gdb/
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63 #include "xml-support.h"
64
65 #include "memory-map.h"
66
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70
71 /* temp hacks for tracepoint encoding migration */
72 static char *target_buf;
73 static long target_buf_size;
74 /*static*/ void
75 encode_actions (struct breakpoint *t, struct bp_location *tloc,
76 char ***tdp_actions, char ***stepping_actions);
77
78 /* The size to align memory write packets, when practical. The protocol
79 does not guarantee any alignment, and gdb will generate short
80 writes and unaligned writes, but even as a best-effort attempt this
81 can improve bulk transfers. For instance, if a write is misaligned
82 relative to the target's data bus, the stub may need to make an extra
83 round trip fetching data from the target. This doesn't make a
84 huge difference, but it's easy to do, so we try to be helpful.
85
86 The alignment chosen is arbitrary; usually data bus width is
87 important here, not the possibly larger cache line size. */
88 enum { REMOTE_ALIGN_WRITES = 16 };
89
90 /* Prototypes for local functions. */
91 static void cleanup_sigint_signal_handler (void *dummy);
92 static void initialize_sigint_signal_handler (void);
93 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
94 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
95 int forever);
96
97 static void handle_remote_sigint (int);
98 static void handle_remote_sigint_twice (int);
99 static void async_remote_interrupt (gdb_client_data);
100 void async_remote_interrupt_twice (gdb_client_data);
101
102 static void remote_files_info (struct target_ops *ignore);
103
104 static void remote_prepare_to_store (struct regcache *regcache);
105
106 static void remote_open (char *name, int from_tty);
107
108 static void extended_remote_open (char *name, int from_tty);
109
110 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
111
112 static void remote_close (int quitting);
113
114 static void remote_mourn (struct target_ops *ops);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (struct target_ops *);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static void remote_kill (struct target_ops *ops);
127
128 static int tohex (int nib);
129
130 static int remote_can_async_p (void);
131
132 static int remote_is_async_p (void);
133
134 static void remote_async (void (*callback) (enum inferior_event_type event_type,
135 void *context), void *context);
136
137 static int remote_async_mask (int new_mask);
138
139 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
140
141 static void remote_interrupt (int signo);
142
143 static void remote_interrupt_twice (int signo);
144
145 static void interrupt_query (void);
146
147 static void set_general_thread (struct ptid ptid);
148 static void set_continue_thread (struct ptid ptid);
149
150 static void get_offsets (void);
151
152 static void skip_frame (void);
153
154 static long read_frame (char **buf_p, long *sizeof_buf);
155
156 static int hexnumlen (ULONGEST num);
157
158 static void init_remote_ops (void);
159
160 static void init_extended_remote_ops (void);
161
162 static void remote_stop (ptid_t);
163
164 static int ishex (int ch, int *val);
165
166 static int stubhex (int ch);
167
168 static int hexnumstr (char *, ULONGEST);
169
170 static int hexnumnstr (char *, ULONGEST, int);
171
172 static CORE_ADDR remote_address_masked (CORE_ADDR);
173
174 static void print_packet (char *);
175
176 static void compare_sections_command (char *, int);
177
178 static void packet_command (char *, int);
179
180 static int stub_unpack_int (char *buff, int fieldlength);
181
182 static ptid_t remote_current_thread (ptid_t oldptid);
183
184 static void remote_find_new_threads (void);
185
186 static void record_currthread (ptid_t currthread);
187
188 static int fromhex (int a);
189
190 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
191
192 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
193
194 static int putpkt_binary (char *buf, int cnt);
195
196 static void check_binary_download (CORE_ADDR addr);
197
198 struct packet_config;
199
200 static void show_packet_config_cmd (struct packet_config *config);
201
202 static void update_packet_config (struct packet_config *config);
203
204 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
205 struct cmd_list_element *c);
206
207 static void show_remote_protocol_packet_cmd (struct ui_file *file,
208 int from_tty,
209 struct cmd_list_element *c,
210 const char *value);
211
212 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
213 static ptid_t read_ptid (char *buf, char **obuf);
214
215 static void remote_set_permissions (void);
216
217 struct remote_state;
218 static int remote_get_trace_status (struct trace_status *ts);
219
220 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
221
222 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
223
224 static void remote_query_supported (void);
225
226 static void remote_check_symbols (struct objfile *objfile);
227
228 void _initialize_remote (void);
229
230 struct stop_reply;
231 static struct stop_reply *stop_reply_xmalloc (void);
232 static void stop_reply_xfree (struct stop_reply *);
233 static void do_stop_reply_xfree (void *arg);
234 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
235 static void push_stop_reply (struct stop_reply *);
236 static void remote_get_pending_stop_replies (void);
237 static void discard_pending_stop_replies (int pid);
238 static int peek_stop_reply (ptid_t ptid);
239
240 static void remote_async_inferior_event_handler (gdb_client_data);
241 static void remote_async_get_pending_events_handler (gdb_client_data);
242
243 static void remote_terminal_ours (void);
244
245 static int remote_read_description_p (struct target_ops *target);
246
247 static void remote_console_output (char *msg);
248
249 /* The non-stop remote protocol provisions for one pending stop reply.
250 This is where we keep it until it is acknowledged. */
251
252 static struct stop_reply *pending_stop_reply = NULL;
253
254 /* For "remote". */
255
256 static struct cmd_list_element *remote_cmdlist;
257
258 /* For "set remote" and "show remote". */
259
260 static struct cmd_list_element *remote_set_cmdlist;
261 static struct cmd_list_element *remote_show_cmdlist;
262
263 /* Description of the remote protocol state for the currently
264 connected target. This is per-target state, and independent of the
265 selected architecture. */
266
267 struct remote_state
268 {
269 /* A buffer to use for incoming packets, and its current size. The
270 buffer is grown dynamically for larger incoming packets.
271 Outgoing packets may also be constructed in this buffer.
272 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
273 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
274 packets. */
275 char *buf;
276 long buf_size;
277
278 /* If we negotiated packet size explicitly (and thus can bypass
279 heuristics for the largest packet size that will not overflow
280 a buffer in the stub), this will be set to that packet size.
281 Otherwise zero, meaning to use the guessed size. */
282 long explicit_packet_size;
283
284 /* remote_wait is normally called when the target is running and
285 waits for a stop reply packet. But sometimes we need to call it
286 when the target is already stopped. We can send a "?" packet
287 and have remote_wait read the response. Or, if we already have
288 the response, we can stash it in BUF and tell remote_wait to
289 skip calling getpkt. This flag is set when BUF contains a
290 stop reply packet and the target is not waiting. */
291 int cached_wait_status;
292
293 /* True, if in no ack mode. That is, neither GDB nor the stub will
294 expect acks from each other. The connection is assumed to be
295 reliable. */
296 int noack_mode;
297
298 /* True if we're connected in extended remote mode. */
299 int extended;
300
301 /* True if the stub reported support for multi-process
302 extensions. */
303 int multi_process_aware;
304
305 /* True if we resumed the target and we're waiting for the target to
306 stop. In the mean time, we can't start another command/query.
307 The remote server wouldn't be ready to process it, so we'd
308 timeout waiting for a reply that would never come and eventually
309 we'd close the connection. This can happen in asynchronous mode
310 because we allow GDB commands while the target is running. */
311 int waiting_for_stop_reply;
312
313 /* True if the stub reports support for non-stop mode. */
314 int non_stop_aware;
315
316 /* True if the stub reports support for vCont;t. */
317 int support_vCont_t;
318
319 /* True if the stub reports support for conditional tracepoints. */
320 int cond_tracepoints;
321
322 /* True if the stub reports support for fast tracepoints. */
323 int fast_tracepoints;
324
325 /* True if the stub reports support for static tracepoints. */
326 int static_tracepoints;
327
328 /* True if the stub can continue running a trace while GDB is
329 disconnected. */
330 int disconnected_tracing;
331
332 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
333 responded to that. */
334 int ctrlc_pending_p;
335 };
336
337 /* Private data that we'll store in (struct thread_info)->private. */
338 struct private_thread_info
339 {
340 char *extra;
341 int core;
342 };
343
344 static void
345 free_private_thread_info (struct private_thread_info *info)
346 {
347 xfree (info->extra);
348 xfree (info);
349 }
350
351 /* Returns true if the multi-process extensions are in effect. */
352 static int
353 remote_multi_process_p (struct remote_state *rs)
354 {
355 return rs->extended && rs->multi_process_aware;
356 }
357
358 /* This data could be associated with a target, but we do not always
359 have access to the current target when we need it, so for now it is
360 static. This will be fine for as long as only one target is in use
361 at a time. */
362 static struct remote_state remote_state;
363
364 static struct remote_state *
365 get_remote_state_raw (void)
366 {
367 return &remote_state;
368 }
369
370 /* Description of the remote protocol for a given architecture. */
371
372 struct packet_reg
373 {
374 long offset; /* Offset into G packet. */
375 long regnum; /* GDB's internal register number. */
376 LONGEST pnum; /* Remote protocol register number. */
377 int in_g_packet; /* Always part of G packet. */
378 /* long size in bytes; == register_size (target_gdbarch, regnum);
379 at present. */
380 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
381 at present. */
382 };
383
384 struct remote_arch_state
385 {
386 /* Description of the remote protocol registers. */
387 long sizeof_g_packet;
388
389 /* Description of the remote protocol registers indexed by REGNUM
390 (making an array gdbarch_num_regs in size). */
391 struct packet_reg *regs;
392
393 /* This is the size (in chars) of the first response to the ``g''
394 packet. It is used as a heuristic when determining the maximum
395 size of memory-read and memory-write packets. A target will
396 typically only reserve a buffer large enough to hold the ``g''
397 packet. The size does not include packet overhead (headers and
398 trailers). */
399 long actual_register_packet_size;
400
401 /* This is the maximum size (in chars) of a non read/write packet.
402 It is also used as a cap on the size of read/write packets. */
403 long remote_packet_size;
404 };
405
406 long sizeof_pkt = 2000;
407
408 /* Utility: generate error from an incoming stub packet. */
409 static void
410 trace_error (char *buf)
411 {
412 if (*buf++ != 'E')
413 return; /* not an error msg */
414 switch (*buf)
415 {
416 case '1': /* malformed packet error */
417 if (*++buf == '0') /* general case: */
418 error (_("remote.c: error in outgoing packet."));
419 else
420 error (_("remote.c: error in outgoing packet at field #%ld."),
421 strtol (buf, NULL, 16));
422 case '2':
423 error (_("trace API error 0x%s."), ++buf);
424 default:
425 error (_("Target returns error code '%s'."), buf);
426 }
427 }
428
429 /* Utility: wait for reply from stub, while accepting "O" packets. */
430 static char *
431 remote_get_noisy_reply (char **buf_p,
432 long *sizeof_buf)
433 {
434 do /* Loop on reply from remote stub. */
435 {
436 char *buf;
437
438 QUIT; /* allow user to bail out with ^C */
439 getpkt (buf_p, sizeof_buf, 0);
440 buf = *buf_p;
441 if (buf[0] == 'E')
442 trace_error (buf);
443 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
444 {
445 ULONGEST ul;
446 CORE_ADDR from, to, org_to;
447 char *p, *pp;
448 int adjusted_size = 0;
449 volatile struct gdb_exception ex;
450
451 p = buf + strlen ("qRelocInsn:");
452 pp = unpack_varlen_hex (p, &ul);
453 if (*pp != ';')
454 error (_("invalid qRelocInsn packet: %s"), buf);
455 from = ul;
456
457 p = pp + 1;
458 pp = unpack_varlen_hex (p, &ul);
459 to = ul;
460
461 org_to = to;
462
463 TRY_CATCH (ex, RETURN_MASK_ALL)
464 {
465 gdbarch_relocate_instruction (target_gdbarch, &to, from);
466 }
467 if (ex.reason >= 0)
468 {
469 adjusted_size = to - org_to;
470
471 sprintf (buf, "qRelocInsn:%x", adjusted_size);
472 putpkt (buf);
473 }
474 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
475 {
476 /* Propagate memory errors silently back to the target.
477 The stub may have limited the range of addresses we
478 can write to, for example. */
479 putpkt ("E01");
480 }
481 else
482 {
483 /* Something unexpectedly bad happened. Be verbose so
484 we can tell what, and propagate the error back to the
485 stub, so it doesn't get stuck waiting for a
486 response. */
487 exception_fprintf (gdb_stderr, ex,
488 _("warning: relocating instruction: "));
489 putpkt ("E01");
490 }
491 }
492 else if (buf[0] == 'O' && buf[1] != 'K')
493 remote_console_output (buf + 1); /* 'O' message from stub */
494 else
495 return buf; /* here's the actual reply */
496 }
497 while (1);
498 }
499
500 /* Handle for retreving the remote protocol data from gdbarch. */
501 static struct gdbarch_data *remote_gdbarch_data_handle;
502
503 static struct remote_arch_state *
504 get_remote_arch_state (void)
505 {
506 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
507 }
508
509 /* Fetch the global remote target state. */
510
511 static struct remote_state *
512 get_remote_state (void)
513 {
514 /* Make sure that the remote architecture state has been
515 initialized, because doing so might reallocate rs->buf. Any
516 function which calls getpkt also needs to be mindful of changes
517 to rs->buf, but this call limits the number of places which run
518 into trouble. */
519 get_remote_arch_state ();
520
521 return get_remote_state_raw ();
522 }
523
524 static int
525 compare_pnums (const void *lhs_, const void *rhs_)
526 {
527 const struct packet_reg * const *lhs = lhs_;
528 const struct packet_reg * const *rhs = rhs_;
529
530 if ((*lhs)->pnum < (*rhs)->pnum)
531 return -1;
532 else if ((*lhs)->pnum == (*rhs)->pnum)
533 return 0;
534 else
535 return 1;
536 }
537
538 static void *
539 init_remote_state (struct gdbarch *gdbarch)
540 {
541 int regnum, num_remote_regs, offset;
542 struct remote_state *rs = get_remote_state_raw ();
543 struct remote_arch_state *rsa;
544 struct packet_reg **remote_regs;
545
546 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
547
548 /* Use the architecture to build a regnum<->pnum table, which will be
549 1:1 unless a feature set specifies otherwise. */
550 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
551 gdbarch_num_regs (gdbarch),
552 struct packet_reg);
553 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
554 {
555 struct packet_reg *r = &rsa->regs[regnum];
556
557 if (register_size (gdbarch, regnum) == 0)
558 /* Do not try to fetch zero-sized (placeholder) registers. */
559 r->pnum = -1;
560 else
561 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
562
563 r->regnum = regnum;
564 }
565
566 /* Define the g/G packet format as the contents of each register
567 with a remote protocol number, in order of ascending protocol
568 number. */
569
570 remote_regs = alloca (gdbarch_num_regs (gdbarch)
571 * sizeof (struct packet_reg *));
572 for (num_remote_regs = 0, regnum = 0;
573 regnum < gdbarch_num_regs (gdbarch);
574 regnum++)
575 if (rsa->regs[regnum].pnum != -1)
576 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
577
578 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
579 compare_pnums);
580
581 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
582 {
583 remote_regs[regnum]->in_g_packet = 1;
584 remote_regs[regnum]->offset = offset;
585 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
586 }
587
588 /* Record the maximum possible size of the g packet - it may turn out
589 to be smaller. */
590 rsa->sizeof_g_packet = offset;
591
592 /* Default maximum number of characters in a packet body. Many
593 remote stubs have a hardwired buffer size of 400 bytes
594 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
595 as the maximum packet-size to ensure that the packet and an extra
596 NUL character can always fit in the buffer. This stops GDB
597 trashing stubs that try to squeeze an extra NUL into what is
598 already a full buffer (As of 1999-12-04 that was most stubs). */
599 rsa->remote_packet_size = 400 - 1;
600
601 /* This one is filled in when a ``g'' packet is received. */
602 rsa->actual_register_packet_size = 0;
603
604 /* Should rsa->sizeof_g_packet needs more space than the
605 default, adjust the size accordingly. Remember that each byte is
606 encoded as two characters. 32 is the overhead for the packet
607 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
608 (``$NN:G...#NN'') is a better guess, the below has been padded a
609 little. */
610 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
611 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
612
613 /* Make sure that the packet buffer is plenty big enough for
614 this architecture. */
615 if (rs->buf_size < rsa->remote_packet_size)
616 {
617 rs->buf_size = 2 * rsa->remote_packet_size;
618 rs->buf = xrealloc (rs->buf, rs->buf_size);
619 }
620
621 return rsa;
622 }
623
624 /* Return the current allowed size of a remote packet. This is
625 inferred from the current architecture, and should be used to
626 limit the length of outgoing packets. */
627 static long
628 get_remote_packet_size (void)
629 {
630 struct remote_state *rs = get_remote_state ();
631 struct remote_arch_state *rsa = get_remote_arch_state ();
632
633 if (rs->explicit_packet_size)
634 return rs->explicit_packet_size;
635
636 return rsa->remote_packet_size;
637 }
638
639 static struct packet_reg *
640 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
641 {
642 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
643 return NULL;
644 else
645 {
646 struct packet_reg *r = &rsa->regs[regnum];
647
648 gdb_assert (r->regnum == regnum);
649 return r;
650 }
651 }
652
653 static struct packet_reg *
654 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
655 {
656 int i;
657
658 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
659 {
660 struct packet_reg *r = &rsa->regs[i];
661
662 if (r->pnum == pnum)
663 return r;
664 }
665 return NULL;
666 }
667
668 /* FIXME: graces/2002-08-08: These variables should eventually be
669 bound to an instance of the target object (as in gdbarch-tdep()),
670 when such a thing exists. */
671
672 /* This is set to the data address of the access causing the target
673 to stop for a watchpoint. */
674 static CORE_ADDR remote_watch_data_address;
675
676 /* This is non-zero if target stopped for a watchpoint. */
677 static int remote_stopped_by_watchpoint_p;
678
679 static struct target_ops remote_ops;
680
681 static struct target_ops extended_remote_ops;
682
683 static int remote_async_mask_value = 1;
684
685 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
686 ``forever'' still use the normal timeout mechanism. This is
687 currently used by the ASYNC code to guarentee that target reads
688 during the initial connect always time-out. Once getpkt has been
689 modified to return a timeout indication and, in turn
690 remote_wait()/wait_for_inferior() have gained a timeout parameter
691 this can go away. */
692 static int wait_forever_enabled_p = 1;
693
694 /* Allow the user to specify what sequence to send to the remote
695 when he requests a program interruption: Although ^C is usually
696 what remote systems expect (this is the default, here), it is
697 sometimes preferable to send a break. On other systems such
698 as the Linux kernel, a break followed by g, which is Magic SysRq g
699 is required in order to interrupt the execution. */
700 const char interrupt_sequence_control_c[] = "Ctrl-C";
701 const char interrupt_sequence_break[] = "BREAK";
702 const char interrupt_sequence_break_g[] = "BREAK-g";
703 static const char *interrupt_sequence_modes[] =
704 {
705 interrupt_sequence_control_c,
706 interrupt_sequence_break,
707 interrupt_sequence_break_g,
708 NULL
709 };
710 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
711
712 static void
713 show_interrupt_sequence (struct ui_file *file, int from_tty,
714 struct cmd_list_element *c,
715 const char *value)
716 {
717 if (interrupt_sequence_mode == interrupt_sequence_control_c)
718 fprintf_filtered (file,
719 _("Send the ASCII ETX character (Ctrl-c) "
720 "to the remote target to interrupt the "
721 "execution of the program.\n"));
722 else if (interrupt_sequence_mode == interrupt_sequence_break)
723 fprintf_filtered (file,
724 _("send a break signal to the remote target "
725 "to interrupt the execution of the program.\n"));
726 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
727 fprintf_filtered (file,
728 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
729 "the remote target to interrupt the execution "
730 "of Linux kernel.\n"));
731 else
732 internal_error (__FILE__, __LINE__,
733 _("Invalid value for interrupt_sequence_mode: %s."),
734 interrupt_sequence_mode);
735 }
736
737 /* This boolean variable specifies whether interrupt_sequence is sent
738 to the remote target when gdb connects to it.
739 This is mostly needed when you debug the Linux kernel: The Linux kernel
740 expects BREAK g which is Magic SysRq g for connecting gdb. */
741 static int interrupt_on_connect = 0;
742
743 /* This variable is used to implement the "set/show remotebreak" commands.
744 Since these commands are now deprecated in favor of "set/show remote
745 interrupt-sequence", it no longer has any effect on the code. */
746 static int remote_break;
747
748 static void
749 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
750 {
751 if (remote_break)
752 interrupt_sequence_mode = interrupt_sequence_break;
753 else
754 interrupt_sequence_mode = interrupt_sequence_control_c;
755 }
756
757 static void
758 show_remotebreak (struct ui_file *file, int from_tty,
759 struct cmd_list_element *c,
760 const char *value)
761 {
762 }
763
764 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
765 remote_open knows that we don't have a file open when the program
766 starts. */
767 static struct serial *remote_desc = NULL;
768
769 /* This variable sets the number of bits in an address that are to be
770 sent in a memory ("M" or "m") packet. Normally, after stripping
771 leading zeros, the entire address would be sent. This variable
772 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
773 initial implementation of remote.c restricted the address sent in
774 memory packets to ``host::sizeof long'' bytes - (typically 32
775 bits). Consequently, for 64 bit targets, the upper 32 bits of an
776 address was never sent. Since fixing this bug may cause a break in
777 some remote targets this variable is principly provided to
778 facilitate backward compatibility. */
779
780 static int remote_address_size;
781
782 /* Temporary to track who currently owns the terminal. See
783 remote_terminal_* for more details. */
784
785 static int remote_async_terminal_ours_p;
786
787 /* The executable file to use for "run" on the remote side. */
788
789 static char *remote_exec_file = "";
790
791 \f
792 /* User configurable variables for the number of characters in a
793 memory read/write packet. MIN (rsa->remote_packet_size,
794 rsa->sizeof_g_packet) is the default. Some targets need smaller
795 values (fifo overruns, et.al.) and some users need larger values
796 (speed up transfers). The variables ``preferred_*'' (the user
797 request), ``current_*'' (what was actually set) and ``forced_*''
798 (Positive - a soft limit, negative - a hard limit). */
799
800 struct memory_packet_config
801 {
802 char *name;
803 long size;
804 int fixed_p;
805 };
806
807 /* Compute the current size of a read/write packet. Since this makes
808 use of ``actual_register_packet_size'' the computation is dynamic. */
809
810 static long
811 get_memory_packet_size (struct memory_packet_config *config)
812 {
813 struct remote_state *rs = get_remote_state ();
814 struct remote_arch_state *rsa = get_remote_arch_state ();
815
816 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
817 law?) that some hosts don't cope very well with large alloca()
818 calls. Eventually the alloca() code will be replaced by calls to
819 xmalloc() and make_cleanups() allowing this restriction to either
820 be lifted or removed. */
821 #ifndef MAX_REMOTE_PACKET_SIZE
822 #define MAX_REMOTE_PACKET_SIZE 16384
823 #endif
824 /* NOTE: 20 ensures we can write at least one byte. */
825 #ifndef MIN_REMOTE_PACKET_SIZE
826 #define MIN_REMOTE_PACKET_SIZE 20
827 #endif
828 long what_they_get;
829 if (config->fixed_p)
830 {
831 if (config->size <= 0)
832 what_they_get = MAX_REMOTE_PACKET_SIZE;
833 else
834 what_they_get = config->size;
835 }
836 else
837 {
838 what_they_get = get_remote_packet_size ();
839 /* Limit the packet to the size specified by the user. */
840 if (config->size > 0
841 && what_they_get > config->size)
842 what_they_get = config->size;
843
844 /* Limit it to the size of the targets ``g'' response unless we have
845 permission from the stub to use a larger packet size. */
846 if (rs->explicit_packet_size == 0
847 && rsa->actual_register_packet_size > 0
848 && what_they_get > rsa->actual_register_packet_size)
849 what_they_get = rsa->actual_register_packet_size;
850 }
851 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
852 what_they_get = MAX_REMOTE_PACKET_SIZE;
853 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
854 what_they_get = MIN_REMOTE_PACKET_SIZE;
855
856 /* Make sure there is room in the global buffer for this packet
857 (including its trailing NUL byte). */
858 if (rs->buf_size < what_they_get + 1)
859 {
860 rs->buf_size = 2 * what_they_get;
861 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
862 }
863
864 return what_they_get;
865 }
866
867 /* Update the size of a read/write packet. If they user wants
868 something really big then do a sanity check. */
869
870 static void
871 set_memory_packet_size (char *args, struct memory_packet_config *config)
872 {
873 int fixed_p = config->fixed_p;
874 long size = config->size;
875
876 if (args == NULL)
877 error (_("Argument required (integer, `fixed' or `limited')."));
878 else if (strcmp (args, "hard") == 0
879 || strcmp (args, "fixed") == 0)
880 fixed_p = 1;
881 else if (strcmp (args, "soft") == 0
882 || strcmp (args, "limit") == 0)
883 fixed_p = 0;
884 else
885 {
886 char *end;
887
888 size = strtoul (args, &end, 0);
889 if (args == end)
890 error (_("Invalid %s (bad syntax)."), config->name);
891 #if 0
892 /* Instead of explicitly capping the size of a packet to
893 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
894 instead allowed to set the size to something arbitrarily
895 large. */
896 if (size > MAX_REMOTE_PACKET_SIZE)
897 error (_("Invalid %s (too large)."), config->name);
898 #endif
899 }
900 /* Extra checks? */
901 if (fixed_p && !config->fixed_p)
902 {
903 if (! query (_("The target may not be able to correctly handle a %s\n"
904 "of %ld bytes. Change the packet size? "),
905 config->name, size))
906 error (_("Packet size not changed."));
907 }
908 /* Update the config. */
909 config->fixed_p = fixed_p;
910 config->size = size;
911 }
912
913 static void
914 show_memory_packet_size (struct memory_packet_config *config)
915 {
916 printf_filtered (_("The %s is %ld. "), config->name, config->size);
917 if (config->fixed_p)
918 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
919 get_memory_packet_size (config));
920 else
921 printf_filtered (_("Packets are limited to %ld bytes.\n"),
922 get_memory_packet_size (config));
923 }
924
925 static struct memory_packet_config memory_write_packet_config =
926 {
927 "memory-write-packet-size",
928 };
929
930 static void
931 set_memory_write_packet_size (char *args, int from_tty)
932 {
933 set_memory_packet_size (args, &memory_write_packet_config);
934 }
935
936 static void
937 show_memory_write_packet_size (char *args, int from_tty)
938 {
939 show_memory_packet_size (&memory_write_packet_config);
940 }
941
942 static long
943 get_memory_write_packet_size (void)
944 {
945 return get_memory_packet_size (&memory_write_packet_config);
946 }
947
948 static struct memory_packet_config memory_read_packet_config =
949 {
950 "memory-read-packet-size",
951 };
952
953 static void
954 set_memory_read_packet_size (char *args, int from_tty)
955 {
956 set_memory_packet_size (args, &memory_read_packet_config);
957 }
958
959 static void
960 show_memory_read_packet_size (char *args, int from_tty)
961 {
962 show_memory_packet_size (&memory_read_packet_config);
963 }
964
965 static long
966 get_memory_read_packet_size (void)
967 {
968 long size = get_memory_packet_size (&memory_read_packet_config);
969
970 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
971 extra buffer size argument before the memory read size can be
972 increased beyond this. */
973 if (size > get_remote_packet_size ())
974 size = get_remote_packet_size ();
975 return size;
976 }
977
978 \f
979 /* Generic configuration support for packets the stub optionally
980 supports. Allows the user to specify the use of the packet as well
981 as allowing GDB to auto-detect support in the remote stub. */
982
983 enum packet_support
984 {
985 PACKET_SUPPORT_UNKNOWN = 0,
986 PACKET_ENABLE,
987 PACKET_DISABLE
988 };
989
990 struct packet_config
991 {
992 const char *name;
993 const char *title;
994 enum auto_boolean detect;
995 enum packet_support support;
996 };
997
998 /* Analyze a packet's return value and update the packet config
999 accordingly. */
1000
1001 enum packet_result
1002 {
1003 PACKET_ERROR,
1004 PACKET_OK,
1005 PACKET_UNKNOWN
1006 };
1007
1008 static void
1009 update_packet_config (struct packet_config *config)
1010 {
1011 switch (config->detect)
1012 {
1013 case AUTO_BOOLEAN_TRUE:
1014 config->support = PACKET_ENABLE;
1015 break;
1016 case AUTO_BOOLEAN_FALSE:
1017 config->support = PACKET_DISABLE;
1018 break;
1019 case AUTO_BOOLEAN_AUTO:
1020 config->support = PACKET_SUPPORT_UNKNOWN;
1021 break;
1022 }
1023 }
1024
1025 static void
1026 show_packet_config_cmd (struct packet_config *config)
1027 {
1028 char *support = "internal-error";
1029
1030 switch (config->support)
1031 {
1032 case PACKET_ENABLE:
1033 support = "enabled";
1034 break;
1035 case PACKET_DISABLE:
1036 support = "disabled";
1037 break;
1038 case PACKET_SUPPORT_UNKNOWN:
1039 support = "unknown";
1040 break;
1041 }
1042 switch (config->detect)
1043 {
1044 case AUTO_BOOLEAN_AUTO:
1045 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
1046 config->name, support);
1047 break;
1048 case AUTO_BOOLEAN_TRUE:
1049 case AUTO_BOOLEAN_FALSE:
1050 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1051 config->name, support);
1052 break;
1053 }
1054 }
1055
1056 static void
1057 add_packet_config_cmd (struct packet_config *config, const char *name,
1058 const char *title, int legacy)
1059 {
1060 char *set_doc;
1061 char *show_doc;
1062 char *cmd_name;
1063
1064 config->name = name;
1065 config->title = title;
1066 config->detect = AUTO_BOOLEAN_AUTO;
1067 config->support = PACKET_SUPPORT_UNKNOWN;
1068 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1069 name, title);
1070 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
1071 name, title);
1072 /* set/show TITLE-packet {auto,on,off} */
1073 cmd_name = xstrprintf ("%s-packet", title);
1074 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1075 &config->detect, set_doc, show_doc, NULL, /* help_doc */
1076 set_remote_protocol_packet_cmd,
1077 show_remote_protocol_packet_cmd,
1078 &remote_set_cmdlist, &remote_show_cmdlist);
1079 /* The command code copies the documentation strings. */
1080 xfree (set_doc);
1081 xfree (show_doc);
1082 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1083 if (legacy)
1084 {
1085 char *legacy_name;
1086
1087 legacy_name = xstrprintf ("%s-packet", name);
1088 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1089 &remote_set_cmdlist);
1090 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1091 &remote_show_cmdlist);
1092 }
1093 }
1094
1095 static enum packet_result
1096 packet_check_result (const char *buf)
1097 {
1098 if (buf[0] != '\0')
1099 {
1100 /* The stub recognized the packet request. Check that the
1101 operation succeeded. */
1102 if (buf[0] == 'E'
1103 && isxdigit (buf[1]) && isxdigit (buf[2])
1104 && buf[3] == '\0')
1105 /* "Enn" - definitly an error. */
1106 return PACKET_ERROR;
1107
1108 /* Always treat "E." as an error. This will be used for
1109 more verbose error messages, such as E.memtypes. */
1110 if (buf[0] == 'E' && buf[1] == '.')
1111 return PACKET_ERROR;
1112
1113 /* The packet may or may not be OK. Just assume it is. */
1114 return PACKET_OK;
1115 }
1116 else
1117 /* The stub does not support the packet. */
1118 return PACKET_UNKNOWN;
1119 }
1120
1121 static enum packet_result
1122 packet_ok (const char *buf, struct packet_config *config)
1123 {
1124 enum packet_result result;
1125
1126 result = packet_check_result (buf);
1127 switch (result)
1128 {
1129 case PACKET_OK:
1130 case PACKET_ERROR:
1131 /* The stub recognized the packet request. */
1132 switch (config->support)
1133 {
1134 case PACKET_SUPPORT_UNKNOWN:
1135 if (remote_debug)
1136 fprintf_unfiltered (gdb_stdlog,
1137 "Packet %s (%s) is supported\n",
1138 config->name, config->title);
1139 config->support = PACKET_ENABLE;
1140 break;
1141 case PACKET_DISABLE:
1142 internal_error (__FILE__, __LINE__,
1143 _("packet_ok: attempt to use a disabled packet"));
1144 break;
1145 case PACKET_ENABLE:
1146 break;
1147 }
1148 break;
1149 case PACKET_UNKNOWN:
1150 /* The stub does not support the packet. */
1151 switch (config->support)
1152 {
1153 case PACKET_ENABLE:
1154 if (config->detect == AUTO_BOOLEAN_AUTO)
1155 /* If the stub previously indicated that the packet was
1156 supported then there is a protocol error.. */
1157 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1158 config->name, config->title);
1159 else
1160 /* The user set it wrong. */
1161 error (_("Enabled packet %s (%s) not recognized by stub"),
1162 config->name, config->title);
1163 break;
1164 case PACKET_SUPPORT_UNKNOWN:
1165 if (remote_debug)
1166 fprintf_unfiltered (gdb_stdlog,
1167 "Packet %s (%s) is NOT supported\n",
1168 config->name, config->title);
1169 config->support = PACKET_DISABLE;
1170 break;
1171 case PACKET_DISABLE:
1172 break;
1173 }
1174 break;
1175 }
1176
1177 return result;
1178 }
1179
1180 enum {
1181 PACKET_vCont = 0,
1182 PACKET_X,
1183 PACKET_qSymbol,
1184 PACKET_P,
1185 PACKET_p,
1186 PACKET_Z0,
1187 PACKET_Z1,
1188 PACKET_Z2,
1189 PACKET_Z3,
1190 PACKET_Z4,
1191 PACKET_vFile_open,
1192 PACKET_vFile_pread,
1193 PACKET_vFile_pwrite,
1194 PACKET_vFile_close,
1195 PACKET_vFile_unlink,
1196 PACKET_qXfer_auxv,
1197 PACKET_qXfer_features,
1198 PACKET_qXfer_libraries,
1199 PACKET_qXfer_memory_map,
1200 PACKET_qXfer_spu_read,
1201 PACKET_qXfer_spu_write,
1202 PACKET_qXfer_osdata,
1203 PACKET_qXfer_threads,
1204 PACKET_qXfer_statictrace_read,
1205 PACKET_qGetTIBAddr,
1206 PACKET_qGetTLSAddr,
1207 PACKET_qSupported,
1208 PACKET_QPassSignals,
1209 PACKET_qSearch_memory,
1210 PACKET_vAttach,
1211 PACKET_vRun,
1212 PACKET_QStartNoAckMode,
1213 PACKET_vKill,
1214 PACKET_qXfer_siginfo_read,
1215 PACKET_qXfer_siginfo_write,
1216 PACKET_qAttached,
1217 PACKET_ConditionalTracepoints,
1218 PACKET_FastTracepoints,
1219 PACKET_StaticTracepoints,
1220 PACKET_bc,
1221 PACKET_bs,
1222 PACKET_TracepointSource,
1223 PACKET_QAllow,
1224 PACKET_MAX
1225 };
1226
1227 static struct packet_config remote_protocol_packets[PACKET_MAX];
1228
1229 static void
1230 set_remote_protocol_packet_cmd (char *args, int from_tty,
1231 struct cmd_list_element *c)
1232 {
1233 struct packet_config *packet;
1234
1235 for (packet = remote_protocol_packets;
1236 packet < &remote_protocol_packets[PACKET_MAX];
1237 packet++)
1238 {
1239 if (&packet->detect == c->var)
1240 {
1241 update_packet_config (packet);
1242 return;
1243 }
1244 }
1245 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1246 c->name);
1247 }
1248
1249 static void
1250 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1251 struct cmd_list_element *c,
1252 const char *value)
1253 {
1254 struct packet_config *packet;
1255
1256 for (packet = remote_protocol_packets;
1257 packet < &remote_protocol_packets[PACKET_MAX];
1258 packet++)
1259 {
1260 if (&packet->detect == c->var)
1261 {
1262 show_packet_config_cmd (packet);
1263 return;
1264 }
1265 }
1266 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1267 c->name);
1268 }
1269
1270 /* Should we try one of the 'Z' requests? */
1271
1272 enum Z_packet_type
1273 {
1274 Z_PACKET_SOFTWARE_BP,
1275 Z_PACKET_HARDWARE_BP,
1276 Z_PACKET_WRITE_WP,
1277 Z_PACKET_READ_WP,
1278 Z_PACKET_ACCESS_WP,
1279 NR_Z_PACKET_TYPES
1280 };
1281
1282 /* For compatibility with older distributions. Provide a ``set remote
1283 Z-packet ...'' command that updates all the Z packet types. */
1284
1285 static enum auto_boolean remote_Z_packet_detect;
1286
1287 static void
1288 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1289 struct cmd_list_element *c)
1290 {
1291 int i;
1292
1293 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1294 {
1295 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1296 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1297 }
1298 }
1299
1300 static void
1301 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1302 struct cmd_list_element *c,
1303 const char *value)
1304 {
1305 int i;
1306
1307 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1308 {
1309 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1310 }
1311 }
1312
1313 /* Should we try the 'ThreadInfo' query packet?
1314
1315 This variable (NOT available to the user: auto-detect only!)
1316 determines whether GDB will use the new, simpler "ThreadInfo"
1317 query or the older, more complex syntax for thread queries.
1318 This is an auto-detect variable (set to true at each connect,
1319 and set to false when the target fails to recognize it). */
1320
1321 static int use_threadinfo_query;
1322 static int use_threadextra_query;
1323
1324 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1325 static struct async_signal_handler *sigint_remote_twice_token;
1326 static struct async_signal_handler *sigint_remote_token;
1327
1328 \f
1329 /* Asynchronous signal handle registered as event loop source for
1330 when we have pending events ready to be passed to the core. */
1331
1332 static struct async_event_handler *remote_async_inferior_event_token;
1333
1334 /* Asynchronous signal handle registered as event loop source for when
1335 the remote sent us a %Stop notification. The registered callback
1336 will do a vStopped sequence to pull the rest of the events out of
1337 the remote side into our event queue. */
1338
1339 static struct async_event_handler *remote_async_get_pending_events_token;
1340 \f
1341
1342 static ptid_t magic_null_ptid;
1343 static ptid_t not_sent_ptid;
1344 static ptid_t any_thread_ptid;
1345
1346 /* These are the threads which we last sent to the remote system. The
1347 TID member will be -1 for all or -2 for not sent yet. */
1348
1349 static ptid_t general_thread;
1350 static ptid_t continue_thread;
1351
1352 /* Find out if the stub attached to PID (and hence GDB should offer to
1353 detach instead of killing it when bailing out). */
1354
1355 static int
1356 remote_query_attached (int pid)
1357 {
1358 struct remote_state *rs = get_remote_state ();
1359
1360 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1361 return 0;
1362
1363 if (remote_multi_process_p (rs))
1364 sprintf (rs->buf, "qAttached:%x", pid);
1365 else
1366 sprintf (rs->buf, "qAttached");
1367
1368 putpkt (rs->buf);
1369 getpkt (&rs->buf, &rs->buf_size, 0);
1370
1371 switch (packet_ok (rs->buf,
1372 &remote_protocol_packets[PACKET_qAttached]))
1373 {
1374 case PACKET_OK:
1375 if (strcmp (rs->buf, "1") == 0)
1376 return 1;
1377 break;
1378 case PACKET_ERROR:
1379 warning (_("Remote failure reply: %s"), rs->buf);
1380 break;
1381 case PACKET_UNKNOWN:
1382 break;
1383 }
1384
1385 return 0;
1386 }
1387
1388 /* Add PID to GDB's inferior table. Since we can be connected to a
1389 remote system before before knowing about any inferior, mark the
1390 target with execution when we find the first inferior. If ATTACHED
1391 is 1, then we had just attached to this inferior. If it is 0, then
1392 we just created this inferior. If it is -1, then try querying the
1393 remote stub to find out if it had attached to the inferior or
1394 not. */
1395
1396 static struct inferior *
1397 remote_add_inferior (int pid, int attached)
1398 {
1399 struct inferior *inf;
1400
1401 /* Check whether this process we're learning about is to be
1402 considered attached, or if is to be considered to have been
1403 spawned by the stub. */
1404 if (attached == -1)
1405 attached = remote_query_attached (pid);
1406
1407 if (gdbarch_has_global_solist (target_gdbarch))
1408 {
1409 /* If the target shares code across all inferiors, then every
1410 attach adds a new inferior. */
1411 inf = add_inferior (pid);
1412
1413 /* ... and every inferior is bound to the same program space.
