* printcmd.c (print_address_demangle): Add 'opts' argument.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <fcntl.h>
26 #include "inferior.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "exceptions.h"
30 #include "target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "gdb_assert.h"
40 #include "observer.h"
41 #include "solib.h"
42 #include "cli/cli-decode.h"
43 #include "cli/cli-setshow.h"
44 #include "target-descriptions.h"
45
46 #include <ctype.h>
47 #include <sys/time.h>
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 #include "remote-fileio.h"
59 #include "gdb/fileio.h"
60 #include "gdb_stat.h"
61 #include "xml-support.h"
62
63 #include "memory-map.h"
64
65 #include "tracepoint.h"
66 #include "ax.h"
67 #include "ax-gdb.h"
68 #include "agent.h"
69
70 /* Temp hacks for tracepoint encoding migration. */
71 static char *target_buf;
72 static long target_buf_size;
73
74 /* The size to align memory write packets, when practical. The protocol
75 does not guarantee any alignment, and gdb will generate short
76 writes and unaligned writes, but even as a best-effort attempt this
77 can improve bulk transfers. For instance, if a write is misaligned
78 relative to the target's data bus, the stub may need to make an extra
79 round trip fetching data from the target. This doesn't make a
80 huge difference, but it's easy to do, so we try to be helpful.
81
82 The alignment chosen is arbitrary; usually data bus width is
83 important here, not the possibly larger cache line size. */
84 enum { REMOTE_ALIGN_WRITES = 16 };
85
86 /* Prototypes for local functions. */
87 static void cleanup_sigint_signal_handler (void *dummy);
88 static void initialize_sigint_signal_handler (void);
89 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
90 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
91 int forever);
92
93 static void handle_remote_sigint (int);
94 static void handle_remote_sigint_twice (int);
95 static void async_remote_interrupt (gdb_client_data);
96 void async_remote_interrupt_twice (gdb_client_data);
97
98 static void remote_files_info (struct target_ops *ignore);
99
100 static void remote_prepare_to_store (struct regcache *regcache);
101
102 static void remote_open (char *name, int from_tty);
103
104 static void extended_remote_open (char *name, int from_tty);
105
106 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
107
108 static void remote_close (int quitting);
109
110 static void remote_mourn (struct target_ops *ops);
111
112 static void extended_remote_restart (void);
113
114 static void extended_remote_mourn (struct target_ops *);
115
116 static void remote_mourn_1 (struct target_ops *);
117
118 static void remote_send (char **buf, long *sizeof_buf_p);
119
120 static int readchar (int timeout);
121
122 static void remote_kill (struct target_ops *ops);
123
124 static int tohex (int nib);
125
126 static int remote_can_async_p (void);
127
128 static int remote_is_async_p (void);
129
130 static void remote_async (void (*callback) (enum inferior_event_type event_type,
131 void *context), void *context);
132
133 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
134
135 static void remote_interrupt (int signo);
136
137 static void remote_interrupt_twice (int signo);
138
139 static void interrupt_query (void);
140
141 static void set_general_thread (struct ptid ptid);
142 static void set_continue_thread (struct ptid ptid);
143
144 static void get_offsets (void);
145
146 static void skip_frame (void);
147
148 static long read_frame (char **buf_p, long *sizeof_buf);
149
150 static int hexnumlen (ULONGEST num);
151
152 static void init_remote_ops (void);
153
154 static void init_extended_remote_ops (void);
155
156 static void remote_stop (ptid_t);
157
158 static int ishex (int ch, int *val);
159
160 static int stubhex (int ch);
161
162 static int hexnumstr (char *, ULONGEST);
163
164 static int hexnumnstr (char *, ULONGEST, int);
165
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
167
168 static void print_packet (char *);
169
170 static void compare_sections_command (char *, int);
171
172 static void packet_command (char *, int);
173
174 static int stub_unpack_int (char *buff, int fieldlength);
175
176 static ptid_t remote_current_thread (ptid_t oldptid);
177
178 static void remote_find_new_threads (void);
179
180 static void record_currthread (ptid_t currthread);
181
182 static int fromhex (int a);
183
184 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
185
186 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
187
188 static int putpkt_binary (char *buf, int cnt);
189
190 static void check_binary_download (CORE_ADDR addr);
191
192 struct packet_config;
193
194 static void show_packet_config_cmd (struct packet_config *config);
195
196 static void update_packet_config (struct packet_config *config);
197
198 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
199 struct cmd_list_element *c);
200
201 static void show_remote_protocol_packet_cmd (struct ui_file *file,
202 int from_tty,
203 struct cmd_list_element *c,
204 const char *value);
205
206 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
207 static ptid_t read_ptid (char *buf, char **obuf);
208
209 static void remote_set_permissions (void);
210
211 struct remote_state;
212 static int remote_get_trace_status (struct trace_status *ts);
213
214 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
215
216 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
217
218 static void remote_query_supported (void);
219
220 static void remote_check_symbols (struct objfile *objfile);
221
222 void _initialize_remote (void);
223
224 struct stop_reply;
225 static struct stop_reply *stop_reply_xmalloc (void);
226 static void stop_reply_xfree (struct stop_reply *);
227 static void do_stop_reply_xfree (void *arg);
228 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
229 static void push_stop_reply (struct stop_reply *);
230 static void remote_get_pending_stop_replies (void);
231 static void discard_pending_stop_replies (int pid);
232 static int peek_stop_reply (ptid_t ptid);
233
234 static void remote_async_inferior_event_handler (gdb_client_data);
235 static void remote_async_get_pending_events_handler (gdb_client_data);
236
237 static void remote_terminal_ours (void);
238
239 static int remote_read_description_p (struct target_ops *target);
240
241 static void remote_console_output (char *msg);
242
243 static int remote_supports_cond_breakpoints (void);
244
245 /* The non-stop remote protocol provisions for one pending stop reply.
246 This is where we keep it until it is acknowledged. */
247
248 static struct stop_reply *pending_stop_reply = NULL;
249
250 /* For "remote". */
251
252 static struct cmd_list_element *remote_cmdlist;
253
254 /* For "set remote" and "show remote". */
255
256 static struct cmd_list_element *remote_set_cmdlist;
257 static struct cmd_list_element *remote_show_cmdlist;
258
259 /* Description of the remote protocol state for the currently
260 connected target. This is per-target state, and independent of the
261 selected architecture. */
262
263 struct remote_state
264 {
265 /* A buffer to use for incoming packets, and its current size. The
266 buffer is grown dynamically for larger incoming packets.
267 Outgoing packets may also be constructed in this buffer.
268 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
269 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
270 packets. */
271 char *buf;
272 long buf_size;
273
274 /* True if we're going through initial connection setup (finding out
275 about the remote side's threads, relocating symbols, etc.). */
276 int starting_up;
277
278 /* If we negotiated packet size explicitly (and thus can bypass
279 heuristics for the largest packet size that will not overflow
280 a buffer in the stub), this will be set to that packet size.
281 Otherwise zero, meaning to use the guessed size. */
282 long explicit_packet_size;
283
284 /* remote_wait is normally called when the target is running and
285 waits for a stop reply packet. But sometimes we need to call it
286 when the target is already stopped. We can send a "?" packet
287 and have remote_wait read the response. Or, if we already have
288 the response, we can stash it in BUF and tell remote_wait to
289 skip calling getpkt. This flag is set when BUF contains a
290 stop reply packet and the target is not waiting. */
291 int cached_wait_status;
292
293 /* True, if in no ack mode. That is, neither GDB nor the stub will
294 expect acks from each other. The connection is assumed to be
295 reliable. */
296 int noack_mode;
297
298 /* True if we're connected in extended remote mode. */
299 int extended;
300
301 /* True if the stub reported support for multi-process
302 extensions. */
303 int multi_process_aware;
304
305 /* True if we resumed the target and we're waiting for the target to
306 stop. In the mean time, we can't start another command/query.
307 The remote server wouldn't be ready to process it, so we'd
308 timeout waiting for a reply that would never come and eventually
309 we'd close the connection. This can happen in asynchronous mode
310 because we allow GDB commands while the target is running. */
311 int waiting_for_stop_reply;
312
313 /* True if the stub reports support for non-stop mode. */
314 int non_stop_aware;
315
316 /* True if the stub reports support for vCont;t. */
317 int support_vCont_t;
318
319 /* True if the stub reports support for conditional tracepoints. */
320 int cond_tracepoints;
321
322 /* True if the stub reports support for target-side breakpoint
323 conditions. */
324 int cond_breakpoints;
325
326 /* True if the stub reports support for fast tracepoints. */
327 int fast_tracepoints;
328
329 /* True if the stub reports support for static tracepoints. */
330 int static_tracepoints;
331
332 /* True if the stub reports support for installing tracepoint while
333 tracing. */
334 int install_in_trace;
335
336 /* True if the stub can continue running a trace while GDB is
337 disconnected. */
338 int disconnected_tracing;
339
340 /* True if the stub reports support for enabling and disabling
341 tracepoints while a trace experiment is running. */
342 int enable_disable_tracepoints;
343
344 /* True if the stub can collect strings using tracenz bytecode. */
345 int string_tracing;
346
347 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
348 responded to that. */
349 int ctrlc_pending_p;
350 };
351
352 /* Private data that we'll store in (struct thread_info)->private. */
353 struct private_thread_info
354 {
355 char *extra;
356 int core;
357 };
358
359 static void
360 free_private_thread_info (struct private_thread_info *info)
361 {
362 xfree (info->extra);
363 xfree (info);
364 }
365
366 /* Returns true if the multi-process extensions are in effect. */
367 static int
368 remote_multi_process_p (struct remote_state *rs)
369 {
370 return rs->multi_process_aware;
371 }
372
373 /* This data could be associated with a target, but we do not always
374 have access to the current target when we need it, so for now it is
375 static. This will be fine for as long as only one target is in use
376 at a time. */
377 static struct remote_state remote_state;
378
379 static struct remote_state *
380 get_remote_state_raw (void)
381 {
382 return &remote_state;
383 }
384
385 /* Description of the remote protocol for a given architecture. */
386
387 struct packet_reg
388 {
389 long offset; /* Offset into G packet. */
390 long regnum; /* GDB's internal register number. */
391 LONGEST pnum; /* Remote protocol register number. */
392 int in_g_packet; /* Always part of G packet. */
393 /* long size in bytes; == register_size (target_gdbarch, regnum);
394 at present. */
395 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
396 at present. */
397 };
398
399 struct remote_arch_state
400 {
401 /* Description of the remote protocol registers. */
402 long sizeof_g_packet;
403
404 /* Description of the remote protocol registers indexed by REGNUM
405 (making an array gdbarch_num_regs in size). */
406 struct packet_reg *regs;
407
408 /* This is the size (in chars) of the first response to the ``g''
409 packet. It is used as a heuristic when determining the maximum
410 size of memory-read and memory-write packets. A target will
411 typically only reserve a buffer large enough to hold the ``g''
412 packet. The size does not include packet overhead (headers and
413 trailers). */
414 long actual_register_packet_size;
415
416 /* This is the maximum size (in chars) of a non read/write packet.
417 It is also used as a cap on the size of read/write packets. */
418 long remote_packet_size;
419 };
420
421 long sizeof_pkt = 2000;
422
423 /* Utility: generate error from an incoming stub packet. */
424 static void
425 trace_error (char *buf)
426 {
427 if (*buf++ != 'E')
428 return; /* not an error msg */
429 switch (*buf)
430 {
431 case '1': /* malformed packet error */
432 if (*++buf == '0') /* general case: */
433 error (_("remote.c: error in outgoing packet."));
434 else
435 error (_("remote.c: error in outgoing packet at field #%ld."),
436 strtol (buf, NULL, 16));
437 case '2':
438 error (_("trace API error 0x%s."), ++buf);
439 default:
440 error (_("Target returns error code '%s'."), buf);
441 }
442 }
443
444 /* Utility: wait for reply from stub, while accepting "O" packets. */
445 static char *
446 remote_get_noisy_reply (char **buf_p,
447 long *sizeof_buf)
448 {
449 do /* Loop on reply from remote stub. */
450 {
451 char *buf;
452
453 QUIT; /* Allow user to bail out with ^C. */
454 getpkt (buf_p, sizeof_buf, 0);
455 buf = *buf_p;
456 if (buf[0] == 'E')
457 trace_error (buf);
458 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
459 {
460 ULONGEST ul;
461 CORE_ADDR from, to, org_to;
462 char *p, *pp;
463 int adjusted_size = 0;
464 volatile struct gdb_exception ex;
465
466 p = buf + strlen ("qRelocInsn:");
467 pp = unpack_varlen_hex (p, &ul);
468 if (*pp != ';')
469 error (_("invalid qRelocInsn packet: %s"), buf);
470 from = ul;
471
472 p = pp + 1;
473 unpack_varlen_hex (p, &ul);
474 to = ul;
475
476 org_to = to;
477
478 TRY_CATCH (ex, RETURN_MASK_ALL)
479 {
480 gdbarch_relocate_instruction (target_gdbarch, &to, from);
481 }
482 if (ex.reason >= 0)
483 {
484 adjusted_size = to - org_to;
485
486 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
487 putpkt (buf);
488 }
489 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
490 {
491 /* Propagate memory errors silently back to the target.
492 The stub may have limited the range of addresses we
493 can write to, for example. */
494 putpkt ("E01");
495 }
496 else
497 {
498 /* Something unexpectedly bad happened. Be verbose so
499 we can tell what, and propagate the error back to the
500 stub, so it doesn't get stuck waiting for a
501 response. */
502 exception_fprintf (gdb_stderr, ex,
503 _("warning: relocating instruction: "));
504 putpkt ("E01");
505 }
506 }
507 else if (buf[0] == 'O' && buf[1] != 'K')
508 remote_console_output (buf + 1); /* 'O' message from stub */
509 else
510 return buf; /* Here's the actual reply. */
511 }
512 while (1);
513 }
514
515 /* Handle for retreving the remote protocol data from gdbarch. */
516 static struct gdbarch_data *remote_gdbarch_data_handle;
517
518 static struct remote_arch_state *
519 get_remote_arch_state (void)
520 {
521 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
522 }
523
524 /* Fetch the global remote target state. */
525
526 static struct remote_state *
527 get_remote_state (void)
528 {
529 /* Make sure that the remote architecture state has been
530 initialized, because doing so might reallocate rs->buf. Any
531 function which calls getpkt also needs to be mindful of changes
532 to rs->buf, but this call limits the number of places which run
533 into trouble. */
534 get_remote_arch_state ();
535
536 return get_remote_state_raw ();
537 }
538
539 static int
540 compare_pnums (const void *lhs_, const void *rhs_)
541 {
542 const struct packet_reg * const *lhs = lhs_;
543 const struct packet_reg * const *rhs = rhs_;
544
545 if ((*lhs)->pnum < (*rhs)->pnum)
546 return -1;
547 else if ((*lhs)->pnum == (*rhs)->pnum)
548 return 0;
549 else
550 return 1;
551 }
552
553 static int
554 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
555 {
556 int regnum, num_remote_regs, offset;
557 struct packet_reg **remote_regs;
558
559 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
560 {
561 struct packet_reg *r = &regs[regnum];
562
563 if (register_size (gdbarch, regnum) == 0)
564 /* Do not try to fetch zero-sized (placeholder) registers. */
565 r->pnum = -1;
566 else
567 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
568
569 r->regnum = regnum;
570 }
571
572 /* Define the g/G packet format as the contents of each register
573 with a remote protocol number, in order of ascending protocol
574 number. */
575
576 remote_regs = alloca (gdbarch_num_regs (gdbarch)
577 * sizeof (struct packet_reg *));
578 for (num_remote_regs = 0, regnum = 0;
579 regnum < gdbarch_num_regs (gdbarch);
580 regnum++)
581 if (regs[regnum].pnum != -1)
582 remote_regs[num_remote_regs++] = &regs[regnum];
583
584 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
585 compare_pnums);
586
587 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
588 {
589 remote_regs[regnum]->in_g_packet = 1;
590 remote_regs[regnum]->offset = offset;
591 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
592 }
593
594 return offset;
595 }
596
597 /* Given the architecture described by GDBARCH, return the remote
598 protocol register's number and the register's offset in the g/G
599 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
600 If the target does not have a mapping for REGNUM, return false,
601 otherwise, return true. */
602
603 int
604 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
605 int *pnum, int *poffset)
606 {
607 int sizeof_g_packet;
608 struct packet_reg *regs;
609 struct cleanup *old_chain;
610
611 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
612
613 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
614 old_chain = make_cleanup (xfree, regs);
615
616 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
617
618 *pnum = regs[regnum].pnum;
619 *poffset = regs[regnum].offset;
620
621 do_cleanups (old_chain);
622
623 return *pnum != -1;
624 }
625
626 static void *
627 init_remote_state (struct gdbarch *gdbarch)
628 {
629 struct remote_state *rs = get_remote_state_raw ();
630 struct remote_arch_state *rsa;
631
632 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
633
634 /* Use the architecture to build a regnum<->pnum table, which will be
635 1:1 unless a feature set specifies otherwise. */
636 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
637 gdbarch_num_regs (gdbarch),
638 struct packet_reg);
639
640 /* Record the maximum possible size of the g packet - it may turn out
641 to be smaller. */
642 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
643
644 /* Default maximum number of characters in a packet body. Many
645 remote stubs have a hardwired buffer size of 400 bytes
646 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
647 as the maximum packet-size to ensure that the packet and an extra
648 NUL character can always fit in the buffer. This stops GDB
649 trashing stubs that try to squeeze an extra NUL into what is
650 already a full buffer (As of 1999-12-04 that was most stubs). */
651 rsa->remote_packet_size = 400 - 1;
652
653 /* This one is filled in when a ``g'' packet is received. */
654 rsa->actual_register_packet_size = 0;
655
656 /* Should rsa->sizeof_g_packet needs more space than the
657 default, adjust the size accordingly. Remember that each byte is
658 encoded as two characters. 32 is the overhead for the packet
659 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
660 (``$NN:G...#NN'') is a better guess, the below has been padded a
661 little. */
662 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
663 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
664
665 /* Make sure that the packet buffer is plenty big enough for
666 this architecture. */
667 if (rs->buf_size < rsa->remote_packet_size)
668 {
669 rs->buf_size = 2 * rsa->remote_packet_size;
670 rs->buf = xrealloc (rs->buf, rs->buf_size);
671 }
672
673 return rsa;
674 }
675
676 /* Return the current allowed size of a remote packet. This is
677 inferred from the current architecture, and should be used to
678 limit the length of outgoing packets. */
679 static long
680 get_remote_packet_size (void)
681 {
682 struct remote_state *rs = get_remote_state ();
683 struct remote_arch_state *rsa = get_remote_arch_state ();
684
685 if (rs->explicit_packet_size)
686 return rs->explicit_packet_size;
687
688 return rsa->remote_packet_size;
689 }
690
691 static struct packet_reg *
692 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
693 {
694 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
695 return NULL;
696 else
697 {
698 struct packet_reg *r = &rsa->regs[regnum];
699
700 gdb_assert (r->regnum == regnum);
701 return r;
702 }
703 }
704
705 static struct packet_reg *
706 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
707 {
708 int i;
709
710 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
711 {
712 struct packet_reg *r = &rsa->regs[i];
713
714 if (r->pnum == pnum)
715 return r;
716 }
717 return NULL;
718 }
719
720 /* FIXME: graces/2002-08-08: These variables should eventually be
721 bound to an instance of the target object (as in gdbarch-tdep()),
722 when such a thing exists. */
723
724 /* This is set to the data address of the access causing the target
725 to stop for a watchpoint. */
726 static CORE_ADDR remote_watch_data_address;
727
728 /* This is non-zero if target stopped for a watchpoint. */
729 static int remote_stopped_by_watchpoint_p;
730
731 static struct target_ops remote_ops;
732
733 static struct target_ops extended_remote_ops;
734
735 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
736 ``forever'' still use the normal timeout mechanism. This is
737 currently used by the ASYNC code to guarentee that target reads
738 during the initial connect always time-out. Once getpkt has been
739 modified to return a timeout indication and, in turn
740 remote_wait()/wait_for_inferior() have gained a timeout parameter
741 this can go away. */
742 static int wait_forever_enabled_p = 1;
743
744 /* Allow the user to specify what sequence to send to the remote
745 when he requests a program interruption: Although ^C is usually
746 what remote systems expect (this is the default, here), it is
747 sometimes preferable to send a break. On other systems such
748 as the Linux kernel, a break followed by g, which is Magic SysRq g
749 is required in order to interrupt the execution. */
750 const char interrupt_sequence_control_c[] = "Ctrl-C";
751 const char interrupt_sequence_break[] = "BREAK";
752 const char interrupt_sequence_break_g[] = "BREAK-g";
753 static const char *const interrupt_sequence_modes[] =
754 {
755 interrupt_sequence_control_c,
756 interrupt_sequence_break,
757 interrupt_sequence_break_g,
758 NULL
759 };
760 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
761
762 static void
763 show_interrupt_sequence (struct ui_file *file, int from_tty,
764 struct cmd_list_element *c,
765 const char *value)
766 {
767 if (interrupt_sequence_mode == interrupt_sequence_control_c)
768 fprintf_filtered (file,
769 _("Send the ASCII ETX character (Ctrl-c) "
770 "to the remote target to interrupt the "
771 "execution of the program.\n"));
772 else if (interrupt_sequence_mode == interrupt_sequence_break)
773 fprintf_filtered (file,
774 _("send a break signal to the remote target "
775 "to interrupt the execution of the program.\n"));
776 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
777 fprintf_filtered (file,
778 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
779 "the remote target to interrupt the execution "
780 "of Linux kernel.\n"));
781 else
782 internal_error (__FILE__, __LINE__,
783 _("Invalid value for interrupt_sequence_mode: %s."),
784 interrupt_sequence_mode);
785 }
786
787 /* This boolean variable specifies whether interrupt_sequence is sent
788 to the remote target when gdb connects to it.
789 This is mostly needed when you debug the Linux kernel: The Linux kernel
790 expects BREAK g which is Magic SysRq g for connecting gdb. */
791 static int interrupt_on_connect = 0;
792
793 /* This variable is used to implement the "set/show remotebreak" commands.
794 Since these commands are now deprecated in favor of "set/show remote
795 interrupt-sequence", it no longer has any effect on the code. */
796 static int remote_break;
797
798 static void
799 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
800 {
801 if (remote_break)
802 interrupt_sequence_mode = interrupt_sequence_break;
803 else
804 interrupt_sequence_mode = interrupt_sequence_control_c;
805 }
806
807 static void
808 show_remotebreak (struct ui_file *file, int from_tty,
809 struct cmd_list_element *c,
810 const char *value)
811 {
812 }
813
814 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
815 remote_open knows that we don't have a file open when the program
816 starts. */
817 static struct serial *remote_desc = NULL;
818
819 /* This variable sets the number of bits in an address that are to be
820 sent in a memory ("M" or "m") packet. Normally, after stripping
821 leading zeros, the entire address would be sent. This variable
822 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
823 initial implementation of remote.c restricted the address sent in
824 memory packets to ``host::sizeof long'' bytes - (typically 32
825 bits). Consequently, for 64 bit targets, the upper 32 bits of an
826 address was never sent. Since fixing this bug may cause a break in
827 some remote targets this variable is principly provided to
828 facilitate backward compatibility. */
829
830 static int remote_address_size;
831
832 /* Temporary to track who currently owns the terminal. See
833 remote_terminal_* for more details. */
834
835 static int remote_async_terminal_ours_p;
836
837 /* The executable file to use for "run" on the remote side. */
838
839 static char *remote_exec_file = "";
840
841 \f
842 /* User configurable variables for the number of characters in a
843 memory read/write packet. MIN (rsa->remote_packet_size,
844 rsa->sizeof_g_packet) is the default. Some targets need smaller
845 values (fifo overruns, et.al.) and some users need larger values
846 (speed up transfers). The variables ``preferred_*'' (the user
847 request), ``current_*'' (what was actually set) and ``forced_*''
848 (Positive - a soft limit, negative - a hard limit). */
849
850 struct memory_packet_config
851 {
852 char *name;
853 long size;
854 int fixed_p;
855 };
856
857 /* Compute the current size of a read/write packet. Since this makes
858 use of ``actual_register_packet_size'' the computation is dynamic. */
859
860 static long
861 get_memory_packet_size (struct memory_packet_config *config)
862 {
863 struct remote_state *rs = get_remote_state ();
864 struct remote_arch_state *rsa = get_remote_arch_state ();
865
866 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
867 law?) that some hosts don't cope very well with large alloca()
868 calls. Eventually the alloca() code will be replaced by calls to
869 xmalloc() and make_cleanups() allowing this restriction to either
870 be lifted or removed. */
871 #ifndef MAX_REMOTE_PACKET_SIZE
872 #define MAX_REMOTE_PACKET_SIZE 16384
873 #endif
874 /* NOTE: 20 ensures we can write at least one byte. */
875 #ifndef MIN_REMOTE_PACKET_SIZE
876 #define MIN_REMOTE_PACKET_SIZE 20
877 #endif
878 long what_they_get;
879 if (config->fixed_p)
880 {
881 if (config->size <= 0)
882 what_they_get = MAX_REMOTE_PACKET_SIZE;
883 else
884 what_they_get = config->size;
885 }
886 else
887 {
888 what_they_get = get_remote_packet_size ();
889 /* Limit the packet to the size specified by the user. */
890 if (config->size > 0
891 && what_they_get > config->size)
892 what_they_get = config->size;
893
894 /* Limit it to the size of the targets ``g'' response unless we have
895 permission from the stub to use a larger packet size. */
896 if (rs->explicit_packet_size == 0
897 && rsa->actual_register_packet_size > 0
898 && what_they_get > rsa->actual_register_packet_size)
899 what_they_get = rsa->actual_register_packet_size;
900 }
901 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
902 what_they_get = MAX_REMOTE_PACKET_SIZE;
903 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
904 what_they_get = MIN_REMOTE_PACKET_SIZE;
905
906 /* Make sure there is room in the global buffer for this packet
907 (including its trailing NUL byte). */
908 if (rs->buf_size < what_they_get + 1)
909 {
910 rs->buf_size = 2 * what_they_get;
911 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
912 }
913
914 return what_they_get;
915 }
916
917 /* Update the size of a read/write packet. If they user wants
918 something really big then do a sanity check. */
919
920 static void
921 set_memory_packet_size (char *args, struct memory_packet_config *config)
922 {
923 int fixed_p = config->fixed_p;
924 long size = config->size;
925
926 if (args == NULL)
927 error (_("Argument required (integer, `fixed' or `limited')."));
928 else if (strcmp (args, "hard") == 0
929 || strcmp (args, "fixed") == 0)
930 fixed_p = 1;
931 else if (strcmp (args, "soft") == 0
932 || strcmp (args, "limit") == 0)
933 fixed_p = 0;
934 else
935 {
936 char *end;
937
938 size = strtoul (args, &end, 0);
939 if (args == end)
940 error (_("Invalid %s (bad syntax)."), config->name);
941 #if 0
942 /* Instead of explicitly capping the size of a packet to
943 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
944 instead allowed to set the size to something arbitrarily
945 large. */
946 if (size > MAX_REMOTE_PACKET_SIZE)
947 error (_("Invalid %s (too large)."), config->name);
948 #endif
949 }
950 /* Extra checks? */
951 if (fixed_p && !config->fixed_p)
952 {
953 if (! query (_("The target may not be able to correctly handle a %s\n"
954 "of %ld bytes. Change the packet size? "),
955 config->name, size))
956 error (_("Packet size not changed."));
957 }
958 /* Update the config. */
959 config->fixed_p = fixed_p;
960 config->size = size;
961 }
962
963 static void
964 show_memory_packet_size (struct memory_packet_config *config)
965 {
966 printf_filtered (_("The %s is %ld. "), config->name, config->size);
967 if (config->fixed_p)
968 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
969 get_memory_packet_size (config));
970 else
971 printf_filtered (_("Packets are limited to %ld bytes.\n"),
972 get_memory_packet_size (config));
973 }
974
975 static struct memory_packet_config memory_write_packet_config =
976 {
977 "memory-write-packet-size",
978 };
979
980 static void
981 set_memory_write_packet_size (char *args, int from_tty)
982 {
983 set_memory_packet_size (args, &memory_write_packet_config);
984 }
985
986 static void
987 show_memory_write_packet_size (char *args, int from_tty)
988 {
989 show_memory_packet_size (&memory_write_packet_config);
990 }
991
992 static long
993 get_memory_write_packet_size (void)
994 {
995 return get_memory_packet_size (&memory_write_packet_config);
996 }
997
998 static struct memory_packet_config memory_read_packet_config =
999 {
1000 "memory-read-packet-size",
1001 };
1002
1003 static void
1004 set_memory_read_packet_size (char *args, int from_tty)
1005 {
1006 set_memory_packet_size (args, &memory_read_packet_config);
1007 }
1008
1009 static void
1010 show_memory_read_packet_size (char *args, int from_tty)
1011 {
1012 show_memory_packet_size (&memory_read_packet_config);
1013 }
1014
1015 static long
1016 get_memory_read_packet_size (void)
1017 {
1018 long size = get_memory_packet_size (&memory_read_packet_config);
1019
1020 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1021 extra buffer size argument before the memory read size can be
1022 increased beyond this. */
1023 if (size > get_remote_packet_size ())
1024 size = get_remote_packet_size ();
1025 return size;
1026 }
1027
1028 \f
1029 /* Generic configuration support for packets the stub optionally
1030 supports. Allows the user to specify the use of the packet as well
1031 as allowing GDB to auto-detect support in the remote stub. */
1032
1033 enum packet_support
1034 {
1035 PACKET_SUPPORT_UNKNOWN = 0,
1036 PACKET_ENABLE,
1037 PACKET_DISABLE
1038 };
1039
1040 struct packet_config
1041 {
1042 const char *name;
1043 const char *title;
1044 enum auto_boolean detect;
1045 enum packet_support support;
1046 };
1047
1048 /* Analyze a packet's return value and update the packet config
1049 accordingly. */
1050
1051 enum packet_result
1052 {
1053 PACKET_ERROR,
1054 PACKET_OK,
1055 PACKET_UNKNOWN
1056 };
1057
1058 static void
1059 update_packet_config (struct packet_config *config)
1060 {
1061 switch (config->detect)
1062 {
1063 case AUTO_BOOLEAN_TRUE:
1064 config->support = PACKET_ENABLE;
1065 break;
1066 case AUTO_BOOLEAN_FALSE:
1067 config->support = PACKET_DISABLE;
1068 break;
1069 case AUTO_BOOLEAN_AUTO:
1070 config->support = PACKET_SUPPORT_UNKNOWN;
1071 break;
1072 }
1073 }
1074
1075 static void
1076 show_packet_config_cmd (struct packet_config *config)
1077 {
1078 char *support = "internal-error";
1079
1080 switch (config->support)
1081 {
1082 case PACKET_ENABLE:
1083 support = "enabled";
1084 break;
1085 case PACKET_DISABLE:
1086 support = "disabled";
1087 break;
1088 case PACKET_SUPPORT_UNKNOWN:
1089 support = "unknown";
1090 break;
1091 }
1092 switch (config->detect)
1093 {
1094 case AUTO_BOOLEAN_AUTO:
1095 printf_filtered (_("Support for the `%s' packet "
1096 "is auto-detected, currently %s.\n"),
1097 config->name, support);
1098 break;
1099 case AUTO_BOOLEAN_TRUE:
1100 case AUTO_BOOLEAN_FALSE:
1101 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1102 config->name, support);
1103 break;
1104 }
1105 }
1106
1107 static void
1108 add_packet_config_cmd (struct packet_config *config, const char *name,
1109 const char *title, int legacy)
1110 {
1111 char *set_doc;
1112 char *show_doc;
1113 char *cmd_name;
1114
1115 config->name = name;
1116 config->title = title;
1117 config->detect = AUTO_BOOLEAN_AUTO;
1118 config->support = PACKET_SUPPORT_UNKNOWN;
1119 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1120 name, title);
1121 show_doc = xstrprintf ("Show current use of remote "
1122 "protocol `%s' (%s) packet",
1123 name, title);
1124 /* set/show TITLE-packet {auto,on,off} */
1125 cmd_name = xstrprintf ("%s-packet", title);
1126 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1127 &config->detect, set_doc,
1128 show_doc, NULL, /* help_doc */
1129 set_remote_protocol_packet_cmd,
1130 show_remote_protocol_packet_cmd,
1131 &remote_set_cmdlist, &remote_show_cmdlist);
1132 /* The command code copies the documentation strings. */
1133 xfree (set_doc);
1134 xfree (show_doc);
1135 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1136 if (legacy)
1137 {
1138 char *legacy_name;
1139
1140 legacy_name = xstrprintf ("%s-packet", name);
1141 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1142 &remote_set_cmdlist);
1143 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1144 &remote_show_cmdlist);
1145 }
1146 }
1147
1148 static enum packet_result
1149 packet_check_result (const char *buf)
1150 {
1151 if (buf[0] != '\0')
1152 {
1153 /* The stub recognized the packet request. Check that the
1154 operation succeeded. */
1155 if (buf[0] == 'E'
1156 && isxdigit (buf[1]) && isxdigit (buf[2])
1157 && buf[3] == '\0')
1158 /* "Enn" - definitly an error. */
1159 return PACKET_ERROR;
1160
1161 /* Always treat "E." as an error. This will be used for
1162 more verbose error messages, such as E.memtypes. */
1163 if (buf[0] == 'E' && buf[1] == '.')
1164 return PACKET_ERROR;
1165
1166 /* The packet may or may not be OK. Just assume it is. */
1167 return PACKET_OK;
1168 }
1169 else
1170 /* The stub does not support the packet. */
1171 return PACKET_UNKNOWN;
1172 }
1173
1174 static enum packet_result
1175 packet_ok (const char *buf, struct packet_config *config)
1176 {
1177 enum packet_result result;
1178
1179 result = packet_check_result (buf);
1180 switch (result)
1181 {
1182 case PACKET_OK:
1183 case PACKET_ERROR:
1184 /* The stub recognized the packet request. */
1185 switch (config->support)
1186 {
1187 case PACKET_SUPPORT_UNKNOWN:
1188 if (remote_debug)
1189 fprintf_unfiltered (gdb_stdlog,
1190 "Packet %s (%s) is supported\n",
1191 config->name, config->title);
1192 config->support = PACKET_ENABLE;
1193 break;
1194 case PACKET_DISABLE:
1195 internal_error (__FILE__, __LINE__,
1196 _("packet_ok: attempt to use a disabled packet"));
1197 break;
1198 case PACKET_ENABLE:
1199 break;
1200 }
1201 break;
1202 case PACKET_UNKNOWN:
1203 /* The stub does not support the packet. */
1204 switch (config->support)
1205 {
1206 case PACKET_ENABLE:
1207 if (config->detect == AUTO_BOOLEAN_AUTO)
1208 /* If the stub previously indicated that the packet was
1209 supported then there is a protocol error.. */
1210 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1211 config->name, config->title);
1212 else
1213 /* The user set it wrong. */
1214 error (_("Enabled packet %s (%s) not recognized by stub"),
1215 config->name, config->title);
1216 break;
1217 case PACKET_SUPPORT_UNKNOWN:
1218 if (remote_debug)
1219 fprintf_unfiltered (gdb_stdlog,
1220 "Packet %s (%s) is NOT supported\n",
1221 config->name, config->title);
1222 config->support = PACKET_DISABLE;
1223 break;
1224 case PACKET_DISABLE:
1225 break;
1226 }
1227 break;
1228 }
1229
1230 return result;
1231 }
1232
1233 enum {
1234 PACKET_vCont = 0,
1235 PACKET_X,
1236 PACKET_qSymbol,
1237 PACKET_P,
1238 PACKET_p,
1239 PACKET_Z0,
1240 PACKET_Z1,
1241 PACKET_Z2,
1242 PACKET_Z3,
1243 PACKET_Z4,
1244 PACKET_vFile_open,
1245 PACKET_vFile_pread,
1246 PACKET_vFile_pwrite,
1247 PACKET_vFile_close,
1248 PACKET_vFile_unlink,
1249 PACKET_vFile_readlink,
1250 PACKET_qXfer_auxv,
1251 PACKET_qXfer_features,
1252 PACKET_qXfer_libraries,
1253 PACKET_qXfer_libraries_svr4,
1254 PACKET_qXfer_memory_map,
1255 PACKET_qXfer_spu_read,
1256 PACKET_qXfer_spu_write,
1257 PACKET_qXfer_osdata,
1258 PACKET_qXfer_threads,
1259 PACKET_qXfer_statictrace_read,
1260 PACKET_qXfer_traceframe_info,
1261 PACKET_qXfer_uib,
1262 PACKET_qGetTIBAddr,
1263 PACKET_qGetTLSAddr,
1264 PACKET_qSupported,
1265 PACKET_QPassSignals,
1266 PACKET_QProgramSignals,
1267 PACKET_qSearch_memory,
1268 PACKET_vAttach,
1269 PACKET_vRun,
1270 PACKET_QStartNoAckMode,
1271 PACKET_vKill,
1272 PACKET_qXfer_siginfo_read,
1273 PACKET_qXfer_siginfo_write,
1274 PACKET_qAttached,
1275 PACKET_ConditionalTracepoints,
1276 PACKET_ConditionalBreakpoints,
1277 PACKET_FastTracepoints,
1278 PACKET_StaticTracepoints,
1279 PACKET_InstallInTrace,
1280 PACKET_bc,
1281 PACKET_bs,
1282 PACKET_TracepointSource,
1283 PACKET_QAllow,
1284 PACKET_qXfer_fdpic,
1285 PACKET_QDisableRandomization,
1286 PACKET_QAgent,
1287 PACKET_MAX
1288 };
1289
1290 static struct packet_config remote_protocol_packets[PACKET_MAX];
1291
1292 static void
1293 set_remote_protocol_packet_cmd (char *args, int from_tty,
1294 struct cmd_list_element *c)
1295 {
1296 struct packet_config *packet;
1297
1298 for (packet = remote_protocol_packets;
1299 packet < &remote_protocol_packets[PACKET_MAX];
1300 packet++)
1301 {
1302 if (&packet->detect == c->var)
1303 {
1304 update_packet_config (packet);
1305 return;
1306 }
1307 }
1308 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1309 c->name);
1310 }
1311
1312 static void
1313 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1314 struct cmd_list_element *c,
1315 const char *value)
1316 {
1317 struct packet_config *packet;
1318
1319 for (packet = remote_protocol_packets;
1320 packet < &remote_protocol_packets[PACKET_MAX];
1321 packet++)
1322 {
1323 if (&packet->detect == c->var)
1324 {
1325 show_packet_config_cmd (packet);
1326 return;
1327 }
1328 }
1329 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1330 c->name);
1331 }
1332
1333 /* Should we try one of the 'Z' requests? */
1334
1335 enum Z_packet_type
1336 {
1337 Z_PACKET_SOFTWARE_BP,
1338 Z_PACKET_HARDWARE_BP,
1339 Z_PACKET_WRITE_WP,
1340 Z_PACKET_READ_WP,
1341 Z_PACKET_ACCESS_WP,
1342 NR_Z_PACKET_TYPES
1343 };
1344
1345 /* For compatibility with older distributions. Provide a ``set remote
1346 Z-packet ...'' command that updates all the Z packet types. */
1347
1348 static enum auto_boolean remote_Z_packet_detect;
1349
1350 static void
1351 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1352 struct cmd_list_element *c)
1353 {
1354 int i;
1355
1356 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1357 {
1358 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1359 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1360 }
1361 }
1362
1363 static void
1364 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1365 struct cmd_list_element *c,
1366 const char *value)
1367 {
1368 int i;
1369
1370 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1371 {
1372 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1373 }
1374 }
1375
1376 /* Should we try the 'ThreadInfo' query packet?
1377
1378 This variable (NOT available to the user: auto-detect only!)
1379 determines whether GDB will use the new, simpler "ThreadInfo"
1380 query or the older, more complex syntax for thread queries.
1381 This is an auto-detect variable (set to true at each connect,
1382 and set to false when the target fails to recognize it). */
1383
1384 static int use_threadinfo_query;
1385 static int use_threadextra_query;
1386
1387 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1388 static struct async_signal_handler *sigint_remote_twice_token;
1389 static struct async_signal_handler *sigint_remote_token;
1390
1391 \f
1392 /* Asynchronous signal handle registered as event loop source for
1393 when we have pending events ready to be passed to the core. */
1394
1395 static struct async_event_handler *remote_async_inferior_event_token;
1396
1397 /* Asynchronous signal handle registered as event loop source for when
1398 the remote sent us a %Stop notification. The registered callback
1399 will do a vStopped sequence to pull the rest of the events out of
1400 the remote side into our event queue. */
1401
1402 static struct async_event_handler *remote_async_get_pending_events_token;
1403 \f
1404
1405 static ptid_t magic_null_ptid;
1406 static ptid_t not_sent_ptid;
1407 static ptid_t any_thread_ptid;
1408
1409 /* These are the threads which we last sent to the remote system. The
1410 TID member will be -1 for all or -2 for not sent yet. */
1411
1412 static ptid_t general_thread;
1413 static ptid_t continue_thread;
1414
1415 /* This the traceframe which we last selected on the remote system.
1416 It will be -1 if no traceframe is selected. */
1417 static int remote_traceframe_number = -1;
1418
1419 /* Find out if the stub attached to PID (and hence GDB should offer to
1420 detach instead of killing it when bailing out). */
1421
1422 static int
1423 remote_query_attached (int pid)
1424 {
1425 struct remote_state *rs = get_remote_state ();
1426 size_t size = get_remote_packet_size ();
1427
1428 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1429 return 0;
1430
1431 if (remote_multi_process_p (rs))
1432 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1433 else
1434 xsnprintf (rs->buf, size, "qAttached");
1435
1436 putpkt (rs->buf);
1437 getpkt (&rs->buf, &rs->buf_size, 0);
1438
1439 switch (packet_ok (rs->buf,
1440 &remote_protocol_packets[PACKET_qAttached]))
1441 {
1442 case PACKET_OK:
1443 if (strcmp (rs->buf, "1") == 0)
1444 return 1;
1445 break;
1446 case PACKET_ERROR:
1447 warning (_("Remote failure reply: %s"), rs->buf);
1448 break;
1449 case PACKET_UNKNOWN:
1450 break;
1451 }
1452
1453 return 0;
1454 }
1455
1456 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1457 has been invented by GDB, instead of reported by the target. Since
1458 we can be connected to a remote system before before knowing about
1459 any inferior, mark the target with execution when we find the first
1460 inferior. If ATTACHED is 1, then we had just attached to this
1461 inferior. If it is 0, then we just created this inferior. If it
1462 is -1, then try querying the remote stub to find out if it had
1463 attached to the inferior or not. */
1464
1465 static struct inferior *
1466 remote_add_inferior (int fake_pid_p, int pid, int attached)
1467 {
1468 struct inferior *inf;
1469
1470 /* Check whether this process we're learning about is to be
1471 considered attached, or if is to be considered to have been
1472 spawned by the stub. */
1473 if (attached == -1)
1474 attached = remote_query_attached (pid);
1475
1476 if (gdbarch_has_global_solist (target_gdbarch))
1477 {
1478 /* If the target shares code across all inferiors, then every
1479 attach adds a new inferior. */
1480 inf = add_inferior (pid);
1481
1482 /* ... and every inferior is bound to the same program space.
