ``g''
405 packet. It is used as a heuristic when determining the maximum
406 size of memory-read and memory-write packets. A target will
407 typically only reserve a buffer large enough to hold the ``g''
408 packet. The size does not include packet overhead (headers and
409 trailers). */
410 long actual_register_packet_size;
411
412 /* This is the maximum size (in chars) of a non read/write packet.
413 It is also used as a cap on the size of read/write packets. */
414 long remote_packet_size;
415 };
416
417 long sizeof_pkt = 2000;
418
419 /* Utility: generate error from an incoming stub packet. */
420 static void
421 trace_error (char *buf)
422 {
423 if (*buf++ != 'E')
424 return; /* not an error msg */
425 switch (*buf)
426 {
427 case '1': /* malformed packet error */
428 if (*++buf == '0') /* general case: */
429 error (_("remote.c: error in outgoing packet."));
430 else
431 error (_("remote.c: error in outgoing packet at field #%ld."),
432 strtol (buf, NULL, 16));
433 case '2':
434 error (_("trace API error 0x%s."), ++buf);
435 default:
436 error (_("Target returns error code '%s'."), buf);
437 }
438 }
439
440 /* Utility: wait for reply from stub, while accepting "O" packets. */
441 static char *
442 remote_get_noisy_reply (char **buf_p,
443 long *sizeof_buf)
444 {
445 do /* Loop on reply from remote stub. */
446 {
447 char *buf;
448
449 QUIT; /* Allow user to bail out with ^C. */
450 getpkt (buf_p, sizeof_buf, 0);
451 buf = *buf_p;
452 if (buf[0] == 'E')
453 trace_error (buf);
454 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
455 {
456 ULONGEST ul;
457 CORE_ADDR from, to, org_to;
458 char *p, *pp;
459 int adjusted_size = 0;
460 volatile struct gdb_exception ex;
461
462 p = buf + strlen ("qRelocInsn:");
463 pp = unpack_varlen_hex (p, &ul);
464 if (*pp != ';')
465 error (_("invalid qRelocInsn packet: %s"), buf);
466 from = ul;
467
468 p = pp + 1;
469 unpack_varlen_hex (p, &ul);
470 to = ul;
471
472 org_to = to;
473
474 TRY_CATCH (ex, RETURN_MASK_ALL)
475 {
476 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
477 }
478 if (ex.reason >= 0)
479 {
480 adjusted_size = to - org_to;
481
482 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
483 putpkt (buf);
484 }
485 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
486 {
487 /* Propagate memory errors silently back to the target.
488 The stub may have limited the range of addresses we
489 can write to, for example. */
490 putpkt ("E01");
491 }
492 else
493 {
494 /* Something unexpectedly bad happened. Be verbose so
495 we can tell what, and propagate the error back to the
496 stub, so it doesn't get stuck waiting for a
497 response. */
498 exception_fprintf (gdb_stderr, ex,
499 _("warning: relocating instruction: "));
500 putpkt ("E01");
501 }
502 }
503 else if (buf[0] == 'O' && buf[1] != 'K')
504 remote_console_output (buf + 1); /* 'O' message from stub */
505 else
506 return buf; /* Here's the actual reply. */
507 }
508 while (1);
509 }
510
511 /* Handle for retreving the remote protocol data from gdbarch. */
512 static struct gdbarch_data *remote_gdbarch_data_handle;
513
514 static struct remote_arch_state *
515 get_remote_arch_state (void)
516 {
517 return gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle);
518 }
519
520 /* Fetch the global remote target state. */
521
522 static struct remote_state *
523 get_remote_state (void)
524 {
525 /* Make sure that the remote architecture state has been
526 initialized, because doing so might reallocate rs->buf. Any
527 function which calls getpkt also needs to be mindful of changes
528 to rs->buf, but this call limits the number of places which run
529 into trouble. */
530 get_remote_arch_state ();
531
532 return get_remote_state_raw ();
533 }
534
535 static int
536 compare_pnums (const void *lhs_, const void *rhs_)
537 {
538 const struct packet_reg * const *lhs = lhs_;
539 const struct packet_reg * const *rhs = rhs_;
540
541 if ((*lhs)->pnum < (*rhs)->pnum)
542 return -1;
543 else if ((*lhs)->pnum == (*rhs)->pnum)
544 return 0;
545 else
546 return 1;
547 }
548
549 static int
550 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
551 {
552 int regnum, num_remote_regs, offset;
553 struct packet_reg **remote_regs;
554
555 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
556 {
557 struct packet_reg *r = &regs[regnum];
558
559 if (register_size (gdbarch, regnum) == 0)
560 /* Do not try to fetch zero-sized (placeholder) registers. */
561 r->pnum = -1;
562 else
563 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
564
565 r->regnum = regnum;
566 }
567
568 /* Define the g/G packet format as the contents of each register
569 with a remote protocol number, in order of ascending protocol
570 number. */
571
572 remote_regs = alloca (gdbarch_num_regs (gdbarch)
573 * sizeof (struct packet_reg *));
574 for (num_remote_regs = 0, regnum = 0;
575 regnum < gdbarch_num_regs (gdbarch);
576 regnum++)
577 if (regs[regnum].pnum != -1)
578 remote_regs[num_remote_regs++] = &regs[regnum];
579
580 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
581 compare_pnums);
582
583 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
584 {
585 remote_regs[regnum]->in_g_packet = 1;
586 remote_regs[regnum]->offset = offset;
587 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
588 }
589
590 return offset;
591 }
592
593 /* Given the architecture described by GDBARCH, return the remote
594 protocol register's number and the register's offset in the g/G
595 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
596 If the target does not have a mapping for REGNUM, return false,
597 otherwise, return true. */
598
599 int
600 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
601 int *pnum, int *poffset)
602 {
603 int sizeof_g_packet;
604 struct packet_reg *regs;
605 struct cleanup *old_chain;
606
607 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
608
609 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
610 old_chain = make_cleanup (xfree, regs);
611
612 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
613
614 *pnum = regs[regnum].pnum;
615 *poffset = regs[regnum].offset;
616
617 do_cleanups (old_chain);
618
619 return *pnum != -1;
620 }
621
622 static void *
623 init_remote_state (struct gdbarch *gdbarch)
624 {
625 struct remote_state *rs = get_remote_state_raw ();
626 struct remote_arch_state *rsa;
627
628 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
629
630 /* Use the architecture to build a regnum<->pnum table, which will be
631 1:1 unless a feature set specifies otherwise. */
632 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
633 gdbarch_num_regs (gdbarch),
634 struct packet_reg);
635
636 /* Record the maximum possible size of the g packet - it may turn out
637 to be smaller. */
638 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
639
640 /* Default maximum number of characters in a packet body. Many
641 remote stubs have a hardwired buffer size of 400 bytes
642 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
643 as the maximum packet-size to ensure that the packet and an extra
644 NUL character can always fit in the buffer. This stops GDB
645 trashing stubs that try to squeeze an extra NUL into what is
646 already a full buffer (As of 1999-12-04 that was most stubs). */
647 rsa->remote_packet_size = 400 - 1;
648
649 /* This one is filled in when a ``g'' packet is received. */
650 rsa->actual_register_packet_size = 0;
651
652 /* Should rsa->sizeof_g_packet needs more space than the
653 default, adjust the size accordingly. Remember that each byte is
654 encoded as two characters. 32 is the overhead for the packet
655 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
656 (``$NN:G...#NN'') is a better guess, the below has been padded a
657 little. */
658 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
659 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
660
661 /* Make sure that the packet buffer is plenty big enough for
662 this architecture. */
663 if (rs->buf_size < rsa->remote_packet_size)
664 {
665 rs->buf_size = 2 * rsa->remote_packet_size;
666 rs->buf = xrealloc (rs->buf, rs->buf_size);
667 }
668
669 return rsa;
670 }
671
672 /* Return the current allowed size of a remote packet. This is
673 inferred from the current architecture, and should be used to
674 limit the length of outgoing packets. */
675 static long
676 get_remote_packet_size (void)
677 {
678 struct remote_state *rs = get_remote_state ();
679 struct remote_arch_state *rsa = get_remote_arch_state ();
680
681 if (rs->explicit_packet_size)
682 return rs->explicit_packet_size;
683
684 return rsa->remote_packet_size;
685 }
686
687 static struct packet_reg *
688 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
689 {
690 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ()))
691 return NULL;
692 else
693 {
694 struct packet_reg *r = &rsa->regs[regnum];
695
696 gdb_assert (r->regnum == regnum);
697 return r;
698 }
699 }
700
701 static struct packet_reg *
702 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
703 {
704 int i;
705
706 for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++)
707 {
708 struct packet_reg *r = &rsa->regs[i];
709
710 if (r->pnum == pnum)
711 return r;
712 }
713 return NULL;
714 }
715
716 /* FIXME: graces/2002-08-08: These variables should eventually be
717 bound to an instance of the target object (as in gdbarch-tdep()),
718 when such a thing exists. */
719
720 /* This is set to the data address of the access causing the target
721 to stop for a watchpoint. */
722 static CORE_ADDR remote_watch_data_address;
723
724 /* This is non-zero if target stopped for a watchpoint. */
725 static int remote_stopped_by_watchpoint_p;
726
727 static struct target_ops remote_ops;
728
729 static struct target_ops extended_remote_ops;
730
731 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
732 ``forever'' still use the normal timeout mechanism. This is
733 currently used by the ASYNC code to guarentee that target reads
734 during the initial connect always time-out. Once getpkt has been
735 modified to return a timeout indication and, in turn
736 remote_wait()/wait_for_inferior() have gained a timeout parameter
737 this can go away. */
738 static int wait_forever_enabled_p = 1;
739
740 /* Allow the user to specify what sequence to send to the remote
741 when he requests a program interruption: Although ^C is usually
742 what remote systems expect (this is the default, here), it is
743 sometimes preferable to send a break. On other systems such
744 as the Linux kernel, a break followed by g, which is Magic SysRq g
745 is required in order to interrupt the execution. */
746 const char interrupt_sequence_control_c[] = "Ctrl-C";
747 const char interrupt_sequence_break[] = "BREAK";
748 const char interrupt_sequence_break_g[] = "BREAK-g";
749 static const char *const interrupt_sequence_modes[] =
750 {
751 interrupt_sequence_control_c,
752 interrupt_sequence_break,
753 interrupt_sequence_break_g,
754 NULL
755 };
756 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
757
758 static void
759 show_interrupt_sequence (struct ui_file *file, int from_tty,
760 struct cmd_list_element *c,
761 const char *value)
762 {
763 if (interrupt_sequence_mode == interrupt_sequence_control_c)
764 fprintf_filtered (file,
765 _("Send the ASCII ETX character (Ctrl-c) "
766 "to the remote target to interrupt the "
767 "execution of the program.\n"));
768 else if (interrupt_sequence_mode == interrupt_sequence_break)
769 fprintf_filtered (file,
770 _("send a break signal to the remote target "
771 "to interrupt the execution of the program.\n"));
772 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
773 fprintf_filtered (file,
774 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
775 "the remote target to interrupt the execution "
776 "of Linux kernel.\n"));
777 else
778 internal_error (__FILE__, __LINE__,
779 _("Invalid value for interrupt_sequence_mode: %s."),
780 interrupt_sequence_mode);
781 }
782
783 /* This boolean variable specifies whether interrupt_sequence is sent
784 to the remote target when gdb connects to it.
785 This is mostly needed when you debug the Linux kernel: The Linux kernel
786 expects BREAK g which is Magic SysRq g for connecting gdb. */
787 static int interrupt_on_connect = 0;
788
789 /* This variable is used to implement the "set/show remotebreak" commands.
790 Since these commands are now deprecated in favor of "set/show remote
791 interrupt-sequence", it no longer has any effect on the code. */
792 static int remote_break;
793
794 static void
795 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
796 {
797 if (remote_break)
798 interrupt_sequence_mode = interrupt_sequence_break;
799 else
800 interrupt_sequence_mode = interrupt_sequence_control_c;
801 }
802
803 static void
804 show_remotebreak (struct ui_file *file, int from_tty,
805 struct cmd_list_element *c,
806 const char *value)
807 {
808 }
809
810 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
811 remote_open knows that we don't have a file open when the program
812 starts. */
813 static struct serial *remote_desc = NULL;
814
815 /* This variable sets the number of bits in an address that are to be
816 sent in a memory ("M" or "m") packet. Normally, after stripping
817 leading zeros, the entire address would be sent. This variable
818 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
819 initial implementation of remote.c restricted the address sent in
820 memory packets to ``host::sizeof long'' bytes - (typically 32
821 bits). Consequently, for 64 bit targets, the upper 32 bits of an
822 address was never sent. Since fixing this bug may cause a break in
823 some remote targets this variable is principly provided to
824 facilitate backward compatibility. */
825
826 static unsigned int remote_address_size;
827
828 /* Temporary to track who currently owns the terminal. See
829 remote_terminal_* for more details. */
830
831 static int remote_async_terminal_ours_p;
832
833 /* The executable file to use for "run" on the remote side. */
834
835 static char *remote_exec_file = "";
836
837 \f
838 /* User configurable variables for the number of characters in a
839 memory read/write packet. MIN (rsa->remote_packet_size,
840 rsa->sizeof_g_packet) is the default. Some targets need smaller
841 values (fifo overruns, et.al.) and some users need larger values
842 (speed up transfers). The variables ``preferred_*'' (the user
843 request), ``current_*'' (what was actually set) and ``forced_*''
844 (Positive - a soft limit, negative - a hard limit). */
845
846 struct memory_packet_config
847 {
848 char *name;
849 long size;
850 int fixed_p;
851 };
852
853 /* Compute the current size of a read/write packet. Since this makes
854 use of ``actual_register_packet_size'' the computation is dynamic. */
855
856 static long
857 get_memory_packet_size (struct memory_packet_config *config)
858 {
859 struct remote_state *rs = get_remote_state ();
860 struct remote_arch_state *rsa = get_remote_arch_state ();
861
862 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
863 law?) that some hosts don't cope very well with large alloca()
864 calls. Eventually the alloca() code will be replaced by calls to
865 xmalloc() and make_cleanups() allowing this restriction to either
866 be lifted or removed. */
867 #ifndef MAX_REMOTE_PACKET_SIZE
868 #define MAX_REMOTE_PACKET_SIZE 16384
869 #endif
870 /* NOTE: 20 ensures we can write at least one byte. */
871 #ifndef MIN_REMOTE_PACKET_SIZE
872 #define MIN_REMOTE_PACKET_SIZE 20
873 #endif
874 long what_they_get;
875 if (config->fixed_p)
876 {
877 if (config->size <= 0)
878 what_they_get = MAX_REMOTE_PACKET_SIZE;
879 else
880 what_they_get = config->size;
881 }
882 else
883 {
884 what_they_get = get_remote_packet_size ();
885 /* Limit the packet to the size specified by the user. */
886 if (config->size > 0
887 && what_they_get > config->size)
888 what_they_get = config->size;
889
890 /* Limit it to the size of the targets ``g'' response unless we have
891 permission from the stub to use a larger packet size. */
892 if (rs->explicit_packet_size == 0
893 && rsa->actual_register_packet_size > 0
894 && what_they_get > rsa->actual_register_packet_size)
895 what_they_get = rsa->actual_register_packet_size;
896 }
897 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
898 what_they_get = MAX_REMOTE_PACKET_SIZE;
899 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
900 what_they_get = MIN_REMOTE_PACKET_SIZE;
901
902 /* Make sure there is room in the global buffer for this packet
903 (including its trailing NUL byte). */
904 if (rs->buf_size < what_they_get + 1)
905 {
906 rs->buf_size = 2 * what_they_get;
907 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
908 }
909
910 return what_they_get;
911 }
912
913 /* Update the size of a read/write packet. If they user wants
914 something really big then do a sanity check. */
915
916 static void
917 set_memory_packet_size (char *args, struct memory_packet_config *config)
918 {
919 int fixed_p = config->fixed_p;
920 long size = config->size;
921
922 if (args == NULL)
923 error (_("Argument required (integer, `fixed' or `limited')."));
924 else if (strcmp (args, "hard") == 0
925 || strcmp (args, "fixed") == 0)
926 fixed_p = 1;
927 else if (strcmp (args, "soft") == 0
928 || strcmp (args, "limit") == 0)
929 fixed_p = 0;
930 else
931 {
932 char *end;
933
934 size = strtoul (args, &end, 0);
935 if (args == end)
936 error (_("Invalid %s (bad syntax)."), config->name);
937 #if 0
938 /* Instead of explicitly capping the size of a packet to
939 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
940 instead allowed to set the size to something arbitrarily
941 large. */
942 if (size > MAX_REMOTE_PACKET_SIZE)
943 error (_("Invalid %s (too large)."), config->name);
944 #endif
945 }
946 /* Extra checks? */
947 if (fixed_p && !config->fixed_p)
948 {
949 if (! query (_("The target may not be able to correctly handle a %s\n"
950 "of %ld bytes. Change the packet size? "),
951 config->name, size))
952 error (_("Packet size not changed."));
953 }
954 /* Update the config. */
955 config->fixed_p = fixed_p;
956 config->size = size;
957 }
958
959 static void
960 show_memory_packet_size (struct memory_packet_config *config)
961 {
962 printf_filtered (_("The %s is %ld. "), config->name, config->size);
963 if (config->fixed_p)
964 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
965 get_memory_packet_size (config));
966 else
967 printf_filtered (_("Packets are limited to %ld bytes.\n"),
968 get_memory_packet_size (config));
969 }
970
971 static struct memory_packet_config memory_write_packet_config =
972 {
973 "memory-write-packet-size",
974 };
975
976 static void
977 set_memory_write_packet_size (char *args, int from_tty)
978 {
979 set_memory_packet_size (args, &memory_write_packet_config);
980 }
981
982 static void
983 show_memory_write_packet_size (char *args, int from_tty)
984 {
985 show_memory_packet_size (&memory_write_packet_config);
986 }
987
988 static long
989 get_memory_write_packet_size (void)
990 {
991 return get_memory_packet_size (&memory_write_packet_config);
992 }
993
994 static struct memory_packet_config memory_read_packet_config =
995 {
996 "memory-read-packet-size",
997 };
998
999 static void
1000 set_memory_read_packet_size (char *args, int from_tty)
1001 {
1002 set_memory_packet_size (args, &memory_read_packet_config);
1003 }
1004
1005 static void
1006 show_memory_read_packet_size (char *args, int from_tty)
1007 {
1008 show_memory_packet_size (&memory_read_packet_config);
1009 }
1010
1011 static long
1012 get_memory_read_packet_size (void)
1013 {
1014 long size = get_memory_packet_size (&memory_read_packet_config);
1015
1016 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1017 extra buffer size argument before the memory read size can be
1018 increased beyond this. */
1019 if (size > get_remote_packet_size ())
1020 size = get_remote_packet_size ();
1021 return size;
1022 }
1023
1024 \f
1025 /* Generic configuration support for packets the stub optionally
1026 supports. Allows the user to specify the use of the packet as well
1027 as allowing GDB to auto-detect support in the remote stub. */
1028
1029 enum packet_support
1030 {
1031 PACKET_SUPPORT_UNKNOWN = 0,
1032 PACKET_ENABLE,
1033 PACKET_DISABLE
1034 };
1035
1036 struct packet_config
1037 {
1038 const char *name;
1039 const char *title;
1040 enum auto_boolean detect;
1041 enum packet_support support;
1042 };
1043
1044 /* Analyze a packet's return value and update the packet config
1045 accordingly. */
1046
1047 enum packet_result
1048 {
1049 PACKET_ERROR,
1050 PACKET_OK,
1051 PACKET_UNKNOWN
1052 };
1053
1054 static void
1055 update_packet_config (struct packet_config *config)
1056 {
1057 switch (config->detect)
1058 {
1059 case AUTO_BOOLEAN_TRUE:
1060 config->support = PACKET_ENABLE;
1061 break;
1062 case AUTO_BOOLEAN_FALSE:
1063 config->support = PACKET_DISABLE;
1064 break;
1065 case AUTO_BOOLEAN_AUTO:
1066 config->support = PACKET_SUPPORT_UNKNOWN;
1067 break;
1068 }
1069 }
1070
1071 static void
1072 show_packet_config_cmd (struct packet_config *config)
1073 {
1074 char *support = "internal-error";
1075
1076 switch (config->support)
1077 {
1078 case PACKET_ENABLE:
1079 support = "enabled";
1080 break;
1081 case PACKET_DISABLE:
1082 support = "disabled";
1083 break;
1084 case PACKET_SUPPORT_UNKNOWN:
1085 support = "unknown";
1086 break;
1087 }
1088 switch (config->detect)
1089 {
1090 case AUTO_BOOLEAN_AUTO:
1091 printf_filtered (_("Support for the `%s' packet "
1092 "is auto-detected, currently %s.\n"),
1093 config->name, support);
1094 break;
1095 case AUTO_BOOLEAN_TRUE:
1096 case AUTO_BOOLEAN_FALSE:
1097 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1098 config->name, support);
1099 break;
1100 }
1101 }
1102
1103 static void
1104 add_packet_config_cmd (struct packet_config *config, const char *name,
1105 const char *title, int legacy)
1106 {
1107 char *set_doc;
1108 char *show_doc;
1109 char *cmd_name;
1110
1111 config->name = name;
1112 config->title = title;
1113 config->detect = AUTO_BOOLEAN_AUTO;
1114 config->support = PACKET_SUPPORT_UNKNOWN;
1115 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1116 name, title);
1117 show_doc = xstrprintf ("Show current use of remote "
1118 "protocol `%s' (%s) packet",
1119 name, title);
1120 /* set/show TITLE-packet {auto,on,off} */
1121 cmd_name = xstrprintf ("%s-packet", title);
1122 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1123 &config->detect, set_doc,
1124 show_doc, NULL, /* help_doc */
1125 set_remote_protocol_packet_cmd,
1126 show_remote_protocol_packet_cmd,
1127 &remote_set_cmdlist, &remote_show_cmdlist);
1128 /* The command code copies the documentation strings. */
1129 xfree (set_doc);
1130 xfree (show_doc);
1131 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1132 if (legacy)
1133 {
1134 char *legacy_name;
1135
1136 legacy_name = xstrprintf ("%s-packet", name);
1137 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1138 &remote_set_cmdlist);
1139 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1140 &remote_show_cmdlist);
1141 }
1142 }
1143
1144 static enum packet_result
1145 packet_check_result (const char *buf)
1146 {
1147 if (buf[0] != '\0')
1148 {
1149 /* The stub recognized the packet request. Check that the
1150 operation succeeded. */
1151 if (buf[0] == 'E'
1152 && isxdigit (buf[1]) && isxdigit (buf[2])
1153 && buf[3] == '\0')
1154 /* "Enn" - definitly an error. */
1155 return PACKET_ERROR;
1156
1157 /* Always treat "E." as an error. This will be used for
1158 more verbose error messages, such as E.memtypes. */
1159 if (buf[0] == 'E' && buf[1] == '.')
1160 return PACKET_ERROR;
1161
1162 /* The packet may or may not be OK. Just assume it is. */
1163 return PACKET_OK;
1164 }
1165 else
1166 /* The stub does not support the packet. */
1167 return PACKET_UNKNOWN;
1168 }
1169
1170 static enum packet_result
1171 packet_ok (const char *buf, struct packet_config *config)
1172 {
1173 enum packet_result result;
1174
1175 result = packet_check_result (buf);
1176 switch (result)
1177 {
1178 case PACKET_OK:
1179 case PACKET_ERROR:
1180 /* The stub recognized the packet request. */
1181 switch (config->support)
1182 {
1183 case PACKET_SUPPORT_UNKNOWN:
1184 if (remote_debug)
1185 fprintf_unfiltered (gdb_stdlog,
1186 "Packet %s (%s) is supported\n",
1187 config->name, config->title);
1188 config->support = PACKET_ENABLE;
1189 break;
1190 case PACKET_DISABLE:
1191 internal_error (__FILE__, __LINE__,
1192 _("packet_ok: attempt to use a disabled packet"));
1193 break;
1194 case PACKET_ENABLE:
1195 break;
1196 }
1197 break;
1198 case PACKET_UNKNOWN:
1199 /* The stub does not support the packet. */
1200 switch (config->support)
1201 {
1202 case PACKET_ENABLE:
1203 if (config->detect == AUTO_BOOLEAN_AUTO)
1204 /* If the stub previously indicated that the packet was
1205 supported then there is a protocol error.. */
1206 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1207 config->name, config->title);
1208 else
1209 /* The user set it wrong. */
1210 error (_("Enabled packet %s (%s) not recognized by stub"),
1211 config->name, config->title);
1212 break;
1213 case PACKET_SUPPORT_UNKNOWN:
1214 if (remote_debug)
1215 fprintf_unfiltered (gdb_stdlog,
1216 "Packet %s (%s) is NOT supported\n",
1217 config->name, config->title);
1218 config->support = PACKET_DISABLE;
1219 break;
1220 case PACKET_DISABLE:
1221 break;
1222 }
1223 break;
1224 }
1225
1226 return result;
1227 }
1228
1229 enum {
1230 PACKET_vCont = 0,
1231 PACKET_X,
1232 PACKET_qSymbol,
1233 PACKET_P,
1234 PACKET_p,
1235 PACKET_Z0,
1236 PACKET_Z1,
1237 PACKET_Z2,
1238 PACKET_Z3,
1239 PACKET_Z4,
1240 PACKET_vFile_open,
1241 PACKET_vFile_pread,
1242 PACKET_vFile_pwrite,
1243 PACKET_vFile_close,
1244 PACKET_vFile_unlink,
1245 PACKET_vFile_readlink,
1246 PACKET_qXfer_auxv,
1247 PACKET_qXfer_features,
1248 PACKET_qXfer_libraries,
1249 PACKET_qXfer_libraries_svr4,
1250 PACKET_qXfer_memory_map,
1251 PACKET_qXfer_spu_read,
1252 PACKET_qXfer_spu_write,
1253 PACKET_qXfer_osdata,
1254 PACKET_qXfer_threads,
1255 PACKET_qXfer_statictrace_read,
1256 PACKET_qXfer_traceframe_info,
1257 PACKET_qXfer_uib,
1258 PACKET_qGetTIBAddr,
1259 PACKET_qGetTLSAddr,
1260 PACKET_qSupported,
1261 PACKET_QPassSignals,
1262 PACKET_QProgramSignals,
1263 PACKET_qSearch_memory,
1264 PACKET_vAttach,
1265 PACKET_vRun,
1266 PACKET_QStartNoAckMode,
1267 PACKET_vKill,
1268 PACKET_qXfer_siginfo_read,
1269 PACKET_qXfer_siginfo_write,
1270 PACKET_qAttached,
1271 PACKET_ConditionalTracepoints,
1272 PACKET_ConditionalBreakpoints,
1273 PACKET_BreakpointCommands,
1274 PACKET_FastTracepoints,
1275 PACKET_StaticTracepoints,
1276 PACKET_InstallInTrace,
1277 PACKET_bc,
1278 PACKET_bs,
1279 PACKET_TracepointSource,
1280 PACKET_QAllow,
1281 PACKET_qXfer_fdpic,
1282 PACKET_QDisableRandomization,
1283 PACKET_QAgent,
1284 PACKET_QTBuffer_size,
1285 PACKET_Qbtrace_off,
1286 PACKET_Qbtrace_bts,
1287 PACKET_qXfer_btrace,
1288 PACKET_MAX
1289 };
1290
1291 static struct packet_config remote_protocol_packets[PACKET_MAX];
1292
1293 static void
1294 set_remote_protocol_packet_cmd (char *args, int from_tty,
1295 struct cmd_list_element *c)
1296 {
1297 struct packet_config *packet;
1298
1299 for (packet = remote_protocol_packets;
1300 packet < &remote_protocol_packets[PACKET_MAX];
1301 packet++)
1302 {
1303 if (&packet->detect == c->var)
1304 {
1305 update_packet_config (packet);
1306 return;
1307 }
1308 }
1309 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1310 c->name);
1311 }
1312
1313 static void
1314 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1315 struct cmd_list_element *c,
1316 const char *value)
1317 {
1318 struct packet_config *packet;
1319
1320 for (packet = remote_protocol_packets;
1321 packet < &remote_protocol_packets[PACKET_MAX];
1322 packet++)
1323 {
1324 if (&packet->detect == c->var)
1325 {
1326 show_packet_config_cmd (packet);
1327 return;
1328 }
1329 }
1330 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1331 c->name);
1332 }
1333
1334 /* Should we try one of the 'Z' requests? */
1335
1336 enum Z_packet_type
1337 {
1338 Z_PACKET_SOFTWARE_BP,
1339 Z_PACKET_HARDWARE_BP,
1340 Z_PACKET_WRITE_WP,
1341 Z_PACKET_READ_WP,
1342 Z_PACKET_ACCESS_WP,
1343 NR_Z_PACKET_TYPES
1344 };
1345
1346 /* For compatibility with older distributions. Provide a ``set remote
1347 Z-packet ...'' command that updates all the Z packet types. */
1348
1349 static enum auto_boolean remote_Z_packet_detect;
1350
1351 static void
1352 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1353 struct cmd_list_element *c)
1354 {
1355 int i;
1356
1357 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1358 {
1359 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1360 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1361 }
1362 }
1363
1364 static void
1365 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1366 struct cmd_list_element *c,
1367 const char *value)
1368 {
1369 int i;
1370
1371 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1372 {
1373 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1374 }
1375 }
1376
1377 /* Should we try the 'ThreadInfo' query packet?
1378
1379 This variable (NOT available to the user: auto-detect only!)
1380 determines whether GDB will use the new, simpler "ThreadInfo"
1381 query or the older, more complex syntax for thread queries.
1382 This is an auto-detect variable (set to true at each connect,
1383 and set to false when the target fails to recognize it). */
1384
1385 static int use_threadinfo_query;
1386 static int use_threadextra_query;
1387
1388 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1389 static struct async_signal_handler *sigint_remote_twice_token;
1390 static struct async_signal_handler *sigint_remote_token;
1391
1392 \f
1393 /* Asynchronous signal handle registered as event loop source for
1394 when we have pending events ready to be passed to the core. */
1395
1396 static struct async_event_handler *remote_async_inferior_event_token;
1397
1398 \f
1399
1400 static ptid_t magic_null_ptid;
1401 static ptid_t not_sent_ptid;
1402 static ptid_t any_thread_ptid;
1403
1404 /* These are the threads which we last sent to the remote system. The
1405 TID member will be -1 for all or -2 for not sent yet. */
1406
1407 static ptid_t general_thread;
1408 static ptid_t continue_thread;
1409
1410 /* This is the traceframe which we last selected on the remote system.
1411 It will be -1 if no traceframe is selected. */
1412 static int remote_traceframe_number = -1;
1413
1414 /* Find out if the stub attached to PID (and hence GDB should offer to
1415 detach instead of killing it when bailing out). */
1416
1417 static int
1418 remote_query_attached (int pid)
1419 {
1420 struct remote_state *rs = get_remote_state ();
1421 size_t size = get_remote_packet_size ();
1422
1423 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1424 return 0;
1425
1426 if (remote_multi_process_p (rs))
1427 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1428 else
1429 xsnprintf (rs->buf, size, "qAttached");
1430
1431 putpkt (rs->buf);
1432 getpkt (&rs->buf, &rs->buf_size, 0);
1433
1434 switch (packet_ok (rs->buf,
1435 &remote_protocol_packets[PACKET_qAttached]))
1436 {
1437 case PACKET_OK:
1438 if (strcmp (rs->buf, "1") == 0)
1439 return 1;
1440 break;
1441 case PACKET_ERROR:
1442 warning (_("Remote failure reply: %s"), rs->buf);
1443 break;
1444 case PACKET_UNKNOWN:
1445 break;
1446 }
1447
1448 return 0;
1449 }
1450
1451 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1452 has been invented by GDB, instead of reported by the target. Since
1453 we can be connected to a remote system before before knowing about
1454 any inferior, mark the target with execution when we find the first
1455 inferior. If ATTACHED is 1, then we had just attached to this
1456 inferior. If it is 0, then we just created this inferior. If it
1457 is -1, then try querying the remote stub to find out if it had
1458 attached to the inferior or not. */
1459
1460 static struct inferior *
1461 remote_add_inferior (int fake_pid_p, int pid, int attached)
1462 {
1463 struct inferior *inf;
1464
1465 /* Check whether this process we're learning about is to be
1466 considered attached, or if is to be considered to have been
1467 spawned by the stub. */
1468 if (attached == -1)
1469 attached = remote_query_attached (pid);
1470
1471 if (gdbarch_has_global_solist (target_gdbarch ()))
1472 {
1473 /* If the target shares code across all inferiors, then every
1474 attach adds a new inferior. */
1475 inf = add_inferior (pid);
1476
1477 /* ... and every inferior is bound to the same program space.
1478 However, each inferior may still have its own address
1479 space. */
1480 inf->aspace = maybe_new_address_space ();
1481 inf->pspace = current_program_space;
1482 }
1483 else
1484 {
1485 /* In the traditional debugging scenario, there's a 1-1 match
1486 between program/address spaces. We simply bind the inferior
1487 to the program space's address space. */
1488 inf = current_inferior ();
1489 inferior_appeared (inf, pid);
1490 }
1491
1492 inf->attach_flag = attached;
1493 inf->fake_pid_p = fake_pid_p;
1494
1495 return inf;
1496 }
1497
1498 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1499 according to RUNNING. */
1500
1501 static void
1502 remote_add_thread (ptid_t ptid, int running)
1503 {
1504 add_thread (ptid);
1505
1506 set_executing (ptid, running);
1507 set_running (ptid, running);
1508 }
1509
1510 /* Come here when we learn about a thread id from the remote target.
1511 It may be the first time we hear about such thread, so take the
1512 opportunity to add it to GDB's thread list. In case this is the
1513 first time we're noticing its corresponding inferior, add it to
1514 GDB's inferior list as well. */
1515
1516 static void
1517 remote_notice_new_inferior (ptid_t currthread, int running)
1518 {
1519 /* If this is a new thread, add it to GDB's thread list.
1520 If we leave it up to WFI to do this, bad things will happen. */
1521
1522 if (in_thread_list (currthread) && is_exited (currthread))
1523 {
1524 /* We're seeing an event on a thread id we knew had exited.
1525 This has to be a new thread reusing the old id. Add it. */
1526 remote_add_thread (currthread, running);
1527 return;
1528 }
1529
1530 if (!in_thread_list (currthread))
1531 {
1532 struct inferior *inf = NULL;
1533 int pid = ptid_get_pid (currthread);
1534
1535 if (ptid_is_pid (inferior_ptid)
1536 && pid == ptid_get_pid (inferior_ptid))
1537 {
1538 /* inferior_ptid has no thread member yet. This can happen
1539 with the vAttach -> remote_wait,"TAAthread:" path if the
1540 stub doesn't support qC. This is the first stop reported
1541 after an attach, so this is the main thread. Update the
1542 ptid in the thread list. */
1543 if (in_thread_list (pid_to_ptid (pid)))
1544 thread_change_ptid (inferior_ptid, currthread);
1545 else
1546 {
1547 remote_add_thread (currthread, running);
1548 inferior_ptid = currthread;
1549 }
1550 return;
1551 }
1552
1553 if (ptid_equal (magic_null_ptid, inferior_ptid))
1554 {
1555 /* inferior_ptid is not set yet. This can happen with the
1556 vRun -> remote_wait,"TAAthread:" path if the stub
1557 doesn't support qC. This is the first stop reported
1558 after an attach, so this is the main thread. Update the
1559 ptid in the thread list. */
1560 thread_change_ptid (inferior_ptid, currthread);
1561 return;
1562 }
1563
1564 /* When connecting to a target remote, or to a target
1565 extended-remote which already was debugging an inferior, we
1566 may not know about it yet. Add it before adding its child
1567 thread, so notifications are emitted in a sensible order. */
1568 if (!in_inferior_list (ptid_get_pid (currthread)))
1569 {
1570 struct remote_state *rs = get_remote_state ();
1571 int fake_pid_p = !remote_multi_process_p (rs);
1572
1573 inf = remote_add_inferior (fake_pid_p,
1574 ptid_get_pid (currthread), -1);
1575 }
1576
1577 /* This is really a new thread. Add it. */
1578 remote_add_thread (currthread, running);
1579
1580 /* If we found a new inferior, let the common code do whatever
1581 it needs to with it (e.g., read shared libraries, insert
1582 breakpoints). */
1583 if (inf != NULL)
1584 notice_new_inferior (currthread, running, 0);
1585 }
1586 }
1587
1588 /* Return the private thread data, creating it if necessary. */
1589
1590 static struct private_thread_info *
1591 demand_private_info (ptid_t ptid)
1592 {
1593 struct thread_info *info = find_thread_ptid (ptid);
1594
1595 gdb_assert (info);
1596
1597 if (!info->private)
1598 {
1599 info->private = xmalloc (sizeof (*(info->private)));
1600 info->private_dtor = free_private_thread_info;
1601 info->private->core = -1;
1602 info->private->extra = 0;
1603 }
1604
1605 return info->private;
1606 }
1607
1608 /* Call this function as a result of
1609 1) A halt indication (T packet) containing a thread id
1610 2) A direct query of currthread
1611 3) Successful execution of set thread */
1612
1613 static void
1614 record_currthread (ptid_t currthread)
1615 {
1616 general_thread = currthread;
1617 }
1618
1619 static char *last_pass_packet;
1620
1621 /* If 'QPassSignals' is supported, tell the remote stub what signals
1622 it can simply pass through to the inferior without reporting. */
1623
1624 static void
1625 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1626 {
1627 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1628 {
1629 char *pass_packet, *p;
1630 int count = 0, i;
1631
1632 gdb_assert (numsigs < 256);
1633 for (i = 0; i < numsigs; i++)
1634 {
1635 if (pass_signals[i])
1636 count++;
1637 }
1638 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1639 strcpy (pass_packet, "QPassSignals:");
1640 p = pass_packet + strlen (pass_packet);
1641 for (i = 0; i < numsigs; i++)
1642 {
1643 if (pass_signals[i])
1644 {
1645 if (i >= 16)
1646 *p++ = tohex (i >> 4);
1647 *p++ = tohex (i & 15);
1648 if (count)
1649 *p++ = ';';
1650 else
1651 break;
1652 count--;
1653 }
1654 }
1655 *p = 0;
1656 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1657 {
1658 struct remote_state *rs = get_remote_state ();
1659 char *buf = rs->buf;
1660
1661 putpkt (pass_packet);
1662 getpkt (&rs->buf, &rs->buf_size, 0);
1663 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1664 if (last_pass_packet)
1665 xfree (last_pass_packet);
1666 last_pass_packet = pass_packet;
1667 }
1668 else
1669 xfree (pass_packet);
1670 }
1671 }
1672
1673 /* The last QProgramSignals packet sent to the target. We bypass
1674 sending a new program signals list down to the target if the new
1675 packet is exactly the same as the last we sent. IOW, we only let
1676 the target know about program signals list changes. */
1677
1678 static char *last_program_signals_packet;
1679
1680 /* If 'QProgramSignals' is supported, tell the remote stub what
1681 signals it should pass through to the inferior when detaching. */
1682
1683 static void
1684 remote_program_signals (int numsigs, unsigned char *signals)
1685 {
1686 if (remote_protocol_packets[PACKET_QProgramSignals].support != PACKET_DISABLE)
1687 {
1688 char *packet, *p;
1689 int count = 0, i;
1690
1691 gdb_assert (numsigs < 256);
1692 for (i = 0; i < numsigs; i++)
1693 {
1694 if (signals[i])
1695 count++;
1696 }
1697 packet = xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
1698 strcpy (packet, "QProgramSignals:");
1699 p = packet + strlen (packet);
1700 for (i = 0; i < numsigs; i++)
1701 {
1702 if (signal_pass_state (i))
1703 {
1704 if (i >= 16)
1705 *p++ = tohex (i >> 4);
1706 *p++ = tohex (i & 15);
1707 if (count)
1708 *p++ = ';';
1709 else
1710 break;
1711 count--;
1712 }
1713 }
1714 *p = 0;
1715 if (!last_program_signals_packet
1716 || strcmp (last_program_signals_packet, packet) != 0)
1717 {
1718 struct remote_state *rs = get_remote_state ();
1719 char *buf = rs->buf;
1720
1721 putpkt (packet);
1722 getpkt (&rs->buf, &rs->buf_size, 0);
1723 packet_ok (buf, &remote_protocol_packets[PACKET_QProgramSignals]);
1724 xfree (last_program_signals_packet);
1725 last_program_signals_packet = packet;
1726 }
1727 else
1728 xfree (packet);
1729 }
1730 }
1731
1732 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1733 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1734 thread. If GEN is set, set the general thread, if not, then set
1735 the step/continue thread. */
1736 static void
1737 set_thread (struct ptid ptid, int gen)
1738 {
1739 struct remote_state *rs = get_remote_state ();
1740 ptid_t state = gen ? general_thread : continue_thread;
1741 char *buf = rs->buf;
1742 char *endbuf = rs->buf + get_remote_packet_size ();
1743
1744 if (ptid_equal (state, ptid))
1745 return;
1746
1747 *buf++ = 'H';
1748 *buf++ = gen ? 'g' : 'c';
1749 if (ptid_equal (ptid, magic_null_ptid))
1750 xsnprintf (buf, endbuf - buf, "0");
1751 else if (ptid_equal (ptid, any_thread_ptid))
1752 xsnprintf (buf, endbuf - buf, "0");
1753 else if (ptid_equal (ptid, minus_one_ptid))
1754 xsnprintf (buf, endbuf - buf, "-1");
1755 else
1756 write_ptid (buf, endbuf, ptid);
1757 putpkt (rs->buf);
1758 getpkt (&rs->buf, &rs->buf_size, 0);
1759 if (gen)
1760 general_thread = ptid;
1761 else
1762 continue_thread = ptid;
1763 }
1764
1765 static void
1766 set_general_thread (struct ptid ptid)
1767 {
1768 set_thread (ptid, 1);
1769 }
1770
1771 static void
1772 set_continue_thread (struct ptid ptid)
1773 {
1774 set_thread (ptid, 0);
1775 }
1776
1777 /* Change the remote current process. Which thread within the process
1778 ends up selected isn't important, as long as it is the same process
1779 as what INFERIOR_PTID points to.
1780
1781 This comes from that fact that there is no explicit notion of
1782 "selected process" in the protocol. The selected process for
1783 general operations is the process the selected general thread
1784 belongs to. */
1785
1786 static void
1787 set_general_process (void)
1788 {
1789 struct remote_state *rs = get_remote_state ();
1790
1791 /* If the remote can't handle multiple processes, don't bother. */
1792 if (!rs->extended || !remote_multi_process_p (rs))
1793 return;
1794
1795 /* We only need to change the remote current thread if it's pointing
1796 at some other process. */
1797 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1798 set_general_thread (inferior_ptid);
1799 }
1800
1801 \f
1802 /* Return nonzero if the thread PTID is still alive on the remote
1803 system. */
1804
1805 static int
1806 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1807 {
1808 struct remote_state *rs = get_remote_state ();
1809 char *p, *endp;
1810
1811 if (ptid_equal (ptid, magic_null_ptid))
1812 /* The main thread is always alive. */
1813 return 1;
1814
1815 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1816 /* The main thread is always alive. This can happen after a
1817 vAttach, if the remote side doesn't support
1818 multi-threading. */
1819 return 1;
1820
1821 p = rs->buf;
1822 endp = rs->buf + get_remote_packet_size ();
1823
1824 *p++ = 'T';
1825 write_ptid (p, endp, ptid);
1826
1827 putpkt (rs->buf);
1828 getpkt (&rs->buf, &rs->buf_size, 0);
1829 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1830 }
1831
1832 /* About these extended threadlist and threadinfo packets. They are
1833 variable length packets but, the fields within them are often fixed
1834 length. They are redundent enough to send over UDP as is the
1835 remote protocol in general. There is a matching unit test module
1836 in libstub. */
1837
1838 #define OPAQUETHREADBYTES 8
1839
1840 /* a 64 bit opaque identifier */
1841 typedef unsigned char threadref[OPAQUETHREADBYTES];
1842
1843 /* WARNING: This threadref data structure comes from the remote O.S.,
1844 libstub protocol encoding, and remote.c. It is not particularly
1845 changable. */
1846
1847 /* Right now, the internal structure is int. We want it to be bigger.