1414 However, each inferior may still have its own address
1415 space. */
1416 inf->aspace = maybe_new_address_space ();
1417 inf->pspace = current_program_space;
1418 }
1419 else
1420 {
1421 /* In the traditional debugging scenario, there's a 1-1 match
1422 between program/address spaces. We simply bind the inferior
1423 to the program space's address space. */
1424 inf = current_inferior ();
1425 inferior_appeared (inf, pid);
1426 }
1427
1428 inf->attach_flag = attached;
1429
1430 return inf;
1431 }
1432
1433 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1434 according to RUNNING. */
1435
1436 static void
1437 remote_add_thread (ptid_t ptid, int running)
1438 {
1439 add_thread (ptid);
1440
1441 set_executing (ptid, running);
1442 set_running (ptid, running);
1443 }
1444
1445 /* Come here when we learn about a thread id from the remote target.
1446 It may be the first time we hear about such thread, so take the
1447 opportunity to add it to GDB's thread list. In case this is the
1448 first time we're noticing its corresponding inferior, add it to
1449 GDB's inferior list as well. */
1450
1451 static void
1452 remote_notice_new_inferior (ptid_t currthread, int running)
1453 {
1454 /* If this is a new thread, add it to GDB's thread list.
1455 If we leave it up to WFI to do this, bad things will happen. */
1456
1457 if (in_thread_list (currthread) && is_exited (currthread))
1458 {
1459 /* We're seeing an event on a thread id we knew had exited.
1460 This has to be a new thread reusing the old id. Add it. */
1461 remote_add_thread (currthread, running);
1462 return;
1463 }
1464
1465 if (!in_thread_list (currthread))
1466 {
1467 struct inferior *inf = NULL;
1468 int pid = ptid_get_pid (currthread);
1469
1470 if (ptid_is_pid (inferior_ptid)
1471 && pid == ptid_get_pid (inferior_ptid))
1472 {
1473 /* inferior_ptid has no thread member yet. This can happen
1474 with the vAttach -> remote_wait,"TAAthread:" path if the
1475 stub doesn't support qC. This is the first stop reported
1476 after an attach, so this is the main thread. Update the
1477 ptid in the thread list. */
1478 if (in_thread_list (pid_to_ptid (pid)))
1479 thread_change_ptid (inferior_ptid, currthread);
1480 else
1481 {
1482 remote_add_thread (currthread, running);
1483 inferior_ptid = currthread;
1484 }
1485 return;
1486 }
1487
1488 if (ptid_equal (magic_null_ptid, inferior_ptid))
1489 {
1490 /* inferior_ptid is not set yet. This can happen with the
1491 vRun -> remote_wait,"TAAthread:" path if the stub
1492 doesn't support qC. This is the first stop reported
1493 after an attach, so this is the main thread. Update the
1494 ptid in the thread list. */
1495 thread_change_ptid (inferior_ptid, currthread);
1496 return;
1497 }
1498
1499 /* When connecting to a target remote, or to a target
1500 extended-remote which already was debugging an inferior, we
1501 may not know about it yet. Add it before adding its child
1502 thread, so notifications are emitted in a sensible order. */
1503 if (!in_inferior_list (ptid_get_pid (currthread)))
1504 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1505
1506 /* This is really a new thread. Add it. */
1507 remote_add_thread (currthread, running);
1508
1509 /* If we found a new inferior, let the common code do whatever
1510 it needs to with it (e.g., read shared libraries, insert
1511 breakpoints). */
1512 if (inf != NULL)
1513 notice_new_inferior (currthread, running, 0);
1514 }
1515 }
1516
1517 /* Return the private thread data, creating it if necessary. */
1518
1519 struct private_thread_info *
1520 demand_private_info (ptid_t ptid)
1521 {
1522 struct thread_info *info = find_thread_ptid (ptid);
1523
1524 gdb_assert (info);
1525
1526 if (!info->private)
1527 {
1528 info->private = xmalloc (sizeof (*(info->private)));
1529 info->private_dtor = free_private_thread_info;
1530 info->private->core = -1;
1531 info->private->extra = 0;
1532 }
1533
1534 return info->private;
1535 }
1536
1537 /* Call this function as a result of
1538 1) A halt indication (T packet) containing a thread id
1539 2) A direct query of currthread
1540 3) Successful execution of set thread
1541 */
1542
1543 static void
1544 record_currthread (ptid_t currthread)
1545 {
1546 general_thread = currthread;
1547 }
1548
1549 static char *last_pass_packet;
1550
1551 /* If 'QPassSignals' is supported, tell the remote stub what signals
1552 it can simply pass through to the inferior without reporting. */
1553
1554 static void
1555 remote_pass_signals (void)
1556 {
1557 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1558 {
1559 char *pass_packet, *p;
1560 int numsigs = (int) TARGET_SIGNAL_LAST;
1561 int count = 0, i;
1562
1563 gdb_assert (numsigs < 256);
1564 for (i = 0; i < numsigs; i++)
1565 {
1566 if (signal_stop_state (i) == 0
1567 && signal_print_state (i) == 0
1568 && signal_pass_state (i) == 1)
1569 count++;
1570 }
1571 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1572 strcpy (pass_packet, "QPassSignals:");
1573 p = pass_packet + strlen (pass_packet);
1574 for (i = 0; i < numsigs; i++)
1575 {
1576 if (signal_stop_state (i) == 0
1577 && signal_print_state (i) == 0
1578 && signal_pass_state (i) == 1)
1579 {
1580 if (i >= 16)
1581 *p++ = tohex (i >> 4);
1582 *p++ = tohex (i & 15);
1583 if (count)
1584 *p++ = ';';
1585 else
1586 break;
1587 count--;
1588 }
1589 }
1590 *p = 0;
1591 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1592 {
1593 struct remote_state *rs = get_remote_state ();
1594 char *buf = rs->buf;
1595
1596 putpkt (pass_packet);
1597 getpkt (&rs->buf, &rs->buf_size, 0);
1598 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1599 if (last_pass_packet)
1600 xfree (last_pass_packet);
1601 last_pass_packet = pass_packet;
1602 }
1603 else
1604 xfree (pass_packet);
1605 }
1606 }
1607
1608 static void
1609 remote_notice_signals (ptid_t ptid)
1610 {
1611 /* Update the remote on signals to silently pass, if they've
1612 changed. */
1613 remote_pass_signals ();
1614 }
1615
1616 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1617 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1618 thread. If GEN is set, set the general thread, if not, then set
1619 the step/continue thread. */
1620 static void
1621 set_thread (struct ptid ptid, int gen)
1622 {
1623 struct remote_state *rs = get_remote_state ();
1624 ptid_t state = gen ? general_thread : continue_thread;
1625 char *buf = rs->buf;
1626 char *endbuf = rs->buf + get_remote_packet_size ();
1627
1628 if (ptid_equal (state, ptid))
1629 return;
1630
1631 *buf++ = 'H';
1632 *buf++ = gen ? 'g' : 'c';
1633 if (ptid_equal (ptid, magic_null_ptid))
1634 xsnprintf (buf, endbuf - buf, "0");
1635 else if (ptid_equal (ptid, any_thread_ptid))
1636 xsnprintf (buf, endbuf - buf, "0");
1637 else if (ptid_equal (ptid, minus_one_ptid))
1638 xsnprintf (buf, endbuf - buf, "-1");
1639 else
1640 write_ptid (buf, endbuf, ptid);
1641 putpkt (rs->buf);
1642 getpkt (&rs->buf, &rs->buf_size, 0);
1643 if (gen)
1644 general_thread = ptid;
1645 else
1646 continue_thread = ptid;
1647 }
1648
1649 static void
1650 set_general_thread (struct ptid ptid)
1651 {
1652 set_thread (ptid, 1);
1653 }
1654
1655 static void
1656 set_continue_thread (struct ptid ptid)
1657 {
1658 set_thread (ptid, 0);
1659 }
1660
1661 /* Change the remote current process. Which thread within the process
1662 ends up selected isn't important, as long as it is the same process
1663 as what INFERIOR_PTID points to.
1664
1665 This comes from that fact that there is no explicit notion of
1666 "selected process" in the protocol. The selected process for
1667 general operations is the process the selected general thread
1668 belongs to. */
1669
1670 static void
1671 set_general_process (void)
1672 {
1673 struct remote_state *rs = get_remote_state ();
1674
1675 /* If the remote can't handle multiple processes, don't bother. */
1676 if (!remote_multi_process_p (rs))
1677 return;
1678
1679 /* We only need to change the remote current thread if it's pointing
1680 at some other process. */
1681 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1682 set_general_thread (inferior_ptid);
1683 }
1684
1685 \f
1686 /* Return nonzero if the thread PTID is still alive on the remote
1687 system. */
1688
1689 static int
1690 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1691 {
1692 struct remote_state *rs = get_remote_state ();
1693 char *p, *endp;
1694
1695 if (ptid_equal (ptid, magic_null_ptid))
1696 /* The main thread is always alive. */
1697 return 1;
1698
1699 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1700 /* The main thread is always alive. This can happen after a
1701 vAttach, if the remote side doesn't support
1702 multi-threading. */
1703 return 1;
1704
1705 p = rs->buf;
1706 endp = rs->buf + get_remote_packet_size ();
1707
1708 *p++ = 'T';
1709 write_ptid (p, endp, ptid);
1710
1711 putpkt (rs->buf);
1712 getpkt (&rs->buf, &rs->buf_size, 0);
1713 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1714 }
1715
1716 /* About these extended threadlist and threadinfo packets. They are
1717 variable length packets but, the fields within them are often fixed
1718 length. They are redundent enough to send over UDP as is the
1719 remote protocol in general. There is a matching unit test module
1720 in libstub. */
1721
1722 #define OPAQUETHREADBYTES 8
1723
1724 /* a 64 bit opaque identifier */
1725 typedef unsigned char threadref[OPAQUETHREADBYTES];
1726
1727 /* WARNING: This threadref data structure comes from the remote O.S.,
1728 libstub protocol encoding, and remote.c. it is not particularly
1729 changable. */
1730
1731 /* Right now, the internal structure is int. We want it to be bigger.
1732 Plan to fix this.
1733 */
1734
1735 typedef int gdb_threadref; /* Internal GDB thread reference. */
1736
1737 /* gdb_ext_thread_info is an internal GDB data structure which is
1738 equivalent to the reply of the remote threadinfo packet. */
1739
1740 struct gdb_ext_thread_info
1741 {
1742 threadref threadid; /* External form of thread reference. */
1743 int active; /* Has state interesting to GDB?
1744 regs, stack. */
1745 char display[256]; /* Brief state display, name,
1746 blocked/suspended. */
1747 char shortname[32]; /* To be used to name threads. */
1748 char more_display[256]; /* Long info, statistics, queue depth,
1749 whatever. */
1750 };
1751
1752 /* The volume of remote transfers can be limited by submitting
1753 a mask containing bits specifying the desired information.
1754 Use a union of these values as the 'selection' parameter to
1755 get_thread_info. FIXME: Make these TAG names more thread specific.
1756 */
1757
1758 #define TAG_THREADID 1
1759 #define TAG_EXISTS 2
1760 #define TAG_DISPLAY 4
1761 #define TAG_THREADNAME 8
1762 #define TAG_MOREDISPLAY 16
1763
1764 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1765
1766 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1767
1768 static char *unpack_nibble (char *buf, int *val);
1769
1770 static char *pack_nibble (char *buf, int nibble);
1771
1772 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1773
1774 static char *unpack_byte (char *buf, int *value);
1775
1776 static char *pack_int (char *buf, int value);
1777
1778 static char *unpack_int (char *buf, int *value);
1779
1780 static char *unpack_string (char *src, char *dest, int length);
1781
1782 static char *pack_threadid (char *pkt, threadref *id);
1783
1784 static char *unpack_threadid (char *inbuf, threadref *id);
1785
1786 void int_to_threadref (threadref *id, int value);
1787
1788 static int threadref_to_int (threadref *ref);
1789
1790 static void copy_threadref (threadref *dest, threadref *src);
1791
1792 static int threadmatch (threadref *dest, threadref *src);
1793
1794 static char *pack_threadinfo_request (char *pkt, int mode,
1795 threadref *id);
1796
1797 static int remote_unpack_thread_info_response (char *pkt,
1798 threadref *expectedref,
1799 struct gdb_ext_thread_info
1800 *info);
1801
1802
1803 static int remote_get_threadinfo (threadref *threadid,
1804 int fieldset, /*TAG mask */
1805 struct gdb_ext_thread_info *info);
1806
1807 static char *pack_threadlist_request (char *pkt, int startflag,
1808 int threadcount,
1809 threadref *nextthread);
1810
1811 static int parse_threadlist_response (char *pkt,
1812 int result_limit,
1813 threadref *original_echo,
1814 threadref *resultlist,
1815 int *doneflag);
1816
1817 static int remote_get_threadlist (int startflag,
1818 threadref *nextthread,
1819 int result_limit,
1820 int *done,
1821 int *result_count,
1822 threadref *threadlist);
1823
1824 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1825
1826 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1827 void *context, int looplimit);
1828
1829 static int remote_newthread_step (threadref *ref, void *context);
1830
1831
1832 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1833 buffer we're allowed to write to. Returns
1834 BUF+CHARACTERS_WRITTEN. */
1835
1836 static char *
1837 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1838 {
1839 int pid, tid;
1840 struct remote_state *rs = get_remote_state ();
1841
1842 if (remote_multi_process_p (rs))
1843 {
1844 pid = ptid_get_pid (ptid);
1845 if (pid < 0)
1846 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1847 else
1848 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1849 }
1850 tid = ptid_get_tid (ptid);
1851 if (tid < 0)
1852 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1853 else
1854 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1855
1856 return buf;
1857 }
1858
1859 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1860 passed the last parsed char. Returns null_ptid on error. */
1861
1862 static ptid_t
1863 read_ptid (char *buf, char **obuf)
1864 {
1865 char *p = buf;
1866 char *pp;
1867 ULONGEST pid = 0, tid = 0;
1868
1869 if (*p == 'p')
1870 {
1871 /* Multi-process ptid. */
1872 pp = unpack_varlen_hex (p + 1, &pid);
1873 if (*pp != '.')
1874 error (_("invalid remote ptid: %s\n"), p);
1875
1876 p = pp;
1877 pp = unpack_varlen_hex (p + 1, &tid);
1878 if (obuf)
1879 *obuf = pp;
1880 return ptid_build (pid, 0, tid);
1881 }
1882
1883 /* No multi-process. Just a tid. */
1884 pp = unpack_varlen_hex (p, &tid);
1885
1886 /* Since the stub is not sending a process id, then default to
1887 what's in inferior_ptid, unless it's null at this point. If so,
1888 then since there's no way to know the pid of the reported
1889 threads, use the magic number. */
1890 if (ptid_equal (inferior_ptid, null_ptid))
1891 pid = ptid_get_pid (magic_null_ptid);
1892 else
1893 pid = ptid_get_pid (inferior_ptid);
1894
1895 if (obuf)
1896 *obuf = pp;
1897 return ptid_build (pid, 0, tid);
1898 }
1899
1900 /* Encode 64 bits in 16 chars of hex. */
1901
1902 static const char hexchars[] = "0123456789abcdef";
1903
1904 static int
1905 ishex (int ch, int *val)
1906 {
1907 if ((ch >= 'a') && (ch <= 'f'))
1908 {
1909 *val = ch - 'a' + 10;
1910 return 1;
1911 }
1912 if ((ch >= 'A') && (ch <= 'F'))
1913 {
1914 *val = ch - 'A' + 10;
1915 return 1;
1916 }
1917 if ((ch >= '0') && (ch <= '9'))
1918 {
1919 *val = ch - '0';
1920 return 1;
1921 }
1922 return 0;
1923 }
1924
1925 static int
1926 stubhex (int ch)
1927 {
1928 if (ch >= 'a' && ch <= 'f')
1929 return ch - 'a' + 10;
1930 if (ch >= '0' && ch <= '9')
1931 return ch - '0';
1932 if (ch >= 'A' && ch <= 'F')
1933 return ch - 'A' + 10;
1934 return -1;
1935 }
1936
1937 static int
1938 stub_unpack_int (char *buff, int fieldlength)
1939 {
1940 int nibble;
1941 int retval = 0;
1942
1943 while (fieldlength)
1944 {
1945 nibble = stubhex (*buff++);
1946 retval |= nibble;
1947 fieldlength--;
1948 if (fieldlength)
1949 retval = retval << 4;
1950 }
1951 return retval;
1952 }
1953
1954 char *
1955 unpack_varlen_hex (char *buff, /* packet to parse */
1956 ULONGEST *result)
1957 {
1958 int nibble;
1959 ULONGEST retval = 0;
1960
1961 while (ishex (*buff, &nibble))
1962 {
1963 buff++;
1964 retval = retval << 4;
1965 retval |= nibble & 0x0f;
1966 }
1967 *result = retval;
1968 return buff;
1969 }
1970
1971 static char *
1972 unpack_nibble (char *buf, int *val)
1973 {
1974 *val = fromhex (*buf++);
1975 return buf;
1976 }
1977
1978 static char *
1979 pack_nibble (char *buf, int nibble)
1980 {
1981 *buf++ = hexchars[(nibble & 0x0f)];
1982 return buf;
1983 }
1984
1985 static char *
1986 pack_hex_byte (char *pkt, int byte)
1987 {
1988 *pkt++ = hexchars[(byte >> 4) & 0xf];
1989 *pkt++ = hexchars[(byte & 0xf)];
1990 return pkt;
1991 }
1992
1993 static char *
1994 unpack_byte (char *buf, int *value)
1995 {
1996 *value = stub_unpack_int (buf, 2);
1997 return buf + 2;
1998 }
1999
2000 static char *
2001 pack_int (char *buf, int value)
2002 {
2003 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2004 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2005 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2006 buf = pack_hex_byte (buf, (value & 0xff));
2007 return buf;
2008 }
2009
2010 static char *
2011 unpack_int (char *buf, int *value)
2012 {
2013 *value = stub_unpack_int (buf, 8);
2014 return buf + 8;
2015 }
2016
2017 #if 0 /* Currently unused, uncomment when needed. */
2018 static char *pack_string (char *pkt, char *string);
2019
2020 static char *
2021 pack_string (char *pkt, char *string)
2022 {
2023 char ch;
2024 int len;
2025
2026 len = strlen (string);
2027 if (len > 200)
2028 len = 200; /* Bigger than most GDB packets, junk??? */
2029 pkt = pack_hex_byte (pkt, len);
2030 while (len-- > 0)
2031 {
2032 ch = *string++;
2033 if ((ch == '\0') || (ch == '#'))
2034 ch = '*'; /* Protect encapsulation. */
2035 *pkt++ = ch;
2036 }
2037 return pkt;
2038 }
2039 #endif /* 0 (unused) */
2040
2041 static char *
2042 unpack_string (char *src, char *dest, int length)
2043 {
2044 while (length--)
2045 *dest++ = *src++;
2046 *dest = '\0';
2047 return src;
2048 }
2049
2050 static char *
2051 pack_threadid (char *pkt, threadref *id)
2052 {
2053 char *limit;
2054 unsigned char *altid;
2055
2056 altid = (unsigned char *) id;
2057 limit = pkt + BUF_THREAD_ID_SIZE;
2058 while (pkt < limit)
2059 pkt = pack_hex_byte (pkt, *altid++);
2060 return pkt;
2061 }
2062
2063
2064 static char *
2065 unpack_threadid (char *inbuf, threadref *id)
2066 {
2067 char *altref;
2068 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2069 int x, y;
2070
2071 altref = (char *) id;
2072
2073 while (inbuf < limit)
2074 {
2075 x = stubhex (*inbuf++);
2076 y = stubhex (*inbuf++);
2077 *altref++ = (x << 4) | y;
2078 }
2079 return inbuf;
2080 }
2081
2082 /* Externally, threadrefs are 64 bits but internally, they are still
2083 ints. This is due to a mismatch of specifications. We would like
2084 to use 64bit thread references internally. This is an adapter
2085 function. */
2086
2087 void
2088 int_to_threadref (threadref *id, int value)
2089 {
2090 unsigned char *scan;
2091
2092 scan = (unsigned char *) id;
2093 {
2094 int i = 4;
2095 while (i--)
2096 *scan++ = 0;
2097 }
2098 *scan++ = (value >> 24) & 0xff;
2099 *scan++ = (value >> 16) & 0xff;
2100 *scan++ = (value >> 8) & 0xff;
2101 *scan++ = (value & 0xff);
2102 }
2103
2104 static int
2105 threadref_to_int (threadref *ref)
2106 {
2107 int i, value = 0;
2108 unsigned char *scan;
2109
2110 scan = *ref;
2111 scan += 4;
2112 i = 4;
2113 while (i-- > 0)
2114 value = (value << 8) | ((*scan++) & 0xff);
2115 return value;
2116 }
2117
2118 static void
2119 copy_threadref (threadref *dest, threadref *src)
2120 {
2121 int i;
2122 unsigned char *csrc, *cdest;
2123
2124 csrc = (unsigned char *) src;
2125 cdest = (unsigned char *) dest;
2126 i = 8;
2127 while (i--)
2128 *cdest++ = *csrc++;
2129 }
2130
2131 static int
2132 threadmatch (threadref *dest, threadref *src)
2133 {
2134 /* Things are broken right now, so just assume we got a match. */
2135 #if 0
2136 unsigned char *srcp, *destp;
2137 int i, result;
2138 srcp = (char *) src;
2139 destp = (char *) dest;
2140
2141 result = 1;
2142 while (i-- > 0)
2143 result &= (*srcp++ == *destp++) ? 1 : 0;
2144 return result;
2145 #endif
2146 return 1;
2147 }
2148
2149 /*
2150 threadid:1, # always request threadid
2151 context_exists:2,
2152 display:4,
2153 unique_name:8,
2154 more_display:16
2155 */
2156
2157 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2158
2159 static char *
2160 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2161 {
2162 *pkt++ = 'q'; /* Info Query */
2163 *pkt++ = 'P'; /* process or thread info */
2164 pkt = pack_int (pkt, mode); /* mode */
2165 pkt = pack_threadid (pkt, id); /* threadid */
2166 *pkt = '\0'; /* terminate */
2167 return pkt;
2168 }
2169
2170 /* These values tag the fields in a thread info response packet. */
2171 /* Tagging the fields allows us to request specific fields and to
2172 add more fields as time goes by. */
2173
2174 #define TAG_THREADID 1 /* Echo the thread identifier. */
2175 #define TAG_EXISTS 2 /* Is this process defined enough to
2176 fetch registers and its stack? */
2177 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2178 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2179 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2180 the process. */
2181
2182 static int
2183 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2184 struct gdb_ext_thread_info *info)
2185 {
2186 struct remote_state *rs = get_remote_state ();
2187 int mask, length;
2188 int tag;
2189 threadref ref;
2190 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2191 int retval = 1;
2192
2193 /* info->threadid = 0; FIXME: implement zero_threadref. */
2194 info->active = 0;
2195 info->display[0] = '\0';
2196 info->shortname[0] = '\0';
2197 info->more_display[0] = '\0';
2198
2199 /* Assume the characters indicating the packet type have been
2200 stripped. */
2201 pkt = unpack_int (pkt, &mask); /* arg mask */
2202 pkt = unpack_threadid (pkt, &ref);
2203
2204 if (mask == 0)
2205 warning (_("Incomplete response to threadinfo request."));
2206 if (!threadmatch (&ref, expectedref))
2207 { /* This is an answer to a different request. */
2208 warning (_("ERROR RMT Thread info mismatch."));
2209 return 0;
2210 }
2211 copy_threadref (&info->threadid, &ref);
2212
2213 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2214
2215 /* Packets are terminated with nulls. */
2216 while ((pkt < limit) && mask && *pkt)
2217 {
2218 pkt = unpack_int (pkt, &tag); /* tag */
2219 pkt = unpack_byte (pkt, &length); /* length */
2220 if (!(tag & mask)) /* Tags out of synch with mask. */
2221 {
2222 warning (_("ERROR RMT: threadinfo tag mismatch."));
2223 retval = 0;
2224 break;
2225 }
2226 if (tag == TAG_THREADID)
2227 {
2228 if (length != 16)
2229 {
2230 warning (_("ERROR RMT: length of threadid is not 16."));
2231 retval = 0;
2232 break;
2233 }
2234 pkt = unpack_threadid (pkt, &ref);
2235 mask = mask & ~TAG_THREADID;
2236 continue;
2237 }
2238 if (tag == TAG_EXISTS)
2239 {
2240 info->active = stub_unpack_int (pkt, length);
2241 pkt += length;
2242 mask = mask & ~(TAG_EXISTS);
2243 if (length > 8)
2244 {
2245 warning (_("ERROR RMT: 'exists' length too long."));
2246 retval = 0;
2247 break;
2248 }
2249 continue;
2250 }
2251 if (tag == TAG_THREADNAME)
2252 {
2253 pkt = unpack_string (pkt, &info->shortname[0], length);
2254 mask = mask & ~TAG_THREADNAME;
2255 continue;
2256 }
2257 if (tag == TAG_DISPLAY)
2258 {
2259 pkt = unpack_string (pkt, &info->display[0], length);
2260 mask = mask & ~TAG_DISPLAY;
2261 continue;
2262 }
2263 if (tag == TAG_MOREDISPLAY)
2264 {
2265 pkt = unpack_string (pkt, &info->more_display[0], length);
2266 mask = mask & ~TAG_MOREDISPLAY;
2267 continue;
2268 }
2269 warning (_("ERROR RMT: unknown thread info tag."));
2270 break; /* Not a tag we know about. */
2271 }
2272 return retval;
2273 }
2274
2275 static int
2276 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2277 struct gdb_ext_thread_info *info)
2278 {
2279 struct remote_state *rs = get_remote_state ();
2280 int result;
2281
2282 pack_threadinfo_request (rs->buf, fieldset, threadid);
2283 putpkt (rs->buf);
2284 getpkt (&rs->buf, &rs->buf_size, 0);
2285
2286 if (rs->buf[0] == '\0')
2287 return 0;
2288
2289 result = remote_unpack_thread_info_response (rs->buf + 2,
2290 threadid, info);
2291 return result;
2292 }
2293
2294 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2295
2296 static char *
2297 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2298 threadref *nextthread)
2299 {
2300 *pkt++ = 'q'; /* info query packet */
2301 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2302 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2303 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2304 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2305 *pkt = '\0';
2306 return pkt;
2307 }
2308
2309 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2310
2311 static int
2312 parse_threadlist_response (char *pkt, int result_limit,
2313 threadref *original_echo, threadref *resultlist,
2314 int *doneflag)
2315 {
2316 struct remote_state *rs = get_remote_state ();
2317 char *limit;
2318 int count, resultcount, done;
2319
2320 resultcount = 0;
2321 /* Assume the 'q' and 'M chars have been stripped. */
2322 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2323 /* done parse past here */
2324 pkt = unpack_byte (pkt, &count); /* count field */
2325 pkt = unpack_nibble (pkt, &done);
2326 /* The first threadid is the argument threadid. */
2327 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2328 while ((count-- > 0) && (pkt < limit))
2329 {
2330 pkt = unpack_threadid (pkt, resultlist++);
2331 if (resultcount++ >= result_limit)
2332 break;
2333 }
2334 if (doneflag)
2335 *doneflag = done;
2336 return resultcount;
2337 }
2338
2339 static int
2340 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2341 int *done, int *result_count, threadref *threadlist)
2342 {
2343 struct remote_state *rs = get_remote_state ();
2344 static threadref echo_nextthread;
2345 int result = 1;
2346
2347 /* Trancate result limit to be smaller than the packet size. */
2348 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
2349 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2350
2351 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2352 putpkt (rs->buf);
2353 getpkt (&rs->buf, &rs->buf_size, 0);
2354
2355 if (*rs->buf == '\0')
2356 *result_count = 0;
2357 else
2358 *result_count =
2359 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2360 threadlist, done);
2361
2362 if (!threadmatch (&echo_nextthread, nextthread))
2363 {
2364 /* FIXME: This is a good reason to drop the packet. */
2365 /* Possably, there is a duplicate response. */
2366 /* Possabilities :
2367 retransmit immediatly - race conditions
2368 retransmit after timeout - yes
2369 exit
2370 wait for packet, then exit
2371 */
2372 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2373 return 0; /* I choose simply exiting. */
2374 }
2375 if (*result_count <= 0)
2376 {
2377 if (*done != 1)
2378 {
2379 warning (_("RMT ERROR : failed to get remote thread list."));
2380 result = 0;
2381 }
2382 return result; /* break; */
2383 }
2384 if (*result_count > result_limit)
2385 {
2386 *result_count = 0;
2387 warning (_("RMT ERROR: threadlist response longer than requested."));
2388 return 0;
2389 }
2390 return result;
2391 }
2392
2393 /* This is the interface between remote and threads, remotes upper
2394 interface. */
2395
2396 /* remote_find_new_threads retrieves the thread list and for each
2397 thread in the list, looks up the thread in GDB's internal list,
2398 adding the thread if it does not already exist. This involves
2399 getting partial thread lists from the remote target so, polling the
2400 quit_flag is required. */
2401
2402
2403 /* About this many threadisds fit in a packet. */
2404
2405 #define MAXTHREADLISTRESULTS 32
2406
2407 static int
2408 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2409 int looplimit)
2410 {
2411 int done, i, result_count;
2412 int startflag = 1;
2413 int result = 1;
2414 int loopcount = 0;
2415 static threadref nextthread;
2416 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2417
2418 done = 0;
2419 while (!done)
2420 {
2421 if (loopcount++ > looplimit)
2422 {
2423 result = 0;
2424 warning (_("Remote fetch threadlist -infinite loop-."));
2425 break;
2426 }
2427 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2428 &done, &result_count, resultthreadlist))
2429 {
2430 result = 0;
2431 break;
2432 }
2433 /* Clear for later iterations. */
2434 startflag = 0;
2435 /* Setup to resume next batch of thread references, set nextthread. */
2436 if (result_count >= 1)
2437 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2438 i = 0;
2439 while (result_count--)
2440 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2441 break;
2442 }
2443 return result;
2444 }
2445
2446 static int
2447 remote_newthread_step (threadref *ref, void *context)
2448 {
2449 int pid = ptid_get_pid (inferior_ptid);
2450 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2451
2452 if (!in_thread_list (ptid))
2453 add_thread (ptid);
2454 return 1; /* continue iterator */
2455 }
2456
2457 #define CRAZY_MAX_THREADS 1000
2458
2459 static ptid_t
2460 remote_current_thread (ptid_t oldpid)
2461 {
2462 struct remote_state *rs = get_remote_state ();
2463
2464 putpkt ("qC");
2465 getpkt (&rs->buf, &rs->buf_size, 0);
2466 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2467 return read_ptid (&rs->buf[2], NULL);
2468 else
2469 return oldpid;
2470 }
2471
2472 /* Find new threads for info threads command.
2473 * Original version, using John Metzler's thread protocol.
2474 */
2475
2476 static void
2477 remote_find_new_threads (void)
2478 {
2479 remote_threadlist_iterator (remote_newthread_step, 0,
2480 CRAZY_MAX_THREADS);
2481 }
2482
2483 #if defined(HAVE_LIBEXPAT)
2484
2485 typedef struct thread_item
2486 {
2487 ptid_t ptid;
2488 char *extra;
2489 int core;
2490 } thread_item_t;
2491 DEF_VEC_O(thread_item_t);
2492
2493 struct threads_parsing_context
2494 {
2495 VEC (thread_item_t) *items;
2496 };
2497
2498 static void
2499 start_thread (struct gdb_xml_parser *parser,
2500 const struct gdb_xml_element *element,
2501 void *user_data, VEC(gdb_xml_value_s) *attributes)
2502 {
2503 struct threads_parsing_context *data = user_data;
2504
2505 struct thread_item item;
2506 char *id;
2507
2508 id = VEC_index (gdb_xml_value_s, attributes, 0)->value;
2509 item.ptid = read_ptid (id, NULL);
2510
2511 if (VEC_length (gdb_xml_value_s, attributes) > 1)
2512 item.core = *(ULONGEST *) VEC_index (gdb_xml_value_s, attributes, 1)->value;
2513 else
2514 item.core = -1;
2515
2516 item.extra = 0;
2517
2518 VEC_safe_push (thread_item_t, data->items, &item);
2519 }
2520
2521 static void
2522 end_thread (struct gdb_xml_parser *parser,
2523 const struct gdb_xml_element *element,
2524 void *user_data, const char *body_text)
2525 {
2526 struct threads_parsing_context *data = user_data;
2527
2528 if (body_text && *body_text)
2529 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2530 }
2531
2532 const struct gdb_xml_attribute thread_attributes[] = {
2533 { "id", GDB_XML_AF_NONE, NULL, NULL },
2534 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2535 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2536 };
2537
2538 const struct gdb_xml_element thread_children[] = {
2539 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2540 };
2541
2542 const struct gdb_xml_element threads_children[] = {
2543 { "thread", thread_attributes, thread_children,
2544 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2545 start_thread, end_thread },
2546 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2547 };
2548
2549 const struct gdb_xml_element threads_elements[] = {
2550 { "threads", NULL, threads_children,
2551 GDB_XML_EF_NONE, NULL, NULL },
2552 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2553 };
2554
2555 /* Discard the contents of the constructed thread info context. */
2556
2557 static void
2558 clear_threads_parsing_context (void *p)
2559 {
2560 struct threads_parsing_context *context = p;
2561 int i;
2562 struct thread_item *item;
2563
2564 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2565 xfree (item->extra);
2566
2567 VEC_free (thread_item_t, context->items);
2568 }
2569
2570 #endif
2571
2572 /*
2573 * Find all threads for info threads command.
2574 * Uses new thread protocol contributed by Cisco.
2575 * Falls back and attempts to use the older method (above)
2576 * if the target doesn't respond to the new method.
2577 */
2578
2579 static void
2580 remote_threads_info (struct target_ops *ops)
2581 {
2582 struct remote_state *rs = get_remote_state ();
2583 char *bufp;
2584 ptid_t new_thread;
2585
2586 if (remote_desc == 0) /* paranoia */
2587 error (_("Command can only be used when connected to the remote target."));
2588
2589 #if defined(HAVE_LIBEXPAT)
2590 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2591 {
2592 char *xml = target_read_stralloc (&current_target,
2593 TARGET_OBJECT_THREADS, NULL);
2594
2595 struct cleanup *back_to = make_cleanup (xfree, xml);
2596 if (xml && *xml)
2597 {
2598 struct gdb_xml_parser *parser;
2599 struct threads_parsing_context context;
2600 struct cleanup *clear_parsing_context;
2601
2602 context.items = 0;
2603 /* Note: this parser cleanup is already guarded by BACK_TO
2604 above. */
2605 parser = gdb_xml_create_parser_and_cleanup (_("threads"),
2606 threads_elements,
2607 &context);
2608
2609 gdb_xml_use_dtd (parser, "threads.dtd");
2610
2611 clear_parsing_context
2612 = make_cleanup (clear_threads_parsing_context, &context);
2613
2614 if (gdb_xml_parse (parser, xml) == 0)
2615 {
2616 int i;
2617 struct thread_item *item;
2618
2619 for (i = 0; VEC_iterate (thread_item_t, context.items, i, item); ++i)
2620 {
2621 if (!ptid_equal (item->ptid, null_ptid))
2622 {
2623 struct private_thread_info *info;
2624 /* In non-stop mode, we assume new found threads
2625 are running until proven otherwise with a
2626 stop reply. In all-stop, we can only get
2627 here if all threads are stopped. */
2628 int running = non_stop ? 1 : 0;
2629
2630 remote_notice_new_inferior (item->ptid, running);
2631
2632 info = demand_private_info (item->ptid);
2633 info->core = item->core;
2634 info->extra = item->extra;
2635 item->extra = NULL;
2636 }
2637 }
2638 }
2639
2640 do_cleanups (clear_parsing_context);
2641 }
2642
2643 do_cleanups (back_to);
2644 return;
2645 }
2646 #endif
2647
2648 if (use_threadinfo_query)
2649 {
2650 putpkt ("qfThreadInfo");
2651 getpkt (&rs->buf, &rs->buf_size, 0);
2652 bufp = rs->buf;
2653 if (bufp[0] != '\0') /* q packet recognized */
2654 {
2655 while (*bufp++ == 'm') /* reply contains one or more TID */
2656 {
2657 do
2658 {
2659 new_thread = read_ptid (bufp, &bufp);
2660 if (!ptid_equal (new_thread, null_ptid))
2661 {
2662 /* In non-stop mode, we assume new found threads
2663 are running until proven otherwise with a
2664 stop reply. In all-stop, we can only get
2665 here if all threads are stopped. */
2666 int running = non_stop ? 1 : 0;
2667
2668 remote_notice_new_inferior (new_thread, running);
2669 }
2670 }
2671 while (*bufp++ == ','); /* comma-separated list */
2672 putpkt ("qsThreadInfo");
2673 getpkt (&rs->buf, &rs->buf_size, 0);
2674 bufp = rs->buf;
2675 }
2676 return; /* done */
2677 }
2678 }
2679
2680 /* Only qfThreadInfo is supported in non-stop mode. */
2681 if (non_stop)
2682 return;
2683
2684 /* Else fall back to old method based on jmetzler protocol. */
2685 use_threadinfo_query = 0;
2686 remote_find_new_threads ();
2687 return;
2688 }
2689
2690 /*
2691 * Collect a descriptive string about the given thread.
2692 * The target may say anything it wants to about the thread
2693 * (typically info about its blocked / runnable state, name, etc.).
2694 * This string will appear in the info threads display.
2695 *
2696 * Optional: targets are not required to implement this function.