1483 However, each inferior may still have its own address
1484 space. */
1485 inf->aspace = maybe_new_address_space ();
1486 inf->pspace = current_program_space;
1487 }
1488 else
1489 {
1490 /* In the traditional debugging scenario, there's a 1-1 match
1491 between program/address spaces. We simply bind the inferior
1492 to the program space's address space. */
1493 inf = current_inferior ();
1494 inferior_appeared (inf, pid);
1495 }
1496
1497 inf->attach_flag = attached;
1498 inf->fake_pid_p = fake_pid_p;
1499
1500 return inf;
1501 }
1502
1503 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1504 according to RUNNING. */
1505
1506 static void
1507 remote_add_thread (ptid_t ptid, int running)
1508 {
1509 add_thread (ptid);
1510
1511 set_executing (ptid, running);
1512 set_running (ptid, running);
1513 }
1514
1515 /* Come here when we learn about a thread id from the remote target.
1516 It may be the first time we hear about such thread, so take the
1517 opportunity to add it to GDB's thread list. In case this is the
1518 first time we're noticing its corresponding inferior, add it to
1519 GDB's inferior list as well. */
1520
1521 static void
1522 remote_notice_new_inferior (ptid_t currthread, int running)
1523 {
1524 /* If this is a new thread, add it to GDB's thread list.
1525 If we leave it up to WFI to do this, bad things will happen. */
1526
1527 if (in_thread_list (currthread) && is_exited (currthread))
1528 {
1529 /* We're seeing an event on a thread id we knew had exited.
1530 This has to be a new thread reusing the old id. Add it. */
1531 remote_add_thread (currthread, running);
1532 return;
1533 }
1534
1535 if (!in_thread_list (currthread))
1536 {
1537 struct inferior *inf = NULL;
1538 int pid = ptid_get_pid (currthread);
1539
1540 if (ptid_is_pid (inferior_ptid)
1541 && pid == ptid_get_pid (inferior_ptid))
1542 {
1543 /* inferior_ptid has no thread member yet. This can happen
1544 with the vAttach -> remote_wait,"TAAthread:" path if the
1545 stub doesn't support qC. This is the first stop reported
1546 after an attach, so this is the main thread. Update the
1547 ptid in the thread list. */
1548 if (in_thread_list (pid_to_ptid (pid)))
1549 thread_change_ptid (inferior_ptid, currthread);
1550 else
1551 {
1552 remote_add_thread (currthread, running);
1553 inferior_ptid = currthread;
1554 }
1555 return;
1556 }
1557
1558 if (ptid_equal (magic_null_ptid, inferior_ptid))
1559 {
1560 /* inferior_ptid is not set yet. This can happen with the
1561 vRun -> remote_wait,"TAAthread:" path if the stub
1562 doesn't support qC. This is the first stop reported
1563 after an attach, so this is the main thread. Update the
1564 ptid in the thread list. */
1565 thread_change_ptid (inferior_ptid, currthread);
1566 return;
1567 }
1568
1569 /* When connecting to a target remote, or to a target
1570 extended-remote which already was debugging an inferior, we
1571 may not know about it yet. Add it before adding its child
1572 thread, so notifications are emitted in a sensible order. */
1573 if (!in_inferior_list (ptid_get_pid (currthread)))
1574 {
1575 struct remote_state *rs = get_remote_state ();
1576 int fake_pid_p = !remote_multi_process_p (rs);
1577
1578 inf = remote_add_inferior (fake_pid_p,
1579 ptid_get_pid (currthread), -1);
1580 }
1581
1582 /* This is really a new thread. Add it. */
1583 remote_add_thread (currthread, running);
1584
1585 /* If we found a new inferior, let the common code do whatever
1586 it needs to with it (e.g., read shared libraries, insert
1587 breakpoints). */
1588 if (inf != NULL)
1589 notice_new_inferior (currthread, running, 0);
1590 }
1591 }
1592
1593 /* Return the private thread data, creating it if necessary. */
1594
1595 static struct private_thread_info *
1596 demand_private_info (ptid_t ptid)
1597 {
1598 struct thread_info *info = find_thread_ptid (ptid);
1599
1600 gdb_assert (info);
1601
1602 if (!info->private)
1603 {
1604 info->private = xmalloc (sizeof (*(info->private)));
1605 info->private_dtor = free_private_thread_info;
1606 info->private->core = -1;
1607 info->private->extra = 0;
1608 }
1609
1610 return info->private;
1611 }
1612
1613 /* Call this function as a result of
1614 1) A halt indication (T packet) containing a thread id
1615 2) A direct query of currthread
1616 3) Successful execution of set thread */
1617
1618 static void
1619 record_currthread (ptid_t currthread)
1620 {
1621 general_thread = currthread;
1622 }
1623
1624 static char *last_pass_packet;
1625
1626 /* If 'QPassSignals' is supported, tell the remote stub what signals
1627 it can simply pass through to the inferior without reporting. */
1628
1629 static void
1630 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1631 {
1632 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1633 {
1634 char *pass_packet, *p;
1635 int count = 0, i;
1636
1637 gdb_assert (numsigs < 256);
1638 for (i = 0; i < numsigs; i++)
1639 {
1640 if (pass_signals[i])
1641 count++;
1642 }
1643 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1644 strcpy (pass_packet, "QPassSignals:");
1645 p = pass_packet + strlen (pass_packet);
1646 for (i = 0; i < numsigs; i++)
1647 {
1648 if (pass_signals[i])
1649 {
1650 if (i >= 16)
1651 *p++ = tohex (i >> 4);
1652 *p++ = tohex (i & 15);
1653 if (count)
1654 *p++ = ';';
1655 else
1656 break;
1657 count--;
1658 }
1659 }
1660 *p = 0;
1661 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1662 {
1663 struct remote_state *rs = get_remote_state ();
1664 char *buf = rs->buf;
1665
1666 putpkt (pass_packet);
1667 getpkt (&rs->buf, &rs->buf_size, 0);
1668 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1669 if (last_pass_packet)
1670 xfree (last_pass_packet);
1671 last_pass_packet = pass_packet;
1672 }
1673 else
1674 xfree (pass_packet);
1675 }
1676 }
1677
1678 /* The last QProgramSignals packet sent to the target. We bypass
1679 sending a new program signals list down to the target if the new
1680 packet is exactly the same as the last we sent. IOW, we only let
1681 the target know about program signals list changes. */
1682
1683 static char *last_program_signals_packet;
1684
1685 /* If 'QProgramSignals' is supported, tell the remote stub what
1686 signals it should pass through to the inferior when detaching. */
1687
1688 static void
1689 remote_program_signals (int numsigs, unsigned char *signals)
1690 {
1691 if (remote_protocol_packets[PACKET_QProgramSignals].support != PACKET_DISABLE)
1692 {
1693 char *packet, *p;
1694 int count = 0, i;
1695
1696 gdb_assert (numsigs < 256);
1697 for (i = 0; i < numsigs; i++)
1698 {
1699 if (signals[i])
1700 count++;
1701 }
1702 packet = xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
1703 strcpy (packet, "QProgramSignals:");
1704 p = packet + strlen (packet);
1705 for (i = 0; i < numsigs; i++)
1706 {
1707 if (signal_pass_state (i))
1708 {
1709 if (i >= 16)
1710 *p++ = tohex (i >> 4);
1711 *p++ = tohex (i & 15);
1712 if (count)
1713 *p++ = ';';
1714 else
1715 break;
1716 count--;
1717 }
1718 }
1719 *p = 0;
1720 if (!last_program_signals_packet
1721 || strcmp (last_program_signals_packet, packet) != 0)
1722 {
1723 struct remote_state *rs = get_remote_state ();
1724 char *buf = rs->buf;
1725
1726 putpkt (packet);
1727 getpkt (&rs->buf, &rs->buf_size, 0);
1728 packet_ok (buf, &remote_protocol_packets[PACKET_QProgramSignals]);
1729 xfree (last_program_signals_packet);
1730 last_program_signals_packet = packet;
1731 }
1732 else
1733 xfree (packet);
1734 }
1735 }
1736
1737 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1738 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1739 thread. If GEN is set, set the general thread, if not, then set
1740 the step/continue thread. */
1741 static void
1742 set_thread (struct ptid ptid, int gen)
1743 {
1744 struct remote_state *rs = get_remote_state ();
1745 ptid_t state = gen ? general_thread : continue_thread;
1746 char *buf = rs->buf;
1747 char *endbuf = rs->buf + get_remote_packet_size ();
1748
1749 if (ptid_equal (state, ptid))
1750 return;
1751
1752 *buf++ = 'H';
1753 *buf++ = gen ? 'g' : 'c';
1754 if (ptid_equal (ptid, magic_null_ptid))
1755 xsnprintf (buf, endbuf - buf, "0");
1756 else if (ptid_equal (ptid, any_thread_ptid))
1757 xsnprintf (buf, endbuf - buf, "0");
1758 else if (ptid_equal (ptid, minus_one_ptid))
1759 xsnprintf (buf, endbuf - buf, "-1");
1760 else
1761 write_ptid (buf, endbuf, ptid);
1762 putpkt (rs->buf);
1763 getpkt (&rs->buf, &rs->buf_size, 0);
1764 if (gen)
1765 general_thread = ptid;
1766 else
1767 continue_thread = ptid;
1768 }
1769
1770 static void
1771 set_general_thread (struct ptid ptid)
1772 {
1773 set_thread (ptid, 1);
1774 }
1775
1776 static void
1777 set_continue_thread (struct ptid ptid)
1778 {
1779 set_thread (ptid, 0);
1780 }
1781
1782 /* Change the remote current process. Which thread within the process
1783 ends up selected isn't important, as long as it is the same process
1784 as what INFERIOR_PTID points to.
1785
1786 This comes from that fact that there is no explicit notion of
1787 "selected process" in the protocol. The selected process for
1788 general operations is the process the selected general thread
1789 belongs to. */
1790
1791 static void
1792 set_general_process (void)
1793 {
1794 struct remote_state *rs = get_remote_state ();
1795
1796 /* If the remote can't handle multiple processes, don't bother. */
1797 if (!rs->extended || !remote_multi_process_p (rs))
1798 return;
1799
1800 /* We only need to change the remote current thread if it's pointing
1801 at some other process. */
1802 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1803 set_general_thread (inferior_ptid);
1804 }
1805
1806 \f
1807 /* Return nonzero if the thread PTID is still alive on the remote
1808 system. */
1809
1810 static int
1811 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1812 {
1813 struct remote_state *rs = get_remote_state ();
1814 char *p, *endp;
1815
1816 if (ptid_equal (ptid, magic_null_ptid))
1817 /* The main thread is always alive. */
1818 return 1;
1819
1820 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1821 /* The main thread is always alive. This can happen after a
1822 vAttach, if the remote side doesn't support
1823 multi-threading. */
1824 return 1;
1825
1826 p = rs->buf;
1827 endp = rs->buf + get_remote_packet_size ();
1828
1829 *p++ = 'T';
1830 write_ptid (p, endp, ptid);
1831
1832 putpkt (rs->buf);
1833 getpkt (&rs->buf, &rs->buf_size, 0);
1834 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1835 }
1836
1837 /* About these extended threadlist and threadinfo packets. They are
1838 variable length packets but, the fields within them are often fixed
1839 length. They are redundent enough to send over UDP as is the
1840 remote protocol in general. There is a matching unit test module
1841 in libstub. */
1842
1843 #define OPAQUETHREADBYTES 8
1844
1845 /* a 64 bit opaque identifier */
1846 typedef unsigned char threadref[OPAQUETHREADBYTES];
1847
1848 /* WARNING: This threadref data structure comes from the remote O.S.,
1849 libstub protocol encoding, and remote.c. It is not particularly
1850 changable. */
1851
1852 /* Right now, the internal structure is int. We want it to be bigger.
1853 Plan to fix this. */
1854
1855 typedef int gdb_threadref; /* Internal GDB thread reference. */
1856
1857 /* gdb_ext_thread_info is an internal GDB data structure which is
1858 equivalent to the reply of the remote threadinfo packet. */
1859
1860 struct gdb_ext_thread_info
1861 {
1862 threadref threadid; /* External form of thread reference. */
1863 int active; /* Has state interesting to GDB?
1864 regs, stack. */
1865 char display[256]; /* Brief state display, name,
1866 blocked/suspended. */
1867 char shortname[32]; /* To be used to name threads. */
1868 char more_display[256]; /* Long info, statistics, queue depth,
1869 whatever. */
1870 };
1871
1872 /* The volume of remote transfers can be limited by submitting
1873 a mask containing bits specifying the desired information.
1874 Use a union of these values as the 'selection' parameter to
1875 get_thread_info. FIXME: Make these TAG names more thread specific. */
1876
1877 #define TAG_THREADID 1
1878 #define TAG_EXISTS 2
1879 #define TAG_DISPLAY 4
1880 #define TAG_THREADNAME 8
1881 #define TAG_MOREDISPLAY 16
1882
1883 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1884
1885 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1886
1887 static char *unpack_nibble (char *buf, int *val);
1888
1889 static char *pack_nibble (char *buf, int nibble);
1890
1891 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1892
1893 static char *unpack_byte (char *buf, int *value);
1894
1895 static char *pack_int (char *buf, int value);
1896
1897 static char *unpack_int (char *buf, int *value);
1898
1899 static char *unpack_string (char *src, char *dest, int length);
1900
1901 static char *pack_threadid (char *pkt, threadref *id);
1902
1903 static char *unpack_threadid (char *inbuf, threadref *id);
1904
1905 void int_to_threadref (threadref *id, int value);
1906
1907 static int threadref_to_int (threadref *ref);
1908
1909 static void copy_threadref (threadref *dest, threadref *src);
1910
1911 static int threadmatch (threadref *dest, threadref *src);
1912
1913 static char *pack_threadinfo_request (char *pkt, int mode,
1914 threadref *id);
1915
1916 static int remote_unpack_thread_info_response (char *pkt,
1917 threadref *expectedref,
1918 struct gdb_ext_thread_info
1919 *info);
1920
1921
1922 static int remote_get_threadinfo (threadref *threadid,
1923 int fieldset, /*TAG mask */
1924 struct gdb_ext_thread_info *info);
1925
1926 static char *pack_threadlist_request (char *pkt, int startflag,
1927 int threadcount,
1928 threadref *nextthread);
1929
1930 static int parse_threadlist_response (char *pkt,
1931 int result_limit,
1932 threadref *original_echo,
1933 threadref *resultlist,
1934 int *doneflag);
1935
1936 static int remote_get_threadlist (int startflag,
1937 threadref *nextthread,
1938 int result_limit,
1939 int *done,
1940 int *result_count,
1941 threadref *threadlist);
1942
1943 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1944
1945 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1946 void *context, int looplimit);
1947
1948 static int remote_newthread_step (threadref *ref, void *context);
1949
1950
1951 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1952 buffer we're allowed to write to. Returns
1953 BUF+CHARACTERS_WRITTEN. */
1954
1955 static char *
1956 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1957 {
1958 int pid, tid;
1959 struct remote_state *rs = get_remote_state ();
1960
1961 if (remote_multi_process_p (rs))
1962 {
1963 pid = ptid_get_pid (ptid);
1964 if (pid < 0)
1965 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1966 else
1967 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1968 }
1969 tid = ptid_get_tid (ptid);
1970 if (tid < 0)
1971 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1972 else
1973 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1974
1975 return buf;
1976 }
1977
1978 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1979 passed the last parsed char. Returns null_ptid on error. */
1980
1981 static ptid_t
1982 read_ptid (char *buf, char **obuf)
1983 {
1984 char *p = buf;
1985 char *pp;
1986 ULONGEST pid = 0, tid = 0;
1987
1988 if (*p == 'p')
1989 {
1990 /* Multi-process ptid. */
1991 pp = unpack_varlen_hex (p + 1, &pid);
1992 if (*pp != '.')
1993 error (_("invalid remote ptid: %s"), p);
1994
1995 p = pp;
1996 pp = unpack_varlen_hex (p + 1, &tid);
1997 if (obuf)
1998 *obuf = pp;
1999 return ptid_build (pid, 0, tid);
2000 }
2001
2002 /* No multi-process. Just a tid. */
2003 pp = unpack_varlen_hex (p, &tid);
2004
2005 /* Since the stub is not sending a process id, then default to
2006 what's in inferior_ptid, unless it's null at this point. If so,
2007 then since there's no way to know the pid of the reported
2008 threads, use the magic number. */
2009 if (ptid_equal (inferior_ptid, null_ptid))
2010 pid = ptid_get_pid (magic_null_ptid);
2011 else
2012 pid = ptid_get_pid (inferior_ptid);
2013
2014 if (obuf)
2015 *obuf = pp;
2016 return ptid_build (pid, 0, tid);
2017 }
2018
2019 /* Encode 64 bits in 16 chars of hex. */
2020
2021 static const char hexchars[] = "0123456789abcdef";
2022
2023 static int
2024 ishex (int ch, int *val)
2025 {
2026 if ((ch >= 'a') && (ch <= 'f'))
2027 {
2028 *val = ch - 'a' + 10;
2029 return 1;
2030 }
2031 if ((ch >= 'A') && (ch <= 'F'))
2032 {
2033 *val = ch - 'A' + 10;
2034 return 1;
2035 }
2036 if ((ch >= '0') && (ch <= '9'))
2037 {
2038 *val = ch - '0';
2039 return 1;
2040 }
2041 return 0;
2042 }
2043
2044 static int
2045 stubhex (int ch)
2046 {
2047 if (ch >= 'a' && ch <= 'f')
2048 return ch - 'a' + 10;
2049 if (ch >= '0' && ch <= '9')
2050 return ch - '0';
2051 if (ch >= 'A' && ch <= 'F')
2052 return ch - 'A' + 10;
2053 return -1;
2054 }
2055
2056 static int
2057 stub_unpack_int (char *buff, int fieldlength)
2058 {
2059 int nibble;
2060 int retval = 0;
2061
2062 while (fieldlength)
2063 {
2064 nibble = stubhex (*buff++);
2065 retval |= nibble;
2066 fieldlength--;
2067 if (fieldlength)
2068 retval = retval << 4;
2069 }
2070 return retval;
2071 }
2072
2073 char *
2074 unpack_varlen_hex (char *buff, /* packet to parse */
2075 ULONGEST *result)
2076 {
2077 int nibble;
2078 ULONGEST retval = 0;
2079
2080 while (ishex (*buff, &nibble))
2081 {
2082 buff++;
2083 retval = retval << 4;
2084 retval |= nibble & 0x0f;
2085 }
2086 *result = retval;
2087 return buff;
2088 }
2089
2090 static char *
2091 unpack_nibble (char *buf, int *val)
2092 {
2093 *val = fromhex (*buf++);
2094 return buf;
2095 }
2096
2097 static char *
2098 pack_nibble (char *buf, int nibble)
2099 {
2100 *buf++ = hexchars[(nibble & 0x0f)];
2101 return buf;
2102 }
2103
2104 static char *
2105 pack_hex_byte (char *pkt, int byte)
2106 {
2107 *pkt++ = hexchars[(byte >> 4) & 0xf];
2108 *pkt++ = hexchars[(byte & 0xf)];
2109 return pkt;
2110 }
2111
2112 static char *
2113 unpack_byte (char *buf, int *value)
2114 {
2115 *value = stub_unpack_int (buf, 2);
2116 return buf + 2;
2117 }
2118
2119 static char *
2120 pack_int (char *buf, int value)
2121 {
2122 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2123 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2124 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2125 buf = pack_hex_byte (buf, (value & 0xff));
2126 return buf;
2127 }
2128
2129 static char *
2130 unpack_int (char *buf, int *value)
2131 {
2132 *value = stub_unpack_int (buf, 8);
2133 return buf + 8;
2134 }
2135
2136 #if 0 /* Currently unused, uncomment when needed. */
2137 static char *pack_string (char *pkt, char *string);
2138
2139 static char *
2140 pack_string (char *pkt, char *string)
2141 {
2142 char ch;
2143 int len;
2144
2145 len = strlen (string);
2146 if (len > 200)
2147 len = 200; /* Bigger than most GDB packets, junk??? */
2148 pkt = pack_hex_byte (pkt, len);
2149 while (len-- > 0)
2150 {
2151 ch = *string++;
2152 if ((ch == '\0') || (ch == '#'))
2153 ch = '*'; /* Protect encapsulation. */
2154 *pkt++ = ch;
2155 }
2156 return pkt;
2157 }
2158 #endif /* 0 (unused) */
2159
2160 static char *
2161 unpack_string (char *src, char *dest, int length)
2162 {
2163 while (length--)
2164 *dest++ = *src++;
2165 *dest = '\0';
2166 return src;
2167 }
2168
2169 static char *
2170 pack_threadid (char *pkt, threadref *id)
2171 {
2172 char *limit;
2173 unsigned char *altid;
2174
2175 altid = (unsigned char *) id;
2176 limit = pkt + BUF_THREAD_ID_SIZE;
2177 while (pkt < limit)
2178 pkt = pack_hex_byte (pkt, *altid++);
2179 return pkt;
2180 }
2181
2182
2183 static char *
2184 unpack_threadid (char *inbuf, threadref *id)
2185 {
2186 char *altref;
2187 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2188 int x, y;
2189
2190 altref = (char *) id;
2191
2192 while (inbuf < limit)
2193 {
2194 x = stubhex (*inbuf++);
2195 y = stubhex (*inbuf++);
2196 *altref++ = (x << 4) | y;
2197 }
2198 return inbuf;
2199 }
2200
2201 /* Externally, threadrefs are 64 bits but internally, they are still
2202 ints. This is due to a mismatch of specifications. We would like
2203 to use 64bit thread references internally. This is an adapter
2204 function. */
2205
2206 void
2207 int_to_threadref (threadref *id, int value)
2208 {
2209 unsigned char *scan;
2210
2211 scan = (unsigned char *) id;
2212 {
2213 int i = 4;
2214 while (i--)
2215 *scan++ = 0;
2216 }
2217 *scan++ = (value >> 24) & 0xff;
2218 *scan++ = (value >> 16) & 0xff;
2219 *scan++ = (value >> 8) & 0xff;
2220 *scan++ = (value & 0xff);
2221 }
2222
2223 static int
2224 threadref_to_int (threadref *ref)
2225 {
2226 int i, value = 0;
2227 unsigned char *scan;
2228
2229 scan = *ref;
2230 scan += 4;
2231 i = 4;
2232 while (i-- > 0)
2233 value = (value << 8) | ((*scan++) & 0xff);
2234 return value;
2235 }
2236
2237 static void
2238 copy_threadref (threadref *dest, threadref *src)
2239 {
2240 int i;
2241 unsigned char *csrc, *cdest;
2242
2243 csrc = (unsigned char *) src;
2244 cdest = (unsigned char *) dest;
2245 i = 8;
2246 while (i--)
2247 *cdest++ = *csrc++;
2248 }
2249
2250 static int
2251 threadmatch (threadref *dest, threadref *src)
2252 {
2253 /* Things are broken right now, so just assume we got a match. */
2254 #if 0
2255 unsigned char *srcp, *destp;
2256 int i, result;
2257 srcp = (char *) src;
2258 destp = (char *) dest;
2259
2260 result = 1;
2261 while (i-- > 0)
2262 result &= (*srcp++ == *destp++) ? 1 : 0;
2263 return result;
2264 #endif
2265 return 1;
2266 }
2267
2268 /*
2269 threadid:1, # always request threadid
2270 context_exists:2,
2271 display:4,
2272 unique_name:8,
2273 more_display:16
2274 */
2275
2276 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2277
2278 static char *
2279 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2280 {
2281 *pkt++ = 'q'; /* Info Query */
2282 *pkt++ = 'P'; /* process or thread info */
2283 pkt = pack_int (pkt, mode); /* mode */
2284 pkt = pack_threadid (pkt, id); /* threadid */
2285 *pkt = '\0'; /* terminate */
2286 return pkt;
2287 }
2288
2289 /* These values tag the fields in a thread info response packet. */
2290 /* Tagging the fields allows us to request specific fields and to
2291 add more fields as time goes by. */
2292
2293 #define TAG_THREADID 1 /* Echo the thread identifier. */
2294 #define TAG_EXISTS 2 /* Is this process defined enough to
2295 fetch registers and its stack? */
2296 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2297 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2298 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2299 the process. */
2300
2301 static int
2302 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2303 struct gdb_ext_thread_info *info)
2304 {
2305 struct remote_state *rs = get_remote_state ();
2306 int mask, length;
2307 int tag;
2308 threadref ref;
2309 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2310 int retval = 1;
2311
2312 /* info->threadid = 0; FIXME: implement zero_threadref. */
2313 info->active = 0;
2314 info->display[0] = '\0';
2315 info->shortname[0] = '\0';
2316 info->more_display[0] = '\0';
2317
2318 /* Assume the characters indicating the packet type have been
2319 stripped. */
2320 pkt = unpack_int (pkt, &mask); /* arg mask */
2321 pkt = unpack_threadid (pkt, &ref);
2322
2323 if (mask == 0)
2324 warning (_("Incomplete response to threadinfo request."));
2325 if (!threadmatch (&ref, expectedref))
2326 { /* This is an answer to a different request. */
2327 warning (_("ERROR RMT Thread info mismatch."));
2328 return 0;
2329 }
2330 copy_threadref (&info->threadid, &ref);
2331
2332 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2333
2334 /* Packets are terminated with nulls. */
2335 while ((pkt < limit) && mask && *pkt)
2336 {
2337 pkt = unpack_int (pkt, &tag); /* tag */
2338 pkt = unpack_byte (pkt, &length); /* length */
2339 if (!(tag & mask)) /* Tags out of synch with mask. */
2340 {
2341 warning (_("ERROR RMT: threadinfo tag mismatch."));
2342 retval = 0;
2343 break;
2344 }
2345 if (tag == TAG_THREADID)
2346 {
2347 if (length != 16)
2348 {
2349 warning (_("ERROR RMT: length of threadid is not 16."));
2350 retval = 0;
2351 break;
2352 }
2353 pkt = unpack_threadid (pkt, &ref);
2354 mask = mask & ~TAG_THREADID;
2355 continue;
2356 }
2357 if (tag == TAG_EXISTS)
2358 {
2359 info->active = stub_unpack_int (pkt, length);
2360 pkt += length;
2361 mask = mask & ~(TAG_EXISTS);
2362 if (length > 8)
2363 {
2364 warning (_("ERROR RMT: 'exists' length too long."));
2365 retval = 0;
2366 break;
2367 }
2368 continue;
2369 }
2370 if (tag == TAG_THREADNAME)
2371 {
2372 pkt = unpack_string (pkt, &info->shortname[0], length);
2373 mask = mask & ~TAG_THREADNAME;
2374 continue;
2375 }
2376 if (tag == TAG_DISPLAY)
2377 {
2378 pkt = unpack_string (pkt, &info->display[0], length);
2379 mask = mask & ~TAG_DISPLAY;
2380 continue;
2381 }
2382 if (tag == TAG_MOREDISPLAY)
2383 {
2384 pkt = unpack_string (pkt, &info->more_display[0], length);
2385 mask = mask & ~TAG_MOREDISPLAY;
2386 continue;
2387 }
2388 warning (_("ERROR RMT: unknown thread info tag."));
2389 break; /* Not a tag we know about. */
2390 }
2391 return retval;
2392 }
2393
2394 static int
2395 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2396 struct gdb_ext_thread_info *info)
2397 {
2398 struct remote_state *rs = get_remote_state ();
2399 int result;
2400
2401 pack_threadinfo_request (rs->buf, fieldset, threadid);
2402 putpkt (rs->buf);
2403 getpkt (&rs->buf, &rs->buf_size, 0);
2404
2405 if (rs->buf[0] == '\0')
2406 return 0;
2407
2408 result = remote_unpack_thread_info_response (rs->buf + 2,
2409 threadid, info);
2410 return result;
2411 }
2412
2413 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2414
2415 static char *
2416 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2417 threadref *nextthread)
2418 {
2419 *pkt++ = 'q'; /* info query packet */
2420 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2421 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2422 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2423 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2424 *pkt = '\0';
2425 return pkt;
2426 }
2427
2428 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2429
2430 static int
2431 parse_threadlist_response (char *pkt, int result_limit,
2432 threadref *original_echo, threadref *resultlist,
2433 int *doneflag)
2434 {
2435 struct remote_state *rs = get_remote_state ();
2436 char *limit;
2437 int count, resultcount, done;
2438
2439 resultcount = 0;
2440 /* Assume the 'q' and 'M chars have been stripped. */
2441 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2442 /* done parse past here */
2443 pkt = unpack_byte (pkt, &count); /* count field */
2444 pkt = unpack_nibble (pkt, &done);
2445 /* The first threadid is the argument threadid. */
2446 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2447 while ((count-- > 0) && (pkt < limit))
2448 {
2449 pkt = unpack_threadid (pkt, resultlist++);
2450 if (resultcount++ >= result_limit)
2451 break;
2452 }
2453 if (doneflag)
2454 *doneflag = done;
2455 return resultcount;
2456 }
2457
2458 static int
2459 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2460 int *done, int *result_count, threadref *threadlist)
2461 {
2462 struct remote_state *rs = get_remote_state ();
2463 static threadref echo_nextthread;
2464 int result = 1;
2465
2466 /* Trancate result limit to be smaller than the packet size. */
2467 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2468 >= get_remote_packet_size ())
2469 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2470
2471 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2472 putpkt (rs->buf);
2473 getpkt (&rs->buf, &rs->buf_size, 0);
2474
2475 if (*rs->buf == '\0')
2476 return 0;
2477 else
2478 *result_count =
2479 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2480 threadlist, done);
2481
2482 if (!threadmatch (&echo_nextthread, nextthread))
2483 {
2484 /* FIXME: This is a good reason to drop the packet. */
2485 /* Possably, there is a duplicate response. */
2486 /* Possabilities :
2487 retransmit immediatly - race conditions
2488 retransmit after timeout - yes
2489 exit
2490 wait for packet, then exit
2491 */
2492 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2493 return 0; /* I choose simply exiting. */
2494 }
2495 if (*result_count <= 0)
2496 {
2497 if (*done != 1)
2498 {
2499 warning (_("RMT ERROR : failed to get remote thread list."));
2500 result = 0;
2501 }
2502 return result; /* break; */
2503 }
2504 if (*result_count > result_limit)
2505 {
2506 *result_count = 0;
2507 warning (_("RMT ERROR: threadlist response longer than requested."));
2508 return 0;
2509 }
2510 return result;
2511 }
2512
2513 /* This is the interface between remote and threads, remotes upper
2514 interface. */
2515
2516 /* remote_find_new_threads retrieves the thread list and for each
2517 thread in the list, looks up the thread in GDB's internal list,
2518 adding the thread if it does not already exist. This involves
2519 getting partial thread lists from the remote target so, polling the
2520 quit_flag is required. */
2521
2522
2523 /* About this many threadisds fit in a packet. */
2524
2525 #define MAXTHREADLISTRESULTS 32
2526
2527 static int
2528 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2529 int looplimit)
2530 {
2531 int done, i, result_count;
2532 int startflag = 1;
2533 int result = 1;
2534 int loopcount = 0;
2535 static threadref nextthread;
2536 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2537
2538 done = 0;
2539 while (!done)
2540 {
2541 if (loopcount++ > looplimit)
2542 {
2543 result = 0;
2544 warning (_("Remote fetch threadlist -infinite loop-."));
2545 break;
2546 }
2547 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2548 &done, &result_count, resultthreadlist))
2549 {
2550 result = 0;
2551 break;
2552 }
2553 /* Clear for later iterations. */
2554 startflag = 0;
2555 /* Setup to resume next batch of thread references, set nextthread. */
2556 if (result_count >= 1)
2557 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2558 i = 0;
2559 while (result_count--)
2560 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2561 break;
2562 }
2563 return result;
2564 }
2565
2566 static int
2567 remote_newthread_step (threadref *ref, void *context)
2568 {
2569 int pid = ptid_get_pid (inferior_ptid);
2570 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2571
2572 if (!in_thread_list (ptid))
2573 add_thread (ptid);
2574 return 1; /* continue iterator */
2575 }
2576
2577 #define CRAZY_MAX_THREADS 1000
2578
2579 static ptid_t
2580 remote_current_thread (ptid_t oldpid)
2581 {
2582 struct remote_state *rs = get_remote_state ();
2583
2584 putpkt ("qC");
2585 getpkt (&rs->buf, &rs->buf_size, 0);
2586 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2587 return read_ptid (&rs->buf[2], NULL);
2588 else
2589 return oldpid;
2590 }
2591
2592 /* Find new threads for info threads command.
2593 * Original version, using John Metzler's thread protocol.
2594 */
2595
2596 static void
2597 remote_find_new_threads (void)
2598 {
2599 remote_threadlist_iterator (remote_newthread_step, 0,
2600 CRAZY_MAX_THREADS);
2601 }
2602
2603 #if defined(HAVE_LIBEXPAT)
2604
2605 typedef struct thread_item
2606 {
2607 ptid_t ptid;
2608 char *extra;
2609 int core;
2610 } thread_item_t;
2611 DEF_VEC_O(thread_item_t);
2612
2613 struct threads_parsing_context
2614 {
2615 VEC (thread_item_t) *items;
2616 };
2617
2618 static void
2619 start_thread (struct gdb_xml_parser *parser,
2620 const struct gdb_xml_element *element,
2621 void *user_data, VEC(gdb_xml_value_s) *attributes)
2622 {
2623 struct threads_parsing_context *data = user_data;
2624
2625 struct thread_item item;
2626 char *id;
2627 struct gdb_xml_value *attr;
2628
2629 id = xml_find_attribute (attributes, "id")->value;
2630 item.ptid = read_ptid (id, NULL);
2631
2632 attr = xml_find_attribute (attributes, "core");
2633 if (attr != NULL)
2634 item.core = *(ULONGEST *) attr->value;
2635 else
2636 item.core = -1;
2637
2638 item.extra = 0;
2639
2640 VEC_safe_push (thread_item_t, data->items, &item);
2641 }
2642
2643 static void
2644 end_thread (struct gdb_xml_parser *parser,
2645 const struct gdb_xml_element *element,
2646 void *user_data, const char *body_text)
2647 {
2648 struct threads_parsing_context *data = user_data;
2649
2650 if (body_text && *body_text)
2651 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2652 }
2653
2654 const struct gdb_xml_attribute thread_attributes[] = {
2655 { "id", GDB_XML_AF_NONE, NULL, NULL },
2656 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2657 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2658 };
2659
2660 const struct gdb_xml_element thread_children[] = {
2661 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2662 };
2663
2664 const struct gdb_xml_element threads_children[] = {
2665 { "thread", thread_attributes, thread_children,
2666 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2667 start_thread, end_thread },
2668 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2669 };
2670
2671 const struct gdb_xml_element threads_elements[] = {
2672 { "threads", NULL, threads_children,
2673 GDB_XML_EF_NONE, NULL, NULL },
2674 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2675 };
2676
2677 /* Discard the contents of the constructed thread info context. */
2678
2679 static void
2680 clear_threads_parsing_context (void *p)
2681 {
2682 struct threads_parsing_context *context = p;
2683 int i;
2684 struct thread_item *item;
2685
2686 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2687 xfree (item->extra);
2688
2689 VEC_free (thread_item_t, context->items);
2690 }
2691
2692 #endif
2693
2694 /*
2695 * Find all threads for info threads command.
2696 * Uses new thread protocol contributed by Cisco.
2697 * Falls back and attempts to use the older method (above)
2698 * if the target doesn't respond to the new method.
2699 */
2700
2701 static void
2702 remote_threads_info (struct target_ops *ops)
2703 {
2704 struct remote_state *rs = get_remote_state ();
2705 char *bufp;
2706 ptid_t new_thread;
2707
2708 if (remote_desc == 0) /* paranoia */
2709 error (_("Command can only be used when connected to the remote target."));
2710
2711 #if defined(HAVE_LIBEXPAT)
2712 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2713 {
2714 char *xml = target_read_stralloc (&current_target,
2715 TARGET_OBJECT_THREADS, NULL);
2716
2717 struct cleanup *back_to = make_cleanup (xfree, xml);
2718
2719 if (xml && *xml)
2720 {
2721 struct threads_parsing_context context;
2722
2723 context.items = NULL;
2724 make_cleanup (clear_threads_parsing_context, &context);
2725
2726 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2727 threads_elements, xml, &context) == 0)
2728 {
2729 int i;
2730 struct thread_item *item;
2731
2732 for (i = 0;
2733 VEC_iterate (thread_item_t, context.items, i, item);
2734 ++i)
2735 {
2736 if (!ptid_equal (item->ptid, null_ptid))
2737 {
2738 struct private_thread_info *info;
2739 /* In non-stop mode, we assume new found threads
2740 are running until proven otherwise with a
2741 stop reply. In all-stop, we can only get
2742 here if all threads are stopped. */
2743 int running = non_stop ? 1 : 0;
2744
2745 remote_notice_new_inferior (item->ptid, running);
2746
2747 info = demand_private_info (item->ptid);
2748 info->core = item->core;
2749 info->extra = item->extra;
2750 item->extra = NULL;
2751 }
2752 }
2753 }
2754 }
2755
2756 do_cleanups (back_to);
2757 return;
2758 }
2759 #endif
2760
2761 if (use_threadinfo_query)
2762 {
2763 putpkt ("qfThreadInfo");
2764 getpkt (&rs->buf, &rs->buf_size, 0);
2765 bufp = rs->buf;
2766 if (bufp[0] != '\0') /* q packet recognized */
2767 {
2768 while (*bufp++ == 'm') /* reply contains one or more TID */
2769 {
2770 do
2771 {
2772 new_thread = read_ptid (bufp, &bufp);
2773 if (!ptid_equal (new_thread, null_ptid))
2774 {
2775 /* In non-stop mode, we assume new found threads
2776 are running until proven otherwise with a
2777 stop reply. In all-stop, we can only get
2778 here if all threads are stopped. */
2779 int running = non_stop ? 1 : 0;
2780
2781 remote_notice_new_inferior (new_thread, running);
2782 }
2783 }
2784 while (*bufp++ == ','); /* comma-separated list */
2785 putpkt ("qsThreadInfo");
2786 getpkt (&rs->buf, &rs->buf_size, 0);
2787 bufp = rs->buf;
2788 }
2789 return; /* done */
2790 }
2791 }
2792
2793 /* Only qfThreadInfo is supported in non-stop mode. */
2794 if (non_stop)
2795 return;
2796
2797 /* Else fall back to old method based on jmetzler protocol. */
2798 use_threadinfo_query = 0;
2799 remote_find_new_threads ();
2800 return;
2801 }
2802
2803 /*
2804 * Collect a descriptive string about the given thread.
2805 * The target may say anything it wants to about the thread
2806 * (typically info about its blocked / runnable state, name, etc.).
2807 * This string will appear in the info threads display.
2808 *
2809 * Optional: targets are not required to implement this function.
2810 */
2811
2812 static char *
2813 remote_threads_extra_info (struct thread_info *tp)
2814 {
2815 struct remote_state *rs = get_remote_state ();
2816 int result;
2817 int set;
2818 threadref id;
2819 struct gdb_ext_thread_info threadinfo;
2820 static char display_buf[100]; /* arbitrary... */
2821 int n = 0; /* position in display_buf */
2822
2823 if (remote_desc == 0) /* paranoia */
2824 internal_error (__FILE__, __LINE__,
2825 _("remote_threads_extra_info"));
2826
2827 if (ptid_equal (tp->ptid, magic_null_ptid)
2828 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2829 /* This is the main thread which was added by GDB. The remote
2830 server doesn't know about it. */
2831 return NULL;
2832
2833 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2834 {
2835 struct thread_info *info = find_thread_ptid (tp->ptid);
2836
2837 if (info && info->private)
2838 return info->private->extra;
2839 else
2840 return NULL;
2841 }
2842
2843 if (use_threadextra_query)
2844 {
2845 char *b = rs->buf;
2846 char *endb = rs->buf + get_remote_packet_size ();
2847
2848 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2849 b += strlen (b);
2850 write_ptid (b, endb, tp->ptid);
2851
2852 putpkt (rs->buf);
2853 getpkt (&rs->buf, &rs->buf_size, 0);
2854 if (rs->buf[0] != 0)
2855 {
2856 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2857 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2858 display_buf [result] = '\0';
2859 return display_buf;
2860 }
2861 }
2862
2863 /* If the above query fails, fall back to the old method. */
2864 use_threadextra_query = 0;
2865 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2866 | TAG_MOREDISPLAY | TAG_DISPLAY;
2867 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2868 if (remote_get_threadinfo (&id, set, &threadinfo))
2869 if (threadinfo.active)
2870 {
2871 if (*threadinfo.shortname)
2872 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2873 " Name: %s,", threadinfo.shortname);
2874 if (*threadinfo.display)
2875 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2876 " State: %s,", threadinfo.display);
2877 if (*threadinfo.more_display)
2878 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2879 " Priority: %s", threadinfo.more_display);
2880
2881 if (n > 0)
2882 {
2883 /* For purely cosmetic reasons, clear up trailing commas. */
2884 if (',' == display_buf[n-1])
2885 display_buf[n-1] = ' ';
2886 return display_buf;
2887 }
2888 }
2889 return NULL;
2890 }
2891 \f
2892
2893 static int
2894 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2895 struct static_tracepoint_marker *marker)
2896 {
2897 struct remote_state *rs = get_remote_state ();
2898 char *p = rs->buf;
2899
2900 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
2901 p += strlen (p);
2902 p += hexnumstr (p, addr);
2903 putpkt (rs->buf);
2904 getpkt (&rs->buf, &rs->buf_size, 0);
2905 p = rs->buf;
2906
2907 if (*p == 'E')
2908 error (_("Remote failure reply: %s"), p);
2909
2910 if (*p++ == 'm')
2911 {
2912 parse_static_tracepoint_marker_definition (p, &p, marker);
2913 return 1;
2914 }
2915
2916 return 0;
2917 }
2918
2919 static VEC(static_tracepoint_marker_p) *
2920 remote_static_tracepoint_markers_by_strid (const char *strid)
2921 {
2922 struct remote_state *rs = get_remote_state ();
2923 VEC(static_tracepoint_marker_p) *markers = NULL;
2924 struct static_tracepoint_marker *marker = NULL;
2925 struct cleanup *old_chain;
2926 char *p;
2927
2928 /* Ask for a first packet of static tracepoint marker
2929 definition. */
2930 putpkt ("qTfSTM");
2931 getpkt (&rs->buf, &rs->buf_size, 0);
2932 p = rs->buf;
2933 if (*p == 'E')
2934 error (_("Remote failure reply: %s"), p);
2935
2936 old_chain = make_cleanup (free_current_marker, &marker);
2937
2938 while (*p++ == 'm')
2939 {
2940 if (marker == NULL)
2941 marker = XCNEW (struct static_tracepoint_marker);
2942
2943 do
2944 {
2945 parse_static_tracepoint_marker_definition (p, &p, marker);
2946
2947 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2948 {
2949 VEC_safe_push (static_tracepoint_marker_p,
2950 markers, marker);
2951 marker = NULL;
2952 }
2953 else
2954 {
2955 release_static_tracepoint_marker (marker);
2956 memset (marker, 0, sizeof (*marker));
2957 }
2958 }
2959 while (*p++ == ','); /* comma-separated list */
2960 /* Ask for another packet of static tracepoint definition. */
2961 putpkt ("qTsSTM");
2962 getpkt (&rs->buf, &rs->buf_size, 0);
2963 p = rs->buf;
2964 }
2965
2966 do_cleanups (old_chain);
2967 return markers;
2968 }
2969
2970 \f
2971 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2972
2973 static ptid_t
2974 remote_get_ada_task_ptid (long lwp, long thread)
2975 {
2976 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2977 }
2978 \f
2979
2980 /* Restart the remote side; this is an extended protocol operation. */
2981
2982 static void
2983 extended_remote_restart (void)
2984 {
2985 struct remote_state *rs = get_remote_state ();
2986
2987 /* Send the restart command; for reasons I don't understand the
2988 remote side really expects a number after the "R". */
2989 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2990 putpkt (rs->buf);
2991
2992 remote_fileio_reset ();
2993 }
2994 \f
2995 /* Clean up connection to a remote debugger. */
2996
2997 static void
2998 remote_close (int quitting)
2999 {
3000 if (remote_desc == NULL)
3001 return; /* already closed */
3002
3003 /* Make sure we leave stdin registered in the event loop, and we
3004 don't leave the async SIGINT signal handler installed. */
3005 remote_terminal_ours ();
3006
3007 serial_close (remote_desc);
3008 remote_desc = NULL;
3009
3010 /* We don't have a connection to the remote stub anymore. Get rid
3011 of all the inferiors and their threads we were controlling.