1848 Plan to fix this. */
1849
1850 typedef int gdb_threadref; /* Internal GDB thread reference. */
1851
1852 /* gdb_ext_thread_info is an internal GDB data structure which is
1853 equivalent to the reply of the remote threadinfo packet. */
1854
1855 struct gdb_ext_thread_info
1856 {
1857 threadref threadid; /* External form of thread reference. */
1858 int active; /* Has state interesting to GDB?
1859 regs, stack. */
1860 char display[256]; /* Brief state display, name,
1861 blocked/suspended. */
1862 char shortname[32]; /* To be used to name threads. */
1863 char more_display[256]; /* Long info, statistics, queue depth,
1864 whatever. */
1865 };
1866
1867 /* The volume of remote transfers can be limited by submitting
1868 a mask containing bits specifying the desired information.
1869 Use a union of these values as the 'selection' parameter to
1870 get_thread_info. FIXME: Make these TAG names more thread specific. */
1871
1872 #define TAG_THREADID 1
1873 #define TAG_EXISTS 2
1874 #define TAG_DISPLAY 4
1875 #define TAG_THREADNAME 8
1876 #define TAG_MOREDISPLAY 16
1877
1878 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1879
1880 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1881
1882 static char *unpack_nibble (char *buf, int *val);
1883
1884 static char *pack_nibble (char *buf, int nibble);
1885
1886 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1887
1888 static char *unpack_byte (char *buf, int *value);
1889
1890 static char *pack_int (char *buf, int value);
1891
1892 static char *unpack_int (char *buf, int *value);
1893
1894 static char *unpack_string (char *src, char *dest, int length);
1895
1896 static char *pack_threadid (char *pkt, threadref *id);
1897
1898 static char *unpack_threadid (char *inbuf, threadref *id);
1899
1900 void int_to_threadref (threadref *id, int value);
1901
1902 static int threadref_to_int (threadref *ref);
1903
1904 static void copy_threadref (threadref *dest, threadref *src);
1905
1906 static int threadmatch (threadref *dest, threadref *src);
1907
1908 static char *pack_threadinfo_request (char *pkt, int mode,
1909 threadref *id);
1910
1911 static int remote_unpack_thread_info_response (char *pkt,
1912 threadref *expectedref,
1913 struct gdb_ext_thread_info
1914 *info);
1915
1916
1917 static int remote_get_threadinfo (threadref *threadid,
1918 int fieldset, /*TAG mask */
1919 struct gdb_ext_thread_info *info);
1920
1921 static char *pack_threadlist_request (char *pkt, int startflag,
1922 int threadcount,
1923 threadref *nextthread);
1924
1925 static int parse_threadlist_response (char *pkt,
1926 int result_limit,
1927 threadref *original_echo,
1928 threadref *resultlist,
1929 int *doneflag);
1930
1931 static int remote_get_threadlist (int startflag,
1932 threadref *nextthread,
1933 int result_limit,
1934 int *done,
1935 int *result_count,
1936 threadref *threadlist);
1937
1938 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1939
1940 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1941 void *context, int looplimit);
1942
1943 static int remote_newthread_step (threadref *ref, void *context);
1944
1945
1946 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1947 buffer we're allowed to write to. Returns
1948 BUF+CHARACTERS_WRITTEN. */
1949
1950 static char *
1951 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1952 {
1953 int pid, tid;
1954 struct remote_state *rs = get_remote_state ();
1955
1956 if (remote_multi_process_p (rs))
1957 {
1958 pid = ptid_get_pid (ptid);
1959 if (pid < 0)
1960 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1961 else
1962 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1963 }
1964 tid = ptid_get_tid (ptid);
1965 if (tid < 0)
1966 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1967 else
1968 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1969
1970 return buf;
1971 }
1972
1973 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1974 passed the last parsed char. Returns null_ptid on error. */
1975
1976 static ptid_t
1977 read_ptid (char *buf, char **obuf)
1978 {
1979 char *p = buf;
1980 char *pp;
1981 ULONGEST pid = 0, tid = 0;
1982
1983 if (*p == 'p')
1984 {
1985 /* Multi-process ptid. */
1986 pp = unpack_varlen_hex (p + 1, &pid);
1987 if (*pp != '.')
1988 error (_("invalid remote ptid: %s"), p);
1989
1990 p = pp;
1991 pp = unpack_varlen_hex (p + 1, &tid);
1992 if (obuf)
1993 *obuf = pp;
1994 return ptid_build (pid, 0, tid);
1995 }
1996
1997 /* No multi-process. Just a tid. */
1998 pp = unpack_varlen_hex (p, &tid);
1999
2000 /* Since the stub is not sending a process id, then default to
2001 what's in inferior_ptid, unless it's null at this point. If so,
2002 then since there's no way to know the pid of the reported
2003 threads, use the magic number. */
2004 if (ptid_equal (inferior_ptid, null_ptid))
2005 pid = ptid_get_pid (magic_null_ptid);
2006 else
2007 pid = ptid_get_pid (inferior_ptid);
2008
2009 if (obuf)
2010 *obuf = pp;
2011 return ptid_build (pid, 0, tid);
2012 }
2013
2014 /* Encode 64 bits in 16 chars of hex. */
2015
2016 static const char hexchars[] = "0123456789abcdef";
2017
2018 static int
2019 ishex (int ch, int *val)
2020 {
2021 if ((ch >= 'a') && (ch <= 'f'))
2022 {
2023 *val = ch - 'a' + 10;
2024 return 1;
2025 }
2026 if ((ch >= 'A') && (ch <= 'F'))
2027 {
2028 *val = ch - 'A' + 10;
2029 return 1;
2030 }
2031 if ((ch >= '0') && (ch <= '9'))
2032 {
2033 *val = ch - '0';
2034 return 1;
2035 }
2036 return 0;
2037 }
2038
2039 static int
2040 stubhex (int ch)
2041 {
2042 if (ch >= 'a' && ch <= 'f')
2043 return ch - 'a' + 10;
2044 if (ch >= '0' && ch <= '9')
2045 return ch - '0';
2046 if (ch >= 'A' && ch <= 'F')
2047 return ch - 'A' + 10;
2048 return -1;
2049 }
2050
2051 static int
2052 stub_unpack_int (char *buff, int fieldlength)
2053 {
2054 int nibble;
2055 int retval = 0;
2056
2057 while (fieldlength)
2058 {
2059 nibble = stubhex (*buff++);
2060 retval |= nibble;
2061 fieldlength--;
2062 if (fieldlength)
2063 retval = retval << 4;
2064 }
2065 return retval;
2066 }
2067
2068 char *
2069 unpack_varlen_hex (char *buff, /* packet to parse */
2070 ULONGEST *result)
2071 {
2072 int nibble;
2073 ULONGEST retval = 0;
2074
2075 while (ishex (*buff, &nibble))
2076 {
2077 buff++;
2078 retval = retval << 4;
2079 retval |= nibble & 0x0f;
2080 }
2081 *result = retval;
2082 return buff;
2083 }
2084
2085 static char *
2086 unpack_nibble (char *buf, int *val)
2087 {
2088 *val = fromhex (*buf++);
2089 return buf;
2090 }
2091
2092 static char *
2093 pack_nibble (char *buf, int nibble)
2094 {
2095 *buf++ = hexchars[(nibble & 0x0f)];
2096 return buf;
2097 }
2098
2099 static char *
2100 pack_hex_byte (char *pkt, int byte)
2101 {
2102 *pkt++ = hexchars[(byte >> 4) & 0xf];
2103 *pkt++ = hexchars[(byte & 0xf)];
2104 return pkt;
2105 }
2106
2107 static char *
2108 unpack_byte (char *buf, int *value)
2109 {
2110 *value = stub_unpack_int (buf, 2);
2111 return buf + 2;
2112 }
2113
2114 static char *
2115 pack_int (char *buf, int value)
2116 {
2117 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2118 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2119 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2120 buf = pack_hex_byte (buf, (value & 0xff));
2121 return buf;
2122 }
2123
2124 static char *
2125 unpack_int (char *buf, int *value)
2126 {
2127 *value = stub_unpack_int (buf, 8);
2128 return buf + 8;
2129 }
2130
2131 #if 0 /* Currently unused, uncomment when needed. */
2132 static char *pack_string (char *pkt, char *string);
2133
2134 static char *
2135 pack_string (char *pkt, char *string)
2136 {
2137 char ch;
2138 int len;
2139
2140 len = strlen (string);
2141 if (len > 200)
2142 len = 200; /* Bigger than most GDB packets, junk??? */
2143 pkt = pack_hex_byte (pkt, len);
2144 while (len-- > 0)
2145 {
2146 ch = *string++;
2147 if ((ch == '\0') || (ch == '#'))
2148 ch = '*'; /* Protect encapsulation. */
2149 *pkt++ = ch;
2150 }
2151 return pkt;
2152 }
2153 #endif /* 0 (unused) */
2154
2155 static char *
2156 unpack_string (char *src, char *dest, int length)
2157 {
2158 while (length--)
2159 *dest++ = *src++;
2160 *dest = '\0';
2161 return src;
2162 }
2163
2164 static char *
2165 pack_threadid (char *pkt, threadref *id)
2166 {
2167 char *limit;
2168 unsigned char *altid;
2169
2170 altid = (unsigned char *) id;
2171 limit = pkt + BUF_THREAD_ID_SIZE;
2172 while (pkt < limit)
2173 pkt = pack_hex_byte (pkt, *altid++);
2174 return pkt;
2175 }
2176
2177
2178 static char *
2179 unpack_threadid (char *inbuf, threadref *id)
2180 {
2181 char *altref;
2182 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2183 int x, y;
2184
2185 altref = (char *) id;
2186
2187 while (inbuf < limit)
2188 {
2189 x = stubhex (*inbuf++);
2190 y = stubhex (*inbuf++);
2191 *altref++ = (x << 4) | y;
2192 }
2193 return inbuf;
2194 }
2195
2196 /* Externally, threadrefs are 64 bits but internally, they are still
2197 ints. This is due to a mismatch of specifications. We would like
2198 to use 64bit thread references internally. This is an adapter
2199 function. */
2200
2201 void
2202 int_to_threadref (threadref *id, int value)
2203 {
2204 unsigned char *scan;
2205
2206 scan = (unsigned char *) id;
2207 {
2208 int i = 4;
2209 while (i--)
2210 *scan++ = 0;
2211 }
2212 *scan++ = (value >> 24) & 0xff;
2213 *scan++ = (value >> 16) & 0xff;
2214 *scan++ = (value >> 8) & 0xff;
2215 *scan++ = (value & 0xff);
2216 }
2217
2218 static int
2219 threadref_to_int (threadref *ref)
2220 {
2221 int i, value = 0;
2222 unsigned char *scan;
2223
2224 scan = *ref;
2225 scan += 4;
2226 i = 4;
2227 while (i-- > 0)
2228 value = (value << 8) | ((*scan++) & 0xff);
2229 return value;
2230 }
2231
2232 static void
2233 copy_threadref (threadref *dest, threadref *src)
2234 {
2235 int i;
2236 unsigned char *csrc, *cdest;
2237
2238 csrc = (unsigned char *) src;
2239 cdest = (unsigned char *) dest;
2240 i = 8;
2241 while (i--)
2242 *cdest++ = *csrc++;
2243 }
2244
2245 static int
2246 threadmatch (threadref *dest, threadref *src)
2247 {
2248 /* Things are broken right now, so just assume we got a match. */
2249 #if 0
2250 unsigned char *srcp, *destp;
2251 int i, result;
2252 srcp = (char *) src;
2253 destp = (char *) dest;
2254
2255 result = 1;
2256 while (i-- > 0)
2257 result &= (*srcp++ == *destp++) ? 1 : 0;
2258 return result;
2259 #endif
2260 return 1;
2261 }
2262
2263 /*
2264 threadid:1, # always request threadid
2265 context_exists:2,
2266 display:4,
2267 unique_name:8,
2268 more_display:16
2269 */
2270
2271 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2272
2273 static char *
2274 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2275 {
2276 *pkt++ = 'q'; /* Info Query */
2277 *pkt++ = 'P'; /* process or thread info */
2278 pkt = pack_int (pkt, mode); /* mode */
2279 pkt = pack_threadid (pkt, id); /* threadid */
2280 *pkt = '\0'; /* terminate */
2281 return pkt;
2282 }
2283
2284 /* These values tag the fields in a thread info response packet. */
2285 /* Tagging the fields allows us to request specific fields and to
2286 add more fields as time goes by. */
2287
2288 #define TAG_THREADID 1 /* Echo the thread identifier. */
2289 #define TAG_EXISTS 2 /* Is this process defined enough to
2290 fetch registers and its stack? */
2291 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2292 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2293 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2294 the process. */
2295
2296 static int
2297 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2298 struct gdb_ext_thread_info *info)
2299 {
2300 struct remote_state *rs = get_remote_state ();
2301 int mask, length;
2302 int tag;
2303 threadref ref;
2304 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2305 int retval = 1;
2306
2307 /* info->threadid = 0; FIXME: implement zero_threadref. */
2308 info->active = 0;
2309 info->display[0] = '\0';
2310 info->shortname[0] = '\0';
2311 info->more_display[0] = '\0';
2312
2313 /* Assume the characters indicating the packet type have been
2314 stripped. */
2315 pkt = unpack_int (pkt, &mask); /* arg mask */
2316 pkt = unpack_threadid (pkt, &ref);
2317
2318 if (mask == 0)
2319 warning (_("Incomplete response to threadinfo request."));
2320 if (!threadmatch (&ref, expectedref))
2321 { /* This is an answer to a different request. */
2322 warning (_("ERROR RMT Thread info mismatch."));
2323 return 0;
2324 }
2325 copy_threadref (&info->threadid, &ref);
2326
2327 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2328
2329 /* Packets are terminated with nulls. */
2330 while ((pkt < limit) && mask && *pkt)
2331 {
2332 pkt = unpack_int (pkt, &tag); /* tag */
2333 pkt = unpack_byte (pkt, &length); /* length */
2334 if (!(tag & mask)) /* Tags out of synch with mask. */
2335 {
2336 warning (_("ERROR RMT: threadinfo tag mismatch."));
2337 retval = 0;
2338 break;
2339 }
2340 if (tag == TAG_THREADID)
2341 {
2342 if (length != 16)
2343 {
2344 warning (_("ERROR RMT: length of threadid is not 16."));
2345 retval = 0;
2346 break;
2347 }
2348 pkt = unpack_threadid (pkt, &ref);
2349 mask = mask & ~TAG_THREADID;
2350 continue;
2351 }
2352 if (tag == TAG_EXISTS)
2353 {
2354 info->active = stub_unpack_int (pkt, length);
2355 pkt += length;
2356 mask = mask & ~(TAG_EXISTS);
2357 if (length > 8)
2358 {
2359 warning (_("ERROR RMT: 'exists' length too long."));
2360 retval = 0;
2361 break;
2362 }
2363 continue;
2364 }
2365 if (tag == TAG_THREADNAME)
2366 {
2367 pkt = unpack_string (pkt, &info->shortname[0], length);
2368 mask = mask & ~TAG_THREADNAME;
2369 continue;
2370 }
2371 if (tag == TAG_DISPLAY)
2372 {
2373 pkt = unpack_string (pkt, &info->display[0], length);
2374 mask = mask & ~TAG_DISPLAY;
2375 continue;
2376 }
2377 if (tag == TAG_MOREDISPLAY)
2378 {
2379 pkt = unpack_string (pkt, &info->more_display[0], length);
2380 mask = mask & ~TAG_MOREDISPLAY;
2381 continue;
2382 }
2383 warning (_("ERROR RMT: unknown thread info tag."));
2384 break; /* Not a tag we know about. */
2385 }
2386 return retval;
2387 }
2388
2389 static int
2390 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2391 struct gdb_ext_thread_info *info)
2392 {
2393 struct remote_state *rs = get_remote_state ();
2394 int result;
2395
2396 pack_threadinfo_request (rs->buf, fieldset, threadid);
2397 putpkt (rs->buf);
2398 getpkt (&rs->buf, &rs->buf_size, 0);
2399
2400 if (rs->buf[0] == '\0')
2401 return 0;
2402
2403 result = remote_unpack_thread_info_response (rs->buf + 2,
2404 threadid, info);
2405 return result;
2406 }
2407
2408 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2409
2410 static char *
2411 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2412 threadref *nextthread)
2413 {
2414 *pkt++ = 'q'; /* info query packet */
2415 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2416 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2417 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2418 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2419 *pkt = '\0';
2420 return pkt;
2421 }
2422
2423 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2424
2425 static int
2426 parse_threadlist_response (char *pkt, int result_limit,
2427 threadref *original_echo, threadref *resultlist,
2428 int *doneflag)
2429 {
2430 struct remote_state *rs = get_remote_state ();
2431 char *limit;
2432 int count, resultcount, done;
2433
2434 resultcount = 0;
2435 /* Assume the 'q' and 'M chars have been stripped. */
2436 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2437 /* done parse past here */
2438 pkt = unpack_byte (pkt, &count); /* count field */
2439 pkt = unpack_nibble (pkt, &done);
2440 /* The first threadid is the argument threadid. */
2441 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2442 while ((count-- > 0) && (pkt < limit))
2443 {
2444 pkt = unpack_threadid (pkt, resultlist++);
2445 if (resultcount++ >= result_limit)
2446 break;
2447 }
2448 if (doneflag)
2449 *doneflag = done;
2450 return resultcount;
2451 }
2452
2453 static int
2454 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2455 int *done, int *result_count, threadref *threadlist)
2456 {
2457 struct remote_state *rs = get_remote_state ();
2458 static threadref echo_nextthread;
2459 int result = 1;
2460
2461 /* Trancate result limit to be smaller than the packet size. */
2462 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2463 >= get_remote_packet_size ())
2464 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2465
2466 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2467 putpkt (rs->buf);
2468 getpkt (&rs->buf, &rs->buf_size, 0);
2469
2470 if (*rs->buf == '\0')
2471 return 0;
2472 else
2473 *result_count =
2474 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2475 threadlist, done);
2476
2477 if (!threadmatch (&echo_nextthread, nextthread))
2478 {
2479 /* FIXME: This is a good reason to drop the packet. */
2480 /* Possably, there is a duplicate response. */
2481 /* Possabilities :
2482 retransmit immediatly - race conditions
2483 retransmit after timeout - yes
2484 exit
2485 wait for packet, then exit
2486 */
2487 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2488 return 0; /* I choose simply exiting. */
2489 }
2490 if (*result_count <= 0)
2491 {
2492 if (*done != 1)
2493 {
2494 warning (_("RMT ERROR : failed to get remote thread list."));
2495 result = 0;
2496 }
2497 return result; /* break; */
2498 }
2499 if (*result_count > result_limit)
2500 {
2501 *result_count = 0;
2502 warning (_("RMT ERROR: threadlist response longer than requested."));
2503 return 0;
2504 }
2505 return result;
2506 }
2507
2508 /* This is the interface between remote and threads, remotes upper
2509 interface. */
2510
2511 /* remote_find_new_threads retrieves the thread list and for each
2512 thread in the list, looks up the thread in GDB's internal list,
2513 adding the thread if it does not already exist. This involves
2514 getting partial thread lists from the remote target so, polling the
2515 quit_flag is required. */
2516
2517
2518 /* About this many threadisds fit in a packet. */
2519
2520 #define MAXTHREADLISTRESULTS 32
2521
2522 static int
2523 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2524 int looplimit)
2525 {
2526 int done, i, result_count;
2527 int startflag = 1;
2528 int result = 1;
2529 int loopcount = 0;
2530 static threadref nextthread;
2531 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2532
2533 done = 0;
2534 while (!done)
2535 {
2536 if (loopcount++ > looplimit)
2537 {
2538 result = 0;
2539 warning (_("Remote fetch threadlist -infinite loop-."));
2540 break;
2541 }
2542 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2543 &done, &result_count, resultthreadlist))
2544 {
2545 result = 0;
2546 break;
2547 }
2548 /* Clear for later iterations. */
2549 startflag = 0;
2550 /* Setup to resume next batch of thread references, set nextthread. */
2551 if (result_count >= 1)
2552 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2553 i = 0;
2554 while (result_count--)
2555 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2556 break;
2557 }
2558 return result;
2559 }
2560
2561 static int
2562 remote_newthread_step (threadref *ref, void *context)
2563 {
2564 int pid = ptid_get_pid (inferior_ptid);
2565 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2566
2567 if (!in_thread_list (ptid))
2568 add_thread (ptid);
2569 return 1; /* continue iterator */
2570 }
2571
2572 #define CRAZY_MAX_THREADS 1000
2573
2574 static ptid_t
2575 remote_current_thread (ptid_t oldpid)
2576 {
2577 struct remote_state *rs = get_remote_state ();
2578
2579 putpkt ("qC");
2580 getpkt (&rs->buf, &rs->buf_size, 0);
2581 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2582 return read_ptid (&rs->buf[2], NULL);
2583 else
2584 return oldpid;
2585 }
2586
2587 /* Find new threads for info threads command.
2588 * Original version, using John Metzler's thread protocol.
2589 */
2590
2591 static void
2592 remote_find_new_threads (void)
2593 {
2594 remote_threadlist_iterator (remote_newthread_step, 0,
2595 CRAZY_MAX_THREADS);
2596 }
2597
2598 #if defined(HAVE_LIBEXPAT)
2599
2600 typedef struct thread_item
2601 {
2602 ptid_t ptid;
2603 char *extra;
2604 int core;
2605 } thread_item_t;
2606 DEF_VEC_O(thread_item_t);
2607
2608 struct threads_parsing_context
2609 {
2610 VEC (thread_item_t) *items;
2611 };
2612
2613 static void
2614 start_thread (struct gdb_xml_parser *parser,
2615 const struct gdb_xml_element *element,
2616 void *user_data, VEC(gdb_xml_value_s) *attributes)
2617 {
2618 struct threads_parsing_context *data = user_data;
2619
2620 struct thread_item item;
2621 char *id;
2622 struct gdb_xml_value *attr;
2623
2624 id = xml_find_attribute (attributes, "id")->value;
2625 item.ptid = read_ptid (id, NULL);
2626
2627 attr = xml_find_attribute (attributes, "core");
2628 if (attr != NULL)
2629 item.core = *(ULONGEST *) attr->value;
2630 else
2631 item.core = -1;
2632
2633 item.extra = 0;
2634
2635 VEC_safe_push (thread_item_t, data->items, &item);
2636 }
2637
2638 static void
2639 end_thread (struct gdb_xml_parser *parser,
2640 const struct gdb_xml_element *element,
2641 void *user_data, const char *body_text)
2642 {
2643 struct threads_parsing_context *data = user_data;
2644
2645 if (body_text && *body_text)
2646 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2647 }
2648
2649 const struct gdb_xml_attribute thread_attributes[] = {
2650 { "id", GDB_XML_AF_NONE, NULL, NULL },
2651 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2652 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2653 };
2654
2655 const struct gdb_xml_element thread_children[] = {
2656 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2657 };
2658
2659 const struct gdb_xml_element threads_children[] = {
2660 { "thread", thread_attributes, thread_children,
2661 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2662 start_thread, end_thread },
2663 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2664 };
2665
2666 const struct gdb_xml_element threads_elements[] = {
2667 { "threads", NULL, threads_children,
2668 GDB_XML_EF_NONE, NULL, NULL },
2669 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2670 };
2671
2672 /* Discard the contents of the constructed thread info context. */
2673
2674 static void
2675 clear_threads_parsing_context (void *p)
2676 {
2677 struct threads_parsing_context *context = p;
2678 int i;
2679 struct thread_item *item;
2680
2681 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2682 xfree (item->extra);
2683
2684 VEC_free (thread_item_t, context->items);
2685 }
2686
2687 #endif
2688
2689 /*
2690 * Find all threads for info threads command.
2691 * Uses new thread protocol contributed by Cisco.
2692 * Falls back and attempts to use the older method (above)
2693 * if the target doesn't respond to the new method.
2694 */
2695
2696 static void
2697 remote_threads_info (struct target_ops *ops)
2698 {
2699 struct remote_state *rs = get_remote_state ();
2700 char *bufp;
2701 ptid_t new_thread;
2702
2703 if (remote_desc == 0) /* paranoia */
2704 error (_("Command can only be used when connected to the remote target."));
2705
2706 #if defined(HAVE_LIBEXPAT)
2707 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2708 {
2709 char *xml = target_read_stralloc (&current_target,
2710 TARGET_OBJECT_THREADS, NULL);
2711
2712 struct cleanup *back_to = make_cleanup (xfree, xml);
2713
2714 if (xml && *xml)
2715 {
2716 struct threads_parsing_context context;
2717
2718 context.items = NULL;
2719 make_cleanup (clear_threads_parsing_context, &context);
2720
2721 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2722 threads_elements, xml, &context) == 0)
2723 {
2724 int i;
2725 struct thread_item *item;
2726
2727 for (i = 0;
2728 VEC_iterate (thread_item_t, context.items, i, item);
2729 ++i)
2730 {
2731 if (!ptid_equal (item->ptid, null_ptid))
2732 {
2733 struct private_thread_info *info;
2734 /* In non-stop mode, we assume new found threads
2735 are running until proven otherwise with a
2736 stop reply. In all-stop, we can only get
2737 here if all threads are stopped. */
2738 int running = non_stop ? 1 : 0;
2739
2740 remote_notice_new_inferior (item->ptid, running);
2741
2742 info = demand_private_info (item->ptid);
2743 info->core = item->core;
2744 info->extra = item->extra;
2745 item->extra = NULL;
2746 }
2747 }
2748 }
2749 }
2750
2751 do_cleanups (back_to);
2752 return;
2753 }
2754 #endif
2755
2756 if (use_threadinfo_query)
2757 {
2758 putpkt ("qfThreadInfo");
2759 getpkt (&rs->buf, &rs->buf_size, 0);
2760 bufp = rs->buf;
2761 if (bufp[0] != '\0') /* q packet recognized */
2762 {
2763 struct cleanup *old_chain;
2764 char *saved_reply;
2765
2766 /* remote_notice_new_inferior (in the loop below) may make
2767 new RSP calls, which clobber rs->buf. Work with a
2768 copy. */
2769 bufp = saved_reply = xstrdup (rs->buf);
2770 old_chain = make_cleanup (free_current_contents, &saved_reply);
2771
2772 while (*bufp++ == 'm') /* reply contains one or more TID */
2773 {
2774 do
2775 {
2776 new_thread = read_ptid (bufp, &bufp);
2777 if (!ptid_equal (new_thread, null_ptid))
2778 {
2779 /* In non-stop mode, we assume new found threads
2780 are running until proven otherwise with a
2781 stop reply. In all-stop, we can only get
2782 here if all threads are stopped. */
2783 int running = non_stop ? 1 : 0;
2784
2785 remote_notice_new_inferior (new_thread, running);
2786 }
2787 }
2788 while (*bufp++ == ','); /* comma-separated list */
2789 free_current_contents (&saved_reply);
2790 putpkt ("qsThreadInfo");
2791 getpkt (&rs->buf, &rs->buf_size, 0);
2792 bufp = saved_reply = xstrdup (rs->buf);
2793 }
2794 do_cleanups (old_chain);
2795 return; /* done */
2796 }
2797 }
2798
2799 /* Only qfThreadInfo is supported in non-stop mode. */
2800 if (non_stop)
2801 return;
2802
2803 /* Else fall back to old method based on jmetzler protocol. */
2804 use_threadinfo_query = 0;
2805 remote_find_new_threads ();
2806 return;
2807 }
2808
2809 /*
2810 * Collect a descriptive string about the given thread.
2811 * The target may say anything it wants to about the thread
2812 * (typically info about its blocked / runnable state, name, etc.).
2813 * This string will appear in the info threads display.
2814 *
2815 * Optional: targets are not required to implement this function.
2816 */
2817
2818 static char *
2819 remote_threads_extra_info (struct thread_info *tp)
2820 {
2821 struct remote_state *rs = get_remote_state ();
2822 int result;
2823 int set;
2824 threadref id;
2825 struct gdb_ext_thread_info threadinfo;
2826 static char display_buf[100]; /* arbitrary... */
2827 int n = 0; /* position in display_buf */
2828
2829 if (remote_desc == 0) /* paranoia */
2830 internal_error (__FILE__, __LINE__,
2831 _("remote_threads_extra_info"));
2832
2833 if (ptid_equal (tp->ptid, magic_null_ptid)
2834 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2835 /* This is the main thread which was added by GDB. The remote
2836 server doesn't know about it. */
2837 return NULL;
2838
2839 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2840 {
2841 struct thread_info *info = find_thread_ptid (tp->ptid);
2842
2843 if (info && info->private)
2844 return info->private->extra;
2845 else
2846 return NULL;
2847 }
2848
2849 if (use_threadextra_query)
2850 {
2851 char *b = rs->buf;
2852 char *endb = rs->buf + get_remote_packet_size ();
2853
2854 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2855 b += strlen (b);
2856 write_ptid (b, endb, tp->ptid);
2857
2858 putpkt (rs->buf);
2859 getpkt (&rs->buf, &rs->buf_size, 0);
2860 if (rs->buf[0] != 0)
2861 {
2862 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2863 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2864 display_buf [result] = '\0';
2865 return display_buf;
2866 }
2867 }
2868
2869 /* If the above query fails, fall back to the old method. */
2870 use_threadextra_query = 0;
2871 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2872 | TAG_MOREDISPLAY | TAG_DISPLAY;
2873 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2874 if (remote_get_threadinfo (&id, set, &threadinfo))
2875 if (threadinfo.active)
2876 {
2877 if (*threadinfo.shortname)
2878 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2879 " Name: %s,", threadinfo.shortname);
2880 if (*threadinfo.display)
2881 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2882 " State: %s,", threadinfo.display);
2883 if (*threadinfo.more_display)
2884 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2885 " Priority: %s", threadinfo.more_display);
2886
2887 if (n > 0)
2888 {
2889 /* For purely cosmetic reasons, clear up trailing commas. */
2890 if (',' == display_buf[n-1])
2891 display_buf[n-1] = ' ';
2892 return display_buf;
2893 }
2894 }
2895 return NULL;
2896 }
2897 \f
2898
2899 static int
2900 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2901 struct static_tracepoint_marker *marker)
2902 {
2903 struct remote_state *rs = get_remote_state ();
2904 char *p = rs->buf;
2905
2906 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
2907 p += strlen (p);
2908 p += hexnumstr (p, addr);
2909 putpkt (rs->buf);
2910 getpkt (&rs->buf, &rs->buf_size, 0);
2911 p = rs->buf;
2912
2913 if (*p == 'E')
2914 error (_("Remote failure reply: %s"), p);
2915
2916 if (*p++ == 'm')
2917 {
2918 parse_static_tracepoint_marker_definition (p, &p, marker);
2919 return 1;
2920 }
2921
2922 return 0;
2923 }
2924
2925 static VEC(static_tracepoint_marker_p) *
2926 remote_static_tracepoint_markers_by_strid (const char *strid)
2927 {
2928 struct remote_state *rs = get_remote_state ();
2929 VEC(static_tracepoint_marker_p) *markers = NULL;
2930 struct static_tracepoint_marker *marker = NULL;
2931 struct cleanup *old_chain;
2932 char *p;
2933
2934 /* Ask for a first packet of static tracepoint marker
2935 definition. */
2936 putpkt ("qTfSTM");
2937 getpkt (&rs->buf, &rs->buf_size, 0);
2938 p = rs->buf;
2939 if (*p == 'E')
2940 error (_("Remote failure reply: %s"), p);
2941
2942 old_chain = make_cleanup (free_current_marker, &marker);
2943
2944 while (*p++ == 'm')
2945 {
2946 if (marker == NULL)
2947 marker = XCNEW (struct static_tracepoint_marker);
2948
2949 do
2950 {
2951 parse_static_tracepoint_marker_definition (p, &p, marker);
2952
2953 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2954 {
2955 VEC_safe_push (static_tracepoint_marker_p,
2956 markers, marker);
2957 marker = NULL;
2958 }
2959 else
2960 {
2961 release_static_tracepoint_marker (marker);
2962 memset (marker, 0, sizeof (*marker));
2963 }
2964 }
2965 while (*p++ == ','); /* comma-separated list */
2966 /* Ask for another packet of static tracepoint definition. */
2967 putpkt ("qTsSTM");
2968 getpkt (&rs->buf, &rs->buf_size, 0);
2969 p = rs->buf;
2970 }
2971
2972 do_cleanups (old_chain);
2973 return markers;
2974 }
2975
2976 \f
2977 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2978
2979 static ptid_t
2980 remote_get_ada_task_ptid (long lwp, long thread)
2981 {
2982 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2983 }
2984 \f
2985
2986 /* Restart the remote side; this is an extended protocol operation. */
2987
2988 static void
2989 extended_remote_restart (void)
2990 {
2991 struct remote_state *rs = get_remote_state ();
2992
2993 /* Send the restart command; for reasons I don't understand the
2994 remote side really expects a number after the "R". */
2995 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2996 putpkt (rs->buf);
2997
2998 remote_fileio_reset ();
2999 }
3000 \f
3001 /* Clean up connection to a remote debugger. */
3002
3003 static void
3004 remote_close (int quitting)
3005 {
3006 if (remote_desc == NULL)
3007 return; /* already closed */
3008
3009 /* Make sure we leave stdin registered in the event loop, and we
3010 don't leave the async SIGINT signal handler installed. */
3011 remote_terminal_ours ();
3012
3013 serial_close (remote_desc);
3014 remote_desc = NULL;
3015
3016 /* We don't have a connection to the remote stub anymore. Get rid
3017 of all the inferiors and their threads we were controlling.
3018 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3019 will be unable to find the thread corresponding to (pid, 0, 0). */
3020 inferior_ptid = null_ptid;
3021 discard_all_inferiors ();
3022
3023 /* Stop replies may from inferiors which are still unknown to GDB.
3024 We are closing the remote target, so we should discard
3025 everything, including the stop replies from GDB-unknown
3026 inferiors. */
3027 discard_pending_stop_replies (NULL);
3028
3029 if (remote_async_inferior_event_token)
3030 delete_async_event_handler (&remote_async_inferior_event_token);
3031
3032 remote_notif_unregister_async_event_handler ();
3033 }
3034
3035 /* Query the remote side for the text, data and bss offsets. */
3036
3037 static void
3038 get_offsets (void)
3039 {
3040 struct remote_state *rs = get_remote_state ();
3041 char *buf;
3042 char *ptr;
3043 int lose, num_segments = 0, do_sections, do_segments;
3044 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3045 struct section_offsets *offs;
3046 struct symfile_segment_data *data;
3047
3048 if (symfile_objfile == NULL)
3049 return;
3050
3051 putpkt ("qOffsets");
3052 getpkt (&rs->buf, &rs->buf_size, 0);
3053 buf = rs->buf;
3054
3055 if (buf[0] == '\000')
3056 return; /* Return silently. Stub doesn't support
3057 this command. */
3058 if (buf[0] == 'E')
3059 {
3060 warning (_("Remote failure reply: %s"), buf);
3061 return;
3062 }
3063
3064 /* Pick up each field in turn. This used to be done with scanf, but
3065 scanf will make trouble if CORE_ADDR size doesn't match
3066 conversion directives correctly. The following code will work
3067 with any size of CORE_ADDR. */
3068 text_addr = data_addr = bss_addr = 0;
3069 ptr = buf;
3070 lose = 0;
3071
3072 if (strncmp (ptr, "Text=", 5) == 0)
3073 {
3074 ptr += 5;
3075 /* Don't use strtol, could lose on big values. */
3076 while (*ptr && *ptr != ';')
3077 text_addr = (text_addr << 4) + fromhex (*ptr++);
3078
3079 if (strncmp (ptr, ";Data=", 6) == 0)
3080 {
3081 ptr += 6;
3082 while (*ptr && *ptr != ';')
3083 data_addr = (data_addr << 4) + fromhex (*ptr++);
3084 }
3085 else
3086 lose = 1;
3087
3088 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3089 {
3090 ptr += 5;
3091 while (*ptr && *ptr != ';')
3092 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3093
3094 if (bss_addr != data_addr)
3095 warning (_("Target reported unsupported offsets: %s"), buf);
3096 }
3097 else
3098 lose = 1;
3099 }
3100 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3101 {
3102 ptr += 8;
3103 /* Don't use strtol, could lose on big values. */
3104 while (*ptr && *ptr != ';')
3105 text_addr = (text_addr << 4) + fromhex (*ptr++);
3106 num_segments = 1;
3107
3108 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3109 {
3110 ptr += 9;
3111 while (*ptr && *ptr != ';')
3112 data_addr = (data_addr << 4) + fromhex (*ptr++);
3113 num_segments++;
3114 }
3115 }
3116 else
3117 lose = 1;
3118
3119 if (lose)
3120 error (_("Malformed response to offset query, %s"), buf);
3121 else if (*ptr != '\0')
3122 warning (_("Target reported unsupported offsets: %s"), buf);
3123
3124 offs = ((struct section_offsets *)
3125 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3126 memcpy (offs, symfile_objfile->section_offsets,
3127 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3128
3129 data = get_symfile_segment_data (symfile_objfile->obfd);
3130 do_segments = (data != NULL);
3131 do_sections = num_segments == 0;
3132
3133 if (num_segments > 0)
3134 {
3135 segments[0] = text_addr;
3136 segments[1] = data_addr;
3137 }
3138 /* If we have two segments, we can still try to relocate everything
3139 by assuming that the .text and .data offsets apply to the whole
3140 text and data segments. Convert the offsets given in the packet
3141 to base addresses for symfile_map_offsets_to_segments. */
3142 else if (data && data->num_segments == 2)
3143 {
3144 segments[0] = data->segment_bases[0] + text_addr;
3145 segments[1] = data->segment_bases[1] + data_addr;
3146 num_segments = 2;
3147 }
3148 /* If the object file has only one segment, assume that it is text
3149 rather than data; main programs with no writable data are rare,
3150 but programs with no code are useless. Of course the code might
3151 have ended up in the data segment... to detect that we would need
3152 the permissions here. */
3153 else if (data && data->num_segments == 1)
3154 {
3155 segments[0] = data->segment_bases[0] + text_addr;
3156 num_segments = 1;
3157 }
3158 /* There's no way to relocate by segment. */
3159 else
3160 do_segments = 0;
3161
3162 if (do_segments)
3163 {
3164 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3165 offs, num_segments, segments);
3166
3167 if (ret == 0 && !do_sections)
3168 error (_("Can not handle qOffsets TextSeg "
3169 "response with this symbol file"));
3170
3171 if (ret > 0)
3172 do_sections = 0;
3173 }
3174
3175 if (data)
3176 free_symfile_segment_data (data);
3177
3178 if (do_sections)
3179 {
3180 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3181
3182 /* This is a temporary kludge to force data and bss to use the
3183 same offsets because that's what nlmconv does now. The real
3184 solution requires changes to the stub and remote.c that I
3185 don't have time to do right now. */
3186
3187 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3188 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3189 }
3190
3191 objfile_relocate (symfile_objfile, offs);
3192 }
3193
3194 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3195 threads we know are stopped already. This is used during the
3196 initial remote connection in non-stop mode --- threads that are
3197 reported as already being stopped are left stopped. */
3198
3199 static int
3200 set_stop_requested_callback (struct thread_info *thread, void *data)
3201 {
3202 /* If we have a stop reply for this thread, it must be stopped. */
3203 if (peek_stop_reply (thread->ptid))
3204 set_stop_requested (thread->ptid, 1);
3205
3206 return 0;
3207 }
3208
3209 /* Send interrupt_sequence to remote target. */
3210 static void
3211 send_interrupt_sequence (void)
3212 {
3213 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3214 serial_write (remote_desc, "\x03", 1);
3215 else if (interrupt_sequence_mode == interrupt_sequence_break)
3216 serial_send_break (remote_desc);
3217 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3218 {
3219 serial_send_break (remote_desc);
3220 serial_write (remote_desc, "g", 1);
3221 }
3222 else
3223 internal_error (__FILE__, __LINE__,
3224 _("Invalid value for interrupt_sequence_mode: %s."),
3225 interrupt_sequence_mode);
3226 }
3227
3228
3229 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3230 and extract the PTID. Returns NULL_PTID if not found. */
3231
3232 static ptid_t
3233 stop_reply_extract_thread (char *stop_reply)
3234 {
3235 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3236 {
3237 char *p;
3238
3239 /* Txx r:val ; r:val (...) */
3240 p = &stop_reply[3];
3241
3242 /* Look for "register" named "thread". */
3243 while (*p != '\0')
3244 {
3245 char *p1;
3246
3247 p1 = strchr (p, ':');
3248 if (p1 == NULL)
3249 return null_ptid;
3250
3251 if (strncmp (p, "thread", p1 - p) == 0)
3252 return read_ptid (++p1, &p);
3253
3254 p1 = strchr (p, ';');
3255 if (p1 == NULL)
3256 return null_ptid;
3257 p1++;
3258
3259 p = p1;
3260 }
3261 }
3262
3263 return null_ptid;
3264 }
3265
3266 /* Query the remote target for which is the current thread/process,
3267 add it to our tables, and update INFERIOR_PTID. The caller is
3268 responsible for setting the state such that the remote end is ready
3269 to return the current thread.
3270
3271 This function is called after handling the '?' or 'vRun' packets,
3272 whose response is a stop reply from which we can also try
3273 extracting the thread. If the target doesn't support the explicit
3274 qC query, we infer the current thread from that stop reply, passed
3275 in in WAIT_STATUS, which may be NULL. */
3276
3277 static void
3278 add_current_inferior_and_thread (char *wait_status)
3279 {
3280 struct remote_state *rs = get_remote_state ();
3281 int fake_pid_p = 0;
3282 ptid_t ptid = null_ptid;
3283
3284 inferior_ptid = null_ptid;
3285
3286 /* Now, if we have thread information, update inferior_ptid. First
3287 if we have a stop reply handy, maybe it's a T stop reply with a
3288 "thread" register we can extract the current thread from. If
3289 not, ask the remote which is the current thread, with qC. The
3290 former method avoids a roundtrip. Note we don't use
3291 remote_parse_stop_reply as that makes use of the target
3292 architecture, which we haven't yet fully determined at this
3293 point. */
3294 if (wait_status != NULL)
3295 ptid = stop_reply_extract_thread (wait_status);
3296 if (ptid_equal (ptid, null_ptid))
3297 ptid = remote_current_thread (inferior_ptid);
3298
3299 if (!ptid_equal (ptid, null_ptid))
3300 {
3301 if (!remote_multi_process_p (rs))
3302 fake_pid_p = 1;
3303
3304 inferior_ptid = ptid;
3305 }
3306 else
3307 {
3308 /* Without this, some commands which require an active target
3309 (such as kill) won't work. This variable serves (at least)
3310 double duty as both the pid of the target process (if it has
3311 such), and as a flag indicating that a target is active. */
3312 inferior_ptid = magic_null_ptid;
3313 fake_pid_p = 1;
3314 }
3315
3316 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3317
3318 /* Add the main thread. */
3319 add_thread_silent (inferior_ptid);
3320 }
3321
3322 static void
3323 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3324 {
3325 struct remote_state *rs = get_remote_state ();
3326 struct packet_config *noack_config;
3327 char *wait_status = NULL;
3328
3329 immediate_quit++; /* Allow user to interrupt it. */
3330 QUIT;
3331
3332 if (interrupt_on_connect)
3333 send_interrupt_sequence ();
3334
3335 /* Ack any packet which the remote side has already sent. */
3336 serial_write (remote_desc, "+", 1);
3337
3338 /* Signal other parts that we're going through the initial setup,
3339 and so things may not be stable yet. */
3340 rs->starting_up = 1;
3341
3342 /* The first packet we send to the target is the optional "supported
3343 packets" request. If the target can answer this, it will tell us
3344 which later probes to skip. */
3345 remote_query_supported ();
3346
3347 /* If the stub wants to get a QAllow, compose one and send it. */
3348 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3349 remote_set_permissions ();
3350
3351 /* Next, we possibly activate noack mode.