2697 */
2698
2699 static char *
2700 remote_threads_extra_info (struct thread_info *tp)
2701 {
2702 struct remote_state *rs = get_remote_state ();
2703 int result;
2704 int set;
2705 threadref id;
2706 struct gdb_ext_thread_info threadinfo;
2707 static char display_buf[100]; /* arbitrary... */
2708 int n = 0; /* position in display_buf */
2709
2710 if (remote_desc == 0) /* paranoia */
2711 internal_error (__FILE__, __LINE__,
2712 _("remote_threads_extra_info"));
2713
2714 if (ptid_equal (tp->ptid, magic_null_ptid)
2715 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2716 /* This is the main thread which was added by GDB. The remote
2717 server doesn't know about it. */
2718 return NULL;
2719
2720 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2721 {
2722 struct thread_info *info = find_thread_ptid (tp->ptid);
2723
2724 if (info && info->private)
2725 return info->private->extra;
2726 else
2727 return NULL;
2728 }
2729
2730 if (use_threadextra_query)
2731 {
2732 char *b = rs->buf;
2733 char *endb = rs->buf + get_remote_packet_size ();
2734
2735 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2736 b += strlen (b);
2737 write_ptid (b, endb, tp->ptid);
2738
2739 putpkt (rs->buf);
2740 getpkt (&rs->buf, &rs->buf_size, 0);
2741 if (rs->buf[0] != 0)
2742 {
2743 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2744 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2745 display_buf [result] = '\0';
2746 return display_buf;
2747 }
2748 }
2749
2750 /* If the above query fails, fall back to the old method. */
2751 use_threadextra_query = 0;
2752 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2753 | TAG_MOREDISPLAY | TAG_DISPLAY;
2754 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2755 if (remote_get_threadinfo (&id, set, &threadinfo))
2756 if (threadinfo.active)
2757 {
2758 if (*threadinfo.shortname)
2759 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2760 " Name: %s,", threadinfo.shortname);
2761 if (*threadinfo.display)
2762 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2763 " State: %s,", threadinfo.display);
2764 if (*threadinfo.more_display)
2765 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2766 " Priority: %s", threadinfo.more_display);
2767
2768 if (n > 0)
2769 {
2770 /* For purely cosmetic reasons, clear up trailing commas. */
2771 if (',' == display_buf[n-1])
2772 display_buf[n-1] = ' ';
2773 return display_buf;
2774 }
2775 }
2776 return NULL;
2777 }
2778 \f
2779
2780 static int
2781 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2782 struct static_tracepoint_marker *marker)
2783 {
2784 struct remote_state *rs = get_remote_state ();
2785 char *p = rs->buf;
2786
2787 sprintf (p, "qTSTMat:");
2788 p += strlen (p);
2789 p += hexnumstr (p, addr);
2790 putpkt (rs->buf);
2791 getpkt (&rs->buf, &rs->buf_size, 0);
2792 p = rs->buf;
2793
2794 if (*p == 'E')
2795 error (_("Remote failure reply: %s"), p);
2796
2797 if (*p++ == 'm')
2798 {
2799 parse_static_tracepoint_marker_definition (p, &p, marker);
2800 return 1;
2801 }
2802
2803 return 0;
2804 }
2805
2806 static void
2807 free_current_marker (void *arg)
2808 {
2809 struct static_tracepoint_marker **marker_p = arg;
2810
2811 if (*marker_p != NULL)
2812 {
2813 release_static_tracepoint_marker (*marker_p);
2814 xfree (*marker_p);
2815 }
2816 else
2817 *marker_p = NULL;
2818 }
2819
2820 static VEC(static_tracepoint_marker_p) *
2821 remote_static_tracepoint_markers_by_strid (const char *strid)
2822 {
2823 struct remote_state *rs = get_remote_state ();
2824 VEC(static_tracepoint_marker_p) *markers = NULL;
2825 struct static_tracepoint_marker *marker = NULL;
2826 struct cleanup *old_chain;
2827 char *p;
2828
2829 /* Ask for a first packet of static tracepoint marker
2830 definition. */
2831 putpkt ("qTfSTM");
2832 getpkt (&rs->buf, &rs->buf_size, 0);
2833 p = rs->buf;
2834 if (*p == 'E')
2835 error (_("Remote failure reply: %s"), p);
2836
2837 old_chain = make_cleanup (free_current_marker, &marker);
2838
2839 while (*p++ == 'm')
2840 {
2841 if (marker == NULL)
2842 marker = XCNEW (struct static_tracepoint_marker);
2843
2844 do
2845 {
2846 parse_static_tracepoint_marker_definition (p, &p, marker);
2847
2848 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2849 {
2850 VEC_safe_push (static_tracepoint_marker_p,
2851 markers, marker);
2852 marker = NULL;
2853 }
2854 else
2855 {
2856 release_static_tracepoint_marker (marker);
2857 memset (marker, 0, sizeof (*marker));
2858 }
2859 }
2860 while (*p++ == ','); /* comma-separated list */
2861 /* Ask for another packet of static tracepoint definition. */
2862 putpkt ("qTsSTM");
2863 getpkt (&rs->buf, &rs->buf_size, 0);
2864 p = rs->buf;
2865 }
2866
2867 do_cleanups (old_chain);
2868 return markers;
2869 }
2870
2871 \f
2872 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2873
2874 static ptid_t
2875 remote_get_ada_task_ptid (long lwp, long thread)
2876 {
2877 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2878 }
2879 \f
2880
2881 /* Restart the remote side; this is an extended protocol operation. */
2882
2883 static void
2884 extended_remote_restart (void)
2885 {
2886 struct remote_state *rs = get_remote_state ();
2887
2888 /* Send the restart command; for reasons I don't understand the
2889 remote side really expects a number after the "R". */
2890 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2891 putpkt (rs->buf);
2892
2893 remote_fileio_reset ();
2894 }
2895 \f
2896 /* Clean up connection to a remote debugger. */
2897
2898 static void
2899 remote_close (int quitting)
2900 {
2901 if (remote_desc == NULL)
2902 return; /* already closed */
2903
2904 /* Make sure we leave stdin registered in the event loop, and we
2905 don't leave the async SIGINT signal handler installed. */
2906 remote_terminal_ours ();
2907
2908 serial_close (remote_desc);
2909 remote_desc = NULL;
2910
2911 /* We don't have a connection to the remote stub anymore. Get rid
2912 of all the inferiors and their threads we were controlling. */
2913 discard_all_inferiors ();
2914 inferior_ptid = null_ptid;
2915
2916 /* We're no longer interested in any of these events. */
2917 discard_pending_stop_replies (-1);
2918
2919 if (remote_async_inferior_event_token)
2920 delete_async_event_handler (&remote_async_inferior_event_token);
2921 if (remote_async_get_pending_events_token)
2922 delete_async_event_handler (&remote_async_get_pending_events_token);
2923 }
2924
2925 /* Query the remote side for the text, data and bss offsets. */
2926
2927 static void
2928 get_offsets (void)
2929 {
2930 struct remote_state *rs = get_remote_state ();
2931 char *buf;
2932 char *ptr;
2933 int lose, num_segments = 0, do_sections, do_segments;
2934 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2935 struct section_offsets *offs;
2936 struct symfile_segment_data *data;
2937
2938 if (symfile_objfile == NULL)
2939 return;
2940
2941 putpkt ("qOffsets");
2942 getpkt (&rs->buf, &rs->buf_size, 0);
2943 buf = rs->buf;
2944
2945 if (buf[0] == '\000')
2946 return; /* Return silently. Stub doesn't support
2947 this command. */
2948 if (buf[0] == 'E')
2949 {
2950 warning (_("Remote failure reply: %s"), buf);
2951 return;
2952 }
2953
2954 /* Pick up each field in turn. This used to be done with scanf, but
2955 scanf will make trouble if CORE_ADDR size doesn't match
2956 conversion directives correctly. The following code will work
2957 with any size of CORE_ADDR. */
2958 text_addr = data_addr = bss_addr = 0;
2959 ptr = buf;
2960 lose = 0;
2961
2962 if (strncmp (ptr, "Text=", 5) == 0)
2963 {
2964 ptr += 5;
2965 /* Don't use strtol, could lose on big values. */
2966 while (*ptr && *ptr != ';')
2967 text_addr = (text_addr << 4) + fromhex (*ptr++);
2968
2969 if (strncmp (ptr, ";Data=", 6) == 0)
2970 {
2971 ptr += 6;
2972 while (*ptr && *ptr != ';')
2973 data_addr = (data_addr << 4) + fromhex (*ptr++);
2974 }
2975 else
2976 lose = 1;
2977
2978 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2979 {
2980 ptr += 5;
2981 while (*ptr && *ptr != ';')
2982 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2983
2984 if (bss_addr != data_addr)
2985 warning (_("Target reported unsupported offsets: %s"), buf);
2986 }
2987 else
2988 lose = 1;
2989 }
2990 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2991 {
2992 ptr += 8;
2993 /* Don't use strtol, could lose on big values. */
2994 while (*ptr && *ptr != ';')
2995 text_addr = (text_addr << 4) + fromhex (*ptr++);
2996 num_segments = 1;
2997
2998 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2999 {
3000 ptr += 9;
3001 while (*ptr && *ptr != ';')
3002 data_addr = (data_addr << 4) + fromhex (*ptr++);
3003 num_segments++;
3004 }
3005 }
3006 else
3007 lose = 1;
3008
3009 if (lose)
3010 error (_("Malformed response to offset query, %s"), buf);
3011 else if (*ptr != '\0')
3012 warning (_("Target reported unsupported offsets: %s"), buf);
3013
3014 offs = ((struct section_offsets *)
3015 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3016 memcpy (offs, symfile_objfile->section_offsets,
3017 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3018
3019 data = get_symfile_segment_data (symfile_objfile->obfd);
3020 do_segments = (data != NULL);
3021 do_sections = num_segments == 0;
3022
3023 if (num_segments > 0)
3024 {
3025 segments[0] = text_addr;
3026 segments[1] = data_addr;
3027 }
3028 /* If we have two segments, we can still try to relocate everything
3029 by assuming that the .text and .data offsets apply to the whole
3030 text and data segments. Convert the offsets given in the packet
3031 to base addresses for symfile_map_offsets_to_segments. */
3032 else if (data && data->num_segments == 2)
3033 {
3034 segments[0] = data->segment_bases[0] + text_addr;
3035 segments[1] = data->segment_bases[1] + data_addr;
3036 num_segments = 2;
3037 }
3038 /* If the object file has only one segment, assume that it is text
3039 rather than data; main programs with no writable data are rare,
3040 but programs with no code are useless. Of course the code might
3041 have ended up in the data segment... to detect that we would need
3042 the permissions here. */
3043 else if (data && data->num_segments == 1)
3044 {
3045 segments[0] = data->segment_bases[0] + text_addr;
3046 num_segments = 1;
3047 }
3048 /* There's no way to relocate by segment. */
3049 else
3050 do_segments = 0;
3051
3052 if (do_segments)
3053 {
3054 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3055 offs, num_segments, segments);
3056
3057 if (ret == 0 && !do_sections)
3058 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
3059
3060 if (ret > 0)
3061 do_sections = 0;
3062 }
3063
3064 if (data)
3065 free_symfile_segment_data (data);
3066
3067 if (do_sections)
3068 {
3069 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3070
3071 /* This is a temporary kludge to force data and bss to use the same offsets
3072 because that's what nlmconv does now. The real solution requires changes
3073 to the stub and remote.c that I don't have time to do right now. */
3074
3075 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3076 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3077 }
3078
3079 objfile_relocate (symfile_objfile, offs);
3080 }
3081
3082 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3083 threads we know are stopped already. This is used during the
3084 initial remote connection in non-stop mode --- threads that are
3085 reported as already being stopped are left stopped. */
3086
3087 static int
3088 set_stop_requested_callback (struct thread_info *thread, void *data)
3089 {
3090 /* If we have a stop reply for this thread, it must be stopped. */
3091 if (peek_stop_reply (thread->ptid))
3092 set_stop_requested (thread->ptid, 1);
3093
3094 return 0;
3095 }
3096
3097 /* Stub for catch_exception. */
3098
3099 struct start_remote_args
3100 {
3101 int from_tty;
3102
3103 /* The current target. */
3104 struct target_ops *target;
3105
3106 /* Non-zero if this is an extended-remote target. */
3107 int extended_p;
3108 };
3109
3110 /* Send interrupt_sequence to remote target. */
3111 static void
3112 send_interrupt_sequence ()
3113 {
3114 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3115 serial_write (remote_desc, "\x03", 1);
3116 else if (interrupt_sequence_mode == interrupt_sequence_break)
3117 serial_send_break (remote_desc);
3118 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3119 {
3120 serial_send_break (remote_desc);
3121 serial_write (remote_desc, "g", 1);
3122 }
3123 else
3124 internal_error (__FILE__, __LINE__,
3125 _("Invalid value for interrupt_sequence_mode: %s."),
3126 interrupt_sequence_mode);
3127 }
3128
3129 static void
3130 remote_start_remote (struct ui_out *uiout, void *opaque)
3131 {
3132 struct start_remote_args *args = opaque;
3133 struct remote_state *rs = get_remote_state ();
3134 struct packet_config *noack_config;
3135 char *wait_status = NULL;
3136
3137 immediate_quit++; /* Allow user to interrupt it. */
3138
3139 /* Ack any packet which the remote side has already sent. */
3140 serial_write (remote_desc, "+", 1);
3141
3142 if (interrupt_on_connect)
3143 send_interrupt_sequence ();
3144
3145 /* The first packet we send to the target is the optional "supported
3146 packets" request. If the target can answer this, it will tell us
3147 which later probes to skip. */
3148 remote_query_supported ();
3149
3150 /* If the stub wants to get a QAllow, compose one and send it. */
3151 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3152 remote_set_permissions ();
3153
3154 /* Next, we possibly activate noack mode.
3155
3156 If the QStartNoAckMode packet configuration is set to AUTO,
3157 enable noack mode if the stub reported a wish for it with
3158 qSupported.
3159
3160 If set to TRUE, then enable noack mode even if the stub didn't
3161 report it in qSupported. If the stub doesn't reply OK, the
3162 session ends with an error.
3163
3164 If FALSE, then don't activate noack mode, regardless of what the
3165 stub claimed should be the default with qSupported. */
3166
3167 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3168
3169 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3170 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3171 && noack_config->support == PACKET_ENABLE))
3172 {
3173 putpkt ("QStartNoAckMode");
3174 getpkt (&rs->buf, &rs->buf_size, 0);
3175 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3176 rs->noack_mode = 1;
3177 }
3178
3179 if (args->extended_p)
3180 {
3181 /* Tell the remote that we are using the extended protocol. */
3182 putpkt ("!");
3183 getpkt (&rs->buf, &rs->buf_size, 0);
3184 }
3185
3186 /* Next, if the target can specify a description, read it. We do
3187 this before anything involving memory or registers. */
3188 target_find_description ();
3189
3190 /* Next, now that we know something about the target, update the
3191 address spaces in the program spaces. */
3192 update_address_spaces ();
3193
3194 /* On OSs where the list of libraries is global to all
3195 processes, we fetch them early. */
3196 if (gdbarch_has_global_solist (target_gdbarch))
3197 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
3198
3199 if (non_stop)
3200 {
3201 if (!rs->non_stop_aware)
3202 error (_("Non-stop mode requested, but remote does not support non-stop"));
3203
3204 putpkt ("QNonStop:1");
3205 getpkt (&rs->buf, &rs->buf_size, 0);
3206
3207 if (strcmp (rs->buf, "OK") != 0)
3208 error ("Remote refused setting non-stop mode with: %s", rs->buf);
3209
3210 /* Find about threads and processes the stub is already
3211 controlling. We default to adding them in the running state.
3212 The '?' query below will then tell us about which threads are
3213 stopped. */
3214 remote_threads_info (args->target);
3215 }
3216 else if (rs->non_stop_aware)
3217 {
3218 /* Don't assume that the stub can operate in all-stop mode.
3219 Request it explicitely. */
3220 putpkt ("QNonStop:0");
3221 getpkt (&rs->buf, &rs->buf_size, 0);
3222
3223 if (strcmp (rs->buf, "OK") != 0)
3224 error ("Remote refused setting all-stop mode with: %s", rs->buf);
3225 }
3226
3227 /* Check whether the target is running now. */
3228 putpkt ("?");
3229 getpkt (&rs->buf, &rs->buf_size, 0);
3230
3231 if (!non_stop)
3232 {
3233 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3234 {
3235 if (!args->extended_p)
3236 error (_("The target is not running (try extended-remote?)"));
3237
3238 /* We're connected, but not running. Drop out before we
3239 call start_remote. */
3240 return;
3241 }
3242 else
3243 {
3244 /* Save the reply for later. */
3245 wait_status = alloca (strlen (rs->buf) + 1);
3246 strcpy (wait_status, rs->buf);
3247 }
3248
3249 /* Let the stub know that we want it to return the thread. */
3250 set_continue_thread (minus_one_ptid);
3251
3252 /* Without this, some commands which require an active target
3253 (such as kill) won't work. This variable serves (at least)
3254 double duty as both the pid of the target process (if it has
3255 such), and as a flag indicating that a target is active.
3256 These functions should be split out into seperate variables,
3257 especially since GDB will someday have a notion of debugging
3258 several processes. */
3259 inferior_ptid = magic_null_ptid;
3260
3261 /* Now, if we have thread information, update inferior_ptid. */
3262 inferior_ptid = remote_current_thread (inferior_ptid);
3263
3264 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
3265
3266 /* Always add the main thread. */
3267 add_thread_silent (inferior_ptid);
3268
3269 get_offsets (); /* Get text, data & bss offsets. */
3270
3271 /* If we could not find a description using qXfer, and we know
3272 how to do it some other way, try again. This is not
3273 supported for non-stop; it could be, but it is tricky if
3274 there are no stopped threads when we connect. */
3275 if (remote_read_description_p (args->target)
3276 && gdbarch_target_desc (target_gdbarch) == NULL)
3277 {
3278 target_clear_description ();
3279 target_find_description ();
3280 }
3281
3282 /* Use the previously fetched status. */
3283 gdb_assert (wait_status != NULL);
3284 strcpy (rs->buf, wait_status);
3285 rs->cached_wait_status = 1;
3286
3287 immediate_quit--;
3288 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
3289 }
3290 else
3291 {
3292 /* Clear WFI global state. Do this before finding about new
3293 threads and inferiors, and setting the current inferior.
3294 Otherwise we would clear the proceed status of the current
3295 inferior when we want its stop_soon state to be preserved
3296 (see notice_new_inferior). */
3297 init_wait_for_inferior ();
3298
3299 /* In non-stop, we will either get an "OK", meaning that there
3300 are no stopped threads at this time; or, a regular stop
3301 reply. In the latter case, there may be more than one thread
3302 stopped --- we pull them all out using the vStopped
3303 mechanism. */
3304 if (strcmp (rs->buf, "OK") != 0)
3305 {
3306 struct stop_reply *stop_reply;
3307 struct cleanup *old_chain;
3308
3309 stop_reply = stop_reply_xmalloc ();
3310 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3311
3312 remote_parse_stop_reply (rs->buf, stop_reply);
3313 discard_cleanups (old_chain);
3314
3315 /* get_pending_stop_replies acks this one, and gets the rest
3316 out. */
3317 pending_stop_reply = stop_reply;
3318 remote_get_pending_stop_replies ();
3319
3320 /* Make sure that threads that were stopped remain
3321 stopped. */
3322 iterate_over_threads (set_stop_requested_callback, NULL);
3323 }
3324
3325 if (target_can_async_p ())
3326 target_async (inferior_event_handler, 0);
3327
3328 if (thread_count () == 0)
3329 {
3330 if (!args->extended_p)
3331 error (_("The target is not running (try extended-remote?)"));
3332
3333 /* We're connected, but not running. Drop out before we
3334 call start_remote. */
3335 return;
3336 }
3337
3338 /* Let the stub know that we want it to return the thread. */
3339
3340 /* Force the stub to choose a thread. */
3341 set_general_thread (null_ptid);
3342
3343 /* Query it. */
3344 inferior_ptid = remote_current_thread (minus_one_ptid);
3345 if (ptid_equal (inferior_ptid, minus_one_ptid))
3346 error (_("remote didn't report the current thread in non-stop mode"));
3347
3348 get_offsets (); /* Get text, data & bss offsets. */
3349
3350 /* In non-stop mode, any cached wait status will be stored in
3351 the stop reply queue. */
3352 gdb_assert (wait_status == NULL);
3353
3354 /* Update the remote on signals to silently pass, or more
3355 importantly, which to not ignore, in case a previous session
3356 had set some different set of signals to be ignored. */
3357 remote_pass_signals ();
3358 }
3359
3360 /* If we connected to a live target, do some additional setup. */
3361 if (target_has_execution)
3362 {
3363 if (exec_bfd) /* No use without an exec file. */
3364 remote_check_symbols (symfile_objfile);
3365 }
3366
3367 /* Possibly the target has been engaged in a trace run started
3368 previously; find out where things are at. */
3369 if (remote_get_trace_status (current_trace_status ()) != -1)
3370 {
3371 struct uploaded_tp *uploaded_tps = NULL;
3372 struct uploaded_tsv *uploaded_tsvs = NULL;
3373
3374 if (current_trace_status ()->running)
3375 printf_filtered (_("Trace is already running on the target.\n"));
3376
3377 /* Get trace state variables first, they may be checked when
3378 parsing uploaded commands. */
3379
3380 remote_upload_trace_state_variables (&uploaded_tsvs);
3381
3382 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3383
3384 remote_upload_tracepoints (&uploaded_tps);
3385
3386 merge_uploaded_tracepoints (&uploaded_tps);
3387 }
3388
3389 /* If breakpoints are global, insert them now. */
3390 if (gdbarch_has_global_breakpoints (target_gdbarch)
3391 && breakpoints_always_inserted_mode ())
3392 insert_breakpoints ();
3393 }
3394
3395 /* Open a connection to a remote debugger.
3396 NAME is the filename used for communication. */
3397
3398 static void
3399 remote_open (char *name, int from_tty)
3400 {
3401 remote_open_1 (name, from_tty, &remote_ops, 0);
3402 }
3403
3404 /* Open a connection to a remote debugger using the extended
3405 remote gdb protocol. NAME is the filename used for communication. */
3406
3407 static void
3408 extended_remote_open (char *name, int from_tty)
3409 {
3410 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3411 }
3412
3413 /* Generic code for opening a connection to a remote target. */
3414
3415 static void
3416 init_all_packet_configs (void)
3417 {
3418 int i;
3419
3420 for (i = 0; i < PACKET_MAX; i++)
3421 update_packet_config (&remote_protocol_packets[i]);
3422 }
3423
3424 /* Symbol look-up. */
3425
3426 static void
3427 remote_check_symbols (struct objfile *objfile)
3428 {
3429 struct remote_state *rs = get_remote_state ();
3430 char *msg, *reply, *tmp;
3431 struct minimal_symbol *sym;
3432 int end;
3433
3434 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3435 return;
3436
3437 /* Make sure the remote is pointing at the right process. */
3438 set_general_process ();
3439
3440 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3441 because we need both at the same time. */
3442 msg = alloca (get_remote_packet_size ());
3443
3444 /* Invite target to request symbol lookups. */
3445
3446 putpkt ("qSymbol::");
3447 getpkt (&rs->buf, &rs->buf_size, 0);
3448 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3449 reply = rs->buf;
3450
3451 while (strncmp (reply, "qSymbol:", 8) == 0)
3452 {
3453 tmp = &reply[8];
3454 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3455 msg[end] = '\0';
3456 sym = lookup_minimal_symbol (msg, NULL, NULL);
3457 if (sym == NULL)
3458 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3459 else
3460 {
3461 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3462 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3463
3464 /* If this is a function address, return the start of code
3465 instead of any data function descriptor. */
3466 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3467 sym_addr,
3468 &current_target);
3469
3470 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3471 phex_nz (sym_addr, addr_size), &reply[8]);
3472 }
3473
3474 putpkt (msg);
3475 getpkt (&rs->buf, &rs->buf_size, 0);
3476 reply = rs->buf;
3477 }
3478 }
3479
3480 static struct serial *
3481 remote_serial_open (char *name)
3482 {
3483 static int udp_warning = 0;
3484
3485 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3486 of in ser-tcp.c, because it is the remote protocol assuming that the
3487 serial connection is reliable and not the serial connection promising
3488 to be. */
3489 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3490 {
3491 warning (_("\
3492 The remote protocol may be unreliable over UDP.\n\
3493 Some events may be lost, rendering further debugging impossible."));
3494 udp_warning = 1;
3495 }
3496
3497 return serial_open (name);
3498 }
3499
3500 /* Inform the target of our permission settings. The permission flags
3501 work without this, but if the target knows the settings, it can do
3502 a couple things. First, it can add its own check, to catch cases
3503 that somehow manage to get by the permissions checks in target
3504 methods. Second, if the target is wired to disallow particular
3505 settings (for instance, a system in the field that is not set up to
3506 be able to stop at a breakpoint), it can object to any unavailable
3507 permissions. */
3508
3509 void
3510 remote_set_permissions (void)
3511 {
3512 struct remote_state *rs = get_remote_state ();
3513
3514 sprintf (rs->buf, "QAllow:"
3515 "WriteReg:%x;WriteMem:%x;"
3516 "InsertBreak:%x;InsertTrace:%x;"
3517 "InsertFastTrace:%x;Stop:%x",
3518 may_write_registers, may_write_memory,
3519 may_insert_breakpoints, may_insert_tracepoints,
3520 may_insert_fast_tracepoints, may_stop);
3521 putpkt (rs->buf);
3522 getpkt (&rs->buf, &rs->buf_size, 0);
3523
3524 /* If the target didn't like the packet, warn the user. Do not try
3525 to undo the user's settings, that would just be maddening. */
3526 if (strcmp (rs->buf, "OK") != 0)
3527 warning ("Remote refused setting permissions with: %s", rs->buf);
3528 }
3529
3530 /* This type describes each known response to the qSupported
3531 packet. */
3532 struct protocol_feature
3533 {
3534 /* The name of this protocol feature. */
3535 const char *name;
3536
3537 /* The default for this protocol feature. */
3538 enum packet_support default_support;
3539
3540 /* The function to call when this feature is reported, or after
3541 qSupported processing if the feature is not supported.
3542 The first argument points to this structure. The second
3543 argument indicates whether the packet requested support be
3544 enabled, disabled, or probed (or the default, if this function
3545 is being called at the end of processing and this feature was
3546 not reported). The third argument may be NULL; if not NULL, it
3547 is a NUL-terminated string taken from the packet following
3548 this feature's name and an equals sign. */
3549 void (*func) (const struct protocol_feature *, enum packet_support,
3550 const char *);
3551
3552 /* The corresponding packet for this feature. Only used if
3553 FUNC is remote_supported_packet. */
3554 int packet;
3555 };
3556
3557 static void
3558 remote_supported_packet (const struct protocol_feature *feature,
3559 enum packet_support support,
3560 const char *argument)
3561 {
3562 if (argument)
3563 {
3564 warning (_("Remote qSupported response supplied an unexpected value for"
3565 " \"%s\"."), feature->name);
3566 return;
3567 }
3568
3569 if (remote_protocol_packets[feature->packet].support
3570 == PACKET_SUPPORT_UNKNOWN)
3571 remote_protocol_packets[feature->packet].support = support;
3572 }
3573
3574 static void
3575 remote_packet_size (const struct protocol_feature *feature,
3576 enum packet_support support, const char *value)
3577 {
3578 struct remote_state *rs = get_remote_state ();
3579
3580 int packet_size;
3581 char *value_end;
3582
3583 if (support != PACKET_ENABLE)
3584 return;
3585
3586 if (value == NULL || *value == '\0')
3587 {
3588 warning (_("Remote target reported \"%s\" without a size."),
3589 feature->name);
3590 return;
3591 }
3592
3593 errno = 0;
3594 packet_size = strtol (value, &value_end, 16);
3595 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3596 {
3597 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3598 feature->name, value);
3599 return;
3600 }
3601
3602 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3603 {
3604 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3605 packet_size, MAX_REMOTE_PACKET_SIZE);
3606 packet_size = MAX_REMOTE_PACKET_SIZE;
3607 }
3608
3609 /* Record the new maximum packet size. */
3610 rs->explicit_packet_size = packet_size;
3611 }
3612
3613 static void
3614 remote_multi_process_feature (const struct protocol_feature *feature,
3615 enum packet_support support, const char *value)
3616 {
3617 struct remote_state *rs = get_remote_state ();
3618
3619 rs->multi_process_aware = (support == PACKET_ENABLE);
3620 }
3621
3622 static void
3623 remote_non_stop_feature (const struct protocol_feature *feature,
3624 enum packet_support support, const char *value)
3625 {
3626 struct remote_state *rs = get_remote_state ();
3627
3628 rs->non_stop_aware = (support == PACKET_ENABLE);
3629 }
3630
3631 static void
3632 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3633 enum packet_support support,
3634 const char *value)
3635 {
3636 struct remote_state *rs = get_remote_state ();
3637
3638 rs->cond_tracepoints = (support == PACKET_ENABLE);
3639 }
3640
3641 static void
3642 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3643 enum packet_support support,
3644 const char *value)
3645 {
3646 struct remote_state *rs = get_remote_state ();
3647
3648 rs->fast_tracepoints = (support == PACKET_ENABLE);
3649 }
3650
3651 static void
3652 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3653 enum packet_support support,
3654 const char *value)
3655 {
3656 struct remote_state *rs = get_remote_state ();
3657
3658 rs->static_tracepoints = (support == PACKET_ENABLE);
3659 }
3660
3661 static void
3662 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3663 enum packet_support support,
3664 const char *value)
3665 {
3666 struct remote_state *rs = get_remote_state ();
3667
3668 rs->disconnected_tracing = (support == PACKET_ENABLE);
3669 }
3670
3671 static struct protocol_feature remote_protocol_features[] = {
3672 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3673 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3674 PACKET_qXfer_auxv },
3675 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3676 PACKET_qXfer_features },
3677 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3678 PACKET_qXfer_libraries },
3679 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3680 PACKET_qXfer_memory_map },
3681 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3682 PACKET_qXfer_spu_read },
3683 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3684 PACKET_qXfer_spu_write },
3685 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3686 PACKET_qXfer_osdata },
3687 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3688 PACKET_qXfer_threads },
3689 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3690 PACKET_QPassSignals },
3691 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3692 PACKET_QStartNoAckMode },
3693 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3694 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3695 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3696 PACKET_qXfer_siginfo_read },
3697 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3698 PACKET_qXfer_siginfo_write },
3699 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3700 PACKET_ConditionalTracepoints },
3701 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3702 PACKET_FastTracepoints },
3703 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3704 PACKET_StaticTracepoints },
3705 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3706 -1 },
3707 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3708 PACKET_bc },
3709 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3710 PACKET_bs },
3711 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3712 PACKET_TracepointSource },
3713 { "QAllow", PACKET_DISABLE, remote_supported_packet,
3714 PACKET_QAllow },
3715 };
3716
3717 static char *remote_support_xml;
3718
3719 /* Register string appended to "xmlRegisters=" in qSupported query. */
3720
3721 void
3722 register_remote_support_xml (const char *xml)
3723 {
3724 #if defined(HAVE_LIBEXPAT)
3725 if (remote_support_xml == NULL)
3726 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
3727 else
3728 {
3729 char *copy = xstrdup (remote_support_xml + 13);
3730 char *p = strtok (copy, ",");
3731
3732 do
3733 {
3734 if (strcmp (p, xml) == 0)
3735 {
3736 /* already there */
3737 xfree (copy);
3738 return;
3739 }
3740 }
3741 while ((p = strtok (NULL, ",")) != NULL);
3742 xfree (copy);
3743
3744 remote_support_xml = reconcat (remote_support_xml,
3745 remote_support_xml, ",", xml,
3746 (char *) NULL);
3747 }
3748 #endif
3749 }
3750
3751 static char *
3752 remote_query_supported_append (char *msg, const char *append)
3753 {
3754 if (msg)
3755 return reconcat (msg, msg, ";", append, (char *) NULL);
3756 else
3757 return xstrdup (append);
3758 }
3759
3760 static void
3761 remote_query_supported (void)
3762 {
3763 struct remote_state *rs = get_remote_state ();
3764 char *next;
3765 int i;
3766 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3767
3768 /* The packet support flags are handled differently for this packet
3769 than for most others. We treat an error, a disabled packet, and
3770 an empty response identically: any features which must be reported
3771 to be used will be automatically disabled. An empty buffer
3772 accomplishes this, since that is also the representation for a list
3773 containing no features. */
3774
3775 rs->buf[0] = 0;
3776 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3777 {
3778 char *q = NULL;
3779 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
3780
3781 if (rs->extended)
3782 q = remote_query_supported_append (q, "multiprocess+");
3783
3784 if (remote_support_xml)
3785 q = remote_query_supported_append (q, remote_support_xml);
3786
3787 q = remote_query_supported_append (q, "qRelocInsn+");
3788
3789 q = reconcat (q, "qSupported:", q, (char *) NULL);
3790 putpkt (q);
3791
3792 do_cleanups (old_chain);
3793
3794 getpkt (&rs->buf, &rs->buf_size, 0);
3795
3796 /* If an error occured, warn, but do not return - just reset the
3797 buffer to empty and go on to disable features. */
3798 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3799 == PACKET_ERROR)
3800 {
3801 warning (_("Remote failure reply: %s"), rs->buf);
3802 rs->buf[0] = 0;
3803 }
3804 }
3805
3806 memset (seen, 0, sizeof (seen));
3807
3808 next = rs->buf;
3809 while (*next)
3810 {
3811 enum packet_support is_supported;
3812 char *p, *end, *name_end, *value;
3813
3814 /* First separate out this item from the rest of the packet. If
3815 there's another item after this, we overwrite the separator
3816 (terminated strings are much easier to work with). */
3817 p = next;
3818 end = strchr (p, ';');
3819 if (end == NULL)
3820 {
3821 end = p + strlen (p);
3822 next = end;
3823 }
3824 else
3825 {
3826 *end = '\0';
3827 next = end + 1;
3828
3829 if (end == p)
3830 {
3831 warning (_("empty item in \"qSupported\" response"));
3832 continue;
3833 }
3834 }
3835
3836 name_end = strchr (p, '=');
3837 if (name_end)
3838 {
3839 /* This is a name=value entry. */
3840 is_supported = PACKET_ENABLE;
3841 value = name_end + 1;
3842 *name_end = '\0';
3843 }
3844 else
3845 {
3846 value = NULL;
3847 switch (end[-1])
3848 {
3849 case '+':
3850 is_supported = PACKET_ENABLE;
3851 break;
3852
3853 case '-':
3854 is_supported = PACKET_DISABLE;
3855 break;
3856
3857 case '?':
3858 is_supported = PACKET_SUPPORT_UNKNOWN;
3859 break;
3860
3861 default:
3862 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3863 continue;
3864 }
3865 end[-1] = '\0';
3866 }
3867
3868 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3869 if (strcmp (remote_protocol_features[i].name, p) == 0)
3870 {
3871 const struct protocol_feature *feature;
3872
3873 seen[i] = 1;
3874 feature = &remote_protocol_features[i];
3875 feature->func (feature, is_supported, value);
3876 break;
3877 }
3878 }
3879
3880 /* If we increased the packet size, make sure to increase the global
3881 buffer size also. We delay this until after parsing the entire
3882 qSupported packet, because this is the same buffer we were
3883 parsing. */
3884 if (rs->buf_size < rs->explicit_packet_size)
3885 {
3886 rs->buf_size = rs->explicit_packet_size;
3887 rs->buf = xrealloc (rs->buf, rs->buf_size);
3888 }
3889
3890 /* Handle the defaults for unmentioned features. */
3891 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3892 if (!seen[i])
3893 {
3894 const struct protocol_feature *feature;
3895
3896 feature = &remote_protocol_features[i];
3897 feature->func (feature, feature->default_support, NULL);
3898 }
3899 }
3900
3901
3902 static void
3903 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3904 {
3905 struct remote_state *rs = get_remote_state ();
3906
3907 if (name == 0)
3908 error (_("To open a remote debug connection, you need to specify what\n"
3909 "serial device is attached to the remote system\n"
3910 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3911
3912 /* See FIXME above. */
3913 if (!target_async_permitted)
3914 wait_forever_enabled_p = 1;
3915
3916 /* If we're connected to a running target, target_preopen will kill it.