3012 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3013 will be unable to find the thread corresponding to (pid, 0, 0). */
3014 inferior_ptid = null_ptid;
3015 discard_all_inferiors ();
3016
3017 /* We're no longer interested in any of these events. */
3018 discard_pending_stop_replies (-1);
3019
3020 if (remote_async_inferior_event_token)
3021 delete_async_event_handler (&remote_async_inferior_event_token);
3022 if (remote_async_get_pending_events_token)
3023 delete_async_event_handler (&remote_async_get_pending_events_token);
3024 }
3025
3026 /* Query the remote side for the text, data and bss offsets. */
3027
3028 static void
3029 get_offsets (void)
3030 {
3031 struct remote_state *rs = get_remote_state ();
3032 char *buf;
3033 char *ptr;
3034 int lose, num_segments = 0, do_sections, do_segments;
3035 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3036 struct section_offsets *offs;
3037 struct symfile_segment_data *data;
3038
3039 if (symfile_objfile == NULL)
3040 return;
3041
3042 putpkt ("qOffsets");
3043 getpkt (&rs->buf, &rs->buf_size, 0);
3044 buf = rs->buf;
3045
3046 if (buf[0] == '\000')
3047 return; /* Return silently. Stub doesn't support
3048 this command. */
3049 if (buf[0] == 'E')
3050 {
3051 warning (_("Remote failure reply: %s"), buf);
3052 return;
3053 }
3054
3055 /* Pick up each field in turn. This used to be done with scanf, but
3056 scanf will make trouble if CORE_ADDR size doesn't match
3057 conversion directives correctly. The following code will work
3058 with any size of CORE_ADDR. */
3059 text_addr = data_addr = bss_addr = 0;
3060 ptr = buf;
3061 lose = 0;
3062
3063 if (strncmp (ptr, "Text=", 5) == 0)
3064 {
3065 ptr += 5;
3066 /* Don't use strtol, could lose on big values. */
3067 while (*ptr && *ptr != ';')
3068 text_addr = (text_addr << 4) + fromhex (*ptr++);
3069
3070 if (strncmp (ptr, ";Data=", 6) == 0)
3071 {
3072 ptr += 6;
3073 while (*ptr && *ptr != ';')
3074 data_addr = (data_addr << 4) + fromhex (*ptr++);
3075 }
3076 else
3077 lose = 1;
3078
3079 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3080 {
3081 ptr += 5;
3082 while (*ptr && *ptr != ';')
3083 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3084
3085 if (bss_addr != data_addr)
3086 warning (_("Target reported unsupported offsets: %s"), buf);
3087 }
3088 else
3089 lose = 1;
3090 }
3091 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3092 {
3093 ptr += 8;
3094 /* Don't use strtol, could lose on big values. */
3095 while (*ptr && *ptr != ';')
3096 text_addr = (text_addr << 4) + fromhex (*ptr++);
3097 num_segments = 1;
3098
3099 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3100 {
3101 ptr += 9;
3102 while (*ptr && *ptr != ';')
3103 data_addr = (data_addr << 4) + fromhex (*ptr++);
3104 num_segments++;
3105 }
3106 }
3107 else
3108 lose = 1;
3109
3110 if (lose)
3111 error (_("Malformed response to offset query, %s"), buf);
3112 else if (*ptr != '\0')
3113 warning (_("Target reported unsupported offsets: %s"), buf);
3114
3115 offs = ((struct section_offsets *)
3116 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3117 memcpy (offs, symfile_objfile->section_offsets,
3118 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3119
3120 data = get_symfile_segment_data (symfile_objfile->obfd);
3121 do_segments = (data != NULL);
3122 do_sections = num_segments == 0;
3123
3124 if (num_segments > 0)
3125 {
3126 segments[0] = text_addr;
3127 segments[1] = data_addr;
3128 }
3129 /* If we have two segments, we can still try to relocate everything
3130 by assuming that the .text and .data offsets apply to the whole
3131 text and data segments. Convert the offsets given in the packet
3132 to base addresses for symfile_map_offsets_to_segments. */
3133 else if (data && data->num_segments == 2)
3134 {
3135 segments[0] = data->segment_bases[0] + text_addr;
3136 segments[1] = data->segment_bases[1] + data_addr;
3137 num_segments = 2;
3138 }
3139 /* If the object file has only one segment, assume that it is text
3140 rather than data; main programs with no writable data are rare,
3141 but programs with no code are useless. Of course the code might
3142 have ended up in the data segment... to detect that we would need
3143 the permissions here. */
3144 else if (data && data->num_segments == 1)
3145 {
3146 segments[0] = data->segment_bases[0] + text_addr;
3147 num_segments = 1;
3148 }
3149 /* There's no way to relocate by segment. */
3150 else
3151 do_segments = 0;
3152
3153 if (do_segments)
3154 {
3155 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3156 offs, num_segments, segments);
3157
3158 if (ret == 0 && !do_sections)
3159 error (_("Can not handle qOffsets TextSeg "
3160 "response with this symbol file"));
3161
3162 if (ret > 0)
3163 do_sections = 0;
3164 }
3165
3166 if (data)
3167 free_symfile_segment_data (data);
3168
3169 if (do_sections)
3170 {
3171 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3172
3173 /* This is a temporary kludge to force data and bss to use the
3174 same offsets because that's what nlmconv does now. The real
3175 solution requires changes to the stub and remote.c that I
3176 don't have time to do right now. */
3177
3178 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3179 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3180 }
3181
3182 objfile_relocate (symfile_objfile, offs);
3183 }
3184
3185 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3186 threads we know are stopped already. This is used during the
3187 initial remote connection in non-stop mode --- threads that are
3188 reported as already being stopped are left stopped. */
3189
3190 static int
3191 set_stop_requested_callback (struct thread_info *thread, void *data)
3192 {
3193 /* If we have a stop reply for this thread, it must be stopped. */
3194 if (peek_stop_reply (thread->ptid))
3195 set_stop_requested (thread->ptid, 1);
3196
3197 return 0;
3198 }
3199
3200 /* Send interrupt_sequence to remote target. */
3201 static void
3202 send_interrupt_sequence (void)
3203 {
3204 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3205 serial_write (remote_desc, "\x03", 1);
3206 else if (interrupt_sequence_mode == interrupt_sequence_break)
3207 serial_send_break (remote_desc);
3208 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3209 {
3210 serial_send_break (remote_desc);
3211 serial_write (remote_desc, "g", 1);
3212 }
3213 else
3214 internal_error (__FILE__, __LINE__,
3215 _("Invalid value for interrupt_sequence_mode: %s."),
3216 interrupt_sequence_mode);
3217 }
3218
3219 /* Query the remote target for which is the current thread/process,
3220 add it to our tables, and update INFERIOR_PTID. The caller is
3221 responsible for setting the state such that the remote end is ready
3222 to return the current thread. */
3223
3224 static void
3225 add_current_inferior_and_thread (void)
3226 {
3227 struct remote_state *rs = get_remote_state ();
3228 int fake_pid_p = 0;
3229 ptid_t ptid;
3230
3231 inferior_ptid = null_ptid;
3232
3233 /* Now, if we have thread information, update inferior_ptid. */
3234 ptid = remote_current_thread (inferior_ptid);
3235 if (!ptid_equal (ptid, null_ptid))
3236 {
3237 if (!remote_multi_process_p (rs))
3238 fake_pid_p = 1;
3239
3240 inferior_ptid = ptid;
3241 }
3242 else
3243 {
3244 /* Without this, some commands which require an active target
3245 (such as kill) won't work. This variable serves (at least)
3246 double duty as both the pid of the target process (if it has
3247 such), and as a flag indicating that a target is active. */
3248 inferior_ptid = magic_null_ptid;
3249 fake_pid_p = 1;
3250 }
3251
3252 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3253
3254 /* Add the main thread. */
3255 add_thread_silent (inferior_ptid);
3256 }
3257
3258 static void
3259 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3260 {
3261 struct remote_state *rs = get_remote_state ();
3262 struct packet_config *noack_config;
3263 char *wait_status = NULL;
3264
3265 immediate_quit++; /* Allow user to interrupt it. */
3266
3267 if (interrupt_on_connect)
3268 send_interrupt_sequence ();
3269
3270 /* Ack any packet which the remote side has already sent. */
3271 serial_write (remote_desc, "+", 1);
3272
3273 /* Signal other parts that we're going through the initial setup,
3274 and so things may not be stable yet. */
3275 rs->starting_up = 1;
3276
3277 /* The first packet we send to the target is the optional "supported
3278 packets" request. If the target can answer this, it will tell us
3279 which later probes to skip. */
3280 remote_query_supported ();
3281
3282 /* If the stub wants to get a QAllow, compose one and send it. */
3283 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3284 remote_set_permissions ();
3285
3286 /* Next, we possibly activate noack mode.
3287
3288 If the QStartNoAckMode packet configuration is set to AUTO,
3289 enable noack mode if the stub reported a wish for it with
3290 qSupported.
3291
3292 If set to TRUE, then enable noack mode even if the stub didn't
3293 report it in qSupported. If the stub doesn't reply OK, the
3294 session ends with an error.
3295
3296 If FALSE, then don't activate noack mode, regardless of what the
3297 stub claimed should be the default with qSupported. */
3298
3299 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3300
3301 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3302 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3303 && noack_config->support == PACKET_ENABLE))
3304 {
3305 putpkt ("QStartNoAckMode");
3306 getpkt (&rs->buf, &rs->buf_size, 0);
3307 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3308 rs->noack_mode = 1;
3309 }
3310
3311 if (extended_p)
3312 {
3313 /* Tell the remote that we are using the extended protocol. */
3314 putpkt ("!");
3315 getpkt (&rs->buf, &rs->buf_size, 0);
3316 }
3317
3318 /* Let the target know which signals it is allowed to pass down to
3319 the program. */
3320 update_signals_program_target ();
3321
3322 /* Next, if the target can specify a description, read it. We do
3323 this before anything involving memory or registers. */
3324 target_find_description ();
3325
3326 /* Next, now that we know something about the target, update the
3327 address spaces in the program spaces. */
3328 update_address_spaces ();
3329
3330 /* On OSs where the list of libraries is global to all
3331 processes, we fetch them early. */
3332 if (gdbarch_has_global_solist (target_gdbarch))
3333 solib_add (NULL, from_tty, target, auto_solib_add);
3334
3335 if (non_stop)
3336 {
3337 if (!rs->non_stop_aware)
3338 error (_("Non-stop mode requested, but remote "
3339 "does not support non-stop"));
3340
3341 putpkt ("QNonStop:1");
3342 getpkt (&rs->buf, &rs->buf_size, 0);
3343
3344 if (strcmp (rs->buf, "OK") != 0)
3345 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3346
3347 /* Find about threads and processes the stub is already
3348 controlling. We default to adding them in the running state.
3349 The '?' query below will then tell us about which threads are
3350 stopped. */
3351 remote_threads_info (target);
3352 }
3353 else if (rs->non_stop_aware)
3354 {
3355 /* Don't assume that the stub can operate in all-stop mode.
3356 Request it explicitely. */
3357 putpkt ("QNonStop:0");
3358 getpkt (&rs->buf, &rs->buf_size, 0);
3359
3360 if (strcmp (rs->buf, "OK") != 0)
3361 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3362 }
3363
3364 /* Check whether the target is running now. */
3365 putpkt ("?");
3366 getpkt (&rs->buf, &rs->buf_size, 0);
3367
3368 if (!non_stop)
3369 {
3370 ptid_t ptid;
3371 int fake_pid_p = 0;
3372 struct inferior *inf;
3373
3374 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3375 {
3376 if (!extended_p)
3377 error (_("The target is not running (try extended-remote?)"));
3378
3379 /* We're connected, but not running. Drop out before we
3380 call start_remote. */
3381 rs->starting_up = 0;
3382 return;
3383 }
3384 else
3385 {
3386 /* Save the reply for later. */
3387 wait_status = alloca (strlen (rs->buf) + 1);
3388 strcpy (wait_status, rs->buf);
3389 }
3390
3391 /* Let the stub know that we want it to return the thread. */
3392 set_continue_thread (minus_one_ptid);
3393
3394 add_current_inferior_and_thread ();
3395
3396 /* init_wait_for_inferior should be called before get_offsets in order
3397 to manage `inserted' flag in bp loc in a correct state.
3398 breakpoint_init_inferior, called from init_wait_for_inferior, set
3399 `inserted' flag to 0, while before breakpoint_re_set, called from
3400 start_remote, set `inserted' flag to 1. In the initialization of
3401 inferior, breakpoint_init_inferior should be called first, and then
3402 breakpoint_re_set can be called. If this order is broken, state of
3403 `inserted' flag is wrong, and cause some problems on breakpoint
3404 manipulation. */
3405 init_wait_for_inferior ();
3406
3407 get_offsets (); /* Get text, data & bss offsets. */
3408
3409 /* If we could not find a description using qXfer, and we know
3410 how to do it some other way, try again. This is not
3411 supported for non-stop; it could be, but it is tricky if
3412 there are no stopped threads when we connect. */
3413 if (remote_read_description_p (target)
3414 && gdbarch_target_desc (target_gdbarch) == NULL)
3415 {
3416 target_clear_description ();
3417 target_find_description ();
3418 }
3419
3420 /* Use the previously fetched status. */
3421 gdb_assert (wait_status != NULL);
3422 strcpy (rs->buf, wait_status);
3423 rs->cached_wait_status = 1;
3424
3425 immediate_quit--;
3426 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3427 }
3428 else
3429 {
3430 /* Clear WFI global state. Do this before finding about new
3431 threads and inferiors, and setting the current inferior.
3432 Otherwise we would clear the proceed status of the current
3433 inferior when we want its stop_soon state to be preserved
3434 (see notice_new_inferior). */
3435 init_wait_for_inferior ();
3436
3437 /* In non-stop, we will either get an "OK", meaning that there
3438 are no stopped threads at this time; or, a regular stop
3439 reply. In the latter case, there may be more than one thread
3440 stopped --- we pull them all out using the vStopped
3441 mechanism. */
3442 if (strcmp (rs->buf, "OK") != 0)
3443 {
3444 struct stop_reply *stop_reply;
3445 struct cleanup *old_chain;
3446
3447 stop_reply = stop_reply_xmalloc ();
3448 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3449
3450 remote_parse_stop_reply (rs->buf, stop_reply);
3451 discard_cleanups (old_chain);
3452
3453 /* get_pending_stop_replies acks this one, and gets the rest
3454 out. */
3455 pending_stop_reply = stop_reply;
3456 remote_get_pending_stop_replies ();
3457
3458 /* Make sure that threads that were stopped remain
3459 stopped. */
3460 iterate_over_threads (set_stop_requested_callback, NULL);
3461 }
3462
3463 if (target_can_async_p ())
3464 target_async (inferior_event_handler, 0);
3465
3466 if (thread_count () == 0)
3467 {
3468 if (!extended_p)
3469 error (_("The target is not running (try extended-remote?)"));
3470
3471 /* We're connected, but not running. Drop out before we
3472 call start_remote. */
3473 rs->starting_up = 0;
3474 return;
3475 }
3476
3477 /* Let the stub know that we want it to return the thread. */
3478
3479 /* Force the stub to choose a thread. */
3480 set_general_thread (null_ptid);
3481
3482 /* Query it. */
3483 inferior_ptid = remote_current_thread (minus_one_ptid);
3484 if (ptid_equal (inferior_ptid, minus_one_ptid))
3485 error (_("remote didn't report the current thread in non-stop mode"));
3486
3487 get_offsets (); /* Get text, data & bss offsets. */
3488
3489 /* In non-stop mode, any cached wait status will be stored in
3490 the stop reply queue. */
3491 gdb_assert (wait_status == NULL);
3492
3493 /* Report all signals during attach/startup. */
3494 remote_pass_signals (0, NULL);
3495 }
3496
3497 /* If we connected to a live target, do some additional setup. */
3498 if (target_has_execution)
3499 {
3500 if (exec_bfd) /* No use without an exec file. */
3501 remote_check_symbols (symfile_objfile);
3502 }
3503
3504 /* Possibly the target has been engaged in a trace run started
3505 previously; find out where things are at. */
3506 if (remote_get_trace_status (current_trace_status ()) != -1)
3507 {
3508 struct uploaded_tp *uploaded_tps = NULL;
3509 struct uploaded_tsv *uploaded_tsvs = NULL;
3510
3511 if (current_trace_status ()->running)
3512 printf_filtered (_("Trace is already running on the target.\n"));
3513
3514 /* Get trace state variables first, they may be checked when
3515 parsing uploaded commands. */
3516
3517 remote_upload_trace_state_variables (&uploaded_tsvs);
3518
3519 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3520
3521 remote_upload_tracepoints (&uploaded_tps);
3522
3523 merge_uploaded_tracepoints (&uploaded_tps);
3524 }
3525
3526 /* The thread and inferior lists are now synchronized with the
3527 target, our symbols have been relocated, and we're merged the
3528 target's tracepoints with ours. We're done with basic start
3529 up. */
3530 rs->starting_up = 0;
3531
3532 /* If breakpoints are global, insert them now. */
3533 if (gdbarch_has_global_breakpoints (target_gdbarch)
3534 && breakpoints_always_inserted_mode ())
3535 insert_breakpoints ();
3536 }
3537
3538 /* Open a connection to a remote debugger.
3539 NAME is the filename used for communication. */
3540
3541 static void
3542 remote_open (char *name, int from_tty)
3543 {
3544 remote_open_1 (name, from_tty, &remote_ops, 0);
3545 }
3546
3547 /* Open a connection to a remote debugger using the extended
3548 remote gdb protocol. NAME is the filename used for communication. */
3549
3550 static void
3551 extended_remote_open (char *name, int from_tty)
3552 {
3553 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3554 }
3555
3556 /* Generic code for opening a connection to a remote target. */
3557
3558 static void
3559 init_all_packet_configs (void)
3560 {
3561 int i;
3562
3563 for (i = 0; i < PACKET_MAX; i++)
3564 update_packet_config (&remote_protocol_packets[i]);
3565 }
3566
3567 /* Symbol look-up. */
3568
3569 static void
3570 remote_check_symbols (struct objfile *objfile)
3571 {
3572 struct remote_state *rs = get_remote_state ();
3573 char *msg, *reply, *tmp;
3574 struct minimal_symbol *sym;
3575 int end;
3576
3577 /* The remote side has no concept of inferiors that aren't running
3578 yet, it only knows about running processes. If we're connected
3579 but our current inferior is not running, we should not invite the
3580 remote target to request symbol lookups related to its
3581 (unrelated) current process. */
3582 if (!target_has_execution)
3583 return;
3584
3585 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3586 return;
3587
3588 /* Make sure the remote is pointing at the right process. Note
3589 there's no way to select "no process". */
3590 set_general_process ();
3591
3592 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3593 because we need both at the same time. */
3594 msg = alloca (get_remote_packet_size ());
3595
3596 /* Invite target to request symbol lookups. */
3597
3598 putpkt ("qSymbol::");
3599 getpkt (&rs->buf, &rs->buf_size, 0);
3600 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3601 reply = rs->buf;
3602
3603 while (strncmp (reply, "qSymbol:", 8) == 0)
3604 {
3605 tmp = &reply[8];
3606 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3607 msg[end] = '\0';
3608 sym = lookup_minimal_symbol (msg, NULL, NULL);
3609 if (sym == NULL)
3610 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3611 else
3612 {
3613 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3614 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3615
3616 /* If this is a function address, return the start of code
3617 instead of any data function descriptor. */
3618 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3619 sym_addr,
3620 &current_target);
3621
3622 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3623 phex_nz (sym_addr, addr_size), &reply[8]);
3624 }
3625
3626 putpkt (msg);
3627 getpkt (&rs->buf, &rs->buf_size, 0);
3628 reply = rs->buf;
3629 }
3630 }
3631
3632 static struct serial *
3633 remote_serial_open (char *name)
3634 {
3635 static int udp_warning = 0;
3636
3637 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3638 of in ser-tcp.c, because it is the remote protocol assuming that the
3639 serial connection is reliable and not the serial connection promising
3640 to be. */
3641 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3642 {
3643 warning (_("The remote protocol may be unreliable over UDP.\n"
3644 "Some events may be lost, rendering further debugging "
3645 "impossible."));
3646 udp_warning = 1;
3647 }
3648
3649 return serial_open (name);
3650 }
3651
3652 /* Inform the target of our permission settings. The permission flags
3653 work without this, but if the target knows the settings, it can do
3654 a couple things. First, it can add its own check, to catch cases
3655 that somehow manage to get by the permissions checks in target
3656 methods. Second, if the target is wired to disallow particular
3657 settings (for instance, a system in the field that is not set up to
3658 be able to stop at a breakpoint), it can object to any unavailable
3659 permissions. */
3660
3661 void
3662 remote_set_permissions (void)
3663 {
3664 struct remote_state *rs = get_remote_state ();
3665
3666 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
3667 "WriteReg:%x;WriteMem:%x;"
3668 "InsertBreak:%x;InsertTrace:%x;"
3669 "InsertFastTrace:%x;Stop:%x",
3670 may_write_registers, may_write_memory,
3671 may_insert_breakpoints, may_insert_tracepoints,
3672 may_insert_fast_tracepoints, may_stop);
3673 putpkt (rs->buf);
3674 getpkt (&rs->buf, &rs->buf_size, 0);
3675
3676 /* If the target didn't like the packet, warn the user. Do not try
3677 to undo the user's settings, that would just be maddening. */
3678 if (strcmp (rs->buf, "OK") != 0)
3679 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3680 }
3681
3682 /* This type describes each known response to the qSupported
3683 packet. */
3684 struct protocol_feature
3685 {
3686 /* The name of this protocol feature. */
3687 const char *name;
3688
3689 /* The default for this protocol feature. */
3690 enum packet_support default_support;
3691
3692 /* The function to call when this feature is reported, or after
3693 qSupported processing if the feature is not supported.
3694 The first argument points to this structure. The second
3695 argument indicates whether the packet requested support be
3696 enabled, disabled, or probed (or the default, if this function
3697 is being called at the end of processing and this feature was
3698 not reported). The third argument may be NULL; if not NULL, it
3699 is a NUL-terminated string taken from the packet following
3700 this feature's name and an equals sign. */
3701 void (*func) (const struct protocol_feature *, enum packet_support,
3702 const char *);
3703
3704 /* The corresponding packet for this feature. Only used if
3705 FUNC is remote_supported_packet. */
3706 int packet;
3707 };
3708
3709 static void
3710 remote_supported_packet (const struct protocol_feature *feature,
3711 enum packet_support support,
3712 const char *argument)
3713 {
3714 if (argument)
3715 {
3716 warning (_("Remote qSupported response supplied an unexpected value for"
3717 " \"%s\"."), feature->name);
3718 return;
3719 }
3720
3721 if (remote_protocol_packets[feature->packet].support
3722 == PACKET_SUPPORT_UNKNOWN)
3723 remote_protocol_packets[feature->packet].support = support;
3724 }
3725
3726 static void
3727 remote_packet_size (const struct protocol_feature *feature,
3728 enum packet_support support, const char *value)
3729 {
3730 struct remote_state *rs = get_remote_state ();
3731
3732 int packet_size;
3733 char *value_end;
3734
3735 if (support != PACKET_ENABLE)
3736 return;
3737
3738 if (value == NULL || *value == '\0')
3739 {
3740 warning (_("Remote target reported \"%s\" without a size."),
3741 feature->name);
3742 return;
3743 }
3744
3745 errno = 0;
3746 packet_size = strtol (value, &value_end, 16);
3747 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3748 {
3749 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3750 feature->name, value);
3751 return;
3752 }
3753
3754 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3755 {
3756 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3757 packet_size, MAX_REMOTE_PACKET_SIZE);
3758 packet_size = MAX_REMOTE_PACKET_SIZE;
3759 }
3760
3761 /* Record the new maximum packet size. */
3762 rs->explicit_packet_size = packet_size;
3763 }
3764
3765 static void
3766 remote_multi_process_feature (const struct protocol_feature *feature,
3767 enum packet_support support, const char *value)
3768 {
3769 struct remote_state *rs = get_remote_state ();
3770
3771 rs->multi_process_aware = (support == PACKET_ENABLE);
3772 }
3773
3774 static void
3775 remote_non_stop_feature (const struct protocol_feature *feature,
3776 enum packet_support support, const char *value)
3777 {
3778 struct remote_state *rs = get_remote_state ();
3779
3780 rs->non_stop_aware = (support == PACKET_ENABLE);
3781 }
3782
3783 static void
3784 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3785 enum packet_support support,
3786 const char *value)
3787 {
3788 struct remote_state *rs = get_remote_state ();
3789
3790 rs->cond_tracepoints = (support == PACKET_ENABLE);
3791 }
3792
3793 static void
3794 remote_cond_breakpoint_feature (const struct protocol_feature *feature,
3795 enum packet_support support,
3796 const char *value)
3797 {
3798 struct remote_state *rs = get_remote_state ();
3799
3800 rs->cond_breakpoints = (support == PACKET_ENABLE);
3801 }
3802
3803 static void
3804 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3805 enum packet_support support,
3806 const char *value)
3807 {
3808 struct remote_state *rs = get_remote_state ();
3809
3810 rs->fast_tracepoints = (support == PACKET_ENABLE);
3811 }
3812
3813 static void
3814 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3815 enum packet_support support,
3816 const char *value)
3817 {
3818 struct remote_state *rs = get_remote_state ();
3819
3820 rs->static_tracepoints = (support == PACKET_ENABLE);
3821 }
3822
3823 static void
3824 remote_install_in_trace_feature (const struct protocol_feature *feature,
3825 enum packet_support support,
3826 const char *value)
3827 {
3828 struct remote_state *rs = get_remote_state ();
3829
3830 rs->install_in_trace = (support == PACKET_ENABLE);
3831 }
3832
3833 static void
3834 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3835 enum packet_support support,
3836 const char *value)
3837 {
3838 struct remote_state *rs = get_remote_state ();
3839
3840 rs->disconnected_tracing = (support == PACKET_ENABLE);
3841 }
3842
3843 static void
3844 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3845 enum packet_support support,
3846 const char *value)
3847 {
3848 struct remote_state *rs = get_remote_state ();
3849
3850 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3851 }
3852
3853 static void
3854 remote_string_tracing_feature (const struct protocol_feature *feature,
3855 enum packet_support support,
3856 const char *value)
3857 {
3858 struct remote_state *rs = get_remote_state ();
3859
3860 rs->string_tracing = (support == PACKET_ENABLE);
3861 }
3862
3863 static struct protocol_feature remote_protocol_features[] = {
3864 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3865 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3866 PACKET_qXfer_auxv },
3867 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3868 PACKET_qXfer_features },
3869 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3870 PACKET_qXfer_libraries },
3871 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
3872 PACKET_qXfer_libraries_svr4 },
3873 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3874 PACKET_qXfer_memory_map },
3875 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3876 PACKET_qXfer_spu_read },
3877 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3878 PACKET_qXfer_spu_write },
3879 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3880 PACKET_qXfer_osdata },
3881 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3882 PACKET_qXfer_threads },
3883 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
3884 PACKET_qXfer_traceframe_info },
3885 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3886 PACKET_QPassSignals },
3887 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
3888 PACKET_QProgramSignals },
3889 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3890 PACKET_QStartNoAckMode },
3891 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3892 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3893 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3894 PACKET_qXfer_siginfo_read },
3895 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3896 PACKET_qXfer_siginfo_write },
3897 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3898 PACKET_ConditionalTracepoints },
3899 { "ConditionalBreakpoints", PACKET_DISABLE, remote_cond_breakpoint_feature,
3900 PACKET_ConditionalBreakpoints },
3901 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3902 PACKET_FastTracepoints },
3903 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3904 PACKET_StaticTracepoints },
3905 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
3906 PACKET_InstallInTrace},
3907 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3908 -1 },
3909 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3910 PACKET_bc },
3911 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3912 PACKET_bs },
3913 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3914 PACKET_TracepointSource },
3915 { "QAllow", PACKET_DISABLE, remote_supported_packet,
3916 PACKET_QAllow },
3917 { "EnableDisableTracepoints", PACKET_DISABLE,
3918 remote_enable_disable_tracepoint_feature, -1 },
3919 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
3920 PACKET_qXfer_fdpic },
3921 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
3922 PACKET_qXfer_uib },
3923 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
3924 PACKET_QDisableRandomization },
3925 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
3926 { "tracenz", PACKET_DISABLE,
3927 remote_string_tracing_feature, -1 },
3928 };
3929
3930 static char *remote_support_xml;
3931
3932 /* Register string appended to "xmlRegisters=" in qSupported query. */
3933
3934 void
3935 register_remote_support_xml (const char *xml)
3936 {
3937 #if defined(HAVE_LIBEXPAT)
3938 if (remote_support_xml == NULL)
3939 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
3940 else
3941 {
3942 char *copy = xstrdup (remote_support_xml + 13);
3943 char *p = strtok (copy, ",");
3944
3945 do
3946 {
3947 if (strcmp (p, xml) == 0)
3948 {
3949 /* already there */
3950 xfree (copy);
3951 return;
3952 }
3953 }
3954 while ((p = strtok (NULL, ",")) != NULL);
3955 xfree (copy);
3956
3957 remote_support_xml = reconcat (remote_support_xml,
3958 remote_support_xml, ",", xml,
3959 (char *) NULL);
3960 }
3961 #endif
3962 }
3963
3964 static char *
3965 remote_query_supported_append (char *msg, const char *append)
3966 {
3967 if (msg)
3968 return reconcat (msg, msg, ";", append, (char *) NULL);
3969 else
3970 return xstrdup (append);
3971 }
3972
3973 static void
3974 remote_query_supported (void)
3975 {
3976 struct remote_state *rs = get_remote_state ();
3977 char *next;
3978 int i;
3979 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3980
3981 /* The packet support flags are handled differently for this packet
3982 than for most others. We treat an error, a disabled packet, and
3983 an empty response identically: any features which must be reported
3984 to be used will be automatically disabled. An empty buffer
3985 accomplishes this, since that is also the representation for a list
3986 containing no features. */
3987
3988 rs->buf[0] = 0;
3989 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3990 {
3991 char *q = NULL;
3992 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
3993
3994 q = remote_query_supported_append (q, "multiprocess+");
3995
3996 if (remote_support_xml)
3997 q = remote_query_supported_append (q, remote_support_xml);
3998
3999 q = remote_query_supported_append (q, "qRelocInsn+");
4000
4001 q = reconcat (q, "qSupported:", q, (char *) NULL);
4002 putpkt (q);
4003
4004 do_cleanups (old_chain);
4005
4006 getpkt (&rs->buf, &rs->buf_size, 0);
4007
4008 /* If an error occured, warn, but do not return - just reset the
4009 buffer to empty and go on to disable features. */
4010 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4011 == PACKET_ERROR)
4012 {
4013 warning (_("Remote failure reply: %s"), rs->buf);
4014 rs->buf[0] = 0;
4015 }
4016 }
4017
4018 memset (seen, 0, sizeof (seen));
4019
4020 next = rs->buf;
4021 while (*next)
4022 {
4023 enum packet_support is_supported;
4024 char *p, *end, *name_end, *value;
4025
4026 /* First separate out this item from the rest of the packet. If
4027 there's another item after this, we overwrite the separator
4028 (terminated strings are much easier to work with). */
4029 p = next;
4030 end = strchr (p, ';');
4031 if (end == NULL)
4032 {
4033 end = p + strlen (p);
4034 next = end;
4035 }
4036 else
4037 {
4038 *end = '\0';
4039 next = end + 1;
4040
4041 if (end == p)
4042 {
4043 warning (_("empty item in \"qSupported\" response"));
4044 continue;
4045 }
4046 }
4047
4048 name_end = strchr (p, '=');
4049 if (name_end)
4050 {
4051 /* This is a name=value entry. */
4052 is_supported = PACKET_ENABLE;
4053 value = name_end + 1;
4054 *name_end = '\0';
4055 }
4056 else
4057 {
4058 value = NULL;
4059 switch (end[-1])
4060 {
4061 case '+':
4062 is_supported = PACKET_ENABLE;
4063 break;
4064
4065 case '-':
4066 is_supported = PACKET_DISABLE;
4067 break;
4068
4069 case '?':
4070 is_supported = PACKET_SUPPORT_UNKNOWN;
4071 break;
4072
4073 default:
4074 warning (_("unrecognized item \"%s\" "
4075 "in \"qSupported\" response"), p);
4076 continue;
4077 }
4078 end[-1] = '\0';
4079 }
4080
4081 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4082 if (strcmp (remote_protocol_features[i].name, p) == 0)
4083 {
4084 const struct protocol_feature *feature;
4085
4086 seen[i] = 1;
4087 feature = &remote_protocol_features[i];
4088 feature->func (feature, is_supported, value);
4089 break;
4090 }
4091 }
4092
4093 /* If we increased the packet size, make sure to increase the global
4094 buffer size also. We delay this until after parsing the entire
4095 qSupported packet, because this is the same buffer we were
4096 parsing. */
4097 if (rs->buf_size < rs->explicit_packet_size)
4098 {
4099 rs->buf_size = rs->explicit_packet_size;
4100 rs->buf = xrealloc (rs->buf, rs->buf_size);
4101 }
4102
4103 /* Handle the defaults for unmentioned features. */
4104 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4105 if (!seen[i])
4106 {
4107 const struct protocol_feature *feature;
4108
4109 feature = &remote_protocol_features[i];
4110 feature->func (feature, feature->default_support, NULL);
4111 }
4112 }
4113
4114
4115 static void
4116 remote_open_1 (char *name, int from_tty,
4117 struct target_ops *target, int extended_p)
4118 {
4119 struct remote_state *rs = get_remote_state ();
4120
4121 if (name == 0)
4122 error (_("To open a remote debug connection, you need to specify what\n"
4123 "serial device is attached to the remote system\n"
4124 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4125
4126 /* See FIXME above. */
4127 if (!target_async_permitted)
4128 wait_forever_enabled_p = 1;
4129
4130 /* If we're connected to a running target, target_preopen will kill it.
4131 But if we're connected to a target system with no running process,
4132 then we will still be connected when it returns. Ask this question
4133 first, before target_preopen has a chance to kill anything. */
4134 if (remote_desc != NULL && !have_inferiors ())
4135 {
4136 if (!from_tty
4137 || query (_("Already connected to a remote target. Disconnect? ")))
4138 pop_target ();
4139 else
4140 error (_("Still connected."));
4141 }
4142
4143 target_preopen (from_tty);
4144
4145 unpush_target (target);
4146
4147 /* This time without a query. If we were connected to an
4148 extended-remote target and target_preopen killed the running
4149 process, we may still be connected. If we are starting "target
4150 remote" now, the extended-remote target will not have been
4151 removed by unpush_target. */
4152 if (remote_desc != NULL && !have_inferiors ())
4153 pop_target ();
4154
4155 /* Make sure we send the passed signals list the next time we resume. */
4156 xfree (last_pass_packet);
4157 last_pass_packet = NULL;
4158
4159 /* Make sure we send the program signals list the next time we
4160 resume. */
4161 xfree (last_program_signals_packet);
4162 last_program_signals_packet = NULL;
4163
4164 remote_fileio_reset ();
4165 reopen_exec_file ();
4166 reread_symbols ();
4167
4168 remote_desc = remote_serial_open (name);
4169 if (!remote_desc)
4170 perror_with_name (name);
4171
4172 if (baud_rate != -1)
4173 {
4174 if (serial_setbaudrate (remote_desc, baud_rate))
4175 {
4176 /* The requested speed could not be set. Error out to
4177 top level after closing remote_desc. Take care to
4178 set remote_desc to NULL to avoid closing remote_desc
4179 more than once. */
4180 serial_close (remote_desc);
4181 remote_desc = NULL;
4182 perror_with_name (name);
4183 }
4184 }
4185
4186 serial_raw (remote_desc);
4187
4188 /* If there is something sitting in the buffer we might take it as a
4189 response to a command, which would be bad. */
4190 serial_flush_input (remote_desc);
4191
4192 if (from_tty)
4193 {
4194 puts_filtered ("Remote debugging using ");
4195 puts_filtered (name);
4196 puts_filtered ("\n");
4197 }
4198 push_target (target); /* Switch to using remote target now. */
4199
4200 /* Register extra event sources in the event loop. */
4201 remote_async_inferior_event_token
4202 = create_async_event_handler (remote_async_inferior_event_handler,
4203 NULL);
4204 remote_async_get_pending_events_token
4205 = create_async_event_handler (remote_async_get_pending_events_handler,
4206 NULL);
4207
4208 /* Reset the target state; these things will be queried either by
4209 remote_query_supported or as they are needed. */
4210 init_all_packet_configs ();
4211 rs->cached_wait_status = 0;
4212 rs->explicit_packet_size = 0;
4213 rs->noack_mode = 0;
4214 rs->multi_process_aware = 0;
4215 rs->extended = extended_p;
4216 rs->non_stop_aware = 0;
4217 rs->waiting_for_stop_reply = 0;
4218 rs->ctrlc_pending_p = 0;
4219
4220 general_thread = not_sent_ptid;
4221 continue_thread = not_sent_ptid;
4222 remote_traceframe_number = -1;
4223
4224 /* Probe for ability to use "ThreadInfo" query, as required. */
4225 use_threadinfo_query = 1;
4226 use_threadextra_query = 1;
4227
4228 if (target_async_permitted)
4229 {
4230 /* With this target we start out by owning the terminal. */
4231 remote_async_terminal_ours_p = 1;
4232
4233 /* FIXME: cagney/1999-09-23: During the initial connection it is
4234 assumed that the target is already ready and able to respond to
4235 requests. Unfortunately remote_start_remote() eventually calls
4236 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4237 around this. Eventually a mechanism that allows
4238 wait_for_inferior() to expect/get timeouts will be
4239 implemented. */
4240 wait_forever_enabled_p = 0;
4241 }
4242
4243 /* First delete any symbols previously loaded from shared libraries. */
4244 no_shared_libraries (NULL, 0);
4245
4246 /* Start afresh. */
4247 init_thread_list ();
4248
4249 /* Start the remote connection. If error() or QUIT, discard this
4250 target (we'd otherwise be in an inconsistent state) and then
4251 propogate the error on up the exception chain. This ensures that
4252 the caller doesn't stumble along blindly assuming that the
4253 function succeeded. The CLI doesn't have this problem but other
4254 UI's, such as MI do.
4255
4256 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4257 this function should return an error indication letting the
4258 caller restore the previous state. Unfortunately the command
4259 ``target remote'' is directly wired to this function making that
4260 impossible. On a positive note, the CLI side of this problem has
4261 been fixed - the function set_cmd_context() makes it possible for
4262 all the ``target ....'' commands to share a common callback
4263 function. See cli-dump.c. */
4264 {
4265 volatile struct gdb_exception ex;
4266
4267 TRY_CATCH (ex, RETURN_MASK_ALL)
4268 {
4269 remote_start_remote (from_tty, target, extended_p);
4270 }
4271 if (ex.reason < 0)
4272 {
4273 /* Pop the partially set up target - unless something else did
4274 already before throwing the exception. */
4275 if (remote_desc != NULL)
4276 pop_target ();
4277 if (target_async_permitted)
4278 wait_forever_enabled_p = 1;
4279 throw_exception (ex);
4280 }
4281 }
4282
4283 if (target_async_permitted)
4284 wait_forever_enabled_p = 1;
4285 }
4286
4287 /* This takes a program previously attached to and detaches it. After
4288 this is done, GDB can be used to debug some other program. We
4289 better not have left any breakpoints in the target program or it'll
4290 die when it hits one. */
4291
4292 static void
4293 remote_detach_1 (char *args, int from_tty, int extended)
4294 {
4295 int pid = ptid_get_pid (inferior_ptid);
4296 struct remote_state *rs = get_remote_state ();
4297
4298 if (args)
4299 error (_("Argument given to \"detach\" when remotely debugging."));
4300
4301 if (!target_has_execution)
4302 error (_("No process to detach from."));
4303
4304 if (from_tty)
4305 {
4306 char *exec_file = get_exec_file (0);
4307 if (exec_file == NULL)
4308 exec_file = "";
4309 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4310 target_pid_to_str (pid_to_ptid (pid)));
4311 gdb_flush (gdb_stdout);
4312 }
4313
4314 /* Tell the remote target to detach. */
4315 if (remote_multi_process_p (rs))
4316 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
4317 else
4318 strcpy (rs->buf, "D");
4319
4320 putpkt (rs->buf);
4321 getpkt (&rs->buf, &rs->buf_size, 0);
4322
4323 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4324 ;
4325 else if (rs->buf[0] == '\0')
4326 error (_("Remote doesn't know how to detach"));
4327 else
4328 error (_("Can't detach process."));
4329
4330 if (from_tty && !extended)
4331 puts_filtered (_("Ending remote debugging.\n"));
4332
4333 discard_pending_stop_replies (pid);
4334 target_mourn_inferior ();
4335 }
4336
4337 static void
4338 remote_detach (struct target_ops *ops, char *args, int from_tty)
4339 {
4340 remote_detach_1 (args, from_tty, 0);
4341 }
4342
4343 static void
4344 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4345 {
4346 remote_detach_1 (args, from_tty, 1);
4347 }
4348
4349 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4350
4351 static void
4352 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4353 {
4354 if (args)
4355 error (_("Argument given to \"disconnect\" when remotely debugging."));
4356
4357 /* Make sure we unpush even the extended remote targets; mourn
4358 won't do it. So call remote_mourn_1 directly instead of
4359 target_mourn_inferior. */
4360 remote_mourn_1 (target);
4361
4362 if (from_tty)
4363 puts_filtered ("Ending remote debugging.\n");
4364 }
4365
4366 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4367 be chatty about it. */
4368
4369 static void
4370 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4371 {
4372 struct remote_state *rs = get_remote_state ();
4373 int pid;
4374 char *wait_status = NULL;
4375
4376 pid = parse_pid_to_attach (args);
4377
4378 /* Remote PID can be freely equal to getpid, do not check it here the same
4379 way as in other targets. */
4380
4381 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4382 error (_("This target does not support attaching to a process"));
4383
4384 if (from_tty)
4385 {
4386 char *exec_file = get_exec_file (0);
4387
4388 if (exec_file)
4389 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4390 target_pid_to_str (pid_to_ptid (pid)));
4391 else
4392 printf_unfiltered (_("Attaching to %s\n"),
4393 target_pid_to_str (pid_to_ptid (pid)));
4394
4395 gdb_flush (gdb_stdout);
4396 }
4397
4398 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
4399 putpkt (rs->buf);
4400 getpkt (&rs->buf, &rs->buf_size, 0);
4401
4402 if (packet_ok (rs->buf,
4403 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4404 {
4405 if (!non_stop)
4406 {
4407 /* Save the reply for later. */
4408 wait_status = alloca (strlen (rs->buf) + 1);
4409 strcpy (wait_status, rs->buf);
4410 }
4411 else if (strcmp (rs->buf, "OK") != 0)
4412 error (_("Attaching to %s failed with: %s"),
4413 target_pid_to_str (pid_to_ptid (pid)),
4414 rs->buf);
4415 }
4416 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4417 error (_("This target does not support attaching to a process"));
4418 else
4419 error (_("Attaching to %s failed"),
4420 target_pid_to_str (pid_to_ptid (pid)));
4421
4422 set_current_inferior (remote_add_inferior (0, pid, 1));
4423
4424 inferior_ptid = pid_to_ptid (pid);
4425
4426 if (non_stop)
4427 {
4428 struct thread_info *thread;
4429
4430 /* Get list of threads. */
4431 remote_threads_info (target);
4432
4433 thread = first_thread_of_process (pid);
4434 if (thread)
4435 inferior_ptid = thread->ptid;
4436 else
4437 inferior_ptid = pid_to_ptid (pid);
4438
4439 /* Invalidate our notion of the remote current thread. */
4440 record_currthread (minus_one_ptid);
4441 }
4442 else
4443 {
4444 /* Now, if we have thread information, update inferior_ptid. */
4445 inferior_ptid = remote_current_thread (inferior_ptid);
4446
4447 /* Add the main thread to the thread list. */
4448 add_thread_silent (inferior_ptid);
4449 }
4450
4451 /* Next, if the target can specify a description, read it. We do
4452 this before anything involving memory or registers. */
4453 target_find_description ();
4454
4455 if (!non_stop)
4456 {
4457 /* Use the previously fetched status. */
4458 gdb_assert (wait_status != NULL);
4459
4460 if (target_can_async_p ())
4461 {
4462 struct stop_reply *stop_reply;
4463 struct cleanup *old_chain;
4464
4465 stop_reply = stop_reply_xmalloc ();
4466 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4467 remote_parse_stop_reply (wait_status, stop_reply);
4468 discard_cleanups (old_chain);
4469 push_stop_reply (stop_reply);
4470
4471 target_async (inferior_event_handler, 0);
4472 }
4473 else
4474 {
4475 gdb_assert (wait_status != NULL);
4476 strcpy (rs->buf, wait_status);
4477 rs->cached_wait_status = 1;
4478 }
4479 }
4480 else
4481 gdb_assert (wait_status == NULL);
4482 }
4483
4484 static void
4485 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4486 {
4487 extended_remote_attach_1 (ops, args, from_tty);
4488 }
4489
4490 /* Convert hex digit A to a number. */
4491
4492 static int
4493 fromhex (int a)
4494 {
4495 if (a >= '0' && a <= '9')
4496 return a - '0';
4497 else if (a >= 'a' && a <= 'f')
4498 return a - 'a' + 10;
4499 else if (a >= 'A' && a <= 'F')
4500 return a - 'A' + 10;
4501 else
4502 error (_("Reply contains invalid hex digit %d"), a);
4503 }
4504
4505 int
4506 hex2bin (const char *hex, gdb_byte *bin, int count)
4507 {
4508 int i;
4509
4510 for (i = 0; i < count; i++)
4511 {
4512 if (hex[0] == 0 || hex[1] == 0)
4513 {
4514 /* Hex string is short, or of uneven length.