3352
3353 If the QStartNoAckMode packet configuration is set to AUTO,
3354 enable noack mode if the stub reported a wish for it with
3355 qSupported.
3356
3357 If set to TRUE, then enable noack mode even if the stub didn't
3358 report it in qSupported. If the stub doesn't reply OK, the
3359 session ends with an error.
3360
3361 If FALSE, then don't activate noack mode, regardless of what the
3362 stub claimed should be the default with qSupported. */
3363
3364 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3365
3366 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3367 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3368 && noack_config->support == PACKET_ENABLE))
3369 {
3370 putpkt ("QStartNoAckMode");
3371 getpkt (&rs->buf, &rs->buf_size, 0);
3372 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3373 rs->noack_mode = 1;
3374 }
3375
3376 if (extended_p)
3377 {
3378 /* Tell the remote that we are using the extended protocol. */
3379 putpkt ("!");
3380 getpkt (&rs->buf, &rs->buf_size, 0);
3381 }
3382
3383 /* Let the target know which signals it is allowed to pass down to
3384 the program. */
3385 update_signals_program_target ();
3386
3387 /* Next, if the target can specify a description, read it. We do
3388 this before anything involving memory or registers. */
3389 target_find_description ();
3390
3391 /* Next, now that we know something about the target, update the
3392 address spaces in the program spaces. */
3393 update_address_spaces ();
3394
3395 /* On OSs where the list of libraries is global to all
3396 processes, we fetch them early. */
3397 if (gdbarch_has_global_solist (target_gdbarch ()))
3398 solib_add (NULL, from_tty, target, auto_solib_add);
3399
3400 if (non_stop)
3401 {
3402 if (!rs->non_stop_aware)
3403 error (_("Non-stop mode requested, but remote "
3404 "does not support non-stop"));
3405
3406 putpkt ("QNonStop:1");
3407 getpkt (&rs->buf, &rs->buf_size, 0);
3408
3409 if (strcmp (rs->buf, "OK") != 0)
3410 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3411
3412 /* Find about threads and processes the stub is already
3413 controlling. We default to adding them in the running state.
3414 The '?' query below will then tell us about which threads are
3415 stopped. */
3416 remote_threads_info (target);
3417 }
3418 else if (rs->non_stop_aware)
3419 {
3420 /* Don't assume that the stub can operate in all-stop mode.
3421 Request it explicitly. */
3422 putpkt ("QNonStop:0");
3423 getpkt (&rs->buf, &rs->buf_size, 0);
3424
3425 if (strcmp (rs->buf, "OK") != 0)
3426 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3427 }
3428
3429 /* Check whether the target is running now. */
3430 putpkt ("?");
3431 getpkt (&rs->buf, &rs->buf_size, 0);
3432
3433 if (!non_stop)
3434 {
3435 ptid_t ptid;
3436 int fake_pid_p = 0;
3437 struct inferior *inf;
3438
3439 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3440 {
3441 if (!extended_p)
3442 error (_("The target is not running (try extended-remote?)"));
3443
3444 /* We're connected, but not running. Drop out before we
3445 call start_remote. */
3446 rs->starting_up = 0;
3447 return;
3448 }
3449 else
3450 {
3451 /* Save the reply for later. */
3452 wait_status = alloca (strlen (rs->buf) + 1);
3453 strcpy (wait_status, rs->buf);
3454 }
3455
3456 /* Let the stub know that we want it to return the thread. */
3457 set_continue_thread (minus_one_ptid);
3458
3459 add_current_inferior_and_thread (wait_status);
3460
3461 /* init_wait_for_inferior should be called before get_offsets in order
3462 to manage `inserted' flag in bp loc in a correct state.
3463 breakpoint_init_inferior, called from init_wait_for_inferior, set
3464 `inserted' flag to 0, while before breakpoint_re_set, called from
3465 start_remote, set `inserted' flag to 1. In the initialization of
3466 inferior, breakpoint_init_inferior should be called first, and then
3467 breakpoint_re_set can be called. If this order is broken, state of
3468 `inserted' flag is wrong, and cause some problems on breakpoint
3469 manipulation. */
3470 init_wait_for_inferior ();
3471
3472 get_offsets (); /* Get text, data & bss offsets. */
3473
3474 /* If we could not find a description using qXfer, and we know
3475 how to do it some other way, try again. This is not
3476 supported for non-stop; it could be, but it is tricky if
3477 there are no stopped threads when we connect. */
3478 if (remote_read_description_p (target)
3479 && gdbarch_target_desc (target_gdbarch ()) == NULL)
3480 {
3481 target_clear_description ();
3482 target_find_description ();
3483 }
3484
3485 /* Use the previously fetched status. */
3486 gdb_assert (wait_status != NULL);
3487 strcpy (rs->buf, wait_status);
3488 rs->cached_wait_status = 1;
3489
3490 immediate_quit--;
3491 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3492 }
3493 else
3494 {
3495 /* Clear WFI global state. Do this before finding about new
3496 threads and inferiors, and setting the current inferior.
3497 Otherwise we would clear the proceed status of the current
3498 inferior when we want its stop_soon state to be preserved
3499 (see notice_new_inferior). */
3500 init_wait_for_inferior ();
3501
3502 /* In non-stop, we will either get an "OK", meaning that there
3503 are no stopped threads at this time; or, a regular stop
3504 reply. In the latter case, there may be more than one thread
3505 stopped --- we pull them all out using the vStopped
3506 mechanism. */
3507 if (strcmp (rs->buf, "OK") != 0)
3508 {
3509 struct notif_client *notif = &notif_client_stop;
3510
3511 /* remote_notif_get_pending_replies acks this one, and gets
3512 the rest out. */
3513 notif_client_stop.pending_event
3514 = remote_notif_parse (notif, rs->buf);
3515 remote_notif_get_pending_events (notif);
3516
3517 /* Make sure that threads that were stopped remain
3518 stopped. */
3519 iterate_over_threads (set_stop_requested_callback, NULL);
3520 }
3521
3522 if (target_can_async_p ())
3523 target_async (inferior_event_handler, 0);
3524
3525 if (thread_count () == 0)
3526 {
3527 if (!extended_p)
3528 error (_("The target is not running (try extended-remote?)"));
3529
3530 /* We're connected, but not running. Drop out before we
3531 call start_remote. */
3532 rs->starting_up = 0;
3533 return;
3534 }
3535
3536 /* Let the stub know that we want it to return the thread. */
3537
3538 /* Force the stub to choose a thread. */
3539 set_general_thread (null_ptid);
3540
3541 /* Query it. */
3542 inferior_ptid = remote_current_thread (minus_one_ptid);
3543 if (ptid_equal (inferior_ptid, minus_one_ptid))
3544 error (_("remote didn't report the current thread in non-stop mode"));
3545
3546 get_offsets (); /* Get text, data & bss offsets. */
3547
3548 /* In non-stop mode, any cached wait status will be stored in
3549 the stop reply queue. */
3550 gdb_assert (wait_status == NULL);
3551
3552 /* Report all signals during attach/startup. */
3553 remote_pass_signals (0, NULL);
3554 }
3555
3556 /* If we connected to a live target, do some additional setup. */
3557 if (target_has_execution)
3558 {
3559 if (exec_bfd) /* No use without an exec file. */
3560 remote_check_symbols (symfile_objfile);
3561 }
3562
3563 /* Possibly the target has been engaged in a trace run started
3564 previously; find out where things are at. */
3565 if (remote_get_trace_status (current_trace_status ()) != -1)
3566 {
3567 struct uploaded_tp *uploaded_tps = NULL;
3568 struct uploaded_tsv *uploaded_tsvs = NULL;
3569
3570 if (current_trace_status ()->running)
3571 printf_filtered (_("Trace is already running on the target.\n"));
3572
3573 /* Get trace state variables first, they may be checked when
3574 parsing uploaded commands. */
3575
3576 remote_upload_trace_state_variables (&uploaded_tsvs);
3577
3578 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3579
3580 remote_upload_tracepoints (&uploaded_tps);
3581
3582 merge_uploaded_tracepoints (&uploaded_tps);
3583 }
3584
3585 /* The thread and inferior lists are now synchronized with the
3586 target, our symbols have been relocated, and we're merged the
3587 target's tracepoints with ours. We're done with basic start
3588 up. */
3589 rs->starting_up = 0;
3590
3591 /* If breakpoints are global, insert them now. */
3592 if (gdbarch_has_global_breakpoints (target_gdbarch ())
3593 && breakpoints_always_inserted_mode ())
3594 insert_breakpoints ();
3595 }
3596
3597 /* Open a connection to a remote debugger.
3598 NAME is the filename used for communication. */
3599
3600 static void
3601 remote_open (char *name, int from_tty)
3602 {
3603 remote_open_1 (name, from_tty, &remote_ops, 0);
3604 }
3605
3606 /* Open a connection to a remote debugger using the extended
3607 remote gdb protocol. NAME is the filename used for communication. */
3608
3609 static void
3610 extended_remote_open (char *name, int from_tty)
3611 {
3612 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3613 }
3614
3615 /* Generic code for opening a connection to a remote target. */
3616
3617 static void
3618 init_all_packet_configs (void)
3619 {
3620 int i;
3621
3622 for (i = 0; i < PACKET_MAX; i++)
3623 update_packet_config (&remote_protocol_packets[i]);
3624 }
3625
3626 /* Symbol look-up. */
3627
3628 static void
3629 remote_check_symbols (struct objfile *objfile)
3630 {
3631 struct remote_state *rs = get_remote_state ();
3632 char *msg, *reply, *tmp;
3633 struct minimal_symbol *sym;
3634 int end;
3635
3636 /* The remote side has no concept of inferiors that aren't running
3637 yet, it only knows about running processes. If we're connected
3638 but our current inferior is not running, we should not invite the
3639 remote target to request symbol lookups related to its
3640 (unrelated) current process. */
3641 if (!target_has_execution)
3642 return;
3643
3644 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3645 return;
3646
3647 /* Make sure the remote is pointing at the right process. Note
3648 there's no way to select "no process". */
3649 set_general_process ();
3650
3651 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3652 because we need both at the same time. */
3653 msg = alloca (get_remote_packet_size ());
3654
3655 /* Invite target to request symbol lookups. */
3656
3657 putpkt ("qSymbol::");
3658 getpkt (&rs->buf, &rs->buf_size, 0);
3659 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3660 reply = rs->buf;
3661
3662 while (strncmp (reply, "qSymbol:", 8) == 0)
3663 {
3664 tmp = &reply[8];
3665 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3666 msg[end] = '\0';
3667 sym = lookup_minimal_symbol (msg, NULL, NULL);
3668 if (sym == NULL)
3669 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3670 else
3671 {
3672 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
3673 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3674
3675 /* If this is a function address, return the start of code
3676 instead of any data function descriptor. */
3677 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3678 sym_addr,
3679 &current_target);
3680
3681 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3682 phex_nz (sym_addr, addr_size), &reply[8]);
3683 }
3684
3685 putpkt (msg);
3686 getpkt (&rs->buf, &rs->buf_size, 0);
3687 reply = rs->buf;
3688 }
3689 }
3690
3691 static struct serial *
3692 remote_serial_open (char *name)
3693 {
3694 static int udp_warning = 0;
3695
3696 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3697 of in ser-tcp.c, because it is the remote protocol assuming that the
3698 serial connection is reliable and not the serial connection promising
3699 to be. */
3700 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3701 {
3702 warning (_("The remote protocol may be unreliable over UDP.\n"
3703 "Some events may be lost, rendering further debugging "
3704 "impossible."));
3705 udp_warning = 1;
3706 }
3707
3708 return serial_open (name);
3709 }
3710
3711 /* Inform the target of our permission settings. The permission flags
3712 work without this, but if the target knows the settings, it can do
3713 a couple things. First, it can add its own check, to catch cases
3714 that somehow manage to get by the permissions checks in target
3715 methods. Second, if the target is wired to disallow particular
3716 settings (for instance, a system in the field that is not set up to
3717 be able to stop at a breakpoint), it can object to any unavailable
3718 permissions. */
3719
3720 void
3721 remote_set_permissions (void)
3722 {
3723 struct remote_state *rs = get_remote_state ();
3724
3725 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
3726 "WriteReg:%x;WriteMem:%x;"
3727 "InsertBreak:%x;InsertTrace:%x;"
3728 "InsertFastTrace:%x;Stop:%x",
3729 may_write_registers, may_write_memory,
3730 may_insert_breakpoints, may_insert_tracepoints,
3731 may_insert_fast_tracepoints, may_stop);
3732 putpkt (rs->buf);
3733 getpkt (&rs->buf, &rs->buf_size, 0);
3734
3735 /* If the target didn't like the packet, warn the user. Do not try
3736 to undo the user's settings, that would just be maddening. */
3737 if (strcmp (rs->buf, "OK") != 0)
3738 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3739 }
3740
3741 /* This type describes each known response to the qSupported
3742 packet. */
3743 struct protocol_feature
3744 {
3745 /* The name of this protocol feature. */
3746 const char *name;
3747
3748 /* The default for this protocol feature. */
3749 enum packet_support default_support;
3750
3751 /* The function to call when this feature is reported, or after
3752 qSupported processing if the feature is not supported.
3753 The first argument points to this structure. The second
3754 argument indicates whether the packet requested support be
3755 enabled, disabled, or probed (or the default, if this function
3756 is being called at the end of processing and this feature was
3757 not reported). The third argument may be NULL; if not NULL, it
3758 is a NUL-terminated string taken from the packet following
3759 this feature's name and an equals sign. */
3760 void (*func) (const struct protocol_feature *, enum packet_support,
3761 const char *);
3762
3763 /* The corresponding packet for this feature. Only used if
3764 FUNC is remote_supported_packet. */
3765 int packet;
3766 };
3767
3768 static void
3769 remote_supported_packet (const struct protocol_feature *feature,
3770 enum packet_support support,
3771 const char *argument)
3772 {
3773 if (argument)
3774 {
3775 warning (_("Remote qSupported response supplied an unexpected value for"
3776 " \"%s\"."), feature->name);
3777 return;
3778 }
3779
3780 if (remote_protocol_packets[feature->packet].support
3781 == PACKET_SUPPORT_UNKNOWN)
3782 remote_protocol_packets[feature->packet].support = support;
3783 }
3784
3785 static void
3786 remote_packet_size (const struct protocol_feature *feature,
3787 enum packet_support support, const char *value)
3788 {
3789 struct remote_state *rs = get_remote_state ();
3790
3791 int packet_size;
3792 char *value_end;
3793
3794 if (support != PACKET_ENABLE)
3795 return;
3796
3797 if (value == NULL || *value == '\0')
3798 {
3799 warning (_("Remote target reported \"%s\" without a size."),
3800 feature->name);
3801 return;
3802 }
3803
3804 errno = 0;
3805 packet_size = strtol (value, &value_end, 16);
3806 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3807 {
3808 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3809 feature->name, value);
3810 return;
3811 }
3812
3813 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3814 {
3815 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3816 packet_size, MAX_REMOTE_PACKET_SIZE);
3817 packet_size = MAX_REMOTE_PACKET_SIZE;
3818 }
3819
3820 /* Record the new maximum packet size. */
3821 rs->explicit_packet_size = packet_size;
3822 }
3823
3824 static void
3825 remote_multi_process_feature (const struct protocol_feature *feature,
3826 enum packet_support support, const char *value)
3827 {
3828 struct remote_state *rs = get_remote_state ();
3829
3830 rs->multi_process_aware = (support == PACKET_ENABLE);
3831 }
3832
3833 static void
3834 remote_non_stop_feature (const struct protocol_feature *feature,
3835 enum packet_support support, const char *value)
3836 {
3837 struct remote_state *rs = get_remote_state ();
3838
3839 rs->non_stop_aware = (support == PACKET_ENABLE);
3840 }
3841
3842 static void
3843 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3844 enum packet_support support,
3845 const char *value)
3846 {
3847 struct remote_state *rs = get_remote_state ();
3848
3849 rs->cond_tracepoints = (support == PACKET_ENABLE);
3850 }
3851
3852 static void
3853 remote_cond_breakpoint_feature (const struct protocol_feature *feature,
3854 enum packet_support support,
3855 const char *value)
3856 {
3857 struct remote_state *rs = get_remote_state ();
3858
3859 rs->cond_breakpoints = (support == PACKET_ENABLE);
3860 }
3861
3862 static void
3863 remote_breakpoint_commands_feature (const struct protocol_feature *feature,
3864 enum packet_support support,
3865 const char *value)
3866 {
3867 struct remote_state *rs = get_remote_state ();
3868
3869 rs->breakpoint_commands = (support == PACKET_ENABLE);
3870 }
3871
3872 static void
3873 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3874 enum packet_support support,
3875 const char *value)
3876 {
3877 struct remote_state *rs = get_remote_state ();
3878
3879 rs->fast_tracepoints = (support == PACKET_ENABLE);
3880 }
3881
3882 static void
3883 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3884 enum packet_support support,
3885 const char *value)
3886 {
3887 struct remote_state *rs = get_remote_state ();
3888
3889 rs->static_tracepoints = (support == PACKET_ENABLE);
3890 }
3891
3892 static void
3893 remote_install_in_trace_feature (const struct protocol_feature *feature,
3894 enum packet_support support,
3895 const char *value)
3896 {
3897 struct remote_state *rs = get_remote_state ();
3898
3899 rs->install_in_trace = (support == PACKET_ENABLE);
3900 }
3901
3902 static void
3903 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3904 enum packet_support support,
3905 const char *value)
3906 {
3907 struct remote_state *rs = get_remote_state ();
3908
3909 rs->disconnected_tracing = (support == PACKET_ENABLE);
3910 }
3911
3912 static void
3913 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3914 enum packet_support support,
3915 const char *value)
3916 {
3917 struct remote_state *rs = get_remote_state ();
3918
3919 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3920 }
3921
3922 static void
3923 remote_string_tracing_feature (const struct protocol_feature *feature,
3924 enum packet_support support,
3925 const char *value)
3926 {
3927 struct remote_state *rs = get_remote_state ();
3928
3929 rs->string_tracing = (support == PACKET_ENABLE);
3930 }
3931
3932 static struct protocol_feature remote_protocol_features[] = {
3933 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3934 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3935 PACKET_qXfer_auxv },
3936 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3937 PACKET_qXfer_features },
3938 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3939 PACKET_qXfer_libraries },
3940 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
3941 PACKET_qXfer_libraries_svr4 },
3942 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3943 PACKET_qXfer_memory_map },
3944 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3945 PACKET_qXfer_spu_read },
3946 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3947 PACKET_qXfer_spu_write },
3948 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3949 PACKET_qXfer_osdata },
3950 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3951 PACKET_qXfer_threads },
3952 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
3953 PACKET_qXfer_traceframe_info },
3954 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3955 PACKET_QPassSignals },
3956 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
3957 PACKET_QProgramSignals },
3958 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3959 PACKET_QStartNoAckMode },
3960 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3961 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3962 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3963 PACKET_qXfer_siginfo_read },
3964 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3965 PACKET_qXfer_siginfo_write },
3966 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3967 PACKET_ConditionalTracepoints },
3968 { "ConditionalBreakpoints", PACKET_DISABLE, remote_cond_breakpoint_feature,
3969 PACKET_ConditionalBreakpoints },
3970 { "BreakpointCommands", PACKET_DISABLE, remote_breakpoint_commands_feature,
3971 PACKET_BreakpointCommands },
3972 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3973 PACKET_FastTracepoints },
3974 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3975 PACKET_StaticTracepoints },
3976 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
3977 PACKET_InstallInTrace},
3978 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3979 -1 },
3980 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3981 PACKET_bc },
3982 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3983 PACKET_bs },
3984 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3985 PACKET_TracepointSource },
3986 { "QAllow", PACKET_DISABLE, remote_supported_packet,
3987 PACKET_QAllow },
3988 { "EnableDisableTracepoints", PACKET_DISABLE,
3989 remote_enable_disable_tracepoint_feature, -1 },
3990 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
3991 PACKET_qXfer_fdpic },
3992 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
3993 PACKET_qXfer_uib },
3994 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
3995 PACKET_QDisableRandomization },
3996 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
3997 { "QTBuffer:size", PACKET_DISABLE,
3998 remote_supported_packet, PACKET_QTBuffer_size},
3999 { "tracenz", PACKET_DISABLE,
4000 remote_string_tracing_feature, -1 },
4001 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4002 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4003 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4004 PACKET_qXfer_btrace }
4005 };
4006
4007 static char *remote_support_xml;
4008
4009 /* Register string appended to "xmlRegisters=" in qSupported query. */
4010
4011 void
4012 register_remote_support_xml (const char *xml)
4013 {
4014 #if defined(HAVE_LIBEXPAT)
4015 if (remote_support_xml == NULL)
4016 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4017 else
4018 {
4019 char *copy = xstrdup (remote_support_xml + 13);
4020 char *p = strtok (copy, ",");
4021
4022 do
4023 {
4024 if (strcmp (p, xml) == 0)
4025 {
4026 /* already there */
4027 xfree (copy);
4028 return;
4029 }
4030 }
4031 while ((p = strtok (NULL, ",")) != NULL);
4032 xfree (copy);
4033
4034 remote_support_xml = reconcat (remote_support_xml,
4035 remote_support_xml, ",", xml,
4036 (char *) NULL);
4037 }
4038 #endif
4039 }
4040
4041 static char *
4042 remote_query_supported_append (char *msg, const char *append)
4043 {
4044 if (msg)
4045 return reconcat (msg, msg, ";", append, (char *) NULL);
4046 else
4047 return xstrdup (append);
4048 }
4049
4050 static void
4051 remote_query_supported (void)
4052 {
4053 struct remote_state *rs = get_remote_state ();
4054 char *next;
4055 int i;
4056 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4057
4058 /* The packet support flags are handled differently for this packet
4059 than for most others. We treat an error, a disabled packet, and
4060 an empty response identically: any features which must be reported
4061 to be used will be automatically disabled. An empty buffer
4062 accomplishes this, since that is also the representation for a list
4063 containing no features. */
4064
4065 rs->buf[0] = 0;
4066 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
4067 {
4068 char *q = NULL;
4069 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4070
4071 q = remote_query_supported_append (q, "multiprocess+");
4072
4073 if (remote_support_xml)
4074 q = remote_query_supported_append (q, remote_support_xml);
4075
4076 q = remote_query_supported_append (q, "qRelocInsn+");
4077
4078 q = reconcat (q, "qSupported:", q, (char *) NULL);
4079 putpkt (q);
4080
4081 do_cleanups (old_chain);
4082
4083 getpkt (&rs->buf, &rs->buf_size, 0);
4084
4085 /* If an error occured, warn, but do not return - just reset the
4086 buffer to empty and go on to disable features. */
4087 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4088 == PACKET_ERROR)
4089 {
4090 warning (_("Remote failure reply: %s"), rs->buf);
4091 rs->buf[0] = 0;
4092 }
4093 }
4094
4095 memset (seen, 0, sizeof (seen));
4096
4097 next = rs->buf;
4098 while (*next)
4099 {
4100 enum packet_support is_supported;
4101 char *p, *end, *name_end, *value;
4102
4103 /* First separate out this item from the rest of the packet. If
4104 there's another item after this, we overwrite the separator
4105 (terminated strings are much easier to work with). */
4106 p = next;
4107 end = strchr (p, ';');
4108 if (end == NULL)
4109 {
4110 end = p + strlen (p);
4111 next = end;
4112 }
4113 else
4114 {
4115 *end = '\0';
4116 next = end + 1;
4117
4118 if (end == p)
4119 {
4120 warning (_("empty item in \"qSupported\" response"));
4121 continue;
4122 }
4123 }
4124
4125 name_end = strchr (p, '=');
4126 if (name_end)
4127 {
4128 /* This is a name=value entry. */
4129 is_supported = PACKET_ENABLE;
4130 value = name_end + 1;
4131 *name_end = '\0';
4132 }
4133 else
4134 {
4135 value = NULL;
4136 switch (end[-1])
4137 {
4138 case '+':
4139 is_supported = PACKET_ENABLE;
4140 break;
4141
4142 case '-':
4143 is_supported = PACKET_DISABLE;
4144 break;
4145
4146 case '?':
4147 is_supported = PACKET_SUPPORT_UNKNOWN;
4148 break;
4149
4150 default:
4151 warning (_("unrecognized item \"%s\" "
4152 "in \"qSupported\" response"), p);
4153 continue;
4154 }
4155 end[-1] = '\0';
4156 }
4157
4158 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4159 if (strcmp (remote_protocol_features[i].name, p) == 0)
4160 {
4161 const struct protocol_feature *feature;
4162
4163 seen[i] = 1;
4164 feature = &remote_protocol_features[i];
4165 feature->func (feature, is_supported, value);
4166 break;
4167 }
4168 }
4169
4170 /* If we increased the packet size, make sure to increase the global
4171 buffer size also. We delay this until after parsing the entire
4172 qSupported packet, because this is the same buffer we were
4173 parsing. */
4174 if (rs->buf_size < rs->explicit_packet_size)
4175 {
4176 rs->buf_size = rs->explicit_packet_size;
4177 rs->buf = xrealloc (rs->buf, rs->buf_size);
4178 }
4179
4180 /* Handle the defaults for unmentioned features. */
4181 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4182 if (!seen[i])
4183 {
4184 const struct protocol_feature *feature;
4185
4186 feature = &remote_protocol_features[i];
4187 feature->func (feature, feature->default_support, NULL);
4188 }
4189 }
4190
4191
4192 static void
4193 remote_open_1 (char *name, int from_tty,
4194 struct target_ops *target, int extended_p)
4195 {
4196 struct remote_state *rs = get_remote_state ();
4197
4198 if (name == 0)
4199 error (_("To open a remote debug connection, you need to specify what\n"
4200 "serial device is attached to the remote system\n"
4201 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4202
4203 /* See FIXME above. */
4204 if (!target_async_permitted)
4205 wait_forever_enabled_p = 1;
4206
4207 /* If we're connected to a running target, target_preopen will kill it.
4208 But if we're connected to a target system with no running process,
4209 then we will still be connected when it returns. Ask this question
4210 first, before target_preopen has a chance to kill anything. */
4211 if (remote_desc != NULL && !have_inferiors ())
4212 {
4213 if (!from_tty
4214 || query (_("Already connected to a remote target. Disconnect? ")))
4215 pop_target ();
4216 else
4217 error (_("Still connected."));
4218 }
4219
4220 target_preopen (from_tty);
4221
4222 unpush_target (target);
4223
4224 /* This time without a query. If we were connected to an
4225 extended-remote target and target_preopen killed the running
4226 process, we may still be connected. If we are starting "target
4227 remote" now, the extended-remote target will not have been
4228 removed by unpush_target. */
4229 if (remote_desc != NULL && !have_inferiors ())
4230 pop_target ();
4231
4232 /* Make sure we send the passed signals list the next time we resume. */
4233 xfree (last_pass_packet);
4234 last_pass_packet = NULL;
4235
4236 /* Make sure we send the program signals list the next time we
4237 resume. */
4238 xfree (last_program_signals_packet);
4239 last_program_signals_packet = NULL;
4240
4241 remote_fileio_reset ();
4242 reopen_exec_file ();
4243 reread_symbols ();
4244
4245 remote_desc = remote_serial_open (name);
4246 if (!remote_desc)
4247 perror_with_name (name);
4248
4249 if (baud_rate != -1)
4250 {
4251 if (serial_setbaudrate (remote_desc, baud_rate))
4252 {
4253 /* The requested speed could not be set. Error out to
4254 top level after closing remote_desc. Take care to
4255 set remote_desc to NULL to avoid closing remote_desc
4256 more than once. */
4257 serial_close (remote_desc);
4258 remote_desc = NULL;
4259 perror_with_name (name);
4260 }
4261 }
4262
4263 serial_raw (remote_desc);
4264
4265 /* If there is something sitting in the buffer we might take it as a
4266 response to a command, which would be bad. */
4267 serial_flush_input (remote_desc);
4268
4269 if (from_tty)
4270 {
4271 puts_filtered ("Remote debugging using ");
4272 puts_filtered (name);
4273 puts_filtered ("\n");
4274 }
4275 push_target (target); /* Switch to using remote target now. */
4276
4277 /* Register extra event sources in the event loop. */
4278 remote_async_inferior_event_token
4279 = create_async_event_handler (remote_async_inferior_event_handler,
4280 NULL);
4281 remote_notif_register_async_event_handler ();
4282
4283 /* Reset the target state; these things will be queried either by
4284 remote_query_supported or as they are needed. */
4285 init_all_packet_configs ();
4286 rs->cached_wait_status = 0;
4287 rs->explicit_packet_size = 0;
4288 rs->noack_mode = 0;
4289 rs->multi_process_aware = 0;
4290 rs->extended = extended_p;
4291 rs->non_stop_aware = 0;
4292 rs->waiting_for_stop_reply = 0;
4293 rs->ctrlc_pending_p = 0;
4294
4295 general_thread = not_sent_ptid;
4296 continue_thread = not_sent_ptid;
4297 remote_traceframe_number = -1;
4298
4299 /* Probe for ability to use "ThreadInfo" query, as required. */
4300 use_threadinfo_query = 1;
4301 use_threadextra_query = 1;
4302
4303 if (target_async_permitted)
4304 {
4305 /* With this target we start out by owning the terminal. */
4306 remote_async_terminal_ours_p = 1;
4307
4308 /* FIXME: cagney/1999-09-23: During the initial connection it is
4309 assumed that the target is already ready and able to respond to
4310 requests. Unfortunately remote_start_remote() eventually calls
4311 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4312 around this. Eventually a mechanism that allows
4313 wait_for_inferior() to expect/get timeouts will be
4314 implemented. */
4315 wait_forever_enabled_p = 0;
4316 }
4317
4318 /* First delete any symbols previously loaded from shared libraries. */
4319 no_shared_libraries (NULL, 0);
4320
4321 /* Start afresh. */
4322 init_thread_list ();
4323
4324 /* Start the remote connection. If error() or QUIT, discard this
4325 target (we'd otherwise be in an inconsistent state) and then
4326 propogate the error on up the exception chain. This ensures that
4327 the caller doesn't stumble along blindly assuming that the
4328 function succeeded. The CLI doesn't have this problem but other
4329 UI's, such as MI do.
4330
4331 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4332 this function should return an error indication letting the
4333 caller restore the previous state. Unfortunately the command
4334 ``target remote'' is directly wired to this function making that
4335 impossible. On a positive note, the CLI side of this problem has
4336 been fixed - the function set_cmd_context() makes it possible for
4337 all the ``target ....'' commands to share a common callback
4338 function. See cli-dump.c. */
4339 {
4340 volatile struct gdb_exception ex;
4341
4342 TRY_CATCH (ex, RETURN_MASK_ALL)
4343 {
4344 remote_start_remote (from_tty, target, extended_p);
4345 }
4346 if (ex.reason < 0)
4347 {
4348 /* Pop the partially set up target - unless something else did
4349 already before throwing the exception. */
4350 if (remote_desc != NULL)
4351 pop_target ();
4352 if (target_async_permitted)
4353 wait_forever_enabled_p = 1;
4354 throw_exception (ex);
4355 }
4356 }
4357
4358 if (target_async_permitted)
4359 wait_forever_enabled_p = 1;
4360 }
4361
4362 /* This takes a program previously attached to and detaches it. After
4363 this is done, GDB can be used to debug some other program. We
4364 better not have left any breakpoints in the target program or it'll
4365 die when it hits one. */
4366
4367 static void
4368 remote_detach_1 (char *args, int from_tty, int extended)
4369 {
4370 int pid = ptid_get_pid (inferior_ptid);
4371 struct remote_state *rs = get_remote_state ();
4372
4373 if (args)
4374 error (_("Argument given to \"detach\" when remotely debugging."));
4375
4376 if (!target_has_execution)
4377 error (_("No process to detach from."));
4378
4379 if (from_tty)
4380 {
4381 char *exec_file = get_exec_file (0);
4382 if (exec_file == NULL)
4383 exec_file = "";
4384 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4385 target_pid_to_str (pid_to_ptid (pid)));
4386 gdb_flush (gdb_stdout);
4387 }
4388
4389 /* Tell the remote target to detach. */
4390 if (remote_multi_process_p (rs))
4391 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
4392 else
4393 strcpy (rs->buf, "D");
4394
4395 putpkt (rs->buf);
4396 getpkt (&rs->buf, &rs->buf_size, 0);
4397
4398 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4399 ;
4400 else if (rs->buf[0] == '\0')
4401 error (_("Remote doesn't know how to detach"));
4402 else
4403 error (_("Can't detach process."));
4404
4405 if (from_tty && !extended)
4406 puts_filtered (_("Ending remote debugging.\n"));
4407
4408 target_mourn_inferior ();
4409 }
4410
4411 static void
4412 remote_detach (struct target_ops *ops, char *args, int from_tty)
4413 {
4414 remote_detach_1 (args, from_tty, 0);
4415 }
4416
4417 static void
4418 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4419 {
4420 remote_detach_1 (args, from_tty, 1);
4421 }
4422
4423 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4424
4425 static void
4426 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4427 {
4428 if (args)
4429 error (_("Argument given to \"disconnect\" when remotely debugging."));
4430
4431 /* Make sure we unpush even the extended remote targets; mourn
4432 won't do it. So call remote_mourn_1 directly instead of
4433 target_mourn_inferior. */
4434 remote_mourn_1 (target);
4435
4436 if (from_tty)
4437 puts_filtered ("Ending remote debugging.\n");
4438 }
4439
4440 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4441 be chatty about it. */
4442
4443 static void
4444 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4445 {
4446 struct remote_state *rs = get_remote_state ();
4447 int pid;
4448 char *wait_status = NULL;
4449
4450 pid = parse_pid_to_attach (args);
4451
4452 /* Remote PID can be freely equal to getpid, do not check it here the same
4453 way as in other targets. */
4454
4455 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4456 error (_("This target does not support attaching to a process"));
4457
4458 if (from_tty)
4459 {
4460 char *exec_file = get_exec_file (0);
4461
4462 if (exec_file)
4463 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4464 target_pid_to_str (pid_to_ptid (pid)));
4465 else
4466 printf_unfiltered (_("Attaching to %s\n"),
4467 target_pid_to_str (pid_to_ptid (pid)));
4468
4469 gdb_flush (gdb_stdout);
4470 }
4471
4472 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
4473 putpkt (rs->buf);
4474 getpkt (&rs->buf, &rs->buf_size, 0);
4475
4476 if (packet_ok (rs->buf,
4477 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4478 {
4479 if (!non_stop)
4480 {
4481 /* Save the reply for later. */
4482 wait_status = alloca (strlen (rs->buf) + 1);
4483 strcpy (wait_status, rs->buf);
4484 }
4485 else if (strcmp (rs->buf, "OK") != 0)
4486 error (_("Attaching to %s failed with: %s"),
4487 target_pid_to_str (pid_to_ptid (pid)),
4488 rs->buf);
4489 }
4490 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4491 error (_("This target does not support attaching to a process"));
4492 else
4493 error (_("Attaching to %s failed"),
4494 target_pid_to_str (pid_to_ptid (pid)));
4495
4496 set_current_inferior (remote_add_inferior (0, pid, 1));
4497
4498 inferior_ptid = pid_to_ptid (pid);
4499
4500 if (non_stop)
4501 {
4502 struct thread_info *thread;
4503
4504 /* Get list of threads. */
4505 remote_threads_info (target);
4506
4507 thread = first_thread_of_process (pid);
4508 if (thread)
4509 inferior_ptid = thread->ptid;
4510 else
4511 inferior_ptid = pid_to_ptid (pid);
4512
4513 /* Invalidate our notion of the remote current thread. */
4514 record_currthread (minus_one_ptid);
4515 }
4516 else
4517 {
4518 /* Now, if we have thread information, update inferior_ptid. */
4519 inferior_ptid = remote_current_thread (inferior_ptid);
4520
4521 /* Add the main thread to the thread list. */
4522 add_thread_silent (inferior_ptid);
4523 }
4524
4525 /* Next, if the target can specify a description, read it. We do
4526 this before anything involving memory or registers. */
4527 target_find_description ();
4528
4529 if (!non_stop)
4530 {
4531 /* Use the previously fetched status. */
4532 gdb_assert (wait_status != NULL);
4533
4534 if (target_can_async_p ())
4535 {
4536 struct notif_event *reply
4537 = remote_notif_parse (&notif_client_stop, wait_status);
4538
4539 push_stop_reply ((struct stop_reply *) reply);
4540
4541 target_async (inferior_event_handler, 0);
4542 }
4543 else
4544 {
4545 gdb_assert (wait_status != NULL);
4546 strcpy (rs->buf, wait_status);
4547 rs->cached_wait_status = 1;
4548 }
4549 }
4550 else
4551 gdb_assert (wait_status == NULL);
4552 }
4553
4554 static void
4555 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4556 {
4557 extended_remote_attach_1 (ops, args, from_tty);
4558 }
4559
4560 /* Convert hex digit A to a number. */
4561
4562 static int
4563 fromhex (int a)
4564 {
4565 if (a >= '0' && a <= '9')
4566 return a - '0';
4567 else if (a >= 'a' && a <= 'f')
4568 return a - 'a' + 10;
4569 else if (a >= 'A' && a <= 'F')
4570 return a - 'A' + 10;
4571 else
4572 error (_("Reply contains invalid hex digit %d"), a);
4573 }
4574
4575 int
4576 hex2bin (const char *hex, gdb_byte *bin, int count)
4577 {
4578 int i;
4579
4580 for (i = 0; i < count; i++)
4581 {
4582 if (hex[0] == 0 || hex[1] == 0)
4583 {
4584 /* Hex string is short, or of uneven length.
4585 Return the count that has been converted so far. */
4586 return i;
4587 }
4588 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4589 hex += 2;
4590 }
4591 return i;
4592 }
4593
4594 /* Convert number NIB to a hex digit. */
4595
4596 static int
4597 tohex (int nib)
4598 {
4599 if (nib < 10)
4600 return '0' + nib;
4601 else
4602 return 'a' + nib - 10;
4603 }
4604
4605 int
4606 bin2hex (const gdb_byte *bin, char *hex, int count)
4607 {
4608 int i;
4609
4610 /* May use a length, or a nul-terminated string as input. */
4611 if (count == 0)
4612 count = strlen ((char *) bin);
4613
4614 for (i = 0; i < count; i++)
4615 {
4616 *hex++ = tohex ((*bin >> 4) & 0xf);
4617 *hex++ = tohex (*bin++ & 0xf);
4618 }
4619 *hex = 0;
4620 return i;
4621 }
4622 \f
4623 /* Check for the availability of vCont. This function should also check
4624 the response. */
4625
4626 static void
4627 remote_vcont_probe (struct remote_state *rs)
4628 {
4629 char *buf;
4630
4631 strcpy (rs->buf, "vCont?");
4632 putpkt (rs->buf);
4633 getpkt (&rs->buf, &rs->buf_size, 0);
4634 buf = rs->buf;
4635
4636 /* Make sure that the features we assume are supported. */
4637 if (strncmp (buf, "vCont", 5) == 0)
4638 {
4639 char *p = &buf[5];
4640 int support_s, support_S, support_c, support_C;
4641
4642 support_s = 0;
4643 support_S = 0;
4644 support_c = 0;
4645 support_C = 0;
4646 rs->support_vCont_t = 0;
4647 while (p && *p == ';')
4648 {
4649 p++;
4650 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4651 support_s = 1;
4652 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4653 support_S = 1;
4654 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4655 support_c = 1;
4656 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4657 support_C = 1;
4658 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4659 rs->support_vCont_t = 1;
4660
4661 p = strchr (p, ';');
4662 }
4663
4664 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4665 BUF will make packet_ok disable the packet. */
4666 if (!support_s || !support_S || !support_c || !support_C)
4667 buf[0] = 0;
4668 }
4669
4670 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4671 }
4672
4673 /* Helper function for building "vCont" resumptions. Write a
4674 resumption to P. ENDP points to one-passed-the-end of the buffer
4675 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4676 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4677 resumed thread should be single-stepped and/or signalled. If PTID
4678 equals minus_one_ptid, then all threads are resumed; if PTID
4679 represents a process, then all threads of the process are resumed;
4680 the thread to be stepped and/or signalled is given in the global
4681 INFERIOR_PTID. */
4682
4683 static char *
4684 append_resumption (char *p, char *endp,
4685 ptid_t ptid, int step, enum gdb_signal siggnal)
4686 {
4687 struct remote_state *rs = get_remote_state ();
4688
4689 if (step && siggnal != GDB_SIGNAL_0)
4690 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4691 else if (step)
4692 p += xsnprintf (p, endp - p, ";s");
4693 else if (siggnal != GDB_SIGNAL_0)
4694 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4695 else
4696 p += xsnprintf (p, endp - p, ";c");
4697
4698 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4699 {
4700 ptid_t nptid;
4701
4702 /* All (-1) threads of process. */
4703 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4704
4705 p += xsnprintf (p, endp - p, ":");
4706 p = write_ptid (p, endp, nptid);
4707 }
4708 else if (!ptid_equal (ptid, minus_one_ptid))
4709 {
4710 p += xsnprintf (p, endp - p, ":");
4711 p = write_ptid (p, endp, ptid);
4712 }
4713
4714 return p;
4715 }
4716
4717 /* Append a vCont continue-with-signal action for threads that have a
4718 non-zero stop signal. */
4719
4720 static char *
4721 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
4722 {
4723 struct thread_info *thread;
4724
4725 ALL_THREADS (thread)
4726 if (ptid_match (thread->ptid, ptid)
4727 && !ptid_equal (inferior_ptid, thread->ptid)
4728 && thread->suspend.stop_signal != GDB_SIGNAL_0
4729 && signal_pass_state (thread->suspend.stop_signal))
4730 {
4731 p = append_resumption (p, endp, thread->ptid,
4732 0, thread->suspend.stop_signal);
4733 thread->suspend.stop_signal = GDB_SIGNAL_0;
4734 }
4735
4736 return p;
4737 }
4738
4739 /* Resume the remote inferior by using a "vCont" packet. The thread
4740 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4741 resumed thread should be single-stepped and/or signalled. If PTID
4742 equals minus_one_ptid, then all threads are resumed; the thread to
4743 be stepped and/or signalled is given in the global INFERIOR_PTID.