3917 But if we're connected to a target system with no running process,
3918 then we will still be connected when it returns. Ask this question
3919 first, before target_preopen has a chance to kill anything. */
3920 if (remote_desc != NULL && !have_inferiors ())
3921 {
3922 if (!from_tty
3923 || query (_("Already connected to a remote target. Disconnect? ")))
3924 pop_target ();
3925 else
3926 error (_("Still connected."));
3927 }
3928
3929 target_preopen (from_tty);
3930
3931 unpush_target (target);
3932
3933 /* This time without a query. If we were connected to an
3934 extended-remote target and target_preopen killed the running
3935 process, we may still be connected. If we are starting "target
3936 remote" now, the extended-remote target will not have been
3937 removed by unpush_target. */
3938 if (remote_desc != NULL && !have_inferiors ())
3939 pop_target ();
3940
3941 /* Make sure we send the passed signals list the next time we resume. */
3942 xfree (last_pass_packet);
3943 last_pass_packet = NULL;
3944
3945 remote_fileio_reset ();
3946 reopen_exec_file ();
3947 reread_symbols ();
3948
3949 remote_desc = remote_serial_open (name);
3950 if (!remote_desc)
3951 perror_with_name (name);
3952
3953 if (baud_rate != -1)
3954 {
3955 if (serial_setbaudrate (remote_desc, baud_rate))
3956 {
3957 /* The requested speed could not be set. Error out to
3958 top level after closing remote_desc. Take care to
3959 set remote_desc to NULL to avoid closing remote_desc
3960 more than once. */
3961 serial_close (remote_desc);
3962 remote_desc = NULL;
3963 perror_with_name (name);
3964 }
3965 }
3966
3967 serial_raw (remote_desc);
3968
3969 /* If there is something sitting in the buffer we might take it as a
3970 response to a command, which would be bad. */
3971 serial_flush_input (remote_desc);
3972
3973 if (from_tty)
3974 {
3975 puts_filtered ("Remote debugging using ");
3976 puts_filtered (name);
3977 puts_filtered ("\n");
3978 }
3979 push_target (target); /* Switch to using remote target now. */
3980
3981 /* Register extra event sources in the event loop. */
3982 remote_async_inferior_event_token
3983 = create_async_event_handler (remote_async_inferior_event_handler,
3984 NULL);
3985 remote_async_get_pending_events_token
3986 = create_async_event_handler (remote_async_get_pending_events_handler,
3987 NULL);
3988
3989 /* Reset the target state; these things will be queried either by
3990 remote_query_supported or as they are needed. */
3991 init_all_packet_configs ();
3992 rs->cached_wait_status = 0;
3993 rs->explicit_packet_size = 0;
3994 rs->noack_mode = 0;
3995 rs->multi_process_aware = 0;
3996 rs->extended = extended_p;
3997 rs->non_stop_aware = 0;
3998 rs->waiting_for_stop_reply = 0;
3999 rs->ctrlc_pending_p = 0;
4000
4001 general_thread = not_sent_ptid;
4002 continue_thread = not_sent_ptid;
4003
4004 /* Probe for ability to use "ThreadInfo" query, as required. */
4005 use_threadinfo_query = 1;
4006 use_threadextra_query = 1;
4007
4008 if (target_async_permitted)
4009 {
4010 /* With this target we start out by owning the terminal. */
4011 remote_async_terminal_ours_p = 1;
4012
4013 /* FIXME: cagney/1999-09-23: During the initial connection it is
4014 assumed that the target is already ready and able to respond to
4015 requests. Unfortunately remote_start_remote() eventually calls
4016 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4017 around this. Eventually a mechanism that allows
4018 wait_for_inferior() to expect/get timeouts will be
4019 implemented. */
4020 wait_forever_enabled_p = 0;
4021 }
4022
4023 /* First delete any symbols previously loaded from shared libraries. */
4024 no_shared_libraries (NULL, 0);
4025
4026 /* Start afresh. */
4027 init_thread_list ();
4028
4029 /* Start the remote connection. If error() or QUIT, discard this
4030 target (we'd otherwise be in an inconsistent state) and then
4031 propogate the error on up the exception chain. This ensures that
4032 the caller doesn't stumble along blindly assuming that the
4033 function succeeded. The CLI doesn't have this problem but other
4034 UI's, such as MI do.
4035
4036 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4037 this function should return an error indication letting the
4038 caller restore the previous state. Unfortunately the command
4039 ``target remote'' is directly wired to this function making that
4040 impossible. On a positive note, the CLI side of this problem has
4041 been fixed - the function set_cmd_context() makes it possible for
4042 all the ``target ....'' commands to share a common callback
4043 function. See cli-dump.c. */
4044 {
4045 struct gdb_exception ex;
4046 struct start_remote_args args;
4047
4048 args.from_tty = from_tty;
4049 args.target = target;
4050 args.extended_p = extended_p;
4051
4052 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
4053 if (ex.reason < 0)
4054 {
4055 /* Pop the partially set up target - unless something else did
4056 already before throwing the exception. */
4057 if (remote_desc != NULL)
4058 pop_target ();
4059 if (target_async_permitted)
4060 wait_forever_enabled_p = 1;
4061 throw_exception (ex);
4062 }
4063 }
4064
4065 if (target_async_permitted)
4066 wait_forever_enabled_p = 1;
4067 }
4068
4069 /* This takes a program previously attached to and detaches it. After
4070 this is done, GDB can be used to debug some other program. We
4071 better not have left any breakpoints in the target program or it'll
4072 die when it hits one. */
4073
4074 static void
4075 remote_detach_1 (char *args, int from_tty, int extended)
4076 {
4077 int pid = ptid_get_pid (inferior_ptid);
4078 struct remote_state *rs = get_remote_state ();
4079
4080 if (args)
4081 error (_("Argument given to \"detach\" when remotely debugging."));
4082
4083 if (!target_has_execution)
4084 error (_("No process to detach from."));
4085
4086 /* Tell the remote target to detach. */
4087 if (remote_multi_process_p (rs))
4088 sprintf (rs->buf, "D;%x", pid);
4089 else
4090 strcpy (rs->buf, "D");
4091
4092 putpkt (rs->buf);
4093 getpkt (&rs->buf, &rs->buf_size, 0);
4094
4095 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4096 ;
4097 else if (rs->buf[0] == '\0')
4098 error (_("Remote doesn't know how to detach"));
4099 else
4100 error (_("Can't detach process."));
4101
4102 if (from_tty)
4103 {
4104 if (remote_multi_process_p (rs))
4105 printf_filtered (_("Detached from remote %s.\n"),
4106 target_pid_to_str (pid_to_ptid (pid)));
4107 else
4108 {
4109 if (extended)
4110 puts_filtered (_("Detached from remote process.\n"));
4111 else
4112 puts_filtered (_("Ending remote debugging.\n"));
4113 }
4114 }
4115
4116 discard_pending_stop_replies (pid);
4117 target_mourn_inferior ();
4118 }
4119
4120 static void
4121 remote_detach (struct target_ops *ops, char *args, int from_tty)
4122 {
4123 remote_detach_1 (args, from_tty, 0);
4124 }
4125
4126 static void
4127 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4128 {
4129 remote_detach_1 (args, from_tty, 1);
4130 }
4131
4132 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4133
4134 static void
4135 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4136 {
4137 if (args)
4138 error (_("Argument given to \"disconnect\" when remotely debugging."));
4139
4140 /* Make sure we unpush even the extended remote targets; mourn
4141 won't do it. So call remote_mourn_1 directly instead of
4142 target_mourn_inferior. */
4143 remote_mourn_1 (target);
4144
4145 if (from_tty)
4146 puts_filtered ("Ending remote debugging.\n");
4147 }
4148
4149 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4150 be chatty about it. */
4151
4152 static void
4153 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4154 {
4155 struct remote_state *rs = get_remote_state ();
4156 int pid;
4157 char *wait_status = NULL;
4158
4159 pid = parse_pid_to_attach (args);
4160
4161 /* Remote PID can be freely equal to getpid, do not check it here the same
4162 way as in other targets. */
4163
4164 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4165 error (_("This target does not support attaching to a process"));
4166
4167 sprintf (rs->buf, "vAttach;%x", pid);
4168 putpkt (rs->buf);
4169 getpkt (&rs->buf, &rs->buf_size, 0);
4170
4171 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4172 {
4173 if (from_tty)
4174 printf_unfiltered (_("Attached to %s\n"),
4175 target_pid_to_str (pid_to_ptid (pid)));
4176
4177 if (!non_stop)
4178 {
4179 /* Save the reply for later. */
4180 wait_status = alloca (strlen (rs->buf) + 1);
4181 strcpy (wait_status, rs->buf);
4182 }
4183 else if (strcmp (rs->buf, "OK") != 0)
4184 error (_("Attaching to %s failed with: %s"),
4185 target_pid_to_str (pid_to_ptid (pid)),
4186 rs->buf);
4187 }
4188 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4189 error (_("This target does not support attaching to a process"));
4190 else
4191 error (_("Attaching to %s failed"),
4192 target_pid_to_str (pid_to_ptid (pid)));
4193
4194 set_current_inferior (remote_add_inferior (pid, 1));
4195
4196 inferior_ptid = pid_to_ptid (pid);
4197
4198 if (non_stop)
4199 {
4200 struct thread_info *thread;
4201
4202 /* Get list of threads. */
4203 remote_threads_info (target);
4204
4205 thread = first_thread_of_process (pid);
4206 if (thread)
4207 inferior_ptid = thread->ptid;
4208 else
4209 inferior_ptid = pid_to_ptid (pid);
4210
4211 /* Invalidate our notion of the remote current thread. */
4212 record_currthread (minus_one_ptid);
4213 }
4214 else
4215 {
4216 /* Now, if we have thread information, update inferior_ptid. */
4217 inferior_ptid = remote_current_thread (inferior_ptid);
4218
4219 /* Add the main thread to the thread list. */
4220 add_thread_silent (inferior_ptid);
4221 }
4222
4223 /* Next, if the target can specify a description, read it. We do
4224 this before anything involving memory or registers. */
4225 target_find_description ();
4226
4227 if (!non_stop)
4228 {
4229 /* Use the previously fetched status. */
4230 gdb_assert (wait_status != NULL);
4231
4232 if (target_can_async_p ())
4233 {
4234 struct stop_reply *stop_reply;
4235 struct cleanup *old_chain;
4236
4237 stop_reply = stop_reply_xmalloc ();
4238 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4239 remote_parse_stop_reply (wait_status, stop_reply);
4240 discard_cleanups (old_chain);
4241 push_stop_reply (stop_reply);
4242
4243 target_async (inferior_event_handler, 0);
4244 }
4245 else
4246 {
4247 gdb_assert (wait_status != NULL);
4248 strcpy (rs->buf, wait_status);
4249 rs->cached_wait_status = 1;
4250 }
4251 }
4252 else
4253 gdb_assert (wait_status == NULL);
4254 }
4255
4256 static void
4257 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4258 {
4259 extended_remote_attach_1 (ops, args, from_tty);
4260 }
4261
4262 /* Convert hex digit A to a number. */
4263
4264 static int
4265 fromhex (int a)
4266 {
4267 if (a >= '0' && a <= '9')
4268 return a - '0';
4269 else if (a >= 'a' && a <= 'f')
4270 return a - 'a' + 10;
4271 else if (a >= 'A' && a <= 'F')
4272 return a - 'A' + 10;
4273 else
4274 error (_("Reply contains invalid hex digit %d"), a);
4275 }
4276
4277 int
4278 hex2bin (const char *hex, gdb_byte *bin, int count)
4279 {
4280 int i;
4281
4282 for (i = 0; i < count; i++)
4283 {
4284 if (hex[0] == 0 || hex[1] == 0)
4285 {
4286 /* Hex string is short, or of uneven length.
4287 Return the count that has been converted so far. */
4288 return i;
4289 }
4290 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4291 hex += 2;
4292 }
4293 return i;
4294 }
4295
4296 /* Convert number NIB to a hex digit. */
4297
4298 static int
4299 tohex (int nib)
4300 {
4301 if (nib < 10)
4302 return '0' + nib;
4303 else
4304 return 'a' + nib - 10;
4305 }
4306
4307 int
4308 bin2hex (const gdb_byte *bin, char *hex, int count)
4309 {
4310 int i;
4311
4312 /* May use a length, or a nul-terminated string as input. */
4313 if (count == 0)
4314 count = strlen ((char *) bin);
4315
4316 for (i = 0; i < count; i++)
4317 {
4318 *hex++ = tohex ((*bin >> 4) & 0xf);
4319 *hex++ = tohex (*bin++ & 0xf);
4320 }
4321 *hex = 0;
4322 return i;
4323 }
4324 \f
4325 /* Check for the availability of vCont. This function should also check
4326 the response. */
4327
4328 static void
4329 remote_vcont_probe (struct remote_state *rs)
4330 {
4331 char *buf;
4332
4333 strcpy (rs->buf, "vCont?");
4334 putpkt (rs->buf);
4335 getpkt (&rs->buf, &rs->buf_size, 0);
4336 buf = rs->buf;
4337
4338 /* Make sure that the features we assume are supported. */
4339 if (strncmp (buf, "vCont", 5) == 0)
4340 {
4341 char *p = &buf[5];
4342 int support_s, support_S, support_c, support_C;
4343
4344 support_s = 0;
4345 support_S = 0;
4346 support_c = 0;
4347 support_C = 0;
4348 rs->support_vCont_t = 0;
4349 while (p && *p == ';')
4350 {
4351 p++;
4352 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4353 support_s = 1;
4354 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4355 support_S = 1;
4356 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4357 support_c = 1;
4358 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4359 support_C = 1;
4360 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4361 rs->support_vCont_t = 1;
4362
4363 p = strchr (p, ';');
4364 }
4365
4366 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4367 BUF will make packet_ok disable the packet. */
4368 if (!support_s || !support_S || !support_c || !support_C)
4369 buf[0] = 0;
4370 }
4371
4372 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4373 }
4374
4375 /* Helper function for building "vCont" resumptions. Write a
4376 resumption to P. ENDP points to one-passed-the-end of the buffer
4377 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4378 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4379 resumed thread should be single-stepped and/or signalled. If PTID
4380 equals minus_one_ptid, then all threads are resumed; if PTID
4381 represents a process, then all threads of the process are resumed;
4382 the thread to be stepped and/or signalled is given in the global
4383 INFERIOR_PTID. */
4384
4385 static char *
4386 append_resumption (char *p, char *endp,
4387 ptid_t ptid, int step, enum target_signal siggnal)
4388 {
4389 struct remote_state *rs = get_remote_state ();
4390
4391 if (step && siggnal != TARGET_SIGNAL_0)
4392 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4393 else if (step)
4394 p += xsnprintf (p, endp - p, ";s");
4395 else if (siggnal != TARGET_SIGNAL_0)
4396 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4397 else
4398 p += xsnprintf (p, endp - p, ";c");
4399
4400 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4401 {
4402 ptid_t nptid;
4403
4404 /* All (-1) threads of process. */
4405 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4406
4407 p += xsnprintf (p, endp - p, ":");
4408 p = write_ptid (p, endp, nptid);
4409 }
4410 else if (!ptid_equal (ptid, minus_one_ptid))
4411 {
4412 p += xsnprintf (p, endp - p, ":");
4413 p = write_ptid (p, endp, ptid);
4414 }
4415
4416 return p;
4417 }
4418
4419 /* Resume the remote inferior by using a "vCont" packet. The thread
4420 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4421 resumed thread should be single-stepped and/or signalled. If PTID
4422 equals minus_one_ptid, then all threads are resumed; the thread to
4423 be stepped and/or signalled is given in the global INFERIOR_PTID.
4424 This function returns non-zero iff it resumes the inferior.
4425
4426 This function issues a strict subset of all possible vCont commands at the
4427 moment. */
4428
4429 static int
4430 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
4431 {
4432 struct remote_state *rs = get_remote_state ();
4433 char *p;
4434 char *endp;
4435
4436 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4437 remote_vcont_probe (rs);
4438
4439 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4440 return 0;
4441
4442 p = rs->buf;
4443 endp = rs->buf + get_remote_packet_size ();
4444
4445 /* If we could generate a wider range of packets, we'd have to worry
4446 about overflowing BUF. Should there be a generic
4447 "multi-part-packet" packet? */
4448
4449 p += xsnprintf (p, endp - p, "vCont");
4450
4451 if (ptid_equal (ptid, magic_null_ptid))
4452 {
4453 /* MAGIC_NULL_PTID means that we don't have any active threads,
4454 so we don't have any TID numbers the inferior will
4455 understand. Make sure to only send forms that do not specify
4456 a TID. */
4457 p = append_resumption (p, endp, minus_one_ptid, step, siggnal);
4458 }
4459 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4460 {
4461 /* Resume all threads (of all processes, or of a single
4462 process), with preference for INFERIOR_PTID. This assumes
4463 inferior_ptid belongs to the set of all threads we are about
4464 to resume. */
4465 if (step || siggnal != TARGET_SIGNAL_0)
4466 {
4467 /* Step inferior_ptid, with or without signal. */
4468 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4469 }
4470
4471 /* And continue others without a signal. */
4472 p = append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
4473 }
4474 else
4475 {
4476 /* Scheduler locking; resume only PTID. */
4477 p = append_resumption (p, endp, ptid, step, siggnal);
4478 }
4479
4480 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4481 putpkt (rs->buf);
4482
4483 if (non_stop)
4484 {
4485 /* In non-stop, the stub replies to vCont with "OK". The stop
4486 reply will be reported asynchronously by means of a `%Stop'
4487 notification. */
4488 getpkt (&rs->buf, &rs->buf_size, 0);
4489 if (strcmp (rs->buf, "OK") != 0)
4490 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4491 }
4492
4493 return 1;
4494 }
4495
4496 /* Tell the remote machine to resume. */
4497
4498 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
4499
4500 static int last_sent_step;
4501
4502 static void
4503 remote_resume (struct target_ops *ops,
4504 ptid_t ptid, int step, enum target_signal siggnal)
4505 {
4506 struct remote_state *rs = get_remote_state ();
4507 char *buf;
4508
4509 last_sent_signal = siggnal;
4510 last_sent_step = step;
4511
4512 /* Update the inferior on signals to silently pass, if they've changed. */
4513 remote_pass_signals ();
4514
4515 /* The vCont packet doesn't need to specify threads via Hc. */
4516 /* No reverse support (yet) for vCont. */
4517 if (execution_direction != EXEC_REVERSE)
4518 if (remote_vcont_resume (ptid, step, siggnal))
4519 goto done;
4520
4521 /* All other supported resume packets do use Hc, so set the continue
4522 thread. */
4523 if (ptid_equal (ptid, minus_one_ptid))
4524 set_continue_thread (any_thread_ptid);
4525 else
4526 set_continue_thread (ptid);
4527
4528 buf = rs->buf;
4529 if (execution_direction == EXEC_REVERSE)
4530 {
4531 /* We don't pass signals to the target in reverse exec mode. */
4532 if (info_verbose && siggnal != TARGET_SIGNAL_0)
4533 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
4534 siggnal);
4535
4536 if (step
4537 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4538 error (_("Remote reverse-step not supported."));
4539 if (!step
4540 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4541 error (_("Remote reverse-continue not supported."));
4542
4543 strcpy (buf, step ? "bs" : "bc");
4544 }
4545 else if (siggnal != TARGET_SIGNAL_0)
4546 {
4547 buf[0] = step ? 'S' : 'C';
4548 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4549 buf[2] = tohex (((int) siggnal) & 0xf);
4550 buf[3] = '\0';
4551 }
4552 else
4553 strcpy (buf, step ? "s" : "c");
4554
4555 putpkt (buf);
4556
4557 done:
4558 /* We are about to start executing the inferior, let's register it
4559 with the event loop. NOTE: this is the one place where all the
4560 execution commands end up. We could alternatively do this in each
4561 of the execution commands in infcmd.c. */
4562 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4563 into infcmd.c in order to allow inferior function calls to work
4564 NOT asynchronously. */
4565 if (target_can_async_p ())
4566 target_async (inferior_event_handler, 0);
4567
4568 /* We've just told the target to resume. The remote server will
4569 wait for the inferior to stop, and then send a stop reply. In
4570 the mean time, we can't start another command/query ourselves
4571 because the stub wouldn't be ready to process it. This applies
4572 only to the base all-stop protocol, however. In non-stop (which
4573 only supports vCont), the stub replies with an "OK", and is
4574 immediate able to process further serial input. */
4575 if (!non_stop)
4576 rs->waiting_for_stop_reply = 1;
4577 }
4578 \f
4579
4580 /* Set up the signal handler for SIGINT, while the target is
4581 executing, ovewriting the 'regular' SIGINT signal handler. */
4582 static void
4583 initialize_sigint_signal_handler (void)
4584 {
4585 signal (SIGINT, handle_remote_sigint);
4586 }
4587
4588 /* Signal handler for SIGINT, while the target is executing. */
4589 static void
4590 handle_remote_sigint (int sig)
4591 {
4592 signal (sig, handle_remote_sigint_twice);
4593 mark_async_signal_handler_wrapper (sigint_remote_token);
4594 }
4595
4596 /* Signal handler for SIGINT, installed after SIGINT has already been
4597 sent once. It will take effect the second time that the user sends
4598 a ^C. */
4599 static void
4600 handle_remote_sigint_twice (int sig)
4601 {
4602 signal (sig, handle_remote_sigint);
4603 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4604 }
4605
4606 /* Perform the real interruption of the target execution, in response
4607 to a ^C. */
4608 static void
4609 async_remote_interrupt (gdb_client_data arg)
4610 {
4611 if (remote_debug)
4612 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
4613
4614 target_stop (inferior_ptid);
4615 }
4616
4617 /* Perform interrupt, if the first attempt did not succeed. Just give
4618 up on the target alltogether. */
4619 void
4620 async_remote_interrupt_twice (gdb_client_data arg)
4621 {
4622 if (remote_debug)
4623 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
4624
4625 interrupt_query ();
4626 }
4627
4628 /* Reinstall the usual SIGINT handlers, after the target has
4629 stopped. */
4630 static void
4631 cleanup_sigint_signal_handler (void *dummy)
4632 {
4633 signal (SIGINT, handle_sigint);
4634 }
4635
4636 /* Send ^C to target to halt it. Target will respond, and send us a
4637 packet. */
4638 static void (*ofunc) (int);
4639
4640 /* The command line interface's stop routine. This function is installed
4641 as a signal handler for SIGINT. The first time a user requests a
4642 stop, we call remote_stop to send a break or ^C. If there is no
4643 response from the target (it didn't stop when the user requested it),
4644 we ask the user if he'd like to detach from the target. */
4645 static void
4646 remote_interrupt (int signo)
4647 {
4648 /* If this doesn't work, try more severe steps. */
4649 signal (signo, remote_interrupt_twice);
4650
4651 gdb_call_async_signal_handler (sigint_remote_token, 1);
4652 }
4653
4654 /* The user typed ^C twice. */
4655
4656 static void
4657 remote_interrupt_twice (int signo)
4658 {
4659 signal (signo, ofunc);
4660 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4661 signal (signo, remote_interrupt);
4662 }
4663
4664 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4665 thread, all threads of a remote process, or all threads of all
4666 processes. */
4667
4668 static void
4669 remote_stop_ns (ptid_t ptid)
4670 {
4671 struct remote_state *rs = get_remote_state ();
4672 char *p = rs->buf;
4673 char *endp = rs->buf + get_remote_packet_size ();
4674
4675 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4676 remote_vcont_probe (rs);
4677
4678 if (!rs->support_vCont_t)
4679 error (_("Remote server does not support stopping threads"));
4680
4681 if (ptid_equal (ptid, minus_one_ptid)
4682 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4683 p += xsnprintf (p, endp - p, "vCont;t");
4684 else
4685 {
4686 ptid_t nptid;
4687
4688 p += xsnprintf (p, endp - p, "vCont;t:");
4689
4690 if (ptid_is_pid (ptid))
4691 /* All (-1) threads of process. */
4692 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4693 else
4694 {
4695 /* Small optimization: if we already have a stop reply for
4696 this thread, no use in telling the stub we want this
4697 stopped. */
4698 if (peek_stop_reply (ptid))
4699 return;
4700
4701 nptid = ptid;
4702 }
4703
4704 p = write_ptid (p, endp, nptid);
4705 }
4706
4707 /* In non-stop, we get an immediate OK reply. The stop reply will
4708 come in asynchronously by notification. */
4709 putpkt (rs->buf);
4710 getpkt (&rs->buf, &rs->buf_size, 0);
4711 if (strcmp (rs->buf, "OK") != 0)
4712 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4713 }
4714
4715 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4716 remote target. It is undefined which thread of which process
4717 reports the stop. */
4718
4719 static void
4720 remote_stop_as (ptid_t ptid)
4721 {
4722 struct remote_state *rs = get_remote_state ();
4723
4724 rs->ctrlc_pending_p = 1;
4725
4726 /* If the inferior is stopped already, but the core didn't know
4727 about it yet, just ignore the request. The cached wait status
4728 will be collected in remote_wait. */
4729 if (rs->cached_wait_status)
4730 return;
4731
4732 /* Send interrupt_sequence to remote target. */
4733 send_interrupt_sequence ();
4734 }
4735
4736 /* This is the generic stop called via the target vector. When a target
4737 interrupt is requested, either by the command line or the GUI, we
4738 will eventually end up here. */
4739
4740 static void
4741 remote_stop (ptid_t ptid)
4742 {
4743 if (remote_debug)
4744 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4745
4746 if (non_stop)
4747 remote_stop_ns (ptid);
4748 else
4749 remote_stop_as (ptid);
4750 }
4751
4752 /* Ask the user what to do when an interrupt is received. */
4753
4754 static void
4755 interrupt_query (void)
4756 {
4757 target_terminal_ours ();
4758
4759 if (target_can_async_p ())
4760 {
4761 signal (SIGINT, handle_sigint);
4762 deprecated_throw_reason (RETURN_QUIT);
4763 }
4764 else
4765 {
4766 if (query (_("Interrupted while waiting for the program.\n\
4767 Give up (and stop debugging it)? ")))
4768 {
4769 pop_target ();
4770 deprecated_throw_reason (RETURN_QUIT);
4771 }
4772 }
4773
4774 target_terminal_inferior ();
4775 }
4776
4777 /* Enable/disable target terminal ownership. Most targets can use
4778 terminal groups to control terminal ownership. Remote targets are
4779 different in that explicit transfer of ownership to/from GDB/target
4780 is required. */
4781
4782 static void
4783 remote_terminal_inferior (void)
4784 {
4785 if (!target_async_permitted)
4786 /* Nothing to do. */
4787 return;
4788
4789 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4790 idempotent. The event-loop GDB talking to an asynchronous target
4791 with a synchronous command calls this function from both
4792 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
4793 transfer the terminal to the target when it shouldn't this guard
4794 can go away. */
4795 if (!remote_async_terminal_ours_p)
4796 return;
4797 delete_file_handler (input_fd);
4798 remote_async_terminal_ours_p = 0;
4799 initialize_sigint_signal_handler ();
4800 /* NOTE: At this point we could also register our selves as the
4801 recipient of all input. Any characters typed could then be
4802 passed on down to the target. */
4803 }
4804
4805 static void
4806 remote_terminal_ours (void)
4807 {
4808 if (!target_async_permitted)
4809 /* Nothing to do. */
4810 return;
4811
4812 /* See FIXME in remote_terminal_inferior. */
4813 if (remote_async_terminal_ours_p)
4814 return;
4815 cleanup_sigint_signal_handler (NULL);
4816 add_file_handler (input_fd, stdin_event_handler, 0);
4817 remote_async_terminal_ours_p = 1;
4818 }
4819
4820 static void
4821 remote_console_output (char *msg)
4822 {
4823 char *p;
4824
4825 for (p = msg; p[0] && p[1]; p += 2)
4826 {
4827 char tb[2];
4828 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4829
4830 tb[0] = c;
4831 tb[1] = 0;
4832 fputs_unfiltered (tb, gdb_stdtarg);
4833 }
4834 gdb_flush (gdb_stdtarg);
4835 }
4836
4837 typedef struct cached_reg
4838 {
4839 int num;
4840 gdb_byte data[MAX_REGISTER_SIZE];
4841 } cached_reg_t;
4842
4843 DEF_VEC_O(cached_reg_t);
4844
4845 struct stop_reply
4846 {
4847 struct stop_reply *next;
4848
4849 ptid_t ptid;
4850
4851 struct target_waitstatus ws;
4852
4853 VEC(cached_reg_t) *regcache;
4854
4855 int stopped_by_watchpoint_p;
4856 CORE_ADDR watch_data_address;
4857
4858 int solibs_changed;
4859 int replay_event;
4860
4861 int core;
4862 };
4863
4864 /* The list of already fetched and acknowledged stop events. */
4865 static struct stop_reply *stop_reply_queue;
4866
4867 static struct stop_reply *
4868 stop_reply_xmalloc (void)
4869 {
4870 struct stop_reply *r = XMALLOC (struct stop_reply);
4871
4872 r->next = NULL;
4873 return r;
4874 }
4875
4876 static void
4877 stop_reply_xfree (struct stop_reply *r)
4878 {
4879 if (r != NULL)
4880 {
4881 VEC_free (cached_reg_t, r->regcache);
4882 xfree (r);
4883 }
4884 }
4885
4886 /* Discard all pending stop replies of inferior PID. If PID is -1,
4887 discard everything. */
4888
4889 static void
4890 discard_pending_stop_replies (int pid)
4891 {
4892 struct stop_reply *prev = NULL, *reply, *next;
4893
4894 /* Discard the in-flight notification. */
4895 if (pending_stop_reply != NULL
4896 && (pid == -1
4897 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4898 {
4899 stop_reply_xfree (pending_stop_reply);
4900 pending_stop_reply = NULL;
4901 }
4902
4903 /* Discard the stop replies we have already pulled with
4904 vStopped. */
4905 for (reply = stop_reply_queue; reply; reply = next)
4906 {
4907 next = reply->next;
4908 if (pid == -1
4909 || ptid_get_pid (reply->ptid) == pid)
4910 {
4911 if (reply == stop_reply_queue)
4912 stop_reply_queue = reply->next;
4913 else
4914 prev->next = reply->next;
4915
4916 stop_reply_xfree (reply);
4917 }
4918 else
4919 prev = reply;
4920 }
4921 }
4922
4923 /* Cleanup wrapper. */
4924
4925 static void
4926 do_stop_reply_xfree (void *arg)
4927 {
4928 struct stop_reply *r = arg;
4929
4930 stop_reply_xfree (r);
4931 }
4932
4933 /* Look for a queued stop reply belonging to PTID. If one is found,
4934 remove it from the queue, and return it. Returns NULL if none is
4935 found. If there are still queued events left to process, tell the
4936 event loop to get back to target_wait soon. */
4937
4938 static struct stop_reply *
4939 queued_stop_reply (ptid_t ptid)
4940 {
4941 struct stop_reply *it;
4942 struct stop_reply **it_link;
4943
4944 it = stop_reply_queue;
4945 it_link = &stop_reply_queue;
4946 while (it)
4947 {
4948 if (ptid_match (it->ptid, ptid))
4949 {
4950 *it_link = it->next;
4951 it->next = NULL;
4952 break;
4953 }
4954
4955 it_link = &it->next;
4956 it = *it_link;
4957 }
4958
4959 if (stop_reply_queue)
4960 /* There's still at least an event left. */
4961 mark_async_event_handler (remote_async_inferior_event_token);
4962
4963 return it;
4964 }
4965
4966 /* Push a fully parsed stop reply in the stop reply queue. Since we
4967 know that we now have at least one queued event left to pass to the
4968 core side, tell the event loop to get back to target_wait soon. */
4969
4970 static void
4971 push_stop_reply (struct stop_reply *new_event)
4972 {
4973 struct stop_reply *event;
4974
4975 if (stop_reply_queue)
4976 {
4977 for (event = stop_reply_queue;
4978 event && event->next;
4979 event = event->next)
4980 ;
4981
4982 event->next = new_event;
4983 }
4984 else
4985 stop_reply_queue = new_event;
4986
4987 mark_async_event_handler (remote_async_inferior_event_token);
4988 }
4989
4990 /* Returns true if we have a stop reply for PTID. */
4991
4992 static int
4993 peek_stop_reply (ptid_t ptid)
4994 {
4995 struct stop_reply *it;
4996
4997 for (it = stop_reply_queue; it; it = it->next)
4998 if (ptid_equal (ptid, it->ptid))
4999 {
5000 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
5001 return 1;
5002 }
5003
5004 return 0;
5005 }
5006
5007 /* Parse the stop reply in BUF. Either the function succeeds, and the
5008 result is stored in EVENT, or throws an error. */
5009
5010 static void
5011 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5012 {
5013 struct remote_arch_state *rsa = get_remote_arch_state ();
5014 ULONGEST addr;
5015 char *p;
5016
5017 event->ptid = null_ptid;
5018 event->ws.kind = TARGET_WAITKIND_IGNORE;
5019 event->ws.value.integer = 0;
5020 event->solibs_changed = 0;
5021 event->replay_event = 0;
5022 event->stopped_by_watchpoint_p = 0;
5023 event->regcache = NULL;
5024 event->core = -1;
5025
5026 switch (buf[0])
5027 {
5028 case 'T': /* Status with PC, SP, FP, ... */
5029 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5030 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5031 ss = signal number
5032 n... = register number
5033 r... = register contents
5034 */
5035
5036 p = &buf[3]; /* after Txx */
5037 while (*p)
5038 {
5039 char *p1;
5040 char *p_temp;
5041 int fieldsize;
5042 LONGEST pnum = 0;
5043
5044 /* If the packet contains a register number, save it in
5045 pnum and set p1 to point to the character following it.
5046 Otherwise p1 points to p. */
5047
5048 /* If this packet is an awatch packet, don't parse the 'a'
5049 as a register number. */
5050
5051 if (strncmp (p, "awatch", strlen("awatch")) != 0
5052 && strncmp (p, "core", strlen ("core") != 0))
5053 {
5054 /* Read the ``P'' register number. */
5055 pnum = strtol (p, &p_temp, 16);
5056 p1 = p_temp;
5057 }
5058 else
5059 p1 = p;
5060
5061 if (p1 == p) /* No register number present here. */
5062 {
5063 p1 = strchr (p, ':');
5064 if (p1 == NULL)
5065 error (_("Malformed packet(a) (missing colon): %s\n\
5066 Packet: '%s'\n"),
5067 p, buf);
5068 if (strncmp (p, "thread", p1 - p) == 0)
5069 event->ptid = read_ptid (++p1, &p);
5070 else if ((strncmp (p, "watch", p1 - p) == 0)
5071 || (strncmp (p, "rwatch", p1 - p) == 0)
5072 || (strncmp (p, "awatch", p1 - p) == 0))
5073 {
5074 event->stopped_by_watchpoint_p = 1;
5075 p = unpack_varlen_hex (++p1, &addr);
5076 event->watch_data_address = (CORE_ADDR) addr;
5077 }
5078 else if (strncmp (p, "library", p1 - p) == 0)
5079 {
5080 p1++;
5081 p_temp = p1;
5082 while (*p_temp && *p_temp != ';')
5083 p_temp++;
5084
5085 event->solibs_changed = 1;
5086 p = p_temp;
5087 }
5088 else if (strncmp (p, "replaylog", p1 - p) == 0)
5089 {
5090 /* NO_HISTORY event.
5091 p1 will indicate "begin" or "end", but
5092 it makes no difference for now, so ignore it. */
5093 event->replay_event = 1;
5094 p_temp = strchr (p1 + 1, ';');
5095 if (p_temp)
5096 p = p_temp;
5097 }
5098 else if (strncmp (p, "core", p1 - p) == 0)
5099 {
5100 ULONGEST c;
5101
5102 p = unpack_varlen_hex (++p1, &c);
5103 event->core = c;
5104 }
5105 else
5106 {
5107 /* Silently skip unknown optional info. */
5108 p_temp = strchr (p1 + 1, ';');
5109 if (p_temp)
5110 p = p_temp;
5111 }
5112 }
5113 else
5114 {
5115 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5116 cached_reg_t cached_reg;
5117
5118 p = p1;
5119
5120 if (*p != ':')
5121 error (_("Malformed packet(b) (missing colon): %s\n\
5122 Packet: '%s'\n"),
5123 p, buf);
5124 ++p;
5125
5126 if (reg == NULL)
5127 error (_("Remote sent bad register number %s: %s\n\
5128 Packet: '%s'\n"),
5129 hex_string (pnum), p, buf);
5130
5131 cached_reg.num = reg->regnum;
5132
5133 fieldsize = hex2bin (p, cached_reg.data,
5134 register_size (target_gdbarch,
5135 reg->regnum));
5136 p += 2 * fieldsize;
5137 if (fieldsize < register_size (target_gdbarch,
5138 reg->regnum))
5139 warning (_("Remote reply is too short: %s"), buf);
5140
5141 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5142 }
5143
5144 if (*p != ';')
5145 error (_("Remote register badly formatted: %s\nhere: %s"),
5146 buf, p);
5147 ++p;
5148 }
5149 /* fall through */
5150 case 'S': /* Old style status, just signal only. */
5151 if (event->solibs_changed)
5152 event->ws.kind = TARGET_WAITKIND_LOADED;
5153 else if (event->replay_event)
5154 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5155 else
5156 {
5157 event->ws.kind = TARGET_WAITKIND_STOPPED;
5158 event->ws.value.sig = (enum target_signal)
5159 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5160 }
5161 break;
5162 case 'W': /* Target exited. */
5163 case 'X':
5164 {
5165 char *p;
5166 int pid;
5167 ULONGEST value;
5168
5169 /* GDB used to accept only 2 hex chars here. Stubs should
5170 only send more if they detect GDB supports multi-process
5171 support. */
5172 p = unpack_varlen_hex (&buf[1], &value);
5173
5174 if (buf[0] == 'W')
5175 {
5176 /* The remote process exited. */
5177 event->ws.kind = TARGET_WAITKIND_EXITED;
5178 event->ws.value.integer = value;
5179 }
5180 else
5181 {
5182 /* The remote process exited with a signal. */
5183 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5184 event->ws.value.sig = (enum target_signal) value;
5185 }
5186
5187 /* If no process is specified, assume inferior_ptid. */
5188 pid = ptid_get_pid (inferior_ptid);
5189 if (*p == '\0')
5190 ;
5191 else if (*p == ';')
5192 {
5193 p++;
5194
5195 if (p == '\0')
5196 ;
5197 else if (strncmp (p,
5198 "process:", sizeof ("process:") - 1) == 0)
5199 {
5200 ULONGEST upid;
5201
5202 p += sizeof ("process:") - 1;
5203 unpack_varlen_hex (p, &upid);
5204 pid = upid;
5205 }
5206 else
5207 error (_("unknown stop reply packet: %s"), buf);
5208 }
5209 else
5210 error (_("unknown stop reply packet: %s"), buf);
5211 event->ptid = pid_to_ptid (pid);
5212 }
5213 break;
5214 }
5215
5216 if (non_stop && ptid_equal (event->ptid, null_ptid))
5217 error (_("No process or thread specified in stop reply: %s"), buf);
5218 }
5219
5220 /* When the stub wants to tell GDB about a new stop reply, it sends a
5221 stop notification (%Stop). Those can come it at any time, hence,
5222 we have to make sure that any pending putpkt/getpkt sequence we're
5223 making is finished, before querying the stub for more events with
5224 vStopped. E.g., if we started a vStopped sequence immediatelly
5225 upon receiving the %Stop notification, something like this could
5226 happen:
5227
5228 1.1) --> Hg 1
5229 1.2) <-- OK
5230 1.3) --> g
5231 1.4) <-- %Stop
5232 1.5) --> vStopped
5233 1.6) <-- (registers reply to step #1.3)
5234
5235 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5236 query.
5237
5238 To solve this, whenever we parse a %Stop notification sucessfully,
5239 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5240 doing whatever we were doing:
5241
5242 2.1) --> Hg 1
5243 2.2) <-- OK
5244 2.3) --> g
5245 2.4) <-- %Stop
5246 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5247 2.5) <-- (registers reply to step #2.3)
5248
5249 Eventualy after step #2.5, we return to the event loop, which
5250 notices there's an event on the
5251 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5252 associated callback --- the function below. At this point, we're
5253 always safe to start a vStopped sequence. :
5254
5255 2.6) --> vStopped
5256 2.7) <-- T05 thread:2
5257 2.8) --> vStopped
5258 2.9) --> OK
5259 */
5260
5261 static void
5262 remote_get_pending_stop_replies (void)
5263 {
5264 struct remote_state *rs = get_remote_state ();
5265
5266 if (pending_stop_reply)
5267 {
5268 /* acknowledge */
5269 putpkt ("vStopped");
5270
5271 /* Now we can rely on it. */
5272 push_stop_reply (pending_stop_reply);
5273 pending_stop_reply = NULL;
5274
5275 while (1)
5276 {
5277 getpkt (&rs->buf, &rs->buf_size, 0);
5278 if (strcmp (rs->buf, "OK") == 0)
5279 break;
5280 else
5281 {
5282 struct cleanup *old_chain;
5283 struct stop_reply *stop_reply = stop_reply_xmalloc ();
5284
5285 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5286 remote_parse_stop_reply (rs->buf, stop_reply);
5287
5288 /* acknowledge */
5289 putpkt ("vStopped");
5290
5291 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
5292 {
5293 /* Now we can rely on it. */
5294 discard_cleanups (old_chain);
5295 push_stop_reply (stop_reply);
5296 }
5297 else
5298 /* We got an unknown stop reply. */
5299 do_cleanups (old_chain);
5300 }
5301 }
5302 }
5303 }
5304
5305
5306 /* Called when it is decided that STOP_REPLY holds the info of the
5307 event that is to be returned to the core. This function always
5308 destroys STOP_REPLY. */
5309
5310 static ptid_t
5311 process_stop_reply (struct stop_reply *stop_reply,
5312 struct target_waitstatus *status)
5313 {
5314 ptid_t ptid;
5315
5316 *status = stop_reply->ws;
5317 ptid = stop_reply->ptid;
5318
5319 /* If no thread/process was reported by the stub, assume the current
5320 inferior. */
5321 if (ptid_equal (ptid, null_ptid))
5322 ptid = inferior_ptid;
5323
5324 if (status->kind != TARGET_WAITKIND_EXITED
5325 && status->kind != TARGET_WAITKIND_SIGNALLED)
5326 {
5327 /* Expedited registers. */
5328 if (stop_reply->regcache)
5329 {
5330 struct regcache *regcache
5331 = get_thread_arch_regcache (ptid, target_gdbarch);
5332 cached_reg_t *reg;
5333 int ix;
5334
5335 for (ix = 0;
5336 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5337 ix++)
5338 regcache_raw_supply (regcache, reg->num, reg->data);
5339 VEC_free (cached_reg_t, stop_reply->regcache);
5340 }
5341
5342 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5343 remote_watch_data_address = stop_reply->watch_data_address;
5344
5345 remote_notice_new_inferior (ptid, 0);
5346 demand_private_info (ptid)->core = stop_reply->core;
5347 }
5348
5349 stop_reply_xfree (stop_reply);
5350 return ptid;
5351 }
5352
5353 /* The non-stop mode version of target_wait. */
5354
5355 static ptid_t
5356 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5357 {
5358 struct remote_state *rs = get_remote_state ();
5359 struct stop_reply *stop_reply;
5360 int ret;
5361
5362 /* If in non-stop mode, get out of getpkt even if a
5363 notification is received. */
5364
5365 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5366 0 /* forever */);
5367 while (1)
5368 {
5369 if (ret != -1)
5370 switch (rs->buf[0])
5371 {
5372 case 'E': /* Error of some sort. */
5373 /* We're out of sync with the target now. Did it continue
5374 or not? We can't tell which thread it was in non-stop,
5375 so just ignore this. */
5376 warning (_("Remote failure reply: %s"), rs->buf);
5377 break;
5378 case 'O': /* Console output. */
5379 remote_console_output (rs->buf + 1);
5380 break;
5381 default:
5382 warning (_("Invalid remote reply: %s"), rs->buf);
5383 break;
5384 }
5385
5386 /* Acknowledge a pending stop reply that may have arrived in the
5387 mean time. */
5388 if (pending_stop_reply != NULL)
5389 remote_get_pending_stop_replies ();
5390
5391 /* If indeed we noticed a stop reply, we're done. */
5392 stop_reply = queued_stop_reply (ptid);
5393 if (stop_reply != NULL)
5394 return process_stop_reply (stop_reply, status);
5395
5396 /* Still no event. If we're just polling for an event, then
5397 return to the event loop. */
5398 if (options & TARGET_WNOHANG)
5399 {
5400 status->kind = TARGET_WAITKIND_IGNORE;
5401 return minus_one_ptid;
5402 }
5403
5404 /* Otherwise do a blocking wait. */
5405 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5406 1 /* forever */);
5407 }
5408 }
5409
5410 /* Wait until the remote machine stops, then return, storing status in
5411 STATUS just as `wait' would. */
5412
5413 static ptid_t
5414 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5415 {
5416 struct remote_state *rs = get_remote_state ();
5417 ptid_t event_ptid = null_ptid;
5418 char *buf;
5419 struct stop_reply *stop_reply;
5420
5421 again:
5422
5423 status->kind = TARGET_WAITKIND_IGNORE;
5424 status->value.integer = 0;
5425
5426 stop_reply = queued_stop_reply (ptid);
5427 if (stop_reply != NULL)
5428 return process_stop_reply (stop_reply, status);
5429
5430 if (rs->cached_wait_status)
5431 /* Use the cached wait status, but only once. */
5432 rs->cached_wait_status = 0;
5433 else
5434 {
5435 int ret;
5436
5437 if (!target_is_async_p ())
5438 {
5439 ofunc = signal (SIGINT, remote_interrupt);
5440 /* If the user hit C-c before this packet, or between packets,
5441 pretend that it was hit right here. */
5442 if (quit_flag)
5443 {
5444 quit_flag = 0;
5445 remote_interrupt (SIGINT);
5446 }
5447 }
5448
5449 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5450 _never_ wait for ever -> test on target_is_async_p().