4515 Return the count that has been converted so far. */
4516 return i;
4517 }
4518 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4519 hex += 2;
4520 }
4521 return i;
4522 }
4523
4524 /* Convert number NIB to a hex digit. */
4525
4526 static int
4527 tohex (int nib)
4528 {
4529 if (nib < 10)
4530 return '0' + nib;
4531 else
4532 return 'a' + nib - 10;
4533 }
4534
4535 int
4536 bin2hex (const gdb_byte *bin, char *hex, int count)
4537 {
4538 int i;
4539
4540 /* May use a length, or a nul-terminated string as input. */
4541 if (count == 0)
4542 count = strlen ((char *) bin);
4543
4544 for (i = 0; i < count; i++)
4545 {
4546 *hex++ = tohex ((*bin >> 4) & 0xf);
4547 *hex++ = tohex (*bin++ & 0xf);
4548 }
4549 *hex = 0;
4550 return i;
4551 }
4552 \f
4553 /* Check for the availability of vCont. This function should also check
4554 the response. */
4555
4556 static void
4557 remote_vcont_probe (struct remote_state *rs)
4558 {
4559 char *buf;
4560
4561 strcpy (rs->buf, "vCont?");
4562 putpkt (rs->buf);
4563 getpkt (&rs->buf, &rs->buf_size, 0);
4564 buf = rs->buf;
4565
4566 /* Make sure that the features we assume are supported. */
4567 if (strncmp (buf, "vCont", 5) == 0)
4568 {
4569 char *p = &buf[5];
4570 int support_s, support_S, support_c, support_C;
4571
4572 support_s = 0;
4573 support_S = 0;
4574 support_c = 0;
4575 support_C = 0;
4576 rs->support_vCont_t = 0;
4577 while (p && *p == ';')
4578 {
4579 p++;
4580 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4581 support_s = 1;
4582 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4583 support_S = 1;
4584 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4585 support_c = 1;
4586 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4587 support_C = 1;
4588 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4589 rs->support_vCont_t = 1;
4590
4591 p = strchr (p, ';');
4592 }
4593
4594 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4595 BUF will make packet_ok disable the packet. */
4596 if (!support_s || !support_S || !support_c || !support_C)
4597 buf[0] = 0;
4598 }
4599
4600 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4601 }
4602
4603 /* Helper function for building "vCont" resumptions. Write a
4604 resumption to P. ENDP points to one-passed-the-end of the buffer
4605 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4606 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4607 resumed thread should be single-stepped and/or signalled. If PTID
4608 equals minus_one_ptid, then all threads are resumed; if PTID
4609 represents a process, then all threads of the process are resumed;
4610 the thread to be stepped and/or signalled is given in the global
4611 INFERIOR_PTID. */
4612
4613 static char *
4614 append_resumption (char *p, char *endp,
4615 ptid_t ptid, int step, enum target_signal siggnal)
4616 {
4617 struct remote_state *rs = get_remote_state ();
4618
4619 if (step && siggnal != TARGET_SIGNAL_0)
4620 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4621 else if (step)
4622 p += xsnprintf (p, endp - p, ";s");
4623 else if (siggnal != TARGET_SIGNAL_0)
4624 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4625 else
4626 p += xsnprintf (p, endp - p, ";c");
4627
4628 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4629 {
4630 ptid_t nptid;
4631
4632 /* All (-1) threads of process. */
4633 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4634
4635 p += xsnprintf (p, endp - p, ":");
4636 p = write_ptid (p, endp, nptid);
4637 }
4638 else if (!ptid_equal (ptid, minus_one_ptid))
4639 {
4640 p += xsnprintf (p, endp - p, ":");
4641 p = write_ptid (p, endp, ptid);
4642 }
4643
4644 return p;
4645 }
4646
4647 /* Resume the remote inferior by using a "vCont" packet. The thread
4648 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4649 resumed thread should be single-stepped and/or signalled. If PTID
4650 equals minus_one_ptid, then all threads are resumed; the thread to
4651 be stepped and/or signalled is given in the global INFERIOR_PTID.
4652 This function returns non-zero iff it resumes the inferior.
4653
4654 This function issues a strict subset of all possible vCont commands at the
4655 moment. */
4656
4657 static int
4658 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
4659 {
4660 struct remote_state *rs = get_remote_state ();
4661 char *p;
4662 char *endp;
4663
4664 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4665 remote_vcont_probe (rs);
4666
4667 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4668 return 0;
4669
4670 p = rs->buf;
4671 endp = rs->buf + get_remote_packet_size ();
4672
4673 /* If we could generate a wider range of packets, we'd have to worry
4674 about overflowing BUF. Should there be a generic
4675 "multi-part-packet" packet? */
4676
4677 p += xsnprintf (p, endp - p, "vCont");
4678
4679 if (ptid_equal (ptid, magic_null_ptid))
4680 {
4681 /* MAGIC_NULL_PTID means that we don't have any active threads,
4682 so we don't have any TID numbers the inferior will
4683 understand. Make sure to only send forms that do not specify
4684 a TID. */
4685 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4686 }
4687 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4688 {
4689 /* Resume all threads (of all processes, or of a single
4690 process), with preference for INFERIOR_PTID. This assumes
4691 inferior_ptid belongs to the set of all threads we are about
4692 to resume. */
4693 if (step || siggnal != TARGET_SIGNAL_0)
4694 {
4695 /* Step inferior_ptid, with or without signal. */
4696 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4697 }
4698
4699 /* And continue others without a signal. */
4700 append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
4701 }
4702 else
4703 {
4704 /* Scheduler locking; resume only PTID. */
4705 append_resumption (p, endp, ptid, step, siggnal);
4706 }
4707
4708 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4709 putpkt (rs->buf);
4710
4711 if (non_stop)
4712 {
4713 /* In non-stop, the stub replies to vCont with "OK". The stop
4714 reply will be reported asynchronously by means of a `%Stop'
4715 notification. */
4716 getpkt (&rs->buf, &rs->buf_size, 0);
4717 if (strcmp (rs->buf, "OK") != 0)
4718 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4719 }
4720
4721 return 1;
4722 }
4723
4724 /* Tell the remote machine to resume. */
4725
4726 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
4727
4728 static int last_sent_step;
4729
4730 static void
4731 remote_resume (struct target_ops *ops,
4732 ptid_t ptid, int step, enum target_signal siggnal)
4733 {
4734 struct remote_state *rs = get_remote_state ();
4735 char *buf;
4736
4737 last_sent_signal = siggnal;
4738 last_sent_step = step;
4739
4740 /* The vCont packet doesn't need to specify threads via Hc. */
4741 /* No reverse support (yet) for vCont. */
4742 if (execution_direction != EXEC_REVERSE)
4743 if (remote_vcont_resume (ptid, step, siggnal))
4744 goto done;
4745
4746 /* All other supported resume packets do use Hc, so set the continue
4747 thread. */
4748 if (ptid_equal (ptid, minus_one_ptid))
4749 set_continue_thread (any_thread_ptid);
4750 else
4751 set_continue_thread (ptid);
4752
4753 buf = rs->buf;
4754 if (execution_direction == EXEC_REVERSE)
4755 {
4756 /* We don't pass signals to the target in reverse exec mode. */
4757 if (info_verbose && siggnal != TARGET_SIGNAL_0)
4758 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4759 siggnal);
4760
4761 if (step
4762 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4763 error (_("Remote reverse-step not supported."));
4764 if (!step
4765 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4766 error (_("Remote reverse-continue not supported."));
4767
4768 strcpy (buf, step ? "bs" : "bc");
4769 }
4770 else if (siggnal != TARGET_SIGNAL_0)
4771 {
4772 buf[0] = step ? 'S' : 'C';
4773 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4774 buf[2] = tohex (((int) siggnal) & 0xf);
4775 buf[3] = '\0';
4776 }
4777 else
4778 strcpy (buf, step ? "s" : "c");
4779
4780 putpkt (buf);
4781
4782 done:
4783 /* We are about to start executing the inferior, let's register it
4784 with the event loop. NOTE: this is the one place where all the
4785 execution commands end up. We could alternatively do this in each
4786 of the execution commands in infcmd.c. */
4787 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4788 into infcmd.c in order to allow inferior function calls to work
4789 NOT asynchronously. */
4790 if (target_can_async_p ())
4791 target_async (inferior_event_handler, 0);
4792
4793 /* We've just told the target to resume. The remote server will
4794 wait for the inferior to stop, and then send a stop reply. In
4795 the mean time, we can't start another command/query ourselves
4796 because the stub wouldn't be ready to process it. This applies
4797 only to the base all-stop protocol, however. In non-stop (which
4798 only supports vCont), the stub replies with an "OK", and is
4799 immediate able to process further serial input. */
4800 if (!non_stop)
4801 rs->waiting_for_stop_reply = 1;
4802 }
4803 \f
4804
4805 /* Set up the signal handler for SIGINT, while the target is
4806 executing, ovewriting the 'regular' SIGINT signal handler. */
4807 static void
4808 initialize_sigint_signal_handler (void)
4809 {
4810 signal (SIGINT, handle_remote_sigint);
4811 }
4812
4813 /* Signal handler for SIGINT, while the target is executing. */
4814 static void
4815 handle_remote_sigint (int sig)
4816 {
4817 signal (sig, handle_remote_sigint_twice);
4818 mark_async_signal_handler_wrapper (sigint_remote_token);
4819 }
4820
4821 /* Signal handler for SIGINT, installed after SIGINT has already been
4822 sent once. It will take effect the second time that the user sends
4823 a ^C. */
4824 static void
4825 handle_remote_sigint_twice (int sig)
4826 {
4827 signal (sig, handle_remote_sigint);
4828 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4829 }
4830
4831 /* Perform the real interruption of the target execution, in response
4832 to a ^C. */
4833 static void
4834 async_remote_interrupt (gdb_client_data arg)
4835 {
4836 if (remote_debug)
4837 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt called\n");
4838
4839 target_stop (inferior_ptid);
4840 }
4841
4842 /* Perform interrupt, if the first attempt did not succeed. Just give
4843 up on the target alltogether. */
4844 void
4845 async_remote_interrupt_twice (gdb_client_data arg)
4846 {
4847 if (remote_debug)
4848 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt_twice called\n");
4849
4850 interrupt_query ();
4851 }
4852
4853 /* Reinstall the usual SIGINT handlers, after the target has
4854 stopped. */
4855 static void
4856 cleanup_sigint_signal_handler (void *dummy)
4857 {
4858 signal (SIGINT, handle_sigint);
4859 }
4860
4861 /* Send ^C to target to halt it. Target will respond, and send us a
4862 packet. */
4863 static void (*ofunc) (int);
4864
4865 /* The command line interface's stop routine. This function is installed
4866 as a signal handler for SIGINT. The first time a user requests a
4867 stop, we call remote_stop to send a break or ^C. If there is no
4868 response from the target (it didn't stop when the user requested it),
4869 we ask the user if he'd like to detach from the target. */
4870 static void
4871 remote_interrupt (int signo)
4872 {
4873 /* If this doesn't work, try more severe steps. */
4874 signal (signo, remote_interrupt_twice);
4875
4876 gdb_call_async_signal_handler (sigint_remote_token, 1);
4877 }
4878
4879 /* The user typed ^C twice. */
4880
4881 static void
4882 remote_interrupt_twice (int signo)
4883 {
4884 signal (signo, ofunc);
4885 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4886 signal (signo, remote_interrupt);
4887 }
4888
4889 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4890 thread, all threads of a remote process, or all threads of all
4891 processes. */
4892
4893 static void
4894 remote_stop_ns (ptid_t ptid)
4895 {
4896 struct remote_state *rs = get_remote_state ();
4897 char *p = rs->buf;
4898 char *endp = rs->buf + get_remote_packet_size ();
4899
4900 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4901 remote_vcont_probe (rs);
4902
4903 if (!rs->support_vCont_t)
4904 error (_("Remote server does not support stopping threads"));
4905
4906 if (ptid_equal (ptid, minus_one_ptid)
4907 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4908 p += xsnprintf (p, endp - p, "vCont;t");
4909 else
4910 {
4911 ptid_t nptid;
4912
4913 p += xsnprintf (p, endp - p, "vCont;t:");
4914
4915 if (ptid_is_pid (ptid))
4916 /* All (-1) threads of process. */
4917 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4918 else
4919 {
4920 /* Small optimization: if we already have a stop reply for
4921 this thread, no use in telling the stub we want this
4922 stopped. */
4923 if (peek_stop_reply (ptid))
4924 return;
4925
4926 nptid = ptid;
4927 }
4928
4929 write_ptid (p, endp, nptid);
4930 }
4931
4932 /* In non-stop, we get an immediate OK reply. The stop reply will
4933 come in asynchronously by notification. */
4934 putpkt (rs->buf);
4935 getpkt (&rs->buf, &rs->buf_size, 0);
4936 if (strcmp (rs->buf, "OK") != 0)
4937 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4938 }
4939
4940 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4941 remote target. It is undefined which thread of which process
4942 reports the stop. */
4943
4944 static void
4945 remote_stop_as (ptid_t ptid)
4946 {
4947 struct remote_state *rs = get_remote_state ();
4948
4949 rs->ctrlc_pending_p = 1;
4950
4951 /* If the inferior is stopped already, but the core didn't know
4952 about it yet, just ignore the request. The cached wait status
4953 will be collected in remote_wait. */
4954 if (rs->cached_wait_status)
4955 return;
4956
4957 /* Send interrupt_sequence to remote target. */
4958 send_interrupt_sequence ();
4959 }
4960
4961 /* This is the generic stop called via the target vector. When a target
4962 interrupt is requested, either by the command line or the GUI, we
4963 will eventually end up here. */
4964
4965 static void
4966 remote_stop (ptid_t ptid)
4967 {
4968 if (remote_debug)
4969 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4970
4971 if (non_stop)
4972 remote_stop_ns (ptid);
4973 else
4974 remote_stop_as (ptid);
4975 }
4976
4977 /* Ask the user what to do when an interrupt is received. */
4978
4979 static void
4980 interrupt_query (void)
4981 {
4982 target_terminal_ours ();
4983
4984 if (target_can_async_p ())
4985 {
4986 signal (SIGINT, handle_sigint);
4987 deprecated_throw_reason (RETURN_QUIT);
4988 }
4989 else
4990 {
4991 if (query (_("Interrupted while waiting for the program.\n\
4992 Give up (and stop debugging it)? ")))
4993 {
4994 pop_target ();
4995 deprecated_throw_reason (RETURN_QUIT);
4996 }
4997 }
4998
4999 target_terminal_inferior ();
5000 }
5001
5002 /* Enable/disable target terminal ownership. Most targets can use
5003 terminal groups to control terminal ownership. Remote targets are
5004 different in that explicit transfer of ownership to/from GDB/target
5005 is required. */
5006
5007 static void
5008 remote_terminal_inferior (void)
5009 {
5010 if (!target_async_permitted)
5011 /* Nothing to do. */
5012 return;
5013
5014 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
5015 idempotent. The event-loop GDB talking to an asynchronous target
5016 with a synchronous command calls this function from both
5017 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
5018 transfer the terminal to the target when it shouldn't this guard
5019 can go away. */
5020 if (!remote_async_terminal_ours_p)
5021 return;
5022 delete_file_handler (input_fd);
5023 remote_async_terminal_ours_p = 0;
5024 initialize_sigint_signal_handler ();
5025 /* NOTE: At this point we could also register our selves as the
5026 recipient of all input. Any characters typed could then be
5027 passed on down to the target. */
5028 }
5029
5030 static void
5031 remote_terminal_ours (void)
5032 {
5033 if (!target_async_permitted)
5034 /* Nothing to do. */
5035 return;
5036
5037 /* See FIXME in remote_terminal_inferior. */
5038 if (remote_async_terminal_ours_p)
5039 return;
5040 cleanup_sigint_signal_handler (NULL);
5041 add_file_handler (input_fd, stdin_event_handler, 0);
5042 remote_async_terminal_ours_p = 1;
5043 }
5044
5045 static void
5046 remote_console_output (char *msg)
5047 {
5048 char *p;
5049
5050 for (p = msg; p[0] && p[1]; p += 2)
5051 {
5052 char tb[2];
5053 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
5054
5055 tb[0] = c;
5056 tb[1] = 0;
5057 fputs_unfiltered (tb, gdb_stdtarg);
5058 }
5059 gdb_flush (gdb_stdtarg);
5060 }
5061
5062 typedef struct cached_reg
5063 {
5064 int num;
5065 gdb_byte data[MAX_REGISTER_SIZE];
5066 } cached_reg_t;
5067
5068 DEF_VEC_O(cached_reg_t);
5069
5070 struct stop_reply
5071 {
5072 struct stop_reply *next;
5073
5074 ptid_t ptid;
5075
5076 struct target_waitstatus ws;
5077
5078 /* Expedited registers. This makes remote debugging a bit more
5079 efficient for those targets that provide critical registers as
5080 part of their normal status mechanism (as another roundtrip to
5081 fetch them is avoided). */
5082 VEC(cached_reg_t) *regcache;
5083
5084 int stopped_by_watchpoint_p;
5085 CORE_ADDR watch_data_address;
5086
5087 int solibs_changed;
5088 int replay_event;
5089
5090 int core;
5091 };
5092
5093 /* The list of already fetched and acknowledged stop events. */
5094 static struct stop_reply *stop_reply_queue;
5095
5096 static struct stop_reply *
5097 stop_reply_xmalloc (void)
5098 {
5099 struct stop_reply *r = XMALLOC (struct stop_reply);
5100
5101 r->next = NULL;
5102 return r;
5103 }
5104
5105 static void
5106 stop_reply_xfree (struct stop_reply *r)
5107 {
5108 if (r != NULL)
5109 {
5110 VEC_free (cached_reg_t, r->regcache);
5111 xfree (r);
5112 }
5113 }
5114
5115 /* Discard all pending stop replies of inferior PID. If PID is -1,
5116 discard everything. */
5117
5118 static void
5119 discard_pending_stop_replies (int pid)
5120 {
5121 struct stop_reply *prev = NULL, *reply, *next;
5122
5123 /* Discard the in-flight notification. */
5124 if (pending_stop_reply != NULL
5125 && (pid == -1
5126 || ptid_get_pid (pending_stop_reply->ptid) == pid))
5127 {
5128 stop_reply_xfree (pending_stop_reply);
5129 pending_stop_reply = NULL;
5130 }
5131
5132 /* Discard the stop replies we have already pulled with
5133 vStopped. */
5134 for (reply = stop_reply_queue; reply; reply = next)
5135 {
5136 next = reply->next;
5137 if (pid == -1
5138 || ptid_get_pid (reply->ptid) == pid)
5139 {
5140 if (reply == stop_reply_queue)
5141 stop_reply_queue = reply->next;
5142 else
5143 prev->next = reply->next;
5144
5145 stop_reply_xfree (reply);
5146 }
5147 else
5148 prev = reply;
5149 }
5150 }
5151
5152 /* Cleanup wrapper. */
5153
5154 static void
5155 do_stop_reply_xfree (void *arg)
5156 {
5157 struct stop_reply *r = arg;
5158
5159 stop_reply_xfree (r);
5160 }
5161
5162 /* Look for a queued stop reply belonging to PTID. If one is found,
5163 remove it from the queue, and return it. Returns NULL if none is
5164 found. If there are still queued events left to process, tell the
5165 event loop to get back to target_wait soon. */
5166
5167 static struct stop_reply *
5168 queued_stop_reply (ptid_t ptid)
5169 {
5170 struct stop_reply *it;
5171 struct stop_reply **it_link;
5172
5173 it = stop_reply_queue;
5174 it_link = &stop_reply_queue;
5175 while (it)
5176 {
5177 if (ptid_match (it->ptid, ptid))
5178 {
5179 *it_link = it->next;
5180 it->next = NULL;
5181 break;
5182 }
5183
5184 it_link = &it->next;
5185 it = *it_link;
5186 }
5187
5188 if (stop_reply_queue)
5189 /* There's still at least an event left. */
5190 mark_async_event_handler (remote_async_inferior_event_token);
5191
5192 return it;
5193 }
5194
5195 /* Push a fully parsed stop reply in the stop reply queue. Since we
5196 know that we now have at least one queued event left to pass to the
5197 core side, tell the event loop to get back to target_wait soon. */
5198
5199 static void
5200 push_stop_reply (struct stop_reply *new_event)
5201 {
5202 struct stop_reply *event;
5203
5204 if (stop_reply_queue)
5205 {
5206 for (event = stop_reply_queue;
5207 event && event->next;
5208 event = event->next)
5209 ;
5210
5211 event->next = new_event;
5212 }
5213 else
5214 stop_reply_queue = new_event;
5215
5216 mark_async_event_handler (remote_async_inferior_event_token);
5217 }
5218
5219 /* Returns true if we have a stop reply for PTID. */
5220
5221 static int
5222 peek_stop_reply (ptid_t ptid)
5223 {
5224 struct stop_reply *it;
5225
5226 for (it = stop_reply_queue; it; it = it->next)
5227 if (ptid_equal (ptid, it->ptid))
5228 {
5229 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
5230 return 1;
5231 }
5232
5233 return 0;
5234 }
5235
5236 /* Parse the stop reply in BUF. Either the function succeeds, and the
5237 result is stored in EVENT, or throws an error. */
5238
5239 static void
5240 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5241 {
5242 struct remote_arch_state *rsa = get_remote_arch_state ();
5243 ULONGEST addr;
5244 char *p;
5245
5246 event->ptid = null_ptid;
5247 event->ws.kind = TARGET_WAITKIND_IGNORE;
5248 event->ws.value.integer = 0;
5249 event->solibs_changed = 0;
5250 event->replay_event = 0;
5251 event->stopped_by_watchpoint_p = 0;
5252 event->regcache = NULL;
5253 event->core = -1;
5254
5255 switch (buf[0])
5256 {
5257 case 'T': /* Status with PC, SP, FP, ... */
5258 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5259 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5260 ss = signal number
5261 n... = register number
5262 r... = register contents
5263 */
5264
5265 p = &buf[3]; /* after Txx */
5266 while (*p)
5267 {
5268 char *p1;
5269 char *p_temp;
5270 int fieldsize;
5271 LONGEST pnum = 0;
5272
5273 /* If the packet contains a register number, save it in
5274 pnum and set p1 to point to the character following it.
5275 Otherwise p1 points to p. */
5276
5277 /* If this packet is an awatch packet, don't parse the 'a'
5278 as a register number. */
5279
5280 if (strncmp (p, "awatch", strlen("awatch")) != 0
5281 && strncmp (p, "core", strlen ("core") != 0))
5282 {
5283 /* Read the ``P'' register number. */
5284 pnum = strtol (p, &p_temp, 16);
5285 p1 = p_temp;
5286 }
5287 else
5288 p1 = p;
5289
5290 if (p1 == p) /* No register number present here. */
5291 {
5292 p1 = strchr (p, ':');
5293 if (p1 == NULL)
5294 error (_("Malformed packet(a) (missing colon): %s\n\
5295 Packet: '%s'\n"),
5296 p, buf);
5297 if (strncmp (p, "thread", p1 - p) == 0)
5298 event->ptid = read_ptid (++p1, &p);
5299 else if ((strncmp (p, "watch", p1 - p) == 0)
5300 || (strncmp (p, "rwatch", p1 - p) == 0)
5301 || (strncmp (p, "awatch", p1 - p) == 0))
5302 {
5303 event->stopped_by_watchpoint_p = 1;
5304 p = unpack_varlen_hex (++p1, &addr);
5305 event->watch_data_address = (CORE_ADDR) addr;
5306 }
5307 else if (strncmp (p, "library", p1 - p) == 0)
5308 {
5309 p1++;
5310 p_temp = p1;
5311 while (*p_temp && *p_temp != ';')
5312 p_temp++;
5313
5314 event->solibs_changed = 1;
5315 p = p_temp;
5316 }
5317 else if (strncmp (p, "replaylog", p1 - p) == 0)
5318 {
5319 /* NO_HISTORY event.
5320 p1 will indicate "begin" or "end", but
5321 it makes no difference for now, so ignore it. */
5322 event->replay_event = 1;
5323 p_temp = strchr (p1 + 1, ';');
5324 if (p_temp)
5325 p = p_temp;
5326 }
5327 else if (strncmp (p, "core", p1 - p) == 0)
5328 {
5329 ULONGEST c;
5330
5331 p = unpack_varlen_hex (++p1, &c);
5332 event->core = c;
5333 }
5334 else
5335 {
5336 /* Silently skip unknown optional info. */
5337 p_temp = strchr (p1 + 1, ';');
5338 if (p_temp)
5339 p = p_temp;
5340 }
5341 }
5342 else
5343 {
5344 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5345 cached_reg_t cached_reg;
5346
5347 p = p1;
5348
5349 if (*p != ':')
5350 error (_("Malformed packet(b) (missing colon): %s\n\
5351 Packet: '%s'\n"),
5352 p, buf);
5353 ++p;
5354
5355 if (reg == NULL)
5356 error (_("Remote sent bad register number %s: %s\n\
5357 Packet: '%s'\n"),
5358 hex_string (pnum), p, buf);
5359
5360 cached_reg.num = reg->regnum;
5361
5362 fieldsize = hex2bin (p, cached_reg.data,
5363 register_size (target_gdbarch,
5364 reg->regnum));
5365 p += 2 * fieldsize;
5366 if (fieldsize < register_size (target_gdbarch,
5367 reg->regnum))
5368 warning (_("Remote reply is too short: %s"), buf);
5369
5370 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5371 }
5372
5373 if (*p != ';')
5374 error (_("Remote register badly formatted: %s\nhere: %s"),
5375 buf, p);
5376 ++p;
5377 }
5378 /* fall through */
5379 case 'S': /* Old style status, just signal only. */
5380 if (event->solibs_changed)
5381 event->ws.kind = TARGET_WAITKIND_LOADED;
5382 else if (event->replay_event)
5383 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5384 else
5385 {
5386 event->ws.kind = TARGET_WAITKIND_STOPPED;
5387 event->ws.value.sig = (enum target_signal)
5388 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5389 }
5390 break;
5391 case 'W': /* Target exited. */
5392 case 'X':
5393 {
5394 char *p;
5395 int pid;
5396 ULONGEST value;
5397
5398 /* GDB used to accept only 2 hex chars here. Stubs should
5399 only send more if they detect GDB supports multi-process
5400 support. */
5401 p = unpack_varlen_hex (&buf[1], &value);
5402
5403 if (buf[0] == 'W')
5404 {
5405 /* The remote process exited. */
5406 event->ws.kind = TARGET_WAITKIND_EXITED;
5407 event->ws.value.integer = value;
5408 }
5409 else
5410 {
5411 /* The remote process exited with a signal. */
5412 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5413 event->ws.value.sig = (enum target_signal) value;
5414 }
5415
5416 /* If no process is specified, assume inferior_ptid. */
5417 pid = ptid_get_pid (inferior_ptid);
5418 if (*p == '\0')
5419 ;
5420 else if (*p == ';')
5421 {
5422 p++;
5423
5424 if (p == '\0')
5425 ;
5426 else if (strncmp (p,
5427 "process:", sizeof ("process:") - 1) == 0)
5428 {
5429 ULONGEST upid;
5430
5431 p += sizeof ("process:") - 1;
5432 unpack_varlen_hex (p, &upid);
5433 pid = upid;
5434 }
5435 else
5436 error (_("unknown stop reply packet: %s"), buf);
5437 }
5438 else
5439 error (_("unknown stop reply packet: %s"), buf);
5440 event->ptid = pid_to_ptid (pid);
5441 }
5442 break;
5443 }
5444
5445 if (non_stop && ptid_equal (event->ptid, null_ptid))
5446 error (_("No process or thread specified in stop reply: %s"), buf);
5447 }
5448
5449 /* When the stub wants to tell GDB about a new stop reply, it sends a
5450 stop notification (%Stop). Those can come it at any time, hence,
5451 we have to make sure that any pending putpkt/getpkt sequence we're
5452 making is finished, before querying the stub for more events with
5453 vStopped. E.g., if we started a vStopped sequence immediatelly
5454 upon receiving the %Stop notification, something like this could
5455 happen:
5456
5457 1.1) --> Hg 1
5458 1.2) <-- OK
5459 1.3) --> g
5460 1.4) <-- %Stop
5461 1.5) --> vStopped
5462 1.6) <-- (registers reply to step #1.3)
5463
5464 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5465 query.
5466
5467 To solve this, whenever we parse a %Stop notification sucessfully,
5468 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5469 doing whatever we were doing:
5470
5471 2.1) --> Hg 1
5472 2.2) <-- OK
5473 2.3) --> g
5474 2.4) <-- %Stop
5475 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5476 2.5) <-- (registers reply to step #2.3)
5477
5478 Eventualy after step #2.5, we return to the event loop, which
5479 notices there's an event on the
5480 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5481 associated callback --- the function below. At this point, we're
5482 always safe to start a vStopped sequence. :
5483
5484 2.6) --> vStopped
5485 2.7) <-- T05 thread:2
5486 2.8) --> vStopped
5487 2.9) --> OK
5488 */
5489
5490 static void
5491 remote_get_pending_stop_replies (void)
5492 {
5493 struct remote_state *rs = get_remote_state ();
5494
5495 if (pending_stop_reply)
5496 {
5497 /* acknowledge */
5498 putpkt ("vStopped");
5499
5500 /* Now we can rely on it. */
5501 push_stop_reply (pending_stop_reply);
5502 pending_stop_reply = NULL;
5503
5504 while (1)
5505 {
5506 getpkt (&rs->buf, &rs->buf_size, 0);
5507 if (strcmp (rs->buf, "OK") == 0)
5508 break;
5509 else
5510 {
5511 struct cleanup *old_chain;
5512 struct stop_reply *stop_reply = stop_reply_xmalloc ();
5513
5514 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5515 remote_parse_stop_reply (rs->buf, stop_reply);
5516
5517 /* acknowledge */
5518 putpkt ("vStopped");
5519
5520 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
5521 {
5522 /* Now we can rely on it. */
5523 discard_cleanups (old_chain);
5524 push_stop_reply (stop_reply);
5525 }
5526 else
5527 /* We got an unknown stop reply. */
5528 do_cleanups (old_chain);
5529 }
5530 }
5531 }
5532 }
5533
5534
5535 /* Called when it is decided that STOP_REPLY holds the info of the
5536 event that is to be returned to the core. This function always
5537 destroys STOP_REPLY. */
5538
5539 static ptid_t
5540 process_stop_reply (struct stop_reply *stop_reply,
5541 struct target_waitstatus *status)
5542 {
5543 ptid_t ptid;
5544
5545 *status = stop_reply->ws;
5546 ptid = stop_reply->ptid;
5547
5548 /* If no thread/process was reported by the stub, assume the current
5549 inferior. */
5550 if (ptid_equal (ptid, null_ptid))
5551 ptid = inferior_ptid;
5552
5553 if (status->kind != TARGET_WAITKIND_EXITED
5554 && status->kind != TARGET_WAITKIND_SIGNALLED)
5555 {
5556 /* Expedited registers. */
5557 if (stop_reply->regcache)
5558 {
5559 struct regcache *regcache
5560 = get_thread_arch_regcache (ptid, target_gdbarch);
5561 cached_reg_t *reg;
5562 int ix;
5563
5564 for (ix = 0;
5565 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5566 ix++)
5567 regcache_raw_supply (regcache, reg->num, reg->data);
5568 VEC_free (cached_reg_t, stop_reply->regcache);
5569 }
5570
5571 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5572 remote_watch_data_address = stop_reply->watch_data_address;
5573
5574 remote_notice_new_inferior (ptid, 0);
5575 demand_private_info (ptid)->core = stop_reply->core;
5576 }
5577
5578 stop_reply_xfree (stop_reply);
5579 return ptid;
5580 }
5581
5582 /* The non-stop mode version of target_wait. */
5583
5584 static ptid_t
5585 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5586 {
5587 struct remote_state *rs = get_remote_state ();
5588 struct stop_reply *stop_reply;
5589 int ret;
5590
5591 /* If in non-stop mode, get out of getpkt even if a
5592 notification is received. */
5593
5594 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5595 0 /* forever */);
5596 while (1)
5597 {
5598 if (ret != -1)
5599 switch (rs->buf[0])
5600 {
5601 case 'E': /* Error of some sort. */
5602 /* We're out of sync with the target now. Did it continue
5603 or not? We can't tell which thread it was in non-stop,
5604 so just ignore this. */
5605 warning (_("Remote failure reply: %s"), rs->buf);
5606 break;
5607 case 'O': /* Console output. */
5608 remote_console_output (rs->buf + 1);
5609 break;
5610 default:
5611 warning (_("Invalid remote reply: %s"), rs->buf);
5612 break;
5613 }
5614
5615 /* Acknowledge a pending stop reply that may have arrived in the
5616 mean time. */
5617 if (pending_stop_reply != NULL)
5618 remote_get_pending_stop_replies ();
5619
5620 /* If indeed we noticed a stop reply, we're done. */
5621 stop_reply = queued_stop_reply (ptid);
5622 if (stop_reply != NULL)
5623 return process_stop_reply (stop_reply, status);
5624
5625 /* Still no event. If we're just polling for an event, then
5626 return to the event loop. */
5627 if (options & TARGET_WNOHANG)
5628 {
5629 status->kind = TARGET_WAITKIND_IGNORE;
5630 return minus_one_ptid;
5631 }
5632
5633 /* Otherwise do a blocking wait. */
5634 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5635 1 /* forever */);
5636 }
5637 }
5638
5639 /* Wait until the remote machine stops, then return, storing status in
5640 STATUS just as `wait' would. */
5641
5642 static ptid_t
5643 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5644 {
5645 struct remote_state *rs = get_remote_state ();
5646 ptid_t event_ptid = null_ptid;
5647 char *buf;
5648 struct stop_reply *stop_reply;
5649
5650 again:
5651
5652 status->kind = TARGET_WAITKIND_IGNORE;
5653 status->value.integer = 0;
5654
5655 stop_reply = queued_stop_reply (ptid);
5656 if (stop_reply != NULL)
5657 return process_stop_reply (stop_reply, status);
5658
5659 if (rs->cached_wait_status)
5660 /* Use the cached wait status, but only once. */
5661 rs->cached_wait_status = 0;
5662 else
5663 {
5664 int ret;
5665
5666 if (!target_is_async_p ())
5667 {
5668 ofunc = signal (SIGINT, remote_interrupt);
5669 /* If the user hit C-c before this packet, or between packets,
5670 pretend that it was hit right here. */
5671 if (quit_flag)
5672 {
5673 quit_flag = 0;
5674 remote_interrupt (SIGINT);
5675 }
5676 }
5677
5678 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5679 _never_ wait for ever -> test on target_is_async_p().