4744 This function returns non-zero iff it resumes the inferior.
4745
4746 This function issues a strict subset of all possible vCont commands at the
4747 moment. */
4748
4749 static int
4750 remote_vcont_resume (ptid_t ptid, int step, enum gdb_signal siggnal)
4751 {
4752 struct remote_state *rs = get_remote_state ();
4753 char *p;
4754 char *endp;
4755
4756 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4757 remote_vcont_probe (rs);
4758
4759 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4760 return 0;
4761
4762 p = rs->buf;
4763 endp = rs->buf + get_remote_packet_size ();
4764
4765 /* If we could generate a wider range of packets, we'd have to worry
4766 about overflowing BUF. Should there be a generic
4767 "multi-part-packet" packet? */
4768
4769 p += xsnprintf (p, endp - p, "vCont");
4770
4771 if (ptid_equal (ptid, magic_null_ptid))
4772 {
4773 /* MAGIC_NULL_PTID means that we don't have any active threads,
4774 so we don't have any TID numbers the inferior will
4775 understand. Make sure to only send forms that do not specify
4776 a TID. */
4777 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4778 }
4779 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4780 {
4781 /* Resume all threads (of all processes, or of a single
4782 process), with preference for INFERIOR_PTID. This assumes
4783 inferior_ptid belongs to the set of all threads we are about
4784 to resume. */
4785 if (step || siggnal != GDB_SIGNAL_0)
4786 {
4787 /* Step inferior_ptid, with or without signal. */
4788 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4789 }
4790
4791 /* Also pass down any pending signaled resumption for other
4792 threads not the current. */
4793 p = append_pending_thread_resumptions (p, endp, ptid);
4794
4795 /* And continue others without a signal. */
4796 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
4797 }
4798 else
4799 {
4800 /* Scheduler locking; resume only PTID. */
4801 append_resumption (p, endp, ptid, step, siggnal);
4802 }
4803
4804 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4805 putpkt (rs->buf);
4806
4807 if (non_stop)
4808 {
4809 /* In non-stop, the stub replies to vCont with "OK". The stop
4810 reply will be reported asynchronously by means of a `%Stop'
4811 notification. */
4812 getpkt (&rs->buf, &rs->buf_size, 0);
4813 if (strcmp (rs->buf, "OK") != 0)
4814 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4815 }
4816
4817 return 1;
4818 }
4819
4820 /* Tell the remote machine to resume. */
4821
4822 static enum gdb_signal last_sent_signal = GDB_SIGNAL_0;
4823
4824 static int last_sent_step;
4825
4826 static void
4827 remote_resume (struct target_ops *ops,
4828 ptid_t ptid, int step, enum gdb_signal siggnal)
4829 {
4830 struct remote_state *rs = get_remote_state ();
4831 char *buf;
4832
4833 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
4834 (explained in remote-notif.c:handle_notification) so
4835 remote_notif_process is not called. We need find a place where
4836 it is safe to start a 'vNotif' sequence. It is good to do it
4837 before resuming inferior, because inferior was stopped and no RSP
4838 traffic at that moment. */
4839 if (!non_stop)
4840 remote_notif_process (&notif_client_stop);
4841
4842 last_sent_signal = siggnal;
4843 last_sent_step = step;
4844
4845 /* The vCont packet doesn't need to specify threads via Hc. */
4846 /* No reverse support (yet) for vCont. */
4847 if (execution_direction != EXEC_REVERSE)
4848 if (remote_vcont_resume (ptid, step, siggnal))
4849 goto done;
4850
4851 /* All other supported resume packets do use Hc, so set the continue
4852 thread. */
4853 if (ptid_equal (ptid, minus_one_ptid))
4854 set_continue_thread (any_thread_ptid);
4855 else
4856 set_continue_thread (ptid);
4857
4858 buf = rs->buf;
4859 if (execution_direction == EXEC_REVERSE)
4860 {
4861 /* We don't pass signals to the target in reverse exec mode. */
4862 if (info_verbose && siggnal != GDB_SIGNAL_0)
4863 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4864 siggnal);
4865
4866 if (step
4867 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4868 error (_("Remote reverse-step not supported."));
4869 if (!step
4870 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4871 error (_("Remote reverse-continue not supported."));
4872
4873 strcpy (buf, step ? "bs" : "bc");
4874 }
4875 else if (siggnal != GDB_SIGNAL_0)
4876 {
4877 buf[0] = step ? 'S' : 'C';
4878 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4879 buf[2] = tohex (((int) siggnal) & 0xf);
4880 buf[3] = '\0';
4881 }
4882 else
4883 strcpy (buf, step ? "s" : "c");
4884
4885 putpkt (buf);
4886
4887 done:
4888 /* We are about to start executing the inferior, let's register it
4889 with the event loop. NOTE: this is the one place where all the
4890 execution commands end up. We could alternatively do this in each
4891 of the execution commands in infcmd.c. */
4892 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4893 into infcmd.c in order to allow inferior function calls to work
4894 NOT asynchronously. */
4895 if (target_can_async_p ())
4896 target_async (inferior_event_handler, 0);
4897
4898 /* We've just told the target to resume. The remote server will
4899 wait for the inferior to stop, and then send a stop reply. In
4900 the mean time, we can't start another command/query ourselves
4901 because the stub wouldn't be ready to process it. This applies
4902 only to the base all-stop protocol, however. In non-stop (which
4903 only supports vCont), the stub replies with an "OK", and is
4904 immediate able to process further serial input. */
4905 if (!non_stop)
4906 rs->waiting_for_stop_reply = 1;
4907 }
4908 \f
4909
4910 /* Set up the signal handler for SIGINT, while the target is
4911 executing, ovewriting the 'regular' SIGINT signal handler. */
4912 static void
4913 initialize_sigint_signal_handler (void)
4914 {
4915 signal (SIGINT, handle_remote_sigint);
4916 }
4917
4918 /* Signal handler for SIGINT, while the target is executing. */
4919 static void
4920 handle_remote_sigint (int sig)
4921 {
4922 signal (sig, handle_remote_sigint_twice);
4923 mark_async_signal_handler (sigint_remote_token);
4924 }
4925
4926 /* Signal handler for SIGINT, installed after SIGINT has already been
4927 sent once. It will take effect the second time that the user sends
4928 a ^C. */
4929 static void
4930 handle_remote_sigint_twice (int sig)
4931 {
4932 signal (sig, handle_remote_sigint);
4933 mark_async_signal_handler (sigint_remote_twice_token);
4934 }
4935
4936 /* Perform the real interruption of the target execution, in response
4937 to a ^C. */
4938 static void
4939 async_remote_interrupt (gdb_client_data arg)
4940 {
4941 if (remote_debug)
4942 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt called\n");
4943
4944 target_stop (inferior_ptid);
4945 }
4946
4947 /* Perform interrupt, if the first attempt did not succeed. Just give
4948 up on the target alltogether. */
4949 void
4950 async_remote_interrupt_twice (gdb_client_data arg)
4951 {
4952 if (remote_debug)
4953 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt_twice called\n");
4954
4955 interrupt_query ();
4956 }
4957
4958 /* Reinstall the usual SIGINT handlers, after the target has
4959 stopped. */
4960 static void
4961 cleanup_sigint_signal_handler (void *dummy)
4962 {
4963 signal (SIGINT, handle_sigint);
4964 }
4965
4966 /* Send ^C to target to halt it. Target will respond, and send us a
4967 packet. */
4968 static void (*ofunc) (int);
4969
4970 /* The command line interface's stop routine. This function is installed
4971 as a signal handler for SIGINT. The first time a user requests a
4972 stop, we call remote_stop to send a break or ^C. If there is no
4973 response from the target (it didn't stop when the user requested it),
4974 we ask the user if he'd like to detach from the target. */
4975 static void
4976 remote_interrupt (int signo)
4977 {
4978 /* If this doesn't work, try more severe steps. */
4979 signal (signo, remote_interrupt_twice);
4980
4981 gdb_call_async_signal_handler (sigint_remote_token, 1);
4982 }
4983
4984 /* The user typed ^C twice. */
4985
4986 static void
4987 remote_interrupt_twice (int signo)
4988 {
4989 signal (signo, ofunc);
4990 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4991 signal (signo, remote_interrupt);
4992 }
4993
4994 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4995 thread, all threads of a remote process, or all threads of all
4996 processes. */
4997
4998 static void
4999 remote_stop_ns (ptid_t ptid)
5000 {
5001 struct remote_state *rs = get_remote_state ();
5002 char *p = rs->buf;
5003 char *endp = rs->buf + get_remote_packet_size ();
5004
5005 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
5006 remote_vcont_probe (rs);
5007
5008 if (!rs->support_vCont_t)
5009 error (_("Remote server does not support stopping threads"));
5010
5011 if (ptid_equal (ptid, minus_one_ptid)
5012 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5013 p += xsnprintf (p, endp - p, "vCont;t");
5014 else
5015 {
5016 ptid_t nptid;
5017
5018 p += xsnprintf (p, endp - p, "vCont;t:");
5019
5020 if (ptid_is_pid (ptid))
5021 /* All (-1) threads of process. */
5022 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
5023 else
5024 {
5025 /* Small optimization: if we already have a stop reply for
5026 this thread, no use in telling the stub we want this
5027 stopped. */
5028 if (peek_stop_reply (ptid))
5029 return;
5030
5031 nptid = ptid;
5032 }
5033
5034 write_ptid (p, endp, nptid);
5035 }
5036
5037 /* In non-stop, we get an immediate OK reply. The stop reply will
5038 come in asynchronously by notification. */
5039 putpkt (rs->buf);
5040 getpkt (&rs->buf, &rs->buf_size, 0);
5041 if (strcmp (rs->buf, "OK") != 0)
5042 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
5043 }
5044
5045 /* All-stop version of target_stop. Sends a break or a ^C to stop the
5046 remote target. It is undefined which thread of which process
5047 reports the stop. */
5048
5049 static void
5050 remote_stop_as (ptid_t ptid)
5051 {
5052 struct remote_state *rs = get_remote_state ();
5053
5054 rs->ctrlc_pending_p = 1;
5055
5056 /* If the inferior is stopped already, but the core didn't know
5057 about it yet, just ignore the request. The cached wait status
5058 will be collected in remote_wait. */
5059 if (rs->cached_wait_status)
5060 return;
5061
5062 /* Send interrupt_sequence to remote target. */
5063 send_interrupt_sequence ();
5064 }
5065
5066 /* This is the generic stop called via the target vector. When a target
5067 interrupt is requested, either by the command line or the GUI, we
5068 will eventually end up here. */
5069
5070 static void
5071 remote_stop (ptid_t ptid)
5072 {
5073 if (remote_debug)
5074 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
5075
5076 if (non_stop)
5077 remote_stop_ns (ptid);
5078 else
5079 remote_stop_as (ptid);
5080 }
5081
5082 /* Ask the user what to do when an interrupt is received. */
5083
5084 static void
5085 interrupt_query (void)
5086 {
5087 target_terminal_ours ();
5088
5089 if (target_can_async_p ())
5090 {
5091 signal (SIGINT, handle_sigint);
5092 deprecated_throw_reason (RETURN_QUIT);
5093 }
5094 else
5095 {
5096 if (query (_("Interrupted while waiting for the program.\n\
5097 Give up (and stop debugging it)? ")))
5098 {
5099 pop_target ();
5100 deprecated_throw_reason (RETURN_QUIT);
5101 }
5102 }
5103
5104 target_terminal_inferior ();
5105 }
5106
5107 /* Enable/disable target terminal ownership. Most targets can use
5108 terminal groups to control terminal ownership. Remote targets are
5109 different in that explicit transfer of ownership to/from GDB/target
5110 is required. */
5111
5112 static void
5113 remote_terminal_inferior (void)
5114 {
5115 if (!target_async_permitted)
5116 /* Nothing to do. */
5117 return;
5118
5119 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
5120 idempotent. The event-loop GDB talking to an asynchronous target
5121 with a synchronous command calls this function from both
5122 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
5123 transfer the terminal to the target when it shouldn't this guard
5124 can go away. */
5125 if (!remote_async_terminal_ours_p)
5126 return;
5127 delete_file_handler (input_fd);
5128 remote_async_terminal_ours_p = 0;
5129 initialize_sigint_signal_handler ();
5130 /* NOTE: At this point we could also register our selves as the
5131 recipient of all input. Any characters typed could then be
5132 passed on down to the target. */
5133 }
5134
5135 static void
5136 remote_terminal_ours (void)
5137 {
5138 if (!target_async_permitted)
5139 /* Nothing to do. */
5140 return;
5141
5142 /* See FIXME in remote_terminal_inferior. */
5143 if (remote_async_terminal_ours_p)
5144 return;
5145 cleanup_sigint_signal_handler (NULL);
5146 add_file_handler (input_fd, stdin_event_handler, 0);
5147 remote_async_terminal_ours_p = 1;
5148 }
5149
5150 static void
5151 remote_console_output (char *msg)
5152 {
5153 char *p;
5154
5155 for (p = msg; p[0] && p[1]; p += 2)
5156 {
5157 char tb[2];
5158 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
5159
5160 tb[0] = c;
5161 tb[1] = 0;
5162 fputs_unfiltered (tb, gdb_stdtarg);
5163 }
5164 gdb_flush (gdb_stdtarg);
5165 }
5166
5167 typedef struct cached_reg
5168 {
5169 int num;
5170 gdb_byte data[MAX_REGISTER_SIZE];
5171 } cached_reg_t;
5172
5173 DEF_VEC_O(cached_reg_t);
5174
5175 typedef struct stop_reply
5176 {
5177 struct notif_event base;
5178
5179 /* The identifier of the thread about this event */
5180 ptid_t ptid;
5181
5182 struct target_waitstatus ws;
5183
5184 /* Expedited registers. This makes remote debugging a bit more
5185 efficient for those targets that provide critical registers as
5186 part of their normal status mechanism (as another roundtrip to
5187 fetch them is avoided). */
5188 VEC(cached_reg_t) *regcache;
5189
5190 int stopped_by_watchpoint_p;
5191 CORE_ADDR watch_data_address;
5192
5193 int solibs_changed;
5194 int replay_event;
5195
5196 int core;
5197 } *stop_reply_p;
5198
5199 DECLARE_QUEUE_P (stop_reply_p);
5200 DEFINE_QUEUE_P (stop_reply_p);
5201 /* The list of already fetched and acknowledged stop events. This
5202 queue is used for notification Stop, and other notifications
5203 don't need queue for their events, because the notification events
5204 of Stop can't be consumed immediately, so that events should be
5205 queued first, and be consumed by remote_wait_{ns,as} one per
5206 time. Other notifications can consume their events immediately,
5207 so queue is not needed for them. */
5208 static QUEUE (stop_reply_p) *stop_reply_queue;
5209
5210 static void
5211 stop_reply_xfree (struct stop_reply *r)
5212 {
5213 if (r != NULL)
5214 {
5215 VEC_free (cached_reg_t, r->regcache);
5216 xfree (r);
5217 }
5218 }
5219
5220 static void
5221 remote_notif_stop_parse (struct notif_client *self, char *buf,
5222 struct notif_event *event)
5223 {
5224 remote_parse_stop_reply (buf, (struct stop_reply *) event);
5225 }
5226
5227 static void
5228 remote_notif_stop_ack (struct notif_client *self, char *buf,
5229 struct notif_event *event)
5230 {
5231 struct stop_reply *stop_reply = (struct stop_reply *) event;
5232
5233 /* acknowledge */
5234 putpkt ((char *) self->ack_command);
5235
5236 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
5237 /* We got an unknown stop reply. */
5238 error (_("Unknown stop reply"));
5239
5240 push_stop_reply (stop_reply);
5241 }
5242
5243 static int
5244 remote_notif_stop_can_get_pending_events (struct notif_client *self)
5245 {
5246 /* We can't get pending events in remote_notif_process for
5247 notification stop, and we have to do this in remote_wait_ns
5248 instead. If we fetch all queued events from stub, remote stub
5249 may exit and we have no chance to process them back in
5250 remote_wait_ns. */
5251 mark_async_event_handler (remote_async_inferior_event_token);
5252 return 0;
5253 }
5254
5255 static void
5256 stop_reply_dtr (struct notif_event *event)
5257 {
5258 struct stop_reply *r = (struct stop_reply *) event;
5259
5260 VEC_free (cached_reg_t, r->regcache);
5261 }
5262
5263 static struct notif_event *
5264 remote_notif_stop_alloc_reply (void)
5265 {
5266 struct notif_event *r
5267 = (struct notif_event *) XMALLOC (struct stop_reply);
5268
5269 r->dtr = stop_reply_dtr;
5270
5271 return r;
5272 }
5273
5274 /* A client of notification Stop. */
5275
5276 struct notif_client notif_client_stop =
5277 {
5278 "Stop",
5279 "vStopped",
5280 remote_notif_stop_parse,
5281 remote_notif_stop_ack,
5282 remote_notif_stop_can_get_pending_events,
5283 remote_notif_stop_alloc_reply,
5284 NULL,
5285 };
5286
5287 /* A parameter to pass data in and out. */
5288
5289 struct queue_iter_param
5290 {
5291 void *input;
5292 struct stop_reply *output;
5293 };
5294
5295 /* Remove all queue elements meet the condition it checks. */
5296
5297 static int
5298 remote_notif_remove_all (QUEUE (stop_reply_p) *q,
5299 QUEUE_ITER (stop_reply_p) *iter,
5300 stop_reply_p event,
5301 void *data)
5302 {
5303 struct queue_iter_param *param = data;
5304 struct inferior *inf = param->input;
5305
5306 if (inf == NULL || ptid_get_pid (event->ptid) == inf->pid)
5307 {
5308 stop_reply_xfree (event);
5309 QUEUE_remove_elem (stop_reply_p, q, iter);
5310 }
5311
5312 return 1;
5313 }
5314
5315 /* Discard all pending stop replies of inferior INF. If INF is NULL,
5316 discard everything. */
5317
5318 static void
5319 discard_pending_stop_replies (struct inferior *inf)
5320 {
5321 int i;
5322 struct queue_iter_param param;
5323 struct stop_reply *reply
5324 = (struct stop_reply *) notif_client_stop.pending_event;
5325
5326 /* Discard the in-flight notification. */
5327 if (reply != NULL
5328 && (inf == NULL
5329 || ptid_get_pid (reply->ptid) == inf->pid))
5330 {
5331 stop_reply_xfree (reply);
5332 notif_client_stop.pending_event = NULL;
5333 }
5334
5335 param.input = inf;
5336 param.output = NULL;
5337 /* Discard the stop replies we have already pulled with
5338 vStopped. */
5339 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5340 remote_notif_remove_all, &param);
5341 }
5342
5343 /* A parameter to pass data in and out. */
5344
5345 static int
5346 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
5347 QUEUE_ITER (stop_reply_p) *iter,
5348 stop_reply_p event,
5349 void *data)
5350 {
5351 struct queue_iter_param *param = data;
5352 ptid_t *ptid = param->input;
5353
5354 if (ptid_match (event->ptid, *ptid))
5355 {
5356 param->output = event;
5357 QUEUE_remove_elem (stop_reply_p, q, iter);
5358 return 0;
5359 }
5360
5361 return 1;
5362 }
5363
5364 /* Remove the first reply in 'stop_reply_queue' which matches
5365 PTID. */
5366
5367 static struct stop_reply *
5368 remote_notif_remove_queued_reply (ptid_t ptid)
5369 {
5370 struct queue_iter_param param;
5371
5372 param.input = &ptid;
5373 param.output = NULL;
5374
5375 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5376 remote_notif_remove_once_on_match, &param);
5377 if (notif_debug)
5378 fprintf_unfiltered (gdb_stdlog,
5379 "notif: discard queued event: 'Stop' in %s\n",
5380 target_pid_to_str (ptid));
5381
5382 return param.output;
5383 }
5384
5385 /* Look for a queued stop reply belonging to PTID. If one is found,
5386 remove it from the queue, and return it. Returns NULL if none is
5387 found. If there are still queued events left to process, tell the
5388 event loop to get back to target_wait soon. */
5389
5390 static struct stop_reply *
5391 queued_stop_reply (ptid_t ptid)
5392 {
5393 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
5394
5395 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
5396 /* There's still at least an event left. */
5397 mark_async_event_handler (remote_async_inferior_event_token);
5398
5399 return r;
5400 }
5401
5402 /* Push a fully parsed stop reply in the stop reply queue. Since we
5403 know that we now have at least one queued event left to pass to the
5404 core side, tell the event loop to get back to target_wait soon. */
5405
5406 static void
5407 push_stop_reply (struct stop_reply *new_event)
5408 {
5409 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
5410
5411 if (notif_debug)
5412 fprintf_unfiltered (gdb_stdlog,
5413 "notif: push 'Stop' %s to queue %d\n",
5414 target_pid_to_str (new_event->ptid),
5415 QUEUE_length (stop_reply_p,
5416 stop_reply_queue));
5417
5418 mark_async_event_handler (remote_async_inferior_event_token);
5419 }
5420
5421 static int
5422 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
5423 QUEUE_ITER (stop_reply_p) *iter,
5424 struct stop_reply *event,
5425 void *data)
5426 {
5427 ptid_t *ptid = data;
5428
5429 return !(ptid_equal (*ptid, event->ptid)
5430 && event->ws.kind == TARGET_WAITKIND_STOPPED);
5431 }
5432
5433 /* Returns true if we have a stop reply for PTID. */
5434
5435 static int
5436 peek_stop_reply (ptid_t ptid)
5437 {
5438 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
5439 stop_reply_match_ptid_and_ws, &ptid);
5440 }
5441
5442 /* Parse the stop reply in BUF. Either the function succeeds, and the
5443 result is stored in EVENT, or throws an error. */
5444
5445 static void
5446 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5447 {
5448 struct remote_arch_state *rsa = get_remote_arch_state ();
5449 ULONGEST addr;
5450 char *p;
5451
5452 event->ptid = null_ptid;
5453 event->ws.kind = TARGET_WAITKIND_IGNORE;
5454 event->ws.value.integer = 0;
5455 event->solibs_changed = 0;
5456 event->replay_event = 0;
5457 event->stopped_by_watchpoint_p = 0;
5458 event->regcache = NULL;
5459 event->core = -1;
5460
5461 switch (buf[0])
5462 {
5463 case 'T': /* Status with PC, SP, FP, ... */
5464 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5465 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5466 ss = signal number
5467 n... = register number
5468 r... = register contents
5469 */
5470
5471 p = &buf[3]; /* after Txx */
5472 while (*p)
5473 {
5474 char *p1;
5475 char *p_temp;
5476 int fieldsize;
5477 LONGEST pnum = 0;
5478
5479 /* If the packet contains a register number, save it in
5480 pnum and set p1 to point to the character following it.
5481 Otherwise p1 points to p. */
5482
5483 /* If this packet is an awatch packet, don't parse the 'a'
5484 as a register number. */
5485
5486 if (strncmp (p, "awatch", strlen("awatch")) != 0
5487 && strncmp (p, "core", strlen ("core") != 0))
5488 {
5489 /* Read the ``P'' register number. */
5490 pnum = strtol (p, &p_temp, 16);
5491 p1 = p_temp;
5492 }
5493 else
5494 p1 = p;
5495
5496 if (p1 == p) /* No register number present here. */
5497 {
5498 p1 = strchr (p, ':');
5499 if (p1 == NULL)
5500 error (_("Malformed packet(a) (missing colon): %s\n\
5501 Packet: '%s'\n"),
5502 p, buf);
5503 if (strncmp (p, "thread", p1 - p) == 0)
5504 event->ptid = read_ptid (++p1, &p);
5505 else if ((strncmp (p, "watch", p1 - p) == 0)
5506 || (strncmp (p, "rwatch", p1 - p) == 0)
5507 || (strncmp (p, "awatch", p1 - p) == 0))
5508 {
5509 event->stopped_by_watchpoint_p = 1;
5510 p = unpack_varlen_hex (++p1, &addr);
5511 event->watch_data_address = (CORE_ADDR) addr;
5512 }
5513 else if (strncmp (p, "library", p1 - p) == 0)
5514 {
5515 p1++;
5516 p_temp = p1;
5517 while (*p_temp && *p_temp != ';')
5518 p_temp++;
5519
5520 event->solibs_changed = 1;
5521 p = p_temp;
5522 }
5523 else if (strncmp (p, "replaylog", p1 - p) == 0)
5524 {
5525 /* NO_HISTORY event.
5526 p1 will indicate "begin" or "end", but
5527 it makes no difference for now, so ignore it. */
5528 event->replay_event = 1;
5529 p_temp = strchr (p1 + 1, ';');
5530 if (p_temp)
5531 p = p_temp;
5532 }
5533 else if (strncmp (p, "core", p1 - p) == 0)
5534 {
5535 ULONGEST c;
5536
5537 p = unpack_varlen_hex (++p1, &c);
5538 event->core = c;
5539 }
5540 else
5541 {
5542 /* Silently skip unknown optional info. */
5543 p_temp = strchr (p1 + 1, ';');
5544 if (p_temp)
5545 p = p_temp;
5546 }
5547 }
5548 else
5549 {
5550 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5551 cached_reg_t cached_reg;
5552
5553 p = p1;
5554
5555 if (*p != ':')
5556 error (_("Malformed packet(b) (missing colon): %s\n\
5557 Packet: '%s'\n"),
5558 p, buf);
5559 ++p;
5560
5561 if (reg == NULL)
5562 error (_("Remote sent bad register number %s: %s\n\
5563 Packet: '%s'\n"),
5564 hex_string (pnum), p, buf);
5565
5566 cached_reg.num = reg->regnum;
5567
5568 fieldsize = hex2bin (p, cached_reg.data,
5569 register_size (target_gdbarch (),
5570 reg->regnum));
5571 p += 2 * fieldsize;
5572 if (fieldsize < register_size (target_gdbarch (),
5573 reg->regnum))
5574 warning (_("Remote reply is too short: %s"), buf);
5575
5576 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5577 }
5578
5579 if (*p != ';')
5580 error (_("Remote register badly formatted: %s\nhere: %s"),
5581 buf, p);
5582 ++p;
5583 }
5584 /* fall through */
5585 case 'S': /* Old style status, just signal only. */
5586 if (event->solibs_changed)
5587 event->ws.kind = TARGET_WAITKIND_LOADED;
5588 else if (event->replay_event)
5589 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5590 else
5591 {
5592 event->ws.kind = TARGET_WAITKIND_STOPPED;
5593 event->ws.value.sig = (enum gdb_signal)
5594 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5595 }
5596 break;
5597 case 'W': /* Target exited. */
5598 case 'X':
5599 {
5600 char *p;
5601 int pid;
5602 ULONGEST value;
5603
5604 /* GDB used to accept only 2 hex chars here. Stubs should
5605 only send more if they detect GDB supports multi-process
5606 support. */
5607 p = unpack_varlen_hex (&buf[1], &value);
5608
5609 if (buf[0] == 'W')
5610 {
5611 /* The remote process exited. */
5612 event->ws.kind = TARGET_WAITKIND_EXITED;
5613 event->ws.value.integer = value;
5614 }
5615 else
5616 {
5617 /* The remote process exited with a signal. */
5618 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5619 event->ws.value.sig = (enum gdb_signal) value;
5620 }
5621
5622 /* If no process is specified, assume inferior_ptid. */
5623 pid = ptid_get_pid (inferior_ptid);
5624 if (*p == '\0')
5625 ;
5626 else if (*p == ';')
5627 {
5628 p++;
5629
5630 if (p == '\0')
5631 ;
5632 else if (strncmp (p,
5633 "process:", sizeof ("process:") - 1) == 0)
5634 {
5635 ULONGEST upid;
5636
5637 p += sizeof ("process:") - 1;
5638 unpack_varlen_hex (p, &upid);
5639 pid = upid;
5640 }
5641 else
5642 error (_("unknown stop reply packet: %s"), buf);
5643 }
5644 else
5645 error (_("unknown stop reply packet: %s"), buf);
5646 event->ptid = pid_to_ptid (pid);
5647 }
5648 break;
5649 }
5650
5651 if (non_stop && ptid_equal (event->ptid, null_ptid))
5652 error (_("No process or thread specified in stop reply: %s"), buf);
5653 }
5654
5655 /* When the stub wants to tell GDB about a new notification reply, it
5656 sends a notification (%Stop, for example). Those can come it at
5657 any time, hence, we have to make sure that any pending
5658 putpkt/getpkt sequence we're making is finished, before querying
5659 the stub for more events with the corresponding ack command
5660 (vStopped, for example). E.g., if we started a vStopped sequence
5661 immediately upon receiving the notification, something like this
5662 could happen:
5663
5664 1.1) --> Hg 1
5665 1.2) <-- OK
5666 1.3) --> g
5667 1.4) <-- %Stop
5668 1.5) --> vStopped
5669 1.6) <-- (registers reply to step #1.3)
5670
5671 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5672 query.
5673
5674 To solve this, whenever we parse a %Stop notification successfully,
5675 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5676 doing whatever we were doing:
5677
5678 2.1) --> Hg 1
5679 2.2) <-- OK
5680 2.3) --> g
5681 2.4) <-- %Stop
5682 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5683 2.5) <-- (registers reply to step #2.3)
5684
5685 Eventualy after step #2.5, we return to the event loop, which
5686 notices there's an event on the
5687 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5688 associated callback --- the function below. At this point, we're
5689 always safe to start a vStopped sequence. :
5690
5691 2.6) --> vStopped
5692 2.7) <-- T05 thread:2
5693 2.8) --> vStopped
5694 2.9) --> OK
5695 */
5696
5697 void
5698 remote_notif_get_pending_events (struct notif_client *nc)
5699 {
5700 struct remote_state *rs = get_remote_state ();
5701
5702 if (nc->pending_event)
5703 {
5704 if (notif_debug)
5705 fprintf_unfiltered (gdb_stdlog,
5706 "notif: process: '%s' ack pending event\n",
5707 nc->name);
5708
5709 /* acknowledge */
5710 nc->ack (nc, rs->buf, nc->pending_event);
5711 nc->pending_event = NULL;
5712
5713 while (1)
5714 {
5715 getpkt (&rs->buf, &rs->buf_size, 0);
5716 if (strcmp (rs->buf, "OK") == 0)
5717 break;
5718 else
5719 remote_notif_ack (nc, rs->buf);
5720 }
5721 }
5722 else
5723 {
5724 if (notif_debug)
5725 fprintf_unfiltered (gdb_stdlog,
5726 "notif: process: '%s' no pending reply\n",
5727 nc->name);
5728 }
5729 }
5730
5731 /* Called when it is decided that STOP_REPLY holds the info of the
5732 event that is to be returned to the core. This function always
5733 destroys STOP_REPLY. */
5734
5735 static ptid_t
5736 process_stop_reply (struct stop_reply *stop_reply,
5737 struct target_waitstatus *status)
5738 {
5739 ptid_t ptid;
5740
5741 *status = stop_reply->ws;
5742 ptid = stop_reply->ptid;
5743
5744 /* If no thread/process was reported by the stub, assume the current
5745 inferior. */
5746 if (ptid_equal (ptid, null_ptid))
5747 ptid = inferior_ptid;
5748
5749 if (status->kind != TARGET_WAITKIND_EXITED
5750 && status->kind != TARGET_WAITKIND_SIGNALLED)
5751 {
5752 /* Expedited registers. */
5753 if (stop_reply->regcache)
5754 {
5755 struct regcache *regcache
5756 = get_thread_arch_regcache (ptid, target_gdbarch ());
5757 cached_reg_t *reg;
5758 int ix;
5759
5760 for (ix = 0;
5761 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5762 ix++)
5763 regcache_raw_supply (regcache, reg->num, reg->data);
5764 VEC_free (cached_reg_t, stop_reply->regcache);
5765 }
5766
5767 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5768 remote_watch_data_address = stop_reply->watch_data_address;
5769
5770 remote_notice_new_inferior (ptid, 0);
5771 demand_private_info (ptid)->core = stop_reply->core;
5772 }
5773
5774 stop_reply_xfree (stop_reply);
5775 return ptid;
5776 }
5777
5778 /* The non-stop mode version of target_wait. */
5779
5780 static ptid_t
5781 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5782 {
5783 struct remote_state *rs = get_remote_state ();
5784 struct stop_reply *stop_reply;
5785 int ret;
5786 int is_notif = 0;
5787
5788 /* If in non-stop mode, get out of getpkt even if a
5789 notification is received. */
5790
5791 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5792 0 /* forever */, &is_notif);
5793 while (1)
5794 {
5795 if (ret != -1 && !is_notif)
5796 switch (rs->buf[0])
5797 {
5798 case 'E': /* Error of some sort. */
5799 /* We're out of sync with the target now. Did it continue
5800 or not? We can't tell which thread it was in non-stop,
5801 so just ignore this. */
5802 warning (_("Remote failure reply: %s"), rs->buf);
5803 break;
5804 case 'O': /* Console output. */
5805 remote_console_output (rs->buf + 1);
5806 break;
5807 default:
5808 warning (_("Invalid remote reply: %s"), rs->buf);
5809 break;
5810 }
5811
5812 /* Acknowledge a pending stop reply that may have arrived in the
5813 mean time. */
5814 if (notif_client_stop.pending_event != NULL)
5815 remote_notif_get_pending_events (&notif_client_stop);
5816
5817 /* If indeed we noticed a stop reply, we're done. */
5818 stop_reply = queued_stop_reply (ptid);
5819 if (stop_reply != NULL)
5820 return process_stop_reply (stop_reply, status);
5821
5822 /* Still no event. If we're just polling for an event, then
5823 return to the event loop. */
5824 if (options & TARGET_WNOHANG)
5825 {
5826 status->kind = TARGET_WAITKIND_IGNORE;
5827 return minus_one_ptid;
5828 }
5829
5830 /* Otherwise do a blocking wait. */
5831 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5832 1 /* forever */, &is_notif);
5833 }
5834 }
5835
5836 /* Wait until the remote machine stops, then return, storing status in
5837 STATUS just as `wait' would. */
5838
5839 static ptid_t
5840 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5841 {
5842 struct remote_state *rs = get_remote_state ();
5843 ptid_t event_ptid = null_ptid;
5844 char *buf;
5845 struct stop_reply *stop_reply;
5846
5847 again:
5848
5849 status->kind = TARGET_WAITKIND_IGNORE;
5850 status->value.integer = 0;
5851
5852 stop_reply = queued_stop_reply (ptid);
5853 if (stop_reply != NULL)
5854 return process_stop_reply (stop_reply, status);
5855
5856 if (rs->cached_wait_status)
5857 /* Use the cached wait status, but only once. */
5858 rs->cached_wait_status = 0;
5859 else
5860 {
5861 int ret;
5862 int is_notif;
5863
5864 if (!target_is_async_p ())
5865 {
5866 ofunc = signal (SIGINT, remote_interrupt);
5867 /* If the user hit C-c before this packet, or between packets,
5868 pretend that it was hit right here. */
5869 if (check_quit_flag ())
5870 {
5871 clear_quit_flag ();
5872 remote_interrupt (SIGINT);
5873 }
5874 }
5875
5876 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5877 _never_ wait for ever -> test on target_is_async_p().
5878 However, before we do that we need to ensure that the caller
5879 knows how to take the target into/out of async mode. */
5880 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5881 wait_forever_enabled_p, &is_notif);
5882
5883 /* GDB gets a notification. Return to core as this event is
5884 not interesting. */
5885 if (ret != -1 && is_notif)
5886 return minus_one_ptid;
5887
5888 if (!target_is_async_p ())
5889 signal (SIGINT, ofunc);
5890 }
5891
5892 buf = rs->buf;
5893
5894 remote_stopped_by_watchpoint_p = 0;
5895
5896 /* We got something. */
5897 rs->waiting_for_stop_reply = 0;
5898
5899 /* Assume that the target has acknowledged Ctrl-C unless we receive
5900 an 'F' or 'O' packet. */
5901 if (buf[0] != 'F' && buf[0] != 'O')
5902 rs->ctrlc_pending_p = 0;
5903
5904 switch (buf[0])
5905 {
5906 case 'E': /* Error of some sort. */
5907 /* We're out of sync with the target now. Did it continue or
5908 not? Not is more likely, so report a stop. */
5909 warning (_("Remote failure reply: %s"), buf);
5910 status->kind = TARGET_WAITKIND_STOPPED;
5911 status->value.sig = GDB_SIGNAL_0;
5912 break;
5913 case 'F': /* File-I/O request. */
5914 remote_fileio_request (buf, rs->ctrlc_pending_p);
5915 rs->ctrlc_pending_p = 0;
5916 break;
5917 case 'T': case 'S': case 'X': case 'W':
5918 {
5919 struct stop_reply *stop_reply
5920 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
5921 rs->buf);
5922
5923 event_ptid = process_stop_reply (stop_reply, status);
5924 break;
5925 }
5926 case 'O': /* Console output. */
5927 remote_console_output (buf + 1);
5928
5929 /* The target didn't really stop; keep waiting. */
5930 rs->waiting_for_stop_reply = 1;
5931
5932 break;
5933 case '\0':
5934 if (last_sent_signal != GDB_SIGNAL_0)
5935 {
5936 /* Zero length reply means that we tried 'S' or 'C' and the
5937 remote system doesn't support it. */
5938 target_terminal_ours_for_output ();
5939 printf_filtered
5940 ("Can't send signals to this remote system. %s not sent.\n",
5941 gdb_signal_to_name (last_sent_signal));
5942 last_sent_signal = GDB_SIGNAL_0;
5943 target_terminal_inferior ();
5944
5945 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5946 putpkt ((char *) buf);
5947
5948 /* We just told the target to resume, so a stop reply is in
5949 order. */
5950 rs->waiting_for_stop_reply = 1;
5951 break;
5952 }
5953 /* else fallthrough */
5954 default:
5955 warning (_("Invalid remote reply: %s"), buf);
5956 /* Keep waiting. */
5957 rs->waiting_for_stop_reply = 1;
5958 break;
5959 }
5960
5961 if (status->kind == TARGET_WAITKIND_IGNORE)
5962 {
5963 /* Nothing interesting happened. If we're doing a non-blocking
5964 poll, we're done. Otherwise, go back to waiting. */
5965 if (options & TARGET_WNOHANG)
5966 return minus_one_ptid;
5967 else
5968 goto again;
5969 }
5970 else if (status->kind != TARGET_WAITKIND_EXITED
5971 && status->kind != TARGET_WAITKIND_SIGNALLED)
5972 {
5973 if (!ptid_equal (event_ptid, null_ptid))
5974 record_currthread (event_ptid);
5975 else
5976 event_ptid = inferior_ptid;
5977 }
5978 else
5979 /* A process exit. Invalidate our notion of current thread. */
5980 record_currthread (minus_one_ptid);
5981
5982 return event_ptid;
5983 }
5984
5985 /* Wait until the remote machine stops, then return, storing status in
5986 STATUS just as `wait' would. */
5987
5988 static ptid_t
5989 remote_wait (struct target_ops *ops,
5990 ptid_t ptid, struct target_waitstatus *status, int options)
5991 {
5992 ptid_t event_ptid;
5993
5994 if (non_stop)
5995 event_ptid = remote_wait_ns (ptid, status, options);
5996 else
5997 event_ptid = remote_wait_as (ptid, status, options);
5998
5999 if (target_can_async_p ())
6000 {
6001 /* If there are are events left in the queue tell the event loop
6002 to return here. */
6003 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6004 mark_async_event_handler (remote_async_inferior_event_token);
6005 }
6006
6007 return event_ptid;
6008 }
6009
6010 /* Fetch a single register using a 'p' packet. */
6011
6012 static int
6013 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
6014 {
6015 struct remote_state *rs = get_remote_state ();
6016 char *buf, *p;
6017 char regp[MAX_REGISTER_SIZE];
6018 int i;
6019
6020 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
6021 return 0;
6022
6023 if (reg->pnum == -1)
6024 return 0;
6025
6026 p = rs->buf;
6027 *p++ = 'p';
6028 p += hexnumstr (p, reg->pnum);
6029 *p++ = '\0';
6030 putpkt (rs->buf);
6031 getpkt (&rs->buf, &rs->buf_size, 0);
6032
6033 buf = rs->buf;
6034
6035 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
6036 {
6037 case PACKET_OK:
6038 break;
6039 case PACKET_UNKNOWN:
6040 return 0;
6041 case PACKET_ERROR:
6042 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
6043 gdbarch_register_name (get_regcache_arch (regcache),
6044 reg->regnum),
6045 buf);
6046 }
6047
6048 /* If this register is unfetchable, tell the regcache. */
6049 if (buf[0] == 'x')
6050 {
6051 regcache_raw_supply (regcache, reg->regnum, NULL);
6052 return 1;
6053 }
6054
6055 /* Otherwise, parse and supply the value. */
6056 p = buf;
6057 i = 0;
6058 while (p[0] != 0)
6059 {
6060 if (p[1] == 0)
6061 error (_("fetch_register_using_p: early buf termination"));
6062
6063 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
6064 p += 2;
6065 }
6066 regcache_raw_supply (regcache, reg->regnum, regp);
6067 return 1;
6068 }
6069
6070 /* Fetch the registers included in the target's 'g' packet. */
6071
6072 static int
6073 send_g_packet (void)
6074 {
6075 struct remote_state *rs = get_remote_state ();
6076 int buf_len;
6077
6078 xsnprintf (rs->buf, get_remote_packet_size (), "g");
6079 remote_send (&rs->buf, &rs->buf_size);
6080
6081 /* We can get out of synch in various cases. If the first character
6082 in the buffer is not a hex character, assume that has happened
6083 and try to fetch another packet to read. */
6084 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
6085 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
6086 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
6087 && rs->buf[0] != 'x') /* New: unavailable register value. */
6088 {
6089 if (remote_debug)
6090 fprintf_unfiltered (gdb_stdlog,
6091 "Bad register packet; fetching a new packet\n");
6092 getpkt (&rs->buf, &rs->buf_size, 0);
6093 }
6094
6095 buf_len = strlen (rs->buf);
6096
6097 /* Sanity check the received packet. */
6098 if (buf_len % 2 != 0)
6099 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
6100
6101 return buf_len / 2;
6102 }
6103
6104 static void
6105 process_g_packet (struct regcache *regcache)
6106 {
6107 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6108 struct remote_state *rs = get_remote_state ();
6109 struct remote_arch_state *rsa = get_remote_arch_state ();
6110 int i, buf_len;
6111 char *p;
6112 char *regs;
6113
6114 buf_len = strlen (rs->buf);
6115
6116 /* Further sanity checks, with knowledge of the architecture. */
6117 if (buf_len > 2 * rsa->sizeof_g_packet)
6118 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
6119
6120 /* Save the size of the packet sent to us by the target. It is used
6121 as a heuristic when determining the max size of packets that the
6122 target can safely receive. */
6123 if (rsa->actual_register_packet_size == 0)
6124 rsa->actual_register_packet_size = buf_len;
6125
6126 /* If this is smaller than we guessed the 'g' packet would be,
6127 update our records. A 'g' reply that doesn't include a register's
6128 value implies either that the register is not available, or that
6129 the 'p' packet must be used. */
6130 if (buf_len < 2 * rsa->sizeof_g_packet)
6131 {
6132 rsa->sizeof_g_packet = buf_len / 2;
6133
6134 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6135 {
6136 if (rsa->regs[i].pnum == -1)
6137 continue;
6138
6139 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
6140 rsa->regs[i].in_g_packet = 0;
6141 else
6142 rsa->regs[i].in_g_packet = 1;
6143 }
6144 }
6145
6146 regs = alloca (rsa->sizeof_g_packet);
6147
6148 /* Unimplemented registers read as all bits zero. */
6149 memset (regs, 0, rsa->sizeof_g_packet);
6150
6151 /* Reply describes registers byte by byte, each byte encoded as two
6152 hex characters. Suck them all up, then supply them to the
6153 register cacheing/storage mechanism. */
6154
6155 p = rs->buf;
6156 for (i = 0; i < rsa->sizeof_g_packet; i++)
6157 {
6158 if (p[0] == 0 || p[1] == 0)
6159 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
6160 internal_error (__FILE__, __LINE__,
6161 _("unexpected end of 'g' packet reply"));
6162
6163 if (p[0] == 'x' && p[1] == 'x')
6164 regs[i] = 0; /* 'x' */
6165 else
6166 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
6167 p += 2;
6168 }
6169
6170 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6171 {
6172 struct packet_reg *r = &rsa->regs[i];
6173
6174 if (r->in_g_packet)
6175 {
6176 if (r->offset * 2 >= strlen (rs->buf))
6177 /* This shouldn't happen - we adjusted in_g_packet above. */
6178 internal_error (__FILE__, __LINE__,
6179 _("unexpected end of 'g' packet reply"));
6180 else if (rs->buf[r->offset * 2] == 'x')
6181 {
6182 gdb_assert (r->offset * 2 < strlen (rs->buf));
6183 /* The register isn't available, mark it as such (at
6184 the same time setting the value to zero). */
6185 regcache_raw_supply (regcache, r->regnum, NULL);
6186 }
6187 else
6188 regcache_raw_supply (regcache, r->regnum,
6189 regs + r->offset);
6190 }
6191 }
6192 }
6193
6194 static void
6195 fetch_registers_using_g (struct regcache *regcache)
6196 {
6197 send_g_packet ();
6198 process_g_packet (regcache);
6199 }
6200
6201 /* Make the remote selected traceframe match GDB's selected
6202 traceframe. */
6203
6204 static void
6205 set_remote_traceframe (void)
6206 {
6207 int newnum;
6208
6209 if (remote_traceframe_number == get_traceframe_number ())
6210 return;
6211
6212 /* Avoid recursion, remote_trace_find calls us again. */
6213 remote_traceframe_number = get_traceframe_number ();
6214
6215 newnum = target_trace_find (tfind_number,
6216 get_traceframe_number (), 0, 0, NULL);
6217
6218 /* Should not happen. If it does, all bets are off. */
6219 if (newnum != get_traceframe_number ())
6220 warning (_("could not set remote traceframe"));
6221 }
6222
6223 static void
6224 remote_fetch_registers (struct target_ops *ops,
6225 struct regcache *regcache, int regnum)
6226 {
6227 struct remote_arch_state *rsa = get_remote_arch_state ();
6228 int i;
6229
6230 set_remote_traceframe ();
6231 set_general_thread (inferior_ptid);
6232
6233 if (regnum >= 0)
6234 {
6235 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6236
6237 gdb_assert (reg != NULL);
6238
6239 /* If this register might be in the 'g' packet, try that first -
6240 we are likely to read more than one register. If this is the
6241 first 'g' packet, we might be overly optimistic about its
6242 contents, so fall back to 'p'. */
6243 if (reg->in_g_packet)
6244 {
6245 fetch_registers_using_g (regcache);
6246 if (reg->in_g_packet)
6247 return;
6248 }
6249
6250 if (fetch_register_using_p (regcache, reg))
6251 return;
6252
6253 /* This register is not available. */
6254 regcache_raw_supply (regcache, reg->regnum, NULL);
6255
6256 return;
6257 }
6258
6259 fetch_registers_using_g (regcache);
6260
6261 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6262 if (!rsa->regs[i].in_g_packet)
6263 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
6264 {
6265 /* This register is not available. */
6266 regcache_raw_supply (regcache, i, NULL);
6267 }
6268 }
6269
6270 /* Prepare to store registers. Since we may send them all (using a
6271 'G' request), we have to read out the ones we don't want to change
6272 first. */
6273
6274 static void
6275 remote_prepare_to_store (struct regcache *regcache)
6276 {
6277 struct remote_arch_state *rsa = get_remote_arch_state ();
6278 int i;
6279 gdb_byte buf[MAX_REGISTER_SIZE];
6280
6281 /* Make sure the entire registers array is valid. */
6282 switch (remote_protocol_packets[PACKET_P].support)
6283 {
6284 case PACKET_DISABLE:
6285 case PACKET_SUPPORT_UNKNOWN:
6286 /* Make sure all the necessary registers are cached. */
6287 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6288 if (rsa->regs[i].in_g_packet)
6289 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
6290 break;
6291 case PACKET_ENABLE:
6292 break;
6293 }
6294 }
6295
6296 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
6297 packet was not recognized. */
6298
6299 static int
6300 store_register_using_P (const struct regcache *regcache,
6301 struct packet_reg *reg)
6302 {
6303 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6304 struct remote_state *rs = get_remote_state ();
6305 /* Try storing a single register. */
6306 char *buf = rs->buf;
6307 gdb_byte regp[MAX_REGISTER_SIZE];
6308 char *p;
6309
6310 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6311 return 0;
6312
6313 if (reg->pnum == -1)
6314 return 0;
6315
6316 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6317 p = buf + strlen (buf);
6318 regcache_raw_collect (regcache, reg->regnum, regp);
6319 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6320 putpkt (rs->buf);
6321 getpkt (&rs->buf, &rs->buf_size, 0);
6322
6323 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6324 {
6325 case PACKET_OK:
6326 return 1;
6327 case PACKET_ERROR:
6328 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6329 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6330 case PACKET_UNKNOWN:
6331 return 0;
6332 default:
6333 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6334 }
6335 }
6336
6337 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6338 contents of the register cache buffer. FIXME: ignores errors. */
6339
6340 static void
6341 store_registers_using_G (const struct regcache *regcache)
6342 {
6343 struct remote_state *rs = get_remote_state ();
6344 struct remote_arch_state *rsa = get_remote_arch_state ();
6345 gdb_byte *regs;
6346 char *p;
6347
6348 /* Extract all the registers in the regcache copying them into a
6349 local buffer. */
6350 {
6351 int i;
6352
6353 regs = alloca (rsa->sizeof_g_packet);
6354 memset (regs, 0, rsa->sizeof_g_packet);
6355 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6356 {
6357 struct packet_reg *r = &rsa->regs[i];
6358
6359 if (r->in_g_packet)
6360 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6361 }
6362 }
6363
6364 /* Command describes registers byte by byte,
6365 each byte encoded as two hex characters. */
6366 p = rs->buf;
6367 *p++ = 'G';
6368 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6369 updated. */
6370 bin2hex (regs, p, rsa->sizeof_g_packet);
6371 putpkt (rs->buf);
6372 getpkt (&rs->buf, &rs->buf_size, 0);
6373 if (packet_check_result (rs->buf) == PACKET_ERROR)
6374 error (_("Could not write registers; remote failure reply '%s'"),
6375 rs->buf);
6376 }
6377
6378 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6379 of the register cache buffer. FIXME: ignores errors. */
6380
6381 static void
6382 remote_store_registers (struct target_ops *ops,
6383 struct regcache *regcache, int regnum)
6384 {
6385 struct remote_arch_state *rsa = get_remote_arch_state ();
6386 int i;
6387
6388 set_remote_traceframe ();
6389 set_general_thread (inferior_ptid);
6390
6391 if (regnum >= 0)
6392 {
6393 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6394
6395 gdb_assert (reg != NULL);
6396
6397 /* Always prefer to store registers using the 'P' packet if
6398 possible; we often change only a small number of registers.