5451 However, before we do that we need to ensure that the caller
5452 knows how to take the target into/out of async mode. */
5453 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5454 if (!target_is_async_p ())
5455 signal (SIGINT, ofunc);
5456 }
5457
5458 buf = rs->buf;
5459
5460 remote_stopped_by_watchpoint_p = 0;
5461
5462 /* We got something. */
5463 rs->waiting_for_stop_reply = 0;
5464
5465 /* Assume that the target has acknowledged Ctrl-C unless we receive
5466 an 'F' or 'O' packet. */
5467 if (buf[0] != 'F' && buf[0] != 'O')
5468 rs->ctrlc_pending_p = 0;
5469
5470 switch (buf[0])
5471 {
5472 case 'E': /* Error of some sort. */
5473 /* We're out of sync with the target now. Did it continue or
5474 not? Not is more likely, so report a stop. */
5475 warning (_("Remote failure reply: %s"), buf);
5476 status->kind = TARGET_WAITKIND_STOPPED;
5477 status->value.sig = TARGET_SIGNAL_0;
5478 break;
5479 case 'F': /* File-I/O request. */
5480 remote_fileio_request (buf, rs->ctrlc_pending_p);
5481 rs->ctrlc_pending_p = 0;
5482 break;
5483 case 'T': case 'S': case 'X': case 'W':
5484 {
5485 struct stop_reply *stop_reply;
5486 struct cleanup *old_chain;
5487
5488 stop_reply = stop_reply_xmalloc ();
5489 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5490 remote_parse_stop_reply (buf, stop_reply);
5491 discard_cleanups (old_chain);
5492 event_ptid = process_stop_reply (stop_reply, status);
5493 break;
5494 }
5495 case 'O': /* Console output. */
5496 remote_console_output (buf + 1);
5497
5498 /* The target didn't really stop; keep waiting. */
5499 rs->waiting_for_stop_reply = 1;
5500
5501 break;
5502 case '\0':
5503 if (last_sent_signal != TARGET_SIGNAL_0)
5504 {
5505 /* Zero length reply means that we tried 'S' or 'C' and the
5506 remote system doesn't support it. */
5507 target_terminal_ours_for_output ();
5508 printf_filtered
5509 ("Can't send signals to this remote system. %s not sent.\n",
5510 target_signal_to_name (last_sent_signal));
5511 last_sent_signal = TARGET_SIGNAL_0;
5512 target_terminal_inferior ();
5513
5514 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5515 putpkt ((char *) buf);
5516
5517 /* We just told the target to resume, so a stop reply is in
5518 order. */
5519 rs->waiting_for_stop_reply = 1;
5520 break;
5521 }
5522 /* else fallthrough */
5523 default:
5524 warning (_("Invalid remote reply: %s"), buf);
5525 /* Keep waiting. */
5526 rs->waiting_for_stop_reply = 1;
5527 break;
5528 }
5529
5530 if (status->kind == TARGET_WAITKIND_IGNORE)
5531 {
5532 /* Nothing interesting happened. If we're doing a non-blocking
5533 poll, we're done. Otherwise, go back to waiting. */
5534 if (options & TARGET_WNOHANG)
5535 return minus_one_ptid;
5536 else
5537 goto again;
5538 }
5539 else if (status->kind != TARGET_WAITKIND_EXITED
5540 && status->kind != TARGET_WAITKIND_SIGNALLED)
5541 {
5542 if (!ptid_equal (event_ptid, null_ptid))
5543 record_currthread (event_ptid);
5544 else
5545 event_ptid = inferior_ptid;
5546 }
5547 else
5548 /* A process exit. Invalidate our notion of current thread. */
5549 record_currthread (minus_one_ptid);
5550
5551 return event_ptid;
5552 }
5553
5554 /* Wait until the remote machine stops, then return, storing status in
5555 STATUS just as `wait' would. */
5556
5557 static ptid_t
5558 remote_wait (struct target_ops *ops,
5559 ptid_t ptid, struct target_waitstatus *status, int options)
5560 {
5561 ptid_t event_ptid;
5562
5563 if (non_stop)
5564 event_ptid = remote_wait_ns (ptid, status, options);
5565 else
5566 event_ptid = remote_wait_as (ptid, status, options);
5567
5568 if (target_can_async_p ())
5569 {
5570 /* If there are are events left in the queue tell the event loop
5571 to return here. */
5572 if (stop_reply_queue)
5573 mark_async_event_handler (remote_async_inferior_event_token);
5574 }
5575
5576 return event_ptid;
5577 }
5578
5579 /* Fetch a single register using a 'p' packet. */
5580
5581 static int
5582 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5583 {
5584 struct remote_state *rs = get_remote_state ();
5585 char *buf, *p;
5586 char regp[MAX_REGISTER_SIZE];
5587 int i;
5588
5589 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5590 return 0;
5591
5592 if (reg->pnum == -1)
5593 return 0;
5594
5595 p = rs->buf;
5596 *p++ = 'p';
5597 p += hexnumstr (p, reg->pnum);
5598 *p++ = '\0';
5599 putpkt (rs->buf);
5600 getpkt (&rs->buf, &rs->buf_size, 0);
5601
5602 buf = rs->buf;
5603
5604 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5605 {
5606 case PACKET_OK:
5607 break;
5608 case PACKET_UNKNOWN:
5609 return 0;
5610 case PACKET_ERROR:
5611 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5612 gdbarch_register_name (get_regcache_arch (regcache),
5613 reg->regnum),
5614 buf);
5615 }
5616
5617 /* If this register is unfetchable, tell the regcache. */
5618 if (buf[0] == 'x')
5619 {
5620 regcache_raw_supply (regcache, reg->regnum, NULL);
5621 return 1;
5622 }
5623
5624 /* Otherwise, parse and supply the value. */
5625 p = buf;
5626 i = 0;
5627 while (p[0] != 0)
5628 {
5629 if (p[1] == 0)
5630 error (_("fetch_register_using_p: early buf termination"));
5631
5632 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5633 p += 2;
5634 }
5635 regcache_raw_supply (regcache, reg->regnum, regp);
5636 return 1;
5637 }
5638
5639 /* Fetch the registers included in the target's 'g' packet. */
5640
5641 static int
5642 send_g_packet (void)
5643 {
5644 struct remote_state *rs = get_remote_state ();
5645 int buf_len;
5646
5647 sprintf (rs->buf, "g");
5648 remote_send (&rs->buf, &rs->buf_size);
5649
5650 /* We can get out of synch in various cases. If the first character
5651 in the buffer is not a hex character, assume that has happened
5652 and try to fetch another packet to read. */
5653 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5654 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5655 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5656 && rs->buf[0] != 'x') /* New: unavailable register value. */
5657 {
5658 if (remote_debug)
5659 fprintf_unfiltered (gdb_stdlog,
5660 "Bad register packet; fetching a new packet\n");
5661 getpkt (&rs->buf, &rs->buf_size, 0);
5662 }
5663
5664 buf_len = strlen (rs->buf);
5665
5666 /* Sanity check the received packet. */
5667 if (buf_len % 2 != 0)
5668 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5669
5670 return buf_len / 2;
5671 }
5672
5673 static void
5674 process_g_packet (struct regcache *regcache)
5675 {
5676 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5677 struct remote_state *rs = get_remote_state ();
5678 struct remote_arch_state *rsa = get_remote_arch_state ();
5679 int i, buf_len;
5680 char *p;
5681 char *regs;
5682
5683 buf_len = strlen (rs->buf);
5684
5685 /* Further sanity checks, with knowledge of the architecture. */
5686 if (buf_len > 2 * rsa->sizeof_g_packet)
5687 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5688
5689 /* Save the size of the packet sent to us by the target. It is used
5690 as a heuristic when determining the max size of packets that the
5691 target can safely receive. */
5692 if (rsa->actual_register_packet_size == 0)
5693 rsa->actual_register_packet_size = buf_len;
5694
5695 /* If this is smaller than we guessed the 'g' packet would be,
5696 update our records. A 'g' reply that doesn't include a register's
5697 value implies either that the register is not available, or that
5698 the 'p' packet must be used. */
5699 if (buf_len < 2 * rsa->sizeof_g_packet)
5700 {
5701 rsa->sizeof_g_packet = buf_len / 2;
5702
5703 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5704 {
5705 if (rsa->regs[i].pnum == -1)
5706 continue;
5707
5708 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5709 rsa->regs[i].in_g_packet = 0;
5710 else
5711 rsa->regs[i].in_g_packet = 1;
5712 }
5713 }
5714
5715 regs = alloca (rsa->sizeof_g_packet);
5716
5717 /* Unimplemented registers read as all bits zero. */
5718 memset (regs, 0, rsa->sizeof_g_packet);
5719
5720 /* Reply describes registers byte by byte, each byte encoded as two
5721 hex characters. Suck them all up, then supply them to the
5722 register cacheing/storage mechanism. */
5723
5724 p = rs->buf;
5725 for (i = 0; i < rsa->sizeof_g_packet; i++)
5726 {
5727 if (p[0] == 0 || p[1] == 0)
5728 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5729 internal_error (__FILE__, __LINE__,
5730 "unexpected end of 'g' packet reply");
5731
5732 if (p[0] == 'x' && p[1] == 'x')
5733 regs[i] = 0; /* 'x' */
5734 else
5735 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5736 p += 2;
5737 }
5738
5739 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5740 {
5741 struct packet_reg *r = &rsa->regs[i];
5742
5743 if (r->in_g_packet)
5744 {
5745 if (r->offset * 2 >= strlen (rs->buf))
5746 /* This shouldn't happen - we adjusted in_g_packet above. */
5747 internal_error (__FILE__, __LINE__,
5748 "unexpected end of 'g' packet reply");
5749 else if (rs->buf[r->offset * 2] == 'x')
5750 {
5751 gdb_assert (r->offset * 2 < strlen (rs->buf));
5752 /* The register isn't available, mark it as such (at
5753 the same time setting the value to zero). */
5754 regcache_raw_supply (regcache, r->regnum, NULL);
5755 }
5756 else
5757 regcache_raw_supply (regcache, r->regnum,
5758 regs + r->offset);
5759 }
5760 }
5761 }
5762
5763 static void
5764 fetch_registers_using_g (struct regcache *regcache)
5765 {
5766 send_g_packet ();
5767 process_g_packet (regcache);
5768 }
5769
5770 static void
5771 remote_fetch_registers (struct target_ops *ops,
5772 struct regcache *regcache, int regnum)
5773 {
5774 struct remote_arch_state *rsa = get_remote_arch_state ();
5775 int i;
5776
5777 set_general_thread (inferior_ptid);
5778
5779 if (regnum >= 0)
5780 {
5781 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5782
5783 gdb_assert (reg != NULL);
5784
5785 /* If this register might be in the 'g' packet, try that first -
5786 we are likely to read more than one register. If this is the
5787 first 'g' packet, we might be overly optimistic about its
5788 contents, so fall back to 'p'. */
5789 if (reg->in_g_packet)
5790 {
5791 fetch_registers_using_g (regcache);
5792 if (reg->in_g_packet)
5793 return;
5794 }
5795
5796 if (fetch_register_using_p (regcache, reg))
5797 return;
5798
5799 /* This register is not available. */
5800 regcache_raw_supply (regcache, reg->regnum, NULL);
5801
5802 return;
5803 }
5804
5805 fetch_registers_using_g (regcache);
5806
5807 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5808 if (!rsa->regs[i].in_g_packet)
5809 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5810 {
5811 /* This register is not available. */
5812 regcache_raw_supply (regcache, i, NULL);
5813 }
5814 }
5815
5816 /* Prepare to store registers. Since we may send them all (using a
5817 'G' request), we have to read out the ones we don't want to change
5818 first. */
5819
5820 static void
5821 remote_prepare_to_store (struct regcache *regcache)
5822 {
5823 struct remote_arch_state *rsa = get_remote_arch_state ();
5824 int i;
5825 gdb_byte buf[MAX_REGISTER_SIZE];
5826
5827 /* Make sure the entire registers array is valid. */
5828 switch (remote_protocol_packets[PACKET_P].support)
5829 {
5830 case PACKET_DISABLE:
5831 case PACKET_SUPPORT_UNKNOWN:
5832 /* Make sure all the necessary registers are cached. */
5833 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5834 if (rsa->regs[i].in_g_packet)
5835 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5836 break;
5837 case PACKET_ENABLE:
5838 break;
5839 }
5840 }
5841
5842 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5843 packet was not recognized. */
5844
5845 static int
5846 store_register_using_P (const struct regcache *regcache,
5847 struct packet_reg *reg)
5848 {
5849 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5850 struct remote_state *rs = get_remote_state ();
5851 /* Try storing a single register. */
5852 char *buf = rs->buf;
5853 gdb_byte regp[MAX_REGISTER_SIZE];
5854 char *p;
5855
5856 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5857 return 0;
5858
5859 if (reg->pnum == -1)
5860 return 0;
5861
5862 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5863 p = buf + strlen (buf);
5864 regcache_raw_collect (regcache, reg->regnum, regp);
5865 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5866 putpkt (rs->buf);
5867 getpkt (&rs->buf, &rs->buf_size, 0);
5868
5869 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5870 {
5871 case PACKET_OK:
5872 return 1;
5873 case PACKET_ERROR:
5874 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
5875 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
5876 case PACKET_UNKNOWN:
5877 return 0;
5878 default:
5879 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5880 }
5881 }
5882
5883 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5884 contents of the register cache buffer. FIXME: ignores errors. */
5885
5886 static void
5887 store_registers_using_G (const struct regcache *regcache)
5888 {
5889 struct remote_state *rs = get_remote_state ();
5890 struct remote_arch_state *rsa = get_remote_arch_state ();
5891 gdb_byte *regs;
5892 char *p;
5893
5894 /* Extract all the registers in the regcache copying them into a
5895 local buffer. */
5896 {
5897 int i;
5898
5899 regs = alloca (rsa->sizeof_g_packet);
5900 memset (regs, 0, rsa->sizeof_g_packet);
5901 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5902 {
5903 struct packet_reg *r = &rsa->regs[i];
5904
5905 if (r->in_g_packet)
5906 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5907 }
5908 }
5909
5910 /* Command describes registers byte by byte,
5911 each byte encoded as two hex characters. */
5912 p = rs->buf;
5913 *p++ = 'G';
5914 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5915 updated. */
5916 bin2hex (regs, p, rsa->sizeof_g_packet);
5917 putpkt (rs->buf);
5918 getpkt (&rs->buf, &rs->buf_size, 0);
5919 if (packet_check_result (rs->buf) == PACKET_ERROR)
5920 error (_("Could not write registers; remote failure reply '%s'"),
5921 rs->buf);
5922 }
5923
5924 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5925 of the register cache buffer. FIXME: ignores errors. */
5926
5927 static void
5928 remote_store_registers (struct target_ops *ops,
5929 struct regcache *regcache, int regnum)
5930 {
5931 struct remote_arch_state *rsa = get_remote_arch_state ();
5932 int i;
5933
5934 set_general_thread (inferior_ptid);
5935
5936 if (regnum >= 0)
5937 {
5938 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5939
5940 gdb_assert (reg != NULL);
5941
5942 /* Always prefer to store registers using the 'P' packet if
5943 possible; we often change only a small number of registers.
5944 Sometimes we change a larger number; we'd need help from a
5945 higher layer to know to use 'G'. */
5946 if (store_register_using_P (regcache, reg))
5947 return;
5948
5949 /* For now, don't complain if we have no way to write the
5950 register. GDB loses track of unavailable registers too
5951 easily. Some day, this may be an error. We don't have
5952 any way to read the register, either... */
5953 if (!reg->in_g_packet)
5954 return;
5955
5956 store_registers_using_G (regcache);
5957 return;
5958 }
5959
5960 store_registers_using_G (regcache);
5961
5962 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5963 if (!rsa->regs[i].in_g_packet)
5964 if (!store_register_using_P (regcache, &rsa->regs[i]))
5965 /* See above for why we do not issue an error here. */
5966 continue;
5967 }
5968 \f
5969
5970 /* Return the number of hex digits in num. */
5971
5972 static int
5973 hexnumlen (ULONGEST num)
5974 {
5975 int i;
5976
5977 for (i = 0; num != 0; i++)
5978 num >>= 4;
5979
5980 return max (i, 1);
5981 }
5982
5983 /* Set BUF to the minimum number of hex digits representing NUM. */
5984
5985 static int
5986 hexnumstr (char *buf, ULONGEST num)
5987 {
5988 int len = hexnumlen (num);
5989
5990 return hexnumnstr (buf, num, len);
5991 }
5992
5993
5994 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5995
5996 static int
5997 hexnumnstr (char *buf, ULONGEST num, int width)
5998 {
5999 int i;
6000
6001 buf[width] = '\0';
6002
6003 for (i = width - 1; i >= 0; i--)
6004 {
6005 buf[i] = "0123456789abcdef"[(num & 0xf)];
6006 num >>= 4;
6007 }
6008
6009 return width;
6010 }
6011
6012 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6013
6014 static CORE_ADDR
6015 remote_address_masked (CORE_ADDR addr)
6016 {
6017 int address_size = remote_address_size;
6018
6019 /* If "remoteaddresssize" was not set, default to target address size. */
6020 if (!address_size)
6021 address_size = gdbarch_addr_bit (target_gdbarch);
6022
6023 if (address_size > 0
6024 && address_size < (sizeof (ULONGEST) * 8))
6025 {
6026 /* Only create a mask when that mask can safely be constructed
6027 in a ULONGEST variable. */
6028 ULONGEST mask = 1;
6029
6030 mask = (mask << address_size) - 1;
6031 addr &= mask;
6032 }
6033 return addr;
6034 }
6035
6036 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6037 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6038 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6039 (which may be more than *OUT_LEN due to escape characters). The
6040 total number of bytes in the output buffer will be at most
6041 OUT_MAXLEN. */
6042
6043 static int
6044 remote_escape_output (const gdb_byte *buffer, int len,
6045 gdb_byte *out_buf, int *out_len,
6046 int out_maxlen)
6047 {
6048 int input_index, output_index;
6049
6050 output_index = 0;
6051 for (input_index = 0; input_index < len; input_index++)
6052 {
6053 gdb_byte b = buffer[input_index];
6054
6055 if (b == '$' || b == '#' || b == '}')
6056 {
6057 /* These must be escaped. */
6058 if (output_index + 2 > out_maxlen)
6059 break;
6060 out_buf[output_index++] = '}';
6061 out_buf[output_index++] = b ^ 0x20;
6062 }
6063 else
6064 {
6065 if (output_index + 1 > out_maxlen)
6066 break;
6067 out_buf[output_index++] = b;
6068 }
6069 }
6070
6071 *out_len = input_index;
6072 return output_index;
6073 }
6074
6075 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6076 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6077 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6078
6079 This function reverses remote_escape_output. It allows more
6080 escaped characters than that function does, in particular because
6081 '*' must be escaped to avoid the run-length encoding processing
6082 in reading packets. */
6083
6084 static int
6085 remote_unescape_input (const gdb_byte *buffer, int len,
6086 gdb_byte *out_buf, int out_maxlen)
6087 {
6088 int input_index, output_index;
6089 int escaped;
6090
6091 output_index = 0;
6092 escaped = 0;
6093 for (input_index = 0; input_index < len; input_index++)
6094 {
6095 gdb_byte b = buffer[input_index];
6096
6097 if (output_index + 1 > out_maxlen)
6098 {
6099 warning (_("Received too much data from remote target;"
6100 " ignoring overflow."));
6101 return output_index;
6102 }
6103
6104 if (escaped)
6105 {
6106 out_buf[output_index++] = b ^ 0x20;
6107 escaped = 0;
6108 }
6109 else if (b == '}')
6110 escaped = 1;
6111 else
6112 out_buf[output_index++] = b;
6113 }
6114
6115 if (escaped)
6116 error (_("Unmatched escape character in target response."));
6117
6118 return output_index;
6119 }
6120
6121 /* Determine whether the remote target supports binary downloading.
6122 This is accomplished by sending a no-op memory write of zero length
6123 to the target at the specified address. It does not suffice to send
6124 the whole packet, since many stubs strip the eighth bit and
6125 subsequently compute a wrong checksum, which causes real havoc with
6126 remote_write_bytes.
6127
6128 NOTE: This can still lose if the serial line is not eight-bit
6129 clean. In cases like this, the user should clear "remote
6130 X-packet". */
6131
6132 static void
6133 check_binary_download (CORE_ADDR addr)
6134 {
6135 struct remote_state *rs = get_remote_state ();
6136
6137 switch (remote_protocol_packets[PACKET_X].support)
6138 {
6139 case PACKET_DISABLE:
6140 break;
6141 case PACKET_ENABLE:
6142 break;
6143 case PACKET_SUPPORT_UNKNOWN:
6144 {
6145 char *p;
6146
6147 p = rs->buf;
6148 *p++ = 'X';
6149 p += hexnumstr (p, (ULONGEST) addr);
6150 *p++ = ',';
6151 p += hexnumstr (p, (ULONGEST) 0);
6152 *p++ = ':';
6153 *p = '\0';
6154
6155 putpkt_binary (rs->buf, (int) (p - rs->buf));
6156 getpkt (&rs->buf, &rs->buf_size, 0);
6157
6158 if (rs->buf[0] == '\0')
6159 {
6160 if (remote_debug)
6161 fprintf_unfiltered (gdb_stdlog,
6162 "binary downloading NOT suppported by target\n");
6163 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6164 }
6165 else
6166 {
6167 if (remote_debug)
6168 fprintf_unfiltered (gdb_stdlog,
6169 "binary downloading suppported by target\n");
6170 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6171 }
6172 break;
6173 }
6174 }
6175 }
6176
6177 /* Write memory data directly to the remote machine.
6178 This does not inform the data cache; the data cache uses this.
6179 HEADER is the starting part of the packet.
6180 MEMADDR is the address in the remote memory space.
6181 MYADDR is the address of the buffer in our space.
6182 LEN is the number of bytes.
6183 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6184 should send data as binary ('X'), or hex-encoded ('M').
6185
6186 The function creates packet of the form
6187 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6188
6189 where encoding of <DATA> is termined by PACKET_FORMAT.
6190
6191 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6192 are omitted.
6193
6194 Returns the number of bytes transferred, or 0 (setting errno) for
6195 error. Only transfer a single packet. */
6196
6197 static int
6198 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6199 const gdb_byte *myaddr, int len,
6200 char packet_format, int use_length)
6201 {
6202 struct remote_state *rs = get_remote_state ();
6203 char *p;
6204 char *plen = NULL;
6205 int plenlen = 0;
6206 int todo;
6207 int nr_bytes;
6208 int payload_size;
6209 int payload_length;
6210 int header_length;
6211
6212 if (packet_format != 'X' && packet_format != 'M')
6213 internal_error (__FILE__, __LINE__,
6214 "remote_write_bytes_aux: bad packet format");
6215
6216 if (len <= 0)
6217 return 0;
6218
6219 payload_size = get_memory_write_packet_size ();
6220
6221 /* The packet buffer will be large enough for the payload;
6222 get_memory_packet_size ensures this. */
6223 rs->buf[0] = '\0';
6224
6225 /* Compute the size of the actual payload by subtracting out the
6226 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
6227 */
6228 payload_size -= strlen ("$,:#NN");
6229 if (!use_length)
6230 /* The comma won't be used. */
6231 payload_size += 1;
6232 header_length = strlen (header);
6233 payload_size -= header_length;
6234 payload_size -= hexnumlen (memaddr);
6235
6236 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6237
6238 strcat (rs->buf, header);
6239 p = rs->buf + strlen (header);
6240
6241 /* Compute a best guess of the number of bytes actually transfered. */
6242 if (packet_format == 'X')
6243 {
6244 /* Best guess at number of bytes that will fit. */
6245 todo = min (len, payload_size);
6246 if (use_length)
6247 payload_size -= hexnumlen (todo);
6248 todo = min (todo, payload_size);
6249 }
6250 else
6251 {
6252 /* Num bytes that will fit. */
6253 todo = min (len, payload_size / 2);
6254 if (use_length)
6255 payload_size -= hexnumlen (todo);
6256 todo = min (todo, payload_size / 2);
6257 }
6258
6259 if (todo <= 0)
6260 internal_error (__FILE__, __LINE__,
6261 _("minumum packet size too small to write data"));
6262
6263 /* If we already need another packet, then try to align the end
6264 of this packet to a useful boundary. */
6265 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6266 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6267
6268 /* Append "<memaddr>". */
6269 memaddr = remote_address_masked (memaddr);
6270 p += hexnumstr (p, (ULONGEST) memaddr);
6271
6272 if (use_length)
6273 {
6274 /* Append ",". */
6275 *p++ = ',';
6276
6277 /* Append <len>. Retain the location/size of <len>. It may need to
6278 be adjusted once the packet body has been created. */
6279 plen = p;
6280 plenlen = hexnumstr (p, (ULONGEST) todo);
6281 p += plenlen;
6282 }
6283
6284 /* Append ":". */
6285 *p++ = ':';
6286 *p = '\0';
6287
6288 /* Append the packet body. */
6289 if (packet_format == 'X')
6290 {
6291 /* Binary mode. Send target system values byte by byte, in
6292 increasing byte addresses. Only escape certain critical
6293 characters. */
6294 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6295 payload_size);
6296
6297 /* If not all TODO bytes fit, then we'll need another packet. Make
6298 a second try to keep the end of the packet aligned. Don't do
6299 this if the packet is tiny. */
6300 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6301 {
6302 int new_nr_bytes;
6303
6304 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6305 - memaddr);
6306 if (new_nr_bytes != nr_bytes)
6307 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6308 p, &nr_bytes,
6309 payload_size);
6310 }
6311
6312 p += payload_length;
6313 if (use_length && nr_bytes < todo)
6314 {
6315 /* Escape chars have filled up the buffer prematurely,
6316 and we have actually sent fewer bytes than planned.
6317 Fix-up the length field of the packet. Use the same
6318 number of characters as before. */
6319 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6320 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6321 }
6322 }
6323 else
6324 {
6325 /* Normal mode: Send target system values byte by byte, in
6326 increasing byte addresses. Each byte is encoded as a two hex
6327 value. */
6328 nr_bytes = bin2hex (myaddr, p, todo);
6329 p += 2 * nr_bytes;
6330 }
6331
6332 putpkt_binary (rs->buf, (int) (p - rs->buf));
6333 getpkt (&rs->buf, &rs->buf_size, 0);
6334
6335 if (rs->buf[0] == 'E')
6336 {
6337 /* There is no correspondance between what the remote protocol
6338 uses for errors and errno codes. We would like a cleaner way
6339 of representing errors (big enough to include errno codes,
6340 bfd_error codes, and others). But for now just return EIO. */
6341 errno = EIO;
6342 return 0;
6343 }
6344
6345 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6346 fewer bytes than we'd planned. */
6347 return nr_bytes;
6348 }
6349
6350 /* Write memory data directly to the remote machine.
6351 This does not inform the data cache; the data cache uses this.
6352 MEMADDR is the address in the remote memory space.
6353 MYADDR is the address of the buffer in our space.
6354 LEN is the number of bytes.
6355
6356 Returns number of bytes transferred, or 0 (setting errno) for
6357 error. Only transfer a single packet. */
6358
6359 int
6360 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
6361 {
6362 char *packet_format = 0;
6363
6364 /* Check whether the target supports binary download. */
6365 check_binary_download (memaddr);
6366
6367 switch (remote_protocol_packets[PACKET_X].support)
6368 {
6369 case PACKET_ENABLE:
6370 packet_format = "X";
6371 break;
6372 case PACKET_DISABLE:
6373 packet_format = "M";
6374 break;
6375 case PACKET_SUPPORT_UNKNOWN:
6376 internal_error (__FILE__, __LINE__,
6377 _("remote_write_bytes: bad internal state"));
6378 default:
6379 internal_error (__FILE__, __LINE__, _("bad switch"));
6380 }
6381
6382 return remote_write_bytes_aux (packet_format,
6383 memaddr, myaddr, len, packet_format[0], 1);
6384 }
6385
6386 /* Read memory data directly from the remote machine.
6387 This does not use the data cache; the data cache uses this.
6388 MEMADDR is the address in the remote memory space.
6389 MYADDR is the address of the buffer in our space.
6390 LEN is the number of bytes.
6391
6392 Returns number of bytes transferred, or 0 for error. */
6393
6394 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
6395 remote targets) shouldn't attempt to read the entire buffer.
6396 Instead it should read a single packet worth of data and then
6397 return the byte size of that packet to the caller. The caller (its
6398 caller and its callers caller ;-) already contains code for
6399 handling partial reads. */
6400
6401 int
6402 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6403 {
6404 struct remote_state *rs = get_remote_state ();
6405 int max_buf_size; /* Max size of packet output buffer. */
6406 int origlen;
6407
6408 if (len <= 0)
6409 return 0;
6410
6411 max_buf_size = get_memory_read_packet_size ();
6412 /* The packet buffer will be large enough for the payload;
6413 get_memory_packet_size ensures this. */
6414
6415 origlen = len;
6416 while (len > 0)
6417 {
6418 char *p;
6419 int todo;
6420 int i;
6421
6422 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
6423
6424 /* construct "m"<memaddr>","<len>" */
6425 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
6426 memaddr = remote_address_masked (memaddr);
6427 p = rs->buf;
6428 *p++ = 'm';
6429 p += hexnumstr (p, (ULONGEST) memaddr);
6430 *p++ = ',';
6431 p += hexnumstr (p, (ULONGEST) todo);
6432 *p = '\0';
6433
6434 putpkt (rs->buf);
6435 getpkt (&rs->buf, &rs->buf_size, 0);
6436
6437 if (rs->buf[0] == 'E'
6438 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6439 && rs->buf[3] == '\0')
6440 {
6441 /* There is no correspondance between what the remote
6442 protocol uses for errors and errno codes. We would like
6443 a cleaner way of representing errors (big enough to
6444 include errno codes, bfd_error codes, and others). But
6445 for now just return EIO. */
6446 errno = EIO;
6447 return 0;
6448 }
6449
6450 /* Reply describes memory byte by byte,
6451 each byte encoded as two hex characters. */
6452
6453 p = rs->buf;
6454 if ((i = hex2bin (p, myaddr, todo)) < todo)
6455 {
6456 /* Reply is short. This means that we were able to read
6457 only part of what we wanted to. */
6458 return i + (origlen - len);
6459 }
6460 myaddr += todo;
6461 memaddr += todo;
6462 len -= todo;
6463 }
6464 return origlen;
6465 }
6466 \f
6467
6468 /* Remote notification handler. */
6469
6470 static void
6471 handle_notification (char *buf, size_t length)
6472 {
6473 if (strncmp (buf, "Stop:", 5) == 0)
6474 {
6475 if (pending_stop_reply)
6476 {
6477 /* We've already parsed the in-flight stop-reply, but the
6478 stub for some reason thought we didn't, possibly due to
6479 timeout on its side. Just ignore it. */
6480 if (remote_debug)
6481 fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6482 }
6483 else
6484 {
6485 struct cleanup *old_chain;
6486 struct stop_reply *reply = stop_reply_xmalloc ();
6487
6488 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6489
6490 remote_parse_stop_reply (buf + 5, reply);
6491
6492 discard_cleanups (old_chain);
6493
6494 /* Be careful to only set it after parsing, since an error
6495 may be thrown then. */
6496 pending_stop_reply = reply;
6497
6498 /* Notify the event loop there's a stop reply to acknowledge
6499 and that there may be more events to fetch. */
6500 mark_async_event_handler (remote_async_get_pending_events_token);
6501
6502 if (remote_debug)
6503 fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6504 }
6505 }
6506 else
6507 /* We ignore notifications we don't recognize, for compatibility
6508 with newer stubs. */
6509 ;
6510 }
6511
6512 \f
6513 /* Read or write LEN bytes from inferior memory at MEMADDR,
6514 transferring to or from debugger address BUFFER. Write to inferior
6515 if SHOULD_WRITE is nonzero. Returns length of data written or
6516 read; 0 for error. TARGET is unused. */
6517
6518 static int
6519 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6520 int should_write, struct mem_attrib *attrib,
6521 struct target_ops *target)
6522 {
6523 int res;
6524
6525 set_general_thread (inferior_ptid);
6526
6527 if (should_write)
6528 res = remote_write_bytes (mem_addr, buffer, mem_len);
6529 else
6530 res = remote_read_bytes (mem_addr, buffer, mem_len);
6531
6532 return res;
6533 }
6534
6535 /* Sends a packet with content determined by the printf format string
6536 FORMAT and the remaining arguments, then gets the reply. Returns
6537 whether the packet was a success, a failure, or unknown. */
6538
6539 static enum packet_result
6540 remote_send_printf (const char *format, ...)
6541 {
6542 struct remote_state *rs = get_remote_state ();
6543 int max_size = get_remote_packet_size ();
6544 va_list ap;
6545
6546 va_start (ap, format);
6547
6548 rs->buf[0] = '\0';
6549 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6550 internal_error (__FILE__, __LINE__, "Too long remote packet.");
6551
6552 if (putpkt (rs->buf) < 0)
6553 error (_("Communication problem with target."));
6554
6555 rs->buf[0] = '\0';
6556 getpkt (&rs->buf, &rs->buf_size, 0);
6557
6558 return packet_check_result (rs->buf);
6559 }
6560
6561 static void
6562 restore_remote_timeout (void *p)
6563 {
6564 int value = *(int *)p;
6565
6566 remote_timeout = value;
6567 }
6568
6569 /* Flash writing can take quite some time. We'll set
6570 effectively infinite timeout for flash operations.
6571 In future, we'll need to decide on a better approach. */
6572 static const int remote_flash_timeout = 1000;
6573
6574 static void
6575 remote_flash_erase (struct target_ops *ops,
6576 ULONGEST address, LONGEST length)
6577 {
6578 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6579 int saved_remote_timeout = remote_timeout;
6580 enum packet_result ret;
6581 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6582 &saved_remote_timeout);
6583
6584 remote_timeout = remote_flash_timeout;
6585
6586 ret = remote_send_printf ("vFlashErase:%s,%s",
6587 phex (address, addr_size),
6588 phex (length, 4));
6589 switch (ret)
6590 {
6591 case PACKET_UNKNOWN:
6592 error (_("Remote target does not support flash erase"));
6593 case PACKET_ERROR:
6594 error (_("Error erasing flash with vFlashErase packet"));
6595 default:
6596 break;
6597 }
6598
6599 do_cleanups (back_to);
6600 }
6601
6602 static LONGEST
6603 remote_flash_write (struct target_ops *ops,
6604 ULONGEST address, LONGEST length,
6605 const gdb_byte *data)
6606 {
6607 int saved_remote_timeout = remote_timeout;
6608 int ret;
6609 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6610 &saved_remote_timeout);
6611
6612 remote_timeout = remote_flash_timeout;
6613 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6614 do_cleanups (back_to);
6615
6616 return ret;
6617 }
6618
6619 static void
6620 remote_flash_done (struct target_ops *ops)
6621 {
6622 int saved_remote_timeout = remote_timeout;
6623 int ret;
6624 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6625 &saved_remote_timeout);
6626
6627 remote_timeout = remote_flash_timeout;
6628 ret = remote_send_printf ("vFlashDone");
6629 do_cleanups (back_to);
6630
6631 switch (ret)
6632 {
6633 case PACKET_UNKNOWN:
6634 error (_("Remote target does not support vFlashDone"));
6635 case PACKET_ERROR:
6636 error (_("Error finishing flash operation"));
6637 default:
6638 break;
6639 }
6640 }
6641
6642 static void
6643 remote_files_info (struct target_ops *ignore)
6644 {
6645 puts_filtered ("Debugging a target over a serial line.\n");
6646 }
6647 \f
6648 /* Stuff for dealing with the packets which are part of this protocol.
6649 See comment at top of file for details. */
6650
6651 /* Read a single character from the remote end. */
6652
6653 static int
6654 readchar (int timeout)
6655 {
6656 int ch;
6657
6658 ch = serial_readchar (remote_desc, timeout);
6659
6660 if (ch >= 0)
6661 return ch;
6662
6663 switch ((enum serial_rc) ch)
6664 {
6665 case SERIAL_EOF:
6666 pop_target ();
6667 error (_("Remote connection closed"));
6668 /* no return */
6669 case SERIAL_ERROR:
6670 perror_with_name (_("Remote communication error"));
6671 /* no return */
6672 case SERIAL_TIMEOUT:
6673 break;
6674 }
6675 return ch;
6676 }
6677
6678 /* Send the command in *BUF to the remote machine, and read the reply
6679 into *BUF. Report an error if we get an error reply. Resize
6680 *BUF using xrealloc if necessary to hold the result, and update
6681 *SIZEOF_BUF. */
6682
6683 static void
6684 remote_send (char **buf,
6685 long *sizeof_buf)
6686 {
6687 putpkt (*buf);
6688 getpkt (buf, sizeof_buf, 0);
6689
6690 if ((*buf)[0] == 'E')
6691 error (_("Remote failure reply: %s"), *buf);
6692 }
6693
6694 /* Return a pointer to an xmalloc'ed string representing an escaped
6695 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6696 etc. The caller is responsible for releasing the returned
6697 memory. */
6698
6699 static char *
6700 escape_buffer (const char *buf, int n)
6701 {
6702 struct cleanup *old_chain;
6703 struct ui_file *stb;
6704 char *str;
6705
6706 stb = mem_fileopen ();
6707 old_chain = make_cleanup_ui_file_delete (stb);
6708
6709 fputstrn_unfiltered (buf, n, 0, stb);
6710 str = ui_file_xstrdup (stb, NULL);
6711 do_cleanups (old_chain);
6712 return str;
6713 }
6714
6715 /* Display a null-terminated packet on stdout, for debugging, using C
6716 string notation. */
6717
6718 static void
6719 print_packet (char *buf)
6720 {
6721 puts_filtered ("\"");
6722 fputstr_filtered (buf, '"', gdb_stdout);
6723 puts_filtered ("\"");
6724 }
6725
6726 int
6727 putpkt (char *buf)
6728 {
6729 return putpkt_binary (buf, strlen (buf));
6730 }
6731
6732 /* Send a packet to the remote machine, with error checking. The data
6733 of the packet is in BUF. The string in BUF can be at most
6734 get_remote_packet_size () - 5 to account for the $, # and checksum,
6735 and for a possible /0 if we are debugging (remote_debug) and want
6736 to print the sent packet as a string. */
6737
6738 static int
6739 putpkt_binary (char *buf, int cnt)
6740 {
6741 struct remote_state *rs = get_remote_state ();
6742 int i;
6743 unsigned char csum = 0;
6744 char *buf2 = alloca (cnt + 6);
6745
6746 int ch;
6747 int tcount = 0;
6748 char *p;
6749
6750 /* Catch cases like trying to read memory or listing threads while
6751 we're waiting for a stop reply. The remote server wouldn't be
6752 ready to handle this request, so we'd hang and timeout. We don't
6753 have to worry about this in synchronous mode, because in that
6754 case it's not possible to issue a command while the target is
6755 running. This is not a problem in non-stop mode, because in that
6756 case, the stub is always ready to process serial input. */
6757 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6758 error (_("Cannot execute this command while the target is running."));
6759
6760 /* We're sending out a new packet. Make sure we don't look at a
6761 stale cached response. */
6762 rs->cached_wait_status = 0;
6763
6764 /* Copy the packet into buffer BUF2, encapsulating it
6765 and giving it a checksum. */
6766
6767 p = buf2;
6768 *p++ = '$';
6769
6770 for (i = 0; i < cnt; i++)
6771 {
6772 csum += buf[i];
6773 *p++ = buf[i];
6774 }
6775 *p++ = '#';
6776 *p++ = tohex ((csum >> 4) & 0xf);
6777 *p++ = tohex (csum & 0xf);
6778
6779 /* Send it over and over until we get a positive ack. */
6780
6781 while (1)
6782 {
6783 int started_error_output = 0;
6784
6785 if (remote_debug)
6786 {
6787 struct cleanup *old_chain;
6788 char *str;
6789
6790 *p = '\0';
6791 str = escape_buffer (buf2, p - buf2);
6792 old_chain = make_cleanup (xfree, str);
6793 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6794 gdb_flush (gdb_stdlog);
6795 do_cleanups (old_chain);
6796 }
6797 if (serial_write (remote_desc, buf2, p - buf2))
6798 perror_with_name (_("putpkt: write failed"));
6799
6800 /* If this is a no acks version of the remote protocol, send the
6801 packet and move on. */
6802 if (rs->noack_mode)
6803 break;
6804
6805 /* Read until either a timeout occurs (-2) or '+' is read.