5680 However, before we do that we need to ensure that the caller
5681 knows how to take the target into/out of async mode. */
5682 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5683 if (!target_is_async_p ())
5684 signal (SIGINT, ofunc);
5685 }
5686
5687 buf = rs->buf;
5688
5689 remote_stopped_by_watchpoint_p = 0;
5690
5691 /* We got something. */
5692 rs->waiting_for_stop_reply = 0;
5693
5694 /* Assume that the target has acknowledged Ctrl-C unless we receive
5695 an 'F' or 'O' packet. */
5696 if (buf[0] != 'F' && buf[0] != 'O')
5697 rs->ctrlc_pending_p = 0;
5698
5699 switch (buf[0])
5700 {
5701 case 'E': /* Error of some sort. */
5702 /* We're out of sync with the target now. Did it continue or
5703 not? Not is more likely, so report a stop. */
5704 warning (_("Remote failure reply: %s"), buf);
5705 status->kind = TARGET_WAITKIND_STOPPED;
5706 status->value.sig = TARGET_SIGNAL_0;
5707 break;
5708 case 'F': /* File-I/O request. */
5709 remote_fileio_request (buf, rs->ctrlc_pending_p);
5710 rs->ctrlc_pending_p = 0;
5711 break;
5712 case 'T': case 'S': case 'X': case 'W':
5713 {
5714 struct stop_reply *stop_reply;
5715 struct cleanup *old_chain;
5716
5717 stop_reply = stop_reply_xmalloc ();
5718 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5719 remote_parse_stop_reply (buf, stop_reply);
5720 discard_cleanups (old_chain);
5721 event_ptid = process_stop_reply (stop_reply, status);
5722 break;
5723 }
5724 case 'O': /* Console output. */
5725 remote_console_output (buf + 1);
5726
5727 /* The target didn't really stop; keep waiting. */
5728 rs->waiting_for_stop_reply = 1;
5729
5730 break;
5731 case '\0':
5732 if (last_sent_signal != TARGET_SIGNAL_0)
5733 {
5734 /* Zero length reply means that we tried 'S' or 'C' and the
5735 remote system doesn't support it. */
5736 target_terminal_ours_for_output ();
5737 printf_filtered
5738 ("Can't send signals to this remote system. %s not sent.\n",
5739 target_signal_to_name (last_sent_signal));
5740 last_sent_signal = TARGET_SIGNAL_0;
5741 target_terminal_inferior ();
5742
5743 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5744 putpkt ((char *) buf);
5745
5746 /* We just told the target to resume, so a stop reply is in
5747 order. */
5748 rs->waiting_for_stop_reply = 1;
5749 break;
5750 }
5751 /* else fallthrough */
5752 default:
5753 warning (_("Invalid remote reply: %s"), buf);
5754 /* Keep waiting. */
5755 rs->waiting_for_stop_reply = 1;
5756 break;
5757 }
5758
5759 if (status->kind == TARGET_WAITKIND_IGNORE)
5760 {
5761 /* Nothing interesting happened. If we're doing a non-blocking
5762 poll, we're done. Otherwise, go back to waiting. */
5763 if (options & TARGET_WNOHANG)
5764 return minus_one_ptid;
5765 else
5766 goto again;
5767 }
5768 else if (status->kind != TARGET_WAITKIND_EXITED
5769 && status->kind != TARGET_WAITKIND_SIGNALLED)
5770 {
5771 if (!ptid_equal (event_ptid, null_ptid))
5772 record_currthread (event_ptid);
5773 else
5774 event_ptid = inferior_ptid;
5775 }
5776 else
5777 /* A process exit. Invalidate our notion of current thread. */
5778 record_currthread (minus_one_ptid);
5779
5780 return event_ptid;
5781 }
5782
5783 /* Wait until the remote machine stops, then return, storing status in
5784 STATUS just as `wait' would. */
5785
5786 static ptid_t
5787 remote_wait (struct target_ops *ops,
5788 ptid_t ptid, struct target_waitstatus *status, int options)
5789 {
5790 ptid_t event_ptid;
5791
5792 if (non_stop)
5793 event_ptid = remote_wait_ns (ptid, status, options);
5794 else
5795 event_ptid = remote_wait_as (ptid, status, options);
5796
5797 if (target_can_async_p ())
5798 {
5799 /* If there are are events left in the queue tell the event loop
5800 to return here. */
5801 if (stop_reply_queue)
5802 mark_async_event_handler (remote_async_inferior_event_token);
5803 }
5804
5805 return event_ptid;
5806 }
5807
5808 /* Fetch a single register using a 'p' packet. */
5809
5810 static int
5811 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5812 {
5813 struct remote_state *rs = get_remote_state ();
5814 char *buf, *p;
5815 char regp[MAX_REGISTER_SIZE];
5816 int i;
5817
5818 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5819 return 0;
5820
5821 if (reg->pnum == -1)
5822 return 0;
5823
5824 p = rs->buf;
5825 *p++ = 'p';
5826 p += hexnumstr (p, reg->pnum);
5827 *p++ = '\0';
5828 putpkt (rs->buf);
5829 getpkt (&rs->buf, &rs->buf_size, 0);
5830
5831 buf = rs->buf;
5832
5833 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5834 {
5835 case PACKET_OK:
5836 break;
5837 case PACKET_UNKNOWN:
5838 return 0;
5839 case PACKET_ERROR:
5840 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5841 gdbarch_register_name (get_regcache_arch (regcache),
5842 reg->regnum),
5843 buf);
5844 }
5845
5846 /* If this register is unfetchable, tell the regcache. */
5847 if (buf[0] == 'x')
5848 {
5849 regcache_raw_supply (regcache, reg->regnum, NULL);
5850 return 1;
5851 }
5852
5853 /* Otherwise, parse and supply the value. */
5854 p = buf;
5855 i = 0;
5856 while (p[0] != 0)
5857 {
5858 if (p[1] == 0)
5859 error (_("fetch_register_using_p: early buf termination"));
5860
5861 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5862 p += 2;
5863 }
5864 regcache_raw_supply (regcache, reg->regnum, regp);
5865 return 1;
5866 }
5867
5868 /* Fetch the registers included in the target's 'g' packet. */
5869
5870 static int
5871 send_g_packet (void)
5872 {
5873 struct remote_state *rs = get_remote_state ();
5874 int buf_len;
5875
5876 xsnprintf (rs->buf, get_remote_packet_size (), "g");
5877 remote_send (&rs->buf, &rs->buf_size);
5878
5879 /* We can get out of synch in various cases. If the first character
5880 in the buffer is not a hex character, assume that has happened
5881 and try to fetch another packet to read. */
5882 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5883 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5884 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5885 && rs->buf[0] != 'x') /* New: unavailable register value. */
5886 {
5887 if (remote_debug)
5888 fprintf_unfiltered (gdb_stdlog,
5889 "Bad register packet; fetching a new packet\n");
5890 getpkt (&rs->buf, &rs->buf_size, 0);
5891 }
5892
5893 buf_len = strlen (rs->buf);
5894
5895 /* Sanity check the received packet. */
5896 if (buf_len % 2 != 0)
5897 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5898
5899 return buf_len / 2;
5900 }
5901
5902 static void
5903 process_g_packet (struct regcache *regcache)
5904 {
5905 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5906 struct remote_state *rs = get_remote_state ();
5907 struct remote_arch_state *rsa = get_remote_arch_state ();
5908 int i, buf_len;
5909 char *p;
5910 char *regs;
5911
5912 buf_len = strlen (rs->buf);
5913
5914 /* Further sanity checks, with knowledge of the architecture. */
5915 if (buf_len > 2 * rsa->sizeof_g_packet)
5916 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5917
5918 /* Save the size of the packet sent to us by the target. It is used
5919 as a heuristic when determining the max size of packets that the
5920 target can safely receive. */
5921 if (rsa->actual_register_packet_size == 0)
5922 rsa->actual_register_packet_size = buf_len;
5923
5924 /* If this is smaller than we guessed the 'g' packet would be,
5925 update our records. A 'g' reply that doesn't include a register's
5926 value implies either that the register is not available, or that
5927 the 'p' packet must be used. */
5928 if (buf_len < 2 * rsa->sizeof_g_packet)
5929 {
5930 rsa->sizeof_g_packet = buf_len / 2;
5931
5932 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5933 {
5934 if (rsa->regs[i].pnum == -1)
5935 continue;
5936
5937 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5938 rsa->regs[i].in_g_packet = 0;
5939 else
5940 rsa->regs[i].in_g_packet = 1;
5941 }
5942 }
5943
5944 regs = alloca (rsa->sizeof_g_packet);
5945
5946 /* Unimplemented registers read as all bits zero. */
5947 memset (regs, 0, rsa->sizeof_g_packet);
5948
5949 /* Reply describes registers byte by byte, each byte encoded as two
5950 hex characters. Suck them all up, then supply them to the
5951 register cacheing/storage mechanism. */
5952
5953 p = rs->buf;
5954 for (i = 0; i < rsa->sizeof_g_packet; i++)
5955 {
5956 if (p[0] == 0 || p[1] == 0)
5957 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5958 internal_error (__FILE__, __LINE__,
5959 _("unexpected end of 'g' packet reply"));
5960
5961 if (p[0] == 'x' && p[1] == 'x')
5962 regs[i] = 0; /* 'x' */
5963 else
5964 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5965 p += 2;
5966 }
5967
5968 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5969 {
5970 struct packet_reg *r = &rsa->regs[i];
5971
5972 if (r->in_g_packet)
5973 {
5974 if (r->offset * 2 >= strlen (rs->buf))
5975 /* This shouldn't happen - we adjusted in_g_packet above. */
5976 internal_error (__FILE__, __LINE__,
5977 _("unexpected end of 'g' packet reply"));
5978 else if (rs->buf[r->offset * 2] == 'x')
5979 {
5980 gdb_assert (r->offset * 2 < strlen (rs->buf));
5981 /* The register isn't available, mark it as such (at
5982 the same time setting the value to zero). */
5983 regcache_raw_supply (regcache, r->regnum, NULL);
5984 }
5985 else
5986 regcache_raw_supply (regcache, r->regnum,
5987 regs + r->offset);
5988 }
5989 }
5990 }
5991
5992 static void
5993 fetch_registers_using_g (struct regcache *regcache)
5994 {
5995 send_g_packet ();
5996 process_g_packet (regcache);
5997 }
5998
5999 /* Make the remote selected traceframe match GDB's selected
6000 traceframe. */
6001
6002 static void
6003 set_remote_traceframe (void)
6004 {
6005 int newnum;
6006
6007 if (remote_traceframe_number == get_traceframe_number ())
6008 return;
6009
6010 /* Avoid recursion, remote_trace_find calls us again. */
6011 remote_traceframe_number = get_traceframe_number ();
6012
6013 newnum = target_trace_find (tfind_number,
6014 get_traceframe_number (), 0, 0, NULL);
6015
6016 /* Should not happen. If it does, all bets are off. */
6017 if (newnum != get_traceframe_number ())
6018 warning (_("could not set remote traceframe"));
6019 }
6020
6021 static void
6022 remote_fetch_registers (struct target_ops *ops,
6023 struct regcache *regcache, int regnum)
6024 {
6025 struct remote_arch_state *rsa = get_remote_arch_state ();
6026 int i;
6027
6028 set_remote_traceframe ();
6029 set_general_thread (inferior_ptid);
6030
6031 if (regnum >= 0)
6032 {
6033 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6034
6035 gdb_assert (reg != NULL);
6036
6037 /* If this register might be in the 'g' packet, try that first -
6038 we are likely to read more than one register. If this is the
6039 first 'g' packet, we might be overly optimistic about its
6040 contents, so fall back to 'p'. */
6041 if (reg->in_g_packet)
6042 {
6043 fetch_registers_using_g (regcache);
6044 if (reg->in_g_packet)
6045 return;
6046 }
6047
6048 if (fetch_register_using_p (regcache, reg))
6049 return;
6050
6051 /* This register is not available. */
6052 regcache_raw_supply (regcache, reg->regnum, NULL);
6053
6054 return;
6055 }
6056
6057 fetch_registers_using_g (regcache);
6058
6059 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6060 if (!rsa->regs[i].in_g_packet)
6061 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
6062 {
6063 /* This register is not available. */
6064 regcache_raw_supply (regcache, i, NULL);
6065 }
6066 }
6067
6068 /* Prepare to store registers. Since we may send them all (using a
6069 'G' request), we have to read out the ones we don't want to change
6070 first. */
6071
6072 static void
6073 remote_prepare_to_store (struct regcache *regcache)
6074 {
6075 struct remote_arch_state *rsa = get_remote_arch_state ();
6076 int i;
6077 gdb_byte buf[MAX_REGISTER_SIZE];
6078
6079 /* Make sure the entire registers array is valid. */
6080 switch (remote_protocol_packets[PACKET_P].support)
6081 {
6082 case PACKET_DISABLE:
6083 case PACKET_SUPPORT_UNKNOWN:
6084 /* Make sure all the necessary registers are cached. */
6085 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6086 if (rsa->regs[i].in_g_packet)
6087 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
6088 break;
6089 case PACKET_ENABLE:
6090 break;
6091 }
6092 }
6093
6094 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
6095 packet was not recognized. */
6096
6097 static int
6098 store_register_using_P (const struct regcache *regcache,
6099 struct packet_reg *reg)
6100 {
6101 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6102 struct remote_state *rs = get_remote_state ();
6103 /* Try storing a single register. */
6104 char *buf = rs->buf;
6105 gdb_byte regp[MAX_REGISTER_SIZE];
6106 char *p;
6107
6108 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6109 return 0;
6110
6111 if (reg->pnum == -1)
6112 return 0;
6113
6114 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6115 p = buf + strlen (buf);
6116 regcache_raw_collect (regcache, reg->regnum, regp);
6117 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6118 putpkt (rs->buf);
6119 getpkt (&rs->buf, &rs->buf_size, 0);
6120
6121 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6122 {
6123 case PACKET_OK:
6124 return 1;
6125 case PACKET_ERROR:
6126 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6127 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6128 case PACKET_UNKNOWN:
6129 return 0;
6130 default:
6131 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6132 }
6133 }
6134
6135 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6136 contents of the register cache buffer. FIXME: ignores errors. */
6137
6138 static void
6139 store_registers_using_G (const struct regcache *regcache)
6140 {
6141 struct remote_state *rs = get_remote_state ();
6142 struct remote_arch_state *rsa = get_remote_arch_state ();
6143 gdb_byte *regs;
6144 char *p;
6145
6146 /* Extract all the registers in the regcache copying them into a
6147 local buffer. */
6148 {
6149 int i;
6150
6151 regs = alloca (rsa->sizeof_g_packet);
6152 memset (regs, 0, rsa->sizeof_g_packet);
6153 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6154 {
6155 struct packet_reg *r = &rsa->regs[i];
6156
6157 if (r->in_g_packet)
6158 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6159 }
6160 }
6161
6162 /* Command describes registers byte by byte,
6163 each byte encoded as two hex characters. */
6164 p = rs->buf;
6165 *p++ = 'G';
6166 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6167 updated. */
6168 bin2hex (regs, p, rsa->sizeof_g_packet);
6169 putpkt (rs->buf);
6170 getpkt (&rs->buf, &rs->buf_size, 0);
6171 if (packet_check_result (rs->buf) == PACKET_ERROR)
6172 error (_("Could not write registers; remote failure reply '%s'"),
6173 rs->buf);
6174 }
6175
6176 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6177 of the register cache buffer. FIXME: ignores errors. */
6178
6179 static void
6180 remote_store_registers (struct target_ops *ops,
6181 struct regcache *regcache, int regnum)
6182 {
6183 struct remote_arch_state *rsa = get_remote_arch_state ();
6184 int i;
6185
6186 set_remote_traceframe ();
6187 set_general_thread (inferior_ptid);
6188
6189 if (regnum >= 0)
6190 {
6191 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6192
6193 gdb_assert (reg != NULL);
6194
6195 /* Always prefer to store registers using the 'P' packet if
6196 possible; we often change only a small number of registers.
6197 Sometimes we change a larger number; we'd need help from a
6198 higher layer to know to use 'G'. */
6199 if (store_register_using_P (regcache, reg))
6200 return;
6201
6202 /* For now, don't complain if we have no way to write the
6203 register. GDB loses track of unavailable registers too
6204 easily. Some day, this may be an error. We don't have
6205 any way to read the register, either... */
6206 if (!reg->in_g_packet)
6207 return;
6208
6209 store_registers_using_G (regcache);
6210 return;
6211 }
6212
6213 store_registers_using_G (regcache);
6214
6215 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6216 if (!rsa->regs[i].in_g_packet)
6217 if (!store_register_using_P (regcache, &rsa->regs[i]))
6218 /* See above for why we do not issue an error here. */
6219 continue;
6220 }
6221 \f
6222
6223 /* Return the number of hex digits in num. */
6224
6225 static int
6226 hexnumlen (ULONGEST num)
6227 {
6228 int i;
6229
6230 for (i = 0; num != 0; i++)
6231 num >>= 4;
6232
6233 return max (i, 1);
6234 }
6235
6236 /* Set BUF to the minimum number of hex digits representing NUM. */
6237
6238 static int
6239 hexnumstr (char *buf, ULONGEST num)
6240 {
6241 int len = hexnumlen (num);
6242
6243 return hexnumnstr (buf, num, len);
6244 }
6245
6246
6247 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6248
6249 static int
6250 hexnumnstr (char *buf, ULONGEST num, int width)
6251 {
6252 int i;
6253
6254 buf[width] = '\0';
6255
6256 for (i = width - 1; i >= 0; i--)
6257 {
6258 buf[i] = "0123456789abcdef"[(num & 0xf)];
6259 num >>= 4;
6260 }
6261
6262 return width;
6263 }
6264
6265 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6266
6267 static CORE_ADDR
6268 remote_address_masked (CORE_ADDR addr)
6269 {
6270 int address_size = remote_address_size;
6271
6272 /* If "remoteaddresssize" was not set, default to target address size. */
6273 if (!address_size)
6274 address_size = gdbarch_addr_bit (target_gdbarch);
6275
6276 if (address_size > 0
6277 && address_size < (sizeof (ULONGEST) * 8))
6278 {
6279 /* Only create a mask when that mask can safely be constructed
6280 in a ULONGEST variable. */
6281 ULONGEST mask = 1;
6282
6283 mask = (mask << address_size) - 1;
6284 addr &= mask;
6285 }
6286 return addr;
6287 }
6288
6289 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6290 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6291 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6292 (which may be more than *OUT_LEN due to escape characters). The
6293 total number of bytes in the output buffer will be at most
6294 OUT_MAXLEN. */
6295
6296 static int
6297 remote_escape_output (const gdb_byte *buffer, int len,
6298 gdb_byte *out_buf, int *out_len,
6299 int out_maxlen)
6300 {
6301 int input_index, output_index;
6302
6303 output_index = 0;
6304 for (input_index = 0; input_index < len; input_index++)
6305 {
6306 gdb_byte b = buffer[input_index];
6307
6308 if (b == '$' || b == '#' || b == '}')
6309 {
6310 /* These must be escaped. */
6311 if (output_index + 2 > out_maxlen)
6312 break;
6313 out_buf[output_index++] = '}';
6314 out_buf[output_index++] = b ^ 0x20;
6315 }
6316 else
6317 {
6318 if (output_index + 1 > out_maxlen)
6319 break;
6320 out_buf[output_index++] = b;
6321 }
6322 }
6323
6324 *out_len = input_index;
6325 return output_index;
6326 }
6327
6328 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6329 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6330 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6331
6332 This function reverses remote_escape_output. It allows more
6333 escaped characters than that function does, in particular because
6334 '*' must be escaped to avoid the run-length encoding processing
6335 in reading packets. */
6336
6337 static int
6338 remote_unescape_input (const gdb_byte *buffer, int len,
6339 gdb_byte *out_buf, int out_maxlen)
6340 {
6341 int input_index, output_index;
6342 int escaped;
6343
6344 output_index = 0;
6345 escaped = 0;
6346 for (input_index = 0; input_index < len; input_index++)
6347 {
6348 gdb_byte b = buffer[input_index];
6349
6350 if (output_index + 1 > out_maxlen)
6351 {
6352 warning (_("Received too much data from remote target;"
6353 " ignoring overflow."));
6354 return output_index;
6355 }
6356
6357 if (escaped)
6358 {
6359 out_buf[output_index++] = b ^ 0x20;
6360 escaped = 0;
6361 }
6362 else if (b == '}')
6363 escaped = 1;
6364 else
6365 out_buf[output_index++] = b;
6366 }
6367
6368 if (escaped)
6369 error (_("Unmatched escape character in target response."));
6370
6371 return output_index;
6372 }
6373
6374 /* Determine whether the remote target supports binary downloading.
6375 This is accomplished by sending a no-op memory write of zero length
6376 to the target at the specified address. It does not suffice to send
6377 the whole packet, since many stubs strip the eighth bit and
6378 subsequently compute a wrong checksum, which causes real havoc with
6379 remote_write_bytes.
6380
6381 NOTE: This can still lose if the serial line is not eight-bit
6382 clean. In cases like this, the user should clear "remote
6383 X-packet". */
6384
6385 static void
6386 check_binary_download (CORE_ADDR addr)
6387 {
6388 struct remote_state *rs = get_remote_state ();
6389
6390 switch (remote_protocol_packets[PACKET_X].support)
6391 {
6392 case PACKET_DISABLE:
6393 break;
6394 case PACKET_ENABLE:
6395 break;
6396 case PACKET_SUPPORT_UNKNOWN:
6397 {
6398 char *p;
6399
6400 p = rs->buf;
6401 *p++ = 'X';
6402 p += hexnumstr (p, (ULONGEST) addr);
6403 *p++ = ',';
6404 p += hexnumstr (p, (ULONGEST) 0);
6405 *p++ = ':';
6406 *p = '\0';
6407
6408 putpkt_binary (rs->buf, (int) (p - rs->buf));
6409 getpkt (&rs->buf, &rs->buf_size, 0);
6410
6411 if (rs->buf[0] == '\0')
6412 {
6413 if (remote_debug)
6414 fprintf_unfiltered (gdb_stdlog,
6415 "binary downloading NOT "
6416 "supported by target\n");
6417 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6418 }
6419 else
6420 {
6421 if (remote_debug)
6422 fprintf_unfiltered (gdb_stdlog,
6423 "binary downloading supported by target\n");
6424 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6425 }
6426 break;
6427 }
6428 }
6429 }
6430
6431 /* Write memory data directly to the remote machine.
6432 This does not inform the data cache; the data cache uses this.
6433 HEADER is the starting part of the packet.
6434 MEMADDR is the address in the remote memory space.
6435 MYADDR is the address of the buffer in our space.
6436 LEN is the number of bytes.
6437 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6438 should send data as binary ('X'), or hex-encoded ('M').
6439
6440 The function creates packet of the form
6441 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6442
6443 where encoding of <DATA> is termined by PACKET_FORMAT.
6444
6445 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6446 are omitted.
6447
6448 Returns the number of bytes transferred, or 0 (setting errno) for
6449 error. Only transfer a single packet. */
6450
6451 static int
6452 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6453 const gdb_byte *myaddr, int len,
6454 char packet_format, int use_length)
6455 {
6456 struct remote_state *rs = get_remote_state ();
6457 char *p;
6458 char *plen = NULL;
6459 int plenlen = 0;
6460 int todo;
6461 int nr_bytes;
6462 int payload_size;
6463 int payload_length;
6464 int header_length;
6465
6466 if (packet_format != 'X' && packet_format != 'M')
6467 internal_error (__FILE__, __LINE__,
6468 _("remote_write_bytes_aux: bad packet format"));
6469
6470 if (len <= 0)
6471 return 0;
6472
6473 payload_size = get_memory_write_packet_size ();
6474
6475 /* The packet buffer will be large enough for the payload;
6476 get_memory_packet_size ensures this. */
6477 rs->buf[0] = '\0';
6478
6479 /* Compute the size of the actual payload by subtracting out the
6480 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6481
6482 payload_size -= strlen ("$,:#NN");
6483 if (!use_length)
6484 /* The comma won't be used. */
6485 payload_size += 1;
6486 header_length = strlen (header);
6487 payload_size -= header_length;
6488 payload_size -= hexnumlen (memaddr);
6489
6490 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6491
6492 strcat (rs->buf, header);
6493 p = rs->buf + strlen (header);
6494
6495 /* Compute a best guess of the number of bytes actually transfered. */
6496 if (packet_format == 'X')
6497 {
6498 /* Best guess at number of bytes that will fit. */
6499 todo = min (len, payload_size);
6500 if (use_length)
6501 payload_size -= hexnumlen (todo);
6502 todo = min (todo, payload_size);
6503 }
6504 else
6505 {
6506 /* Num bytes that will fit. */
6507 todo = min (len, payload_size / 2);
6508 if (use_length)
6509 payload_size -= hexnumlen (todo);
6510 todo = min (todo, payload_size / 2);
6511 }
6512
6513 if (todo <= 0)
6514 internal_error (__FILE__, __LINE__,
6515 _("minimum packet size too small to write data"));
6516
6517 /* If we already need another packet, then try to align the end
6518 of this packet to a useful boundary. */
6519 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6520 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6521
6522 /* Append "<memaddr>". */
6523 memaddr = remote_address_masked (memaddr);
6524 p += hexnumstr (p, (ULONGEST) memaddr);
6525
6526 if (use_length)
6527 {
6528 /* Append ",". */
6529 *p++ = ',';
6530
6531 /* Append <len>. Retain the location/size of <len>. It may need to
6532 be adjusted once the packet body has been created. */
6533 plen = p;
6534 plenlen = hexnumstr (p, (ULONGEST) todo);
6535 p += plenlen;
6536 }
6537
6538 /* Append ":". */
6539 *p++ = ':';
6540 *p = '\0';
6541
6542 /* Append the packet body. */
6543 if (packet_format == 'X')
6544 {
6545 /* Binary mode. Send target system values byte by byte, in
6546 increasing byte addresses. Only escape certain critical
6547 characters. */
6548 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6549 payload_size);
6550
6551 /* If not all TODO bytes fit, then we'll need another packet. Make
6552 a second try to keep the end of the packet aligned. Don't do
6553 this if the packet is tiny. */
6554 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6555 {
6556 int new_nr_bytes;
6557
6558 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6559 - memaddr);
6560 if (new_nr_bytes != nr_bytes)
6561 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6562 p, &nr_bytes,
6563 payload_size);
6564 }
6565
6566 p += payload_length;
6567 if (use_length && nr_bytes < todo)
6568 {
6569 /* Escape chars have filled up the buffer prematurely,
6570 and we have actually sent fewer bytes than planned.
6571 Fix-up the length field of the packet. Use the same
6572 number of characters as before. */
6573 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6574 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6575 }
6576 }
6577 else
6578 {
6579 /* Normal mode: Send target system values byte by byte, in
6580 increasing byte addresses. Each byte is encoded as a two hex
6581 value. */
6582 nr_bytes = bin2hex (myaddr, p, todo);
6583 p += 2 * nr_bytes;
6584 }
6585
6586 putpkt_binary (rs->buf, (int) (p - rs->buf));
6587 getpkt (&rs->buf, &rs->buf_size, 0);
6588
6589 if (rs->buf[0] == 'E')
6590 {
6591 /* There is no correspondance between what the remote protocol
6592 uses for errors and errno codes. We would like a cleaner way
6593 of representing errors (big enough to include errno codes,
6594 bfd_error codes, and others). But for now just return EIO. */
6595 errno = EIO;
6596 return 0;
6597 }
6598
6599 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6600 fewer bytes than we'd planned. */
6601 return nr_bytes;
6602 }
6603
6604 /* Write memory data directly to the remote machine.
6605 This does not inform the data cache; the data cache uses this.
6606 MEMADDR is the address in the remote memory space.
6607 MYADDR is the address of the buffer in our space.
6608 LEN is the number of bytes.
6609
6610 Returns number of bytes transferred, or 0 (setting errno) for
6611 error. Only transfer a single packet. */
6612
6613 static int
6614 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
6615 {
6616 char *packet_format = 0;
6617
6618 /* Check whether the target supports binary download. */
6619 check_binary_download (memaddr);
6620
6621 switch (remote_protocol_packets[PACKET_X].support)
6622 {
6623 case PACKET_ENABLE:
6624 packet_format = "X";
6625 break;
6626 case PACKET_DISABLE:
6627 packet_format = "M";
6628 break;
6629 case PACKET_SUPPORT_UNKNOWN:
6630 internal_error (__FILE__, __LINE__,
6631 _("remote_write_bytes: bad internal state"));
6632 default:
6633 internal_error (__FILE__, __LINE__, _("bad switch"));
6634 }
6635
6636 return remote_write_bytes_aux (packet_format,
6637 memaddr, myaddr, len, packet_format[0], 1);
6638 }
6639
6640 /* Read memory data directly from the remote machine.
6641 This does not use the data cache; the data cache uses this.
6642 MEMADDR is the address in the remote memory space.
6643 MYADDR is the address of the buffer in our space.
6644 LEN is the number of bytes.
6645
6646 Returns number of bytes transferred, or 0 for error. */
6647
6648 static int
6649 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6650 {
6651 struct remote_state *rs = get_remote_state ();
6652 int max_buf_size; /* Max size of packet output buffer. */
6653 char *p;
6654 int todo;
6655 int i;
6656
6657 if (len <= 0)
6658 return 0;
6659
6660 max_buf_size = get_memory_read_packet_size ();
6661 /* The packet buffer will be large enough for the payload;
6662 get_memory_packet_size ensures this. */
6663
6664 /* Number if bytes that will fit. */
6665 todo = min (len, max_buf_size / 2);
6666
6667 /* Construct "m"<memaddr>","<len>". */
6668 memaddr = remote_address_masked (memaddr);
6669 p = rs->buf;
6670 *p++ = 'm';
6671 p += hexnumstr (p, (ULONGEST) memaddr);
6672 *p++ = ',';
6673 p += hexnumstr (p, (ULONGEST) todo);
6674 *p = '\0';
6675 putpkt (rs->buf);
6676 getpkt (&rs->buf, &rs->buf_size, 0);
6677 if (rs->buf[0] == 'E'
6678 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6679 && rs->buf[3] == '\0')
6680 {
6681 /* There is no correspondance between what the remote protocol
6682 uses for errors and errno codes. We would like a cleaner way
6683 of representing errors (big enough to include errno codes,
6684 bfd_error codes, and others). But for now just return
6685 EIO. */
6686 errno = EIO;
6687 return 0;
6688 }
6689 /* Reply describes memory byte by byte, each byte encoded as two hex
6690 characters. */
6691 p = rs->buf;
6692 i = hex2bin (p, myaddr, todo);
6693 /* Return what we have. Let higher layers handle partial reads. */
6694 return i;
6695 }
6696 \f
6697
6698 /* Remote notification handler. */
6699
6700 static void
6701 handle_notification (char *buf, size_t length)
6702 {
6703 if (strncmp (buf, "Stop:", 5) == 0)
6704 {
6705 if (pending_stop_reply)
6706 {
6707 /* We've already parsed the in-flight stop-reply, but the
6708 stub for some reason thought we didn't, possibly due to
6709 timeout on its side. Just ignore it. */
6710 if (remote_debug)
6711 fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6712 }
6713 else
6714 {
6715 struct cleanup *old_chain;
6716 struct stop_reply *reply = stop_reply_xmalloc ();
6717
6718 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6719
6720 remote_parse_stop_reply (buf + 5, reply);
6721
6722 discard_cleanups (old_chain);
6723
6724 /* Be careful to only set it after parsing, since an error
6725 may be thrown then. */
6726 pending_stop_reply = reply;
6727
6728 /* Notify the event loop there's a stop reply to acknowledge
6729 and that there may be more events to fetch. */
6730 mark_async_event_handler (remote_async_get_pending_events_token);
6731
6732 if (remote_debug)
6733 fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6734 }
6735 }
6736 else
6737 /* We ignore notifications we don't recognize, for compatibility
6738 with newer stubs. */
6739 ;
6740 }
6741
6742 \f
6743 /* Read or write LEN bytes from inferior memory at MEMADDR,
6744 transferring to or from debugger address BUFFER. Write to inferior
6745 if SHOULD_WRITE is nonzero. Returns length of data written or
6746 read; 0 for error. TARGET is unused. */
6747
6748 static int
6749 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6750 int should_write, struct mem_attrib *attrib,
6751 struct target_ops *target)
6752 {
6753 int res;
6754
6755 set_remote_traceframe ();
6756 set_general_thread (inferior_ptid);
6757
6758 if (should_write)
6759 res = remote_write_bytes (mem_addr, buffer, mem_len);
6760 else
6761 res = remote_read_bytes (mem_addr, buffer, mem_len);
6762
6763 return res;
6764 }
6765
6766 /* Sends a packet with content determined by the printf format string
6767 FORMAT and the remaining arguments, then gets the reply. Returns
6768 whether the packet was a success, a failure, or unknown. */
6769
6770 static enum packet_result
6771 remote_send_printf (const char *format, ...)
6772 {
6773 struct remote_state *rs = get_remote_state ();
6774 int max_size = get_remote_packet_size ();
6775 va_list ap;
6776
6777 va_start (ap, format);
6778
6779 rs->buf[0] = '\0';
6780 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6781 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
6782
6783 if (putpkt (rs->buf) < 0)
6784 error (_("Communication problem with target."));
6785
6786 rs->buf[0] = '\0';
6787 getpkt (&rs->buf, &rs->buf_size, 0);
6788
6789 return packet_check_result (rs->buf);
6790 }
6791
6792 static void
6793 restore_remote_timeout (void *p)
6794 {
6795 int value = *(int *)p;
6796
6797 remote_timeout = value;
6798 }
6799
6800 /* Flash writing can take quite some time. We'll set
6801 effectively infinite timeout for flash operations.
6802 In future, we'll need to decide on a better approach. */
6803 static const int remote_flash_timeout = 1000;
6804
6805 static void
6806 remote_flash_erase (struct target_ops *ops,
6807 ULONGEST address, LONGEST length)
6808 {
6809 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6810 int saved_remote_timeout = remote_timeout;
6811 enum packet_result ret;
6812 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6813 &saved_remote_timeout);
6814
6815 remote_timeout = remote_flash_timeout;
6816
6817 ret = remote_send_printf ("vFlashErase:%s,%s",
6818 phex (address, addr_size),
6819 phex (length, 4));
6820 switch (ret)
6821 {
6822 case PACKET_UNKNOWN:
6823 error (_("Remote target does not support flash erase"));
6824 case PACKET_ERROR:
6825 error (_("Error erasing flash with vFlashErase packet"));
6826 default:
6827 break;
6828 }
6829
6830 do_cleanups (back_to);
6831 }
6832
6833 static LONGEST
6834 remote_flash_write (struct target_ops *ops,
6835 ULONGEST address, LONGEST length,
6836 const gdb_byte *data)
6837 {
6838 int saved_remote_timeout = remote_timeout;
6839 int ret;
6840 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6841 &saved_remote_timeout);
6842
6843 remote_timeout = remote_flash_timeout;
6844 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6845 do_cleanups (back_to);
6846
6847 return ret;
6848 }
6849
6850 static void
6851 remote_flash_done (struct target_ops *ops)
6852 {
6853 int saved_remote_timeout = remote_timeout;
6854 int ret;
6855 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6856 &saved_remote_timeout);
6857
6858 remote_timeout = remote_flash_timeout;
6859 ret = remote_send_printf ("vFlashDone");
6860 do_cleanups (back_to);
6861
6862 switch (ret)
6863 {
6864 case PACKET_UNKNOWN:
6865 error (_("Remote target does not support vFlashDone"));
6866 case PACKET_ERROR:
6867 error (_("Error finishing flash operation"));
6868 default:
6869 break;
6870 }
6871 }
6872
6873 static void
6874 remote_files_info (struct target_ops *ignore)
6875 {
6876 puts_filtered ("Debugging a target over a serial line.\n");
6877 }
6878 \f
6879 /* Stuff for dealing with the packets which are part of this protocol.
6880 See comment at top of file for details. */
6881
6882 /* Read a single character from the remote end. */
6883
6884 static int
6885 readchar (int timeout)
6886 {
6887 int ch;
6888
6889 ch = serial_readchar (remote_desc, timeout);
6890
6891 if (ch >= 0)
6892 return ch;
6893
6894 switch ((enum serial_rc) ch)
6895 {
6896 case SERIAL_EOF:
6897 pop_target ();
6898 error (_("Remote connection closed"));
6899 /* no return */
6900 case SERIAL_ERROR:
6901 pop_target ();
6902 perror_with_name (_("Remote communication error. "
6903 "Target disconnected."));
6904 /* no return */
6905 case SERIAL_TIMEOUT:
6906 break;
6907 }
6908 return ch;
6909 }
6910
6911 /* Send the command in *BUF to the remote machine, and read the reply
6912 into *BUF. Report an error if we get an error reply. Resize
6913 *BUF using xrealloc if necessary to hold the result, and update
6914 *SIZEOF_BUF. */
6915
6916 static void
6917 remote_send (char **buf,
6918 long *sizeof_buf)
6919 {
6920 putpkt (*buf);
6921 getpkt (buf, sizeof_buf, 0);
6922
6923 if ((*buf)[0] == 'E')
6924 error (_("Remote failure reply: %s"), *buf);
6925 }
6926
6927 /* Return a pointer to an xmalloc'ed string representing an escaped
6928 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6929 etc. The caller is responsible for releasing the returned
6930 memory. */
6931
6932 static char *
6933 escape_buffer (const char *buf, int n)
6934 {
6935 struct cleanup *old_chain;
6936 struct ui_file *stb;
6937 char *str;
6938
6939 stb = mem_fileopen ();
6940 old_chain = make_cleanup_ui_file_delete (stb);
6941
6942 fputstrn_unfiltered (buf, n, 0, stb);
6943 str = ui_file_xstrdup (stb, NULL);
6944 do_cleanups (old_chain);
6945 return str;
6946 }
6947
6948 /* Display a null-terminated packet on stdout, for debugging, using C
6949 string notation. */
6950
6951 static void
6952 print_packet (char *buf)
6953 {
6954 puts_filtered ("\"");
6955 fputstr_filtered (buf, '"', gdb_stdout);
6956 puts_filtered ("\"");
6957 }
6958
6959 int
6960 putpkt (char *buf)
6961 {
6962 return putpkt_binary (buf, strlen (buf));
6963 }
6964
6965 /* Send a packet to the remote machine, with error checking. The data
6966 of the packet is in BUF. The string in BUF can be at most
6967 get_remote_packet_size () - 5 to account for the $, # and checksum,
6968 and for a possible /0 if we are debugging (remote_debug) and want
6969 to print the sent packet as a string. */
6970
6971 static int
6972 putpkt_binary (char *buf, int cnt)
6973 {
6974 struct remote_state *rs = get_remote_state ();
6975 int i;
6976 unsigned char csum = 0;
6977 char *buf2 = alloca (cnt + 6);
6978
6979 int ch;
6980 int tcount = 0;
6981 char *p;
6982
6983 /* Catch cases like trying to read memory or listing threads while
6984 we're waiting for a stop reply. The remote server wouldn't be
6985 ready to handle this request, so we'd hang and timeout. We don't
6986 have to worry about this in synchronous mode, because in that
6987 case it's not possible to issue a command while the target is
6988 running. This is not a problem in non-stop mode, because in that
6989 case, the stub is always ready to process serial input. */
6990 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6991 error (_("Cannot execute this command while the target is running."));
6992
6993 /* We're sending out a new packet. Make sure we don't look at a
6994 stale cached response. */
6995 rs->cached_wait_status = 0;
6996
6997 /* Copy the packet into buffer BUF2, encapsulating it
6998 and giving it a checksum. */
6999
7000 p = buf2;
7001 *p++ = '$';
7002
7003 for (i = 0; i < cnt; i++)
7004 {
7005 csum += buf[i];
7006 *p++ = buf[i];
7007 }
7008 *p++ = '#';
7009 *p++ = tohex ((csum >> 4) & 0xf);
7010 *p++ = tohex (csum & 0xf);
7011
7012 /* Send it over and over until we get a positive ack. */
7013
7014 while (1)
7015 {
7016 int started_error_output = 0;
7017
7018 if (remote_debug)
7019 {
7020 struct cleanup *old_chain;
7021 char *str;
7022
7023 *p = '\0';
7024 str = escape_buffer (buf2, p - buf2);
7025 old_chain = make_cleanup (xfree, str);
7026 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
7027 gdb_flush (gdb_stdlog);
7028 do_cleanups (old_chain);
7029 }
7030 if (serial_write (remote_desc, buf2, p - buf2))
7031 perror_with_name (_("putpkt: write failed"));
7032
7033 /* If this is a no acks version of the remote protocol, send the
7034 packet and move on. */
7035 if (rs->noack_mode)
7036 break;
7037
7038 /* Read until either a timeout occurs (-2) or '+' is read.
7039 Handle any notification that arrives in the mean time. */
7040 while (1)
7041 {
7042 ch = readchar (remote_timeout);
7043
7044 if (remote_debug)
7045 {
7046 switch (ch)
7047 {
7048 case '+':
7049 case '-':
7050 case SERIAL_TIMEOUT:
7051 case '$':
7052 case '%':
7053 if (started_error_output)
7054 {
7055 putchar_unfiltered ('\n');
7056 started_error_output = 0;
7057 }
7058 }
7059 }
7060
7061 switch (ch)
7062 {
7063 case '+':
7064 if (remote_debug)
7065 fprintf_unfiltered (gdb_stdlog, "Ack\n");
7066 return 1;
7067 case '-':
7068 if (remote_debug)
7069 fprintf_unfiltered (gdb_stdlog, "Nak\n");
7070 /* FALLTHROUGH */
7071 case SERIAL_TIMEOUT:
7072 tcount++;
7073 if (tcount > 3)
7074 return 0;
7075 break; /* Retransmit buffer. */
7076 case '$':
7077 {
7078 if (remote_debug)
7079 fprintf_unfiltered (gdb_stdlog,
7080 "Packet instead of Ack, ignoring it\n");
7081 /* It's probably an old response sent because an ACK
7082 was lost. Gobble up the packet and ack it so it
7083 doesn't get retransmitted when we resend this
7084 packet. */
7085 skip_frame ();
7086 serial_write (remote_desc, "+", 1);
7087 continue; /* Now, go look for +. */
7088 }
7089
7090 case '%':
7091 {
7092 int val;
7093
7094 /* If we got a notification, handle it, and go back to looking
7095 for an ack. */
7096 /* We've found the start of a notification. Now
7097 collect the data. */
7098 val = read_frame (&rs->buf, &rs->buf_size);
7099 if (val >= 0)
7100 {
7101 if (remote_debug)
7102 {
7103 struct cleanup *old_chain;
7104 char *str;
7105
7106 str = escape_buffer (rs->buf, val);
7107 old_chain = make_cleanup (xfree, str);
7108 fprintf_unfiltered (gdb_stdlog,
7109 " Notification received: %s\n",
7110 str);
7111 do_cleanups (old_chain);
7112 }
7113 handle_notification (rs->buf, val);
7114 /* We're in sync now, rewait for the ack. */
7115 tcount = 0;
7116 }
7117 else
7118 {
7119 if (remote_debug)
7120 {
7121 if (!started_error_output)
7122 {
7123 started_error_output = 1;
7124 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7125 }
7126 fputc_unfiltered (ch & 0177, gdb_stdlog);
7127 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7128 }
7129 }
7130 continue;
7131 }
7132 /* fall-through */
7133 default:
7134 if (remote_debug)
7135 {
7136 if (!started_error_output)
7137 {
7138 started_error_output = 1;
7139 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7140 }
7141 fputc_unfiltered (ch & 0177, gdb_stdlog);
7142 }
7143 continue;
7144 }
7145 break; /* Here to retransmit. */
7146 }
7147
7148 #if 0
7149 /* This is wrong. If doing a long backtrace, the user should be
7150 able to get out next time we call QUIT, without anything as
7151 violent as interrupt_query. If we want to provide a way out of
7152 here without getting to the next QUIT, it should be based on
7153 hitting ^C twice as in remote_wait. */
7154 if (quit_flag)
7155 {
7156 quit_flag = 0;
7157 interrupt_query ();
7158 }
7159 #endif
7160 }
7161 return 0;
7162 }
7163
7164 /* Come here after finding the start of a frame when we expected an
7165 ack. Do our best to discard the rest of this packet. */
7166
7167 static void
7168 skip_frame (void)
7169 {
7170 int c;
7171
7172 while (1)
7173 {
7174 c = readchar (remote_timeout);
7175 switch (c)
7176 {
7177 case SERIAL_TIMEOUT:
7178 /* Nothing we can do. */
7179 return;
7180 case '#':
7181 /* Discard the two bytes of checksum and stop. */
7182 c = readchar (remote_timeout);
7183 if (c >= 0)
7184 c = readchar (remote_timeout);
7185
7186 return;
7187 case '*': /* Run length encoding. */
7188 /* Discard the repeat count. */
7189 c = readchar (remote_timeout);
7190 if (c < 0)
7191 return;
7192 break;
7193 default:
7194 /* A regular character. */
7195 break;
7196 }
7197 }
7198 }
7199
7200 /* Come here after finding the start of the frame. Collect the rest
7201 into *BUF, verifying the checksum, length, and handling run-length
7202 compression. NUL terminate the buffer. If there is not enough room,
7203 expand *BUF using xrealloc.
7204
7205 Returns -1 on error, number of characters in buffer (ignoring the
7206 trailing NULL) on success. (could be extended to return one of the
7207 SERIAL status indications). */
7208
7209 static long
7210 read_frame (char **buf_p,
7211 long *sizeof_buf)
7212 {
7213 unsigned char csum;
7214 long bc;
7215 int c;
7216 char *buf = *buf_p;
7217 struct remote_state *rs = get_remote_state ();
7218
7219 csum = 0;
7220 bc = 0;
7221
7222 while (1)
7223 {
7224 c = readchar (remote_timeout);
7225 switch (c)
7226 {
7227 case SERIAL_TIMEOUT:
7228 if (remote_debug)
7229 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7230 return -1;
7231 case '$':
7232 if (remote_debug)
7233 fputs_filtered ("Saw new packet start in middle of old one\n",
7234 gdb_stdlog);
7235 return -1; /* Start a new packet, count retries. */
7236 case '#':
7237 {
7238 unsigned char pktcsum;
7239 int check_0 = 0;
7240 int check_1 = 0;
7241
7242 buf[bc] = '\0';
7243
7244 check_0 = readchar (remote_timeout);
7245 if (check_0 >= 0)
7246 check_1 = readchar (remote_timeout);
7247
7248 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7249 {
7250 if (remote_debug)
7251 fputs_filtered ("Timeout in checksum, retrying\n",
7252 gdb_stdlog);
7253 return -1;
7254 }
7255 else if (check_0 < 0 || check_1 < 0)
7256 {
7257 if (remote_debug)
7258 fputs_filtered ("Communication error in checksum\n",
7259 gdb_stdlog);
7260 return -1;
7261 }
7262
7263 /* Don't recompute the checksum; with no ack packets we
7264 don't have any way to indicate a packet retransmission
7265 is necessary. */
7266 if (rs->noack_mode)
7267 return bc;
7268
7269 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7270 if (csum == pktcsum)
7271 return bc;
7272
7273 if (remote_debug)
7274 {
7275 struct cleanup *old_chain;
7276 char *str;
7277
7278 str = escape_buffer (buf, bc);
7279 old_chain = make_cleanup (xfree, str);
7280 fprintf_unfiltered (gdb_stdlog,
7281 "Bad checksum, sentsum=0x%x, "
7282 "csum=0x%x, buf=%s\n",
7283 pktcsum, csum, str);
7284 do_cleanups (old_chain);
7285 }
7286 /* Number of characters in buffer ignoring trailing
7287 NULL. */
7288 return -1;
7289 }
7290 case '*': /* Run length encoding. */
7291 {
7292 int repeat;
7293
7294 csum += c;
7295 c = readchar (remote_timeout);
7296 csum += c;
7297 repeat = c - ' ' + 3; /* Compute repeat count. */
7298
7299 /* The character before ``*'' is repeated. */
7300
7301 if (repeat > 0 && repeat <= 255 && bc > 0)
7302 {
7303 if (bc + repeat - 1 >= *sizeof_buf - 1)
7304 {
7305 /* Make some more room in the buffer. */
7306 *sizeof_buf += repeat;
7307 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7308 buf = *buf_p;
7309 }
7310
7311 memset (&buf[bc], buf[bc - 1], repeat);
7312 bc += repeat;
7313 continue;
7314 }
7315
7316 buf[bc] = '\0';
7317 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7318 return -1;
7319 }
7320 default:
7321 if (bc >= *sizeof_buf - 1)
7322 {
7323 /* Make some more room in the buffer. */
7324 *sizeof_buf *= 2;
7325 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7326 buf = *buf_p;
7327 }
7328
7329 buf[bc++] = c;
7330 csum += c;
7331 continue;
7332 }
7333 }
7334 }
7335
7336 /* Read a packet from the remote machine, with error checking, and
7337 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7338 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7339 rather than timing out; this is used (in synchronous mode) to wait
7340 for a target that is is executing user code to stop. */
7341 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7342 don't have to change all the calls to getpkt to deal with the
7343 return value, because at the moment I don't know what the right
7344 thing to do it for those. */
7345 void
7346 getpkt (char **buf,
7347 long *sizeof_buf,
7348 int forever)
7349 {
7350 int timed_out;
7351
7352 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7353 }
7354
7355
7356 /* Read a packet from the remote machine, with error checking, and
7357 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7358 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7359 rather than timing out; this is used (in synchronous mode) to wait
7360 for a target that is is executing user code to stop. If FOREVER ==
7361 0, this function is allowed to time out gracefully and return an
7362 indication of this to the caller. Otherwise return the number of
7363 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7364 enough reason to return to the caller. */
7365
7366 static int
7367 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7368 int expecting_notif)
7369 {
7370 struct remote_state *rs = get_remote_state ();
7371 int c;
7372 int tries;
7373 int timeout;
7374 int val = -1;
7375
7376 /* We're reading a new response. Make sure we don't look at a
7377 previously cached response. */
7378 rs->cached_wait_status = 0;
7379
7380 strcpy (*buf, "timeout");
7381
7382 if (forever)
7383 timeout = watchdog > 0 ? watchdog : -1;
7384 else if (expecting_notif)
7385 timeout = 0; /* There should already be a char in the buffer. If
7386 not, bail out. */
7387 else
7388 timeout = remote_timeout;
7389
7390 #define MAX_TRIES 3
7391
7392 /* Process any number of notifications, and then return when
7393 we get a packet. */
7394 for (;;)
7395 {
7396 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7397 times. */
7398 for (tries = 1; tries <= MAX_TRIES; tries++)
7399 {
7400 /* This can loop forever if the remote side sends us
7401 characters continuously, but if it pauses, we'll get
7402 SERIAL_TIMEOUT from readchar because of timeout. Then
7403 we'll count that as a retry.