6399 Sometimes we change a larger number; we'd need help from a
6400 higher layer to know to use 'G'. */
6401 if (store_register_using_P (regcache, reg))
6402 return;
6403
6404 /* For now, don't complain if we have no way to write the
6405 register. GDB loses track of unavailable registers too
6406 easily. Some day, this may be an error. We don't have
6407 any way to read the register, either... */
6408 if (!reg->in_g_packet)
6409 return;
6410
6411 store_registers_using_G (regcache);
6412 return;
6413 }
6414
6415 store_registers_using_G (regcache);
6416
6417 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6418 if (!rsa->regs[i].in_g_packet)
6419 if (!store_register_using_P (regcache, &rsa->regs[i]))
6420 /* See above for why we do not issue an error here. */
6421 continue;
6422 }
6423 \f
6424
6425 /* Return the number of hex digits in num. */
6426
6427 static int
6428 hexnumlen (ULONGEST num)
6429 {
6430 int i;
6431
6432 for (i = 0; num != 0; i++)
6433 num >>= 4;
6434
6435 return max (i, 1);
6436 }
6437
6438 /* Set BUF to the minimum number of hex digits representing NUM. */
6439
6440 static int
6441 hexnumstr (char *buf, ULONGEST num)
6442 {
6443 int len = hexnumlen (num);
6444
6445 return hexnumnstr (buf, num, len);
6446 }
6447
6448
6449 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6450
6451 static int
6452 hexnumnstr (char *buf, ULONGEST num, int width)
6453 {
6454 int i;
6455
6456 buf[width] = '\0';
6457
6458 for (i = width - 1; i >= 0; i--)
6459 {
6460 buf[i] = "0123456789abcdef"[(num & 0xf)];
6461 num >>= 4;
6462 }
6463
6464 return width;
6465 }
6466
6467 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6468
6469 static CORE_ADDR
6470 remote_address_masked (CORE_ADDR addr)
6471 {
6472 unsigned int address_size = remote_address_size;
6473
6474 /* If "remoteaddresssize" was not set, default to target address size. */
6475 if (!address_size)
6476 address_size = gdbarch_addr_bit (target_gdbarch ());
6477
6478 if (address_size > 0
6479 && address_size < (sizeof (ULONGEST) * 8))
6480 {
6481 /* Only create a mask when that mask can safely be constructed
6482 in a ULONGEST variable. */
6483 ULONGEST mask = 1;
6484
6485 mask = (mask << address_size) - 1;
6486 addr &= mask;
6487 }
6488 return addr;
6489 }
6490
6491 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6492 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6493 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6494 (which may be more than *OUT_LEN due to escape characters). The
6495 total number of bytes in the output buffer will be at most
6496 OUT_MAXLEN. */
6497
6498 static int
6499 remote_escape_output (const gdb_byte *buffer, int len,
6500 gdb_byte *out_buf, int *out_len,
6501 int out_maxlen)
6502 {
6503 int input_index, output_index;
6504
6505 output_index = 0;
6506 for (input_index = 0; input_index < len; input_index++)
6507 {
6508 gdb_byte b = buffer[input_index];
6509
6510 if (b == '$' || b == '#' || b == '}')
6511 {
6512 /* These must be escaped. */
6513 if (output_index + 2 > out_maxlen)
6514 break;
6515 out_buf[output_index++] = '}';
6516 out_buf[output_index++] = b ^ 0x20;
6517 }
6518 else
6519 {
6520 if (output_index + 1 > out_maxlen)
6521 break;
6522 out_buf[output_index++] = b;
6523 }
6524 }
6525
6526 *out_len = input_index;
6527 return output_index;
6528 }
6529
6530 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6531 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6532 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6533
6534 This function reverses remote_escape_output. It allows more
6535 escaped characters than that function does, in particular because
6536 '*' must be escaped to avoid the run-length encoding processing
6537 in reading packets. */
6538
6539 static int
6540 remote_unescape_input (const gdb_byte *buffer, int len,
6541 gdb_byte *out_buf, int out_maxlen)
6542 {
6543 int input_index, output_index;
6544 int escaped;
6545
6546 output_index = 0;
6547 escaped = 0;
6548 for (input_index = 0; input_index < len; input_index++)
6549 {
6550 gdb_byte b = buffer[input_index];
6551
6552 if (output_index + 1 > out_maxlen)
6553 {
6554 warning (_("Received too much data from remote target;"
6555 " ignoring overflow."));
6556 return output_index;
6557 }
6558
6559 if (escaped)
6560 {
6561 out_buf[output_index++] = b ^ 0x20;
6562 escaped = 0;
6563 }
6564 else if (b == '}')
6565 escaped = 1;
6566 else
6567 out_buf[output_index++] = b;
6568 }
6569
6570 if (escaped)
6571 error (_("Unmatched escape character in target response."));
6572
6573 return output_index;
6574 }
6575
6576 /* Determine whether the remote target supports binary downloading.
6577 This is accomplished by sending a no-op memory write of zero length
6578 to the target at the specified address. It does not suffice to send
6579 the whole packet, since many stubs strip the eighth bit and
6580 subsequently compute a wrong checksum, which causes real havoc with
6581 remote_write_bytes.
6582
6583 NOTE: This can still lose if the serial line is not eight-bit
6584 clean. In cases like this, the user should clear "remote
6585 X-packet". */
6586
6587 static void
6588 check_binary_download (CORE_ADDR addr)
6589 {
6590 struct remote_state *rs = get_remote_state ();
6591
6592 switch (remote_protocol_packets[PACKET_X].support)
6593 {
6594 case PACKET_DISABLE:
6595 break;
6596 case PACKET_ENABLE:
6597 break;
6598 case PACKET_SUPPORT_UNKNOWN:
6599 {
6600 char *p;
6601
6602 p = rs->buf;
6603 *p++ = 'X';
6604 p += hexnumstr (p, (ULONGEST) addr);
6605 *p++ = ',';
6606 p += hexnumstr (p, (ULONGEST) 0);
6607 *p++ = ':';
6608 *p = '\0';
6609
6610 putpkt_binary (rs->buf, (int) (p - rs->buf));
6611 getpkt (&rs->buf, &rs->buf_size, 0);
6612
6613 if (rs->buf[0] == '\0')
6614 {
6615 if (remote_debug)
6616 fprintf_unfiltered (gdb_stdlog,
6617 "binary downloading NOT "
6618 "supported by target\n");
6619 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6620 }
6621 else
6622 {
6623 if (remote_debug)
6624 fprintf_unfiltered (gdb_stdlog,
6625 "binary downloading supported by target\n");
6626 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6627 }
6628 break;
6629 }
6630 }
6631 }
6632
6633 /* Write memory data directly to the remote machine.
6634 This does not inform the data cache; the data cache uses this.
6635 HEADER is the starting part of the packet.
6636 MEMADDR is the address in the remote memory space.
6637 MYADDR is the address of the buffer in our space.
6638 LEN is the number of bytes.
6639 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6640 should send data as binary ('X'), or hex-encoded ('M').
6641
6642 The function creates packet of the form
6643 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6644
6645 where encoding of <DATA> is termined by PACKET_FORMAT.
6646
6647 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6648 are omitted.
6649
6650 Returns the number of bytes transferred, or 0 (setting errno) for
6651 error. Only transfer a single packet. */
6652
6653 static int
6654 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6655 const gdb_byte *myaddr, ssize_t len,
6656 char packet_format, int use_length)
6657 {
6658 struct remote_state *rs = get_remote_state ();
6659 char *p;
6660 char *plen = NULL;
6661 int plenlen = 0;
6662 int todo;
6663 int nr_bytes;
6664 int payload_size;
6665 int payload_length;
6666 int header_length;
6667
6668 if (packet_format != 'X' && packet_format != 'M')
6669 internal_error (__FILE__, __LINE__,
6670 _("remote_write_bytes_aux: bad packet format"));
6671
6672 if (len <= 0)
6673 return 0;
6674
6675 payload_size = get_memory_write_packet_size ();
6676
6677 /* The packet buffer will be large enough for the payload;
6678 get_memory_packet_size ensures this. */
6679 rs->buf[0] = '\0';
6680
6681 /* Compute the size of the actual payload by subtracting out the
6682 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6683
6684 payload_size -= strlen ("$,:#NN");
6685 if (!use_length)
6686 /* The comma won't be used. */
6687 payload_size += 1;
6688 header_length = strlen (header);
6689 payload_size -= header_length;
6690 payload_size -= hexnumlen (memaddr);
6691
6692 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6693
6694 strcat (rs->buf, header);
6695 p = rs->buf + strlen (header);
6696
6697 /* Compute a best guess of the number of bytes actually transfered. */
6698 if (packet_format == 'X')
6699 {
6700 /* Best guess at number of bytes that will fit. */
6701 todo = min (len, payload_size);
6702 if (use_length)
6703 payload_size -= hexnumlen (todo);
6704 todo = min (todo, payload_size);
6705 }
6706 else
6707 {
6708 /* Num bytes that will fit. */
6709 todo = min (len, payload_size / 2);
6710 if (use_length)
6711 payload_size -= hexnumlen (todo);
6712 todo = min (todo, payload_size / 2);
6713 }
6714
6715 if (todo <= 0)
6716 internal_error (__FILE__, __LINE__,
6717 _("minimum packet size too small to write data"));
6718
6719 /* If we already need another packet, then try to align the end
6720 of this packet to a useful boundary. */
6721 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6722 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6723
6724 /* Append "<memaddr>". */
6725 memaddr = remote_address_masked (memaddr);
6726 p += hexnumstr (p, (ULONGEST) memaddr);
6727
6728 if (use_length)
6729 {
6730 /* Append ",". */
6731 *p++ = ',';
6732
6733 /* Append <len>. Retain the location/size of <len>. It may need to
6734 be adjusted once the packet body has been created. */
6735 plen = p;
6736 plenlen = hexnumstr (p, (ULONGEST) todo);
6737 p += plenlen;
6738 }
6739
6740 /* Append ":". */
6741 *p++ = ':';
6742 *p = '\0';
6743
6744 /* Append the packet body. */
6745 if (packet_format == 'X')
6746 {
6747 /* Binary mode. Send target system values byte by byte, in
6748 increasing byte addresses. Only escape certain critical
6749 characters. */
6750 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6751 payload_size);
6752
6753 /* If not all TODO bytes fit, then we'll need another packet. Make
6754 a second try to keep the end of the packet aligned. Don't do
6755 this if the packet is tiny. */
6756 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6757 {
6758 int new_nr_bytes;
6759
6760 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6761 - memaddr);
6762 if (new_nr_bytes != nr_bytes)
6763 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6764 p, &nr_bytes,
6765 payload_size);
6766 }
6767
6768 p += payload_length;
6769 if (use_length && nr_bytes < todo)
6770 {
6771 /* Escape chars have filled up the buffer prematurely,
6772 and we have actually sent fewer bytes than planned.
6773 Fix-up the length field of the packet. Use the same
6774 number of characters as before. */
6775 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6776 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6777 }
6778 }
6779 else
6780 {
6781 /* Normal mode: Send target system values byte by byte, in
6782 increasing byte addresses. Each byte is encoded as a two hex
6783 value. */
6784 nr_bytes = bin2hex (myaddr, p, todo);
6785 p += 2 * nr_bytes;
6786 }
6787
6788 putpkt_binary (rs->buf, (int) (p - rs->buf));
6789 getpkt (&rs->buf, &rs->buf_size, 0);
6790
6791 if (rs->buf[0] == 'E')
6792 {
6793 /* There is no correspondance between what the remote protocol
6794 uses for errors and errno codes. We would like a cleaner way
6795 of representing errors (big enough to include errno codes,
6796 bfd_error codes, and others). But for now just return EIO. */
6797 errno = EIO;
6798 return 0;
6799 }
6800
6801 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6802 fewer bytes than we'd planned. */
6803 return nr_bytes;
6804 }
6805
6806 /* Write memory data directly to the remote machine.
6807 This does not inform the data cache; the data cache uses this.
6808 MEMADDR is the address in the remote memory space.
6809 MYADDR is the address of the buffer in our space.
6810 LEN is the number of bytes.
6811
6812 Returns number of bytes transferred, or 0 (setting errno) for
6813 error. Only transfer a single packet. */
6814
6815 static int
6816 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
6817 {
6818 char *packet_format = 0;
6819
6820 /* Check whether the target supports binary download. */
6821 check_binary_download (memaddr);
6822
6823 switch (remote_protocol_packets[PACKET_X].support)
6824 {
6825 case PACKET_ENABLE:
6826 packet_format = "X";
6827 break;
6828 case PACKET_DISABLE:
6829 packet_format = "M";
6830 break;
6831 case PACKET_SUPPORT_UNKNOWN:
6832 internal_error (__FILE__, __LINE__,
6833 _("remote_write_bytes: bad internal state"));
6834 default:
6835 internal_error (__FILE__, __LINE__, _("bad switch"));
6836 }
6837
6838 return remote_write_bytes_aux (packet_format,
6839 memaddr, myaddr, len, packet_format[0], 1);
6840 }
6841
6842 /* Read memory data directly from the remote machine.
6843 This does not use the data cache; the data cache uses this.
6844 MEMADDR is the address in the remote memory space.
6845 MYADDR is the address of the buffer in our space.
6846 LEN is the number of bytes.
6847
6848 Returns number of bytes transferred, or 0 for error. */
6849
6850 static int
6851 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6852 {
6853 struct remote_state *rs = get_remote_state ();
6854 int max_buf_size; /* Max size of packet output buffer. */
6855 char *p;
6856 int todo;
6857 int i;
6858
6859 if (len <= 0)
6860 return 0;
6861
6862 max_buf_size = get_memory_read_packet_size ();
6863 /* The packet buffer will be large enough for the payload;
6864 get_memory_packet_size ensures this. */
6865
6866 /* Number if bytes that will fit. */
6867 todo = min (len, max_buf_size / 2);
6868
6869 /* Construct "m"<memaddr>","<len>". */
6870 memaddr = remote_address_masked (memaddr);
6871 p = rs->buf;
6872 *p++ = 'm';
6873 p += hexnumstr (p, (ULONGEST) memaddr);
6874 *p++ = ',';
6875 p += hexnumstr (p, (ULONGEST) todo);
6876 *p = '\0';
6877 putpkt (rs->buf);
6878 getpkt (&rs->buf, &rs->buf_size, 0);
6879 if (rs->buf[0] == 'E'
6880 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6881 && rs->buf[3] == '\0')
6882 {
6883 /* There is no correspondance between what the remote protocol
6884 uses for errors and errno codes. We would like a cleaner way
6885 of representing errors (big enough to include errno codes,
6886 bfd_error codes, and others). But for now just return
6887 EIO. */
6888 errno = EIO;
6889 return 0;
6890 }
6891 /* Reply describes memory byte by byte, each byte encoded as two hex
6892 characters. */
6893 p = rs->buf;
6894 i = hex2bin (p, myaddr, todo);
6895 /* Return what we have. Let higher layers handle partial reads. */
6896 return i;
6897 }
6898
6899 \f
6900 /* Read or write LEN bytes from inferior memory at MEMADDR,
6901 transferring to or from debugger address BUFFER. Write to inferior
6902 if SHOULD_WRITE is nonzero. Returns length of data written or
6903 read; 0 for error. TARGET is unused. */
6904
6905 static int
6906 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6907 int should_write, struct mem_attrib *attrib,
6908 struct target_ops *target)
6909 {
6910 int res;
6911
6912 set_remote_traceframe ();
6913 set_general_thread (inferior_ptid);
6914
6915 if (should_write)
6916 res = remote_write_bytes (mem_addr, buffer, mem_len);
6917 else
6918 res = remote_read_bytes (mem_addr, buffer, mem_len);
6919
6920 return res;
6921 }
6922
6923 /* Sends a packet with content determined by the printf format string
6924 FORMAT and the remaining arguments, then gets the reply. Returns
6925 whether the packet was a success, a failure, or unknown. */
6926
6927 static enum packet_result
6928 remote_send_printf (const char *format, ...)
6929 {
6930 struct remote_state *rs = get_remote_state ();
6931 int max_size = get_remote_packet_size ();
6932 va_list ap;
6933
6934 va_start (ap, format);
6935
6936 rs->buf[0] = '\0';
6937 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6938 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
6939
6940 if (putpkt (rs->buf) < 0)
6941 error (_("Communication problem with target."));
6942
6943 rs->buf[0] = '\0';
6944 getpkt (&rs->buf, &rs->buf_size, 0);
6945
6946 return packet_check_result (rs->buf);
6947 }
6948
6949 static void
6950 restore_remote_timeout (void *p)
6951 {
6952 int value = *(int *)p;
6953
6954 remote_timeout = value;
6955 }
6956
6957 /* Flash writing can take quite some time. We'll set
6958 effectively infinite timeout for flash operations.
6959 In future, we'll need to decide on a better approach. */
6960 static const int remote_flash_timeout = 1000;
6961
6962 static void
6963 remote_flash_erase (struct target_ops *ops,
6964 ULONGEST address, LONGEST length)
6965 {
6966 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6967 int saved_remote_timeout = remote_timeout;
6968 enum packet_result ret;
6969 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6970 &saved_remote_timeout);
6971
6972 remote_timeout = remote_flash_timeout;
6973
6974 ret = remote_send_printf ("vFlashErase:%s,%s",
6975 phex (address, addr_size),
6976 phex (length, 4));
6977 switch (ret)
6978 {
6979 case PACKET_UNKNOWN:
6980 error (_("Remote target does not support flash erase"));
6981 case PACKET_ERROR:
6982 error (_("Error erasing flash with vFlashErase packet"));
6983 default:
6984 break;
6985 }
6986
6987 do_cleanups (back_to);
6988 }
6989
6990 static LONGEST
6991 remote_flash_write (struct target_ops *ops,
6992 ULONGEST address, LONGEST length,
6993 const gdb_byte *data)
6994 {
6995 int saved_remote_timeout = remote_timeout;
6996 int ret;
6997 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6998 &saved_remote_timeout);
6999
7000 remote_timeout = remote_flash_timeout;
7001 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
7002 do_cleanups (back_to);
7003
7004 return ret;
7005 }
7006
7007 static void
7008 remote_flash_done (struct target_ops *ops)
7009 {
7010 int saved_remote_timeout = remote_timeout;
7011 int ret;
7012 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7013 &saved_remote_timeout);
7014
7015 remote_timeout = remote_flash_timeout;
7016 ret = remote_send_printf ("vFlashDone");
7017 do_cleanups (back_to);
7018
7019 switch (ret)
7020 {
7021 case PACKET_UNKNOWN:
7022 error (_("Remote target does not support vFlashDone"));
7023 case PACKET_ERROR:
7024 error (_("Error finishing flash operation"));
7025 default:
7026 break;
7027 }
7028 }
7029
7030 static void
7031 remote_files_info (struct target_ops *ignore)
7032 {
7033 puts_filtered ("Debugging a target over a serial line.\n");
7034 }
7035 \f
7036 /* Stuff for dealing with the packets which are part of this protocol.
7037 See comment at top of file for details. */
7038
7039 /* Read a single character from the remote end. */
7040
7041 static int
7042 readchar (int timeout)
7043 {
7044 int ch;
7045
7046 ch = serial_readchar (remote_desc, timeout);
7047
7048 if (ch >= 0)
7049 return ch;
7050
7051 switch ((enum serial_rc) ch)
7052 {
7053 case SERIAL_EOF:
7054 pop_target ();
7055 error (_("Remote connection closed"));
7056 /* no return */
7057 case SERIAL_ERROR:
7058 pop_target ();
7059 perror_with_name (_("Remote communication error. "
7060 "Target disconnected."));
7061 /* no return */
7062 case SERIAL_TIMEOUT:
7063 break;
7064 }
7065 return ch;
7066 }
7067
7068 /* Send the command in *BUF to the remote machine, and read the reply
7069 into *BUF. Report an error if we get an error reply. Resize
7070 *BUF using xrealloc if necessary to hold the result, and update
7071 *SIZEOF_BUF. */
7072
7073 static void
7074 remote_send (char **buf,
7075 long *sizeof_buf)
7076 {
7077 putpkt (*buf);
7078 getpkt (buf, sizeof_buf, 0);
7079
7080 if ((*buf)[0] == 'E')
7081 error (_("Remote failure reply: %s"), *buf);
7082 }
7083
7084 /* Return a pointer to an xmalloc'ed string representing an escaped
7085 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
7086 etc. The caller is responsible for releasing the returned
7087 memory. */
7088
7089 static char *
7090 escape_buffer (const char *buf, int n)
7091 {
7092 struct cleanup *old_chain;
7093 struct ui_file *stb;
7094 char *str;
7095
7096 stb = mem_fileopen ();
7097 old_chain = make_cleanup_ui_file_delete (stb);
7098
7099 fputstrn_unfiltered (buf, n, 0, stb);
7100 str = ui_file_xstrdup (stb, NULL);
7101 do_cleanups (old_chain);
7102 return str;
7103 }
7104
7105 /* Display a null-terminated packet on stdout, for debugging, using C
7106 string notation. */
7107
7108 static void
7109 print_packet (char *buf)
7110 {
7111 puts_filtered ("\"");
7112 fputstr_filtered (buf, '"', gdb_stdout);
7113 puts_filtered ("\"");
7114 }
7115
7116 int
7117 putpkt (char *buf)
7118 {
7119 return putpkt_binary (buf, strlen (buf));
7120 }
7121
7122 /* Send a packet to the remote machine, with error checking. The data
7123 of the packet is in BUF. The string in BUF can be at most
7124 get_remote_packet_size () - 5 to account for the $, # and checksum,
7125 and for a possible /0 if we are debugging (remote_debug) and want
7126 to print the sent packet as a string. */
7127
7128 static int
7129 putpkt_binary (char *buf, int cnt)
7130 {
7131 struct remote_state *rs = get_remote_state ();
7132 int i;
7133 unsigned char csum = 0;
7134 char *buf2 = alloca (cnt + 6);
7135
7136 int ch;
7137 int tcount = 0;
7138 char *p;
7139 char *message;
7140
7141 /* Catch cases like trying to read memory or listing threads while
7142 we're waiting for a stop reply. The remote server wouldn't be
7143 ready to handle this request, so we'd hang and timeout. We don't
7144 have to worry about this in synchronous mode, because in that
7145 case it's not possible to issue a command while the target is
7146 running. This is not a problem in non-stop mode, because in that
7147 case, the stub is always ready to process serial input. */
7148 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
7149 error (_("Cannot execute this command while the target is running."));
7150
7151 /* We're sending out a new packet. Make sure we don't look at a
7152 stale cached response. */
7153 rs->cached_wait_status = 0;
7154
7155 /* Copy the packet into buffer BUF2, encapsulating it
7156 and giving it a checksum. */
7157
7158 p = buf2;
7159 *p++ = '$';
7160
7161 for (i = 0; i < cnt; i++)
7162 {
7163 csum += buf[i];
7164 *p++ = buf[i];
7165 }
7166 *p++ = '#';
7167 *p++ = tohex ((csum >> 4) & 0xf);
7168 *p++ = tohex (csum & 0xf);
7169
7170 /* Send it over and over until we get a positive ack. */
7171
7172 while (1)
7173 {
7174 int started_error_output = 0;
7175
7176 if (remote_debug)
7177 {
7178 struct cleanup *old_chain;
7179 char *str;
7180
7181 *p = '\0';
7182 str = escape_buffer (buf2, p - buf2);
7183 old_chain = make_cleanup (xfree, str);
7184 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
7185 gdb_flush (gdb_stdlog);
7186 do_cleanups (old_chain);
7187 }
7188 if (serial_write (remote_desc, buf2, p - buf2))
7189 perror_with_name (_("putpkt: write failed"));
7190
7191 /* If this is a no acks version of the remote protocol, send the
7192 packet and move on. */
7193 if (rs->noack_mode)
7194 break;
7195
7196 /* Read until either a timeout occurs (-2) or '+' is read.
7197 Handle any notification that arrives in the mean time. */
7198 while (1)
7199 {
7200 ch = readchar (remote_timeout);
7201
7202 if (remote_debug)
7203 {
7204 switch (ch)
7205 {
7206 case '+':
7207 case '-':
7208 case SERIAL_TIMEOUT:
7209 case '$':
7210 case '%':
7211 if (started_error_output)
7212 {
7213 putchar_unfiltered ('\n');
7214 started_error_output = 0;
7215 }
7216 }
7217 }
7218
7219 switch (ch)
7220 {
7221 case '+':
7222 if (remote_debug)
7223 fprintf_unfiltered (gdb_stdlog, "Ack\n");
7224 return 1;
7225 case '-':
7226 if (remote_debug)
7227 fprintf_unfiltered (gdb_stdlog, "Nak\n");
7228 /* FALLTHROUGH */
7229 case SERIAL_TIMEOUT:
7230 tcount++;
7231 if (tcount > 3)
7232 return 0;
7233 break; /* Retransmit buffer. */
7234 case '$':
7235 {
7236 if (remote_debug)
7237 fprintf_unfiltered (gdb_stdlog,
7238 "Packet instead of Ack, ignoring it\n");
7239 /* It's probably an old response sent because an ACK
7240 was lost. Gobble up the packet and ack it so it
7241 doesn't get retransmitted when we resend this
7242 packet. */
7243 skip_frame ();
7244 serial_write (remote_desc, "+", 1);
7245 continue; /* Now, go look for +. */
7246 }
7247
7248 case '%':
7249 {
7250 int val;
7251
7252 /* If we got a notification, handle it, and go back to looking
7253 for an ack. */
7254 /* We've found the start of a notification. Now
7255 collect the data. */
7256 val = read_frame (&rs->buf, &rs->buf_size);
7257 if (val >= 0)
7258 {
7259 if (remote_debug)
7260 {
7261 struct cleanup *old_chain;
7262 char *str;
7263
7264 str = escape_buffer (rs->buf, val);
7265 old_chain = make_cleanup (xfree, str);
7266 fprintf_unfiltered (gdb_stdlog,
7267 " Notification received: %s\n",
7268 str);
7269 do_cleanups (old_chain);
7270 }
7271 handle_notification (rs->buf);
7272 /* We're in sync now, rewait for the ack. */
7273 tcount = 0;
7274 }
7275 else
7276 {
7277 if (remote_debug)
7278 {
7279 if (!started_error_output)
7280 {
7281 started_error_output = 1;
7282 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7283 }
7284 fputc_unfiltered (ch & 0177, gdb_stdlog);
7285 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7286 }
7287 }
7288 continue;
7289 }
7290 /* fall-through */
7291 default:
7292 if (remote_debug)
7293 {
7294 if (!started_error_output)
7295 {
7296 started_error_output = 1;
7297 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7298 }
7299 fputc_unfiltered (ch & 0177, gdb_stdlog);
7300 }
7301 continue;
7302 }
7303 break; /* Here to retransmit. */
7304 }
7305
7306 #if 0
7307 /* This is wrong. If doing a long backtrace, the user should be
7308 able to get out next time we call QUIT, without anything as
7309 violent as interrupt_query. If we want to provide a way out of
7310 here without getting to the next QUIT, it should be based on
7311 hitting ^C twice as in remote_wait. */
7312 if (quit_flag)
7313 {
7314 quit_flag = 0;
7315 interrupt_query ();
7316 }
7317 #endif
7318 }
7319 return 0;
7320 }
7321
7322 /* Come here after finding the start of a frame when we expected an
7323 ack. Do our best to discard the rest of this packet. */
7324
7325 static void
7326 skip_frame (void)
7327 {
7328 int c;
7329
7330 while (1)
7331 {
7332 c = readchar (remote_timeout);
7333 switch (c)
7334 {
7335 case SERIAL_TIMEOUT:
7336 /* Nothing we can do. */
7337 return;
7338 case '#':
7339 /* Discard the two bytes of checksum and stop. */
7340 c = readchar (remote_timeout);
7341 if (c >= 0)
7342 c = readchar (remote_timeout);
7343
7344 return;
7345 case '*': /* Run length encoding. */
7346 /* Discard the repeat count. */
7347 c = readchar (remote_timeout);
7348 if (c < 0)
7349 return;
7350 break;
7351 default:
7352 /* A regular character. */
7353 break;
7354 }
7355 }
7356 }
7357
7358 /* Come here after finding the start of the frame. Collect the rest
7359 into *BUF, verifying the checksum, length, and handling run-length
7360 compression. NUL terminate the buffer. If there is not enough room,
7361 expand *BUF using xrealloc.
7362
7363 Returns -1 on error, number of characters in buffer (ignoring the
7364 trailing NULL) on success. (could be extended to return one of the
7365 SERIAL status indications). */
7366
7367 static long
7368 read_frame (char **buf_p,
7369 long *sizeof_buf)
7370 {
7371 unsigned char csum;
7372 long bc;
7373 int c;
7374 char *buf = *buf_p;
7375 struct remote_state *rs = get_remote_state ();
7376
7377 csum = 0;
7378 bc = 0;
7379
7380 while (1)
7381 {
7382 c = readchar (remote_timeout);
7383 switch (c)
7384 {
7385 case SERIAL_TIMEOUT:
7386 if (remote_debug)
7387 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7388 return -1;
7389 case '$':
7390 if (remote_debug)
7391 fputs_filtered ("Saw new packet start in middle of old one\n",
7392 gdb_stdlog);
7393 return -1; /* Start a new packet, count retries. */
7394 case '#':
7395 {
7396 unsigned char pktcsum;
7397 int check_0 = 0;
7398 int check_1 = 0;
7399
7400 buf[bc] = '\0';
7401
7402 check_0 = readchar (remote_timeout);
7403 if (check_0 >= 0)
7404 check_1 = readchar (remote_timeout);
7405
7406 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7407 {
7408 if (remote_debug)
7409 fputs_filtered ("Timeout in checksum, retrying\n",
7410 gdb_stdlog);
7411 return -1;
7412 }
7413 else if (check_0 < 0 || check_1 < 0)
7414 {
7415 if (remote_debug)
7416 fputs_filtered ("Communication error in checksum\n",
7417 gdb_stdlog);
7418 return -1;
7419 }
7420
7421 /* Don't recompute the checksum; with no ack packets we
7422 don't have any way to indicate a packet retransmission
7423 is necessary. */
7424 if (rs->noack_mode)
7425 return bc;
7426
7427 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7428 if (csum == pktcsum)
7429 return bc;
7430
7431 if (remote_debug)
7432 {
7433 struct cleanup *old_chain;
7434 char *str;
7435
7436 str = escape_buffer (buf, bc);
7437 old_chain = make_cleanup (xfree, str);
7438 fprintf_unfiltered (gdb_stdlog,
7439 "Bad checksum, sentsum=0x%x, "
7440 "csum=0x%x, buf=%s\n",
7441 pktcsum, csum, str);
7442 do_cleanups (old_chain);
7443 }
7444 /* Number of characters in buffer ignoring trailing
7445 NULL. */
7446 return -1;
7447 }
7448 case '*': /* Run length encoding. */
7449 {
7450 int repeat;
7451
7452 csum += c;
7453 c = readchar (remote_timeout);
7454 csum += c;
7455 repeat = c - ' ' + 3; /* Compute repeat count. */
7456
7457 /* The character before ``*'' is repeated. */
7458
7459 if (repeat > 0 && repeat <= 255 && bc > 0)
7460 {
7461 if (bc + repeat - 1 >= *sizeof_buf - 1)
7462 {
7463 /* Make some more room in the buffer. */
7464 *sizeof_buf += repeat;
7465 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7466 buf = *buf_p;
7467 }
7468
7469 memset (&buf[bc], buf[bc - 1], repeat);
7470 bc += repeat;
7471 continue;
7472 }
7473
7474 buf[bc] = '\0';
7475 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7476 return -1;
7477 }
7478 default:
7479 if (bc >= *sizeof_buf - 1)
7480 {
7481 /* Make some more room in the buffer. */
7482 *sizeof_buf *= 2;
7483 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7484 buf = *buf_p;
7485 }
7486
7487 buf[bc++] = c;
7488 csum += c;
7489 continue;
7490 }
7491 }
7492 }
7493
7494 /* Read a packet from the remote machine, with error checking, and
7495 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7496 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7497 rather than timing out; this is used (in synchronous mode) to wait
7498 for a target that is is executing user code to stop. */
7499 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7500 don't have to change all the calls to getpkt to deal with the
7501 return value, because at the moment I don't know what the right
7502 thing to do it for those. */
7503 void
7504 getpkt (char **buf,
7505 long *sizeof_buf,
7506 int forever)
7507 {
7508 int timed_out;
7509
7510 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7511 }
7512
7513
7514 /* Read a packet from the remote machine, with error checking, and
7515 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7516 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7517 rather than timing out; this is used (in synchronous mode) to wait
7518 for a target that is is executing user code to stop. If FOREVER ==
7519 0, this function is allowed to time out gracefully and return an
7520 indication of this to the caller. Otherwise return the number of
7521 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7522 enough reason to return to the caller. *IS_NOTIF is an output
7523 boolean that indicates whether *BUF holds a notification or not
7524 (a regular packet). */
7525
7526 static int
7527 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7528 int expecting_notif, int *is_notif)
7529 {
7530 struct remote_state *rs = get_remote_state ();
7531 int c;
7532 int tries;
7533 int timeout;
7534 int val = -1;
7535
7536 /* We're reading a new response. Make sure we don't look at a
7537 previously cached response. */
7538 rs->cached_wait_status = 0;
7539
7540 strcpy (*buf, "timeout");
7541
7542 if (forever)
7543 timeout = watchdog > 0 ? watchdog : -1;
7544 else if (expecting_notif)
7545 timeout = 0; /* There should already be a char in the buffer. If
7546 not, bail out. */
7547 else
7548 timeout = remote_timeout;
7549
7550 #define MAX_TRIES 3
7551
7552 /* Process any number of notifications, and then return when
7553 we get a packet. */
7554 for (;;)
7555 {
7556 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7557 times. */
7558 for (tries = 1; tries <= MAX_TRIES; tries++)
7559 {
7560 /* This can loop forever if the remote side sends us
7561 characters continuously, but if it pauses, we'll get
7562 SERIAL_TIMEOUT from readchar because of timeout. Then
7563 we'll count that as a retry.
7564
7565 Note that even when forever is set, we will only wait
7566 forever prior to the start of a packet. After that, we
7567 expect characters to arrive at a brisk pace. They should
7568 show up within remote_timeout intervals. */
7569 do
7570 c = readchar (timeout);
7571 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7572
7573 if (c == SERIAL_TIMEOUT)
7574 {
7575 if (expecting_notif)
7576 return -1; /* Don't complain, it's normal to not get
7577 anything in this case. */
7578
7579 if (forever) /* Watchdog went off? Kill the target. */
7580 {
7581 QUIT;
7582 pop_target ();
7583 error (_("Watchdog timeout has expired. Target detached."));
7584 }
7585 if (remote_debug)
7586 fputs_filtered ("Timed out.\n", gdb_stdlog);
7587 }
7588 else
7589 {
7590 /* We've found the start of a packet or notification.
7591 Now collect the data. */
7592 val = read_frame (buf, sizeof_buf);
7593 if (val >= 0)
7594 break;
7595 }
7596
7597 serial_write (remote_desc, "-", 1);
7598 }
7599
7600 if (tries > MAX_TRIES)
7601 {
7602 /* We have tried hard enough, and just can't receive the
7603 packet/notification. Give up. */
7604 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7605
7606 /* Skip the ack char if we're in no-ack mode. */
7607 if (!rs->noack_mode)
7608 serial_write (remote_desc, "+", 1);
7609 return -1;
7610 }
7611
7612 /* If we got an ordinary packet, return that to our caller. */
7613 if (c == '$')
7614 {
7615 if (remote_debug)
7616 {
7617 struct cleanup *old_chain;
7618 char *str;
7619
7620 str = escape_buffer (*buf, val);
7621 old_chain = make_cleanup (xfree, str);
7622 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7623 do_cleanups (old_chain);
7624 }
7625
7626 /* Skip the ack char if we're in no-ack mode. */
7627 if (!rs->noack_mode)
7628 serial_write (remote_desc, "+", 1);
7629 if (is_notif != NULL)
7630 *is_notif = 0;
7631 return val;
7632 }
7633
7634 /* If we got a notification, handle it, and go back to looking
7635 for a packet. */
7636 else
7637 {
7638 gdb_assert (c == '%');
7639
7640 if (remote_debug)
7641 {
7642 struct cleanup *old_chain;
7643 char *str;
7644
7645 str = escape_buffer (*buf, val);
7646 old_chain = make_cleanup (xfree, str);
7647 fprintf_unfiltered (gdb_stdlog,
7648 " Notification received: %s\n",
7649 str);
7650 do_cleanups (old_chain);
7651 }
7652 if (is_notif != NULL)
7653 *is_notif = 1;
7654
7655 handle_notification (*buf);
7656
7657 /* Notifications require no acknowledgement. */
7658
7659 if (expecting_notif)
7660 return val;
7661 }
7662 }
7663 }
7664
7665 static int
7666 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7667 {
7668 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
7669 }
7670
7671 static int
7672 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
7673 int *is_notif)
7674 {
7675 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
7676 is_notif);
7677 }
7678
7679 \f
7680 /* A helper function that just calls putpkt; for type correctness. */
7681
7682 static int
7683 putpkt_for_catch_errors (void *arg)
7684 {
7685 return putpkt (arg);
7686 }
7687
7688 static void
7689 remote_kill (struct target_ops *ops)
7690 {
7691 /* Use catch_errors so the user can quit from gdb even when we
7692 aren't on speaking terms with the remote system. */
7693 catch_errors (putpkt_for_catch_errors, "k", "", RETURN_MASK_ERROR);
7694
7695 /* Don't wait for it to die. I'm not really sure it matters whether
7696 we do or not. For the existing stubs, kill is a noop. */
7697 target_mourn_inferior ();
7698 }
7699
7700 static int
7701 remote_vkill (int pid, struct remote_state *rs)
7702 {
7703 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7704 return -1;
7705
7706 /* Tell the remote target to detach. */
7707 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
7708 putpkt (rs->buf);
7709 getpkt (&rs->buf, &rs->buf_size, 0);
7710
7711 if (packet_ok (rs->buf,
7712 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7713 return 0;
7714 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7715 return -1;
7716 else
7717 return 1;
7718 }
7719
7720 static void
7721 extended_remote_kill (struct target_ops *ops)
7722 {
7723 int res;
7724 int pid = ptid_get_pid (inferior_ptid);
7725 struct remote_state *rs = get_remote_state ();
7726
7727 res = remote_vkill (pid, rs);
7728 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7729 {
7730 /* Don't try 'k' on a multi-process aware stub -- it has no way
7731 to specify the pid. */
7732
7733 putpkt ("k");
7734 #if 0
7735 getpkt (&rs->buf, &rs->buf_size, 0);
7736 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7737 res = 1;
7738 #else
7739 /* Don't wait for it to die. I'm not really sure it matters whether
7740 we do or not. For the existing stubs, kill is a noop. */
7741 res = 0;
7742 #endif
7743 }
7744
7745 if (res != 0)
7746 error (_("Can't kill process"));
7747
7748 target_mourn_inferior ();
7749 }
7750
7751 static void
7752 remote_mourn (struct target_ops *ops)
7753 {
7754 remote_mourn_1 (ops);
7755 }
7756
7757 /* Worker function for remote_mourn. */
7758 static void
7759 remote_mourn_1 (struct target_ops *target)
7760 {
7761 unpush_target (target);
7762
7763 /* remote_close takes care of doing most of the clean up. */
7764 generic_mourn_inferior ();
7765 }
7766
7767 static void
7768 extended_remote_mourn_1 (struct target_ops *target)
7769 {
7770 struct remote_state *rs = get_remote_state ();
7771
7772 /* In case we got here due to an error, but we're going to stay
7773 connected. */
7774 rs->waiting_for_stop_reply = 0;
7775
7776 /* If the current general thread belonged to the process we just
7777 detached from or has exited, the remote side current general
7778 thread becomes undefined. Considering a case like this:
7779
7780 - We just got here due to a detach.