6806 Handle any notification that arrives in the mean time. */
6807 while (1)
6808 {
6809 ch = readchar (remote_timeout);
6810
6811 if (remote_debug)
6812 {
6813 switch (ch)
6814 {
6815 case '+':
6816 case '-':
6817 case SERIAL_TIMEOUT:
6818 case '$':
6819 case '%':
6820 if (started_error_output)
6821 {
6822 putchar_unfiltered ('\n');
6823 started_error_output = 0;
6824 }
6825 }
6826 }
6827
6828 switch (ch)
6829 {
6830 case '+':
6831 if (remote_debug)
6832 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6833 return 1;
6834 case '-':
6835 if (remote_debug)
6836 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6837 case SERIAL_TIMEOUT:
6838 tcount++;
6839 if (tcount > 3)
6840 return 0;
6841 break; /* Retransmit buffer. */
6842 case '$':
6843 {
6844 if (remote_debug)
6845 fprintf_unfiltered (gdb_stdlog,
6846 "Packet instead of Ack, ignoring it\n");
6847 /* It's probably an old response sent because an ACK
6848 was lost. Gobble up the packet and ack it so it
6849 doesn't get retransmitted when we resend this
6850 packet. */
6851 skip_frame ();
6852 serial_write (remote_desc, "+", 1);
6853 continue; /* Now, go look for +. */
6854 }
6855
6856 case '%':
6857 {
6858 int val;
6859
6860 /* If we got a notification, handle it, and go back to looking
6861 for an ack. */
6862 /* We've found the start of a notification. Now
6863 collect the data. */
6864 val = read_frame (&rs->buf, &rs->buf_size);
6865 if (val >= 0)
6866 {
6867 if (remote_debug)
6868 {
6869 struct cleanup *old_chain;
6870 char *str;
6871
6872 str = escape_buffer (rs->buf, val);
6873 old_chain = make_cleanup (xfree, str);
6874 fprintf_unfiltered (gdb_stdlog,
6875 " Notification received: %s\n",
6876 str);
6877 do_cleanups (old_chain);
6878 }
6879 handle_notification (rs->buf, val);
6880 /* We're in sync now, rewait for the ack. */
6881 tcount = 0;
6882 }
6883 else
6884 {
6885 if (remote_debug)
6886 {
6887 if (!started_error_output)
6888 {
6889 started_error_output = 1;
6890 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6891 }
6892 fputc_unfiltered (ch & 0177, gdb_stdlog);
6893 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6894 }
6895 }
6896 continue;
6897 }
6898 /* fall-through */
6899 default:
6900 if (remote_debug)
6901 {
6902 if (!started_error_output)
6903 {
6904 started_error_output = 1;
6905 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6906 }
6907 fputc_unfiltered (ch & 0177, gdb_stdlog);
6908 }
6909 continue;
6910 }
6911 break; /* Here to retransmit. */
6912 }
6913
6914 #if 0
6915 /* This is wrong. If doing a long backtrace, the user should be
6916 able to get out next time we call QUIT, without anything as
6917 violent as interrupt_query. If we want to provide a way out of
6918 here without getting to the next QUIT, it should be based on
6919 hitting ^C twice as in remote_wait. */
6920 if (quit_flag)
6921 {
6922 quit_flag = 0;
6923 interrupt_query ();
6924 }
6925 #endif
6926 }
6927 return 0;
6928 }
6929
6930 /* Come here after finding the start of a frame when we expected an
6931 ack. Do our best to discard the rest of this packet. */
6932
6933 static void
6934 skip_frame (void)
6935 {
6936 int c;
6937
6938 while (1)
6939 {
6940 c = readchar (remote_timeout);
6941 switch (c)
6942 {
6943 case SERIAL_TIMEOUT:
6944 /* Nothing we can do. */
6945 return;
6946 case '#':
6947 /* Discard the two bytes of checksum and stop. */
6948 c = readchar (remote_timeout);
6949 if (c >= 0)
6950 c = readchar (remote_timeout);
6951
6952 return;
6953 case '*': /* Run length encoding. */
6954 /* Discard the repeat count. */
6955 c = readchar (remote_timeout);
6956 if (c < 0)
6957 return;
6958 break;
6959 default:
6960 /* A regular character. */
6961 break;
6962 }
6963 }
6964 }
6965
6966 /* Come here after finding the start of the frame. Collect the rest
6967 into *BUF, verifying the checksum, length, and handling run-length
6968 compression. NUL terminate the buffer. If there is not enough room,
6969 expand *BUF using xrealloc.
6970
6971 Returns -1 on error, number of characters in buffer (ignoring the
6972 trailing NULL) on success. (could be extended to return one of the
6973 SERIAL status indications). */
6974
6975 static long
6976 read_frame (char **buf_p,
6977 long *sizeof_buf)
6978 {
6979 unsigned char csum;
6980 long bc;
6981 int c;
6982 char *buf = *buf_p;
6983 struct remote_state *rs = get_remote_state ();
6984
6985 csum = 0;
6986 bc = 0;
6987
6988 while (1)
6989 {
6990 c = readchar (remote_timeout);
6991 switch (c)
6992 {
6993 case SERIAL_TIMEOUT:
6994 if (remote_debug)
6995 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6996 return -1;
6997 case '$':
6998 if (remote_debug)
6999 fputs_filtered ("Saw new packet start in middle of old one\n",
7000 gdb_stdlog);
7001 return -1; /* Start a new packet, count retries. */
7002 case '#':
7003 {
7004 unsigned char pktcsum;
7005 int check_0 = 0;
7006 int check_1 = 0;
7007
7008 buf[bc] = '\0';
7009
7010 check_0 = readchar (remote_timeout);
7011 if (check_0 >= 0)
7012 check_1 = readchar (remote_timeout);
7013
7014 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7015 {
7016 if (remote_debug)
7017 fputs_filtered ("Timeout in checksum, retrying\n",
7018 gdb_stdlog);
7019 return -1;
7020 }
7021 else if (check_0 < 0 || check_1 < 0)
7022 {
7023 if (remote_debug)
7024 fputs_filtered ("Communication error in checksum\n",
7025 gdb_stdlog);
7026 return -1;
7027 }
7028
7029 /* Don't recompute the checksum; with no ack packets we
7030 don't have any way to indicate a packet retransmission
7031 is necessary. */
7032 if (rs->noack_mode)
7033 return bc;
7034
7035 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7036 if (csum == pktcsum)
7037 return bc;
7038
7039 if (remote_debug)
7040 {
7041 struct cleanup *old_chain;
7042 char *str;
7043
7044 str = escape_buffer (buf, bc);
7045 old_chain = make_cleanup (xfree, str);
7046 fprintf_unfiltered (gdb_stdlog,
7047 "\
7048 Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
7049 pktcsum, csum, str);
7050 do_cleanups (old_chain);
7051 }
7052 /* Number of characters in buffer ignoring trailing
7053 NULL. */
7054 return -1;
7055 }
7056 case '*': /* Run length encoding. */
7057 {
7058 int repeat;
7059
7060 csum += c;
7061 c = readchar (remote_timeout);
7062 csum += c;
7063 repeat = c - ' ' + 3; /* Compute repeat count. */
7064
7065 /* The character before ``*'' is repeated. */
7066
7067 if (repeat > 0 && repeat <= 255 && bc > 0)
7068 {
7069 if (bc + repeat - 1 >= *sizeof_buf - 1)
7070 {
7071 /* Make some more room in the buffer. */
7072 *sizeof_buf += repeat;
7073 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7074 buf = *buf_p;
7075 }
7076
7077 memset (&buf[bc], buf[bc - 1], repeat);
7078 bc += repeat;
7079 continue;
7080 }
7081
7082 buf[bc] = '\0';
7083 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7084 return -1;
7085 }
7086 default:
7087 if (bc >= *sizeof_buf - 1)
7088 {
7089 /* Make some more room in the buffer. */
7090 *sizeof_buf *= 2;
7091 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7092 buf = *buf_p;
7093 }
7094
7095 buf[bc++] = c;
7096 csum += c;
7097 continue;
7098 }
7099 }
7100 }
7101
7102 /* Read a packet from the remote machine, with error checking, and
7103 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7104 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7105 rather than timing out; this is used (in synchronous mode) to wait
7106 for a target that is is executing user code to stop. */
7107 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7108 don't have to change all the calls to getpkt to deal with the
7109 return value, because at the moment I don't know what the right
7110 thing to do it for those. */
7111 void
7112 getpkt (char **buf,
7113 long *sizeof_buf,
7114 int forever)
7115 {
7116 int timed_out;
7117
7118 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7119 }
7120
7121
7122 /* Read a packet from the remote machine, with error checking, and
7123 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7124 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7125 rather than timing out; this is used (in synchronous mode) to wait
7126 for a target that is is executing user code to stop. If FOREVER ==
7127 0, this function is allowed to time out gracefully and return an
7128 indication of this to the caller. Otherwise return the number of
7129 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7130 enough reason to return to the caller. */
7131
7132 static int
7133 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7134 int expecting_notif)
7135 {
7136 struct remote_state *rs = get_remote_state ();
7137 int c;
7138 int tries;
7139 int timeout;
7140 int val = -1;
7141
7142 /* We're reading a new response. Make sure we don't look at a
7143 previously cached response. */
7144 rs->cached_wait_status = 0;
7145
7146 strcpy (*buf, "timeout");
7147
7148 if (forever)
7149 timeout = watchdog > 0 ? watchdog : -1;
7150 else if (expecting_notif)
7151 timeout = 0; /* There should already be a char in the buffer. If
7152 not, bail out. */
7153 else
7154 timeout = remote_timeout;
7155
7156 #define MAX_TRIES 3
7157
7158 /* Process any number of notifications, and then return when
7159 we get a packet. */
7160 for (;;)
7161 {
7162 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7163 times. */
7164 for (tries = 1; tries <= MAX_TRIES; tries++)
7165 {
7166 /* This can loop forever if the remote side sends us
7167 characters continuously, but if it pauses, we'll get
7168 SERIAL_TIMEOUT from readchar because of timeout. Then
7169 we'll count that as a retry.
7170
7171 Note that even when forever is set, we will only wait
7172 forever prior to the start of a packet. After that, we
7173 expect characters to arrive at a brisk pace. They should
7174 show up within remote_timeout intervals. */
7175 do
7176 c = readchar (timeout);
7177 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7178
7179 if (c == SERIAL_TIMEOUT)
7180 {
7181 if (expecting_notif)
7182 return -1; /* Don't complain, it's normal to not get
7183 anything in this case. */
7184
7185 if (forever) /* Watchdog went off? Kill the target. */
7186 {
7187 QUIT;
7188 pop_target ();
7189 error (_("Watchdog timeout has expired. Target detached."));
7190 }
7191 if (remote_debug)
7192 fputs_filtered ("Timed out.\n", gdb_stdlog);
7193 }
7194 else
7195 {
7196 /* We've found the start of a packet or notification.
7197 Now collect the data. */
7198 val = read_frame (buf, sizeof_buf);
7199 if (val >= 0)
7200 break;
7201 }
7202
7203 serial_write (remote_desc, "-", 1);
7204 }
7205
7206 if (tries > MAX_TRIES)
7207 {
7208 /* We have tried hard enough, and just can't receive the
7209 packet/notification. Give up. */
7210 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7211
7212 /* Skip the ack char if we're in no-ack mode. */
7213 if (!rs->noack_mode)
7214 serial_write (remote_desc, "+", 1);
7215 return -1;
7216 }
7217
7218 /* If we got an ordinary packet, return that to our caller. */
7219 if (c == '$')
7220 {
7221 if (remote_debug)
7222 {
7223 struct cleanup *old_chain;
7224 char *str;
7225
7226 str = escape_buffer (*buf, val);
7227 old_chain = make_cleanup (xfree, str);
7228 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7229 do_cleanups (old_chain);
7230 }
7231
7232 /* Skip the ack char if we're in no-ack mode. */
7233 if (!rs->noack_mode)
7234 serial_write (remote_desc, "+", 1);
7235 return val;
7236 }
7237
7238 /* If we got a notification, handle it, and go back to looking
7239 for a packet. */
7240 else
7241 {
7242 gdb_assert (c == '%');
7243
7244 if (remote_debug)
7245 {
7246 struct cleanup *old_chain;
7247 char *str;
7248
7249 str = escape_buffer (*buf, val);
7250 old_chain = make_cleanup (xfree, str);
7251 fprintf_unfiltered (gdb_stdlog,
7252 " Notification received: %s\n",
7253 str);
7254 do_cleanups (old_chain);
7255 }
7256
7257 handle_notification (*buf, val);
7258
7259 /* Notifications require no acknowledgement. */
7260
7261 if (expecting_notif)
7262 return -1;
7263 }
7264 }
7265 }
7266
7267 static int
7268 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7269 {
7270 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
7271 }
7272
7273 static int
7274 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
7275 {
7276 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
7277 }
7278
7279 \f
7280 static void
7281 remote_kill (struct target_ops *ops)
7282 {
7283 /* Use catch_errors so the user can quit from gdb even when we
7284 aren't on speaking terms with the remote system. */
7285 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
7286
7287 /* Don't wait for it to die. I'm not really sure it matters whether
7288 we do or not. For the existing stubs, kill is a noop. */
7289 target_mourn_inferior ();
7290 }
7291
7292 static int
7293 remote_vkill (int pid, struct remote_state *rs)
7294 {
7295 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7296 return -1;
7297
7298 /* Tell the remote target to detach. */
7299 sprintf (rs->buf, "vKill;%x", pid);
7300 putpkt (rs->buf);
7301 getpkt (&rs->buf, &rs->buf_size, 0);
7302
7303 if (packet_ok (rs->buf,
7304 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7305 return 0;
7306 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7307 return -1;
7308 else
7309 return 1;
7310 }
7311
7312 static void
7313 extended_remote_kill (struct target_ops *ops)
7314 {
7315 int res;
7316 int pid = ptid_get_pid (inferior_ptid);
7317 struct remote_state *rs = get_remote_state ();
7318
7319 res = remote_vkill (pid, rs);
7320 if (res == -1 && !remote_multi_process_p (rs))
7321 {
7322 /* Don't try 'k' on a multi-process aware stub -- it has no way
7323 to specify the pid. */
7324
7325 putpkt ("k");
7326 #if 0
7327 getpkt (&rs->buf, &rs->buf_size, 0);
7328 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7329 res = 1;
7330 #else
7331 /* Don't wait for it to die. I'm not really sure it matters whether
7332 we do or not. For the existing stubs, kill is a noop. */
7333 res = 0;
7334 #endif
7335 }
7336
7337 if (res != 0)
7338 error (_("Can't kill process"));
7339
7340 target_mourn_inferior ();
7341 }
7342
7343 static void
7344 remote_mourn (struct target_ops *ops)
7345 {
7346 remote_mourn_1 (ops);
7347 }
7348
7349 /* Worker function for remote_mourn. */
7350 static void
7351 remote_mourn_1 (struct target_ops *target)
7352 {
7353 unpush_target (target);
7354
7355 /* remote_close takes care of doing most of the clean up. */
7356 generic_mourn_inferior ();
7357 }
7358
7359 static void
7360 extended_remote_mourn_1 (struct target_ops *target)
7361 {
7362 struct remote_state *rs = get_remote_state ();
7363
7364 /* In case we got here due to an error, but we're going to stay
7365 connected. */
7366 rs->waiting_for_stop_reply = 0;
7367
7368 /* We're no longer interested in these events. */
7369 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7370
7371 /* If the current general thread belonged to the process we just
7372 detached from or has exited, the remote side current general
7373 thread becomes undefined. Considering a case like this:
7374
7375 - We just got here due to a detach.
7376 - The process that we're detaching from happens to immediately
7377 report a global breakpoint being hit in non-stop mode, in the
7378 same thread we had selected before.
7379 - GDB attaches to this process again.
7380 - This event happens to be the next event we handle.
7381
7382 GDB would consider that the current general thread didn't need to
7383 be set on the stub side (with Hg), since for all it knew,
7384 GENERAL_THREAD hadn't changed.
7385
7386 Notice that although in all-stop mode, the remote server always
7387 sets the current thread to the thread reporting the stop event,
7388 that doesn't happen in non-stop mode; in non-stop, the stub *must
7389 not* change the current thread when reporting a breakpoint hit,
7390 due to the decoupling of event reporting and event handling.
7391
7392 To keep things simple, we always invalidate our notion of the
7393 current thread. */
7394 record_currthread (minus_one_ptid);
7395
7396 /* Unlike "target remote", we do not want to unpush the target; then
7397 the next time the user says "run", we won't be connected. */
7398
7399 /* Call common code to mark the inferior as not running. */
7400 generic_mourn_inferior ();
7401
7402 if (!have_inferiors ())
7403 {
7404 if (!remote_multi_process_p (rs))
7405 {
7406 /* Check whether the target is running now - some remote stubs
7407 automatically restart after kill. */
7408 putpkt ("?");
7409 getpkt (&rs->buf, &rs->buf_size, 0);
7410
7411 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7412 {
7413 /* Assume that the target has been restarted. Set inferior_ptid
7414 so that bits of core GDB realizes there's something here, e.g.,
7415 so that the user can say "kill" again. */
7416 inferior_ptid = magic_null_ptid;
7417 }
7418 }
7419 }
7420 }
7421
7422 static void
7423 extended_remote_mourn (struct target_ops *ops)
7424 {
7425 extended_remote_mourn_1 (ops);
7426 }
7427
7428 static int
7429 extended_remote_run (char *args)
7430 {
7431 struct remote_state *rs = get_remote_state ();
7432 int len;
7433
7434 /* If the user has disabled vRun support, or we have detected that
7435 support is not available, do not try it. */
7436 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7437 return -1;
7438
7439 strcpy (rs->buf, "vRun;");
7440 len = strlen (rs->buf);
7441
7442 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7443 error (_("Remote file name too long for run packet"));
7444 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7445
7446 gdb_assert (args != NULL);
7447 if (*args)
7448 {
7449 struct cleanup *back_to;
7450 int i;
7451 char **argv;
7452
7453 argv = gdb_buildargv (args);
7454 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7455 for (i = 0; argv[i] != NULL; i++)
7456 {
7457 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7458 error (_("Argument list too long for run packet"));
7459 rs->buf[len++] = ';';
7460 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7461 }
7462 do_cleanups (back_to);
7463 }
7464
7465 rs->buf[len++] = '\0';
7466
7467 putpkt (rs->buf);
7468 getpkt (&rs->buf, &rs->buf_size, 0);
7469
7470 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7471 {
7472 /* We have a wait response; we don't need it, though. All is well. */
7473 return 0;
7474 }
7475 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7476 /* It wasn't disabled before, but it is now. */
7477 return -1;
7478 else
7479 {
7480 if (remote_exec_file[0] == '\0')
7481 error (_("Running the default executable on the remote target failed; "
7482 "try \"set remote exec-file\"?"));
7483 else
7484 error (_("Running \"%s\" on the remote target failed"),
7485 remote_exec_file);
7486 }
7487 }
7488
7489 /* In the extended protocol we want to be able to do things like
7490 "run" and have them basically work as expected. So we need
7491 a special create_inferior function. We support changing the
7492 executable file and the command line arguments, but not the
7493 environment. */
7494
7495 static void
7496 extended_remote_create_inferior_1 (char *exec_file, char *args,
7497 char **env, int from_tty)
7498 {
7499 /* If running asynchronously, register the target file descriptor
7500 with the event loop. */
7501 if (target_can_async_p ())
7502 target_async (inferior_event_handler, 0);
7503
7504 /* Now restart the remote server. */
7505 if (extended_remote_run (args) == -1)
7506 {
7507 /* vRun was not supported. Fail if we need it to do what the
7508 user requested. */
7509 if (remote_exec_file[0])
7510 error (_("Remote target does not support \"set remote exec-file\""));
7511 if (args[0])
7512 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7513
7514 /* Fall back to "R". */
7515 extended_remote_restart ();
7516 }
7517
7518 if (!have_inferiors ())
7519 {
7520 /* Clean up from the last time we ran, before we mark the target
7521 running again. This will mark breakpoints uninserted, and
7522 get_offsets may insert breakpoints. */
7523 init_thread_list ();
7524 init_wait_for_inferior ();
7525 }
7526
7527 /* Now mark the inferior as running before we do anything else. */
7528 inferior_ptid = magic_null_ptid;
7529
7530 /* Now, if we have thread information, update inferior_ptid. */
7531 inferior_ptid = remote_current_thread (inferior_ptid);
7532
7533 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
7534 add_thread_silent (inferior_ptid);
7535
7536 /* Get updated offsets, if the stub uses qOffsets. */
7537 get_offsets ();
7538 }
7539
7540 static void
7541 extended_remote_create_inferior (struct target_ops *ops,
7542 char *exec_file, char *args,
7543 char **env, int from_tty)
7544 {
7545 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7546 }
7547 \f
7548
7549 /* Insert a breakpoint. On targets that have software breakpoint
7550 support, we ask the remote target to do the work; on targets
7551 which don't, we insert a traditional memory breakpoint. */
7552
7553 static int
7554 remote_insert_breakpoint (struct gdbarch *gdbarch,
7555 struct bp_target_info *bp_tgt)
7556 {
7557 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7558 If it succeeds, then set the support to PACKET_ENABLE. If it
7559 fails, and the user has explicitly requested the Z support then
7560 report an error, otherwise, mark it disabled and go on. */
7561
7562 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7563 {
7564 CORE_ADDR addr = bp_tgt->placed_address;
7565 struct remote_state *rs;
7566 char *p;
7567 int bpsize;
7568
7569 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7570
7571 rs = get_remote_state ();
7572 p = rs->buf;
7573
7574 *(p++) = 'Z';
7575 *(p++) = '0';
7576 *(p++) = ',';
7577 addr = (ULONGEST) remote_address_masked (addr);
7578 p += hexnumstr (p, addr);
7579 sprintf (p, ",%d", bpsize);
7580
7581 putpkt (rs->buf);
7582 getpkt (&rs->buf, &rs->buf_size, 0);
7583
7584 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7585 {
7586 case PACKET_ERROR:
7587 return -1;
7588 case PACKET_OK:
7589 bp_tgt->placed_address = addr;
7590 bp_tgt->placed_size = bpsize;
7591 return 0;
7592 case PACKET_UNKNOWN:
7593 break;
7594 }
7595 }
7596
7597 return memory_insert_breakpoint (gdbarch, bp_tgt);
7598 }
7599
7600 static int
7601 remote_remove_breakpoint (struct gdbarch *gdbarch,
7602 struct bp_target_info *bp_tgt)
7603 {
7604 CORE_ADDR addr = bp_tgt->placed_address;
7605 struct remote_state *rs = get_remote_state ();
7606
7607 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7608 {
7609 char *p = rs->buf;
7610
7611 *(p++) = 'z';
7612 *(p++) = '0';
7613 *(p++) = ',';
7614
7615 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
7616 p += hexnumstr (p, addr);
7617 sprintf (p, ",%d", bp_tgt->placed_size);
7618
7619 putpkt (rs->buf);
7620 getpkt (&rs->buf, &rs->buf_size, 0);
7621
7622 return (rs->buf[0] == 'E');
7623 }
7624
7625 return memory_remove_breakpoint (gdbarch, bp_tgt);
7626 }
7627
7628 static int
7629 watchpoint_to_Z_packet (int type)
7630 {
7631 switch (type)
7632 {
7633 case hw_write:
7634 return Z_PACKET_WRITE_WP;
7635 break;
7636 case hw_read:
7637 return Z_PACKET_READ_WP;
7638 break;
7639 case hw_access:
7640 return Z_PACKET_ACCESS_WP;
7641 break;
7642 default:
7643 internal_error (__FILE__, __LINE__,
7644 _("hw_bp_to_z: bad watchpoint type %d"), type);
7645 }
7646 }
7647
7648 static int
7649 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
7650 {
7651 struct remote_state *rs = get_remote_state ();
7652 char *p;
7653 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7654
7655 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7656 return 1;
7657
7658 sprintf (rs->buf, "Z%x,", packet);
7659 p = strchr (rs->buf, '\0');
7660 addr = remote_address_masked (addr);
7661 p += hexnumstr (p, (ULONGEST) addr);
7662 sprintf (p, ",%x", len);
7663
7664 putpkt (rs->buf);
7665 getpkt (&rs->buf, &rs->buf_size, 0);
7666
7667 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7668 {
7669 case PACKET_ERROR:
7670 return -1;
7671 case PACKET_UNKNOWN:
7672 return 1;
7673 case PACKET_OK:
7674 return 0;
7675 }
7676 internal_error (__FILE__, __LINE__,
7677 _("remote_insert_watchpoint: reached end of function"));
7678 }
7679
7680
7681 static int
7682 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
7683 {
7684 struct remote_state *rs = get_remote_state ();
7685 char *p;
7686 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7687
7688 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7689 return -1;
7690
7691 sprintf (rs->buf, "z%x,", packet);
7692 p = strchr (rs->buf, '\0');
7693 addr = remote_address_masked (addr);
7694 p += hexnumstr (p, (ULONGEST) addr);
7695 sprintf (p, ",%x", len);
7696 putpkt (rs->buf);
7697 getpkt (&rs->buf, &rs->buf_size, 0);
7698
7699 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7700 {
7701 case PACKET_ERROR:
7702 case PACKET_UNKNOWN:
7703 return -1;
7704 case PACKET_OK:
7705 return 0;
7706 }
7707 internal_error (__FILE__, __LINE__,
7708 _("remote_remove_watchpoint: reached end of function"));
7709 }
7710
7711
7712 int remote_hw_watchpoint_limit = -1;
7713 int remote_hw_breakpoint_limit = -1;
7714
7715 static int
7716 remote_check_watch_resources (int type, int cnt, int ot)
7717 {
7718 if (type == bp_hardware_breakpoint)
7719 {
7720 if (remote_hw_breakpoint_limit == 0)
7721 return 0;
7722 else if (remote_hw_breakpoint_limit < 0)
7723 return 1;
7724 else if (cnt <= remote_hw_breakpoint_limit)
7725 return 1;
7726 }
7727 else
7728 {
7729 if (remote_hw_watchpoint_limit == 0)
7730 return 0;
7731 else if (remote_hw_watchpoint_limit < 0)
7732 return 1;
7733 else if (ot)
7734 return -1;
7735 else if (cnt <= remote_hw_watchpoint_limit)
7736 return 1;
7737 }
7738 return -1;
7739 }
7740
7741 static int
7742 remote_stopped_by_watchpoint (void)
7743 {
7744 return remote_stopped_by_watchpoint_p;
7745 }
7746
7747 static int
7748 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7749 {
7750 int rc = 0;
7751
7752 if (remote_stopped_by_watchpoint ())
7753 {
7754 *addr_p = remote_watch_data_address;
7755 rc = 1;
7756 }
7757
7758 return rc;
7759 }
7760
7761
7762 static int
7763 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
7764 struct bp_target_info *bp_tgt)
7765 {
7766 CORE_ADDR addr;
7767 struct remote_state *rs;
7768 char *p;
7769
7770 /* The length field should be set to the size of a breakpoint
7771 instruction, even though we aren't inserting one ourselves. */
7772
7773 gdbarch_remote_breakpoint_from_pc
7774 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7775
7776 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7777 return -1;
7778
7779 rs = get_remote_state ();
7780 p = rs->buf;
7781
7782 *(p++) = 'Z';
7783 *(p++) = '1';
7784 *(p++) = ',';
7785
7786 addr = remote_address_masked (bp_tgt->placed_address);
7787 p += hexnumstr (p, (ULONGEST) addr);
7788 sprintf (p, ",%x", bp_tgt->placed_size);
7789
7790 putpkt (rs->buf);
7791 getpkt (&rs->buf, &rs->buf_size, 0);
7792
7793 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7794 {
7795 case PACKET_ERROR:
7796 case PACKET_UNKNOWN:
7797 return -1;
7798 case PACKET_OK:
7799 return 0;
7800 }
7801 internal_error (__FILE__, __LINE__,
7802 _("remote_insert_hw_breakpoint: reached end of function"));
7803 }
7804
7805
7806 static int
7807 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
7808 struct bp_target_info *bp_tgt)
7809 {
7810 CORE_ADDR addr;
7811 struct remote_state *rs = get_remote_state ();
7812 char *p = rs->buf;
7813
7814 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7815 return -1;
7816
7817 *(p++) = 'z';
7818 *(p++) = '1';
7819 *(p++) = ',';
7820
7821 addr = remote_address_masked (bp_tgt->placed_address);
7822 p += hexnumstr (p, (ULONGEST) addr);
7823 sprintf (p, ",%x", bp_tgt->placed_size);
7824
7825 putpkt (rs->buf);
7826 getpkt (&rs->buf, &rs->buf_size, 0);
7827
7828 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7829 {
7830 case PACKET_ERROR:
7831 case PACKET_UNKNOWN:
7832 return -1;
7833 case PACKET_OK:
7834 return 0;
7835 }
7836 internal_error (__FILE__, __LINE__,
7837 _("remote_remove_hw_breakpoint: reached end of function"));
7838 }
7839
7840 /* Table used by the crc32 function to calcuate the checksum. */
7841
7842 static unsigned long crc32_table[256] =
7843 {0, 0};
7844
7845 static unsigned long
7846 crc32 (const unsigned char *buf, int len, unsigned int crc)
7847 {
7848 if (!crc32_table[1])
7849 {
7850 /* Initialize the CRC table and the decoding table. */
7851 int i, j;
7852 unsigned int c;
7853
7854 for (i = 0; i < 256; i++)
7855 {
7856 for (c = i << 24, j = 8; j > 0; --j)
7857 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7858 crc32_table[i] = c;
7859 }
7860 }
7861
7862 while (len--)
7863 {
7864 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7865 buf++;
7866 }
7867 return crc;
7868 }
7869
7870 /* Verify memory using the "qCRC:" request. */
7871
7872 static int
7873 remote_verify_memory (struct target_ops *ops,
7874 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
7875 {
7876 struct remote_state *rs = get_remote_state ();
7877 unsigned long host_crc, target_crc;
7878 char *tmp;
7879
7880 /* FIXME: assumes lma can fit into long. */
7881 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7882 (long) lma, (long) size);
7883 putpkt (rs->buf);
7884
7885 /* Be clever; compute the host_crc before waiting for target
7886 reply. */
7887 host_crc = crc32 (data, size, 0xffffffff);
7888
7889 getpkt (&rs->buf, &rs->buf_size, 0);
7890 if (rs->buf[0] == 'E')
7891 return -1;
7892
7893 if (rs->buf[0] != 'C')
7894 error (_("remote target does not support this operation"));
7895
7896 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7897 target_crc = target_crc * 16 + fromhex (*tmp);
7898
7899 return (host_crc == target_crc);
7900 }
7901
7902 /* compare-sections command
7903
7904 With no arguments, compares each loadable section in the exec bfd
7905 with the same memory range on the target, and reports mismatches.
7906 Useful for verifying the image on the target against the exec file. */
7907
7908 static void
7909 compare_sections_command (char *args, int from_tty)
7910 {
7911 asection *s;
7912 struct cleanup *old_chain;
7913 char *sectdata;
7914 const char *sectname;
7915 bfd_size_type size;
7916 bfd_vma lma;
7917 int matched = 0;
7918 int mismatched = 0;
7919 int res;
7920
7921 if (!exec_bfd)
7922 error (_("command cannot be used without an exec file"));
7923
7924 for (s = exec_bfd->sections; s; s = s->next)
7925 {
7926 if (!(s->flags & SEC_LOAD))
7927 continue; /* skip non-loadable section */
7928
7929 size = bfd_get_section_size (s);
7930 if (size == 0)
7931 continue; /* skip zero-length section */
7932
7933 sectname = bfd_get_section_name (exec_bfd, s);
7934 if (args && strcmp (args, sectname) != 0)
7935 continue; /* not the section selected by user */
7936
7937 matched = 1; /* do this section */
7938 lma = s->lma;
7939
7940 sectdata = xmalloc (size);
7941 old_chain = make_cleanup (xfree, sectdata);
7942 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7943
7944 res = target_verify_memory (sectdata, lma, size);
7945
7946 if (res == -1)
7947 error (_("target memory fault, section %s, range %s -- %s"), sectname,
7948 paddress (target_gdbarch, lma),
7949 paddress (target_gdbarch, lma + size));
7950
7951 printf_filtered ("Section %s, range %s -- %s: ", sectname,
7952 paddress (target_gdbarch, lma),
7953 paddress (target_gdbarch, lma + size));
7954 if (res)
7955 printf_filtered ("matched.\n");
7956 else
7957 {
7958 printf_filtered ("MIS-MATCHED!\n");
7959 mismatched++;
7960 }
7961
7962 do_cleanups (old_chain);
7963 }
7964 if (mismatched > 0)
7965 warning (_("One or more sections of the remote executable does not match\n\
7966 the loaded file\n"));
7967 if (args && !matched)
7968 printf_filtered (_("No loaded section named '%s'.\n"), args);
7969 }
7970
7971 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7972 into remote target. The number of bytes written to the remote
7973 target is returned, or -1 for error. */
7974
7975 static LONGEST
7976 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7977 const char *annex, const gdb_byte *writebuf,
7978 ULONGEST offset, LONGEST len,
7979 struct packet_config *packet)
7980 {
7981 int i, buf_len;
7982 ULONGEST n;
7983 struct remote_state *rs = get_remote_state ();
7984 int max_size = get_memory_write_packet_size ();
7985
7986 if (packet->support == PACKET_DISABLE)
7987 return -1;
7988
7989 /* Insert header. */
7990 i = snprintf (rs->buf, max_size,
7991 "qXfer:%s:write:%s:%s:",
7992 object_name, annex ? annex : "",
7993 phex_nz (offset, sizeof offset));
7994 max_size -= (i + 1);
7995
7996 /* Escape as much data as fits into rs->buf. */
7997 buf_len = remote_escape_output
7998 (writebuf, len, (rs->buf + i), &max_size, max_size);
7999
8000 if (putpkt_binary (rs->buf, i + buf_len) < 0
8001 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8002 || packet_ok (rs->buf, packet) != PACKET_OK)
8003 return -1;
8004
8005 unpack_varlen_hex (rs->buf, &n);
8006 return n;
8007 }
8008
8009 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8010 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8011 number of bytes read is returned, or 0 for EOF, or -1 for error.