7404
7405 Note that even when forever is set, we will only wait
7406 forever prior to the start of a packet. After that, we
7407 expect characters to arrive at a brisk pace. They should
7408 show up within remote_timeout intervals. */
7409 do
7410 c = readchar (timeout);
7411 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7412
7413 if (c == SERIAL_TIMEOUT)
7414 {
7415 if (expecting_notif)
7416 return -1; /* Don't complain, it's normal to not get
7417 anything in this case. */
7418
7419 if (forever) /* Watchdog went off? Kill the target. */
7420 {
7421 QUIT;
7422 pop_target ();
7423 error (_("Watchdog timeout has expired. Target detached."));
7424 }
7425 if (remote_debug)
7426 fputs_filtered ("Timed out.\n", gdb_stdlog);
7427 }
7428 else
7429 {
7430 /* We've found the start of a packet or notification.
7431 Now collect the data. */
7432 val = read_frame (buf, sizeof_buf);
7433 if (val >= 0)
7434 break;
7435 }
7436
7437 serial_write (remote_desc, "-", 1);
7438 }
7439
7440 if (tries > MAX_TRIES)
7441 {
7442 /* We have tried hard enough, and just can't receive the
7443 packet/notification. Give up. */
7444 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7445
7446 /* Skip the ack char if we're in no-ack mode. */
7447 if (!rs->noack_mode)
7448 serial_write (remote_desc, "+", 1);
7449 return -1;
7450 }
7451
7452 /* If we got an ordinary packet, return that to our caller. */
7453 if (c == '$')
7454 {
7455 if (remote_debug)
7456 {
7457 struct cleanup *old_chain;
7458 char *str;
7459
7460 str = escape_buffer (*buf, val);
7461 old_chain = make_cleanup (xfree, str);
7462 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7463 do_cleanups (old_chain);
7464 }
7465
7466 /* Skip the ack char if we're in no-ack mode. */
7467 if (!rs->noack_mode)
7468 serial_write (remote_desc, "+", 1);
7469 return val;
7470 }
7471
7472 /* If we got a notification, handle it, and go back to looking
7473 for a packet. */
7474 else
7475 {
7476 gdb_assert (c == '%');
7477
7478 if (remote_debug)
7479 {
7480 struct cleanup *old_chain;
7481 char *str;
7482
7483 str = escape_buffer (*buf, val);
7484 old_chain = make_cleanup (xfree, str);
7485 fprintf_unfiltered (gdb_stdlog,
7486 " Notification received: %s\n",
7487 str);
7488 do_cleanups (old_chain);
7489 }
7490
7491 handle_notification (*buf, val);
7492
7493 /* Notifications require no acknowledgement. */
7494
7495 if (expecting_notif)
7496 return -1;
7497 }
7498 }
7499 }
7500
7501 static int
7502 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7503 {
7504 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
7505 }
7506
7507 static int
7508 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
7509 {
7510 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
7511 }
7512
7513 \f
7514 /* A helper function that just calls putpkt; for type correctness. */
7515
7516 static int
7517 putpkt_for_catch_errors (void *arg)
7518 {
7519 return putpkt (arg);
7520 }
7521
7522 static void
7523 remote_kill (struct target_ops *ops)
7524 {
7525 /* Use catch_errors so the user can quit from gdb even when we
7526 aren't on speaking terms with the remote system. */
7527 catch_errors (putpkt_for_catch_errors, "k", "", RETURN_MASK_ERROR);
7528
7529 /* Don't wait for it to die. I'm not really sure it matters whether
7530 we do or not. For the existing stubs, kill is a noop. */
7531 target_mourn_inferior ();
7532 }
7533
7534 static int
7535 remote_vkill (int pid, struct remote_state *rs)
7536 {
7537 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7538 return -1;
7539
7540 /* Tell the remote target to detach. */
7541 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
7542 putpkt (rs->buf);
7543 getpkt (&rs->buf, &rs->buf_size, 0);
7544
7545 if (packet_ok (rs->buf,
7546 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7547 return 0;
7548 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7549 return -1;
7550 else
7551 return 1;
7552 }
7553
7554 static void
7555 extended_remote_kill (struct target_ops *ops)
7556 {
7557 int res;
7558 int pid = ptid_get_pid (inferior_ptid);
7559 struct remote_state *rs = get_remote_state ();
7560
7561 res = remote_vkill (pid, rs);
7562 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7563 {
7564 /* Don't try 'k' on a multi-process aware stub -- it has no way
7565 to specify the pid. */
7566
7567 putpkt ("k");
7568 #if 0
7569 getpkt (&rs->buf, &rs->buf_size, 0);
7570 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7571 res = 1;
7572 #else
7573 /* Don't wait for it to die. I'm not really sure it matters whether
7574 we do or not. For the existing stubs, kill is a noop. */
7575 res = 0;
7576 #endif
7577 }
7578
7579 if (res != 0)
7580 error (_("Can't kill process"));
7581
7582 target_mourn_inferior ();
7583 }
7584
7585 static void
7586 remote_mourn (struct target_ops *ops)
7587 {
7588 remote_mourn_1 (ops);
7589 }
7590
7591 /* Worker function for remote_mourn. */
7592 static void
7593 remote_mourn_1 (struct target_ops *target)
7594 {
7595 unpush_target (target);
7596
7597 /* remote_close takes care of doing most of the clean up. */
7598 generic_mourn_inferior ();
7599 }
7600
7601 static void
7602 extended_remote_mourn_1 (struct target_ops *target)
7603 {
7604 struct remote_state *rs = get_remote_state ();
7605
7606 /* In case we got here due to an error, but we're going to stay
7607 connected. */
7608 rs->waiting_for_stop_reply = 0;
7609
7610 /* We're no longer interested in these events. */
7611 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7612
7613 /* If the current general thread belonged to the process we just
7614 detached from or has exited, the remote side current general
7615 thread becomes undefined. Considering a case like this:
7616
7617 - We just got here due to a detach.
7618 - The process that we're detaching from happens to immediately
7619 report a global breakpoint being hit in non-stop mode, in the
7620 same thread we had selected before.
7621 - GDB attaches to this process again.
7622 - This event happens to be the next event we handle.
7623
7624 GDB would consider that the current general thread didn't need to
7625 be set on the stub side (with Hg), since for all it knew,
7626 GENERAL_THREAD hadn't changed.
7627
7628 Notice that although in all-stop mode, the remote server always
7629 sets the current thread to the thread reporting the stop event,
7630 that doesn't happen in non-stop mode; in non-stop, the stub *must
7631 not* change the current thread when reporting a breakpoint hit,
7632 due to the decoupling of event reporting and event handling.
7633
7634 To keep things simple, we always invalidate our notion of the
7635 current thread. */
7636 record_currthread (minus_one_ptid);
7637
7638 /* Unlike "target remote", we do not want to unpush the target; then
7639 the next time the user says "run", we won't be connected. */
7640
7641 /* Call common code to mark the inferior as not running. */
7642 generic_mourn_inferior ();
7643
7644 if (!have_inferiors ())
7645 {
7646 if (!remote_multi_process_p (rs))
7647 {
7648 /* Check whether the target is running now - some remote stubs
7649 automatically restart after kill. */
7650 putpkt ("?");
7651 getpkt (&rs->buf, &rs->buf_size, 0);
7652
7653 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7654 {
7655 /* Assume that the target has been restarted. Set
7656 inferior_ptid so that bits of core GDB realizes
7657 there's something here, e.g., so that the user can
7658 say "kill" again. */
7659 inferior_ptid = magic_null_ptid;
7660 }
7661 }
7662 }
7663 }
7664
7665 static void
7666 extended_remote_mourn (struct target_ops *ops)
7667 {
7668 extended_remote_mourn_1 (ops);
7669 }
7670
7671 static int
7672 extended_remote_supports_disable_randomization (void)
7673 {
7674 return (remote_protocol_packets[PACKET_QDisableRandomization].support
7675 == PACKET_ENABLE);
7676 }
7677
7678 static void
7679 extended_remote_disable_randomization (int val)
7680 {
7681 struct remote_state *rs = get_remote_state ();
7682 char *reply;
7683
7684 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
7685 val);
7686 putpkt (rs->buf);
7687 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
7688 if (*reply == '\0')
7689 error (_("Target does not support QDisableRandomization."));
7690 if (strcmp (reply, "OK") != 0)
7691 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
7692 }
7693
7694 static int
7695 extended_remote_run (char *args)
7696 {
7697 struct remote_state *rs = get_remote_state ();
7698 int len;
7699
7700 /* If the user has disabled vRun support, or we have detected that
7701 support is not available, do not try it. */
7702 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7703 return -1;
7704
7705 strcpy (rs->buf, "vRun;");
7706 len = strlen (rs->buf);
7707
7708 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7709 error (_("Remote file name too long for run packet"));
7710 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7711
7712 gdb_assert (args != NULL);
7713 if (*args)
7714 {
7715 struct cleanup *back_to;
7716 int i;
7717 char **argv;
7718
7719 argv = gdb_buildargv (args);
7720 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7721 for (i = 0; argv[i] != NULL; i++)
7722 {
7723 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7724 error (_("Argument list too long for run packet"));
7725 rs->buf[len++] = ';';
7726 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7727 }
7728 do_cleanups (back_to);
7729 }
7730
7731 rs->buf[len++] = '\0';
7732
7733 putpkt (rs->buf);
7734 getpkt (&rs->buf, &rs->buf_size, 0);
7735
7736 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7737 {
7738 /* We have a wait response; we don't need it, though. All is well. */
7739 return 0;
7740 }
7741 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7742 /* It wasn't disabled before, but it is now. */
7743 return -1;
7744 else
7745 {
7746 if (remote_exec_file[0] == '\0')
7747 error (_("Running the default executable on the remote target failed; "
7748 "try \"set remote exec-file\"?"));
7749 else
7750 error (_("Running \"%s\" on the remote target failed"),
7751 remote_exec_file);
7752 }
7753 }
7754
7755 /* In the extended protocol we want to be able to do things like
7756 "run" and have them basically work as expected. So we need
7757 a special create_inferior function. We support changing the
7758 executable file and the command line arguments, but not the
7759 environment. */
7760
7761 static void
7762 extended_remote_create_inferior_1 (char *exec_file, char *args,
7763 char **env, int from_tty)
7764 {
7765 /* If running asynchronously, register the target file descriptor
7766 with the event loop. */
7767 if (target_can_async_p ())
7768 target_async (inferior_event_handler, 0);
7769
7770 /* Disable address space randomization if requested (and supported). */
7771 if (extended_remote_supports_disable_randomization ())
7772 extended_remote_disable_randomization (disable_randomization);
7773
7774 /* Now restart the remote server. */
7775 if (extended_remote_run (args) == -1)
7776 {
7777 /* vRun was not supported. Fail if we need it to do what the
7778 user requested. */
7779 if (remote_exec_file[0])
7780 error (_("Remote target does not support \"set remote exec-file\""));
7781 if (args[0])
7782 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7783
7784 /* Fall back to "R". */
7785 extended_remote_restart ();
7786 }
7787
7788 if (!have_inferiors ())
7789 {
7790 /* Clean up from the last time we ran, before we mark the target
7791 running again. This will mark breakpoints uninserted, and
7792 get_offsets may insert breakpoints. */
7793 init_thread_list ();
7794 init_wait_for_inferior ();
7795 }
7796
7797 add_current_inferior_and_thread ();
7798
7799 /* Get updated offsets, if the stub uses qOffsets. */
7800 get_offsets ();
7801 }
7802
7803 static void
7804 extended_remote_create_inferior (struct target_ops *ops,
7805 char *exec_file, char *args,
7806 char **env, int from_tty)
7807 {
7808 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7809 }
7810 \f
7811
7812 /* Given a location's target info BP_TGT and the packet buffer BUF, output
7813 the list of conditions (in agent expression bytecode format), if any, the
7814 target needs to evaluate. The output is placed into the packet buffer
7815 started from BUF and ended at BUF_END. */
7816
7817 static int
7818 remote_add_target_side_condition (struct gdbarch *gdbarch,
7819 struct bp_target_info *bp_tgt, char *buf,
7820 char *buf_end)
7821 {
7822 struct agent_expr *aexpr = NULL;
7823 int i, ix;
7824 char *pkt;
7825 char *buf_start = buf;
7826
7827 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
7828 return 0;
7829
7830 buf += strlen (buf);
7831 xsnprintf (buf, buf_end - buf, "%s", ";");
7832 buf++;
7833
7834 /* Send conditions to the target and free the vector. */
7835 for (ix = 0;
7836 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
7837 ix++)
7838 {
7839 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
7840 buf += strlen (buf);
7841 for (i = 0; i < aexpr->len; ++i)
7842 buf = pack_hex_byte (buf, aexpr->buf[i]);
7843 *buf = '\0';
7844 }
7845
7846 VEC_free (agent_expr_p, bp_tgt->conditions);
7847 return 0;
7848 }
7849
7850 /* Insert a breakpoint. On targets that have software breakpoint
7851 support, we ask the remote target to do the work; on targets
7852 which don't, we insert a traditional memory breakpoint. */
7853
7854 static int
7855 remote_insert_breakpoint (struct gdbarch *gdbarch,
7856 struct bp_target_info *bp_tgt)
7857 {
7858 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7859 If it succeeds, then set the support to PACKET_ENABLE. If it
7860 fails, and the user has explicitly requested the Z support then
7861 report an error, otherwise, mark it disabled and go on. */
7862
7863 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7864 {
7865 CORE_ADDR addr = bp_tgt->placed_address;
7866 struct remote_state *rs;
7867 char *p, *endbuf;
7868 int bpsize;
7869 struct condition_list *cond = NULL;
7870
7871 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7872
7873 rs = get_remote_state ();
7874 p = rs->buf;
7875 endbuf = rs->buf + get_remote_packet_size ();
7876
7877 *(p++) = 'Z';
7878 *(p++) = '0';
7879 *(p++) = ',';
7880 addr = (ULONGEST) remote_address_masked (addr);
7881 p += hexnumstr (p, addr);
7882 xsnprintf (p, endbuf - p, ",%d", bpsize);
7883
7884 if (remote_supports_cond_breakpoints ())
7885 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
7886
7887 putpkt (rs->buf);
7888 getpkt (&rs->buf, &rs->buf_size, 0);
7889
7890 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7891 {
7892 case PACKET_ERROR:
7893 return -1;
7894 case PACKET_OK:
7895 bp_tgt->placed_address = addr;
7896 bp_tgt->placed_size = bpsize;
7897 return 0;
7898 case PACKET_UNKNOWN:
7899 break;
7900 }
7901 }
7902
7903 return memory_insert_breakpoint (gdbarch, bp_tgt);
7904 }
7905
7906 static int
7907 remote_remove_breakpoint (struct gdbarch *gdbarch,
7908 struct bp_target_info *bp_tgt)
7909 {
7910 CORE_ADDR addr = bp_tgt->placed_address;
7911 struct remote_state *rs = get_remote_state ();
7912
7913 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7914 {
7915 char *p = rs->buf;
7916 char *endbuf = rs->buf + get_remote_packet_size ();
7917
7918 *(p++) = 'z';
7919 *(p++) = '0';
7920 *(p++) = ',';
7921
7922 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
7923 p += hexnumstr (p, addr);
7924 xsnprintf (p, endbuf - p, ",%d", bp_tgt->placed_size);
7925
7926 putpkt (rs->buf);
7927 getpkt (&rs->buf, &rs->buf_size, 0);
7928
7929 return (rs->buf[0] == 'E');
7930 }
7931
7932 return memory_remove_breakpoint (gdbarch, bp_tgt);
7933 }
7934
7935 static int
7936 watchpoint_to_Z_packet (int type)
7937 {
7938 switch (type)
7939 {
7940 case hw_write:
7941 return Z_PACKET_WRITE_WP;
7942 break;
7943 case hw_read:
7944 return Z_PACKET_READ_WP;
7945 break;
7946 case hw_access:
7947 return Z_PACKET_ACCESS_WP;
7948 break;
7949 default:
7950 internal_error (__FILE__, __LINE__,
7951 _("hw_bp_to_z: bad watchpoint type %d"), type);
7952 }
7953 }
7954
7955 static int
7956 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
7957 struct expression *cond)
7958 {
7959 struct remote_state *rs = get_remote_state ();
7960 char *endbuf = rs->buf + get_remote_packet_size ();
7961 char *p;
7962 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7963
7964 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7965 return 1;
7966
7967 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
7968 p = strchr (rs->buf, '\0');
7969 addr = remote_address_masked (addr);
7970 p += hexnumstr (p, (ULONGEST) addr);
7971 xsnprintf (p, endbuf - p, ",%x", len);
7972
7973 putpkt (rs->buf);
7974 getpkt (&rs->buf, &rs->buf_size, 0);
7975
7976 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7977 {
7978 case PACKET_ERROR:
7979 return -1;
7980 case PACKET_UNKNOWN:
7981 return 1;
7982 case PACKET_OK:
7983 return 0;
7984 }
7985 internal_error (__FILE__, __LINE__,
7986 _("remote_insert_watchpoint: reached end of function"));
7987 }
7988
7989 static int
7990 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
7991 CORE_ADDR start, int length)
7992 {
7993 CORE_ADDR diff = remote_address_masked (addr - start);
7994
7995 return diff < length;
7996 }
7997
7998
7999 static int
8000 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
8001 struct expression *cond)
8002 {
8003 struct remote_state *rs = get_remote_state ();
8004 char *endbuf = rs->buf + get_remote_packet_size ();
8005 char *p;
8006 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8007
8008 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8009 return -1;
8010
8011 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
8012 p = strchr (rs->buf, '\0');
8013 addr = remote_address_masked (addr);
8014 p += hexnumstr (p, (ULONGEST) addr);
8015 xsnprintf (p, endbuf - p, ",%x", len);
8016 putpkt (rs->buf);
8017 getpkt (&rs->buf, &rs->buf_size, 0);
8018
8019 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8020 {
8021 case PACKET_ERROR:
8022 case PACKET_UNKNOWN:
8023 return -1;
8024 case PACKET_OK:
8025 return 0;
8026 }
8027 internal_error (__FILE__, __LINE__,
8028 _("remote_remove_watchpoint: reached end of function"));
8029 }
8030
8031
8032 int remote_hw_watchpoint_limit = -1;
8033 int remote_hw_watchpoint_length_limit = -1;
8034 int remote_hw_breakpoint_limit = -1;
8035
8036 static int
8037 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
8038 {
8039 if (remote_hw_watchpoint_length_limit == 0)
8040 return 0;
8041 else if (remote_hw_watchpoint_length_limit < 0)
8042 return 1;
8043 else if (len <= remote_hw_watchpoint_length_limit)
8044 return 1;
8045 else
8046 return 0;
8047 }
8048
8049 static int
8050 remote_check_watch_resources (int type, int cnt, int ot)
8051 {
8052 if (type == bp_hardware_breakpoint)
8053 {
8054 if (remote_hw_breakpoint_limit == 0)
8055 return 0;
8056 else if (remote_hw_breakpoint_limit < 0)
8057 return 1;
8058 else if (cnt <= remote_hw_breakpoint_limit)
8059 return 1;
8060 }
8061 else
8062 {
8063 if (remote_hw_watchpoint_limit == 0)
8064 return 0;
8065 else if (remote_hw_watchpoint_limit < 0)
8066 return 1;
8067 else if (ot)
8068 return -1;
8069 else if (cnt <= remote_hw_watchpoint_limit)
8070 return 1;
8071 }
8072 return -1;
8073 }
8074
8075 static int
8076 remote_stopped_by_watchpoint (void)
8077 {
8078 return remote_stopped_by_watchpoint_p;
8079 }
8080
8081 static int
8082 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
8083 {
8084 int rc = 0;
8085
8086 if (remote_stopped_by_watchpoint ())
8087 {
8088 *addr_p = remote_watch_data_address;
8089 rc = 1;
8090 }
8091
8092 return rc;
8093 }
8094
8095
8096 static int
8097 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
8098 struct bp_target_info *bp_tgt)
8099 {
8100 CORE_ADDR addr;
8101 struct remote_state *rs;
8102 char *p, *endbuf;
8103
8104 /* The length field should be set to the size of a breakpoint
8105 instruction, even though we aren't inserting one ourselves. */
8106
8107 gdbarch_remote_breakpoint_from_pc
8108 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
8109
8110 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8111 return -1;
8112
8113 rs = get_remote_state ();
8114 p = rs->buf;
8115 endbuf = rs->buf + get_remote_packet_size ();
8116
8117 *(p++) = 'Z';
8118 *(p++) = '1';
8119 *(p++) = ',';
8120
8121 addr = remote_address_masked (bp_tgt->placed_address);
8122 p += hexnumstr (p, (ULONGEST) addr);
8123 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8124
8125 if (remote_supports_cond_breakpoints ())
8126 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8127
8128 putpkt (rs->buf);
8129 getpkt (&rs->buf, &rs->buf_size, 0);
8130
8131 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8132 {
8133 case PACKET_ERROR:
8134 case PACKET_UNKNOWN:
8135 return -1;
8136 case PACKET_OK:
8137 return 0;
8138 }
8139 internal_error (__FILE__, __LINE__,
8140 _("remote_insert_hw_breakpoint: reached end of function"));
8141 }
8142
8143
8144 static int
8145 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
8146 struct bp_target_info *bp_tgt)
8147 {
8148 CORE_ADDR addr;
8149 struct remote_state *rs = get_remote_state ();
8150 char *p = rs->buf;
8151 char *endbuf = rs->buf + get_remote_packet_size ();
8152
8153 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8154 return -1;
8155
8156 *(p++) = 'z';
8157 *(p++) = '1';
8158 *(p++) = ',';
8159
8160 addr = remote_address_masked (bp_tgt->placed_address);
8161 p += hexnumstr (p, (ULONGEST) addr);
8162 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8163
8164 putpkt (rs->buf);
8165 getpkt (&rs->buf, &rs->buf_size, 0);
8166
8167 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8168 {
8169 case PACKET_ERROR:
8170 case PACKET_UNKNOWN:
8171 return -1;
8172 case PACKET_OK:
8173 return 0;
8174 }
8175 internal_error (__FILE__, __LINE__,
8176 _("remote_remove_hw_breakpoint: reached end of function"));
8177 }
8178
8179 /* Table used by the crc32 function to calcuate the checksum. */
8180
8181 static unsigned long crc32_table[256] =
8182 {0, 0};
8183
8184 static unsigned long
8185 crc32 (const unsigned char *buf, int len, unsigned int crc)
8186 {
8187 if (!crc32_table[1])
8188 {
8189 /* Initialize the CRC table and the decoding table. */
8190 int i, j;
8191 unsigned int c;
8192
8193 for (i = 0; i < 256; i++)
8194 {
8195 for (c = i << 24, j = 8; j > 0; --j)
8196 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
8197 crc32_table[i] = c;
8198 }
8199 }
8200
8201 while (len--)
8202 {
8203 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
8204 buf++;
8205 }
8206 return crc;
8207 }
8208
8209 /* Verify memory using the "qCRC:" request. */
8210
8211 static int
8212 remote_verify_memory (struct target_ops *ops,
8213 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8214 {
8215 struct remote_state *rs = get_remote_state ();
8216 unsigned long host_crc, target_crc;
8217 char *tmp;
8218
8219 /* FIXME: assumes lma can fit into long. */
8220 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8221 (long) lma, (long) size);
8222 putpkt (rs->buf);
8223
8224 /* Be clever; compute the host_crc before waiting for target
8225 reply. */
8226 host_crc = crc32 (data, size, 0xffffffff);
8227
8228 getpkt (&rs->buf, &rs->buf_size, 0);
8229 if (rs->buf[0] == 'E')
8230 return -1;
8231
8232 if (rs->buf[0] != 'C')
8233 error (_("remote target does not support this operation"));
8234
8235 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8236 target_crc = target_crc * 16 + fromhex (*tmp);
8237
8238 return (host_crc == target_crc);
8239 }
8240
8241 /* compare-sections command
8242
8243 With no arguments, compares each loadable section in the exec bfd
8244 with the same memory range on the target, and reports mismatches.
8245 Useful for verifying the image on the target against the exec file. */
8246
8247 static void
8248 compare_sections_command (char *args, int from_tty)
8249 {
8250 asection *s;
8251 struct cleanup *old_chain;
8252 char *sectdata;
8253 const char *sectname;
8254 bfd_size_type size;
8255 bfd_vma lma;
8256 int matched = 0;
8257 int mismatched = 0;
8258 int res;
8259
8260 if (!exec_bfd)
8261 error (_("command cannot be used without an exec file"));
8262
8263 for (s = exec_bfd->sections; s; s = s->next)
8264 {
8265 if (!(s->flags & SEC_LOAD))
8266 continue; /* Skip non-loadable section. */
8267
8268 size = bfd_get_section_size (s);
8269 if (size == 0)
8270 continue; /* Skip zero-length section. */
8271
8272 sectname = bfd_get_section_name (exec_bfd, s);
8273 if (args && strcmp (args, sectname) != 0)
8274 continue; /* Not the section selected by user. */
8275
8276 matched = 1; /* Do this section. */
8277 lma = s->lma;
8278
8279 sectdata = xmalloc (size);
8280 old_chain = make_cleanup (xfree, sectdata);
8281 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8282
8283 res = target_verify_memory (sectdata, lma, size);
8284
8285 if (res == -1)
8286 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8287 paddress (target_gdbarch, lma),
8288 paddress (target_gdbarch, lma + size));
8289
8290 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8291 paddress (target_gdbarch, lma),
8292 paddress (target_gdbarch, lma + size));
8293 if (res)
8294 printf_filtered ("matched.\n");
8295 else
8296 {
8297 printf_filtered ("MIS-MATCHED!\n");
8298 mismatched++;
8299 }
8300
8301 do_cleanups (old_chain);
8302 }
8303 if (mismatched > 0)
8304 warning (_("One or more sections of the remote executable does not match\n\
8305 the loaded file\n"));
8306 if (args && !matched)
8307 printf_filtered (_("No loaded section named '%s'.\n"), args);
8308 }
8309
8310 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8311 into remote target. The number of bytes written to the remote
8312 target is returned, or -1 for error. */
8313
8314 static LONGEST
8315 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8316 const char *annex, const gdb_byte *writebuf,
8317 ULONGEST offset, LONGEST len,
8318 struct packet_config *packet)
8319 {
8320 int i, buf_len;
8321 ULONGEST n;
8322 struct remote_state *rs = get_remote_state ();
8323 int max_size = get_memory_write_packet_size ();
8324
8325 if (packet->support == PACKET_DISABLE)
8326 return -1;
8327
8328 /* Insert header. */
8329 i = snprintf (rs->buf, max_size,
8330 "qXfer:%s:write:%s:%s:",
8331 object_name, annex ? annex : "",
8332 phex_nz (offset, sizeof offset));
8333 max_size -= (i + 1);
8334
8335 /* Escape as much data as fits into rs->buf. */
8336 buf_len = remote_escape_output
8337 (writebuf, len, (rs->buf + i), &max_size, max_size);
8338
8339 if (putpkt_binary (rs->buf, i + buf_len) < 0
8340 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8341 || packet_ok (rs->buf, packet) != PACKET_OK)
8342 return -1;
8343
8344 unpack_varlen_hex (rs->buf, &n);
8345 return n;
8346 }
8347
8348 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8349 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8350 number of bytes read is returned, or 0 for EOF, or -1 for error.
8351 The number of bytes read may be less than LEN without indicating an
8352 EOF. PACKET is checked and updated to indicate whether the remote
8353 target supports this object. */
8354
8355 static LONGEST
8356 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8357 const char *annex,
8358 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8359 struct packet_config *packet)
8360 {
8361 static char *finished_object;
8362 static char *finished_annex;
8363 static ULONGEST finished_offset;
8364
8365 struct remote_state *rs = get_remote_state ();
8366 LONGEST i, n, packet_len;
8367
8368 if (packet->support == PACKET_DISABLE)
8369 return -1;
8370
8371 /* Check whether we've cached an end-of-object packet that matches
8372 this request. */
8373 if (finished_object)
8374 {
8375 if (strcmp (object_name, finished_object) == 0
8376 && strcmp (annex ? annex : "", finished_annex) == 0
8377 && offset == finished_offset)
8378 return 0;
8379
8380 /* Otherwise, we're now reading something different. Discard
8381 the cache. */
8382 xfree (finished_object);
8383 xfree (finished_annex);
8384 finished_object = NULL;
8385 finished_annex = NULL;
8386 }
8387
8388 /* Request only enough to fit in a single packet. The actual data
8389 may not, since we don't know how much of it will need to be escaped;
8390 the target is free to respond with slightly less data. We subtract
8391 five to account for the response type and the protocol frame. */
8392 n = min (get_remote_packet_size () - 5, len);
8393 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8394 object_name, annex ? annex : "",
8395 phex_nz (offset, sizeof offset),
8396 phex_nz (n, sizeof n));
8397 i = putpkt (rs->buf);
8398 if (i < 0)
8399 return -1;
8400
8401 rs->buf[0] = '\0';
8402 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8403 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8404 return -1;
8405
8406 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8407 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8408
8409 /* 'm' means there is (or at least might be) more data after this
8410 batch. That does not make sense unless there's at least one byte
8411 of data in this reply. */
8412 if (rs->buf[0] == 'm' && packet_len == 1)
8413 error (_("Remote qXfer reply contained no data."));
8414
8415 /* Got some data. */
8416 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8417
8418 /* 'l' is an EOF marker, possibly including a final block of data,
8419 or possibly empty. If we have the final block of a non-empty
8420 object, record this fact to bypass a subsequent partial read. */
8421 if (rs->buf[0] == 'l' && offset + i > 0)
8422 {
8423 finished_object = xstrdup (object_name);
8424 finished_annex = xstrdup (annex ? annex : "");
8425 finished_offset = offset + i;
8426 }
8427
8428 return i;
8429 }
8430
8431 static LONGEST
8432 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8433 const char *annex, gdb_byte *readbuf,
8434 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8435 {
8436 struct remote_state *rs;
8437 int i;
8438 char *p2;
8439 char query_type;
8440
8441 set_remote_traceframe ();
8442 set_general_thread (inferior_ptid);
8443
8444 rs = get_remote_state ();
8445
8446 /* Handle memory using the standard memory routines. */
8447 if (object == TARGET_OBJECT_MEMORY)
8448 {
8449 int xfered;
8450
8451 errno = 0;
8452
8453 /* If the remote target is connected but not running, we should
8454 pass this request down to a lower stratum (e.g. the executable
8455 file). */
8456 if (!target_has_execution)
8457 return 0;
8458
8459 if (writebuf != NULL)
8460 xfered = remote_write_bytes (offset, writebuf, len);
8461 else
8462 xfered = remote_read_bytes (offset, readbuf, len);
8463
8464 if (xfered > 0)
8465 return xfered;
8466 else if (xfered == 0 && errno == 0)
8467 return 0;
8468 else
8469 return -1;
8470 }
8471
8472 /* Handle SPU memory using qxfer packets. */
8473 if (object == TARGET_OBJECT_SPU)
8474 {
8475 if (readbuf)
8476 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8477 &remote_protocol_packets
8478 [PACKET_qXfer_spu_read]);
8479 else
8480 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8481 &remote_protocol_packets
8482 [PACKET_qXfer_spu_write]);
8483 }
8484
8485 /* Handle extra signal info using qxfer packets. */
8486 if (object == TARGET_OBJECT_SIGNAL_INFO)
8487 {
8488 if (readbuf)
8489 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8490 &remote_protocol_packets
8491 [PACKET_qXfer_siginfo_read]);
8492 else
8493 return remote_write_qxfer (ops, "siginfo", annex,
8494 writebuf, offset, len,
8495 &remote_protocol_packets
8496 [PACKET_qXfer_siginfo_write]);
8497 }
8498
8499 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8500 {
8501 if (readbuf)
8502 return remote_read_qxfer (ops, "statictrace", annex,
8503 readbuf, offset, len,
8504 &remote_protocol_packets
8505 [PACKET_qXfer_statictrace_read]);
8506 else
8507 return -1;
8508 }
8509
8510 /* Only handle flash writes. */
8511 if (writebuf != NULL)
8512 {
8513 LONGEST xfered;
8514
8515 switch (object)
8516 {
8517 case TARGET_OBJECT_FLASH:
8518 xfered = remote_flash_write (ops, offset, len, writebuf);
8519
8520 if (xfered > 0)
8521 return xfered;
8522 else if (xfered == 0 && errno == 0)
8523 return 0;
8524 else
8525 return -1;
8526
8527 default:
8528 return -1;
8529 }
8530 }
8531
8532 /* Map pre-existing objects onto letters. DO NOT do this for new
8533 objects!!! Instead specify new query packets. */
8534 switch (object)
8535 {
8536 case TARGET_OBJECT_AVR:
8537 query_type = 'R';
8538 break;
8539
8540 case TARGET_OBJECT_AUXV:
8541 gdb_assert (annex == NULL);
8542 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8543 &remote_protocol_packets[PACKET_qXfer_auxv]);
8544
8545 case TARGET_OBJECT_AVAILABLE_FEATURES:
8546 return remote_read_qxfer
8547 (ops, "features", annex, readbuf, offset, len,
8548 &remote_protocol_packets[PACKET_qXfer_features]);
8549
8550 case TARGET_OBJECT_LIBRARIES:
8551 return remote_read_qxfer
8552 (ops, "libraries", annex, readbuf, offset, len,
8553 &remote_protocol_packets[PACKET_qXfer_libraries]);
8554
8555 case TARGET_OBJECT_LIBRARIES_SVR4:
8556 return remote_read_qxfer
8557 (ops, "libraries-svr4", annex, readbuf, offset, len,
8558 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8559
8560 case TARGET_OBJECT_MEMORY_MAP:
8561 gdb_assert (annex == NULL);
8562 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8563 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8564
8565 case TARGET_OBJECT_OSDATA:
8566 /* Should only get here if we're connected. */
8567 gdb_assert (remote_desc);
8568 return remote_read_qxfer
8569 (ops, "osdata", annex, readbuf, offset, len,
8570 &remote_protocol_packets[PACKET_qXfer_osdata]);
8571
8572 case TARGET_OBJECT_THREADS:
8573 gdb_assert (annex == NULL);
8574 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8575 &remote_protocol_packets[PACKET_qXfer_threads]);
8576
8577 case TARGET_OBJECT_TRACEFRAME_INFO:
8578 gdb_assert (annex == NULL);
8579 return remote_read_qxfer
8580 (ops, "traceframe-info", annex, readbuf, offset, len,
8581 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8582
8583 case TARGET_OBJECT_FDPIC:
8584 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8585 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8586
8587 case TARGET_OBJECT_OPENVMS_UIB:
8588 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
8589 &remote_protocol_packets[PACKET_qXfer_uib]);
8590
8591 default:
8592 return -1;
8593 }
8594
8595 /* Note: a zero OFFSET and LEN can be used to query the minimum
8596 buffer size. */
8597 if (offset == 0 && len == 0)
8598 return (get_remote_packet_size ());
8599 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8600 large enough let the caller deal with it. */
8601 if (len < get_remote_packet_size ())
8602 return -1;
8603 len = get_remote_packet_size ();
8604
8605 /* Except for querying the minimum buffer size, target must be open. */
8606 if (!remote_desc)
8607 error (_("remote query is only available after target open"));
8608
8609 gdb_assert (annex != NULL);
8610 gdb_assert (readbuf != NULL);
8611
8612 p2 = rs->buf;
8613 *p2++ = 'q';
8614 *p2++ = query_type;
8615
8616 /* We used one buffer char for the remote protocol q command and
8617 another for the query type. As the remote protocol encapsulation
8618 uses 4 chars plus one extra in case we are debugging
8619 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8620 string. */
8621 i = 0;
8622 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8623 {
8624 /* Bad caller may have sent forbidden characters. */
8625 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8626 *p2++ = annex[i];
8627 i++;
8628 }
8629 *p2 = '\0';
8630 gdb_assert (annex[i] == '\0');
8631
8632 i = putpkt (rs->buf);
8633 if (i < 0)
8634 return i;
8635
8636 getpkt (&rs->buf, &rs->buf_size, 0);
8637 strcpy ((char *) readbuf, rs->buf);
8638
8639 return strlen ((char *) readbuf);
8640 }
8641
8642 static int
8643 remote_search_memory (struct target_ops* ops,
8644 CORE_ADDR start_addr, ULONGEST search_space_len,
8645 const gdb_byte *pattern, ULONGEST pattern_len,
8646 CORE_ADDR *found_addrp)
8647 {
8648 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
8649 struct remote_state *rs = get_remote_state ();
8650 int max_size = get_memory_write_packet_size ();
8651 struct packet_config *packet =
8652 &remote_protocol_packets[PACKET_qSearch_memory];
8653 /* Number of packet bytes used to encode the pattern;
8654 this could be more than PATTERN_LEN due to escape characters. */
8655 int escaped_pattern_len;
8656 /* Amount of pattern that was encodable in the packet. */
8657 int used_pattern_len;
8658 int i;
8659 int found;
8660 ULONGEST found_addr;
8661
8662 /* Don't go to the target if we don't have to.
8663 This is done before checking packet->support to avoid the possibility that
8664 a success for this edge case means the facility works in general. */
8665 if (pattern_len > search_space_len)
8666 return 0;
8667 if (pattern_len == 0)
8668 {
8669 *found_addrp = start_addr;
8670 return 1;
8671 }
8672
8673 /* If we already know the packet isn't supported, fall back to the simple
8674 way of searching memory. */
8675
8676 if (packet->support == PACKET_DISABLE)
8677 {
8678 /* Target doesn't provided special support, fall back and use the
8679 standard support (copy memory and do the search here). */
8680 return simple_search_memory (ops, start_addr, search_space_len,
8681 pattern, pattern_len, found_addrp);
8682 }
8683
8684 /* Insert header. */
8685 i = snprintf (rs->buf, max_size,
8686 "qSearch:memory:%s;%s;",
8687 phex_nz (start_addr, addr_size),
8688 phex_nz (search_space_len, sizeof (search_space_len)));
8689 max_size -= (i + 1);
8690
8691 /* Escape as much data as fits into rs->buf. */
8692 escaped_pattern_len =
8693 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8694 &used_pattern_len, max_size);
8695
8696 /* Bail if the pattern is too large. */
8697 if (used_pattern_len != pattern_len)
8698 error (_("Pattern is too large to transmit to remote target."));
8699
8700 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8701 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8702 || packet_ok (rs->buf, packet) != PACKET_OK)
8703 {
8704 /* The request may not have worked because the command is not
8705 supported. If so, fall back to the simple way. */
8706 if (packet->support == PACKET_DISABLE)
8707 {
8708 return simple_search_memory (ops, start_addr, search_space_len,
8709 pattern, pattern_len, found_addrp);
8710 }
8711 return -1;
8712 }
8713
8714 if (rs->buf[0] == '0')
8715 found = 0;
8716 else if (rs->buf[0] == '1')
8717 {
8718 found = 1;
8719 if (rs->buf[1] != ',')
8720 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8721 unpack_varlen_hex (rs->buf + 2, &found_addr);
8722 *found_addrp = found_addr;
8723 }
8724 else
8725 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8726
8727 return found;
8728 }
8729
8730 static void
8731 remote_rcmd (char *command,
8732 struct ui_file *outbuf)
8733 {
8734 struct remote_state *rs = get_remote_state ();
8735 char *p = rs->buf;
8736
8737 if (!remote_desc)
8738 error (_("remote rcmd is only available after target open"));
8739
8740 /* Send a NULL command across as an empty command. */
8741 if (command == NULL)
8742 command = "";
8743
8744 /* The query prefix. */
8745 strcpy (rs->buf, "qRcmd,");
8746 p = strchr (rs->buf, '\0');
8747
8748 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
8749 > get_remote_packet_size ())
8750 error (_("\"monitor\" command ``%s'' is too long."), command);
8751
8752 /* Encode the actual command. */
8753 bin2hex ((gdb_byte *) command, p, 0);
8754
8755 if (putpkt (rs->buf) < 0)
8756 error (_("Communication problem with target."));
8757
8758 /* get/display the response */
8759 while (1)
8760 {
8761 char *buf;
8762
8763 /* XXX - see also remote_get_noisy_reply(). */
8764 QUIT; /* Allow user to bail out with ^C. */
8765 rs->buf[0] = '\0';
8766 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
8767 {
8768 /* Timeout. Continue to (try to) read responses.
8769 This is better than stopping with an error, assuming the stub
8770 is still executing the (long) monitor command.