7781 - The process that we're detaching from happens to immediately
7782 report a global breakpoint being hit in non-stop mode, in the
7783 same thread we had selected before.
7784 - GDB attaches to this process again.
7785 - This event happens to be the next event we handle.
7786
7787 GDB would consider that the current general thread didn't need to
7788 be set on the stub side (with Hg), since for all it knew,
7789 GENERAL_THREAD hadn't changed.
7790
7791 Notice that although in all-stop mode, the remote server always
7792 sets the current thread to the thread reporting the stop event,
7793 that doesn't happen in non-stop mode; in non-stop, the stub *must
7794 not* change the current thread when reporting a breakpoint hit,
7795 due to the decoupling of event reporting and event handling.
7796
7797 To keep things simple, we always invalidate our notion of the
7798 current thread. */
7799 record_currthread (minus_one_ptid);
7800
7801 /* Unlike "target remote", we do not want to unpush the target; then
7802 the next time the user says "run", we won't be connected. */
7803
7804 /* Call common code to mark the inferior as not running. */
7805 generic_mourn_inferior ();
7806
7807 if (!have_inferiors ())
7808 {
7809 if (!remote_multi_process_p (rs))
7810 {
7811 /* Check whether the target is running now - some remote stubs
7812 automatically restart after kill. */
7813 putpkt ("?");
7814 getpkt (&rs->buf, &rs->buf_size, 0);
7815
7816 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7817 {
7818 /* Assume that the target has been restarted. Set
7819 inferior_ptid so that bits of core GDB realizes
7820 there's something here, e.g., so that the user can
7821 say "kill" again. */
7822 inferior_ptid = magic_null_ptid;
7823 }
7824 }
7825 }
7826 }
7827
7828 static void
7829 extended_remote_mourn (struct target_ops *ops)
7830 {
7831 extended_remote_mourn_1 (ops);
7832 }
7833
7834 static int
7835 extended_remote_supports_disable_randomization (void)
7836 {
7837 return (remote_protocol_packets[PACKET_QDisableRandomization].support
7838 == PACKET_ENABLE);
7839 }
7840
7841 static void
7842 extended_remote_disable_randomization (int val)
7843 {
7844 struct remote_state *rs = get_remote_state ();
7845 char *reply;
7846
7847 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
7848 val);
7849 putpkt (rs->buf);
7850 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
7851 if (*reply == '\0')
7852 error (_("Target does not support QDisableRandomization."));
7853 if (strcmp (reply, "OK") != 0)
7854 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
7855 }
7856
7857 static int
7858 extended_remote_run (char *args)
7859 {
7860 struct remote_state *rs = get_remote_state ();
7861 int len;
7862
7863 /* If the user has disabled vRun support, or we have detected that
7864 support is not available, do not try it. */
7865 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7866 return -1;
7867
7868 strcpy (rs->buf, "vRun;");
7869 len = strlen (rs->buf);
7870
7871 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7872 error (_("Remote file name too long for run packet"));
7873 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7874
7875 gdb_assert (args != NULL);
7876 if (*args)
7877 {
7878 struct cleanup *back_to;
7879 int i;
7880 char **argv;
7881
7882 argv = gdb_buildargv (args);
7883 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7884 for (i = 0; argv[i] != NULL; i++)
7885 {
7886 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7887 error (_("Argument list too long for run packet"));
7888 rs->buf[len++] = ';';
7889 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7890 }
7891 do_cleanups (back_to);
7892 }
7893
7894 rs->buf[len++] = '\0';
7895
7896 putpkt (rs->buf);
7897 getpkt (&rs->buf, &rs->buf_size, 0);
7898
7899 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7900 {
7901 /* We have a wait response. All is well. */
7902 return 0;
7903 }
7904 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7905 /* It wasn't disabled before, but it is now. */
7906 return -1;
7907 else
7908 {
7909 if (remote_exec_file[0] == '\0')
7910 error (_("Running the default executable on the remote target failed; "
7911 "try \"set remote exec-file\"?"));
7912 else
7913 error (_("Running \"%s\" on the remote target failed"),
7914 remote_exec_file);
7915 }
7916 }
7917
7918 /* In the extended protocol we want to be able to do things like
7919 "run" and have them basically work as expected. So we need
7920 a special create_inferior function. We support changing the
7921 executable file and the command line arguments, but not the
7922 environment. */
7923
7924 static void
7925 extended_remote_create_inferior_1 (char *exec_file, char *args,
7926 char **env, int from_tty)
7927 {
7928 int run_worked;
7929 char *stop_reply;
7930 struct remote_state *rs = get_remote_state ();
7931
7932 /* If running asynchronously, register the target file descriptor
7933 with the event loop. */
7934 if (target_can_async_p ())
7935 target_async (inferior_event_handler, 0);
7936
7937 /* Disable address space randomization if requested (and supported). */
7938 if (extended_remote_supports_disable_randomization ())
7939 extended_remote_disable_randomization (disable_randomization);
7940
7941 /* Now restart the remote server. */
7942 run_worked = extended_remote_run (args) != -1;
7943 if (!run_worked)
7944 {
7945 /* vRun was not supported. Fail if we need it to do what the
7946 user requested. */
7947 if (remote_exec_file[0])
7948 error (_("Remote target does not support \"set remote exec-file\""));
7949 if (args[0])
7950 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7951
7952 /* Fall back to "R". */
7953 extended_remote_restart ();
7954 }
7955
7956 if (!have_inferiors ())
7957 {
7958 /* Clean up from the last time we ran, before we mark the target
7959 running again. This will mark breakpoints uninserted, and
7960 get_offsets may insert breakpoints. */
7961 init_thread_list ();
7962 init_wait_for_inferior ();
7963 }
7964
7965 /* vRun's success return is a stop reply. */
7966 stop_reply = run_worked ? rs->buf : NULL;
7967 add_current_inferior_and_thread (stop_reply);
7968
7969 /* Get updated offsets, if the stub uses qOffsets. */
7970 get_offsets ();
7971 }
7972
7973 static void
7974 extended_remote_create_inferior (struct target_ops *ops,
7975 char *exec_file, char *args,
7976 char **env, int from_tty)
7977 {
7978 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7979 }
7980 \f
7981
7982 /* Given a location's target info BP_TGT and the packet buffer BUF, output
7983 the list of conditions (in agent expression bytecode format), if any, the
7984 target needs to evaluate. The output is placed into the packet buffer
7985 started from BUF and ended at BUF_END. */
7986
7987 static int
7988 remote_add_target_side_condition (struct gdbarch *gdbarch,
7989 struct bp_target_info *bp_tgt, char *buf,
7990 char *buf_end)
7991 {
7992 struct agent_expr *aexpr = NULL;
7993 int i, ix;
7994 char *pkt;
7995 char *buf_start = buf;
7996
7997 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
7998 return 0;
7999
8000 buf += strlen (buf);
8001 xsnprintf (buf, buf_end - buf, "%s", ";");
8002 buf++;
8003
8004 /* Send conditions to the target and free the vector. */
8005 for (ix = 0;
8006 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
8007 ix++)
8008 {
8009 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
8010 buf += strlen (buf);
8011 for (i = 0; i < aexpr->len; ++i)
8012 buf = pack_hex_byte (buf, aexpr->buf[i]);
8013 *buf = '\0';
8014 }
8015
8016 VEC_free (agent_expr_p, bp_tgt->conditions);
8017 return 0;
8018 }
8019
8020 static void
8021 remote_add_target_side_commands (struct gdbarch *gdbarch,
8022 struct bp_target_info *bp_tgt, char *buf)
8023 {
8024 struct agent_expr *aexpr = NULL;
8025 int i, ix;
8026
8027 if (VEC_empty (agent_expr_p, bp_tgt->tcommands))
8028 return;
8029
8030 buf += strlen (buf);
8031
8032 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
8033 buf += strlen (buf);
8034
8035 /* Concatenate all the agent expressions that are commands into the
8036 cmds parameter. */
8037 for (ix = 0;
8038 VEC_iterate (agent_expr_p, bp_tgt->tcommands, ix, aexpr);
8039 ix++)
8040 {
8041 sprintf (buf, "X%x,", aexpr->len);
8042 buf += strlen (buf);
8043 for (i = 0; i < aexpr->len; ++i)
8044 buf = pack_hex_byte (buf, aexpr->buf[i]);
8045 *buf = '\0';
8046 }
8047
8048 VEC_free (agent_expr_p, bp_tgt->tcommands);
8049 }
8050
8051 /* Insert a breakpoint. On targets that have software breakpoint
8052 support, we ask the remote target to do the work; on targets
8053 which don't, we insert a traditional memory breakpoint. */
8054
8055 static int
8056 remote_insert_breakpoint (struct gdbarch *gdbarch,
8057 struct bp_target_info *bp_tgt)
8058 {
8059 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
8060 If it succeeds, then set the support to PACKET_ENABLE. If it
8061 fails, and the user has explicitly requested the Z support then
8062 report an error, otherwise, mark it disabled and go on. */
8063
8064 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8065 {
8066 CORE_ADDR addr = bp_tgt->placed_address;
8067 struct remote_state *rs;
8068 char *p, *endbuf;
8069 int bpsize;
8070 struct condition_list *cond = NULL;
8071
8072 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
8073
8074 rs = get_remote_state ();
8075 p = rs->buf;
8076 endbuf = rs->buf + get_remote_packet_size ();
8077
8078 *(p++) = 'Z';
8079 *(p++) = '0';
8080 *(p++) = ',';
8081 addr = (ULONGEST) remote_address_masked (addr);
8082 p += hexnumstr (p, addr);
8083 xsnprintf (p, endbuf - p, ",%d", bpsize);
8084
8085 if (remote_supports_cond_breakpoints ())
8086 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8087
8088 if (remote_can_run_breakpoint_commands ())
8089 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8090
8091 putpkt (rs->buf);
8092 getpkt (&rs->buf, &rs->buf_size, 0);
8093
8094 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
8095 {
8096 case PACKET_ERROR:
8097 return -1;
8098 case PACKET_OK:
8099 bp_tgt->placed_address = addr;
8100 bp_tgt->placed_size = bpsize;
8101 return 0;
8102 case PACKET_UNKNOWN:
8103 break;
8104 }
8105 }
8106
8107 return memory_insert_breakpoint (gdbarch, bp_tgt);
8108 }
8109
8110 static int
8111 remote_remove_breakpoint (struct gdbarch *gdbarch,
8112 struct bp_target_info *bp_tgt)
8113 {
8114 CORE_ADDR addr = bp_tgt->placed_address;
8115 struct remote_state *rs = get_remote_state ();
8116
8117 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8118 {
8119 char *p = rs->buf;
8120 char *endbuf = rs->buf + get_remote_packet_size ();
8121
8122 *(p++) = 'z';
8123 *(p++) = '0';
8124 *(p++) = ',';
8125
8126 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
8127 p += hexnumstr (p, addr);
8128 xsnprintf (p, endbuf - p, ",%d", bp_tgt->placed_size);
8129
8130 putpkt (rs->buf);
8131 getpkt (&rs->buf, &rs->buf_size, 0);
8132
8133 return (rs->buf[0] == 'E');
8134 }
8135
8136 return memory_remove_breakpoint (gdbarch, bp_tgt);
8137 }
8138
8139 static int
8140 watchpoint_to_Z_packet (int type)
8141 {
8142 switch (type)
8143 {
8144 case hw_write:
8145 return Z_PACKET_WRITE_WP;
8146 break;
8147 case hw_read:
8148 return Z_PACKET_READ_WP;
8149 break;
8150 case hw_access:
8151 return Z_PACKET_ACCESS_WP;
8152 break;
8153 default:
8154 internal_error (__FILE__, __LINE__,
8155 _("hw_bp_to_z: bad watchpoint type %d"), type);
8156 }
8157 }
8158
8159 static int
8160 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
8161 struct expression *cond)
8162 {
8163 struct remote_state *rs = get_remote_state ();
8164 char *endbuf = rs->buf + get_remote_packet_size ();
8165 char *p;
8166 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8167
8168 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8169 return 1;
8170
8171 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
8172 p = strchr (rs->buf, '\0');
8173 addr = remote_address_masked (addr);
8174 p += hexnumstr (p, (ULONGEST) addr);
8175 xsnprintf (p, endbuf - p, ",%x", len);
8176
8177 putpkt (rs->buf);
8178 getpkt (&rs->buf, &rs->buf_size, 0);
8179
8180 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8181 {
8182 case PACKET_ERROR:
8183 return -1;
8184 case PACKET_UNKNOWN:
8185 return 1;
8186 case PACKET_OK:
8187 return 0;
8188 }
8189 internal_error (__FILE__, __LINE__,
8190 _("remote_insert_watchpoint: reached end of function"));
8191 }
8192
8193 static int
8194 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
8195 CORE_ADDR start, int length)
8196 {
8197 CORE_ADDR diff = remote_address_masked (addr - start);
8198
8199 return diff < length;
8200 }
8201
8202
8203 static int
8204 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
8205 struct expression *cond)
8206 {
8207 struct remote_state *rs = get_remote_state ();
8208 char *endbuf = rs->buf + get_remote_packet_size ();
8209 char *p;
8210 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8211
8212 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8213 return -1;
8214
8215 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
8216 p = strchr (rs->buf, '\0');
8217 addr = remote_address_masked (addr);
8218 p += hexnumstr (p, (ULONGEST) addr);
8219 xsnprintf (p, endbuf - p, ",%x", len);
8220 putpkt (rs->buf);
8221 getpkt (&rs->buf, &rs->buf_size, 0);
8222
8223 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8224 {
8225 case PACKET_ERROR:
8226 case PACKET_UNKNOWN:
8227 return -1;
8228 case PACKET_OK:
8229 return 0;
8230 }
8231 internal_error (__FILE__, __LINE__,
8232 _("remote_remove_watchpoint: reached end of function"));
8233 }
8234
8235
8236 int remote_hw_watchpoint_limit = -1;
8237 int remote_hw_watchpoint_length_limit = -1;
8238 int remote_hw_breakpoint_limit = -1;
8239
8240 static int
8241 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
8242 {
8243 if (remote_hw_watchpoint_length_limit == 0)
8244 return 0;
8245 else if (remote_hw_watchpoint_length_limit < 0)
8246 return 1;
8247 else if (len <= remote_hw_watchpoint_length_limit)
8248 return 1;
8249 else
8250 return 0;
8251 }
8252
8253 static int
8254 remote_check_watch_resources (int type, int cnt, int ot)
8255 {
8256 if (type == bp_hardware_breakpoint)
8257 {
8258 if (remote_hw_breakpoint_limit == 0)
8259 return 0;
8260 else if (remote_hw_breakpoint_limit < 0)
8261 return 1;
8262 else if (cnt <= remote_hw_breakpoint_limit)
8263 return 1;
8264 }
8265 else
8266 {
8267 if (remote_hw_watchpoint_limit == 0)
8268 return 0;
8269 else if (remote_hw_watchpoint_limit < 0)
8270 return 1;
8271 else if (ot)
8272 return -1;
8273 else if (cnt <= remote_hw_watchpoint_limit)
8274 return 1;
8275 }
8276 return -1;
8277 }
8278
8279 static int
8280 remote_stopped_by_watchpoint (void)
8281 {
8282 return remote_stopped_by_watchpoint_p;
8283 }
8284
8285 static int
8286 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
8287 {
8288 int rc = 0;
8289
8290 if (remote_stopped_by_watchpoint ())
8291 {
8292 *addr_p = remote_watch_data_address;
8293 rc = 1;
8294 }
8295
8296 return rc;
8297 }
8298
8299
8300 static int
8301 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
8302 struct bp_target_info *bp_tgt)
8303 {
8304 CORE_ADDR addr;
8305 struct remote_state *rs;
8306 char *p, *endbuf;
8307 char *message;
8308
8309 /* The length field should be set to the size of a breakpoint
8310 instruction, even though we aren't inserting one ourselves. */
8311
8312 gdbarch_remote_breakpoint_from_pc
8313 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
8314
8315 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8316 return -1;
8317
8318 rs = get_remote_state ();
8319 p = rs->buf;
8320 endbuf = rs->buf + get_remote_packet_size ();
8321
8322 *(p++) = 'Z';
8323 *(p++) = '1';
8324 *(p++) = ',';
8325
8326 addr = remote_address_masked (bp_tgt->placed_address);
8327 p += hexnumstr (p, (ULONGEST) addr);
8328 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8329
8330 if (remote_supports_cond_breakpoints ())
8331 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8332
8333 if (remote_can_run_breakpoint_commands ())
8334 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8335
8336 putpkt (rs->buf);
8337 getpkt (&rs->buf, &rs->buf_size, 0);
8338
8339 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8340 {
8341 case PACKET_ERROR:
8342 if (rs->buf[1] == '.')
8343 {
8344 message = strchr (rs->buf + 2, '.');
8345 if (message)
8346 error (_("Remote failure reply: %s"), message + 1);
8347 }
8348 return -1;
8349 case PACKET_UNKNOWN:
8350 return -1;
8351 case PACKET_OK:
8352 return 0;
8353 }
8354 internal_error (__FILE__, __LINE__,
8355 _("remote_insert_hw_breakpoint: reached end of function"));
8356 }
8357
8358
8359 static int
8360 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
8361 struct bp_target_info *bp_tgt)
8362 {
8363 CORE_ADDR addr;
8364 struct remote_state *rs = get_remote_state ();
8365 char *p = rs->buf;
8366 char *endbuf = rs->buf + get_remote_packet_size ();
8367
8368 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8369 return -1;
8370
8371 *(p++) = 'z';
8372 *(p++) = '1';
8373 *(p++) = ',';
8374
8375 addr = remote_address_masked (bp_tgt->placed_address);
8376 p += hexnumstr (p, (ULONGEST) addr);
8377 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8378
8379 putpkt (rs->buf);
8380 getpkt (&rs->buf, &rs->buf_size, 0);
8381
8382 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8383 {
8384 case PACKET_ERROR:
8385 case PACKET_UNKNOWN:
8386 return -1;
8387 case PACKET_OK:
8388 return 0;
8389 }
8390 internal_error (__FILE__, __LINE__,
8391 _("remote_remove_hw_breakpoint: reached end of function"));
8392 }
8393
8394 /* Table used by the crc32 function to calcuate the checksum. */
8395
8396 static unsigned long crc32_table[256] =
8397 {0, 0};
8398
8399 static unsigned long
8400 crc32 (const unsigned char *buf, int len, unsigned int crc)
8401 {
8402 if (!crc32_table[1])
8403 {
8404 /* Initialize the CRC table and the decoding table. */
8405 int i, j;
8406 unsigned int c;
8407
8408 for (i = 0; i < 256; i++)
8409 {
8410 for (c = i << 24, j = 8; j > 0; --j)
8411 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
8412 crc32_table[i] = c;
8413 }
8414 }
8415
8416 while (len--)
8417 {
8418 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
8419 buf++;
8420 }
8421 return crc;
8422 }
8423
8424 /* Verify memory using the "qCRC:" request. */
8425
8426 static int
8427 remote_verify_memory (struct target_ops *ops,
8428 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8429 {
8430 struct remote_state *rs = get_remote_state ();
8431 unsigned long host_crc, target_crc;
8432 char *tmp;
8433
8434 /* FIXME: assumes lma can fit into long. */
8435 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8436 (long) lma, (long) size);
8437 putpkt (rs->buf);
8438
8439 /* Be clever; compute the host_crc before waiting for target
8440 reply. */
8441 host_crc = crc32 (data, size, 0xffffffff);
8442
8443 getpkt (&rs->buf, &rs->buf_size, 0);
8444 if (rs->buf[0] == 'E')
8445 return -1;
8446
8447 if (rs->buf[0] != 'C')
8448 error (_("remote target does not support this operation"));
8449
8450 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8451 target_crc = target_crc * 16 + fromhex (*tmp);
8452
8453 return (host_crc == target_crc);
8454 }
8455
8456 /* compare-sections command
8457
8458 With no arguments, compares each loadable section in the exec bfd
8459 with the same memory range on the target, and reports mismatches.
8460 Useful for verifying the image on the target against the exec file. */
8461
8462 static void
8463 compare_sections_command (char *args, int from_tty)
8464 {
8465 asection *s;
8466 struct cleanup *old_chain;
8467 char *sectdata;
8468 const char *sectname;
8469 bfd_size_type size;
8470 bfd_vma lma;
8471 int matched = 0;
8472 int mismatched = 0;
8473 int res;
8474
8475 if (!exec_bfd)
8476 error (_("command cannot be used without an exec file"));
8477
8478 for (s = exec_bfd->sections; s; s = s->next)
8479 {
8480 if (!(s->flags & SEC_LOAD))
8481 continue; /* Skip non-loadable section. */
8482
8483 size = bfd_get_section_size (s);
8484 if (size == 0)
8485 continue; /* Skip zero-length section. */
8486
8487 sectname = bfd_get_section_name (exec_bfd, s);
8488 if (args && strcmp (args, sectname) != 0)
8489 continue; /* Not the section selected by user. */
8490
8491 matched = 1; /* Do this section. */
8492 lma = s->lma;
8493
8494 sectdata = xmalloc (size);
8495 old_chain = make_cleanup (xfree, sectdata);
8496 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8497
8498 res = target_verify_memory (sectdata, lma, size);
8499
8500 if (res == -1)
8501 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8502 paddress (target_gdbarch (), lma),
8503 paddress (target_gdbarch (), lma + size));
8504
8505 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8506 paddress (target_gdbarch (), lma),
8507 paddress (target_gdbarch (), lma + size));
8508 if (res)
8509 printf_filtered ("matched.\n");
8510 else
8511 {
8512 printf_filtered ("MIS-MATCHED!\n");
8513 mismatched++;
8514 }
8515
8516 do_cleanups (old_chain);
8517 }
8518 if (mismatched > 0)
8519 warning (_("One or more sections of the remote executable does not match\n\
8520 the loaded file\n"));
8521 if (args && !matched)
8522 printf_filtered (_("No loaded section named '%s'.\n"), args);
8523 }
8524
8525 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8526 into remote target. The number of bytes written to the remote
8527 target is returned, or -1 for error. */
8528
8529 static LONGEST
8530 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8531 const char *annex, const gdb_byte *writebuf,
8532 ULONGEST offset, LONGEST len,
8533 struct packet_config *packet)
8534 {
8535 int i, buf_len;
8536 ULONGEST n;
8537 struct remote_state *rs = get_remote_state ();
8538 int max_size = get_memory_write_packet_size ();
8539
8540 if (packet->support == PACKET_DISABLE)
8541 return -1;
8542
8543 /* Insert header. */
8544 i = snprintf (rs->buf, max_size,
8545 "qXfer:%s:write:%s:%s:",
8546 object_name, annex ? annex : "",
8547 phex_nz (offset, sizeof offset));
8548 max_size -= (i + 1);
8549
8550 /* Escape as much data as fits into rs->buf. */
8551 buf_len = remote_escape_output
8552 (writebuf, len, (rs->buf + i), &max_size, max_size);
8553
8554 if (putpkt_binary (rs->buf, i + buf_len) < 0
8555 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8556 || packet_ok (rs->buf, packet) != PACKET_OK)
8557 return -1;
8558
8559 unpack_varlen_hex (rs->buf, &n);
8560 return n;
8561 }
8562
8563 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8564 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8565 number of bytes read is returned, or 0 for EOF, or -1 for error.
8566 The number of bytes read may be less than LEN without indicating an
8567 EOF. PACKET is checked and updated to indicate whether the remote
8568 target supports this object. */
8569
8570 static LONGEST
8571 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8572 const char *annex,
8573 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8574 struct packet_config *packet)
8575 {
8576 static char *finished_object;
8577 static char *finished_annex;
8578 static ULONGEST finished_offset;
8579
8580 struct remote_state *rs = get_remote_state ();
8581 LONGEST i, n, packet_len;
8582
8583 if (packet->support == PACKET_DISABLE)
8584 return -1;
8585
8586 /* Check whether we've cached an end-of-object packet that matches
8587 this request. */
8588 if (finished_object)
8589 {
8590 if (strcmp (object_name, finished_object) == 0
8591 && strcmp (annex ? annex : "", finished_annex) == 0
8592 && offset == finished_offset)
8593 return 0;
8594
8595 /* Otherwise, we're now reading something different. Discard
8596 the cache. */
8597 xfree (finished_object);
8598 xfree (finished_annex);
8599 finished_object = NULL;
8600 finished_annex = NULL;
8601 }
8602
8603 /* Request only enough to fit in a single packet. The actual data
8604 may not, since we don't know how much of it will need to be escaped;
8605 the target is free to respond with slightly less data. We subtract
8606 five to account for the response type and the protocol frame. */
8607 n = min (get_remote_packet_size () - 5, len);
8608 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8609 object_name, annex ? annex : "",
8610 phex_nz (offset, sizeof offset),
8611 phex_nz (n, sizeof n));
8612 i = putpkt (rs->buf);
8613 if (i < 0)
8614 return -1;
8615
8616 rs->buf[0] = '\0';
8617 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8618 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8619 return -1;
8620
8621 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8622 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8623
8624 /* 'm' means there is (or at least might be) more data after this
8625 batch. That does not make sense unless there's at least one byte
8626 of data in this reply. */
8627 if (rs->buf[0] == 'm' && packet_len == 1)
8628 error (_("Remote qXfer reply contained no data."));
8629
8630 /* Got some data. */
8631 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8632
8633 /* 'l' is an EOF marker, possibly including a final block of data,
8634 or possibly empty. If we have the final block of a non-empty
8635 object, record this fact to bypass a subsequent partial read. */
8636 if (rs->buf[0] == 'l' && offset + i > 0)
8637 {
8638 finished_object = xstrdup (object_name);
8639 finished_annex = xstrdup (annex ? annex : "");
8640 finished_offset = offset + i;
8641 }
8642
8643 return i;
8644 }
8645
8646 static LONGEST
8647 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8648 const char *annex, gdb_byte *readbuf,
8649 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8650 {
8651 struct remote_state *rs;
8652 int i;
8653 char *p2;
8654 char query_type;
8655
8656 set_remote_traceframe ();
8657 set_general_thread (inferior_ptid);
8658
8659 rs = get_remote_state ();
8660
8661 /* Handle memory using the standard memory routines. */
8662 if (object == TARGET_OBJECT_MEMORY)
8663 {
8664 int xfered;
8665
8666 errno = 0;
8667
8668 /* If the remote target is connected but not running, we should
8669 pass this request down to a lower stratum (e.g. the executable
8670 file). */
8671 if (!target_has_execution)
8672 return 0;
8673
8674 if (writebuf != NULL)
8675 xfered = remote_write_bytes (offset, writebuf, len);
8676 else
8677 xfered = remote_read_bytes (offset, readbuf, len);
8678
8679 if (xfered > 0)
8680 return xfered;
8681 else if (xfered == 0 && errno == 0)
8682 return 0;
8683 else
8684 return -1;
8685 }
8686
8687 /* Handle SPU memory using qxfer packets. */
8688 if (object == TARGET_OBJECT_SPU)
8689 {
8690 if (readbuf)
8691 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8692 &remote_protocol_packets
8693 [PACKET_qXfer_spu_read]);
8694 else
8695 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8696 &remote_protocol_packets
8697 [PACKET_qXfer_spu_write]);
8698 }
8699
8700 /* Handle extra signal info using qxfer packets. */
8701 if (object == TARGET_OBJECT_SIGNAL_INFO)
8702 {
8703 if (readbuf)
8704 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8705 &remote_protocol_packets
8706 [PACKET_qXfer_siginfo_read]);
8707 else
8708 return remote_write_qxfer (ops, "siginfo", annex,
8709 writebuf, offset, len,
8710 &remote_protocol_packets
8711 [PACKET_qXfer_siginfo_write]);
8712 }
8713
8714 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8715 {
8716 if (readbuf)
8717 return remote_read_qxfer (ops, "statictrace", annex,
8718 readbuf, offset, len,
8719 &remote_protocol_packets
8720 [PACKET_qXfer_statictrace_read]);
8721 else
8722 return -1;
8723 }
8724
8725 /* Only handle flash writes. */
8726 if (writebuf != NULL)
8727 {
8728 LONGEST xfered;
8729
8730 switch (object)
8731 {
8732 case TARGET_OBJECT_FLASH:
8733 xfered = remote_flash_write (ops, offset, len, writebuf);
8734
8735 if (xfered > 0)
8736 return xfered;
8737 else if (xfered == 0 && errno == 0)
8738 return 0;
8739 else
8740 return -1;
8741
8742 default:
8743 return -1;
8744 }
8745 }
8746
8747 /* Map pre-existing objects onto letters. DO NOT do this for new
8748 objects!!! Instead specify new query packets. */
8749 switch (object)
8750 {
8751 case TARGET_OBJECT_AVR:
8752 query_type = 'R';
8753 break;
8754
8755 case TARGET_OBJECT_AUXV:
8756 gdb_assert (annex == NULL);
8757 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8758 &remote_protocol_packets[PACKET_qXfer_auxv]);
8759
8760 case TARGET_OBJECT_AVAILABLE_FEATURES:
8761 return remote_read_qxfer
8762 (ops, "features", annex, readbuf, offset, len,
8763 &remote_protocol_packets[PACKET_qXfer_features]);
8764
8765 case TARGET_OBJECT_LIBRARIES:
8766 return remote_read_qxfer
8767 (ops, "libraries", annex, readbuf, offset, len,
8768 &remote_protocol_packets[PACKET_qXfer_libraries]);
8769
8770 case TARGET_OBJECT_LIBRARIES_SVR4:
8771 return remote_read_qxfer
8772 (ops, "libraries-svr4", annex, readbuf, offset, len,
8773 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8774
8775 case TARGET_OBJECT_MEMORY_MAP:
8776 gdb_assert (annex == NULL);
8777 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8778 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8779
8780 case TARGET_OBJECT_OSDATA:
8781 /* Should only get here if we're connected. */
8782 gdb_assert (remote_desc);
8783 return remote_read_qxfer
8784 (ops, "osdata", annex, readbuf, offset, len,
8785 &remote_protocol_packets[PACKET_qXfer_osdata]);
8786
8787 case TARGET_OBJECT_THREADS:
8788 gdb_assert (annex == NULL);
8789 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8790 &remote_protocol_packets[PACKET_qXfer_threads]);
8791
8792 case TARGET_OBJECT_TRACEFRAME_INFO:
8793 gdb_assert (annex == NULL);
8794 return remote_read_qxfer
8795 (ops, "traceframe-info", annex, readbuf, offset, len,
8796 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8797
8798 case TARGET_OBJECT_FDPIC:
8799 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8800 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8801
8802 case TARGET_OBJECT_OPENVMS_UIB:
8803 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
8804 &remote_protocol_packets[PACKET_qXfer_uib]);
8805
8806 case TARGET_OBJECT_BTRACE:
8807 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
8808 &remote_protocol_packets[PACKET_qXfer_btrace]);
8809
8810 default:
8811 return -1;
8812 }
8813
8814 /* Note: a zero OFFSET and LEN can be used to query the minimum
8815 buffer size. */
8816 if (offset == 0 && len == 0)
8817 return (get_remote_packet_size ());
8818 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8819 large enough let the caller deal with it. */
8820 if (len < get_remote_packet_size ())
8821 return -1;
8822 len = get_remote_packet_size ();
8823
8824 /* Except for querying the minimum buffer size, target must be open. */
8825 if (!remote_desc)
8826 error (_("remote query is only available after target open"));
8827
8828 gdb_assert (annex != NULL);
8829 gdb_assert (readbuf != NULL);
8830
8831 p2 = rs->buf;
8832 *p2++ = 'q';
8833 *p2++ = query_type;
8834
8835 /* We used one buffer char for the remote protocol q command and
8836 another for the query type. As the remote protocol encapsulation
8837 uses 4 chars plus one extra in case we are debugging
8838 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8839 string. */
8840 i = 0;
8841 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8842 {
8843 /* Bad caller may have sent forbidden characters. */
8844 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8845 *p2++ = annex[i];
8846 i++;
8847 }
8848 *p2 = '\0';
8849 gdb_assert (annex[i] == '\0');
8850
8851 i = putpkt (rs->buf);
8852 if (i < 0)
8853 return i;
8854
8855 getpkt (&rs->buf, &rs->buf_size, 0);
8856 strcpy ((char *) readbuf, rs->buf);
8857
8858 return strlen ((char *) readbuf);
8859 }
8860
8861 static int
8862 remote_search_memory (struct target_ops* ops,
8863 CORE_ADDR start_addr, ULONGEST search_space_len,
8864 const gdb_byte *pattern, ULONGEST pattern_len,
8865 CORE_ADDR *found_addrp)
8866 {
8867 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8868 struct remote_state *rs = get_remote_state ();
8869 int max_size = get_memory_write_packet_size ();
8870 struct packet_config *packet =
8871 &remote_protocol_packets[PACKET_qSearch_memory];
8872 /* Number of packet bytes used to encode the pattern;
8873 this could be more than PATTERN_LEN due to escape characters. */
8874 int escaped_pattern_len;
8875 /* Amount of pattern that was encodable in the packet. */
8876 int used_pattern_len;
8877 int i;
8878 int found;
8879 ULONGEST found_addr;
8880
8881 /* Don't go to the target if we don't have to.
8882 This is done before checking packet->support to avoid the possibility that
8883 a success for this edge case means the facility works in general. */
8884 if (pattern_len > search_space_len)
8885 return 0;
8886 if (pattern_len == 0)
8887 {
8888 *found_addrp = start_addr;
8889 return 1;
8890 }
8891
8892 /* If we already know the packet isn't supported, fall back to the simple
8893 way of searching memory. */
8894
8895 if (packet->support == PACKET_DISABLE)
8896 {
8897 /* Target doesn't provided special support, fall back and use the
8898 standard support (copy memory and do the search here). */
8899 return simple_search_memory (ops, start_addr, search_space_len,
8900 pattern, pattern_len, found_addrp);
8901 }
8902
8903 /* Insert header. */
8904 i = snprintf (rs->buf, max_size,
8905 "qSearch:memory:%s;%s;",
8906 phex_nz (start_addr, addr_size),
8907 phex_nz (search_space_len, sizeof (search_space_len)));
8908 max_size -= (i + 1);
8909
8910 /* Escape as much data as fits into rs->buf. */
8911 escaped_pattern_len =
8912 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8913 &used_pattern_len, max_size);
8914
8915 /* Bail if the pattern is too large. */
8916 if (used_pattern_len != pattern_len)
8917 error (_("Pattern is too large to transmit to remote target."));
8918
8919 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8920 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8921 || packet_ok (rs->buf, packet) != PACKET_OK)
8922 {
8923 /* The request may not have worked because the command is not
8924 supported. If so, fall back to the simple way. */
8925 if (packet->support == PACKET_DISABLE)
8926 {
8927 return simple_search_memory (ops, start_addr, search_space_len,
8928 pattern, pattern_len, found_addrp);
8929 }
8930 return -1;
8931 }
8932
8933 if (rs->buf[0] == '0')
8934 found = 0;
8935 else if (rs->buf[0] == '1')
8936 {
8937 found = 1;
8938 if (rs->buf[1] != ',')
8939 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8940 unpack_varlen_hex (rs->buf + 2, &found_addr);
8941 *found_addrp = found_addr;
8942 }
8943 else
8944 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8945
8946 return found;
8947 }
8948
8949 static void
8950 remote_rcmd (char *command,
8951 struct ui_file *outbuf)
8952 {
8953 struct remote_state *rs = get_remote_state ();
8954 char *p = rs->buf;
8955
8956 if (!remote_desc)
8957 error (_("remote rcmd is only available after target open"));
8958
8959 /* Send a NULL command across as an empty command. */
8960 if (command == NULL)
8961 command = "";
8962
8963 /* The query prefix. */
8964 strcpy (rs->buf, "qRcmd,");
8965 p = strchr (rs->buf, '\0');
8966
8967 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
8968 > get_remote_packet_size ())
8969 error (_("\"monitor\" command ``%s'' is too long."), command);
8970
8971 /* Encode the actual command. */
8972 bin2hex ((gdb_byte *) command, p, 0);
8973
8974 if (putpkt (rs->buf) < 0)
8975 error (_("Communication problem with target."));
8976
8977 /* get/display the response */
8978 while (1)
8979 {
8980 char *buf;
8981
8982 /* XXX - see also remote_get_noisy_reply(). */
8983 QUIT; /* Allow user to bail out with ^C. */
8984 rs->buf[0] = '\0';
8985 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
8986 {
8987 /* Timeout. Continue to (try to) read responses.
8988 This is better than stopping with an error, assuming the stub
8989 is still executing the (long) monitor command.
8990 If needed, the user can interrupt gdb using C-c, obtaining
8991 an effect similar to stop on timeout. */
8992 continue;
8993 }
8994 buf = rs->buf;
8995 if (buf[0] == '\0')
8996 error (_("Target does not support this command."));
8997 if (buf[0] == 'O' && buf[1] != 'K')
8998 {
8999 remote_console_output (buf + 1); /* 'O' message from stub. */
9000 continue;
9001 }
9002 if (strcmp (buf, "OK") == 0)
9003 break;
9004 if (strlen (buf) == 3 && buf[0] == 'E'
9005 && isdigit (buf[1]) && isdigit (buf[2]))
9006 {
9007 error (_("Protocol error with Rcmd"));
9008 }
9009 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
9010 {
9011 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
9012
9013 fputc_unfiltered (c, outbuf);
9014 }
9015 break;
9016 }
9017 }
9018
9019 static VEC(mem_region_s) *
9020 remote_memory_map (struct target_ops *ops)
9021 {
9022 VEC(mem_region_s) *result = NULL;
9023 char *text = target_read_stralloc (&current_target,
9024 TARGET_OBJECT_MEMORY_MAP, NULL);
9025
9026 if (text)
9027 {
9028 struct cleanup *back_to = make_cleanup (xfree, text);
9029
9030 result = parse_memory_map (text);
9031 do_cleanups (back_to);
9032 }
9033
9034 return result;
9035 }
9036
9037 static void
9038 packet_command (char *args, int from_tty)
9039 {
9040 struct remote_state *rs = get_remote_state ();
9041
9042 if (!remote_desc)
9043 error (_("command can only be used with remote target"));
9044
9045 if (!args)
9046 error (_("remote-packet command requires packet text as argument"));
9047
9048 puts_filtered ("sending: ");
9049 print_packet (args);
9050 puts_filtered ("\n");
9051 putpkt (args);
9052
9053 getpkt (&rs->buf, &rs->buf_size, 0);
9054 puts_filtered ("received: ");
9055 print_packet (rs->buf);
9056 puts_filtered ("\n");
9057 }
9058
9059 #if 0
9060 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
9061
9062 static void display_thread_info (struct gdb_ext_thread_info *info);
9063
9064 static void threadset_test_cmd (char *cmd, int tty);
9065
9066 static void threadalive_test (char *cmd, int tty);
9067
9068 static void threadlist_test_cmd (char *cmd, int tty);
9069
9070 int get_and_display_threadinfo (threadref *ref);
9071
9072 static void threadinfo_test_cmd (char *cmd, int tty);
9073
9074 static int thread_display_step (threadref *ref, void *context);
9075
9076 static void threadlist_update_test_cmd (char *cmd, int tty);
9077
9078 static void init_remote_threadtests (void);
9079
9080 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
9081
9082 static void
9083 threadset_test_cmd (char *cmd, int tty)
9084 {
9085 int sample_thread = SAMPLE_THREAD;
9086
9087 printf_filtered (_("Remote threadset test\n"));
9088 set_general_thread (sample_thread);
9089 }
9090
9091
9092 static void
9093 threadalive_test (char *cmd, int tty)
9094 {
9095 int sample_thread = SAMPLE_THREAD;
9096 int pid = ptid_get_pid (inferior_ptid);
9097 ptid_t ptid = ptid_build (pid, 0, sample_thread);
9098
9099 if (remote_thread_alive (ptid))
9100 printf_filtered ("PASS: Thread alive test\n");
9101 else
9102 printf_filtered ("FAIL: Thread alive test\n");
9103 }
9104
9105 void output_threadid (char *title, threadref *ref);
9106
9107 void
9108 output_threadid (char *title, threadref *ref)
9109 {
9110 char hexid[20];
9111
9112 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
9113 hexid[16] = 0;
9114 printf_filtered ("%s %s\n", title, (&hexid[0]));
9115 }
9116
9117 static void
9118 threadlist_test_cmd (char *cmd, int tty)
9119 {
9120 int startflag = 1;
9121 threadref nextthread;
9122 int done, result_count;
9123 threadref threadlist[3];
9124
9125 printf_filtered ("Remote Threadlist test\n");
9126 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
9127 &result_count, &threadlist[0]))
9128 printf_filtered ("FAIL: threadlist test\n");
9129 else
9130 {
9131 threadref *scan = threadlist;
9132 threadref *limit = scan + result_count;
9133
9134 while (scan < limit)
9135 output_threadid (" thread ", scan++);
9136 }
9137 }
9138
9139 void
9140 display_thread_info (struct gdb_ext_thread_info *info)
9141 {
9142 output_threadid ("Threadid: ", &info->threadid);
9143 printf_filtered ("Name: %s\n ", info->shortname);
9144 printf_filtered ("State: %s\n", info->display);
9145 printf_filtered ("other: %s\n\n", info->more_display);
9146 }
9147
9148 int
9149 get_and_display_threadinfo (threadref *ref)
9150 {
9151 int result;
9152 int set;
9153 struct gdb_ext_thread_info threadinfo;
9154
9155 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
9156 | TAG_MOREDISPLAY | TAG_DISPLAY;
9157 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
9158 display_thread_info (&threadinfo);
9159 return result;
9160 }
9161
9162 static void
9163 threadinfo_test_cmd (char *cmd, int tty)
9164 {
9165 int athread = SAMPLE_THREAD;
9166 threadref thread;
9167 int set;
9168
9169 int_to_threadref (&thread, athread);
9170 printf_filtered ("Remote Threadinfo test\n");
9171 if (!get_and_display_threadinfo (&thread))
9172 printf_filtered ("FAIL cannot get thread info\n");
9173 }
9174
9175 static int
9176 thread_display_step (threadref *ref, void *context)
9177 {
9178 /* output_threadid(" threadstep ",ref); *//* simple test */
9179 return get_and_display_threadinfo (ref);
9180 }
9181
9182 static void
9183 threadlist_update_test_cmd (char *cmd, int tty)
9184 {
9185 printf_filtered ("Remote Threadlist update test\n");
9186 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
9187 }
9188
9189 static void
9190 init_remote_threadtests (void)
9191 {
9192 add_com ("tlist", class_obscure, threadlist_test_cmd,
9193 _("Fetch and print the remote list of "
9194 "thread identifiers, one pkt only"));
9195 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
9196 _("Fetch and display info about one thread"));
9197 add_com ("tset", class_obscure, threadset_test_cmd,
9198 _("Test setting to a different thread"));
9199 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
9200 _("Iterate through updating all remote thread info"));
9201 add_com ("talive", class_obscure, threadalive_test,
9202 _(" Remote thread alive test "));
9203 }
9204
9205 #endif /* 0 */
9206
9207 /* Convert a thread ID to a string. Returns the string in a static
9208 buffer. */
9209
9210 static char *
9211 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
9212 {
9213 static char buf[64];
9214 struct remote_state *rs = get_remote_state ();
9215
9216 if (ptid_equal (ptid, null_ptid))
9217 return normal_pid_to_str (ptid);
9218 else if (ptid_is_pid (ptid))
9219 {
9220 /* Printing an inferior target id. */
9221
9222 /* When multi-process extensions are off, there's no way in the
9223 remote protocol to know the remote process id, if there's any
9224 at all. There's one exception --- when we're connected with
9225 target extended-remote, and we manually attached to a process
9226 with "attach PID". We don't record anywhere a flag that
9227 allows us to distinguish that case from the case of
9228 connecting with extended-remote and the stub already being
9229 attached to a process, and reporting yes to qAttached, hence
9230 no smart special casing here. */
9231 if (!remote_multi_process_p (rs))
9232 {
9233 xsnprintf (buf, sizeof buf, "Remote target");
9234 return buf;
9235 }
9236
9237 return normal_pid_to_str (ptid);
9238 }
9239 else
9240 {
9241 if (ptid_equal (magic_null_ptid, ptid))
9242 xsnprintf (buf, sizeof buf, "Thread <main>");
9243 else if (rs->extended && remote_multi_process_p (rs))
9244 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
9245 ptid_get_pid (ptid), ptid_get_tid (ptid));
9246 else
9247 xsnprintf (buf, sizeof buf, "Thread %ld",
9248 ptid_get_tid (ptid));
9249 return buf;
9250 }
9251 }
9252
9253 /* Get the address of the thread local variable in OBJFILE which is
9254 stored at OFFSET within the thread local storage for thread PTID. */
9255
9256 static CORE_ADDR
9257 remote_get_thread_local_address (struct target_ops *ops,
9258 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
9259 {
9260 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
9261 {
9262 struct remote_state *rs = get_remote_state ();
9263 char *p = rs->buf;
9264 char *endp = rs->buf + get_remote_packet_size ();
9265 enum packet_result result;
9266
9267 strcpy (p, "qGetTLSAddr:");
9268 p += strlen (p);
9269 p = write_ptid (p, endp, ptid);
9270 *p++ = ',';
9271 p += hexnumstr (p, offset);
9272 *p++ = ',';
9273 p += hexnumstr (p, lm);
9274 *p++ = '\0';
9275
9276 putpkt (rs->buf);
9277 getpkt (&rs->buf, &rs->buf_size, 0);
9278 result = packet_ok (rs->buf,
9279 &remote_protocol_packets[PACKET_qGetTLSAddr]);
9280 if (result == PACKET_OK)
9281 {
9282 ULONGEST result;
9283
9284 unpack_varlen_hex (rs->buf, &result);
9285 return result;
9286 }
9287 else if (result == PACKET_UNKNOWN)
9288 throw_error (TLS_GENERIC_ERROR,
9289 _("Remote target doesn't support qGetTLSAddr packet"));
9290 else
9291 throw_error (TLS_GENERIC_ERROR,
9292 _("Remote target failed to process qGetTLSAddr request"));
9293 }
9294 else
9295 throw_error (TLS_GENERIC_ERROR,
9296 _("TLS not supported or disabled on this target"));
9297 /* Not reached. */
9298 return 0;
9299 }
9300
9301 /* Provide thread local base, i.e. Thread Information Block address.