8012 The number of bytes read may be less than LEN without indicating an
8013 EOF. PACKET is checked and updated to indicate whether the remote
8014 target supports this object. */
8015
8016 static LONGEST
8017 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8018 const char *annex,
8019 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8020 struct packet_config *packet)
8021 {
8022 static char *finished_object;
8023 static char *finished_annex;
8024 static ULONGEST finished_offset;
8025
8026 struct remote_state *rs = get_remote_state ();
8027 LONGEST i, n, packet_len;
8028
8029 if (packet->support == PACKET_DISABLE)
8030 return -1;
8031
8032 /* Check whether we've cached an end-of-object packet that matches
8033 this request. */
8034 if (finished_object)
8035 {
8036 if (strcmp (object_name, finished_object) == 0
8037 && strcmp (annex ? annex : "", finished_annex) == 0
8038 && offset == finished_offset)
8039 return 0;
8040
8041 /* Otherwise, we're now reading something different. Discard
8042 the cache. */
8043 xfree (finished_object);
8044 xfree (finished_annex);
8045 finished_object = NULL;
8046 finished_annex = NULL;
8047 }
8048
8049 /* Request only enough to fit in a single packet. The actual data
8050 may not, since we don't know how much of it will need to be escaped;
8051 the target is free to respond with slightly less data. We subtract
8052 five to account for the response type and the protocol frame. */
8053 n = min (get_remote_packet_size () - 5, len);
8054 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8055 object_name, annex ? annex : "",
8056 phex_nz (offset, sizeof offset),
8057 phex_nz (n, sizeof n));
8058 i = putpkt (rs->buf);
8059 if (i < 0)
8060 return -1;
8061
8062 rs->buf[0] = '\0';
8063 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8064 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8065 return -1;
8066
8067 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8068 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8069
8070 /* 'm' means there is (or at least might be) more data after this
8071 batch. That does not make sense unless there's at least one byte
8072 of data in this reply. */
8073 if (rs->buf[0] == 'm' && packet_len == 1)
8074 error (_("Remote qXfer reply contained no data."));
8075
8076 /* Got some data. */
8077 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8078
8079 /* 'l' is an EOF marker, possibly including a final block of data,
8080 or possibly empty. If we have the final block of a non-empty
8081 object, record this fact to bypass a subsequent partial read. */
8082 if (rs->buf[0] == 'l' && offset + i > 0)
8083 {
8084 finished_object = xstrdup (object_name);
8085 finished_annex = xstrdup (annex ? annex : "");
8086 finished_offset = offset + i;
8087 }
8088
8089 return i;
8090 }
8091
8092 static LONGEST
8093 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8094 const char *annex, gdb_byte *readbuf,
8095 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8096 {
8097 struct remote_state *rs;
8098 int i;
8099 char *p2;
8100 char query_type;
8101
8102 set_general_thread (inferior_ptid);
8103
8104 rs = get_remote_state ();
8105
8106 /* Handle memory using the standard memory routines. */
8107 if (object == TARGET_OBJECT_MEMORY)
8108 {
8109 int xfered;
8110
8111 errno = 0;
8112
8113 /* If the remote target is connected but not running, we should
8114 pass this request down to a lower stratum (e.g. the executable
8115 file). */
8116 if (!target_has_execution)
8117 return 0;
8118
8119 if (writebuf != NULL)
8120 xfered = remote_write_bytes (offset, writebuf, len);
8121 else
8122 xfered = remote_read_bytes (offset, readbuf, len);
8123
8124 if (xfered > 0)
8125 return xfered;
8126 else if (xfered == 0 && errno == 0)
8127 return 0;
8128 else
8129 return -1;
8130 }
8131
8132 /* Handle SPU memory using qxfer packets. */
8133 if (object == TARGET_OBJECT_SPU)
8134 {
8135 if (readbuf)
8136 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8137 &remote_protocol_packets
8138 [PACKET_qXfer_spu_read]);
8139 else
8140 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8141 &remote_protocol_packets
8142 [PACKET_qXfer_spu_write]);
8143 }
8144
8145 /* Handle extra signal info using qxfer packets. */
8146 if (object == TARGET_OBJECT_SIGNAL_INFO)
8147 {
8148 if (readbuf)
8149 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8150 &remote_protocol_packets
8151 [PACKET_qXfer_siginfo_read]);
8152 else
8153 return remote_write_qxfer (ops, "siginfo", annex, writebuf, offset, len,
8154 &remote_protocol_packets
8155 [PACKET_qXfer_siginfo_write]);
8156 }
8157
8158 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8159 {
8160 if (readbuf)
8161 return remote_read_qxfer (ops, "statictrace", annex, readbuf, offset, len,
8162 &remote_protocol_packets
8163 [PACKET_qXfer_statictrace_read]);
8164 else
8165 return -1;
8166 }
8167
8168 /* Only handle flash writes. */
8169 if (writebuf != NULL)
8170 {
8171 LONGEST xfered;
8172
8173 switch (object)
8174 {
8175 case TARGET_OBJECT_FLASH:
8176 xfered = remote_flash_write (ops, offset, len, writebuf);
8177
8178 if (xfered > 0)
8179 return xfered;
8180 else if (xfered == 0 && errno == 0)
8181 return 0;
8182 else
8183 return -1;
8184
8185 default:
8186 return -1;
8187 }
8188 }
8189
8190 /* Map pre-existing objects onto letters. DO NOT do this for new
8191 objects!!! Instead specify new query packets. */
8192 switch (object)
8193 {
8194 case TARGET_OBJECT_AVR:
8195 query_type = 'R';
8196 break;
8197
8198 case TARGET_OBJECT_AUXV:
8199 gdb_assert (annex == NULL);
8200 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8201 &remote_protocol_packets[PACKET_qXfer_auxv]);
8202
8203 case TARGET_OBJECT_AVAILABLE_FEATURES:
8204 return remote_read_qxfer
8205 (ops, "features", annex, readbuf, offset, len,
8206 &remote_protocol_packets[PACKET_qXfer_features]);
8207
8208 case TARGET_OBJECT_LIBRARIES:
8209 return remote_read_qxfer
8210 (ops, "libraries", annex, readbuf, offset, len,
8211 &remote_protocol_packets[PACKET_qXfer_libraries]);
8212
8213 case TARGET_OBJECT_MEMORY_MAP:
8214 gdb_assert (annex == NULL);
8215 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8216 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8217
8218 case TARGET_OBJECT_OSDATA:
8219 /* Should only get here if we're connected. */
8220 gdb_assert (remote_desc);
8221 return remote_read_qxfer
8222 (ops, "osdata", annex, readbuf, offset, len,
8223 &remote_protocol_packets[PACKET_qXfer_osdata]);
8224
8225 case TARGET_OBJECT_THREADS:
8226 gdb_assert (annex == NULL);
8227 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8228 &remote_protocol_packets[PACKET_qXfer_threads]);
8229
8230 default:
8231 return -1;
8232 }
8233
8234 /* Note: a zero OFFSET and LEN can be used to query the minimum
8235 buffer size. */
8236 if (offset == 0 && len == 0)
8237 return (get_remote_packet_size ());
8238 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8239 large enough let the caller deal with it. */
8240 if (len < get_remote_packet_size ())
8241 return -1;
8242 len = get_remote_packet_size ();
8243
8244 /* Except for querying the minimum buffer size, target must be open. */
8245 if (!remote_desc)
8246 error (_("remote query is only available after target open"));
8247
8248 gdb_assert (annex != NULL);
8249 gdb_assert (readbuf != NULL);
8250
8251 p2 = rs->buf;
8252 *p2++ = 'q';
8253 *p2++ = query_type;
8254
8255 /* We used one buffer char for the remote protocol q command and
8256 another for the query type. As the remote protocol encapsulation
8257 uses 4 chars plus one extra in case we are debugging
8258 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8259 string. */
8260 i = 0;
8261 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8262 {
8263 /* Bad caller may have sent forbidden characters. */
8264 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8265 *p2++ = annex[i];
8266 i++;
8267 }
8268 *p2 = '\0';
8269 gdb_assert (annex[i] == '\0');
8270
8271 i = putpkt (rs->buf);
8272 if (i < 0)
8273 return i;
8274
8275 getpkt (&rs->buf, &rs->buf_size, 0);
8276 strcpy ((char *) readbuf, rs->buf);
8277
8278 return strlen ((char *) readbuf);
8279 }
8280
8281 static int
8282 remote_search_memory (struct target_ops* ops,
8283 CORE_ADDR start_addr, ULONGEST search_space_len,
8284 const gdb_byte *pattern, ULONGEST pattern_len,
8285 CORE_ADDR *found_addrp)
8286 {
8287 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
8288 struct remote_state *rs = get_remote_state ();
8289 int max_size = get_memory_write_packet_size ();
8290 struct packet_config *packet =
8291 &remote_protocol_packets[PACKET_qSearch_memory];
8292 /* number of packet bytes used to encode the pattern,
8293 this could be more than PATTERN_LEN due to escape characters */
8294 int escaped_pattern_len;
8295 /* amount of pattern that was encodable in the packet */
8296 int used_pattern_len;
8297 int i;
8298 int found;
8299 ULONGEST found_addr;
8300
8301 /* Don't go to the target if we don't have to.
8302 This is done before checking packet->support to avoid the possibility that
8303 a success for this edge case means the facility works in general. */
8304 if (pattern_len > search_space_len)
8305 return 0;
8306 if (pattern_len == 0)
8307 {
8308 *found_addrp = start_addr;
8309 return 1;
8310 }
8311
8312 /* If we already know the packet isn't supported, fall back to the simple
8313 way of searching memory. */
8314
8315 if (packet->support == PACKET_DISABLE)
8316 {
8317 /* Target doesn't provided special support, fall back and use the
8318 standard support (copy memory and do the search here). */
8319 return simple_search_memory (ops, start_addr, search_space_len,
8320 pattern, pattern_len, found_addrp);
8321 }
8322
8323 /* Insert header. */
8324 i = snprintf (rs->buf, max_size,
8325 "qSearch:memory:%s;%s;",
8326 phex_nz (start_addr, addr_size),
8327 phex_nz (search_space_len, sizeof (search_space_len)));
8328 max_size -= (i + 1);
8329
8330 /* Escape as much data as fits into rs->buf. */
8331 escaped_pattern_len =
8332 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8333 &used_pattern_len, max_size);
8334
8335 /* Bail if the pattern is too large. */
8336 if (used_pattern_len != pattern_len)
8337 error ("Pattern is too large to transmit to remote target.");
8338
8339 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8340 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8341 || packet_ok (rs->buf, packet) != PACKET_OK)
8342 {
8343 /* The request may not have worked because the command is not
8344 supported. If so, fall back to the simple way. */
8345 if (packet->support == PACKET_DISABLE)
8346 {
8347 return simple_search_memory (ops, start_addr, search_space_len,
8348 pattern, pattern_len, found_addrp);
8349 }
8350 return -1;
8351 }
8352
8353 if (rs->buf[0] == '0')
8354 found = 0;
8355 else if (rs->buf[0] == '1')
8356 {
8357 found = 1;
8358 if (rs->buf[1] != ',')
8359 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8360 unpack_varlen_hex (rs->buf + 2, &found_addr);
8361 *found_addrp = found_addr;
8362 }
8363 else
8364 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8365
8366 return found;
8367 }
8368
8369 static void
8370 remote_rcmd (char *command,
8371 struct ui_file *outbuf)
8372 {
8373 struct remote_state *rs = get_remote_state ();
8374 char *p = rs->buf;
8375
8376 if (!remote_desc)
8377 error (_("remote rcmd is only available after target open"));
8378
8379 /* Send a NULL command across as an empty command. */
8380 if (command == NULL)
8381 command = "";
8382
8383 /* The query prefix. */
8384 strcpy (rs->buf, "qRcmd,");
8385 p = strchr (rs->buf, '\0');
8386
8387 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
8388 error (_("\"monitor\" command ``%s'' is too long."), command);
8389
8390 /* Encode the actual command. */
8391 bin2hex ((gdb_byte *) command, p, 0);
8392
8393 if (putpkt (rs->buf) < 0)
8394 error (_("Communication problem with target."));
8395
8396 /* get/display the response */
8397 while (1)
8398 {
8399 char *buf;
8400
8401 /* XXX - see also remote_get_noisy_reply(). */
8402 rs->buf[0] = '\0';
8403 getpkt (&rs->buf, &rs->buf_size, 0);
8404 buf = rs->buf;
8405 if (buf[0] == '\0')
8406 error (_("Target does not support this command."));
8407 if (buf[0] == 'O' && buf[1] != 'K')
8408 {
8409 remote_console_output (buf + 1); /* 'O' message from stub. */
8410 continue;
8411 }
8412 if (strcmp (buf, "OK") == 0)
8413 break;
8414 if (strlen (buf) == 3 && buf[0] == 'E'
8415 && isdigit (buf[1]) && isdigit (buf[2]))
8416 {
8417 error (_("Protocol error with Rcmd"));
8418 }
8419 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8420 {
8421 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8422
8423 fputc_unfiltered (c, outbuf);
8424 }
8425 break;
8426 }
8427 }
8428
8429 static VEC(mem_region_s) *
8430 remote_memory_map (struct target_ops *ops)
8431 {
8432 VEC(mem_region_s) *result = NULL;
8433 char *text = target_read_stralloc (&current_target,
8434 TARGET_OBJECT_MEMORY_MAP, NULL);
8435
8436 if (text)
8437 {
8438 struct cleanup *back_to = make_cleanup (xfree, text);
8439
8440 result = parse_memory_map (text);
8441 do_cleanups (back_to);
8442 }
8443
8444 return result;
8445 }
8446
8447 static void
8448 packet_command (char *args, int from_tty)
8449 {
8450 struct remote_state *rs = get_remote_state ();
8451
8452 if (!remote_desc)
8453 error (_("command can only be used with remote target"));
8454
8455 if (!args)
8456 error (_("remote-packet command requires packet text as argument"));
8457
8458 puts_filtered ("sending: ");
8459 print_packet (args);
8460 puts_filtered ("\n");
8461 putpkt (args);
8462
8463 getpkt (&rs->buf, &rs->buf_size, 0);
8464 puts_filtered ("received: ");
8465 print_packet (rs->buf);
8466 puts_filtered ("\n");
8467 }
8468
8469 #if 0
8470 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8471
8472 static void display_thread_info (struct gdb_ext_thread_info *info);
8473
8474 static void threadset_test_cmd (char *cmd, int tty);
8475
8476 static void threadalive_test (char *cmd, int tty);
8477
8478 static void threadlist_test_cmd (char *cmd, int tty);
8479
8480 int get_and_display_threadinfo (threadref *ref);
8481
8482 static void threadinfo_test_cmd (char *cmd, int tty);
8483
8484 static int thread_display_step (threadref *ref, void *context);
8485
8486 static void threadlist_update_test_cmd (char *cmd, int tty);
8487
8488 static void init_remote_threadtests (void);
8489
8490 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8491
8492 static void
8493 threadset_test_cmd (char *cmd, int tty)
8494 {
8495 int sample_thread = SAMPLE_THREAD;
8496
8497 printf_filtered (_("Remote threadset test\n"));
8498 set_general_thread (sample_thread);
8499 }
8500
8501
8502 static void
8503 threadalive_test (char *cmd, int tty)
8504 {
8505 int sample_thread = SAMPLE_THREAD;
8506 int pid = ptid_get_pid (inferior_ptid);
8507 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8508
8509 if (remote_thread_alive (ptid))
8510 printf_filtered ("PASS: Thread alive test\n");
8511 else
8512 printf_filtered ("FAIL: Thread alive test\n");
8513 }
8514
8515 void output_threadid (char *title, threadref *ref);
8516
8517 void
8518 output_threadid (char *title, threadref *ref)
8519 {
8520 char hexid[20];
8521
8522 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8523 hexid[16] = 0;
8524 printf_filtered ("%s %s\n", title, (&hexid[0]));
8525 }
8526
8527 static void
8528 threadlist_test_cmd (char *cmd, int tty)
8529 {
8530 int startflag = 1;
8531 threadref nextthread;
8532 int done, result_count;
8533 threadref threadlist[3];
8534
8535 printf_filtered ("Remote Threadlist test\n");
8536 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8537 &result_count, &threadlist[0]))
8538 printf_filtered ("FAIL: threadlist test\n");
8539 else
8540 {
8541 threadref *scan = threadlist;
8542 threadref *limit = scan + result_count;
8543
8544 while (scan < limit)
8545 output_threadid (" thread ", scan++);
8546 }
8547 }
8548
8549 void
8550 display_thread_info (struct gdb_ext_thread_info *info)
8551 {
8552 output_threadid ("Threadid: ", &info->threadid);
8553 printf_filtered ("Name: %s\n ", info->shortname);
8554 printf_filtered ("State: %s\n", info->display);
8555 printf_filtered ("other: %s\n\n", info->more_display);
8556 }
8557
8558 int
8559 get_and_display_threadinfo (threadref *ref)
8560 {
8561 int result;
8562 int set;
8563 struct gdb_ext_thread_info threadinfo;
8564
8565 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
8566 | TAG_MOREDISPLAY | TAG_DISPLAY;
8567 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
8568 display_thread_info (&threadinfo);
8569 return result;
8570 }
8571
8572 static void
8573 threadinfo_test_cmd (char *cmd, int tty)
8574 {
8575 int athread = SAMPLE_THREAD;
8576 threadref thread;
8577 int set;
8578
8579 int_to_threadref (&thread, athread);
8580 printf_filtered ("Remote Threadinfo test\n");
8581 if (!get_and_display_threadinfo (&thread))
8582 printf_filtered ("FAIL cannot get thread info\n");
8583 }
8584
8585 static int
8586 thread_display_step (threadref *ref, void *context)
8587 {
8588 /* output_threadid(" threadstep ",ref); *//* simple test */
8589 return get_and_display_threadinfo (ref);
8590 }
8591
8592 static void
8593 threadlist_update_test_cmd (char *cmd, int tty)
8594 {
8595 printf_filtered ("Remote Threadlist update test\n");
8596 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
8597 }
8598
8599 static void
8600 init_remote_threadtests (void)
8601 {
8602 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
8603 Fetch and print the remote list of thread identifiers, one pkt only"));
8604 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
8605 _("Fetch and display info about one thread"));
8606 add_com ("tset", class_obscure, threadset_test_cmd,
8607 _("Test setting to a different thread"));
8608 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
8609 _("Iterate through updating all remote thread info"));
8610 add_com ("talive", class_obscure, threadalive_test,
8611 _(" Remote thread alive test "));
8612 }
8613
8614 #endif /* 0 */
8615
8616 /* Convert a thread ID to a string. Returns the string in a static
8617 buffer. */
8618
8619 static char *
8620 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
8621 {
8622 static char buf[64];
8623 struct remote_state *rs = get_remote_state ();
8624
8625 if (ptid_is_pid (ptid))
8626 {
8627 /* Printing an inferior target id. */
8628
8629 /* When multi-process extensions are off, there's no way in the
8630 remote protocol to know the remote process id, if there's any
8631 at all. There's one exception --- when we're connected with
8632 target extended-remote, and we manually attached to a process
8633 with "attach PID". We don't record anywhere a flag that
8634 allows us to distinguish that case from the case of
8635 connecting with extended-remote and the stub already being
8636 attached to a process, and reporting yes to qAttached, hence
8637 no smart special casing here. */
8638 if (!remote_multi_process_p (rs))
8639 {
8640 xsnprintf (buf, sizeof buf, "Remote target");
8641 return buf;
8642 }
8643
8644 return normal_pid_to_str (ptid);
8645 }
8646 else
8647 {
8648 if (ptid_equal (magic_null_ptid, ptid))
8649 xsnprintf (buf, sizeof buf, "Thread <main>");
8650 else if (remote_multi_process_p (rs))
8651 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
8652 ptid_get_pid (ptid), ptid_get_tid (ptid));
8653 else
8654 xsnprintf (buf, sizeof buf, "Thread %ld",
8655 ptid_get_tid (ptid));
8656 return buf;
8657 }
8658 }
8659
8660 /* Get the address of the thread local variable in OBJFILE which is
8661 stored at OFFSET within the thread local storage for thread PTID. */
8662
8663 static CORE_ADDR
8664 remote_get_thread_local_address (struct target_ops *ops,
8665 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
8666 {
8667 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
8668 {
8669 struct remote_state *rs = get_remote_state ();
8670 char *p = rs->buf;
8671 char *endp = rs->buf + get_remote_packet_size ();
8672 enum packet_result result;
8673
8674 strcpy (p, "qGetTLSAddr:");
8675 p += strlen (p);
8676 p = write_ptid (p, endp, ptid);
8677 *p++ = ',';
8678 p += hexnumstr (p, offset);
8679 *p++ = ',';
8680 p += hexnumstr (p, lm);
8681 *p++ = '\0';
8682
8683 putpkt (rs->buf);
8684 getpkt (&rs->buf, &rs->buf_size, 0);
8685 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
8686 if (result == PACKET_OK)
8687 {
8688 ULONGEST result;
8689
8690 unpack_varlen_hex (rs->buf, &result);
8691 return result;
8692 }
8693 else if (result == PACKET_UNKNOWN)
8694 throw_error (TLS_GENERIC_ERROR,
8695 _("Remote target doesn't support qGetTLSAddr packet"));
8696 else
8697 throw_error (TLS_GENERIC_ERROR,
8698 _("Remote target failed to process qGetTLSAddr request"));
8699 }
8700 else
8701 throw_error (TLS_GENERIC_ERROR,
8702 _("TLS not supported or disabled on this target"));
8703 /* Not reached. */
8704 return 0;
8705 }
8706
8707 /* Provide thread local base, i.e. Thread Information Block address.
8708 Returns 1 if ptid is found and thread_local_base is non zero. */
8709
8710 int
8711 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
8712 {
8713 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
8714 {
8715 struct remote_state *rs = get_remote_state ();
8716 char *p = rs->buf;
8717 char *endp = rs->buf + get_remote_packet_size ();
8718 enum packet_result result;
8719
8720 strcpy (p, "qGetTIBAddr:");
8721 p += strlen (p);
8722 p = write_ptid (p, endp, ptid);
8723 *p++ = '\0';
8724
8725 putpkt (rs->buf);
8726 getpkt (&rs->buf, &rs->buf_size, 0);
8727 result = packet_ok (rs->buf,
8728 &remote_protocol_packets[PACKET_qGetTIBAddr]);
8729 if (result == PACKET_OK)
8730 {
8731 ULONGEST result;
8732
8733 unpack_varlen_hex (rs->buf, &result);
8734 if (addr)
8735 *addr = (CORE_ADDR) result;
8736 return 1;
8737 }
8738 else if (result == PACKET_UNKNOWN)
8739 error (_("Remote target doesn't support qGetTIBAddr packet"));
8740 else
8741 error (_("Remote target failed to process qGetTIBAddr request"));
8742 }
8743 else
8744 error (_("qGetTIBAddr not supported or disabled on this target"));
8745 /* Not reached. */
8746 return 0;
8747 }
8748
8749 /* Support for inferring a target description based on the current
8750 architecture and the size of a 'g' packet. While the 'g' packet
8751 can have any size (since optional registers can be left off the
8752 end), some sizes are easily recognizable given knowledge of the
8753 approximate architecture. */
8754
8755 struct remote_g_packet_guess
8756 {
8757 int bytes;
8758 const struct target_desc *tdesc;
8759 };
8760 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
8761 DEF_VEC_O(remote_g_packet_guess_s);
8762
8763 struct remote_g_packet_data
8764 {
8765 VEC(remote_g_packet_guess_s) *guesses;
8766 };
8767
8768 static struct gdbarch_data *remote_g_packet_data_handle;
8769
8770 static void *
8771 remote_g_packet_data_init (struct obstack *obstack)
8772 {
8773 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
8774 }
8775
8776 void
8777 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
8778 const struct target_desc *tdesc)
8779 {
8780 struct remote_g_packet_data *data
8781 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
8782 struct remote_g_packet_guess new_guess, *guess;
8783 int ix;
8784
8785 gdb_assert (tdesc != NULL);
8786
8787 for (ix = 0;
8788 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8789 ix++)
8790 if (guess->bytes == bytes)
8791 internal_error (__FILE__, __LINE__,
8792 "Duplicate g packet description added for size %d",
8793 bytes);
8794
8795 new_guess.bytes = bytes;
8796 new_guess.tdesc = tdesc;
8797 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
8798 }
8799
8800 /* Return 1 if remote_read_description would do anything on this target
8801 and architecture, 0 otherwise. */
8802
8803 static int
8804 remote_read_description_p (struct target_ops *target)
8805 {
8806 struct remote_g_packet_data *data
8807 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8808
8809 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8810 return 1;
8811
8812 return 0;
8813 }
8814
8815 static const struct target_desc *
8816 remote_read_description (struct target_ops *target)
8817 {
8818 struct remote_g_packet_data *data
8819 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8820
8821 /* Do not try this during initial connection, when we do not know
8822 whether there is a running but stopped thread. */
8823 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8824 return NULL;
8825
8826 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8827 {
8828 struct remote_g_packet_guess *guess;
8829 int ix;
8830 int bytes = send_g_packet ();
8831
8832 for (ix = 0;
8833 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8834 ix++)
8835 if (guess->bytes == bytes)
8836 return guess->tdesc;
8837
8838 /* We discard the g packet. A minor optimization would be to
8839 hold on to it, and fill the register cache once we have selected
8840 an architecture, but it's too tricky to do safely. */
8841 }
8842
8843 return NULL;
8844 }
8845
8846 /* Remote file transfer support. This is host-initiated I/O, not
8847 target-initiated; for target-initiated, see remote-fileio.c. */
8848
8849 /* If *LEFT is at least the length of STRING, copy STRING to
8850 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8851 decrease *LEFT. Otherwise raise an error. */
8852
8853 static void
8854 remote_buffer_add_string (char **buffer, int *left, char *string)
8855 {
8856 int len = strlen (string);
8857
8858 if (len > *left)
8859 error (_("Packet too long for target."));
8860
8861 memcpy (*buffer, string, len);
8862 *buffer += len;
8863 *left -= len;
8864
8865 /* NUL-terminate the buffer as a convenience, if there is
8866 room. */
8867 if (*left)
8868 **buffer = '\0';
8869 }
8870
8871 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8872 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8873 decrease *LEFT. Otherwise raise an error. */
8874
8875 static void
8876 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8877 int len)
8878 {
8879 if (2 * len > *left)
8880 error (_("Packet too long for target."));
8881
8882 bin2hex (bytes, *buffer, len);
8883 *buffer += 2 * len;
8884 *left -= 2 * len;
8885
8886 /* NUL-terminate the buffer as a convenience, if there is
8887 room. */
8888 if (*left)
8889 **buffer = '\0';
8890 }
8891
8892 /* If *LEFT is large enough, convert VALUE to hex and add it to
8893 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8894 decrease *LEFT. Otherwise raise an error. */
8895
8896 static void
8897 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8898 {
8899 int len = hexnumlen (value);
8900
8901 if (len > *left)
8902 error (_("Packet too long for target."));
8903
8904 hexnumstr (*buffer, value);
8905 *buffer += len;
8906 *left -= len;
8907
8908 /* NUL-terminate the buffer as a convenience, if there is
8909 room. */
8910 if (*left)
8911 **buffer = '\0';
8912 }
8913
8914 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
8915 value, *REMOTE_ERRNO to the remote error number or zero if none
8916 was included, and *ATTACHMENT to point to the start of the annex
8917 if any. The length of the packet isn't needed here; there may
8918 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8919
8920 Return 0 if the packet could be parsed, -1 if it could not. If
8921 -1 is returned, the other variables may not be initialized. */
8922
8923 static int
8924 remote_hostio_parse_result (char *buffer, int *retcode,
8925 int *remote_errno, char **attachment)
8926 {
8927 char *p, *p2;
8928
8929 *remote_errno = 0;
8930 *attachment = NULL;
8931
8932 if (buffer[0] != 'F')
8933 return -1;
8934
8935 errno = 0;
8936 *retcode = strtol (&buffer[1], &p, 16);
8937 if (errno != 0 || p == &buffer[1])
8938 return -1;
8939
8940 /* Check for ",errno". */
8941 if (*p == ',')
8942 {
8943 errno = 0;
8944 *remote_errno = strtol (p + 1, &p2, 16);
8945 if (errno != 0 || p + 1 == p2)
8946 return -1;
8947 p = p2;
8948 }
8949
8950 /* Check for ";attachment". If there is no attachment, the
8951 packet should end here. */
8952 if (*p == ';')
8953 {
8954 *attachment = p + 1;
8955 return 0;
8956 }
8957 else if (*p == '\0')
8958 return 0;
8959 else
8960 return -1;
8961 }
8962
8963 /* Send a prepared I/O packet to the target and read its response.
8964 The prepared packet is in the global RS->BUF before this function
8965 is called, and the answer is there when we return.
8966
8967 COMMAND_BYTES is the length of the request to send, which may include
8968 binary data. WHICH_PACKET is the packet configuration to check
8969 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8970 is set to the error number and -1 is returned. Otherwise the value
8971 returned by the function is returned.
8972
8973 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8974 attachment is expected; an error will be reported if there's a
8975 mismatch. If one is found, *ATTACHMENT will be set to point into
8976 the packet buffer and *ATTACHMENT_LEN will be set to the
8977 attachment's length. */
8978
8979 static int
8980 remote_hostio_send_command (int command_bytes, int which_packet,
8981 int *remote_errno, char **attachment,
8982 int *attachment_len)
8983 {
8984 struct remote_state *rs = get_remote_state ();
8985 int ret, bytes_read;
8986 char *attachment_tmp;
8987
8988 if (!remote_desc
8989 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
8990 {
8991 *remote_errno = FILEIO_ENOSYS;
8992 return -1;
8993 }
8994
8995 putpkt_binary (rs->buf, command_bytes);
8996 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8997
8998 /* If it timed out, something is wrong. Don't try to parse the
8999 buffer. */
9000 if (bytes_read < 0)
9001 {
9002 *remote_errno = FILEIO_EINVAL;
9003 return -1;
9004 }
9005
9006 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9007 {
9008 case PACKET_ERROR:
9009 *remote_errno = FILEIO_EINVAL;
9010 return -1;
9011 case PACKET_UNKNOWN:
9012 *remote_errno = FILEIO_ENOSYS;
9013 return -1;
9014 case PACKET_OK:
9015 break;
9016 }
9017
9018 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9019 &attachment_tmp))
9020 {
9021 *remote_errno = FILEIO_EINVAL;
9022 return -1;
9023 }
9024
9025 /* Make sure we saw an attachment if and only if we expected one. */
9026 if ((attachment_tmp == NULL && attachment != NULL)
9027 || (attachment_tmp != NULL && attachment == NULL))
9028 {
9029 *remote_errno = FILEIO_EINVAL;
9030 return -1;
9031 }
9032
9033 /* If an attachment was found, it must point into the packet buffer;
9034 work out how many bytes there were. */
9035 if (attachment_tmp != NULL)
9036 {
9037 *attachment = attachment_tmp;
9038 *attachment_len = bytes_read - (*attachment - rs->buf);
9039 }
9040
9041 return ret;
9042 }
9043
9044 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9045 remote file descriptor, or -1 if an error occurs (and set
9046 *REMOTE_ERRNO). */
9047
9048 static int
9049 remote_hostio_open (const char *filename, int flags, int mode,
9050 int *remote_errno)
9051 {
9052 struct remote_state *rs = get_remote_state ();
9053 char *p = rs->buf;
9054 int left = get_remote_packet_size () - 1;
9055
9056 remote_buffer_add_string (&p, &left, "vFile:open:");
9057
9058 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9059 strlen (filename));
9060 remote_buffer_add_string (&p, &left, ",");
9061
9062 remote_buffer_add_int (&p, &left, flags);
9063 remote_buffer_add_string (&p, &left, ",");
9064
9065 remote_buffer_add_int (&p, &left, mode);
9066
9067 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9068 remote_errno, NULL, NULL);
9069 }
9070
9071 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9072 Return the number of bytes written, or -1 if an error occurs (and
9073 set *REMOTE_ERRNO). */
9074
9075 static int
9076 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9077 ULONGEST offset, int *remote_errno)
9078 {
9079 struct remote_state *rs = get_remote_state ();
9080 char *p = rs->buf;
9081 int left = get_remote_packet_size ();
9082 int out_len;
9083
9084 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9085
9086 remote_buffer_add_int (&p, &left, fd);
9087 remote_buffer_add_string (&p, &left, ",");
9088
9089 remote_buffer_add_int (&p, &left, offset);
9090 remote_buffer_add_string (&p, &left, ",");
9091
9092 p += remote_escape_output (write_buf, len, p, &out_len,
9093 get_remote_packet_size () - (p - rs->buf));
9094
9095 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9096 remote_errno, NULL, NULL);
9097 }
9098
9099 /* Read up to LEN bytes FD on the remote target into READ_BUF
9100 Return the number of bytes read, or -1 if an error occurs (and
9101 set *REMOTE_ERRNO). */
9102
9103 static int
9104 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9105 ULONGEST offset, int *remote_errno)
9106 {
9107 struct remote_state *rs = get_remote_state ();
9108 char *p = rs->buf;
9109 char *attachment;
9110 int left = get_remote_packet_size ();
9111 int ret, attachment_len;
9112 int read_len;
9113
9114 remote_buffer_add_string (&p, &left, "vFile:pread:");
9115
9116 remote_buffer_add_int (&p, &left, fd);
9117 remote_buffer_add_string (&p, &left, ",");
9118
9119 remote_buffer_add_int (&p, &left, len);
9120 remote_buffer_add_string (&p, &left, ",");
9121
9122 remote_buffer_add_int (&p, &left, offset);
9123
9124 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9125 remote_errno, &attachment,
9126 &attachment_len);
9127
9128 if (ret < 0)
9129 return ret;
9130
9131 read_len = remote_unescape_input (attachment, attachment_len,
9132 read_buf, len);
9133 if (read_len != ret)
9134 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9135
9136 return ret;
9137 }
9138
9139 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9140 (and set *REMOTE_ERRNO). */
9141
9142 static int
9143 remote_hostio_close (int fd, int *remote_errno)
9144 {
9145 struct remote_state *rs = get_remote_state ();
9146 char *p = rs->buf;
9147 int left = get_remote_packet_size () - 1;
9148
9149 remote_buffer_add_string (&p, &left, "vFile:close:");
9150
9151 remote_buffer_add_int (&p, &left, fd);
9152
9153 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9154 remote_errno, NULL, NULL);
9155 }
9156
9157 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9158 occurs (and set *REMOTE_ERRNO). */
9159
9160 static int
9161 remote_hostio_unlink (const char *filename, int *remote_errno)
9162 {
9163 struct remote_state *rs = get_remote_state ();
9164 char *p = rs->buf;
9165 int left = get_remote_packet_size () - 1;
9166
9167 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9168
9169 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9170 strlen (filename));
9171
9172 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9173 remote_errno, NULL, NULL);
9174 }
9175
9176 static int
9177 remote_fileio_errno_to_host (int errnum)
9178 {
9179 switch (errnum)
9180 {
9181 case FILEIO_EPERM:
9182 return EPERM;
9183 case FILEIO_ENOENT:
9184 return ENOENT;
9185 case FILEIO_EINTR:
9186 return EINTR;
9187 case FILEIO_EIO:
9188 return EIO;
9189 case FILEIO_EBADF:
9190 return EBADF;
9191 case FILEIO_EACCES:
9192 return EACCES;
9193 case FILEIO_EFAULT:
9194 return EFAULT;
9195 case FILEIO_EBUSY:
9196 return EBUSY;
9197 case FILEIO_EEXIST:
9198 return EEXIST;
9199 case FILEIO_ENODEV:
9200 return ENODEV;
9201 case FILEIO_ENOTDIR:
9202 return ENOTDIR;
9203 case FILEIO_EISDIR:
9204 return EISDIR;
9205 case FILEIO_EINVAL:
9206 return EINVAL;
9207 case FILEIO_ENFILE:
9208 return ENFILE;
9209 case FILEIO_EMFILE:
9210 return EMFILE;
9211 case FILEIO_EFBIG:
9212 return EFBIG;
9213 case FILEIO_ENOSPC:
9214 return ENOSPC;
9215 case FILEIO_ESPIPE:
9216 return ESPIPE;
9217 case FILEIO_EROFS:
9218 return EROFS;
9219 case FILEIO_ENOSYS:
9220 return ENOSYS;
9221 case FILEIO_ENAMETOOLONG:
9222 return ENAMETOOLONG;
9223 }
9224 return -1;
9225 }
9226
9227 static char *
9228 remote_hostio_error (int errnum)
9229 {
9230 int host_error = remote_fileio_errno_to_host (errnum);
9231
9232 if (host_error == -1)
9233 error (_("Unknown remote I/O error %d"), errnum);
9234 else
9235 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9236 }
9237
9238 static void
9239 remote_hostio_close_cleanup (void *opaque)
9240 {
9241 int fd = *(int *) opaque;
9242 int remote_errno;
9243
9244 remote_hostio_close (fd, &remote_errno);
9245 }
9246
9247
9248 static void *
9249 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9250 {
9251 const char *filename = bfd_get_filename (abfd);
9252 int fd, remote_errno;
9253 int *stream;
9254
9255 gdb_assert (remote_filename_p (filename));
9256
9257 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9258 if (fd == -1)
9259 {
9260 errno = remote_fileio_errno_to_host (remote_errno);
9261 bfd_set_error (bfd_error_system_call);
9262 return NULL;
9263 }
9264
9265 stream = xmalloc (sizeof (int));
9266 *stream = fd;
9267 return stream;
9268 }
9269
9270 static int
9271 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9272 {
9273 int fd = *(int *)stream;
9274 int remote_errno;
9275
9276 xfree (stream);
9277
9278 /* Ignore errors on close; these may happen if the remote
9279 connection was already torn down. */
9280 remote_hostio_close (fd, &remote_errno);
9281
9282 return 1;
9283 }
9284
9285 static file_ptr
9286 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9287 file_ptr nbytes, file_ptr offset)
9288 {
9289 int fd = *(int *)stream;
9290 int remote_errno;
9291 file_ptr pos, bytes;
9292
9293 pos = 0;
9294 while (nbytes > pos)
9295 {
9296 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9297 offset + pos, &remote_errno);
9298 if (bytes == 0)
9299 /* Success, but no bytes, means end-of-file. */
9300 break;
9301 if (bytes == -1)
9302 {
9303 errno = remote_fileio_errno_to_host (remote_errno);
9304 bfd_set_error (bfd_error_system_call);
9305 return -1;
9306 }
9307
9308 pos += bytes;
9309 }
9310
9311 return pos;
9312 }
9313
9314 static int
9315 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9316 {
9317 /* FIXME: We should probably implement remote_hostio_stat. */
9318 sb->st_size = INT_MAX;
9319 return 0;
9320 }
9321
9322 int
9323 remote_filename_p (const char *filename)
9324 {
9325 return strncmp (filename, "remote:", 7) == 0;
9326 }
9327
9328 bfd *
9329 remote_bfd_open (const char *remote_file, const char *target)
9330 {
9331 return bfd_openr_iovec (remote_file, target,
9332 remote_bfd_iovec_open, NULL,
9333 remote_bfd_iovec_pread,
9334 remote_bfd_iovec_close,
9335 remote_bfd_iovec_stat);
9336 }
9337
9338 void
9339 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9340 {
9341 struct cleanup *back_to, *close_cleanup;
9342 int retcode, fd, remote_errno, bytes, io_size;
9343 FILE *file;
9344 gdb_byte *buffer;
9345 int bytes_in_buffer;
9346 int saw_eof;
9347 ULONGEST offset;
9348
9349 if (!remote_desc)
9350 error (_("command can only be used with remote target"));
9351
9352 file = fopen (local_file, "rb");
9353 if (file == NULL)
9354 perror_with_name (local_file);
9355 back_to = make_cleanup_fclose (file);
9356
9357 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9358 | FILEIO_O_TRUNC),
9359 0700, &remote_errno);
9360 if (fd == -1)
9361 remote_hostio_error (remote_errno);
9362
9363 /* Send up to this many bytes at once. They won't all fit in the
9364 remote packet limit, so we'll transfer slightly fewer. */
9365 io_size = get_remote_packet_size ();
9366 buffer = xmalloc (io_size);
9367 make_cleanup (xfree, buffer);
9368
9369 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9370
9371 bytes_in_buffer = 0;
9372 saw_eof = 0;
9373 offset = 0;
9374 while (bytes_in_buffer || !saw_eof)
9375 {
9376 if (!saw_eof)
9377 {
9378 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
9379 file);
9380 if (bytes == 0)
9381 {
9382 if (ferror (file))
9383 error (_("Error reading %s."), local_file);
9384 else
9385 {
9386 /* EOF. Unless there is something still in the
9387 buffer from the last iteration, we are done. */
9388 saw_eof = 1;
9389 if (bytes_in_buffer == 0)
9390 break;
9391 }
9392 }
9393 }
9394 else
9395 bytes = 0;
9396
9397 bytes += bytes_in_buffer;
9398 bytes_in_buffer = 0;
9399
9400 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
9401
9402 if (retcode < 0)
9403 remote_hostio_error (remote_errno);
9404 else if (retcode == 0)
9405 error (_("Remote write of %d bytes returned 0!"), bytes);
9406 else if (retcode < bytes)
9407 {
9408 /* Short write. Save the rest of the read data for the next
9409 write. */
9410 bytes_in_buffer = bytes - retcode;
9411 memmove (buffer, buffer + retcode, bytes_in_buffer);
9412 }
9413
9414 offset += retcode;
9415 }
9416
9417 discard_cleanups (close_cleanup);
9418 if (remote_hostio_close (fd, &remote_errno))
9419 remote_hostio_error (remote_errno);
9420
9421 if (from_tty)
9422 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9423 do_cleanups (back_to);
9424 }
9425
9426 void
9427 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9428 {
9429 struct cleanup *back_to, *close_cleanup;
9430 int fd, remote_errno, bytes, io_size;
9431 FILE *file;
9432 gdb_byte *buffer;
9433 ULONGEST offset;
9434
9435 if (!remote_desc)
9436 error (_("command can only be used with remote target"));
9437