8771 If needed, the user can interrupt gdb using C-c, obtaining
8772 an effect similar to stop on timeout. */
8773 continue;
8774 }
8775 buf = rs->buf;
8776 if (buf[0] == '\0')
8777 error (_("Target does not support this command."));
8778 if (buf[0] == 'O' && buf[1] != 'K')
8779 {
8780 remote_console_output (buf + 1); /* 'O' message from stub. */
8781 continue;
8782 }
8783 if (strcmp (buf, "OK") == 0)
8784 break;
8785 if (strlen (buf) == 3 && buf[0] == 'E'
8786 && isdigit (buf[1]) && isdigit (buf[2]))
8787 {
8788 error (_("Protocol error with Rcmd"));
8789 }
8790 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8791 {
8792 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8793
8794 fputc_unfiltered (c, outbuf);
8795 }
8796 break;
8797 }
8798 }
8799
8800 static VEC(mem_region_s) *
8801 remote_memory_map (struct target_ops *ops)
8802 {
8803 VEC(mem_region_s) *result = NULL;
8804 char *text = target_read_stralloc (&current_target,
8805 TARGET_OBJECT_MEMORY_MAP, NULL);
8806
8807 if (text)
8808 {
8809 struct cleanup *back_to = make_cleanup (xfree, text);
8810
8811 result = parse_memory_map (text);
8812 do_cleanups (back_to);
8813 }
8814
8815 return result;
8816 }
8817
8818 static void
8819 packet_command (char *args, int from_tty)
8820 {
8821 struct remote_state *rs = get_remote_state ();
8822
8823 if (!remote_desc)
8824 error (_("command can only be used with remote target"));
8825
8826 if (!args)
8827 error (_("remote-packet command requires packet text as argument"));
8828
8829 puts_filtered ("sending: ");
8830 print_packet (args);
8831 puts_filtered ("\n");
8832 putpkt (args);
8833
8834 getpkt (&rs->buf, &rs->buf_size, 0);
8835 puts_filtered ("received: ");
8836 print_packet (rs->buf);
8837 puts_filtered ("\n");
8838 }
8839
8840 #if 0
8841 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8842
8843 static void display_thread_info (struct gdb_ext_thread_info *info);
8844
8845 static void threadset_test_cmd (char *cmd, int tty);
8846
8847 static void threadalive_test (char *cmd, int tty);
8848
8849 static void threadlist_test_cmd (char *cmd, int tty);
8850
8851 int get_and_display_threadinfo (threadref *ref);
8852
8853 static void threadinfo_test_cmd (char *cmd, int tty);
8854
8855 static int thread_display_step (threadref *ref, void *context);
8856
8857 static void threadlist_update_test_cmd (char *cmd, int tty);
8858
8859 static void init_remote_threadtests (void);
8860
8861 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8862
8863 static void
8864 threadset_test_cmd (char *cmd, int tty)
8865 {
8866 int sample_thread = SAMPLE_THREAD;
8867
8868 printf_filtered (_("Remote threadset test\n"));
8869 set_general_thread (sample_thread);
8870 }
8871
8872
8873 static void
8874 threadalive_test (char *cmd, int tty)
8875 {
8876 int sample_thread = SAMPLE_THREAD;
8877 int pid = ptid_get_pid (inferior_ptid);
8878 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8879
8880 if (remote_thread_alive (ptid))
8881 printf_filtered ("PASS: Thread alive test\n");
8882 else
8883 printf_filtered ("FAIL: Thread alive test\n");
8884 }
8885
8886 void output_threadid (char *title, threadref *ref);
8887
8888 void
8889 output_threadid (char *title, threadref *ref)
8890 {
8891 char hexid[20];
8892
8893 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8894 hexid[16] = 0;
8895 printf_filtered ("%s %s\n", title, (&hexid[0]));
8896 }
8897
8898 static void
8899 threadlist_test_cmd (char *cmd, int tty)
8900 {
8901 int startflag = 1;
8902 threadref nextthread;
8903 int done, result_count;
8904 threadref threadlist[3];
8905
8906 printf_filtered ("Remote Threadlist test\n");
8907 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8908 &result_count, &threadlist[0]))
8909 printf_filtered ("FAIL: threadlist test\n");
8910 else
8911 {
8912 threadref *scan = threadlist;
8913 threadref *limit = scan + result_count;
8914
8915 while (scan < limit)
8916 output_threadid (" thread ", scan++);
8917 }
8918 }
8919
8920 void
8921 display_thread_info (struct gdb_ext_thread_info *info)
8922 {
8923 output_threadid ("Threadid: ", &info->threadid);
8924 printf_filtered ("Name: %s\n ", info->shortname);
8925 printf_filtered ("State: %s\n", info->display);
8926 printf_filtered ("other: %s\n\n", info->more_display);
8927 }
8928
8929 int
8930 get_and_display_threadinfo (threadref *ref)
8931 {
8932 int result;
8933 int set;
8934 struct gdb_ext_thread_info threadinfo;
8935
8936 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
8937 | TAG_MOREDISPLAY | TAG_DISPLAY;
8938 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
8939 display_thread_info (&threadinfo);
8940 return result;
8941 }
8942
8943 static void
8944 threadinfo_test_cmd (char *cmd, int tty)
8945 {
8946 int athread = SAMPLE_THREAD;
8947 threadref thread;
8948 int set;
8949
8950 int_to_threadref (&thread, athread);
8951 printf_filtered ("Remote Threadinfo test\n");
8952 if (!get_and_display_threadinfo (&thread))
8953 printf_filtered ("FAIL cannot get thread info\n");
8954 }
8955
8956 static int
8957 thread_display_step (threadref *ref, void *context)
8958 {
8959 /* output_threadid(" threadstep ",ref); *//* simple test */
8960 return get_and_display_threadinfo (ref);
8961 }
8962
8963 static void
8964 threadlist_update_test_cmd (char *cmd, int tty)
8965 {
8966 printf_filtered ("Remote Threadlist update test\n");
8967 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
8968 }
8969
8970 static void
8971 init_remote_threadtests (void)
8972 {
8973 add_com ("tlist", class_obscure, threadlist_test_cmd,
8974 _("Fetch and print the remote list of "
8975 "thread identifiers, one pkt only"));
8976 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
8977 _("Fetch and display info about one thread"));
8978 add_com ("tset", class_obscure, threadset_test_cmd,
8979 _("Test setting to a different thread"));
8980 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
8981 _("Iterate through updating all remote thread info"));
8982 add_com ("talive", class_obscure, threadalive_test,
8983 _(" Remote thread alive test "));
8984 }
8985
8986 #endif /* 0 */
8987
8988 /* Convert a thread ID to a string. Returns the string in a static
8989 buffer. */
8990
8991 static char *
8992 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
8993 {
8994 static char buf[64];
8995 struct remote_state *rs = get_remote_state ();
8996
8997 if (ptid_equal (ptid, null_ptid))
8998 return normal_pid_to_str (ptid);
8999 else if (ptid_is_pid (ptid))
9000 {
9001 /* Printing an inferior target id. */
9002
9003 /* When multi-process extensions are off, there's no way in the
9004 remote protocol to know the remote process id, if there's any
9005 at all. There's one exception --- when we're connected with
9006 target extended-remote, and we manually attached to a process
9007 with "attach PID". We don't record anywhere a flag that
9008 allows us to distinguish that case from the case of
9009 connecting with extended-remote and the stub already being
9010 attached to a process, and reporting yes to qAttached, hence
9011 no smart special casing here. */
9012 if (!remote_multi_process_p (rs))
9013 {
9014 xsnprintf (buf, sizeof buf, "Remote target");
9015 return buf;
9016 }
9017
9018 return normal_pid_to_str (ptid);
9019 }
9020 else
9021 {
9022 if (ptid_equal (magic_null_ptid, ptid))
9023 xsnprintf (buf, sizeof buf, "Thread <main>");
9024 else if (rs->extended && remote_multi_process_p (rs))
9025 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
9026 ptid_get_pid (ptid), ptid_get_tid (ptid));
9027 else
9028 xsnprintf (buf, sizeof buf, "Thread %ld",
9029 ptid_get_tid (ptid));
9030 return buf;
9031 }
9032 }
9033
9034 /* Get the address of the thread local variable in OBJFILE which is
9035 stored at OFFSET within the thread local storage for thread PTID. */
9036
9037 static CORE_ADDR
9038 remote_get_thread_local_address (struct target_ops *ops,
9039 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
9040 {
9041 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
9042 {
9043 struct remote_state *rs = get_remote_state ();
9044 char *p = rs->buf;
9045 char *endp = rs->buf + get_remote_packet_size ();
9046 enum packet_result result;
9047
9048 strcpy (p, "qGetTLSAddr:");
9049 p += strlen (p);
9050 p = write_ptid (p, endp, ptid);
9051 *p++ = ',';
9052 p += hexnumstr (p, offset);
9053 *p++ = ',';
9054 p += hexnumstr (p, lm);
9055 *p++ = '\0';
9056
9057 putpkt (rs->buf);
9058 getpkt (&rs->buf, &rs->buf_size, 0);
9059 result = packet_ok (rs->buf,
9060 &remote_protocol_packets[PACKET_qGetTLSAddr]);
9061 if (result == PACKET_OK)
9062 {
9063 ULONGEST result;
9064
9065 unpack_varlen_hex (rs->buf, &result);
9066 return result;
9067 }
9068 else if (result == PACKET_UNKNOWN)
9069 throw_error (TLS_GENERIC_ERROR,
9070 _("Remote target doesn't support qGetTLSAddr packet"));
9071 else
9072 throw_error (TLS_GENERIC_ERROR,
9073 _("Remote target failed to process qGetTLSAddr request"));
9074 }
9075 else
9076 throw_error (TLS_GENERIC_ERROR,
9077 _("TLS not supported or disabled on this target"));
9078 /* Not reached. */
9079 return 0;
9080 }
9081
9082 /* Provide thread local base, i.e. Thread Information Block address.
9083 Returns 1 if ptid is found and thread_local_base is non zero. */
9084
9085 static int
9086 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
9087 {
9088 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
9089 {
9090 struct remote_state *rs = get_remote_state ();
9091 char *p = rs->buf;
9092 char *endp = rs->buf + get_remote_packet_size ();
9093 enum packet_result result;
9094
9095 strcpy (p, "qGetTIBAddr:");
9096 p += strlen (p);
9097 p = write_ptid (p, endp, ptid);
9098 *p++ = '\0';
9099
9100 putpkt (rs->buf);
9101 getpkt (&rs->buf, &rs->buf_size, 0);
9102 result = packet_ok (rs->buf,
9103 &remote_protocol_packets[PACKET_qGetTIBAddr]);
9104 if (result == PACKET_OK)
9105 {
9106 ULONGEST result;
9107
9108 unpack_varlen_hex (rs->buf, &result);
9109 if (addr)
9110 *addr = (CORE_ADDR) result;
9111 return 1;
9112 }
9113 else if (result == PACKET_UNKNOWN)
9114 error (_("Remote target doesn't support qGetTIBAddr packet"));
9115 else
9116 error (_("Remote target failed to process qGetTIBAddr request"));
9117 }
9118 else
9119 error (_("qGetTIBAddr not supported or disabled on this target"));
9120 /* Not reached. */
9121 return 0;
9122 }
9123
9124 /* Support for inferring a target description based on the current
9125 architecture and the size of a 'g' packet. While the 'g' packet
9126 can have any size (since optional registers can be left off the
9127 end), some sizes are easily recognizable given knowledge of the
9128 approximate architecture. */
9129
9130 struct remote_g_packet_guess
9131 {
9132 int bytes;
9133 const struct target_desc *tdesc;
9134 };
9135 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
9136 DEF_VEC_O(remote_g_packet_guess_s);
9137
9138 struct remote_g_packet_data
9139 {
9140 VEC(remote_g_packet_guess_s) *guesses;
9141 };
9142
9143 static struct gdbarch_data *remote_g_packet_data_handle;
9144
9145 static void *
9146 remote_g_packet_data_init (struct obstack *obstack)
9147 {
9148 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
9149 }
9150
9151 void
9152 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
9153 const struct target_desc *tdesc)
9154 {
9155 struct remote_g_packet_data *data
9156 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
9157 struct remote_g_packet_guess new_guess, *guess;
9158 int ix;
9159
9160 gdb_assert (tdesc != NULL);
9161
9162 for (ix = 0;
9163 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9164 ix++)
9165 if (guess->bytes == bytes)
9166 internal_error (__FILE__, __LINE__,
9167 _("Duplicate g packet description added for size %d"),
9168 bytes);
9169
9170 new_guess.bytes = bytes;
9171 new_guess.tdesc = tdesc;
9172 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
9173 }
9174
9175 /* Return 1 if remote_read_description would do anything on this target
9176 and architecture, 0 otherwise. */
9177
9178 static int
9179 remote_read_description_p (struct target_ops *target)
9180 {
9181 struct remote_g_packet_data *data
9182 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
9183
9184 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9185 return 1;
9186
9187 return 0;
9188 }
9189
9190 static const struct target_desc *
9191 remote_read_description (struct target_ops *target)
9192 {
9193 struct remote_g_packet_data *data
9194 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
9195
9196 /* Do not try this during initial connection, when we do not know
9197 whether there is a running but stopped thread. */
9198 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9199 return NULL;
9200
9201 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9202 {
9203 struct remote_g_packet_guess *guess;
9204 int ix;
9205 int bytes = send_g_packet ();
9206
9207 for (ix = 0;
9208 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9209 ix++)
9210 if (guess->bytes == bytes)
9211 return guess->tdesc;
9212
9213 /* We discard the g packet. A minor optimization would be to
9214 hold on to it, and fill the register cache once we have selected
9215 an architecture, but it's too tricky to do safely. */
9216 }
9217
9218 return NULL;
9219 }
9220
9221 /* Remote file transfer support. This is host-initiated I/O, not
9222 target-initiated; for target-initiated, see remote-fileio.c. */
9223
9224 /* If *LEFT is at least the length of STRING, copy STRING to
9225 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9226 decrease *LEFT. Otherwise raise an error. */
9227
9228 static void
9229 remote_buffer_add_string (char **buffer, int *left, char *string)
9230 {
9231 int len = strlen (string);
9232
9233 if (len > *left)
9234 error (_("Packet too long for target."));
9235
9236 memcpy (*buffer, string, len);
9237 *buffer += len;
9238 *left -= len;
9239
9240 /* NUL-terminate the buffer as a convenience, if there is
9241 room. */
9242 if (*left)
9243 **buffer = '\0';
9244 }
9245
9246 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9247 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9248 decrease *LEFT. Otherwise raise an error. */
9249
9250 static void
9251 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9252 int len)
9253 {
9254 if (2 * len > *left)
9255 error (_("Packet too long for target."));
9256
9257 bin2hex (bytes, *buffer, len);
9258 *buffer += 2 * len;
9259 *left -= 2 * len;
9260
9261 /* NUL-terminate the buffer as a convenience, if there is
9262 room. */
9263 if (*left)
9264 **buffer = '\0';
9265 }
9266
9267 /* If *LEFT is large enough, convert VALUE to hex and add it to
9268 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9269 decrease *LEFT. Otherwise raise an error. */
9270
9271 static void
9272 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9273 {
9274 int len = hexnumlen (value);
9275
9276 if (len > *left)
9277 error (_("Packet too long for target."));
9278
9279 hexnumstr (*buffer, value);
9280 *buffer += len;
9281 *left -= len;
9282
9283 /* NUL-terminate the buffer as a convenience, if there is
9284 room. */
9285 if (*left)
9286 **buffer = '\0';
9287 }
9288
9289 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9290 value, *REMOTE_ERRNO to the remote error number or zero if none
9291 was included, and *ATTACHMENT to point to the start of the annex
9292 if any. The length of the packet isn't needed here; there may
9293 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9294
9295 Return 0 if the packet could be parsed, -1 if it could not. If
9296 -1 is returned, the other variables may not be initialized. */
9297
9298 static int
9299 remote_hostio_parse_result (char *buffer, int *retcode,
9300 int *remote_errno, char **attachment)
9301 {
9302 char *p, *p2;
9303
9304 *remote_errno = 0;
9305 *attachment = NULL;
9306
9307 if (buffer[0] != 'F')
9308 return -1;
9309
9310 errno = 0;
9311 *retcode = strtol (&buffer[1], &p, 16);
9312 if (errno != 0 || p == &buffer[1])
9313 return -1;
9314
9315 /* Check for ",errno". */
9316 if (*p == ',')
9317 {
9318 errno = 0;
9319 *remote_errno = strtol (p + 1, &p2, 16);
9320 if (errno != 0 || p + 1 == p2)
9321 return -1;
9322 p = p2;
9323 }
9324
9325 /* Check for ";attachment". If there is no attachment, the
9326 packet should end here. */
9327 if (*p == ';')
9328 {
9329 *attachment = p + 1;
9330 return 0;
9331 }
9332 else if (*p == '\0')
9333 return 0;
9334 else
9335 return -1;
9336 }
9337
9338 /* Send a prepared I/O packet to the target and read its response.
9339 The prepared packet is in the global RS->BUF before this function
9340 is called, and the answer is there when we return.
9341
9342 COMMAND_BYTES is the length of the request to send, which may include
9343 binary data. WHICH_PACKET is the packet configuration to check
9344 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9345 is set to the error number and -1 is returned. Otherwise the value
9346 returned by the function is returned.
9347
9348 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9349 attachment is expected; an error will be reported if there's a
9350 mismatch. If one is found, *ATTACHMENT will be set to point into
9351 the packet buffer and *ATTACHMENT_LEN will be set to the
9352 attachment's length. */
9353
9354 static int
9355 remote_hostio_send_command (int command_bytes, int which_packet,
9356 int *remote_errno, char **attachment,
9357 int *attachment_len)
9358 {
9359 struct remote_state *rs = get_remote_state ();
9360 int ret, bytes_read;
9361 char *attachment_tmp;
9362
9363 if (!remote_desc
9364 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9365 {
9366 *remote_errno = FILEIO_ENOSYS;
9367 return -1;
9368 }
9369
9370 putpkt_binary (rs->buf, command_bytes);
9371 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9372
9373 /* If it timed out, something is wrong. Don't try to parse the
9374 buffer. */
9375 if (bytes_read < 0)
9376 {
9377 *remote_errno = FILEIO_EINVAL;
9378 return -1;
9379 }
9380
9381 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9382 {
9383 case PACKET_ERROR:
9384 *remote_errno = FILEIO_EINVAL;
9385 return -1;
9386 case PACKET_UNKNOWN:
9387 *remote_errno = FILEIO_ENOSYS;
9388 return -1;
9389 case PACKET_OK:
9390 break;
9391 }
9392
9393 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9394 &attachment_tmp))
9395 {
9396 *remote_errno = FILEIO_EINVAL;
9397 return -1;
9398 }
9399
9400 /* Make sure we saw an attachment if and only if we expected one. */
9401 if ((attachment_tmp == NULL && attachment != NULL)
9402 || (attachment_tmp != NULL && attachment == NULL))
9403 {
9404 *remote_errno = FILEIO_EINVAL;
9405 return -1;
9406 }
9407
9408 /* If an attachment was found, it must point into the packet buffer;
9409 work out how many bytes there were. */
9410 if (attachment_tmp != NULL)
9411 {
9412 *attachment = attachment_tmp;
9413 *attachment_len = bytes_read - (*attachment - rs->buf);
9414 }
9415
9416 return ret;
9417 }
9418
9419 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9420 remote file descriptor, or -1 if an error occurs (and set
9421 *REMOTE_ERRNO). */
9422
9423 static int
9424 remote_hostio_open (const char *filename, int flags, int mode,
9425 int *remote_errno)
9426 {
9427 struct remote_state *rs = get_remote_state ();
9428 char *p = rs->buf;
9429 int left = get_remote_packet_size () - 1;
9430
9431 remote_buffer_add_string (&p, &left, "vFile:open:");
9432
9433 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9434 strlen (filename));
9435 remote_buffer_add_string (&p, &left, ",");
9436
9437 remote_buffer_add_int (&p, &left, flags);
9438 remote_buffer_add_string (&p, &left, ",");
9439
9440 remote_buffer_add_int (&p, &left, mode);
9441
9442 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9443 remote_errno, NULL, NULL);
9444 }
9445
9446 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9447 Return the number of bytes written, or -1 if an error occurs (and
9448 set *REMOTE_ERRNO). */
9449
9450 static int
9451 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9452 ULONGEST offset, int *remote_errno)
9453 {
9454 struct remote_state *rs = get_remote_state ();
9455 char *p = rs->buf;
9456 int left = get_remote_packet_size ();
9457 int out_len;
9458
9459 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9460
9461 remote_buffer_add_int (&p, &left, fd);
9462 remote_buffer_add_string (&p, &left, ",");
9463
9464 remote_buffer_add_int (&p, &left, offset);
9465 remote_buffer_add_string (&p, &left, ",");
9466
9467 p += remote_escape_output (write_buf, len, p, &out_len,
9468 get_remote_packet_size () - (p - rs->buf));
9469
9470 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9471 remote_errno, NULL, NULL);
9472 }
9473
9474 /* Read up to LEN bytes FD on the remote target into READ_BUF
9475 Return the number of bytes read, or -1 if an error occurs (and
9476 set *REMOTE_ERRNO). */
9477
9478 static int
9479 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9480 ULONGEST offset, int *remote_errno)
9481 {
9482 struct remote_state *rs = get_remote_state ();
9483 char *p = rs->buf;
9484 char *attachment;
9485 int left = get_remote_packet_size ();
9486 int ret, attachment_len;
9487 int read_len;
9488
9489 remote_buffer_add_string (&p, &left, "vFile:pread:");
9490
9491 remote_buffer_add_int (&p, &left, fd);
9492 remote_buffer_add_string (&p, &left, ",");
9493
9494 remote_buffer_add_int (&p, &left, len);
9495 remote_buffer_add_string (&p, &left, ",");
9496
9497 remote_buffer_add_int (&p, &left, offset);
9498
9499 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9500 remote_errno, &attachment,
9501 &attachment_len);
9502
9503 if (ret < 0)
9504 return ret;
9505
9506 read_len = remote_unescape_input (attachment, attachment_len,
9507 read_buf, len);
9508 if (read_len != ret)
9509 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9510
9511 return ret;
9512 }
9513
9514 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9515 (and set *REMOTE_ERRNO). */
9516
9517 static int
9518 remote_hostio_close (int fd, int *remote_errno)
9519 {
9520 struct remote_state *rs = get_remote_state ();
9521 char *p = rs->buf;
9522 int left = get_remote_packet_size () - 1;
9523
9524 remote_buffer_add_string (&p, &left, "vFile:close:");
9525
9526 remote_buffer_add_int (&p, &left, fd);
9527
9528 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9529 remote_errno, NULL, NULL);
9530 }
9531
9532 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9533 occurs (and set *REMOTE_ERRNO). */
9534
9535 static int
9536 remote_hostio_unlink (const char *filename, int *remote_errno)
9537 {
9538 struct remote_state *rs = get_remote_state ();
9539 char *p = rs->buf;
9540 int left = get_remote_packet_size () - 1;
9541
9542 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9543
9544 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9545 strlen (filename));
9546
9547 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9548 remote_errno, NULL, NULL);
9549 }
9550
9551 /* Read value of symbolic link FILENAME on the remote target. Return
9552 a null-terminated string allocated via xmalloc, or NULL if an error
9553 occurs (and set *REMOTE_ERRNO). */
9554
9555 static char *
9556 remote_hostio_readlink (const char *filename, int *remote_errno)
9557 {
9558 struct remote_state *rs = get_remote_state ();
9559 char *p = rs->buf;
9560 char *attachment;
9561 int left = get_remote_packet_size ();
9562 int len, attachment_len;
9563 int read_len;
9564 char *ret;
9565
9566 remote_buffer_add_string (&p, &left, "vFile:readlink:");
9567
9568 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9569 strlen (filename));
9570
9571 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
9572 remote_errno, &attachment,
9573 &attachment_len);
9574
9575 if (len < 0)
9576 return NULL;
9577
9578 ret = xmalloc (len + 1);
9579
9580 read_len = remote_unescape_input (attachment, attachment_len,
9581 ret, len);
9582 if (read_len != len)
9583 error (_("Readlink returned %d, but %d bytes."), len, read_len);
9584
9585 ret[len] = '\0';
9586 return ret;
9587 }
9588
9589 static int
9590 remote_fileio_errno_to_host (int errnum)
9591 {
9592 switch (errnum)
9593 {
9594 case FILEIO_EPERM:
9595 return EPERM;
9596 case FILEIO_ENOENT:
9597 return ENOENT;
9598 case FILEIO_EINTR:
9599 return EINTR;
9600 case FILEIO_EIO:
9601 return EIO;
9602 case FILEIO_EBADF:
9603 return EBADF;
9604 case FILEIO_EACCES:
9605 return EACCES;
9606 case FILEIO_EFAULT:
9607 return EFAULT;
9608 case FILEIO_EBUSY:
9609 return EBUSY;
9610 case FILEIO_EEXIST:
9611 return EEXIST;
9612 case FILEIO_ENODEV:
9613 return ENODEV;
9614 case FILEIO_ENOTDIR:
9615 return ENOTDIR;
9616 case FILEIO_EISDIR:
9617 return EISDIR;
9618 case FILEIO_EINVAL:
9619 return EINVAL;
9620 case FILEIO_ENFILE:
9621 return ENFILE;
9622 case FILEIO_EMFILE:
9623 return EMFILE;
9624 case FILEIO_EFBIG:
9625 return EFBIG;
9626 case FILEIO_ENOSPC:
9627 return ENOSPC;
9628 case FILEIO_ESPIPE:
9629 return ESPIPE;
9630 case FILEIO_EROFS:
9631 return EROFS;
9632 case FILEIO_ENOSYS:
9633 return ENOSYS;
9634 case FILEIO_ENAMETOOLONG:
9635 return ENAMETOOLONG;
9636 }
9637 return -1;
9638 }
9639
9640 static char *
9641 remote_hostio_error (int errnum)
9642 {
9643 int host_error = remote_fileio_errno_to_host (errnum);
9644
9645 if (host_error == -1)
9646 error (_("Unknown remote I/O error %d"), errnum);
9647 else
9648 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9649 }
9650
9651 static void
9652 remote_hostio_close_cleanup (void *opaque)
9653 {
9654 int fd = *(int *) opaque;
9655 int remote_errno;
9656
9657 remote_hostio_close (fd, &remote_errno);
9658 }
9659
9660
9661 static void *
9662 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9663 {
9664 const char *filename = bfd_get_filename (abfd);
9665 int fd, remote_errno;
9666 int *stream;
9667
9668 gdb_assert (remote_filename_p (filename));
9669
9670 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9671 if (fd == -1)
9672 {
9673 errno = remote_fileio_errno_to_host (remote_errno);
9674 bfd_set_error (bfd_error_system_call);
9675 return NULL;
9676 }
9677
9678 stream = xmalloc (sizeof (int));
9679 *stream = fd;
9680 return stream;
9681 }
9682
9683 static int
9684 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9685 {
9686 int fd = *(int *)stream;
9687 int remote_errno;
9688
9689 xfree (stream);
9690
9691 /* Ignore errors on close; these may happen if the remote
9692 connection was already torn down. */
9693 remote_hostio_close (fd, &remote_errno);
9694
9695 return 1;
9696 }
9697
9698 static file_ptr
9699 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9700 file_ptr nbytes, file_ptr offset)
9701 {
9702 int fd = *(int *)stream;
9703 int remote_errno;
9704 file_ptr pos, bytes;
9705
9706 pos = 0;
9707 while (nbytes > pos)
9708 {
9709 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9710 offset + pos, &remote_errno);
9711 if (bytes == 0)
9712 /* Success, but no bytes, means end-of-file. */
9713 break;
9714 if (bytes == -1)
9715 {
9716 errno = remote_fileio_errno_to_host (remote_errno);
9717 bfd_set_error (bfd_error_system_call);
9718 return -1;
9719 }
9720
9721 pos += bytes;
9722 }
9723
9724 return pos;
9725 }
9726
9727 static int
9728 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9729 {
9730 /* FIXME: We should probably implement remote_hostio_stat. */
9731 sb->st_size = INT_MAX;
9732 return 0;
9733 }
9734
9735 int
9736 remote_filename_p (const char *filename)
9737 {
9738 return strncmp (filename, "remote:", 7) == 0;
9739 }
9740
9741 bfd *
9742 remote_bfd_open (const char *remote_file, const char *target)
9743 {
9744 return bfd_openr_iovec (remote_file, target,
9745 remote_bfd_iovec_open, NULL,
9746 remote_bfd_iovec_pread,
9747 remote_bfd_iovec_close,
9748 remote_bfd_iovec_stat);
9749 }
9750
9751 void
9752 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9753 {
9754 struct cleanup *back_to, *close_cleanup;
9755 int retcode, fd, remote_errno, bytes, io_size;
9756 FILE *file;
9757 gdb_byte *buffer;
9758 int bytes_in_buffer;
9759 int saw_eof;
9760 ULONGEST offset;
9761
9762 if (!remote_desc)
9763 error (_("command can only be used with remote target"));
9764
9765 file = fopen (local_file, "rb");
9766 if (file == NULL)
9767 perror_with_name (local_file);
9768 back_to = make_cleanup_fclose (file);
9769
9770 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9771 | FILEIO_O_TRUNC),
9772 0700, &remote_errno);
9773 if (fd == -1)
9774 remote_hostio_error (remote_errno);
9775
9776 /* Send up to this many bytes at once. They won't all fit in the
9777 remote packet limit, so we'll transfer slightly fewer. */
9778 io_size = get_remote_packet_size ();
9779 buffer = xmalloc (io_size);
9780 make_cleanup (xfree, buffer);
9781
9782 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9783
9784 bytes_in_buffer = 0;
9785 saw_eof = 0;
9786 offset = 0;
9787 while (bytes_in_buffer || !saw_eof)
9788 {
9789 if (!saw_eof)
9790 {
9791 bytes = fread (buffer + bytes_in_buffer, 1,
9792 io_size - bytes_in_buffer,
9793 file);
9794 if (bytes == 0)
9795 {
9796 if (ferror (file))
9797 error (_("Error reading %s."), local_file);
9798 else
9799 {
9800 /* EOF. Unless there is something still in the
9801 buffer from the last iteration, we are done. */
9802 saw_eof = 1;
9803 if (bytes_in_buffer == 0)
9804 break;
9805 }
9806 }
9807 }
9808 else
9809 bytes = 0;
9810
9811 bytes += bytes_in_buffer;
9812 bytes_in_buffer = 0;
9813
9814 retcode = remote_hostio_pwrite (fd, buffer, bytes,
9815 offset, &remote_errno);
9816
9817 if (retcode < 0)
9818 remote_hostio_error (remote_errno);
9819 else if (retcode == 0)
9820 error (_("Remote write of %d bytes returned 0!"), bytes);
9821 else if (retcode < bytes)
9822 {
9823 /* Short write. Save the rest of the read data for the next
9824 write. */
9825 bytes_in_buffer = bytes - retcode;
9826 memmove (buffer, buffer + retcode, bytes_in_buffer);
9827 }
9828
9829 offset += retcode;
9830 }
9831
9832 discard_cleanups (close_cleanup);
9833 if (remote_hostio_close (fd, &remote_errno))
9834 remote_hostio_error (remote_errno);
9835
9836 if (from_tty)
9837 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9838 do_cleanups (back_to);
9839 }
9840
9841 void
9842 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9843 {
9844 struct cleanup *back_to, *close_cleanup;
9845 int fd, remote_errno, bytes, io_size;
9846 FILE *file;
9847 gdb_byte *buffer;
9848 ULONGEST offset;
9849
9850 if (!remote_desc)
9851 error (_("command can only be used with remote target"));
9852
9853 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9854 if (fd == -1)
9855 remote_hostio_error (remote_errno);
9856
9857 file = fopen (local_file, "wb");
9858 if (file == NULL)
9859 perror_with_name (local_file);
9860 back_to = make_cleanup_fclose (file);
9861
9862 /* Send up to this many bytes at once. They won't all fit in the
9863 remote packet limit, so we'll transfer slightly fewer. */
9864 io_size = get_remote_packet_size ();
9865 buffer = xmalloc (io_size);
9866 make_cleanup (xfree, buffer);
9867
9868 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9869
9870 offset = 0;
9871 while (1)
9872 {
9873 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9874 if (bytes == 0)
9875 /* Success, but no bytes, means end-of-file. */
9876 break;
9877 if (bytes == -1)
9878 remote_hostio_error (remote_errno);
9879
9880 offset += bytes;
9881
9882 bytes = fwrite (buffer, 1, bytes, file);
9883 if (bytes == 0)
9884 perror_with_name (local_file);
9885 }
9886
9887 discard_cleanups (close_cleanup);
9888 if (remote_hostio_close (fd, &remote_errno))
9889 remote_hostio_error (remote_errno);
9890
9891 if (from_tty)
9892 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9893 do_cleanups (back_to);
9894 }
9895
9896 void
9897 remote_file_delete (const char *remote_file, int from_tty)
9898 {
9899 int retcode, remote_errno;
9900
9901 if (!remote_desc)
9902 error (_("command can only be used with remote target"));
9903
9904 retcode = remote_hostio_unlink (remote_file, &remote_errno);
9905 if (retcode == -1)
9906 remote_hostio_error (remote_errno);
9907
9908 if (from_tty)
9909 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9910 }
9911
9912 static void
9913 remote_put_command (char *args, int from_tty)
9914 {
9915 struct cleanup *back_to;
9916 char **argv;
9917
9918 if (args == NULL)
9919 error_no_arg (_("file to put"));
9920
9921 argv = gdb_buildargv (args);
9922 back_to = make_cleanup_freeargv (argv);
9923 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9924 error (_("Invalid parameters to remote put"));
9925
9926 remote_file_put (argv[0], argv[1], from_tty);
9927
9928 do_cleanups (back_to);
9929 }
9930
9931 static void
9932 remote_get_command (char *args, int from_tty)
9933 {
9934 struct cleanup *back_to;
9935 char **argv;
9936
9937 if (args == NULL)
9938 error_no_arg (_("file to get"));
9939
9940 argv = gdb_buildargv (args);
9941 back_to = make_cleanup_freeargv (argv);
9942 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9943 error (_("Invalid parameters to remote get"));
9944
9945 remote_file_get (argv[0], argv[1], from_tty);
9946
9947 do_cleanups (back_to);
9948 }
9949
9950 static void
9951 remote_delete_command (char *args, int from_tty)
9952 {
9953 struct cleanup *back_to;
9954 char **argv;
9955
9956 if (args == NULL)
9957 error_no_arg (_("file to delete"));
9958
9959 argv = gdb_buildargv (args);
9960 back_to = make_cleanup_freeargv (argv);
9961 if (argv[0] == NULL || argv[1] != NULL)
9962 error (_("Invalid parameters to remote delete"));
9963
9964 remote_file_delete (argv[0], from_tty);
9965
9966 do_cleanups (back_to);
9967 }
9968
9969 static void
9970 remote_command (char *args, int from_tty)
9971 {
9972 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
9973 }
9974
9975 static int
9976 remote_can_execute_reverse (void)
9977 {
9978 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
9979 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
9980 return 1;
9981 else
9982 return 0;
9983 }
9984
9985 static int
9986 remote_supports_non_stop (void)
9987 {
9988 return 1;
9989 }
9990
9991 static int
9992 remote_supports_disable_randomization (void)
9993 {
9994 /* Only supported in extended mode. */
9995 return 0;
9996 }
9997
9998 static int
9999 remote_supports_multi_process (void)
10000 {
10001 struct remote_state *rs = get_remote_state ();
10002
10003 /* Only extended-remote handles being attached to multiple
10004 processes, even though plain remote can use the multi-process
10005 thread id extensions, so that GDB knows the target process's
10006 PID. */
10007 return rs->extended && remote_multi_process_p (rs);
10008 }
10009
10010 static int
10011 remote_supports_cond_tracepoints (void)
10012 {
10013 struct remote_state *rs = get_remote_state ();
10014
10015 return rs->cond_tracepoints;
10016 }
10017
10018 static int
10019 remote_supports_cond_breakpoints (void)
10020 {
10021 struct remote_state *rs = get_remote_state ();
10022
10023 return rs->cond_breakpoints;
10024 }
10025
10026 static int
10027 remote_supports_fast_tracepoints (void)
10028 {
10029 struct remote_state *rs = get_remote_state ();
10030
10031 return rs->fast_tracepoints;
10032 }
10033
10034 static int
10035 remote_supports_static_tracepoints (void)
10036 {
10037 struct remote_state *rs = get_remote_state ();
10038
10039 return rs->static_tracepoints;
10040 }
10041
10042 static int
10043 remote_supports_install_in_trace (void)
10044 {
10045 struct remote_state *rs = get_remote_state ();
10046
10047 return rs->install_in_trace;
10048 }
10049
10050 static int
10051 remote_supports_enable_disable_tracepoint (void)
10052 {
10053 struct remote_state *rs = get_remote_state ();
10054
10055 return rs->enable_disable_tracepoints;
10056 }
10057
10058 static int
10059 remote_supports_string_tracing (void)
10060 {
10061 struct remote_state *rs = get_remote_state ();
10062
10063 return rs->string_tracing;
10064 }
10065
10066 static void
10067 remote_trace_init (void)
10068 {
10069 putpkt ("QTinit");
10070 remote_get_noisy_reply (&target_buf, &target_buf_size);
10071 if (strcmp (target_buf, "OK") != 0)
10072 error (_("Target does not support this command."));
10073 }
10074
10075 static void free_actions_list (char **actions_list);
10076 static void free_actions_list_cleanup_wrapper (void *);
10077 static void
10078 free_actions_list_cleanup_wrapper (void *al)
10079 {
10080 free_actions_list (al);
10081 }
10082
10083 static void
10084 free_actions_list (char **actions_list)
10085 {
10086 int ndx;
10087
10088 if (actions_list == 0)
10089 return;
10090
10091 for (ndx = 0; actions_list[ndx]; ndx++)
10092 xfree (actions_list[ndx]);
10093
10094 xfree (actions_list);
10095 }
10096
10097 /* Recursive routine to walk through command list including loops, and
10098 download packets for each command. */
10099
10100 static void
10101 remote_download_command_source (int num, ULONGEST addr,
10102 struct command_line *cmds)
10103 {
10104 struct remote_state *rs = get_remote_state ();
10105 struct command_line *cmd;
10106
10107 for (cmd = cmds; cmd; cmd = cmd->next)
10108 {
10109 QUIT; /* Allow user to bail out with ^C. */
10110 strcpy (rs->buf, "QTDPsrc:");
10111 encode_source_string (num, addr, "cmd", cmd->line,
10112 rs->buf + strlen (rs->buf),
10113 rs->buf_size - strlen (rs->buf));
10114 putpkt (rs->buf);
10115 remote_get_noisy_reply (&target_buf, &target_buf_size);
10116 if (strcmp (target_buf, "OK"))
10117 warning (_("Target does not support source download."));
10118
10119 if (cmd->control_type == while_control
10120 || cmd->control_type == while_stepping_control)
10121 {
10122 remote_download_command_source (num, addr, *cmd->body_list);
10123
10124 QUIT; /* Allow user to bail out with ^C. */
10125 strcpy (rs->buf, "QTDPsrc:");
10126 encode_source_string (num, addr, "cmd", "end",
10127 rs->buf + strlen (rs->buf),
10128 rs->buf_size - strlen (rs->buf));
10129 putpkt (rs->buf);
10130 remote_get_noisy_reply (&target_buf, &target_buf_size);
10131 if (strcmp (target_buf, "OK"))
10132 warning (_("Target does not support source download."));
10133 }
10134 }
10135 }
10136
10137 static void
10138 remote_download_tracepoint (struct bp_location *loc)
10139 {
10140 #define BUF_SIZE 2048
10141
10142 CORE_ADDR tpaddr;
10143 char addrbuf[40];
10144 char buf[BUF_SIZE];
10145 char **tdp_actions;
10146 char **stepping_actions;
10147 int ndx;
10148 struct cleanup *old_chain = NULL;
10149 struct agent_expr *aexpr;
10150 struct cleanup *aexpr_chain = NULL;
10151 char *pkt;
10152 struct breakpoint *b = loc->owner;
10153 struct tracepoint *t = (struct tracepoint *) b;
10154
10155 encode_actions (loc->owner, loc, &tdp_actions, &stepping_actions);
10156 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
10157 tdp_actions);
10158 (void) make_cleanup (free_actions_list_cleanup_wrapper,
10159 stepping_actions);
10160
10161 tpaddr = loc->address;
10162 sprintf_vma (addrbuf, tpaddr);
10163 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
10164 addrbuf, /* address */
10165 (b->enable_state == bp_enabled ? 'E' : 'D'),
10166 t->step_count, t->pass_count);
10167 /* Fast tracepoints are mostly handled by the target, but we can
10168 tell the target how big of an instruction block should be moved
10169 around. */
10170 if (b->type == bp_fast_tracepoint)
10171 {
10172 /* Only test for support at download time; we may not know
10173 target capabilities at definition time. */
10174 if (remote_supports_fast_tracepoints ())
10175 {
10176 int isize;
10177
10178 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
10179 tpaddr, &isize, NULL))
10180 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
10181 isize);
10182 else
10183 /* If it passed validation at definition but fails now,
10184 something is very wrong. */
10185 internal_error (__FILE__, __LINE__,
10186 _("Fast tracepoint not "
10187 "valid during download"));
10188 }
10189 else
10190 /* Fast tracepoints are functionally identical to regular
10191 tracepoints, so don't take lack of support as a reason to
10192 give up on the trace run. */
10193 warning (_("Target does not support fast tracepoints, "
10194 "downloading %d as regular tracepoint"), b->number);
10195 }
10196 else if (b->type == bp_static_tracepoint)
10197 {
10198 /* Only test for support at download time; we may not know
10199 target capabilities at definition time. */
10200 if (remote_supports_static_tracepoints ())
10201 {
10202 struct static_tracepoint_marker marker;
10203
10204 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10205 strcat (buf, ":S");
10206 else
10207 error (_("Static tracepoint not valid during download"));
10208 }
10209 else
10210 /* Fast tracepoints are functionally identical to regular
10211 tracepoints, so don't take lack of support as a reason
10212 to give up on the trace run. */
10213 error (_("Target does not support static tracepoints"));
10214 }
10215 /* If the tracepoint has a conditional, make it into an agent
10216 expression and append to the definition. */
10217 if (loc->cond)
10218 {
10219 /* Only test support at download time, we may not know target
10220 capabilities at definition time. */
10221 if (remote_supports_cond_tracepoints ())
10222 {
10223 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10224 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10225 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
10226 aexpr->len);
10227 pkt = buf + strlen (buf);
10228 for (ndx = 0; ndx < aexpr->len; ++ndx)
10229 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10230 *pkt = '\0';
10231 do_cleanups (aexpr_chain);
10232 }
10233 else
10234 warning (_("Target does not support conditional tracepoints, "
10235 "ignoring tp %d cond"), b->number);
10236 }
10237
10238 if (b->commands || *default_collect)
10239 strcat (buf, "-");
10240 putpkt (buf);
10241 remote_get_noisy_reply (&target_buf, &target_buf_size);
10242 if (strcmp (target_buf, "OK"))
10243 error (_("Target does not support tracepoints."));
10244
10245 /* do_single_steps (t); */
10246 if (tdp_actions)
10247 {
10248 for (ndx = 0; tdp_actions[ndx]; ndx++)
10249 {
10250 QUIT; /* Allow user to bail out with ^C. */
10251 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
10252 b->number, addrbuf, /* address */
10253 tdp_actions[ndx],
10254 ((tdp_actions[ndx + 1] || stepping_actions)
10255 ? '-' : 0));
10256 putpkt (buf);
10257 remote_get_noisy_reply (&target_buf,
10258 &target_buf_size);
10259 if (strcmp (target_buf, "OK"))
10260 error (_("Error on target while setting tracepoints."));
10261 }
10262 }
10263 if (stepping_actions)
10264 {
10265 for (ndx = 0; stepping_actions[ndx]; ndx++)
10266 {
10267 QUIT; /* Allow user to bail out with ^C. */
10268 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
10269 b->number, addrbuf, /* address */
10270 ((ndx == 0) ? "S" : ""),
10271 stepping_actions[ndx],
10272 (stepping_actions[ndx + 1] ? "-" : ""));
10273 putpkt (buf);
10274 remote_get_noisy_reply (&target_buf,
10275 &target_buf_size);
10276 if (strcmp (target_buf, "OK"))
10277 error (_("Error on target while setting tracepoints."));
10278 }
10279 }
10280
10281 if (remote_protocol_packets[PACKET_TracepointSource].support
10282 == PACKET_ENABLE)
10283 {
10284 if (b->addr_string)
10285 {
10286 strcpy (buf, "QTDPsrc:");
10287 encode_source_string (b->number, loc->address,
10288 "at", b->addr_string, buf + strlen (buf),
10289 2048 - strlen (buf));
10290
10291 putpkt (buf);
10292 remote_get_noisy_reply (&target_buf, &target_buf_size);
10293 if (strcmp (target_buf, "OK"))
10294 warning (_("Target does not support source download."));
10295 }
10296 if (b->cond_string)
10297 {
10298 strcpy (buf, "QTDPsrc:");
10299 encode_source_string (b->number, loc->address,
10300 "cond", b->cond_string, buf + strlen (buf),
10301 2048 - strlen (buf));
10302 putpkt (buf);
10303 remote_get_noisy_reply (&target_buf, &target_buf_size);
10304 if (strcmp (target_buf, "OK"))
10305 warning (_("Target does not support source download."));
10306 }
10307 remote_download_command_source (b->number, loc->address,
10308 breakpoint_commands (b));
10309 }
10310
10311 do_cleanups (old_chain);
10312 }
10313
10314 static int
10315 remote_can_download_tracepoint (void)
10316 {
10317 struct remote_state *rs = get_remote_state ();
10318 struct trace_status *ts;
10319 int status;
10320
10321 /* Don't try to install tracepoints until we've relocated our
10322 symbols, and fetched and merged the target's tracepoint list with
10323 ours. */
10324 if (rs->starting_up)
10325 return 0;
10326
10327 ts = current_trace_status ();
10328 status = remote_get_trace_status (ts);
10329
10330 if (status == -1 || !ts->running_known || !ts->running)
10331 return 0;
10332