9302 Returns 1 if ptid is found and thread_local_base is non zero. */
9303
9304 static int
9305 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
9306 {
9307 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
9308 {
9309 struct remote_state *rs = get_remote_state ();
9310 char *p = rs->buf;
9311 char *endp = rs->buf + get_remote_packet_size ();
9312 enum packet_result result;
9313
9314 strcpy (p, "qGetTIBAddr:");
9315 p += strlen (p);
9316 p = write_ptid (p, endp, ptid);
9317 *p++ = '\0';
9318
9319 putpkt (rs->buf);
9320 getpkt (&rs->buf, &rs->buf_size, 0);
9321 result = packet_ok (rs->buf,
9322 &remote_protocol_packets[PACKET_qGetTIBAddr]);
9323 if (result == PACKET_OK)
9324 {
9325 ULONGEST result;
9326
9327 unpack_varlen_hex (rs->buf, &result);
9328 if (addr)
9329 *addr = (CORE_ADDR) result;
9330 return 1;
9331 }
9332 else if (result == PACKET_UNKNOWN)
9333 error (_("Remote target doesn't support qGetTIBAddr packet"));
9334 else
9335 error (_("Remote target failed to process qGetTIBAddr request"));
9336 }
9337 else
9338 error (_("qGetTIBAddr not supported or disabled on this target"));
9339 /* Not reached. */
9340 return 0;
9341 }
9342
9343 /* Support for inferring a target description based on the current
9344 architecture and the size of a 'g' packet. While the 'g' packet
9345 can have any size (since optional registers can be left off the
9346 end), some sizes are easily recognizable given knowledge of the
9347 approximate architecture. */
9348
9349 struct remote_g_packet_guess
9350 {
9351 int bytes;
9352 const struct target_desc *tdesc;
9353 };
9354 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
9355 DEF_VEC_O(remote_g_packet_guess_s);
9356
9357 struct remote_g_packet_data
9358 {
9359 VEC(remote_g_packet_guess_s) *guesses;
9360 };
9361
9362 static struct gdbarch_data *remote_g_packet_data_handle;
9363
9364 static void *
9365 remote_g_packet_data_init (struct obstack *obstack)
9366 {
9367 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
9368 }
9369
9370 void
9371 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
9372 const struct target_desc *tdesc)
9373 {
9374 struct remote_g_packet_data *data
9375 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
9376 struct remote_g_packet_guess new_guess, *guess;
9377 int ix;
9378
9379 gdb_assert (tdesc != NULL);
9380
9381 for (ix = 0;
9382 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9383 ix++)
9384 if (guess->bytes == bytes)
9385 internal_error (__FILE__, __LINE__,
9386 _("Duplicate g packet description added for size %d"),
9387 bytes);
9388
9389 new_guess.bytes = bytes;
9390 new_guess.tdesc = tdesc;
9391 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
9392 }
9393
9394 /* Return 1 if remote_read_description would do anything on this target
9395 and architecture, 0 otherwise. */
9396
9397 static int
9398 remote_read_description_p (struct target_ops *target)
9399 {
9400 struct remote_g_packet_data *data
9401 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9402
9403 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9404 return 1;
9405
9406 return 0;
9407 }
9408
9409 static const struct target_desc *
9410 remote_read_description (struct target_ops *target)
9411 {
9412 struct remote_g_packet_data *data
9413 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9414
9415 /* Do not try this during initial connection, when we do not know
9416 whether there is a running but stopped thread. */
9417 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9418 return NULL;
9419
9420 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9421 {
9422 struct remote_g_packet_guess *guess;
9423 int ix;
9424 int bytes = send_g_packet ();
9425
9426 for (ix = 0;
9427 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9428 ix++)
9429 if (guess->bytes == bytes)
9430 return guess->tdesc;
9431
9432 /* We discard the g packet. A minor optimization would be to
9433 hold on to it, and fill the register cache once we have selected
9434 an architecture, but it's too tricky to do safely. */
9435 }
9436
9437 return NULL;
9438 }
9439
9440 /* Remote file transfer support. This is host-initiated I/O, not
9441 target-initiated; for target-initiated, see remote-fileio.c. */
9442
9443 /* If *LEFT is at least the length of STRING, copy STRING to
9444 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9445 decrease *LEFT. Otherwise raise an error. */
9446
9447 static void
9448 remote_buffer_add_string (char **buffer, int *left, char *string)
9449 {
9450 int len = strlen (string);
9451
9452 if (len > *left)
9453 error (_("Packet too long for target."));
9454
9455 memcpy (*buffer, string, len);
9456 *buffer += len;
9457 *left -= len;
9458
9459 /* NUL-terminate the buffer as a convenience, if there is
9460 room. */
9461 if (*left)
9462 **buffer = '\0';
9463 }
9464
9465 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9466 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9467 decrease *LEFT. Otherwise raise an error. */
9468
9469 static void
9470 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9471 int len)
9472 {
9473 if (2 * len > *left)
9474 error (_("Packet too long for target."));
9475
9476 bin2hex (bytes, *buffer, len);
9477 *buffer += 2 * len;
9478 *left -= 2 * len;
9479
9480 /* NUL-terminate the buffer as a convenience, if there is
9481 room. */
9482 if (*left)
9483 **buffer = '\0';
9484 }
9485
9486 /* If *LEFT is large enough, convert VALUE to hex and add it to
9487 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9488 decrease *LEFT. Otherwise raise an error. */
9489
9490 static void
9491 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9492 {
9493 int len = hexnumlen (value);
9494
9495 if (len > *left)
9496 error (_("Packet too long for target."));
9497
9498 hexnumstr (*buffer, value);
9499 *buffer += len;
9500 *left -= len;
9501
9502 /* NUL-terminate the buffer as a convenience, if there is
9503 room. */
9504 if (*left)
9505 **buffer = '\0';
9506 }
9507
9508 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9509 value, *REMOTE_ERRNO to the remote error number or zero if none
9510 was included, and *ATTACHMENT to point to the start of the annex
9511 if any. The length of the packet isn't needed here; there may
9512 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9513
9514 Return 0 if the packet could be parsed, -1 if it could not. If
9515 -1 is returned, the other variables may not be initialized. */
9516
9517 static int
9518 remote_hostio_parse_result (char *buffer, int *retcode,
9519 int *remote_errno, char **attachment)
9520 {
9521 char *p, *p2;
9522
9523 *remote_errno = 0;
9524 *attachment = NULL;
9525
9526 if (buffer[0] != 'F')
9527 return -1;
9528
9529 errno = 0;
9530 *retcode = strtol (&buffer[1], &p, 16);
9531 if (errno != 0 || p == &buffer[1])
9532 return -1;
9533
9534 /* Check for ",errno". */
9535 if (*p == ',')
9536 {
9537 errno = 0;
9538 *remote_errno = strtol (p + 1, &p2, 16);
9539 if (errno != 0 || p + 1 == p2)
9540 return -1;
9541 p = p2;
9542 }
9543
9544 /* Check for ";attachment". If there is no attachment, the
9545 packet should end here. */
9546 if (*p == ';')
9547 {
9548 *attachment = p + 1;
9549 return 0;
9550 }
9551 else if (*p == '\0')
9552 return 0;
9553 else
9554 return -1;
9555 }
9556
9557 /* Send a prepared I/O packet to the target and read its response.
9558 The prepared packet is in the global RS->BUF before this function
9559 is called, and the answer is there when we return.
9560
9561 COMMAND_BYTES is the length of the request to send, which may include
9562 binary data. WHICH_PACKET is the packet configuration to check
9563 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9564 is set to the error number and -1 is returned. Otherwise the value
9565 returned by the function is returned.
9566
9567 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9568 attachment is expected; an error will be reported if there's a
9569 mismatch. If one is found, *ATTACHMENT will be set to point into
9570 the packet buffer and *ATTACHMENT_LEN will be set to the
9571 attachment's length. */
9572
9573 static int
9574 remote_hostio_send_command (int command_bytes, int which_packet,
9575 int *remote_errno, char **attachment,
9576 int *attachment_len)
9577 {
9578 struct remote_state *rs = get_remote_state ();
9579 int ret, bytes_read;
9580 char *attachment_tmp;
9581
9582 if (!remote_desc
9583 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9584 {
9585 *remote_errno = FILEIO_ENOSYS;
9586 return -1;
9587 }
9588
9589 putpkt_binary (rs->buf, command_bytes);
9590 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9591
9592 /* If it timed out, something is wrong. Don't try to parse the
9593 buffer. */
9594 if (bytes_read < 0)
9595 {
9596 *remote_errno = FILEIO_EINVAL;
9597 return -1;
9598 }
9599
9600 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9601 {
9602 case PACKET_ERROR:
9603 *remote_errno = FILEIO_EINVAL;
9604 return -1;
9605 case PACKET_UNKNOWN:
9606 *remote_errno = FILEIO_ENOSYS;
9607 return -1;
9608 case PACKET_OK:
9609 break;
9610 }
9611
9612 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9613 &attachment_tmp))
9614 {
9615 *remote_errno = FILEIO_EINVAL;
9616 return -1;
9617 }
9618
9619 /* Make sure we saw an attachment if and only if we expected one. */
9620 if ((attachment_tmp == NULL && attachment != NULL)
9621 || (attachment_tmp != NULL && attachment == NULL))
9622 {
9623 *remote_errno = FILEIO_EINVAL;
9624 return -1;
9625 }
9626
9627 /* If an attachment was found, it must point into the packet buffer;
9628 work out how many bytes there were. */
9629 if (attachment_tmp != NULL)
9630 {
9631 *attachment = attachment_tmp;
9632 *attachment_len = bytes_read - (*attachment - rs->buf);
9633 }
9634
9635 return ret;
9636 }
9637
9638 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9639 remote file descriptor, or -1 if an error occurs (and set
9640 *REMOTE_ERRNO). */
9641
9642 static int
9643 remote_hostio_open (const char *filename, int flags, int mode,
9644 int *remote_errno)
9645 {
9646 struct remote_state *rs = get_remote_state ();
9647 char *p = rs->buf;
9648 int left = get_remote_packet_size () - 1;
9649
9650 remote_buffer_add_string (&p, &left, "vFile:open:");
9651
9652 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9653 strlen (filename));
9654 remote_buffer_add_string (&p, &left, ",");
9655
9656 remote_buffer_add_int (&p, &left, flags);
9657 remote_buffer_add_string (&p, &left, ",");
9658
9659 remote_buffer_add_int (&p, &left, mode);
9660
9661 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9662 remote_errno, NULL, NULL);
9663 }
9664
9665 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9666 Return the number of bytes written, or -1 if an error occurs (and
9667 set *REMOTE_ERRNO). */
9668
9669 static int
9670 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9671 ULONGEST offset, int *remote_errno)
9672 {
9673 struct remote_state *rs = get_remote_state ();
9674 char *p = rs->buf;
9675 int left = get_remote_packet_size ();
9676 int out_len;
9677
9678 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9679
9680 remote_buffer_add_int (&p, &left, fd);
9681 remote_buffer_add_string (&p, &left, ",");
9682
9683 remote_buffer_add_int (&p, &left, offset);
9684 remote_buffer_add_string (&p, &left, ",");
9685
9686 p += remote_escape_output (write_buf, len, p, &out_len,
9687 get_remote_packet_size () - (p - rs->buf));
9688
9689 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9690 remote_errno, NULL, NULL);
9691 }
9692
9693 /* Read up to LEN bytes FD on the remote target into READ_BUF
9694 Return the number of bytes read, or -1 if an error occurs (and
9695 set *REMOTE_ERRNO). */
9696
9697 static int
9698 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9699 ULONGEST offset, int *remote_errno)
9700 {
9701 struct remote_state *rs = get_remote_state ();
9702 char *p = rs->buf;
9703 char *attachment;
9704 int left = get_remote_packet_size ();
9705 int ret, attachment_len;
9706 int read_len;
9707
9708 remote_buffer_add_string (&p, &left, "vFile:pread:");
9709
9710 remote_buffer_add_int (&p, &left, fd);
9711 remote_buffer_add_string (&p, &left, ",");
9712
9713 remote_buffer_add_int (&p, &left, len);
9714 remote_buffer_add_string (&p, &left, ",");
9715
9716 remote_buffer_add_int (&p, &left, offset);
9717
9718 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9719 remote_errno, &attachment,
9720 &attachment_len);
9721
9722 if (ret < 0)
9723 return ret;
9724
9725 read_len = remote_unescape_input (attachment, attachment_len,
9726 read_buf, len);
9727 if (read_len != ret)
9728 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9729
9730 return ret;
9731 }
9732
9733 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9734 (and set *REMOTE_ERRNO). */
9735
9736 static int
9737 remote_hostio_close (int fd, int *remote_errno)
9738 {
9739 struct remote_state *rs = get_remote_state ();
9740 char *p = rs->buf;
9741 int left = get_remote_packet_size () - 1;
9742
9743 remote_buffer_add_string (&p, &left, "vFile:close:");
9744
9745 remote_buffer_add_int (&p, &left, fd);
9746
9747 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9748 remote_errno, NULL, NULL);
9749 }
9750
9751 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9752 occurs (and set *REMOTE_ERRNO). */
9753
9754 static int
9755 remote_hostio_unlink (const char *filename, int *remote_errno)
9756 {
9757 struct remote_state *rs = get_remote_state ();
9758 char *p = rs->buf;
9759 int left = get_remote_packet_size () - 1;
9760
9761 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9762
9763 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9764 strlen (filename));
9765
9766 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9767 remote_errno, NULL, NULL);
9768 }
9769
9770 /* Read value of symbolic link FILENAME on the remote target. Return
9771 a null-terminated string allocated via xmalloc, or NULL if an error
9772 occurs (and set *REMOTE_ERRNO). */
9773
9774 static char *
9775 remote_hostio_readlink (const char *filename, int *remote_errno)
9776 {
9777 struct remote_state *rs = get_remote_state ();
9778 char *p = rs->buf;
9779 char *attachment;
9780 int left = get_remote_packet_size ();
9781 int len, attachment_len;
9782 int read_len;
9783 char *ret;
9784
9785 remote_buffer_add_string (&p, &left, "vFile:readlink:");
9786
9787 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9788 strlen (filename));
9789
9790 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
9791 remote_errno, &attachment,
9792 &attachment_len);
9793
9794 if (len < 0)
9795 return NULL;
9796
9797 ret = xmalloc (len + 1);
9798
9799 read_len = remote_unescape_input (attachment, attachment_len,
9800 ret, len);
9801 if (read_len != len)
9802 error (_("Readlink returned %d, but %d bytes."), len, read_len);
9803
9804 ret[len] = '\0';
9805 return ret;
9806 }
9807
9808 static int
9809 remote_fileio_errno_to_host (int errnum)
9810 {
9811 switch (errnum)
9812 {
9813 case FILEIO_EPERM:
9814 return EPERM;
9815 case FILEIO_ENOENT:
9816 return ENOENT;
9817 case FILEIO_EINTR:
9818 return EINTR;
9819 case FILEIO_EIO:
9820 return EIO;
9821 case FILEIO_EBADF:
9822 return EBADF;
9823 case FILEIO_EACCES:
9824 return EACCES;
9825 case FILEIO_EFAULT:
9826 return EFAULT;
9827 case FILEIO_EBUSY:
9828 return EBUSY;
9829 case FILEIO_EEXIST:
9830 return EEXIST;
9831 case FILEIO_ENODEV:
9832 return ENODEV;
9833 case FILEIO_ENOTDIR:
9834 return ENOTDIR;
9835 case FILEIO_EISDIR:
9836 return EISDIR;
9837 case FILEIO_EINVAL:
9838 return EINVAL;
9839 case FILEIO_ENFILE:
9840 return ENFILE;
9841 case FILEIO_EMFILE:
9842 return EMFILE;
9843 case FILEIO_EFBIG:
9844 return EFBIG;
9845 case FILEIO_ENOSPC:
9846 return ENOSPC;
9847 case FILEIO_ESPIPE:
9848 return ESPIPE;
9849 case FILEIO_EROFS:
9850 return EROFS;
9851 case FILEIO_ENOSYS:
9852 return ENOSYS;
9853 case FILEIO_ENAMETOOLONG:
9854 return ENAMETOOLONG;
9855 }
9856 return -1;
9857 }
9858
9859 static char *
9860 remote_hostio_error (int errnum)
9861 {
9862 int host_error = remote_fileio_errno_to_host (errnum);
9863
9864 if (host_error == -1)
9865 error (_("Unknown remote I/O error %d"), errnum);
9866 else
9867 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9868 }
9869
9870 static void
9871 remote_hostio_close_cleanup (void *opaque)
9872 {
9873 int fd = *(int *) opaque;
9874 int remote_errno;
9875
9876 remote_hostio_close (fd, &remote_errno);
9877 }
9878
9879
9880 static void *
9881 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9882 {
9883 const char *filename = bfd_get_filename (abfd);
9884 int fd, remote_errno;
9885 int *stream;
9886
9887 gdb_assert (remote_filename_p (filename));
9888
9889 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9890 if (fd == -1)
9891 {
9892 errno = remote_fileio_errno_to_host (remote_errno);
9893 bfd_set_error (bfd_error_system_call);
9894 return NULL;
9895 }
9896
9897 stream = xmalloc (sizeof (int));
9898 *stream = fd;
9899 return stream;
9900 }
9901
9902 static int
9903 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9904 {
9905 int fd = *(int *)stream;
9906 int remote_errno;
9907
9908 xfree (stream);
9909
9910 /* Ignore errors on close; these may happen if the remote
9911 connection was already torn down. */
9912 remote_hostio_close (fd, &remote_errno);
9913
9914 return 1;
9915 }
9916
9917 static file_ptr
9918 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9919 file_ptr nbytes, file_ptr offset)
9920 {
9921 int fd = *(int *)stream;
9922 int remote_errno;
9923 file_ptr pos, bytes;
9924
9925 pos = 0;
9926 while (nbytes > pos)
9927 {
9928 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9929 offset + pos, &remote_errno);
9930 if (bytes == 0)
9931 /* Success, but no bytes, means end-of-file. */
9932 break;
9933 if (bytes == -1)
9934 {
9935 errno = remote_fileio_errno_to_host (remote_errno);
9936 bfd_set_error (bfd_error_system_call);
9937 return -1;
9938 }
9939
9940 pos += bytes;
9941 }
9942
9943 return pos;
9944 }
9945
9946 static int
9947 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9948 {
9949 /* FIXME: We should probably implement remote_hostio_stat. */
9950 sb->st_size = INT_MAX;
9951 return 0;
9952 }
9953
9954 int
9955 remote_filename_p (const char *filename)
9956 {
9957 return strncmp (filename, "remote:", 7) == 0;
9958 }
9959
9960 bfd *
9961 remote_bfd_open (const char *remote_file, const char *target)
9962 {
9963 bfd *abfd = gdb_bfd_openr_iovec (remote_file, target,
9964 remote_bfd_iovec_open, NULL,
9965 remote_bfd_iovec_pread,
9966 remote_bfd_iovec_close,
9967 remote_bfd_iovec_stat);
9968
9969 return abfd;
9970 }
9971
9972 void
9973 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9974 {
9975 struct cleanup *back_to, *close_cleanup;
9976 int retcode, fd, remote_errno, bytes, io_size;
9977 FILE *file;
9978 gdb_byte *buffer;
9979 int bytes_in_buffer;
9980 int saw_eof;
9981 ULONGEST offset;
9982
9983 if (!remote_desc)
9984 error (_("command can only be used with remote target"));
9985
9986 file = fopen (local_file, "rb");
9987 if (file == NULL)
9988 perror_with_name (local_file);
9989 back_to = make_cleanup_fclose (file);
9990
9991 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9992 | FILEIO_O_TRUNC),
9993 0700, &remote_errno);
9994 if (fd == -1)
9995 remote_hostio_error (remote_errno);
9996
9997 /* Send up to this many bytes at once. They won't all fit in the
9998 remote packet limit, so we'll transfer slightly fewer. */
9999 io_size = get_remote_packet_size ();
10000 buffer = xmalloc (io_size);
10001 make_cleanup (xfree, buffer);
10002
10003 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10004
10005 bytes_in_buffer = 0;
10006 saw_eof = 0;
10007 offset = 0;
10008 while (bytes_in_buffer || !saw_eof)
10009 {
10010 if (!saw_eof)
10011 {
10012 bytes = fread (buffer + bytes_in_buffer, 1,
10013 io_size - bytes_in_buffer,
10014 file);
10015 if (bytes == 0)
10016 {
10017 if (ferror (file))
10018 error (_("Error reading %s."), local_file);
10019 else
10020 {
10021 /* EOF. Unless there is something still in the
10022 buffer from the last iteration, we are done. */
10023 saw_eof = 1;
10024 if (bytes_in_buffer == 0)
10025 break;
10026 }
10027 }
10028 }
10029 else
10030 bytes = 0;
10031
10032 bytes += bytes_in_buffer;
10033 bytes_in_buffer = 0;
10034
10035 retcode = remote_hostio_pwrite (fd, buffer, bytes,
10036 offset, &remote_errno);
10037
10038 if (retcode < 0)
10039 remote_hostio_error (remote_errno);
10040 else if (retcode == 0)
10041 error (_("Remote write of %d bytes returned 0!"), bytes);
10042 else if (retcode < bytes)
10043 {
10044 /* Short write. Save the rest of the read data for the next
10045 write. */
10046 bytes_in_buffer = bytes - retcode;
10047 memmove (buffer, buffer + retcode, bytes_in_buffer);
10048 }
10049
10050 offset += retcode;
10051 }
10052
10053 discard_cleanups (close_cleanup);
10054 if (remote_hostio_close (fd, &remote_errno))
10055 remote_hostio_error (remote_errno);
10056
10057 if (from_tty)
10058 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
10059 do_cleanups (back_to);
10060 }
10061
10062 void
10063 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
10064 {
10065 struct cleanup *back_to, *close_cleanup;
10066 int fd, remote_errno, bytes, io_size;
10067 FILE *file;
10068 gdb_byte *buffer;
10069 ULONGEST offset;
10070
10071 if (!remote_desc)
10072 error (_("command can only be used with remote target"));
10073
10074 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
10075 if (fd == -1)
10076 remote_hostio_error (remote_errno);
10077
10078 file = fopen (local_file, "wb");
10079 if (file == NULL)
10080 perror_with_name (local_file);
10081 back_to = make_cleanup_fclose (file);
10082
10083 /* Send up to this many bytes at once. They won't all fit in the
10084 remote packet limit, so we'll transfer slightly fewer. */
10085 io_size = get_remote_packet_size ();
10086 buffer = xmalloc (io_size);
10087 make_cleanup (xfree, buffer);
10088
10089 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10090
10091 offset = 0;
10092 while (1)
10093 {
10094 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
10095 if (bytes == 0)
10096 /* Success, but no bytes, means end-of-file. */
10097 break;
10098 if (bytes == -1)
10099 remote_hostio_error (remote_errno);
10100
10101 offset += bytes;
10102
10103 bytes = fwrite (buffer, 1, bytes, file);
10104 if (bytes == 0)
10105 perror_with_name (local_file);
10106 }
10107
10108 discard_cleanups (close_cleanup);
10109 if (remote_hostio_close (fd, &remote_errno))
10110 remote_hostio_error (remote_errno);
10111
10112 if (from_tty)
10113 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
10114 do_cleanups (back_to);
10115 }
10116
10117 void
10118 remote_file_delete (const char *remote_file, int from_tty)
10119 {
10120 int retcode, remote_errno;
10121
10122 if (!remote_desc)
10123 error (_("command can only be used with remote target"));
10124
10125 retcode = remote_hostio_unlink (remote_file, &remote_errno);
10126 if (retcode == -1)
10127 remote_hostio_error (remote_errno);
10128
10129 if (from_tty)
10130 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
10131 }
10132
10133 static void
10134 remote_put_command (char *args, int from_tty)
10135 {
10136 struct cleanup *back_to;
10137 char **argv;
10138
10139 if (args == NULL)
10140 error_no_arg (_("file to put"));
10141
10142 argv = gdb_buildargv (args);
10143 back_to = make_cleanup_freeargv (argv);
10144 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10145 error (_("Invalid parameters to remote put"));
10146
10147 remote_file_put (argv[0], argv[1], from_tty);
10148
10149 do_cleanups (back_to);
10150 }
10151
10152 static void
10153 remote_get_command (char *args, int from_tty)
10154 {
10155 struct cleanup *back_to;
10156 char **argv;
10157
10158 if (args == NULL)
10159 error_no_arg (_("file to get"));
10160
10161 argv = gdb_buildargv (args);
10162 back_to = make_cleanup_freeargv (argv);
10163 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10164 error (_("Invalid parameters to remote get"));
10165
10166 remote_file_get (argv[0], argv[1], from_tty);
10167
10168 do_cleanups (back_to);
10169 }
10170
10171 static void
10172 remote_delete_command (char *args, int from_tty)
10173 {
10174 struct cleanup *back_to;
10175 char **argv;
10176
10177 if (args == NULL)
10178 error_no_arg (_("file to delete"));
10179
10180 argv = gdb_buildargv (args);
10181 back_to = make_cleanup_freeargv (argv);
10182 if (argv[0] == NULL || argv[1] != NULL)
10183 error (_("Invalid parameters to remote delete"));
10184
10185 remote_file_delete (argv[0], from_tty);
10186
10187 do_cleanups (back_to);
10188 }
10189
10190 static void
10191 remote_command (char *args, int from_tty)
10192 {
10193 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
10194 }
10195
10196 static int
10197 remote_can_execute_reverse (void)
10198 {
10199 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
10200 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
10201 return 1;
10202 else
10203 return 0;
10204 }
10205
10206 static int
10207 remote_supports_non_stop (void)
10208 {
10209 return 1;
10210 }
10211
10212 static int
10213 remote_supports_disable_randomization (void)
10214 {
10215 /* Only supported in extended mode. */
10216 return 0;
10217 }
10218
10219 static int
10220 remote_supports_multi_process (void)
10221 {
10222 struct remote_state *rs = get_remote_state ();
10223
10224 /* Only extended-remote handles being attached to multiple
10225 processes, even though plain remote can use the multi-process
10226 thread id extensions, so that GDB knows the target process's
10227 PID. */
10228 return rs->extended && remote_multi_process_p (rs);
10229 }
10230
10231 static int
10232 remote_supports_cond_tracepoints (void)
10233 {
10234 struct remote_state *rs = get_remote_state ();
10235
10236 return rs->cond_tracepoints;
10237 }
10238
10239 static int
10240 remote_supports_cond_breakpoints (void)
10241 {
10242 struct remote_state *rs = get_remote_state ();
10243
10244 return rs->cond_breakpoints;
10245 }
10246
10247 static int
10248 remote_supports_fast_tracepoints (void)
10249 {
10250 struct remote_state *rs = get_remote_state ();
10251
10252 return rs->fast_tracepoints;
10253 }
10254
10255 static int
10256 remote_supports_static_tracepoints (void)
10257 {
10258 struct remote_state *rs = get_remote_state ();
10259
10260 return rs->static_tracepoints;
10261 }
10262
10263 static int
10264 remote_supports_install_in_trace (void)
10265 {
10266 struct remote_state *rs = get_remote_state ();
10267
10268 return rs->install_in_trace;
10269 }
10270
10271 static int
10272 remote_supports_enable_disable_tracepoint (void)
10273 {
10274 struct remote_state *rs = get_remote_state ();
10275
10276 return rs->enable_disable_tracepoints;
10277 }
10278
10279 static int
10280 remote_supports_string_tracing (void)
10281 {
10282 struct remote_state *rs = get_remote_state ();
10283
10284 return rs->string_tracing;
10285 }
10286
10287 static int
10288 remote_can_run_breakpoint_commands (void)
10289 {
10290 struct remote_state *rs = get_remote_state ();
10291
10292 return rs->breakpoint_commands;
10293 }
10294
10295 static void
10296 remote_trace_init (void)
10297 {
10298 putpkt ("QTinit");
10299 remote_get_noisy_reply (&target_buf, &target_buf_size);
10300 if (strcmp (target_buf, "OK") != 0)
10301 error (_("Target does not support this command."));
10302 }
10303
10304 static void free_actions_list (char **actions_list);
10305 static void free_actions_list_cleanup_wrapper (void *);
10306 static void
10307 free_actions_list_cleanup_wrapper (void *al)
10308 {
10309 free_actions_list (al);
10310 }
10311
10312 static void
10313 free_actions_list (char **actions_list)
10314 {
10315 int ndx;
10316
10317 if (actions_list == 0)
10318 return;
10319
10320 for (ndx = 0; actions_list[ndx]; ndx++)
10321 xfree (actions_list[ndx]);
10322
10323 xfree (actions_list);
10324 }
10325
10326 /* Recursive routine to walk through command list including loops, and
10327 download packets for each command. */
10328
10329 static void
10330 remote_download_command_source (int num, ULONGEST addr,
10331 struct command_line *cmds)
10332 {
10333 struct remote_state *rs = get_remote_state ();
10334 struct command_line *cmd;
10335
10336 for (cmd = cmds; cmd; cmd = cmd->next)
10337 {
10338 QUIT; /* Allow user to bail out with ^C. */
10339 strcpy (rs->buf, "QTDPsrc:");
10340 encode_source_string (num, addr, "cmd", cmd->line,
10341 rs->buf + strlen (rs->buf),
10342 rs->buf_size - strlen (rs->buf));
10343 putpkt (rs->buf);
10344 remote_get_noisy_reply (&target_buf, &target_buf_size);
10345 if (strcmp (target_buf, "OK"))
10346 warning (_("Target does not support source download."));
10347
10348 if (cmd->control_type == while_control
10349 || cmd->control_type == while_stepping_control)
10350 {
10351 remote_download_command_source (num, addr, *cmd->body_list);
10352
10353 QUIT; /* Allow user to bail out with ^C. */
10354 strcpy (rs->buf, "QTDPsrc:");
10355 encode_source_string (num, addr, "cmd", "end",
10356 rs->buf + strlen (rs->buf),
10357 rs->buf_size - strlen (rs->buf));
10358 putpkt (rs->buf);
10359 remote_get_noisy_reply (&target_buf, &target_buf_size);
10360 if (strcmp (target_buf, "OK"))
10361 warning (_("Target does not support source download."));
10362 }
10363 }
10364 }
10365
10366 static void
10367 remote_download_tracepoint (struct bp_location *loc)
10368 {
10369 #define BUF_SIZE 2048
10370
10371 CORE_ADDR tpaddr;
10372 char addrbuf[40];
10373 char buf[BUF_SIZE];
10374 char **tdp_actions;
10375 char **stepping_actions;
10376 int ndx;
10377 struct cleanup *old_chain = NULL;
10378 struct agent_expr *aexpr;
10379 struct cleanup *aexpr_chain = NULL;
10380 char *pkt;
10381 struct breakpoint *b = loc->owner;
10382 struct tracepoint *t = (struct tracepoint *) b;
10383
10384 encode_actions (loc->owner, loc, &tdp_actions, &stepping_actions);
10385 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
10386 tdp_actions);
10387 (void) make_cleanup (free_actions_list_cleanup_wrapper,
10388 stepping_actions);
10389
10390 tpaddr = loc->address;
10391 sprintf_vma (addrbuf, tpaddr);
10392 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
10393 addrbuf, /* address */
10394 (b->enable_state == bp_enabled ? 'E' : 'D'),
10395 t->step_count, t->pass_count);
10396 /* Fast tracepoints are mostly handled by the target, but we can
10397 tell the target how big of an instruction block should be moved
10398 around. */
10399 if (b->type == bp_fast_tracepoint)
10400 {
10401 /* Only test for support at download time; we may not know
10402 target capabilities at definition time. */
10403 if (remote_supports_fast_tracepoints ())
10404 {
10405 int isize;
10406
10407 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch (),
10408 tpaddr, &isize, NULL))
10409 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
10410 isize);
10411 else
10412 /* If it passed validation at definition but fails now,
10413 something is very wrong. */
10414 internal_error (__FILE__, __LINE__,
10415 _("Fast tracepoint not "
10416 "valid during download"));
10417 }
10418 else
10419 /* Fast tracepoints are functionally identical to regular
10420 tracepoints, so don't take lack of support as a reason to
10421 give up on the trace run. */
10422 warning (_("Target does not support fast tracepoints, "
10423 "downloading %d as regular tracepoint"), b->number);
10424 }
10425 else if (b->type == bp_static_tracepoint)
10426 {
10427 /* Only test for support at download time; we may not know
10428 target capabilities at definition time. */
10429 if (remote_supports_static_tracepoints ())
10430 {
10431 struct static_tracepoint_marker marker;
10432
10433 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10434 strcat (buf, ":S");
10435 else
10436 error (_("Static tracepoint not valid during download"));
10437 }
10438 else
10439 /* Fast tracepoints are functionally identical to regular
10440 tracepoints, so don't take lack of support as a reason
10441 to give up on the trace run. */
10442 error (_("Target does not support static tracepoints"));
10443 }
10444 /* If the tracepoint has a conditional, make it into an agent
10445 expression and append to the definition. */
10446 if (loc->cond)
10447 {
10448 /* Only test support at download time, we may not know target
10449 capabilities at definition time. */
10450 if (remote_supports_cond_tracepoints ())
10451 {
10452 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10453 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10454 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
10455 aexpr->len);
10456 pkt = buf + strlen (buf);
10457 for (ndx = 0; ndx < aexpr->len; ++ndx)
10458 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10459 *pkt = '\0';
10460 do_cleanups (aexpr_chain);
10461 }
10462 else
10463 warning (_("Target does not support conditional tracepoints, "
10464 "ignoring tp %d cond"), b->number);
10465 }
10466
10467 if (b->commands || *default_collect)
10468 strcat (buf, "-");
10469 putpkt (buf);
10470 remote_get_noisy_reply (&target_buf, &target_buf_size);
10471 if (strcmp (target_buf, "OK"))
10472 error (_("Target does not support tracepoints."));
10473
10474 /* do_single_steps (t); */
10475 if (tdp_actions)
10476 {
10477 for (ndx = 0; tdp_actions[ndx]; ndx++)
10478 {
10479 QUIT; /* Allow user to bail out with ^C. */
10480 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
10481 b->number, addrbuf, /* address */
10482 tdp_actions[ndx],
10483 ((tdp_actions[ndx + 1] || stepping_actions)
10484 ? '-' : 0));
10485 putpkt (buf);
10486 remote_get_noisy_reply (&target_buf,
10487 &target_buf_size);
10488 if (strcmp (target_buf, "OK"))
10489 error (_("Error on target while setting tracepoints."));
10490 }
10491 }
10492 if (stepping_actions)
10493 {
10494 for (ndx = 0; stepping_actions[ndx]; ndx++)
10495 {
10496 QUIT; /* Allow user to bail out with ^C. */
10497 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
10498 b->number, addrbuf, /* address */
10499 ((ndx == 0) ? "S" : ""),
10500 stepping_actions[ndx],
10501 (stepping_actions[ndx + 1] ? "-" : ""));
10502 putpkt (buf);
10503 remote_get_noisy_reply (&target_buf,
10504 &target_buf_size);
10505 if (strcmp (target_buf, "OK"))
10506 error (_("Error on target while setting tracepoints."));
10507 }
10508 }
10509
10510 if (remote_protocol_packets[PACKET_TracepointSource].support
10511 == PACKET_ENABLE)
10512 {
10513 if (b->addr_string)
10514 {
10515 strcpy (buf, "QTDPsrc:");
10516 encode_source_string (b->number, loc->address,
10517 "at", b->addr_string, buf + strlen (buf),
10518 2048 - strlen (buf));
10519
10520 putpkt (buf);
10521 remote_get_noisy_reply (&target_buf, &target_buf_size);
10522 if (strcmp (target_buf, "OK"))
10523 warning (_("Target does not support source download."));
10524 }
10525 if (b->cond_string)
10526 {
10527 strcpy (buf, "QTDPsrc:");
10528 encode_source_string (b->number, loc->address,
10529 "cond", b->cond_string, buf + strlen (buf),
10530 2048 - strlen (buf));
10531 putpkt (buf);
10532 remote_get_noisy_reply (&target_buf, &target_buf_size);
10533 if (strcmp (target_buf, "OK"))
10534 warning (_("Target does not support source download."));
10535 }
10536 remote_download_command_source (b->number, loc->address,
10537 breakpoint_commands (b));
10538 }
10539
10540 do_cleanups (old_chain);
10541 }
10542
10543 static int
10544 remote_can_download_tracepoint (void)
10545 {
10546 struct remote_state *rs = get_remote_state ();
10547 struct trace_status *ts;
10548 int status;
10549
10550 /* Don't try to install tracepoints until we've relocated our
10551 symbols, and fetched and merged the target's tracepoint list with
10552 ours. */
10553 if (rs->starting_up)
10554 return 0;
10555
10556 ts = current_trace_status ();
10557 status = remote_get_trace_status (ts);
10558
10559 if (status == -1 || !ts->running_known || !ts->running)
10560 return 0;
10561
10562 /* If we are in a tracing experiment, but remote stub doesn't support
10563 installing tracepoint in trace, we have to return. */
10564 if (!remote_supports_install_in_trace ())
10565 return 0;
10566
10567 return 1;
10568 }
10569
10570
10571 static void
10572 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10573 {
10574 struct remote_state *rs = get_remote_state ();
10575 char *p;
10576
10577 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
10578 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
10579 tsv->builtin);
10580 p = rs->buf + strlen (rs->buf);
10581 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10582 error (_("Trace state variable name too long for tsv definition packet"));
10583 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10584 *p++ = '\0';
10585 putpkt (rs->buf);
10586 remote_get_noisy_reply (&target_buf, &target_buf_size);
10587 if (*target_buf == '\0')
10588 error (_("Target does not support this command."));
10589 if (strcmp (target_buf, "OK") != 0)
10590 error (_("Error on target while downloading trace state variable."));
10591 }
10592
10593 static void
10594 remote_enable_tracepoint (struct bp_location *location)
10595 {
10596 struct remote_state *rs = get_remote_state ();
10597 char addr_buf[40];
10598
10599 sprintf_vma (addr_buf, location->address);
10600 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
10601 location->owner->number, addr_buf);
10602 putpkt (rs->buf);
10603 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10604 if (*rs->buf == '\0')
10605 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10606 if (strcmp (rs->buf, "OK") != 0)
10607 error (_("Error on target while enabling tracepoint."));
10608 }
10609
10610 static void
10611 remote_disable_tracepoint (struct bp_location *location)
10612 {
10613 struct remote_state *rs = get_remote_state ();
10614 char addr_buf[40];
10615
10616 sprintf_vma (addr_buf, location->address);
10617 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
10618 location->owner->number, addr_buf);
10619 putpkt (rs->buf);
10620 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10621 if (*rs->buf == '\0')
10622 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10623 if (strcmp (rs->buf, "OK") != 0)
10624 error (_("Error on target while disabling tracepoint."));
10625 }
10626
10627 static void
10628 remote_trace_set_readonly_regions (void)
10629 {
10630 asection *s;
10631 bfd *abfd = NULL;
10632 bfd_size_type size;
10633 bfd_vma vma;
10634 int anysecs = 0;
10635 int offset = 0;
10636
10637 if (!exec_bfd)
10638 return; /* No information to give. */
10639
10640 strcpy (target_buf, "QTro");
10641 for (s = exec_bfd->sections; s; s = s->next)
10642 {
10643 char tmp1[40], tmp2[40];
10644 int sec_length;
10645
10646 if ((s->flags & SEC_LOAD) == 0 ||
10647 /* (s->flags & SEC_CODE) == 0 || */
10648 (s->flags & SEC_READONLY) == 0)
10649 continue;
10650
10651 anysecs = 1;
10652 vma = bfd_get_section_vma (abfd, s);
10653 size = bfd_get_section_size (s);
10654 sprintf_vma (tmp1, vma);
10655 sprintf_vma (tmp2, vma + size);
10656 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10657 if (offset + sec_length + 1 > target_buf_size)
10658 {
10659 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10660 != PACKET_ENABLE)
10661 warning (_("\
10662 Too many sections for read-only sections definition packet."));
10663 break;
10664 }
10665 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
10666 tmp1, tmp2);
10667 offset += sec_length;
10668 }
10669 if (anysecs)
10670 {
10671 putpkt (target_buf);
10672 getpkt (&target_buf, &target_buf_size, 0);
10673 }
10674 }
10675
10676 static void
10677 remote_trace_start (void)
10678 {
10679 putpkt ("QTStart");
10680 remote_get_noisy_reply (&target_buf, &target_buf_size);
10681 if (*target_buf == '\0')
10682 error (_("Target does not support this command."));
10683 if (strcmp (target_buf, "OK") != 0)
10684 error (_("Bogus reply from target: %s"), target_buf);
10685 }
10686
10687 static int
10688 remote_get_trace_status (struct trace_status *ts)
10689 {
10690 /* Initialize it just to avoid a GCC false warning. */
10691 char *p = NULL;
10692 /* FIXME we need to get register block size some other way. */
10693 extern int trace_regblock_size;
10694 volatile struct gdb_exception ex;
10695
10696 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10697
10698 putpkt ("qTStatus");
10699
10700 TRY_CATCH (ex, RETURN_MASK_ERROR)
10701 {
10702 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10703 }
10704 if (ex.reason < 0)
10705 {
10706 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10707 return -1;
10708 }
10709
10710 /* If the remote target doesn't do tracing, flag it. */
10711 if (*p == '\0')
10712 return -1;
10713
10714 /* We're working with a live target. */
10715 ts->filename = NULL;
10716
10717 if (*p++ != 'T')
10718 error (_("Bogus trace status reply from target: %s"), target_buf);
10719
10720 /* Function 'parse_trace_status' sets default value of each field of
10721 'ts' at first, so we don't have to do it here. */
10722 parse_trace_status (p, ts);
10723
10724 return ts->running;
10725 }
10726
10727 static void
10728 remote_get_tracepoint_status (struct breakpoint *bp,
10729 struct uploaded_tp *utp)
10730 {
10731 struct remote_state *rs = get_remote_state ();
10732 char *reply;
10733 struct bp_location *loc;
10734 struct tracepoint *tp = (struct tracepoint *) bp;
10735 size_t size = get_remote_packet_size ();
10736
10737 if (tp)
10738 {
10739 tp->base.hit_count = 0;
10740 tp->traceframe_usage = 0;
10741 for (loc = tp->base.loc; loc; loc = loc->next)
10742 {
10743 /* If the tracepoint was never downloaded, don't go asking for
10744 any status. */
10745 if (tp->number_on_target == 0)
10746 continue;
10747 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
10748 phex_nz (loc->address, 0));
10749 putpkt (rs->buf);
10750 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10751 if (reply && *reply)
10752 {
10753 if (*reply == 'V')
10754 parse_tracepoint_status (reply + 1, bp, utp);
10755 }
10756 }
10757 }
10758 else if (utp)
10759 {
10760 utp->hit_count = 0;
10761 utp->traceframe_usage = 0;
10762 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
10763 phex_nz (utp->addr, 0));
10764 putpkt (rs->buf);
10765 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10766 if (reply && *reply)
10767 {
10768 if (*reply == 'V')
10769 parse_tracepoint_status (reply + 1, bp, utp);
10770 }
10771 }
10772 }
10773
10774 static void
10775 remote_trace_stop (void)
10776 {
10777 putpkt ("QTStop");
10778 remote_get_noisy_reply (&target_buf, &target_buf_size);
10779 if (*target_buf == '\0')
10780 error (_("Target does not support this command."));
10781 if (strcmp (target_buf, "OK") != 0)
10782 error (_("Bogus reply from target: %s"), target_buf);
10783 }
10784
10785 static int
10786 remote_trace_find (enum trace_find_type type, int num,
10787 ULONGEST addr1, ULONGEST addr2,
10788 int *tpp)
10789 {
10790 struct remote_state *rs = get_remote_state ();
10791 char *endbuf = rs->buf + get_remote_packet_size ();
10792 char *p, *reply;
10793 int target_frameno = -1, target_tracept = -1;
10794
10795 /* Lookups other than by absolute frame number depend on the current
10796 trace selected, so make sure it is correct on the remote end
10797 first. */
10798 if (type != tfind_number)
10799 set_remote_traceframe ();
10800
10801 p = rs->buf;
10802 strcpy (p, "QTFrame:");
10803 p = strchr (p, '\0');
10804 switch (type)
10805 {
10806 case tfind_number:
10807 xsnprintf (p, endbuf - p, "%x", num);
10808 break;
10809 case tfind_pc:
10810 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
10811 break;
10812 case tfind_tp:
10813 xsnprintf (p, endbuf - p, "tdp:%x", num);
10814 break;
10815 case tfind_range:
10816 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
10817 phex_nz (addr2, 0));
10818 break;
10819 case tfind_outside:
10820 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
10821 phex_nz (addr2, 0));
10822 break;
10823 default:
10824 error (_("Unknown trace find type %d"), type);
10825 }
10826
10827 putpkt (rs->buf);
10828 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10829 if (*reply == '\0')
10830 error (_("Target does not support this command."));
10831
10832 while (reply && *reply)
10833 switch (*reply)
10834 {
10835 case 'F':
10836 p = ++reply;
10837 target_frameno = (int) strtol (p, &reply, 16);
10838 if (reply == p)
10839 error (_("Unable to parse trace frame number"));
10840 /* Don't update our remote traceframe number cache on failure
10841 to select a remote traceframe. */
10842 if (target_frameno == -1)
10843 return -1;
10844 break;
10845 case 'T':
10846 p = ++reply;
10847 target_tracept = (int) strtol (p, &reply, 16);
10848 if (reply == p)
10849 error (_("Unable to parse tracepoint number"));
10850 break;
10851 case 'O': /* "OK"? */
10852 if (reply[1] == 'K' && reply[2] == '\0')
10853 reply += 2;
10854 else
10855 error (_("Bogus reply from target: %s"), reply);
10856 break;
10857 default:
10858 error (_("Bogus reply from target: %s"), reply);
10859 }
10860 if (tpp)
10861 *tpp = target_tracept;
10862
10863 remote_traceframe_number = target_frameno;
10864 return target_frameno;
10865 }
10866
10867 static int
10868 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10869 {
10870 struct remote_state *rs = get_remote_state ();
10871 char *reply;
10872 ULONGEST uval;
10873
10874 set_remote_traceframe ();
10875
10876 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
10877 putpkt (rs->buf);
10878 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10879 if (reply && *reply)
10880 {
10881 if (*reply == 'V')
10882 {
10883 unpack_varlen_hex (reply + 1, &uval);
10884 *val = (LONGEST) uval;
10885 return 1;
10886 }
10887 }
10888 return 0;
10889 }
10890
10891 static int
10892 remote_save_trace_data (const char *filename)
10893 {
10894 struct remote_state *rs = get_remote_state ();
10895 char *p, *reply;
10896
10897 p = rs->buf;
10898 strcpy (p, "QTSave:");
10899 p += strlen (p);
10900 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10901 error (_("Remote file name too long for trace save packet"));
10902 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10903 *p++ = '\0';
10904 putpkt (rs->buf);
10905 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10906 if (*reply == '\0')
10907 error (_("Target does not support this command."));
10908 if (strcmp (reply, "OK") != 0)
10909 error (_("Bogus reply from target: %s"), reply);
10910 return 0;
10911 }
10912
10913 /* This is basically a memory transfer, but needs to be its own packet
10914 because we don't know how the target actually organizes its trace
10915 memory, plus we want to be able to ask for as much as possible, but
10916 not be unhappy if we don't get as much as we ask for. */
10917
10918 static LONGEST
10919 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10920 {
10921 struct remote_state *rs = get_remote_state ();
10922 char *reply;
10923 char *p;
10924 int rslt;
10925
10926 p = rs->buf;
10927 strcpy (p, "qTBuffer:");
10928 p += strlen (p);
10929 p += hexnumstr (p, offset);
10930 *p++ = ',';
10931 p += hexnumstr (p, len);
10932 *p++ = '\0';
10933
10934 putpkt (rs->buf);
10935 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10936 if (reply && *reply)
10937 {
10938 /* 'l' by itself means we're at the end of the buffer and
10939 there is nothing more to get. */
10940 if (*reply == 'l')
10941 return 0;
10942
10943 /* Convert the reply into binary. Limit the number of bytes to
10944 convert according to our passed-in buffer size, rather than
10945 what was returned in the packet; if the target is
10946 unexpectedly generous and gives us a bigger reply than we
10947 asked for, we don't want to crash. */
10948 rslt = hex2bin (target_buf, buf, len);
10949 return rslt;
10950 }
10951
10952 /* Something went wrong, flag as an error. */
10953 return -1;
10954 }
10955
10956 static void
10957 remote_set_disconnected_tracing (int val)
10958 {
10959 struct remote_state *rs = get_remote_state ();
10960
10961 if (rs->disconnected_tracing)
10962 {
10963 char *reply;
10964
10965 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
10966 putpkt (rs->buf);
10967 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10968 if (*reply == '\0')
10969 error (_("Target does not support this command."));
10970 if (strcmp (reply, "OK") != 0)
10971 error (_("Bogus reply from target: %s"), reply);
10972 }
10973 else if (val)
10974 warning (_("Target does not support disconnected tracing."));
10975 }
10976
10977 static int
10978 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
10979 {
10980 struct thread_info *info = find_thread_ptid (ptid);
10981
10982 if (info && info->private)
10983 return info->private->core;
10984 return -1;
10985 }
10986
10987 static void
10988 remote_set_circular_trace_buffer (int val)
10989 {
10990 struct remote_state *rs = get_remote_state ();
10991 char *reply;
10992
10993 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
10994 putpkt (rs->buf);
10995 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10996 if (*reply == '\0')
10997 error (_("Target does not support this command."));
10998 if (strcmp (reply, "OK") != 0)
10999 error (_("Bogus reply from target: %s"), reply);
11000 }
11001
11002 static struct traceframe_info *
11003 remote_traceframe_info (void)
11004 {
11005 char *text;
11006
11007 text = target_read_stralloc (&current_target,
11008 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
11009 if (text != NULL)
11010 {
11011 struct traceframe_info *info;
11012 struct cleanup *back_to = make_cleanup (xfree, text);
11013
11014 info = parse_traceframe_info (text);
11015 do_cleanups (back_to);
11016 return info;
11017 }
11018
11019 return NULL;
11020 }
11021
11022 /* Handle the qTMinFTPILen packet. Returns the minimum length of
11023 instruction on which a fast tracepoint may be placed. Returns -1
11024 if the packet is not supported, and 0 if the minimum instruction
11025 length is unknown. */
11026
11027 static int
11028 remote_get_min_fast_tracepoint_insn_len (void)
11029 {
11030 struct remote_state *rs = get_remote_state ();
11031 char *reply;
11032
11033 /* If we're not debugging a process yet, the IPA can't be
11034 loaded. */
11035 if (!target_has_execution)
11036 return 0;
11037
11038 /* Make sure the remote is pointing at the right process. */
11039 set_general_process ();
11040
11041 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
11042 putpkt (rs->buf);
11043 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11044 if (*reply == '\0')
11045 return -1;
11046 else
11047 {
11048 ULONGEST min_insn_len;
11049
11050 unpack_varlen_hex (reply, &min_insn_len);
11051
11052 return (int) min_insn_len;
11053 }
11054 }
11055
11056 static void
11057 remote_set_trace_buffer_size (LONGEST val)
11058 {
11059 if (remote_protocol_packets[PACKET_QTBuffer_size].support
11060 != PACKET_DISABLE)
11061 {
11062 struct remote_state *rs = get_remote_state ();
11063 char *buf = rs->buf;
11064 char *endbuf = rs->buf + get_remote_packet_size ();
11065 enum packet_result result;
11066
11067 gdb_assert (val >= 0 || val == -1);
11068 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
11069 /* Send -1 as literal "-1" to avoid host size dependency. */
11070 if (val < 0)
11071 {
11072 *buf++ = '-';
11073 buf += hexnumstr (buf, (ULONGEST) -val);
11074 }
11075 else
11076 buf += hexnumstr (buf, (ULONGEST) val);
11077
11078 putpkt (rs->buf);
11079 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
11080 result = packet_ok (rs->buf,
11081 &remote_protocol_packets[PACKET_QTBuffer_size]);
11082
11083 if (result != PACKET_OK)
11084 warning (_("Bogus reply from target: %s"), rs->buf);
11085 }
11086 }
11087
11088 static int
11089 remote_set_trace_notes (char *user, char *notes, char *stop_notes)
11090 {
11091 struct remote_state *rs = get_remote_state ();
11092 char *reply;
11093 char *buf = rs->buf;
11094 char *endbuf = rs->buf + get_remote_packet_size ();
11095 int nbytes;
11096
11097 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
11098 if (user)
11099 {
11100 buf += xsnprintf (buf, endbuf - buf, "user:");
11101 nbytes = bin2hex (user, buf, 0);
11102 buf += 2 * nbytes;
11103 *buf++ = ';';
11104 }
11105 if (notes)
11106 {
11107 buf += xsnprintf (buf, endbuf - buf, "notes:");
11108 nbytes = bin2hex (notes, buf, 0);
11109 buf += 2 * nbytes;
11110 *buf++ = ';';
11111 }
11112 if (stop_notes)
11113 {
11114 buf += xsnprintf (buf, endbuf - buf, "tstop:");
11115 nbytes = bin2hex (stop_notes, buf, 0);
11116 buf += 2 * nbytes;
11117 *buf++ = ';';
11118 }
11119 /* Ensure the buffer is terminated. */
11120 *buf = '\0';
11121
11122 putpkt (rs->buf);
11123 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11124 if (*reply == '\0')
11125 return 0;
11126
11127 if (strcmp (reply, "OK") != 0)
11128 error (_("Bogus reply from target: %s"), reply);
11129
11130 return 1;
11131 }
11132
11133 static int
11134 remote_use_agent (int use)
11135 {
11136 if (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE)
11137 {
11138 struct remote_state *rs = get_remote_state ();
11139
11140 /* If the stub supports QAgent. */
11141 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
11142 putpkt (rs->buf);
11143 getpkt (&rs->buf, &rs->buf_size, 0);
11144
11145 if (strcmp (rs->buf, "OK") == 0)
11146 {
11147 use_agent = use;
11148 return 1;
11149 }
11150 }
11151
11152 return 0;
11153 }
11154
11155 static int
11156 remote_can_use_agent (void)
11157 {
11158 return (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE);
11159 }
11160
11161 struct btrace_target_info
11162 {
11163 /* The ptid of the traced thread. */
11164 ptid_t ptid;
11165 };
11166
11167 /* Check whether the target supports branch tracing. */
11168
11169 static int
11170 remote_supports_btrace (void)
11171 {
11172 if (remote_protocol_packets[PACKET_Qbtrace_off].support != PACKET_ENABLE)
11173 return 0;
11174 if (remote_protocol_packets[PACKET_Qbtrace_bts].support != PACKET_ENABLE)
11175 return 0;
11176 if (remote_protocol_packets[PACKET_qXfer_btrace].support != PACKET_ENABLE)
11177 return 0;
11178
11179 return 1;
11180 }
11181
11182 /* Enable branch tracing. */
11183
11184 static struct btrace_target_info *
11185 remote_enable_btrace (ptid_t ptid)
11186 {
11187 struct btrace_target_info *tinfo = NULL;
11188 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
11189 struct remote_state *rs = get_remote_state ();
11190 char *buf = rs->buf;
11191 char *endbuf = rs->buf + get_remote_packet_size ();
11192
11193 if (packet->support != PACKET_ENABLE)
11194 error (_("Target does not support branch tracing."));
11195
11196 set_general_thread (ptid);
11197
11198 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11199 putpkt (rs->buf);
11200 getpkt (&rs->buf, &rs->buf_size, 0);
11201
11202 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11203 {
11204 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11205 error (_("Could not enable branch tracing for %s: %s"),
11206 target_pid_to_str (ptid), rs->buf + 2);
11207 else
11208 error (_("Could not enable branch tracing for %s."),
11209 target_pid_to_str (ptid));
11210 }
11211
11212 tinfo = xzalloc (sizeof (*tinfo));
11213 tinfo->ptid = ptid;
11214
11215 return tinfo;
11216 }
11217
11218 /* Disable branch tracing. */
11219
11220 static void
11221 remote_disable_btrace (struct btrace_target_info *tinfo)
11222 {
11223 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
11224 struct remote_state *rs = get_remote_state ();
11225 char *buf = rs->buf;
11226 char *endbuf = rs->buf + get_remote_packet_size ();
11227
11228 if (packet->support != PACKET_ENABLE)
11229 error (_("Target does not support branch tracing."));
11230
11231 set_general_thread (tinfo->ptid);
11232
11233 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11234 putpkt (rs->buf);
11235 getpkt (&rs->buf, &rs->buf_size, 0);
11236
11237 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11238 {
11239 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11240 error (_("Could not disable branch tracing for %s: %s"),
11241 target_pid_to_str (tinfo->ptid), rs->buf + 2);
11242 else
11243 error (_("Could not disable branch tracing for %s."),
11244 target_pid_to_str (tinfo->ptid));
11245 }
11246
11247 xfree (tinfo);
11248 }
11249
11250 /* Teardown branch tracing. */
11251
11252 static void
11253 remote_teardown_btrace (struct btrace_target_info *tinfo)
11254 {
11255 /* We must not talk to the target during teardown. */
11256 xfree (tinfo);
11257 }
11258
11259 /* Read the branch trace. */
11260
11261 static VEC (btrace_block_s) *
11262 remote_read_btrace (struct btrace_target_info *tinfo,
11263 enum btrace_read_type type)
11264 {
11265 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
11266 struct remote_state *rs = get_remote_state ();
11267 VEC (btrace_block_s) *btrace = NULL;
11268 const char *annex;
11269 char *xml;
11270
11271 if (packet->support != PACKET_ENABLE)
11272 error (_("Target does not support branch tracing."));
11273
11274 #if !defined(HAVE_LIBEXPAT)
11275 error (_("Cannot process branch tracing result. XML parsing not supported."));
11276 #endif
11277
11278 switch (type)
11279 {
11280 case btrace_read_all:
11281 annex = "all";
11282 break;
11283 case btrace_read_new:
11284 annex = "new";
11285 break;
11286 default:
11287 internal_error (__FILE__, __LINE__,
11288 _("Bad branch tracing read type: %u."),
11289 (unsigned int) type);
11290 }
11291
11292 xml = target_read_stralloc (&current_target,
11293 TARGET_OBJECT_BTRACE, annex);
11294 if (xml != NULL)
11295 {
11296 struct cleanup *cleanup = make_cleanup (xfree, xml);
11297
11298 btrace = parse_xml_btrace (xml);
11299 do_cleanups (cleanup);
11300 }
11301
11302 return btrace;
11303 }
11304
11305 static void
11306 init_remote_ops (void)
11307 {
11308 remote_ops.to_shortname = "remote";
11309 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
11310 remote_ops.to_doc =
11311 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11312 Specify the serial device it is connected to\n\
11313 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
11314 remote_ops.to_open = remote_open;
11315 remote_ops.to_close = remote_close;
11316 remote_ops.to_detach = remote_detach;
11317 remote_ops.to_disconnect = remote_disconnect;
11318 remote_ops.to_resume = remote_resume;
11319 remote_ops.to_wait = remote_wait;
11320 remote_ops.to_fetch_registers = remote_fetch_registers;
11321 remote_ops.to_store_registers = remote_store_registers;
11322 remote_ops.to_prepare_to_store = remote_prepare_to_store;
11323 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
11324 remote_ops.to_files_info = remote_files_info;
11325 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
11326 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
11327 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
11328 remote_ops.to_stopped_data_address = remote_stopped_data_address;
11329 remote_ops.to_watchpoint_addr_within_range =
11330 remote_watchpoint_addr_within_range;
11331 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
11332 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
11333 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
11334 remote_ops.to_region_ok_for_hw_watchpoint
11335 = remote_region_ok_for_hw_watchpoint;
11336 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
11337 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
11338 remote_ops.to_kill = remote_kill;
11339 remote_ops.to_load = generic_load;
11340 remote_ops.to_mourn_inferior = remote_mourn;
11341 remote_ops.to_pass_signals = remote_pass_signals;
11342 remote_ops.to_program_signals = remote_program_signals;
11343 remote_ops.to_thread_alive = remote_thread_alive;
11344 remote_ops.to_find_new_threads = remote_threads_info;
11345 remote_ops.to_pid_to_str = remote_pid_to_str;
11346 remote_ops.to_extra_thread_info = remote_threads_extra_info;
11347 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
11348 remote_ops.to_stop = remote_stop;
11349 remote_ops.to_xfer_partial = remote_xfer_partial;
11350 remote_ops.to_rcmd = remote_rcmd;
11351 remote_ops.to_log_command = serial_log_command;
11352 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
11353 remote_ops.to_stratum = process_stratum;
11354 remote_ops.to_has_all_memory = default_child_has_all_memory;
11355 remote_ops.to_has_memory = default_child_has_memory;
11356 remote_ops.to_has_stack = default_child_has_stack;
11357 remote_ops.to_has_registers = default_child_has_registers;
11358 remote_ops.to_has_execution = default_child_has_execution;
11359 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
11360 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
11361 remote_ops.to_magic = OPS_MAGIC;
11362 remote_ops.to_memory_map = remote_memory_map;
11363 remote_ops.to_flash_erase = remote_flash_erase;
11364 remote_ops.to_flash_done = remote_flash_done;
11365 remote_ops.to_read_description = remote_read_description;
11366 remote_ops.to_search_memory = remote_search_memory;
11367 remote_ops.to_can_async_p = remote_can_async_p;
11368 remote_ops.to_is_async_p = remote_is_async_p;
11369 remote_ops.to_async = remote_async;
11370 remote_ops.to_terminal_inferior = remote_terminal_inferior;
11371 remote_ops.to_terminal_ours = remote_terminal_ours;
11372 remote_ops.to_supports_non_stop = remote_supports_non_stop;
11373 remote_ops.to_supports_multi_process = remote_supports_multi_process;
11374 remote_ops.to_supports_disable_randomization
11375 = remote_supports_disable_randomization;
11376 remote_ops.to_fileio_open = remote_hostio_open;
11377 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
11378 remote_ops.to_fileio_pread = remote_hostio_pread;
11379 remote_ops.to_fileio_close = remote_hostio_close;
11380 remote_ops.to_fileio_unlink = remote_hostio_unlink;
11381 remote_ops.to_fileio_readlink = remote_hostio_readlink;
11382 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
11383 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
11384 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
11385 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
11386 remote_ops.to_trace_init = remote_trace_init;
11387 remote_ops.to_download_tracepoint = remote_download_tracepoint;
11388 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
11389 remote_ops.to_download_trace_state_variable
11390 = remote_download_trace_state_variable;
11391 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
11392 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
11393 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
11394 remote_ops.to_trace_start = remote_trace_start;
11395 remote_ops.to_get_trace_status = remote_get_trace_status;
11396 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
11397 remote_ops.to_trace_stop = remote_trace_stop;
11398 remote_ops.to_trace_find = remote_trace_find;
11399 remote_ops.to_get_trace_state_variable_value
11400 = remote_get_trace_state_variable_value;
11401 remote_ops.to_save_trace_data = remote_save_trace_data;
11402 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
11403 remote_ops.to_upload_trace_state_variables
11404 = remote_upload_trace_state_variables;
11405 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
11406 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
11407 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
11408 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
11409 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
11410 remote_ops.to_set_trace_notes = remote_set_trace_notes;
11411 remote_ops.to_core_of_thread = remote_core_of_thread;
11412 remote_ops.to_verify_memory = remote_verify_memory;
11413 remote_ops.to_get_tib_address = remote_get_tib_address;
11414 remote_ops.to_set_permissions = remote_set_permissions;
11415 remote_ops.to_static_tracepoint_marker_at
11416 = remote_static_tracepoint_marker_at;
11417 remote_ops.to_static_tracepoint_markers_by_strid
11418 = remote_static_tracepoint_markers_by_strid;
11419 remote_ops.to_traceframe_info = remote_traceframe_info;
11420 remote_ops.to_use_agent = remote_use_agent;
11421 remote_ops.to_can_use_agent = remote_can_use_agent;
11422 remote_ops.to_supports_btrace = remote_supports_btrace;
11423 remote_ops.to_enable_btrace = remote_enable_btrace;
11424 remote_ops.to_disable_btrace = remote_disable_btrace;
11425 remote_ops.to_teardown_btrace = remote_teardown_btrace;
11426 remote_ops.to_read_btrace = remote_read_btrace;
11427 }
11428
11429 /* Set up the extended remote vector by making a copy of the standard
11430 remote vector and adding to it. */
11431
11432 static void
11433 init_extended_remote_ops (void)
11434 {
11435 extended_remote_ops = remote_ops;
11436
11437 extended_remote_ops.to_shortname = "extended-remote";
11438 extended_remote_ops.to_longname =
11439 "Extended remote serial target in gdb-specific protocol";
11440 extended_remote_ops.to_doc =
11441 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11442 Specify the serial device it is connected to (e.g. /dev/ttya).";
11443 extended_remote_ops.to_open = extended_remote_open;
11444 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
11445 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
11446 extended_remote_ops.to_detach = extended_remote_detach;
11447 extended_remote_ops.to_attach = extended_remote_attach;
11448 extended_remote_ops.to_kill = extended_remote_kill;
11449 extended_remote_ops.to_supports_disable_randomization
11450 = extended_remote_supports_disable_randomization;
11451 }
11452
11453 static int
11454 remote_can_async_p (void)
11455 {
11456 if (!target_async_permitted)
11457 /* We only enable async when the user specifically asks for it. */
11458 return 0;
11459
11460 /* We're async whenever the serial device is. */
11461 return serial_can_async_p (remote_desc);
11462 }
11463
11464 static int
11465 remote_is_async_p (void)
11466 {
11467 if (!target_async_permitted)
11468 /* We only enable async when the user specifically asks for it. */
11469 return 0;
11470
11471 /* We're async whenever the serial device is. */
11472 return serial_is_async_p (remote_desc);
11473 }
11474
11475 /* Pass the SERIAL event on and up to the client. One day this code
11476 will be able to delay notifying the client of an event until the
11477 point where an entire packet has been received. */
11478
11479 static void (*async_client_callback) (enum inferior_event_type event_type,
11480 void *context);
11481 static void *async_client_context;
11482 static serial_event_ftype remote_async_serial_handler;
11483
11484 static void
11485 remote_async_serial_handler (struct serial *scb, void *context)
11486 {
11487 /* Don't propogate error information up to the client. Instead let
11488 the client find out about the error by querying the target. */
11489 async_client_callback (INF_REG_EVENT, async_client_context);
11490 }
11491
11492 static void
11493 remote_async_inferior_event_handler (gdb_client_data data)
11494 {
11495 inferior_event_handler (INF_REG_EVENT, NULL);
11496 }
11497
11498 static void
11499 remote_async (void (*callback) (enum inferior_event_type event_type,
11500 void *context), void *context)
11501 {
11502 if (callback != NULL)
11503 {
11504 serial_async (remote_desc, remote_async_serial_handler, NULL);
11505 async_client_callback = callback;
11506 async_client_context = context;
11507 }
11508 else
11509 serial_async (remote_desc, NULL, NULL);
11510 }
11511
11512 static void
11513 set_remote_cmd (char *args, int from_tty)
11514 {
11515 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
11516 }
11517
11518 static void
11519 show_remote_cmd (char *args, int from_tty)
11520 {
11521 /* We can't just use cmd_show_list here, because we want to skip
11522 the redundant "show remote Z-packet" and the legacy aliases. */
11523 struct cleanup *showlist_chain;
11524 struct cmd_list_element *list = remote_show_cmdlist;
11525 struct ui_out *uiout = current_uiout;
11526
11527 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
11528 for (; list != NULL; list = list->next)
11529 if (strcmp (list->name, "Z-packet") == 0)
11530 continue;
11531 else if (list->type == not_set_cmd)
11532 /* Alias commands are exactly like the original, except they
11533 don't have the normal type. */
11534 continue;
11535 else
11536 {
11537 struct cleanup *option_chain
11538 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
11539
11540 ui_out_field_string (uiout, "name", list->name);
11541 ui_out_text (uiout, ": ");
11542 if (list->type == show_cmd)
11543 do_show_command ((char *) NULL, from_tty, list);
11544 else
11545 cmd_func (list, NULL, from_tty);
11546 /* Close the tuple. */
11547 do_cleanups (option_chain);
11548 }
11549
11550 /* Close the tuple. */
11551 do_cleanups (showlist_chain);
11552 }
11553
11554
11555 /* Function to be called whenever a new objfile (shlib) is detected. */
11556 static void
11557 remote_new_objfile (struct objfile *objfile)
11558 {
11559 if (remote_desc != 0) /* Have a remote connection. */
11560 remote_check_symbols (objfile);
11561 }
11562
11563 /* Pull all the tracepoints defined on the target and create local
11564 data structures representing them. We don't want to create real
11565 tracepoints yet, we don't want to mess up the user's existing
11566 collection. */
11567
11568 static int
11569 remote_upload_tracepoints (struct uploaded_tp **utpp)
11570 {
11571 struct remote_state *rs = get_remote_state ();
11572 char *p;
11573
11574 /* Ask for a first packet of tracepoint definition. */
11575 putpkt ("qTfP");
11576 getpkt (&rs->buf, &rs->buf_size, 0);
11577 p = rs->buf;
11578 while (*p && *p != 'l')
11579 {
11580 parse_tracepoint_definition (p, utpp);
11581 /* Ask for another packet of tracepoint definition. */
11582 putpkt ("qTsP");
11583 getpkt (&rs->buf, &rs->buf_size, 0);
11584 p = rs->buf;
11585 }
11586 return 0;
11587 }
11588
11589 static int
11590 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
11591 {
11592 struct remote_state *rs = get_remote_state ();
11593 char *p;
11594
11595 /* Ask for a first packet of variable definition. */
11596 putpkt ("qTfV");
11597 getpkt (&rs->buf, &rs->buf_size, 0);
11598 p = rs->buf;
11599 while (*p && *p != 'l')
11600 {
11601 parse_tsv_definition (p, utsvp);
11602 /* Ask for another packet of variable definition. */
11603 putpkt ("qTsV");
11604 getpkt (&rs->buf, &rs->buf_size, 0);
11605 p = rs->buf;
11606 }
11607 return 0;
11608 }
11609
11610 void
11611 _initialize_remote (void)
11612 {
11613 struct remote_state *rs;
11614 struct cmd_list_element *cmd;
11615 const char *cmd_name;
11616
11617 /* architecture specific data */
11618 remote_gdbarch_data_handle =
11619 gdbarch_data_register_post_init (init_remote_state);
11620 remote_g_packet_data_handle =
11621 gdbarch_data_register_pre_init (remote_g_packet_data_init);
11622
11623 /* Initialize the per-target state. At the moment there is only one
11624 of these, not one per target. Only one target is active at a
11625 time. The default buffer size is unimportant; it will be expanded
11626 whenever a larger buffer is needed. */
11627 rs = get_remote_state_raw ();
11628 rs->buf_size = 400;
11629 rs->buf = xmalloc (rs->buf_size);
11630
11631 init_remote_ops ();
11632 add_target (&remote_ops);
11633
11634 init_extended_remote_ops ();
11635 add_target (&extended_remote_ops);
11636
11637 /* Hook into new objfile notification. */
11638 observer_attach_new_objfile (remote_new_objfile);
11639 /* We're no longer interested in notification events of an inferior
11640 when it exits. */
11641 observer_attach_inferior_exit (discard_pending_stop_replies);
11642
11643 /* Set up signal handlers. */
11644 sigint_remote_token =
11645 create_async_signal_handler (async_remote_interrupt, NULL);
11646 sigint_remote_twice_token =
11647 create_async_signal_handler (async_remote_interrupt_twice, NULL);
11648
11649 #if 0
11650 init_remote_threadtests ();
11651 #endif
11652
11653 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
11654 /* set/show remote ... */
11655
11656 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
11657 Remote protocol specific variables\n\
11658 Configure various remote-protocol specific variables such as\n\
11659 the packets being used"),
11660 &remote_set_cmdlist, "set remote ",
11661 0 /* allow-unknown */, &setlist);
11662 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11663 Remote protocol specific variables\n\
11664 Configure various remote-protocol specific variables such as\n\
11665 the packets being used"),
11666 &remote_show_cmdlist, "show remote ",
11667 0 /* allow-unknown */, &showlist);
11668
11669 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11670 Compare section data on target to the exec file.\n\
11671 Argument is a single section name (default: all loaded sections)."),
11672 &cmdlist);
11673
11674 add_cmd ("packet", class_maintenance, packet_command, _("\
11675 Send an arbitrary packet to a remote target.\n\
11676 maintenance packet TEXT\n\
11677 If GDB is talking to an inferior via the GDB serial protocol, then\n\
11678 this command sends the string TEXT to the inferior, and displays the\n\
11679 response packet. GDB supplies the initial `$' character, and the\n\
11680 terminating `#' character and checksum."),
11681 &maintenancelist);
11682
11683 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11684 Set whether to send break if interrupted."), _("\
11685 Show whether to send break if interrupted."), _("\
11686 If set, a break, instead of a cntrl-c, is sent to the remote target."),
11687 set_remotebreak, show_remotebreak,
11688 &setlist, &showlist);
11689 cmd_name = "remotebreak";
11690 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11691 deprecate_cmd (cmd, "set remote interrupt-sequence");
11692 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11693 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11694 deprecate_cmd (cmd, "show remote interrupt-sequence");
11695
11696 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11697 interrupt_sequence_modes, &interrupt_sequence_mode,
11698 _("\
11699 Set interrupt sequence to remote target."), _("\
11700 Show interrupt sequence to remote target."), _("\
11701 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11702 NULL, show_interrupt_sequence,
11703 &remote_set_cmdlist,
11704 &remote_show_cmdlist);
11705
11706 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
11707 &interrupt_on_connect, _("\
11708 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11709 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11710 If set, interrupt sequence is sent to remote target."),
11711 NULL, NULL,
11712 &remote_set_cmdlist, &remote_show_cmdlist);
11713
11714 /* Install commands for configuring memory read/write packets. */
11715
11716 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
11717 Set the maximum number of bytes per memory write packet (deprecated)."),
11718 &setlist);
11719 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
11720 Show the maximum number of bytes per memory write packet (deprecated)."),
11721 &showlist);
11722 add_cmd ("memory-write-packet-size", no_class,
11723 set_memory_write_packet_size, _("\
11724 Set the maximum number of bytes per memory-write packet.\n\
11725 Specify the number of bytes in a packet or 0 (zero) for the\n\
11726 default packet size. The actual limit is further reduced\n\
11727 dependent on the target. Specify ``fixed'' to disable the\n\
11728 further restriction and ``limit'' to enable that restriction."),
11729 &remote_set_cmdlist);
11730 add_cmd ("memory-read-packet-size", no_class,
11731 set_memory_read_packet_size, _("\
11732 Set the maximum number of bytes per memory-read packet.\n\
11733 Specify the number of bytes in a packet or 0 (zero) for the\n\
11734 default packet size. The actual limit is further reduced\n\
11735 dependent on the target. Specify ``fixed'' to disable the\n\
11736 further restriction and ``limit'' to enable that restriction."),
11737 &remote_set_cmdlist);
11738 add_cmd ("memory-write-packet-size", no_class,
11739 show_memory_write_packet_size,
11740 _("Show the maximum number of bytes per memory-write packet."),
11741 &remote_show_cmdlist);
11742 add_cmd ("memory-read-packet-size", no_class,
11743 show_memory_read_packet_size,
11744 _("Show the maximum number of bytes per memory-read packet."),
11745 &remote_show_cmdlist);
11746
11747 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
11748 &remote_hw_watchpoint_limit, _("\
11749 Set the maximum number of target hardware watchpoints."), _("\
11750 Show the maximum number of target hardware watchpoints."), _("\
11751 Specify a negative limit for unlimited."),
11752 NULL, NULL, /* FIXME: i18n: The maximum
11753 number of target hardware
11754 watchpoints is %s. */
11755 &remote_set_cmdlist, &remote_show_cmdlist);
11756 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
11757 &remote_hw_watchpoint_length_limit, _("\
11758 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
11759 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
11760 Specify a negative limit for unlimited."),
11761 NULL, NULL, /* FIXME: i18n: The maximum
11762 length (in bytes) of a target
11763 hardware watchpoint is %s. */
11764 &remote_set_cmdlist, &remote_show_cmdlist);
11765 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
11766 &remote_hw_breakpoint_limit, _("\
11767 Set the maximum number of target hardware breakpoints."), _("\
11768 Show the maximum number of target hardware breakpoints."), _("\
11769 Specify a negative limit for unlimited."),
11770 NULL, NULL, /* FIXME: i18n: The maximum
11771 number of target hardware
11772 breakpoints is %s. */
11773 &remote_set_cmdlist, &remote_show_cmdlist);
11774
11775 add_setshow_uinteger_cmd ("remoteaddresssize", class_obscure,
11776 &remote_address_size, _("\
11777 Set the maximum size of the address (in bits) in a memory packet."), _("\
11778 Show the maximum size of the address (in bits) in a memory packet."), NULL,
11779 NULL,
11780 NULL, /* FIXME: i18n: */
11781 &setlist, &showlist);
11782
11783 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
11784 "X", "binary-download", 1);
11785
11786 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
11787 "vCont", "verbose-resume", 0);
11788
11789 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
11790 "QPassSignals", "pass-signals", 0);
11791
11792 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
11793 "QProgramSignals", "program-signals", 0);
11794
11795 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
11796 "qSymbol", "symbol-lookup", 0);
11797
11798 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
11799 "P", "set-register", 1);
11800
11801 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
11802 "p", "fetch-register", 1);
11803
11804 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
11805 "Z0", "software-breakpoint", 0);
11806
11807 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
11808 "Z1", "hardware-breakpoint", 0);
11809
11810 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
11811 "Z2", "write-watchpoint", 0);
11812
11813 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
11814 "Z3", "read-watchpoint", 0);
11815
11816 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
11817 "Z4", "access-watchpoint", 0);
11818
11819 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
11820 "qXfer:auxv:read", "read-aux-vector", 0);
11821
11822 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
11823 "qXfer:features:read", "target-features", 0);
11824
11825 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
11826 "qXfer:libraries:read", "library-info", 0);
11827
11828 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
11829 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
11830
11831 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
11832 "qXfer:memory-map:read", "memory-map", 0);
11833
11834 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
11835 "qXfer:spu:read", "read-spu-object", 0);
11836
11837 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
11838 "qXfer:spu:write", "write-spu-object", 0);
11839
11840 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
11841 "qXfer:osdata:read", "osdata", 0);
11842
11843 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
11844 "qXfer:threads:read", "threads", 0);
11845
11846 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
11847 "qXfer:siginfo:read", "read-siginfo-object", 0);
11848
11849 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
11850 "qXfer:siginfo:write", "write-siginfo-object", 0);
11851
11852 add_packet_config_cmd
11853 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
11854 "qXfer:trace-frame-info:read", "traceframe-info", 0);
11855
11856 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
11857 "qXfer:uib:read", "unwind-info-block", 0);
11858
11859 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
11860 "qGetTLSAddr", "get-thread-local-storage-address",
11861 0);
11862
11863 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
11864 "qGetTIBAddr", "get-thread-information-block-address",
11865 0);
11866
11867 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
11868 "bc", "reverse-continue", 0);
11869
11870 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
11871 "bs", "reverse-step", 0);
11872
11873 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
11874 "qSupported", "supported-packets", 0);
11875
11876 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
11877 "qSearch:memory", "search-memory", 0);
11878
11879 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
11880 "vFile:open", "hostio-open", 0);
11881
11882 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
11883 "vFile:pread", "hostio-pread", 0);
11884
11885 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
11886 "vFile:pwrite", "hostio-pwrite", 0);
11887
11888 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
11889 "vFile:close", "hostio-close", 0);
11890
11891 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
11892 "vFile:unlink", "hostio-unlink", 0);
11893
11894 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
11895 "vFile:readlink", "hostio-readlink", 0);
11896
11897 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
11898 "vAttach", "attach", 0);
11899
11900 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
11901 "vRun", "run", 0);
11902
11903 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
11904 "QStartNoAckMode", "noack", 0);
11905
11906 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
11907 "vKill", "kill", 0);
11908
11909 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
11910 "qAttached", "query-attached", 0);
11911
11912 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
11913 "ConditionalTracepoints",
11914 "conditional-tracepoints", 0);
11915
11916 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
11917 "ConditionalBreakpoints",
11918 "conditional-breakpoints", 0);
11919
11920 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
11921 "BreakpointCommands",
11922 "breakpoint-commands", 0);
11923
11924 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
11925 "FastTracepoints", "fast-tracepoints", 0);
11926
11927 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
11928 "TracepointSource", "TracepointSource", 0);
11929
11930 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
11931 "QAllow", "allow", 0);
11932
11933 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
11934 "StaticTracepoints", "static-tracepoints", 0);
11935
11936 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
11937 "InstallInTrace", "install-in-trace", 0);
11938
11939 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
11940 "qXfer:statictrace:read", "read-sdata-object", 0);
11941
11942 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
11943 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
11944
11945 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
11946 "QDisableRandomization", "disable-randomization", 0);
11947
11948 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
11949 "QAgent", "agent", 0);
11950
11951 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
11952 "QTBuffer:size", "trace-buffer-size", 0);
11953
11954 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
11955 "Qbtrace:off", "disable-btrace", 0);
11956
11957 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
11958 "Qbtrace:bts", "enable-btrace", 0);
11959
11960 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
11961 "qXfer:btrace", "read-btrace", 0);
11962
11963 /* Keep the old ``set remote Z-packet ...'' working. Each individual
11964 Z sub-packet has its own set and show commands, but users may
11965 have sets to this variable in their .gdbinit files (or in their
11966 documentation). */
11967 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
11968 &remote_Z_packet_detect, _("\
11969 Set use of remote protocol `Z' packets"), _("\
11970 Show use of remote protocol `Z' packets "), _("\
11971 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
11972 packets."),
11973 set_remote_protocol_Z_packet_cmd,
11974 show_remote_protocol_Z_packet_cmd,
11975 /* FIXME: i18n: Use of remote protocol
11976 `Z' packets is %s. */
11977 &remote_set_cmdlist, &remote_show_cmdlist);
11978
11979 add_prefix_cmd ("remote", class_files, remote_command, _("\
11980 Manipulate files on the remote system\n\
11981 Transfer files to and from the remote target system."),
11982 &remote_cmdlist, "remote ",
11983 0 /* allow-unknown */, &cmdlist);
11984
11985 add_cmd ("put", class_files, remote_put_command,
11986 _("Copy a local file to the remote system."),
11987 &remote_cmdlist);
11988
11989 add_cmd ("get", class_files, remote_get_command,
11990 _("Copy a remote file to the local system."),
11991 &remote_cmdlist);
11992
11993 add_cmd ("delete", class_files, remote_delete_command,
11994 _("Delete a remote file."),
11995 &remote_cmdlist);
11996
11997 remote_exec_file = xstrdup ("");
11998 add_setshow_string_noescape_cmd ("exec-file", class_files,
11999 &remote_exec_file, _("\
12000 Set the remote pathname for \"run\""), _("\
12001 Show the remote pathname for \"run\""), NULL, NULL, NULL,
12002 &remote_set_cmdlist, &remote_show_cmdlist);
12003
12004 /* Eventually initialize fileio. See fileio.c */
12005 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
12006
12007 /* Take advantage of the fact that the LWP field is not used, to tag
12008 special ptids with it set to != 0. */
12009 magic_null_ptid = ptid_build (42000, 1, -1);
12010 not_sent_ptid = ptid_build (42000, 1, -2);
12011 any_thread_ptid = ptid_build (42000, 1, 0);
12012
12013 target_buf_size = 2048;
12014 target_buf = xmalloc (target_buf_size);
12015 }
12016
This page took 0.371152 seconds and 4 git commands to generate.