10333 /* If we are in a tracing experiment, but remote stub doesn't support
10334 installing tracepoint in trace, we have to return. */
10335 if (!remote_supports_install_in_trace ())
10336 return 0;
10337
10338 return 1;
10339 }
10340
10341
10342 static void
10343 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10344 {
10345 struct remote_state *rs = get_remote_state ();
10346 char *p;
10347
10348 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
10349 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
10350 tsv->builtin);
10351 p = rs->buf + strlen (rs->buf);
10352 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10353 error (_("Trace state variable name too long for tsv definition packet"));
10354 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10355 *p++ = '\0';
10356 putpkt (rs->buf);
10357 remote_get_noisy_reply (&target_buf, &target_buf_size);
10358 if (*target_buf == '\0')
10359 error (_("Target does not support this command."));
10360 if (strcmp (target_buf, "OK") != 0)
10361 error (_("Error on target while downloading trace state variable."));
10362 }
10363
10364 static void
10365 remote_enable_tracepoint (struct bp_location *location)
10366 {
10367 struct remote_state *rs = get_remote_state ();
10368 char addr_buf[40];
10369
10370 sprintf_vma (addr_buf, location->address);
10371 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
10372 location->owner->number, addr_buf);
10373 putpkt (rs->buf);
10374 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10375 if (*rs->buf == '\0')
10376 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10377 if (strcmp (rs->buf, "OK") != 0)
10378 error (_("Error on target while enabling tracepoint."));
10379 }
10380
10381 static void
10382 remote_disable_tracepoint (struct bp_location *location)
10383 {
10384 struct remote_state *rs = get_remote_state ();
10385 char addr_buf[40];
10386
10387 sprintf_vma (addr_buf, location->address);
10388 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
10389 location->owner->number, addr_buf);
10390 putpkt (rs->buf);
10391 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10392 if (*rs->buf == '\0')
10393 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10394 if (strcmp (rs->buf, "OK") != 0)
10395 error (_("Error on target while disabling tracepoint."));
10396 }
10397
10398 static void
10399 remote_trace_set_readonly_regions (void)
10400 {
10401 asection *s;
10402 bfd *abfd = NULL;
10403 bfd_size_type size;
10404 bfd_vma vma;
10405 int anysecs = 0;
10406 int offset = 0;
10407
10408 if (!exec_bfd)
10409 return; /* No information to give. */
10410
10411 strcpy (target_buf, "QTro");
10412 for (s = exec_bfd->sections; s; s = s->next)
10413 {
10414 char tmp1[40], tmp2[40];
10415 int sec_length;
10416
10417 if ((s->flags & SEC_LOAD) == 0 ||
10418 /* (s->flags & SEC_CODE) == 0 || */
10419 (s->flags & SEC_READONLY) == 0)
10420 continue;
10421
10422 anysecs = 1;
10423 vma = bfd_get_section_vma (abfd, s);
10424 size = bfd_get_section_size (s);
10425 sprintf_vma (tmp1, vma);
10426 sprintf_vma (tmp2, vma + size);
10427 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10428 if (offset + sec_length + 1 > target_buf_size)
10429 {
10430 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10431 != PACKET_ENABLE)
10432 warning (_("\
10433 Too many sections for read-only sections definition packet."));
10434 break;
10435 }
10436 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
10437 tmp1, tmp2);
10438 offset += sec_length;
10439 }
10440 if (anysecs)
10441 {
10442 putpkt (target_buf);
10443 getpkt (&target_buf, &target_buf_size, 0);
10444 }
10445 }
10446
10447 static void
10448 remote_trace_start (void)
10449 {
10450 putpkt ("QTStart");
10451 remote_get_noisy_reply (&target_buf, &target_buf_size);
10452 if (*target_buf == '\0')
10453 error (_("Target does not support this command."));
10454 if (strcmp (target_buf, "OK") != 0)
10455 error (_("Bogus reply from target: %s"), target_buf);
10456 }
10457
10458 static int
10459 remote_get_trace_status (struct trace_status *ts)
10460 {
10461 /* Initialize it just to avoid a GCC false warning. */
10462 char *p = NULL;
10463 /* FIXME we need to get register block size some other way. */
10464 extern int trace_regblock_size;
10465 volatile struct gdb_exception ex;
10466
10467 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10468
10469 putpkt ("qTStatus");
10470
10471 TRY_CATCH (ex, RETURN_MASK_ERROR)
10472 {
10473 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10474 }
10475 if (ex.reason < 0)
10476 {
10477 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10478 return -1;
10479 }
10480
10481 /* If the remote target doesn't do tracing, flag it. */
10482 if (*p == '\0')
10483 return -1;
10484
10485 /* We're working with a live target. */
10486 ts->from_file = 0;
10487
10488 /* Set some defaults. */
10489 ts->running_known = 0;
10490 ts->stop_reason = trace_stop_reason_unknown;
10491 ts->traceframe_count = -1;
10492 ts->buffer_free = 0;
10493
10494 if (*p++ != 'T')
10495 error (_("Bogus trace status reply from target: %s"), target_buf);
10496
10497 parse_trace_status (p, ts);
10498
10499 return ts->running;
10500 }
10501
10502 static void
10503 remote_get_tracepoint_status (struct breakpoint *bp,
10504 struct uploaded_tp *utp)
10505 {
10506 struct remote_state *rs = get_remote_state ();
10507 char *reply;
10508 struct bp_location *loc;
10509 struct tracepoint *tp = (struct tracepoint *) bp;
10510 size_t size = get_remote_packet_size ();
10511
10512 if (tp)
10513 {
10514 tp->base.hit_count = 0;
10515 tp->traceframe_usage = 0;
10516 for (loc = tp->base.loc; loc; loc = loc->next)
10517 {
10518 /* If the tracepoint was never downloaded, don't go asking for
10519 any status. */
10520 if (tp->number_on_target == 0)
10521 continue;
10522 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
10523 phex_nz (loc->address, 0));
10524 putpkt (rs->buf);
10525 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10526 if (reply && *reply)
10527 {
10528 if (*reply == 'V')
10529 parse_tracepoint_status (reply + 1, bp, utp);
10530 }
10531 }
10532 }
10533 else if (utp)
10534 {
10535 utp->hit_count = 0;
10536 utp->traceframe_usage = 0;
10537 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
10538 phex_nz (utp->addr, 0));
10539 putpkt (rs->buf);
10540 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10541 if (reply && *reply)
10542 {
10543 if (*reply == 'V')
10544 parse_tracepoint_status (reply + 1, bp, utp);
10545 }
10546 }
10547 }
10548
10549 static void
10550 remote_trace_stop (void)
10551 {
10552 putpkt ("QTStop");
10553 remote_get_noisy_reply (&target_buf, &target_buf_size);
10554 if (*target_buf == '\0')
10555 error (_("Target does not support this command."));
10556 if (strcmp (target_buf, "OK") != 0)
10557 error (_("Bogus reply from target: %s"), target_buf);
10558 }
10559
10560 static int
10561 remote_trace_find (enum trace_find_type type, int num,
10562 ULONGEST addr1, ULONGEST addr2,
10563 int *tpp)
10564 {
10565 struct remote_state *rs = get_remote_state ();
10566 char *endbuf = rs->buf + get_remote_packet_size ();
10567 char *p, *reply;
10568 int target_frameno = -1, target_tracept = -1;
10569
10570 /* Lookups other than by absolute frame number depend on the current
10571 trace selected, so make sure it is correct on the remote end
10572 first. */
10573 if (type != tfind_number)
10574 set_remote_traceframe ();
10575
10576 p = rs->buf;
10577 strcpy (p, "QTFrame:");
10578 p = strchr (p, '\0');
10579 switch (type)
10580 {
10581 case tfind_number:
10582 xsnprintf (p, endbuf - p, "%x", num);
10583 break;
10584 case tfind_pc:
10585 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
10586 break;
10587 case tfind_tp:
10588 xsnprintf (p, endbuf - p, "tdp:%x", num);
10589 break;
10590 case tfind_range:
10591 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
10592 phex_nz (addr2, 0));
10593 break;
10594 case tfind_outside:
10595 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
10596 phex_nz (addr2, 0));
10597 break;
10598 default:
10599 error (_("Unknown trace find type %d"), type);
10600 }
10601
10602 putpkt (rs->buf);
10603 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10604 if (*reply == '\0')
10605 error (_("Target does not support this command."));
10606
10607 while (reply && *reply)
10608 switch (*reply)
10609 {
10610 case 'F':
10611 p = ++reply;
10612 target_frameno = (int) strtol (p, &reply, 16);
10613 if (reply == p)
10614 error (_("Unable to parse trace frame number"));
10615 /* Don't update our remote traceframe number cache on failure
10616 to select a remote traceframe. */
10617 if (target_frameno == -1)
10618 return -1;
10619 break;
10620 case 'T':
10621 p = ++reply;
10622 target_tracept = (int) strtol (p, &reply, 16);
10623 if (reply == p)
10624 error (_("Unable to parse tracepoint number"));
10625 break;
10626 case 'O': /* "OK"? */
10627 if (reply[1] == 'K' && reply[2] == '\0')
10628 reply += 2;
10629 else
10630 error (_("Bogus reply from target: %s"), reply);
10631 break;
10632 default:
10633 error (_("Bogus reply from target: %s"), reply);
10634 }
10635 if (tpp)
10636 *tpp = target_tracept;
10637
10638 remote_traceframe_number = target_frameno;
10639 return target_frameno;
10640 }
10641
10642 static int
10643 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10644 {
10645 struct remote_state *rs = get_remote_state ();
10646 char *reply;
10647 ULONGEST uval;
10648
10649 set_remote_traceframe ();
10650
10651 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
10652 putpkt (rs->buf);
10653 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10654 if (reply && *reply)
10655 {
10656 if (*reply == 'V')
10657 {
10658 unpack_varlen_hex (reply + 1, &uval);
10659 *val = (LONGEST) uval;
10660 return 1;
10661 }
10662 }
10663 return 0;
10664 }
10665
10666 static int
10667 remote_save_trace_data (const char *filename)
10668 {
10669 struct remote_state *rs = get_remote_state ();
10670 char *p, *reply;
10671
10672 p = rs->buf;
10673 strcpy (p, "QTSave:");
10674 p += strlen (p);
10675 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10676 error (_("Remote file name too long for trace save packet"));
10677 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10678 *p++ = '\0';
10679 putpkt (rs->buf);
10680 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10681 if (*reply == '\0')
10682 error (_("Target does not support this command."));
10683 if (strcmp (reply, "OK") != 0)
10684 error (_("Bogus reply from target: %s"), reply);
10685 return 0;
10686 }
10687
10688 /* This is basically a memory transfer, but needs to be its own packet
10689 because we don't know how the target actually organizes its trace
10690 memory, plus we want to be able to ask for as much as possible, but
10691 not be unhappy if we don't get as much as we ask for. */
10692
10693 static LONGEST
10694 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10695 {
10696 struct remote_state *rs = get_remote_state ();
10697 char *reply;
10698 char *p;
10699 int rslt;
10700
10701 p = rs->buf;
10702 strcpy (p, "qTBuffer:");
10703 p += strlen (p);
10704 p += hexnumstr (p, offset);
10705 *p++ = ',';
10706 p += hexnumstr (p, len);
10707 *p++ = '\0';
10708
10709 putpkt (rs->buf);
10710 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10711 if (reply && *reply)
10712 {
10713 /* 'l' by itself means we're at the end of the buffer and
10714 there is nothing more to get. */
10715 if (*reply == 'l')
10716 return 0;
10717
10718 /* Convert the reply into binary. Limit the number of bytes to
10719 convert according to our passed-in buffer size, rather than
10720 what was returned in the packet; if the target is
10721 unexpectedly generous and gives us a bigger reply than we
10722 asked for, we don't want to crash. */
10723 rslt = hex2bin (target_buf, buf, len);
10724 return rslt;
10725 }
10726
10727 /* Something went wrong, flag as an error. */
10728 return -1;
10729 }
10730
10731 static void
10732 remote_set_disconnected_tracing (int val)
10733 {
10734 struct remote_state *rs = get_remote_state ();
10735
10736 if (rs->disconnected_tracing)
10737 {
10738 char *reply;
10739
10740 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
10741 putpkt (rs->buf);
10742 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10743 if (*reply == '\0')
10744 error (_("Target does not support this command."));
10745 if (strcmp (reply, "OK") != 0)
10746 error (_("Bogus reply from target: %s"), reply);
10747 }
10748 else if (val)
10749 warning (_("Target does not support disconnected tracing."));
10750 }
10751
10752 static int
10753 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
10754 {
10755 struct thread_info *info = find_thread_ptid (ptid);
10756
10757 if (info && info->private)
10758 return info->private->core;
10759 return -1;
10760 }
10761
10762 static void
10763 remote_set_circular_trace_buffer (int val)
10764 {
10765 struct remote_state *rs = get_remote_state ();
10766 char *reply;
10767
10768 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
10769 putpkt (rs->buf);
10770 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10771 if (*reply == '\0')
10772 error (_("Target does not support this command."));
10773 if (strcmp (reply, "OK") != 0)
10774 error (_("Bogus reply from target: %s"), reply);
10775 }
10776
10777 static struct traceframe_info *
10778 remote_traceframe_info (void)
10779 {
10780 char *text;
10781
10782 text = target_read_stralloc (&current_target,
10783 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
10784 if (text != NULL)
10785 {
10786 struct traceframe_info *info;
10787 struct cleanup *back_to = make_cleanup (xfree, text);
10788
10789 info = parse_traceframe_info (text);
10790 do_cleanups (back_to);
10791 return info;
10792 }
10793
10794 return NULL;
10795 }
10796
10797 /* Handle the qTMinFTPILen packet. Returns the minimum length of
10798 instruction on which a fast tracepoint may be placed. Returns -1
10799 if the packet is not supported, and 0 if the minimum instruction
10800 length is unknown. */
10801
10802 static int
10803 remote_get_min_fast_tracepoint_insn_len (void)
10804 {
10805 struct remote_state *rs = get_remote_state ();
10806 char *reply;
10807
10808 /* If we're not debugging a process yet, the IPA can't be
10809 loaded. */
10810 if (!target_has_execution)
10811 return 0;
10812
10813 /* Make sure the remote is pointing at the right process. */
10814 set_general_process ();
10815
10816 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
10817 putpkt (rs->buf);
10818 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10819 if (*reply == '\0')
10820 return -1;
10821 else
10822 {
10823 ULONGEST min_insn_len;
10824
10825 unpack_varlen_hex (reply, &min_insn_len);
10826
10827 return (int) min_insn_len;
10828 }
10829 }
10830
10831 static int
10832 remote_set_trace_notes (char *user, char *notes, char *stop_notes)
10833 {
10834 struct remote_state *rs = get_remote_state ();
10835 char *reply;
10836 char *buf = rs->buf;
10837 char *endbuf = rs->buf + get_remote_packet_size ();
10838 int nbytes;
10839
10840 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
10841 if (user)
10842 {
10843 buf += xsnprintf (buf, endbuf - buf, "user:");
10844 nbytes = bin2hex (user, buf, 0);
10845 buf += 2 * nbytes;
10846 *buf++ = ';';
10847 }
10848 if (notes)
10849 {
10850 buf += xsnprintf (buf, endbuf - buf, "notes:");
10851 nbytes = bin2hex (notes, buf, 0);
10852 buf += 2 * nbytes;
10853 *buf++ = ';';
10854 }
10855 if (stop_notes)
10856 {
10857 buf += xsnprintf (buf, endbuf - buf, "tstop:");
10858 nbytes = bin2hex (stop_notes, buf, 0);
10859 buf += 2 * nbytes;
10860 *buf++ = ';';
10861 }
10862 /* Ensure the buffer is terminated. */
10863 *buf = '\0';
10864
10865 putpkt (rs->buf);
10866 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10867 if (*reply == '\0')
10868 return 0;
10869
10870 if (strcmp (reply, "OK") != 0)
10871 error (_("Bogus reply from target: %s"), reply);
10872
10873 return 1;
10874 }
10875
10876 static int
10877 remote_use_agent (int use)
10878 {
10879 if (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE)
10880 {
10881 struct remote_state *rs = get_remote_state ();
10882
10883 /* If the stub supports QAgent. */
10884 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
10885 putpkt (rs->buf);
10886 getpkt (&rs->buf, &rs->buf_size, 0);
10887
10888 if (strcmp (rs->buf, "OK") == 0)
10889 {
10890 use_agent = use;
10891 return 1;
10892 }
10893 }
10894
10895 return 0;
10896 }
10897
10898 static int
10899 remote_can_use_agent (void)
10900 {
10901 return (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE);
10902 }
10903
10904 static void
10905 init_remote_ops (void)
10906 {
10907 remote_ops.to_shortname = "remote";
10908 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
10909 remote_ops.to_doc =
10910 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10911 Specify the serial device it is connected to\n\
10912 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
10913 remote_ops.to_open = remote_open;
10914 remote_ops.to_close = remote_close;
10915 remote_ops.to_detach = remote_detach;
10916 remote_ops.to_disconnect = remote_disconnect;
10917 remote_ops.to_resume = remote_resume;
10918 remote_ops.to_wait = remote_wait;
10919 remote_ops.to_fetch_registers = remote_fetch_registers;
10920 remote_ops.to_store_registers = remote_store_registers;
10921 remote_ops.to_prepare_to_store = remote_prepare_to_store;
10922 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
10923 remote_ops.to_files_info = remote_files_info;
10924 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
10925 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
10926 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
10927 remote_ops.to_stopped_data_address = remote_stopped_data_address;
10928 remote_ops.to_watchpoint_addr_within_range =
10929 remote_watchpoint_addr_within_range;
10930 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
10931 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
10932 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
10933 remote_ops.to_region_ok_for_hw_watchpoint
10934 = remote_region_ok_for_hw_watchpoint;
10935 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
10936 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
10937 remote_ops.to_kill = remote_kill;
10938 remote_ops.to_load = generic_load;
10939 remote_ops.to_mourn_inferior = remote_mourn;
10940 remote_ops.to_pass_signals = remote_pass_signals;
10941 remote_ops.to_program_signals = remote_program_signals;
10942 remote_ops.to_thread_alive = remote_thread_alive;
10943 remote_ops.to_find_new_threads = remote_threads_info;
10944 remote_ops.to_pid_to_str = remote_pid_to_str;
10945 remote_ops.to_extra_thread_info = remote_threads_extra_info;
10946 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
10947 remote_ops.to_stop = remote_stop;
10948 remote_ops.to_xfer_partial = remote_xfer_partial;
10949 remote_ops.to_rcmd = remote_rcmd;
10950 remote_ops.to_log_command = serial_log_command;
10951 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
10952 remote_ops.to_stratum = process_stratum;
10953 remote_ops.to_has_all_memory = default_child_has_all_memory;
10954 remote_ops.to_has_memory = default_child_has_memory;
10955 remote_ops.to_has_stack = default_child_has_stack;
10956 remote_ops.to_has_registers = default_child_has_registers;
10957 remote_ops.to_has_execution = default_child_has_execution;
10958 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
10959 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
10960 remote_ops.to_magic = OPS_MAGIC;
10961 remote_ops.to_memory_map = remote_memory_map;
10962 remote_ops.to_flash_erase = remote_flash_erase;
10963 remote_ops.to_flash_done = remote_flash_done;
10964 remote_ops.to_read_description = remote_read_description;
10965 remote_ops.to_search_memory = remote_search_memory;
10966 remote_ops.to_can_async_p = remote_can_async_p;
10967 remote_ops.to_is_async_p = remote_is_async_p;
10968 remote_ops.to_async = remote_async;
10969 remote_ops.to_terminal_inferior = remote_terminal_inferior;
10970 remote_ops.to_terminal_ours = remote_terminal_ours;
10971 remote_ops.to_supports_non_stop = remote_supports_non_stop;
10972 remote_ops.to_supports_multi_process = remote_supports_multi_process;
10973 remote_ops.to_supports_disable_randomization
10974 = remote_supports_disable_randomization;
10975 remote_ops.to_fileio_open = remote_hostio_open;
10976 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
10977 remote_ops.to_fileio_pread = remote_hostio_pread;
10978 remote_ops.to_fileio_close = remote_hostio_close;
10979 remote_ops.to_fileio_unlink = remote_hostio_unlink;
10980 remote_ops.to_fileio_readlink = remote_hostio_readlink;
10981 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
10982 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
10983 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
10984 remote_ops.to_trace_init = remote_trace_init;
10985 remote_ops.to_download_tracepoint = remote_download_tracepoint;
10986 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
10987 remote_ops.to_download_trace_state_variable
10988 = remote_download_trace_state_variable;
10989 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
10990 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
10991 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
10992 remote_ops.to_trace_start = remote_trace_start;
10993 remote_ops.to_get_trace_status = remote_get_trace_status;
10994 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
10995 remote_ops.to_trace_stop = remote_trace_stop;
10996 remote_ops.to_trace_find = remote_trace_find;
10997 remote_ops.to_get_trace_state_variable_value
10998 = remote_get_trace_state_variable_value;
10999 remote_ops.to_save_trace_data = remote_save_trace_data;
11000 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
11001 remote_ops.to_upload_trace_state_variables
11002 = remote_upload_trace_state_variables;
11003 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
11004 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
11005 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
11006 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
11007 remote_ops.to_set_trace_notes = remote_set_trace_notes;
11008 remote_ops.to_core_of_thread = remote_core_of_thread;
11009 remote_ops.to_verify_memory = remote_verify_memory;
11010 remote_ops.to_get_tib_address = remote_get_tib_address;
11011 remote_ops.to_set_permissions = remote_set_permissions;
11012 remote_ops.to_static_tracepoint_marker_at
11013 = remote_static_tracepoint_marker_at;
11014 remote_ops.to_static_tracepoint_markers_by_strid
11015 = remote_static_tracepoint_markers_by_strid;
11016 remote_ops.to_traceframe_info = remote_traceframe_info;
11017 remote_ops.to_use_agent = remote_use_agent;
11018 remote_ops.to_can_use_agent = remote_can_use_agent;
11019 }
11020
11021 /* Set up the extended remote vector by making a copy of the standard
11022 remote vector and adding to it. */
11023
11024 static void
11025 init_extended_remote_ops (void)
11026 {
11027 extended_remote_ops = remote_ops;
11028
11029 extended_remote_ops.to_shortname = "extended-remote";
11030 extended_remote_ops.to_longname =
11031 "Extended remote serial target in gdb-specific protocol";
11032 extended_remote_ops.to_doc =
11033 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11034 Specify the serial device it is connected to (e.g. /dev/ttya).";
11035 extended_remote_ops.to_open = extended_remote_open;
11036 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
11037 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
11038 extended_remote_ops.to_detach = extended_remote_detach;
11039 extended_remote_ops.to_attach = extended_remote_attach;
11040 extended_remote_ops.to_kill = extended_remote_kill;
11041 extended_remote_ops.to_supports_disable_randomization
11042 = extended_remote_supports_disable_randomization;
11043 }
11044
11045 static int
11046 remote_can_async_p (void)
11047 {
11048 if (!target_async_permitted)
11049 /* We only enable async when the user specifically asks for it. */
11050 return 0;
11051
11052 /* We're async whenever the serial device is. */
11053 return serial_can_async_p (remote_desc);
11054 }
11055
11056 static int
11057 remote_is_async_p (void)
11058 {
11059 if (!target_async_permitted)
11060 /* We only enable async when the user specifically asks for it. */
11061 return 0;
11062
11063 /* We're async whenever the serial device is. */
11064 return serial_is_async_p (remote_desc);
11065 }
11066
11067 /* Pass the SERIAL event on and up to the client. One day this code
11068 will be able to delay notifying the client of an event until the
11069 point where an entire packet has been received. */
11070
11071 static void (*async_client_callback) (enum inferior_event_type event_type,
11072 void *context);
11073 static void *async_client_context;
11074 static serial_event_ftype remote_async_serial_handler;
11075
11076 static void
11077 remote_async_serial_handler (struct serial *scb, void *context)
11078 {
11079 /* Don't propogate error information up to the client. Instead let
11080 the client find out about the error by querying the target. */
11081 async_client_callback (INF_REG_EVENT, async_client_context);
11082 }
11083
11084 static void
11085 remote_async_inferior_event_handler (gdb_client_data data)
11086 {
11087 inferior_event_handler (INF_REG_EVENT, NULL);
11088 }
11089
11090 static void
11091 remote_async_get_pending_events_handler (gdb_client_data data)
11092 {
11093 remote_get_pending_stop_replies ();
11094 }
11095
11096 static void
11097 remote_async (void (*callback) (enum inferior_event_type event_type,
11098 void *context), void *context)
11099 {
11100 if (callback != NULL)
11101 {
11102 serial_async (remote_desc, remote_async_serial_handler, NULL);
11103 async_client_callback = callback;
11104 async_client_context = context;
11105 }
11106 else
11107 serial_async (remote_desc, NULL, NULL);
11108 }
11109
11110 static void
11111 set_remote_cmd (char *args, int from_tty)
11112 {
11113 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
11114 }
11115
11116 static void
11117 show_remote_cmd (char *args, int from_tty)
11118 {
11119 /* We can't just use cmd_show_list here, because we want to skip
11120 the redundant "show remote Z-packet" and the legacy aliases. */
11121 struct cleanup *showlist_chain;
11122 struct cmd_list_element *list = remote_show_cmdlist;
11123 struct ui_out *uiout = current_uiout;
11124
11125 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
11126 for (; list != NULL; list = list->next)
11127 if (strcmp (list->name, "Z-packet") == 0)
11128 continue;
11129 else if (list->type == not_set_cmd)
11130 /* Alias commands are exactly like the original, except they
11131 don't have the normal type. */
11132 continue;
11133 else
11134 {
11135 struct cleanup *option_chain
11136 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
11137
11138 ui_out_field_string (uiout, "name", list->name);
11139 ui_out_text (uiout, ": ");
11140 if (list->type == show_cmd)
11141 do_setshow_command ((char *) NULL, from_tty, list);
11142 else
11143 cmd_func (list, NULL, from_tty);
11144 /* Close the tuple. */
11145 do_cleanups (option_chain);
11146 }
11147
11148 /* Close the tuple. */
11149 do_cleanups (showlist_chain);
11150 }
11151
11152
11153 /* Function to be called whenever a new objfile (shlib) is detected. */
11154 static void
11155 remote_new_objfile (struct objfile *objfile)
11156 {
11157 if (remote_desc != 0) /* Have a remote connection. */
11158 remote_check_symbols (objfile);
11159 }
11160
11161 /* Pull all the tracepoints defined on the target and create local
11162 data structures representing them. We don't want to create real
11163 tracepoints yet, we don't want to mess up the user's existing
11164 collection. */
11165
11166 static int
11167 remote_upload_tracepoints (struct uploaded_tp **utpp)
11168 {
11169 struct remote_state *rs = get_remote_state ();
11170 char *p;
11171
11172 /* Ask for a first packet of tracepoint definition. */
11173 putpkt ("qTfP");
11174 getpkt (&rs->buf, &rs->buf_size, 0);
11175 p = rs->buf;
11176 while (*p && *p != 'l')
11177 {
11178 parse_tracepoint_definition (p, utpp);
11179 /* Ask for another packet of tracepoint definition. */
11180 putpkt ("qTsP");
11181 getpkt (&rs->buf, &rs->buf_size, 0);
11182 p = rs->buf;
11183 }
11184 return 0;
11185 }
11186
11187 static int
11188 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
11189 {
11190 struct remote_state *rs = get_remote_state ();
11191 char *p;
11192
11193 /* Ask for a first packet of variable definition. */
11194 putpkt ("qTfV");
11195 getpkt (&rs->buf, &rs->buf_size, 0);
11196 p = rs->buf;
11197 while (*p && *p != 'l')
11198 {
11199 parse_tsv_definition (p, utsvp);
11200 /* Ask for another packet of variable definition. */
11201 putpkt ("qTsV");
11202 getpkt (&rs->buf, &rs->buf_size, 0);
11203 p = rs->buf;
11204 }
11205 return 0;
11206 }
11207
11208 void
11209 _initialize_remote (void)
11210 {
11211 struct remote_state *rs;
11212 struct cmd_list_element *cmd;
11213 char *cmd_name;
11214
11215 /* architecture specific data */
11216 remote_gdbarch_data_handle =
11217 gdbarch_data_register_post_init (init_remote_state);
11218 remote_g_packet_data_handle =
11219 gdbarch_data_register_pre_init (remote_g_packet_data_init);
11220
11221 /* Initialize the per-target state. At the moment there is only one
11222 of these, not one per target. Only one target is active at a
11223 time. The default buffer size is unimportant; it will be expanded
11224 whenever a larger buffer is needed. */
11225 rs = get_remote_state_raw ();
11226 rs->buf_size = 400;
11227 rs->buf = xmalloc (rs->buf_size);
11228
11229 init_remote_ops ();
11230 add_target (&remote_ops);
11231
11232 init_extended_remote_ops ();
11233 add_target (&extended_remote_ops);
11234
11235 /* Hook into new objfile notification. */
11236 observer_attach_new_objfile (remote_new_objfile);
11237
11238 /* Set up signal handlers. */
11239 sigint_remote_token =
11240 create_async_signal_handler (async_remote_interrupt, NULL);
11241 sigint_remote_twice_token =
11242 create_async_signal_handler (async_remote_interrupt_twice, NULL);
11243
11244 #if 0
11245 init_remote_threadtests ();
11246 #endif
11247
11248 /* set/show remote ... */
11249
11250 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
11251 Remote protocol specific variables\n\
11252 Configure various remote-protocol specific variables such as\n\
11253 the packets being used"),
11254 &remote_set_cmdlist, "set remote ",
11255 0 /* allow-unknown */, &setlist);
11256 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11257 Remote protocol specific variables\n\
11258 Configure various remote-protocol specific variables such as\n\
11259 the packets being used"),
11260 &remote_show_cmdlist, "show remote ",
11261 0 /* allow-unknown */, &showlist);
11262
11263 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11264 Compare section data on target to the exec file.\n\
11265 Argument is a single section name (default: all loaded sections)."),
11266 &cmdlist);
11267
11268 add_cmd ("packet", class_maintenance, packet_command, _("\
11269 Send an arbitrary packet to a remote target.\n\
11270 maintenance packet TEXT\n\
11271 If GDB is talking to an inferior via the GDB serial protocol, then\n\
11272 this command sends the string TEXT to the inferior, and displays the\n\
11273 response packet. GDB supplies the initial `$' character, and the\n\
11274 terminating `#' character and checksum."),
11275 &maintenancelist);
11276
11277 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11278 Set whether to send break if interrupted."), _("\
11279 Show whether to send break if interrupted."), _("\
11280 If set, a break, instead of a cntrl-c, is sent to the remote target."),
11281 set_remotebreak, show_remotebreak,
11282 &setlist, &showlist);
11283 cmd_name = "remotebreak";
11284 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11285 deprecate_cmd (cmd, "set remote interrupt-sequence");
11286 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11287 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11288 deprecate_cmd (cmd, "show remote interrupt-sequence");
11289
11290 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11291 interrupt_sequence_modes, &interrupt_sequence_mode,
11292 _("\
11293 Set interrupt sequence to remote target."), _("\
11294 Show interrupt sequence to remote target."), _("\
11295 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11296 NULL, show_interrupt_sequence,
11297 &remote_set_cmdlist,
11298 &remote_show_cmdlist);
11299
11300 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
11301 &interrupt_on_connect, _("\
11302 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11303 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11304 If set, interrupt sequence is sent to remote target."),
11305 NULL, NULL,
11306 &remote_set_cmdlist, &remote_show_cmdlist);
11307
11308 /* Install commands for configuring memory read/write packets. */
11309
11310 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
11311 Set the maximum number of bytes per memory write packet (deprecated)."),
11312 &setlist);
11313 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
11314 Show the maximum number of bytes per memory write packet (deprecated)."),
11315 &showlist);
11316 add_cmd ("memory-write-packet-size", no_class,
11317 set_memory_write_packet_size, _("\
11318 Set the maximum number of bytes per memory-write packet.\n\
11319 Specify the number of bytes in a packet or 0 (zero) for the\n\
11320 default packet size. The actual limit is further reduced\n\
11321 dependent on the target. Specify ``fixed'' to disable the\n\
11322 further restriction and ``limit'' to enable that restriction."),
11323 &remote_set_cmdlist);
11324 add_cmd ("memory-read-packet-size", no_class,
11325 set_memory_read_packet_size, _("\
11326 Set the maximum number of bytes per memory-read packet.\n\
11327 Specify the number of bytes in a packet or 0 (zero) for the\n\
11328 default packet size. The actual limit is further reduced\n\
11329 dependent on the target. Specify ``fixed'' to disable the\n\
11330 further restriction and ``limit'' to enable that restriction."),
11331 &remote_set_cmdlist);
11332 add_cmd ("memory-write-packet-size", no_class,
11333 show_memory_write_packet_size,
11334 _("Show the maximum number of bytes per memory-write packet."),
11335 &remote_show_cmdlist);
11336 add_cmd ("memory-read-packet-size", no_class,
11337 show_memory_read_packet_size,
11338 _("Show the maximum number of bytes per memory-read packet."),
11339 &remote_show_cmdlist);
11340
11341 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
11342 &remote_hw_watchpoint_limit, _("\
11343 Set the maximum number of target hardware watchpoints."), _("\
11344 Show the maximum number of target hardware watchpoints."), _("\
11345 Specify a negative limit for unlimited."),
11346 NULL, NULL, /* FIXME: i18n: The maximum
11347 number of target hardware
11348 watchpoints is %s. */
11349 &remote_set_cmdlist, &remote_show_cmdlist);
11350 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
11351 &remote_hw_watchpoint_length_limit, _("\
11352 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
11353 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
11354 Specify a negative limit for unlimited."),
11355 NULL, NULL, /* FIXME: i18n: The maximum
11356 length (in bytes) of a target
11357 hardware watchpoint is %s. */
11358 &remote_set_cmdlist, &remote_show_cmdlist);
11359 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
11360 &remote_hw_breakpoint_limit, _("\
11361 Set the maximum number of target hardware breakpoints."), _("\
11362 Show the maximum number of target hardware breakpoints."), _("\
11363 Specify a negative limit for unlimited."),
11364 NULL, NULL, /* FIXME: i18n: The maximum
11365 number of target hardware
11366 breakpoints is %s. */
11367 &remote_set_cmdlist, &remote_show_cmdlist);
11368
11369 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
11370 &remote_address_size, _("\
11371 Set the maximum size of the address (in bits) in a memory packet."), _("\
11372 Show the maximum size of the address (in bits) in a memory packet."), NULL,
11373 NULL,
11374 NULL, /* FIXME: i18n: */
11375 &setlist, &showlist);
11376
11377 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
11378 "X", "binary-download", 1);
11379
11380 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
11381 "vCont", "verbose-resume", 0);
11382
11383 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
11384 "QPassSignals", "pass-signals", 0);
11385
11386 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
11387 "QProgramSignals", "program-signals", 0);
11388
11389 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
11390 "qSymbol", "symbol-lookup", 0);
11391
11392 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
11393 "P", "set-register", 1);
11394
11395 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
11396 "p", "fetch-register", 1);
11397
11398 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
11399 "Z0", "software-breakpoint", 0);
11400
11401 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
11402 "Z1", "hardware-breakpoint", 0);
11403
11404 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
11405 "Z2", "write-watchpoint", 0);
11406
11407 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
11408 "Z3", "read-watchpoint", 0);
11409
11410 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
11411 "Z4", "access-watchpoint", 0);
11412
11413 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
11414 "qXfer:auxv:read", "read-aux-vector", 0);
11415
11416 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
11417 "qXfer:features:read", "target-features", 0);
11418
11419 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
11420 "qXfer:libraries:read", "library-info", 0);
11421
11422 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
11423 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
11424
11425 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
11426 "qXfer:memory-map:read", "memory-map", 0);
11427
11428 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
11429 "qXfer:spu:read", "read-spu-object", 0);
11430
11431 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
11432 "qXfer:spu:write", "write-spu-object", 0);
11433
11434 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
11435 "qXfer:osdata:read", "osdata", 0);
11436
11437 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
11438 "qXfer:threads:read", "threads", 0);
11439
11440 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
11441 "qXfer:siginfo:read", "read-siginfo-object", 0);
11442
11443 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
11444 "qXfer:siginfo:write", "write-siginfo-object", 0);
11445
11446 add_packet_config_cmd
11447 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
11448 "qXfer:trace-frame-info:read", "traceframe-info", 0);
11449
11450 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
11451 "qXfer:uib:read", "unwind-info-block", 0);
11452
11453 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
11454 "qGetTLSAddr", "get-thread-local-storage-address",
11455 0);
11456
11457 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
11458 "qGetTIBAddr", "get-thread-information-block-address",
11459 0);
11460
11461 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
11462 "bc", "reverse-continue", 0);
11463
11464 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
11465 "bs", "reverse-step", 0);
11466
11467 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
11468 "qSupported", "supported-packets", 0);
11469
11470 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
11471 "qSearch:memory", "search-memory", 0);
11472
11473 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
11474 "vFile:open", "hostio-open", 0);
11475
11476 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
11477 "vFile:pread", "hostio-pread", 0);
11478
11479 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
11480 "vFile:pwrite", "hostio-pwrite", 0);
11481
11482 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
11483 "vFile:close", "hostio-close", 0);
11484
11485 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
11486 "vFile:unlink", "hostio-unlink", 0);
11487
11488 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
11489 "vFile:readlink", "hostio-readlink", 0);
11490
11491 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
11492 "vAttach", "attach", 0);
11493
11494 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
11495 "vRun", "run", 0);
11496
11497 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
11498 "QStartNoAckMode", "noack", 0);
11499
11500 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
11501 "vKill", "kill", 0);
11502
11503 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
11504 "qAttached", "query-attached", 0);
11505
11506 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
11507 "ConditionalTracepoints",
11508 "conditional-tracepoints", 0);
11509
11510 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
11511 "ConditionalBreakpoints",
11512 "conditional-breakpoints", 0);
11513
11514 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
11515 "FastTracepoints", "fast-tracepoints", 0);
11516
11517 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
11518 "TracepointSource", "TracepointSource", 0);
11519
11520 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
11521 "QAllow", "allow", 0);
11522
11523 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
11524 "StaticTracepoints", "static-tracepoints", 0);
11525
11526 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
11527 "InstallInTrace", "install-in-trace", 0);
11528
11529 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
11530 "qXfer:statictrace:read", "read-sdata-object", 0);
11531
11532 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
11533 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
11534
11535 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
11536 "QDisableRandomization", "disable-randomization", 0);
11537
11538 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
11539 "QAgent", "agent", 0);
11540
11541 /* Keep the old ``set remote Z-packet ...'' working. Each individual
11542 Z sub-packet has its own set and show commands, but users may
11543 have sets to this variable in their .gdbinit files (or in their
11544 documentation). */
11545 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
11546 &remote_Z_packet_detect, _("\
11547 Set use of remote protocol `Z' packets"), _("\
11548 Show use of remote protocol `Z' packets "), _("\
11549 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
11550 packets."),
11551 set_remote_protocol_Z_packet_cmd,
11552 show_remote_protocol_Z_packet_cmd,
11553 /* FIXME: i18n: Use of remote protocol
11554 `Z' packets is %s. */
11555 &remote_set_cmdlist, &remote_show_cmdlist);
11556
11557 add_prefix_cmd ("remote", class_files, remote_command, _("\
11558 Manipulate files on the remote system\n\
11559 Transfer files to and from the remote target system."),
11560 &remote_cmdlist, "remote ",
11561 0 /* allow-unknown */, &cmdlist);
11562
11563 add_cmd ("put", class_files, remote_put_command,
11564 _("Copy a local file to the remote system."),
11565 &remote_cmdlist);
11566
11567 add_cmd ("get", class_files, remote_get_command,
11568 _("Copy a remote file to the local system."),
11569 &remote_cmdlist);
11570
11571 add_cmd ("delete", class_files, remote_delete_command,
11572 _("Delete a remote file."),
11573 &remote_cmdlist);
11574
11575 remote_exec_file = xstrdup ("");
11576 add_setshow_string_noescape_cmd ("exec-file", class_files,
11577 &remote_exec_file, _("\
11578 Set the remote pathname for \"run\""), _("\
11579 Show the remote pathname for \"run\""), NULL, NULL, NULL,
11580 &remote_set_cmdlist, &remote_show_cmdlist);
11581
11582 /* Eventually initialize fileio. See fileio.c */
11583 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
11584
11585 /* Take advantage of the fact that the LWP field is not used, to tag
11586 special ptids with it set to != 0. */
11587 magic_null_ptid = ptid_build (42000, 1, -1);
11588 not_sent_ptid = ptid_build (42000, 1, -2);
11589 any_thread_ptid = ptid_build (42000, 1, 0);
11590
11591 target_buf_size = 2048;
11592 target_buf = xmalloc (target_buf_size);
11593 }
11594
This page took 0.419424 seconds and 4 git commands to generate.