9438 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9439 if (fd == -1)
9440 remote_hostio_error (remote_errno);
9441
9442 file = fopen (local_file, "wb");
9443 if (file == NULL)
9444 perror_with_name (local_file);
9445 back_to = make_cleanup_fclose (file);
9446
9447 /* Send up to this many bytes at once. They won't all fit in the
9448 remote packet limit, so we'll transfer slightly fewer. */
9449 io_size = get_remote_packet_size ();
9450 buffer = xmalloc (io_size);
9451 make_cleanup (xfree, buffer);
9452
9453 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9454
9455 offset = 0;
9456 while (1)
9457 {
9458 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9459 if (bytes == 0)
9460 /* Success, but no bytes, means end-of-file. */
9461 break;
9462 if (bytes == -1)
9463 remote_hostio_error (remote_errno);
9464
9465 offset += bytes;
9466
9467 bytes = fwrite (buffer, 1, bytes, file);
9468 if (bytes == 0)
9469 perror_with_name (local_file);
9470 }
9471
9472 discard_cleanups (close_cleanup);
9473 if (remote_hostio_close (fd, &remote_errno))
9474 remote_hostio_error (remote_errno);
9475
9476 if (from_tty)
9477 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9478 do_cleanups (back_to);
9479 }
9480
9481 void
9482 remote_file_delete (const char *remote_file, int from_tty)
9483 {
9484 int retcode, remote_errno;
9485
9486 if (!remote_desc)
9487 error (_("command can only be used with remote target"));
9488
9489 retcode = remote_hostio_unlink (remote_file, &remote_errno);
9490 if (retcode == -1)
9491 remote_hostio_error (remote_errno);
9492
9493 if (from_tty)
9494 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9495 }
9496
9497 static void
9498 remote_put_command (char *args, int from_tty)
9499 {
9500 struct cleanup *back_to;
9501 char **argv;
9502
9503 if (args == NULL)
9504 error_no_arg (_("file to put"));
9505
9506 argv = gdb_buildargv (args);
9507 back_to = make_cleanup_freeargv (argv);
9508 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9509 error (_("Invalid parameters to remote put"));
9510
9511 remote_file_put (argv[0], argv[1], from_tty);
9512
9513 do_cleanups (back_to);
9514 }
9515
9516 static void
9517 remote_get_command (char *args, int from_tty)
9518 {
9519 struct cleanup *back_to;
9520 char **argv;
9521
9522 if (args == NULL)
9523 error_no_arg (_("file to get"));
9524
9525 argv = gdb_buildargv (args);
9526 back_to = make_cleanup_freeargv (argv);
9527 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9528 error (_("Invalid parameters to remote get"));
9529
9530 remote_file_get (argv[0], argv[1], from_tty);
9531
9532 do_cleanups (back_to);
9533 }
9534
9535 static void
9536 remote_delete_command (char *args, int from_tty)
9537 {
9538 struct cleanup *back_to;
9539 char **argv;
9540
9541 if (args == NULL)
9542 error_no_arg (_("file to delete"));
9543
9544 argv = gdb_buildargv (args);
9545 back_to = make_cleanup_freeargv (argv);
9546 if (argv[0] == NULL || argv[1] != NULL)
9547 error (_("Invalid parameters to remote delete"));
9548
9549 remote_file_delete (argv[0], from_tty);
9550
9551 do_cleanups (back_to);
9552 }
9553
9554 static void
9555 remote_command (char *args, int from_tty)
9556 {
9557 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
9558 }
9559
9560 static int
9561 remote_can_execute_reverse (void)
9562 {
9563 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
9564 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
9565 return 1;
9566 else
9567 return 0;
9568 }
9569
9570 static int
9571 remote_supports_non_stop (void)
9572 {
9573 return 1;
9574 }
9575
9576 static int
9577 remote_supports_multi_process (void)
9578 {
9579 struct remote_state *rs = get_remote_state ();
9580
9581 return remote_multi_process_p (rs);
9582 }
9583
9584 int
9585 remote_supports_cond_tracepoints (void)
9586 {
9587 struct remote_state *rs = get_remote_state ();
9588
9589 return rs->cond_tracepoints;
9590 }
9591
9592 int
9593 remote_supports_fast_tracepoints (void)
9594 {
9595 struct remote_state *rs = get_remote_state ();
9596
9597 return rs->fast_tracepoints;
9598 }
9599
9600 static int
9601 remote_supports_static_tracepoints (void)
9602 {
9603 struct remote_state *rs = get_remote_state ();
9604
9605 return rs->static_tracepoints;
9606 }
9607
9608 static void
9609 remote_trace_init (void)
9610 {
9611 putpkt ("QTinit");
9612 remote_get_noisy_reply (&target_buf, &target_buf_size);
9613 if (strcmp (target_buf, "OK") != 0)
9614 error (_("Target does not support this command."));
9615 }
9616
9617 static void free_actions_list (char **actions_list);
9618 static void free_actions_list_cleanup_wrapper (void *);
9619 static void
9620 free_actions_list_cleanup_wrapper (void *al)
9621 {
9622 free_actions_list (al);
9623 }
9624
9625 static void
9626 free_actions_list (char **actions_list)
9627 {
9628 int ndx;
9629
9630 if (actions_list == 0)
9631 return;
9632
9633 for (ndx = 0; actions_list[ndx]; ndx++)
9634 xfree (actions_list[ndx]);
9635
9636 xfree (actions_list);
9637 }
9638
9639 /* Recursive routine to walk through command list including loops, and
9640 download packets for each command. */
9641
9642 static void
9643 remote_download_command_source (int num, ULONGEST addr,
9644 struct command_line *cmds)
9645 {
9646 struct remote_state *rs = get_remote_state ();
9647 struct command_line *cmd;
9648
9649 for (cmd = cmds; cmd; cmd = cmd->next)
9650 {
9651 QUIT; /* allow user to bail out with ^C */
9652 strcpy (rs->buf, "QTDPsrc:");
9653 encode_source_string (num, addr, "cmd", cmd->line,
9654 rs->buf + strlen (rs->buf),
9655 rs->buf_size - strlen (rs->buf));
9656 putpkt (rs->buf);
9657 remote_get_noisy_reply (&target_buf, &target_buf_size);
9658 if (strcmp (target_buf, "OK"))
9659 warning (_("Target does not support source download."));
9660
9661 if (cmd->control_type == while_control
9662 || cmd->control_type == while_stepping_control)
9663 {
9664 remote_download_command_source (num, addr, *cmd->body_list);
9665
9666 QUIT; /* allow user to bail out with ^C */
9667 strcpy (rs->buf, "QTDPsrc:");
9668 encode_source_string (num, addr, "cmd", "end",
9669 rs->buf + strlen (rs->buf),
9670 rs->buf_size - strlen (rs->buf));
9671 putpkt (rs->buf);
9672 remote_get_noisy_reply (&target_buf, &target_buf_size);
9673 if (strcmp (target_buf, "OK"))
9674 warning (_("Target does not support source download."));
9675 }
9676 }
9677 }
9678
9679 static void
9680 remote_download_tracepoint (struct breakpoint *t)
9681 {
9682 struct bp_location *loc;
9683 CORE_ADDR tpaddr;
9684 char addrbuf[40];
9685 char buf[2048];
9686 char **tdp_actions;
9687 char **stepping_actions;
9688 int ndx;
9689 struct cleanup *old_chain = NULL;
9690 struct agent_expr *aexpr;
9691 struct cleanup *aexpr_chain = NULL;
9692 char *pkt;
9693
9694 /* Iterate over all the tracepoint locations. It's up to the target to
9695 notice multiple tracepoint packets with the same number but different
9696 addresses, and treat them as multiple locations. */
9697 for (loc = t->loc; loc; loc = loc->next)
9698 {
9699 encode_actions (t, loc, &tdp_actions, &stepping_actions);
9700 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
9701 tdp_actions);
9702 (void) make_cleanup (free_actions_list_cleanup_wrapper, stepping_actions);
9703
9704 tpaddr = loc->address;
9705 sprintf_vma (addrbuf, tpaddr);
9706 sprintf (buf, "QTDP:%x:%s:%c:%lx:%x", t->number,
9707 addrbuf, /* address */
9708 (t->enable_state == bp_enabled ? 'E' : 'D'),
9709 t->step_count, t->pass_count);
9710 /* Fast tracepoints are mostly handled by the target, but we can
9711 tell the target how big of an instruction block should be moved
9712 around. */
9713 if (t->type == bp_fast_tracepoint)
9714 {
9715 /* Only test for support at download time; we may not know
9716 target capabilities at definition time. */
9717 if (remote_supports_fast_tracepoints ())
9718 {
9719 int isize;
9720
9721 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
9722 tpaddr, &isize, NULL))
9723 sprintf (buf + strlen (buf), ":F%x", isize);
9724 else
9725 /* If it passed validation at definition but fails now,
9726 something is very wrong. */
9727 internal_error (__FILE__, __LINE__,
9728 "Fast tracepoint not valid during download");
9729 }
9730 else
9731 /* Fast tracepoints are functionally identical to regular
9732 tracepoints, so don't take lack of support as a reason to
9733 give up on the trace run. */
9734 warning (_("Target does not support fast tracepoints, downloading %d as regular tracepoint"), t->number);
9735 }
9736 else if (t->type == bp_static_tracepoint)
9737 {
9738 /* Only test for support at download time; we may not know
9739 target capabilities at definition time. */
9740 if (remote_supports_static_tracepoints ())
9741 {
9742 struct static_tracepoint_marker marker;
9743
9744 if (target_static_tracepoint_marker_at (tpaddr, &marker))
9745 strcat (buf, ":S");
9746 else
9747 error ("Static tracepoint not valid during download");
9748 }
9749 else
9750 /* Fast tracepoints are functionally identical to regular
9751 tracepoints, so don't take lack of support as a reason
9752 to give up on the trace run. */
9753 error (_("Target does not support static tracepoints"));
9754 }
9755 /* If the tracepoint has a conditional, make it into an agent
9756 expression and append to the definition. */
9757 if (loc->cond)
9758 {
9759 /* Only test support at download time, we may not know target
9760 capabilities at definition time. */
9761 if (remote_supports_cond_tracepoints ())
9762 {
9763 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
9764 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
9765 sprintf (buf + strlen (buf), ":X%x,", aexpr->len);
9766 pkt = buf + strlen (buf);
9767 for (ndx = 0; ndx < aexpr->len; ++ndx)
9768 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
9769 *pkt = '\0';
9770 do_cleanups (aexpr_chain);
9771 }
9772 else
9773 warning (_("Target does not support conditional tracepoints, ignoring tp %d cond"), t->number);
9774 }
9775
9776 if (t->commands || *default_collect)
9777 strcat (buf, "-");
9778 putpkt (buf);
9779 remote_get_noisy_reply (&target_buf, &target_buf_size);
9780 if (strcmp (target_buf, "OK"))
9781 error (_("Target does not support tracepoints."));
9782
9783 /* do_single_steps (t); */
9784 if (tdp_actions)
9785 {
9786 for (ndx = 0; tdp_actions[ndx]; ndx++)
9787 {
9788 QUIT; /* allow user to bail out with ^C */
9789 sprintf (buf, "QTDP:-%x:%s:%s%c",
9790 t->number, addrbuf, /* address */
9791 tdp_actions[ndx],
9792 ((tdp_actions[ndx + 1] || stepping_actions)
9793 ? '-' : 0));
9794 putpkt (buf);
9795 remote_get_noisy_reply (&target_buf,
9796 &target_buf_size);
9797 if (strcmp (target_buf, "OK"))
9798 error (_("Error on target while setting tracepoints."));
9799 }
9800 }
9801 if (stepping_actions)
9802 {
9803 for (ndx = 0; stepping_actions[ndx]; ndx++)
9804 {
9805 QUIT; /* allow user to bail out with ^C */
9806 sprintf (buf, "QTDP:-%x:%s:%s%s%s",
9807 t->number, addrbuf, /* address */
9808 ((ndx == 0) ? "S" : ""),
9809 stepping_actions[ndx],
9810 (stepping_actions[ndx + 1] ? "-" : ""));
9811 putpkt (buf);
9812 remote_get_noisy_reply (&target_buf,
9813 &target_buf_size);
9814 if (strcmp (target_buf, "OK"))
9815 error (_("Error on target while setting tracepoints."));
9816 }
9817 }
9818
9819 if (remote_protocol_packets[PACKET_TracepointSource].support == PACKET_ENABLE)
9820 {
9821 if (t->addr_string)
9822 {
9823 strcpy (buf, "QTDPsrc:");
9824 encode_source_string (t->number, loc->address,
9825 "at", t->addr_string, buf + strlen (buf),
9826 2048 - strlen (buf));
9827
9828 putpkt (buf);
9829 remote_get_noisy_reply (&target_buf, &target_buf_size);
9830 if (strcmp (target_buf, "OK"))
9831 warning (_("Target does not support source download."));
9832 }
9833 if (t->cond_string)
9834 {
9835 strcpy (buf, "QTDPsrc:");
9836 encode_source_string (t->number, loc->address,
9837 "cond", t->cond_string, buf + strlen (buf),
9838 2048 - strlen (buf));
9839 putpkt (buf);
9840 remote_get_noisy_reply (&target_buf, &target_buf_size);
9841 if (strcmp (target_buf, "OK"))
9842 warning (_("Target does not support source download."));
9843 }
9844 remote_download_command_source (t->number, loc->address,
9845 breakpoint_commands (t));
9846 }
9847
9848 do_cleanups (old_chain);
9849 }
9850 }
9851
9852 static void
9853 remote_download_trace_state_variable (struct trace_state_variable *tsv)
9854 {
9855 struct remote_state *rs = get_remote_state ();
9856 char *p;
9857
9858 sprintf (rs->buf, "QTDV:%x:%s:%x:",
9859 tsv->number, phex ((ULONGEST) tsv->initial_value, 8), tsv->builtin);
9860 p = rs->buf + strlen (rs->buf);
9861 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
9862 error (_("Trace state variable name too long for tsv definition packet"));
9863 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
9864 *p++ = '\0';
9865 putpkt (rs->buf);
9866 remote_get_noisy_reply (&target_buf, &target_buf_size);
9867 if (*target_buf == '\0')
9868 error (_("Target does not support this command."));
9869 if (strcmp (target_buf, "OK") != 0)
9870 error (_("Error on target while downloading trace state variable."));
9871 }
9872
9873 static void
9874 remote_trace_set_readonly_regions (void)
9875 {
9876 asection *s;
9877 bfd_size_type size;
9878 bfd_vma lma;
9879 int anysecs = 0;
9880
9881 if (!exec_bfd)
9882 return; /* No information to give. */
9883
9884 strcpy (target_buf, "QTro");
9885 for (s = exec_bfd->sections; s; s = s->next)
9886 {
9887 char tmp1[40], tmp2[40];
9888
9889 if ((s->flags & SEC_LOAD) == 0 ||
9890 /* (s->flags & SEC_CODE) == 0 || */
9891 (s->flags & SEC_READONLY) == 0)
9892 continue;
9893
9894 anysecs = 1;
9895 lma = s->lma;
9896 size = bfd_get_section_size (s);
9897 sprintf_vma (tmp1, lma);
9898 sprintf_vma (tmp2, lma + size);
9899 sprintf (target_buf + strlen (target_buf),
9900 ":%s,%s", tmp1, tmp2);
9901 }
9902 if (anysecs)
9903 {
9904 putpkt (target_buf);
9905 getpkt (&target_buf, &target_buf_size, 0);
9906 }
9907 }
9908
9909 static void
9910 remote_trace_start (void)
9911 {
9912 putpkt ("QTStart");
9913 remote_get_noisy_reply (&target_buf, &target_buf_size);
9914 if (*target_buf == '\0')
9915 error (_("Target does not support this command."));
9916 if (strcmp (target_buf, "OK") != 0)
9917 error (_("Bogus reply from target: %s"), target_buf);
9918 }
9919
9920 static int
9921 remote_get_trace_status (struct trace_status *ts)
9922 {
9923 char *p;
9924 /* FIXME we need to get register block size some other way */
9925 extern int trace_regblock_size;
9926
9927 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
9928
9929 putpkt ("qTStatus");
9930 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
9931
9932 /* If the remote target doesn't do tracing, flag it. */
9933 if (*p == '\0')
9934 return -1;
9935
9936 /* We're working with a live target. */
9937 ts->from_file = 0;
9938
9939 /* Set some defaults. */
9940 ts->running_known = 0;
9941 ts->stop_reason = trace_stop_reason_unknown;
9942 ts->traceframe_count = -1;
9943 ts->buffer_free = 0;
9944
9945 if (*p++ != 'T')
9946 error (_("Bogus trace status reply from target: %s"), target_buf);
9947
9948 parse_trace_status (p, ts);
9949
9950 return ts->running;
9951 }
9952
9953 static void
9954 remote_trace_stop (void)
9955 {
9956 putpkt ("QTStop");
9957 remote_get_noisy_reply (&target_buf, &target_buf_size);
9958 if (*target_buf == '\0')
9959 error (_("Target does not support this command."));
9960 if (strcmp (target_buf, "OK") != 0)
9961 error (_("Bogus reply from target: %s"), target_buf);
9962 }
9963
9964 static int
9965 remote_trace_find (enum trace_find_type type, int num,
9966 ULONGEST addr1, ULONGEST addr2,
9967 int *tpp)
9968 {
9969 struct remote_state *rs = get_remote_state ();
9970 char *p, *reply;
9971 int target_frameno = -1, target_tracept = -1;
9972
9973 p = rs->buf;
9974 strcpy (p, "QTFrame:");
9975 p = strchr (p, '\0');
9976 switch (type)
9977 {
9978 case tfind_number:
9979 sprintf (p, "%x", num);
9980 break;
9981 case tfind_pc:
9982 sprintf (p, "pc:%s", phex_nz (addr1, 0));
9983 break;
9984 case tfind_tp:
9985 sprintf (p, "tdp:%x", num);
9986 break;
9987 case tfind_range:
9988 sprintf (p, "range:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
9989 break;
9990 case tfind_outside:
9991 sprintf (p, "outside:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
9992 break;
9993 default:
9994 error ("Unknown trace find type %d", type);
9995 }
9996
9997 putpkt (rs->buf);
9998 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
9999 if (*reply == '\0')
10000 error (_("Target does not support this command."));
10001
10002 while (reply && *reply)
10003 switch (*reply)
10004 {
10005 case 'F':
10006 p = ++reply;
10007 target_frameno = (int) strtol (p, &reply, 16);
10008 if (reply == p)
10009 error (_("Unable to parse trace frame number"));
10010 if (target_frameno == -1)
10011 return -1;
10012 break;
10013 case 'T':
10014 p = ++reply;
10015 target_tracept = (int) strtol (p, &reply, 16);
10016 if (reply == p)
10017 error (_("Unable to parse tracepoint number"));
10018 break;
10019 case 'O': /* "OK"? */
10020 if (reply[1] == 'K' && reply[2] == '\0')
10021 reply += 2;
10022 else
10023 error (_("Bogus reply from target: %s"), reply);
10024 break;
10025 default:
10026 error (_("Bogus reply from target: %s"), reply);
10027 }
10028 if (tpp)
10029 *tpp = target_tracept;
10030 return target_frameno;
10031 }
10032
10033 static int
10034 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10035 {
10036 struct remote_state *rs = get_remote_state ();
10037 char *reply;
10038 ULONGEST uval;
10039
10040 sprintf (rs->buf, "qTV:%x", tsvnum);
10041 putpkt (rs->buf);
10042 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10043 if (reply && *reply)
10044 {
10045 if (*reply == 'V')
10046 {
10047 unpack_varlen_hex (reply + 1, &uval);
10048 *val = (LONGEST) uval;
10049 return 1;
10050 }
10051 }
10052 return 0;
10053 }
10054
10055 static int
10056 remote_save_trace_data (const char *filename)
10057 {
10058 struct remote_state *rs = get_remote_state ();
10059 char *p, *reply;
10060
10061 p = rs->buf;
10062 strcpy (p, "QTSave:");
10063 p += strlen (p);
10064 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10065 error (_("Remote file name too long for trace save packet"));
10066 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10067 *p++ = '\0';
10068 putpkt (rs->buf);
10069 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10070 if (*reply != '\0')
10071 error (_("Target does not support this command."));
10072 if (strcmp (reply, "OK") != 0)
10073 error (_("Bogus reply from target: %s"), reply);
10074 return 0;
10075 }
10076
10077 /* This is basically a memory transfer, but needs to be its own packet
10078 because we don't know how the target actually organizes its trace
10079 memory, plus we want to be able to ask for as much as possible, but
10080 not be unhappy if we don't get as much as we ask for. */
10081
10082 static LONGEST
10083 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10084 {
10085 struct remote_state *rs = get_remote_state ();
10086 char *reply;
10087 char *p;
10088 int rslt;
10089
10090 p = rs->buf;
10091 strcpy (p, "qTBuffer:");
10092 p += strlen (p);
10093 p += hexnumstr (p, offset);
10094 *p++ = ',';
10095 p += hexnumstr (p, len);
10096 *p++ = '\0';
10097
10098 putpkt (rs->buf);
10099 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10100 if (reply && *reply)
10101 {
10102 /* 'l' by itself means we're at the end of the buffer and
10103 there is nothing more to get. */
10104 if (*reply == 'l')
10105 return 0;
10106
10107 /* Convert the reply into binary. Limit the number of bytes to
10108 convert according to our passed-in buffer size, rather than
10109 what was returned in the packet; if the target is
10110 unexpectedly generous and gives us a bigger reply than we
10111 asked for, we don't want to crash. */
10112 rslt = hex2bin (target_buf, buf, len);
10113 return rslt;
10114 }
10115
10116 /* Something went wrong, flag as an error. */
10117 return -1;
10118 }
10119
10120 static void
10121 remote_set_disconnected_tracing (int val)
10122 {
10123 struct remote_state *rs = get_remote_state ();
10124
10125 if (rs->disconnected_tracing)
10126 {
10127 char *reply;
10128
10129 sprintf (rs->buf, "QTDisconnected:%x", val);
10130 putpkt (rs->buf);
10131 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10132 if (*reply == '\0')
10133 error (_("Target does not support this command."));
10134 if (strcmp (reply, "OK") != 0)
10135 error (_("Bogus reply from target: %s"), reply);
10136 }
10137 else if (val)
10138 warning (_("Target does not support disconnected tracing."));
10139 }
10140
10141 static int
10142 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
10143 {
10144 struct thread_info *info = find_thread_ptid (ptid);
10145
10146 if (info && info->private)
10147 return info->private->core;
10148 return -1;
10149 }
10150
10151 static void
10152 remote_set_circular_trace_buffer (int val)
10153 {
10154 struct remote_state *rs = get_remote_state ();
10155 char *reply;
10156
10157 sprintf (rs->buf, "QTBuffer:circular:%x", val);
10158 putpkt (rs->buf);
10159 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10160 if (*reply == '\0')
10161 error (_("Target does not support this command."));
10162 if (strcmp (reply, "OK") != 0)
10163 error (_("Bogus reply from target: %s"), reply);
10164 }
10165
10166 static void
10167 init_remote_ops (void)
10168 {
10169 remote_ops.to_shortname = "remote";
10170 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
10171 remote_ops.to_doc =
10172 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10173 Specify the serial device it is connected to\n\
10174 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
10175 remote_ops.to_open = remote_open;
10176 remote_ops.to_close = remote_close;
10177 remote_ops.to_detach = remote_detach;
10178 remote_ops.to_disconnect = remote_disconnect;
10179 remote_ops.to_resume = remote_resume;
10180 remote_ops.to_wait = remote_wait;
10181 remote_ops.to_fetch_registers = remote_fetch_registers;
10182 remote_ops.to_store_registers = remote_store_registers;
10183 remote_ops.to_prepare_to_store = remote_prepare_to_store;
10184 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
10185 remote_ops.to_files_info = remote_files_info;
10186 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
10187 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
10188 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
10189 remote_ops.to_stopped_data_address = remote_stopped_data_address;
10190 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
10191 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
10192 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
10193 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
10194 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
10195 remote_ops.to_kill = remote_kill;
10196 remote_ops.to_load = generic_load;
10197 remote_ops.to_mourn_inferior = remote_mourn;
10198 remote_ops.to_notice_signals = remote_notice_signals;
10199 remote_ops.to_thread_alive = remote_thread_alive;
10200 remote_ops.to_find_new_threads = remote_threads_info;
10201 remote_ops.to_pid_to_str = remote_pid_to_str;
10202 remote_ops.to_extra_thread_info = remote_threads_extra_info;
10203 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
10204 remote_ops.to_stop = remote_stop;
10205 remote_ops.to_xfer_partial = remote_xfer_partial;
10206 remote_ops.to_rcmd = remote_rcmd;
10207 remote_ops.to_log_command = serial_log_command;
10208 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
10209 remote_ops.to_stratum = process_stratum;
10210 remote_ops.to_has_all_memory = default_child_has_all_memory;
10211 remote_ops.to_has_memory = default_child_has_memory;
10212 remote_ops.to_has_stack = default_child_has_stack;
10213 remote_ops.to_has_registers = default_child_has_registers;
10214 remote_ops.to_has_execution = default_child_has_execution;
10215 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
10216 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
10217 remote_ops.to_magic = OPS_MAGIC;
10218 remote_ops.to_memory_map = remote_memory_map;
10219 remote_ops.to_flash_erase = remote_flash_erase;
10220 remote_ops.to_flash_done = remote_flash_done;
10221 remote_ops.to_read_description = remote_read_description;
10222 remote_ops.to_search_memory = remote_search_memory;
10223 remote_ops.to_can_async_p = remote_can_async_p;
10224 remote_ops.to_is_async_p = remote_is_async_p;
10225 remote_ops.to_async = remote_async;
10226 remote_ops.to_async_mask = remote_async_mask;
10227 remote_ops.to_terminal_inferior = remote_terminal_inferior;
10228 remote_ops.to_terminal_ours = remote_terminal_ours;
10229 remote_ops.to_supports_non_stop = remote_supports_non_stop;
10230 remote_ops.to_supports_multi_process = remote_supports_multi_process;
10231 remote_ops.to_trace_init = remote_trace_init;
10232 remote_ops.to_download_tracepoint = remote_download_tracepoint;
10233 remote_ops.to_download_trace_state_variable = remote_download_trace_state_variable;
10234 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
10235 remote_ops.to_trace_start = remote_trace_start;
10236 remote_ops.to_get_trace_status = remote_get_trace_status;
10237 remote_ops.to_trace_stop = remote_trace_stop;
10238 remote_ops.to_trace_find = remote_trace_find;
10239 remote_ops.to_get_trace_state_variable_value = remote_get_trace_state_variable_value;
10240 remote_ops.to_save_trace_data = remote_save_trace_data;
10241 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
10242 remote_ops.to_upload_trace_state_variables = remote_upload_trace_state_variables;
10243 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
10244 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
10245 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
10246 remote_ops.to_core_of_thread = remote_core_of_thread;
10247 remote_ops.to_verify_memory = remote_verify_memory;
10248 remote_ops.to_get_tib_address = remote_get_tib_address;
10249 remote_ops.to_set_permissions = remote_set_permissions;
10250 remote_ops.to_static_tracepoint_marker_at
10251 = remote_static_tracepoint_marker_at;
10252 remote_ops.to_static_tracepoint_markers_by_strid
10253 = remote_static_tracepoint_markers_by_strid;
10254 }
10255
10256 /* Set up the extended remote vector by making a copy of the standard
10257 remote vector and adding to it. */
10258
10259 static void
10260 init_extended_remote_ops (void)
10261 {
10262 extended_remote_ops = remote_ops;
10263
10264 extended_remote_ops.to_shortname = "extended-remote";
10265 extended_remote_ops.to_longname =
10266 "Extended remote serial target in gdb-specific protocol";
10267 extended_remote_ops.to_doc =
10268 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10269 Specify the serial device it is connected to (e.g. /dev/ttya).";
10270 extended_remote_ops.to_open = extended_remote_open;
10271 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
10272 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
10273 extended_remote_ops.to_detach = extended_remote_detach;
10274 extended_remote_ops.to_attach = extended_remote_attach;
10275 extended_remote_ops.to_kill = extended_remote_kill;
10276 }
10277
10278 static int
10279 remote_can_async_p (void)
10280 {
10281 if (!target_async_permitted)
10282 /* We only enable async when the user specifically asks for it. */
10283 return 0;
10284
10285 /* We're async whenever the serial device is. */
10286 return remote_async_mask_value && serial_can_async_p (remote_desc);
10287 }
10288
10289 static int
10290 remote_is_async_p (void)
10291 {
10292 if (!target_async_permitted)
10293 /* We only enable async when the user specifically asks for it. */
10294 return 0;
10295
10296 /* We're async whenever the serial device is. */
10297 return remote_async_mask_value && serial_is_async_p (remote_desc);
10298 }
10299
10300 /* Pass the SERIAL event on and up to the client. One day this code
10301 will be able to delay notifying the client of an event until the
10302 point where an entire packet has been received. */
10303
10304 static void (*async_client_callback) (enum inferior_event_type event_type,
10305 void *context);
10306 static void *async_client_context;
10307 static serial_event_ftype remote_async_serial_handler;
10308
10309 static void
10310 remote_async_serial_handler (struct serial *scb, void *context)
10311 {
10312 /* Don't propogate error information up to the client. Instead let
10313 the client find out about the error by querying the target. */
10314 async_client_callback (INF_REG_EVENT, async_client_context);
10315 }
10316
10317 static void
10318 remote_async_inferior_event_handler (gdb_client_data data)
10319 {
10320 inferior_event_handler (INF_REG_EVENT, NULL);
10321 }
10322
10323 static void
10324 remote_async_get_pending_events_handler (gdb_client_data data)
10325 {
10326 remote_get_pending_stop_replies ();
10327 }
10328
10329 static void
10330 remote_async (void (*callback) (enum inferior_event_type event_type,
10331 void *context), void *context)
10332 {
10333 if (remote_async_mask_value == 0)
10334 internal_error (__FILE__, __LINE__,
10335 _("Calling remote_async when async is masked"));
10336
10337 if (callback != NULL)
10338 {
10339 serial_async (remote_desc, remote_async_serial_handler, NULL);
10340 async_client_callback = callback;
10341 async_client_context = context;
10342 }
10343 else
10344 serial_async (remote_desc, NULL, NULL);
10345 }
10346
10347 static int
10348 remote_async_mask (int new_mask)
10349 {
10350 int curr_mask = remote_async_mask_value;
10351
10352 remote_async_mask_value = new_mask;
10353 return curr_mask;
10354 }
10355
10356 static void
10357 set_remote_cmd (char *args, int from_tty)
10358 {
10359 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
10360 }
10361
10362 static void
10363 show_remote_cmd (char *args, int from_tty)
10364 {
10365 /* We can't just use cmd_show_list here, because we want to skip
10366 the redundant "show remote Z-packet" and the legacy aliases. */
10367 struct cleanup *showlist_chain;
10368 struct cmd_list_element *list = remote_show_cmdlist;
10369
10370 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
10371 for (; list != NULL; list = list->next)
10372 if (strcmp (list->name, "Z-packet") == 0)
10373 continue;
10374 else if (list->type == not_set_cmd)
10375 /* Alias commands are exactly like the original, except they
10376 don't have the normal type. */
10377 continue;
10378 else
10379 {
10380 struct cleanup *option_chain
10381 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
10382
10383 ui_out_field_string (uiout, "name", list->name);
10384 ui_out_text (uiout, ": ");
10385 if (list->type == show_cmd)
10386 do_setshow_command ((char *) NULL, from_tty, list);
10387 else
10388 cmd_func (list, NULL, from_tty);
10389 /* Close the tuple. */
10390 do_cleanups (option_chain);
10391 }
10392
10393 /* Close the tuple. */
10394 do_cleanups (showlist_chain);
10395 }
10396
10397
10398 /* Function to be called whenever a new objfile (shlib) is detected. */
10399 static void
10400 remote_new_objfile (struct objfile *objfile)
10401 {
10402 if (remote_desc != 0) /* Have a remote connection. */
10403 remote_check_symbols (objfile);
10404 }
10405
10406 /* Pull all the tracepoints defined on the target and create local
10407 data structures representing them. We don't want to create real
10408 tracepoints yet, we don't want to mess up the user's existing
10409 collection. */
10410
10411 static int
10412 remote_upload_tracepoints (struct uploaded_tp **utpp)
10413 {
10414 struct remote_state *rs = get_remote_state ();
10415 char *p;
10416
10417 /* Ask for a first packet of tracepoint definition. */
10418 putpkt ("qTfP");
10419 getpkt (&rs->buf, &rs->buf_size, 0);
10420 p = rs->buf;
10421 while (*p && *p != 'l')
10422 {
10423 parse_tracepoint_definition (p, utpp);
10424 /* Ask for another packet of tracepoint definition. */
10425 putpkt ("qTsP");
10426 getpkt (&rs->buf, &rs->buf_size, 0);
10427 p = rs->buf;
10428 }
10429 return 0;
10430 }
10431
10432 static int
10433 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
10434 {
10435 struct remote_state *rs = get_remote_state ();
10436 char *p;
10437
10438 /* Ask for a first packet of variable definition. */
10439 putpkt ("qTfV");
10440 getpkt (&rs->buf, &rs->buf_size, 0);
10441 p = rs->buf;
10442 while (*p && *p != 'l')
10443 {
10444 parse_tsv_definition (p, utsvp);
10445 /* Ask for another packet of variable definition. */
10446 putpkt ("qTsV");
10447 getpkt (&rs->buf, &rs->buf_size, 0);
10448 p = rs->buf;
10449 }
10450 return 0;
10451 }
10452
10453 void
10454 _initialize_remote (void)
10455 {
10456 struct remote_state *rs;
10457 struct cmd_list_element *cmd;
10458 char *cmd_name;
10459
10460 /* architecture specific data */
10461 remote_gdbarch_data_handle =
10462 gdbarch_data_register_post_init (init_remote_state);
10463 remote_g_packet_data_handle =
10464 gdbarch_data_register_pre_init (remote_g_packet_data_init);
10465
10466 /* Initialize the per-target state. At the moment there is only one
10467 of these, not one per target. Only one target is active at a
10468 time. The default buffer size is unimportant; it will be expanded
10469 whenever a larger buffer is needed. */
10470 rs = get_remote_state_raw ();
10471 rs->buf_size = 400;
10472 rs->buf = xmalloc (rs->buf_size);
10473
10474 init_remote_ops ();
10475 add_target (&remote_ops);
10476
10477 init_extended_remote_ops ();
10478 add_target (&extended_remote_ops);
10479
10480 /* Hook into new objfile notification. */
10481 observer_attach_new_objfile (remote_new_objfile);
10482
10483 /* Set up signal handlers. */
10484 sigint_remote_token =
10485 create_async_signal_handler (async_remote_interrupt, NULL);
10486 sigint_remote_twice_token =
10487 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
10488
10489 #if 0
10490 init_remote_threadtests ();
10491 #endif
10492
10493 /* set/show remote ... */
10494
10495 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
10496 Remote protocol specific variables\n\
10497 Configure various remote-protocol specific variables such as\n\
10498 the packets being used"),
10499 &remote_set_cmdlist, "set remote ",
10500 0 /* allow-unknown */, &setlist);
10501 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
10502 Remote protocol specific variables\n\
10503 Configure various remote-protocol specific variables such as\n\
10504 the packets being used"),
10505 &remote_show_cmdlist, "show remote ",
10506 0 /* allow-unknown */, &showlist);
10507
10508 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
10509 Compare section data on target to the exec file.\n\
10510 Argument is a single section name (default: all loaded sections)."),
10511 &cmdlist);
10512
10513 add_cmd ("packet", class_maintenance, packet_command, _("\
10514 Send an arbitrary packet to a remote target.\n\
10515 maintenance packet TEXT\n\
10516 If GDB is talking to an inferior via the GDB serial protocol, then\n\
10517 this command sends the string TEXT to the inferior, and displays the\n\
10518 response packet. GDB supplies the initial `$' character, and the\n\
10519 terminating `#' character and checksum."),
10520 &maintenancelist);
10521
10522 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
10523 Set whether to send break if interrupted."), _("\
10524 Show whether to send break if interrupted."), _("\
10525 If set, a break, instead of a cntrl-c, is sent to the remote target."),
10526 set_remotebreak, show_remotebreak,
10527 &setlist, &showlist);
10528 cmd_name = "remotebreak";
10529 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
10530 deprecate_cmd (cmd, "set remote interrupt-sequence");
10531 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
10532 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
10533 deprecate_cmd (cmd, "show remote interrupt-sequence");
10534
10535 add_setshow_enum_cmd ("interrupt-sequence", class_support,
10536 interrupt_sequence_modes, &interrupt_sequence_mode, _("\
10537 Set interrupt sequence to remote target."), _("\
10538 Show interrupt sequence to remote target."), _("\
10539 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
10540 NULL, show_interrupt_sequence,
10541 &remote_set_cmdlist,
10542 &remote_show_cmdlist);
10543
10544 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
10545 &interrupt_on_connect, _("\
10546 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10547 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10548 If set, interrupt sequence is sent to remote target."),
10549 NULL, NULL,
10550 &remote_set_cmdlist, &remote_show_cmdlist);
10551
10552 /* Install commands for configuring memory read/write packets. */
10553
10554 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
10555 Set the maximum number of bytes per memory write packet (deprecated)."),
10556 &setlist);
10557 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
10558 Show the maximum number of bytes per memory write packet (deprecated)."),
10559 &showlist);
10560 add_cmd ("memory-write-packet-size", no_class,
10561 set_memory_write_packet_size, _("\
10562 Set the maximum number of bytes per memory-write packet.\n\
10563 Specify the number of bytes in a packet or 0 (zero) for the\n\
10564 default packet size. The actual limit is further reduced\n\
10565 dependent on the target. Specify ``fixed'' to disable the\n\
10566 further restriction and ``limit'' to enable that restriction."),
10567 &remote_set_cmdlist);
10568 add_cmd ("memory-read-packet-size", no_class,
10569 set_memory_read_packet_size, _("\
10570 Set the maximum number of bytes per memory-read packet.\n\
10571 Specify the number of bytes in a packet or 0 (zero) for the\n\
10572 default packet size. The actual limit is further reduced\n\
10573 dependent on the target. Specify ``fixed'' to disable the\n\
10574 further restriction and ``limit'' to enable that restriction."),
10575 &remote_set_cmdlist);
10576 add_cmd ("memory-write-packet-size", no_class,
10577 show_memory_write_packet_size,
10578 _("Show the maximum number of bytes per memory-write packet."),
10579 &remote_show_cmdlist);
10580 add_cmd ("memory-read-packet-size", no_class,
10581 show_memory_read_packet_size,
10582 _("Show the maximum number of bytes per memory-read packet."),
10583 &remote_show_cmdlist);
10584
10585 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
10586 &remote_hw_watchpoint_limit, _("\
10587 Set the maximum number of target hardware watchpoints."), _("\
10588 Show the maximum number of target hardware watchpoints."), _("\
10589 Specify a negative limit for unlimited."),
10590 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
10591 &remote_set_cmdlist, &remote_show_cmdlist);
10592 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
10593 &remote_hw_breakpoint_limit, _("\
10594 Set the maximum number of target hardware breakpoints."), _("\
10595 Show the maximum number of target hardware breakpoints."), _("\
10596 Specify a negative limit for unlimited."),
10597 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
10598 &remote_set_cmdlist, &remote_show_cmdlist);
10599
10600 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
10601 &remote_address_size, _("\
10602 Set the maximum size of the address (in bits) in a memory packet."), _("\
10603 Show the maximum size of the address (in bits) in a memory packet."), NULL,
10604 NULL,
10605 NULL, /* FIXME: i18n: */
10606 &setlist, &showlist);
10607
10608 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
10609 "X", "binary-download", 1);
10610
10611 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
10612 "vCont", "verbose-resume", 0);
10613
10614 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
10615 "QPassSignals", "pass-signals", 0);
10616
10617 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
10618 "qSymbol", "symbol-lookup", 0);
10619
10620 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
10621 "P", "set-register", 1);
10622
10623 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
10624 "p", "fetch-register", 1);
10625
10626 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
10627 "Z0", "software-breakpoint", 0);
10628
10629 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
10630 "Z1", "hardware-breakpoint", 0);
10631
10632 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
10633 "Z2", "write-watchpoint", 0);
10634
10635 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
10636 "Z3", "read-watchpoint", 0);
10637
10638 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
10639 "Z4", "access-watchpoint", 0);
10640
10641 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
10642 "qXfer:auxv:read", "read-aux-vector", 0);
10643
10644 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
10645 "qXfer:features:read", "target-features", 0);
10646
10647 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
10648 "qXfer:libraries:read", "library-info", 0);
10649
10650 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
10651 "qXfer:memory-map:read", "memory-map", 0);
10652
10653 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
10654 "qXfer:spu:read", "read-spu-object", 0);
10655
10656 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
10657 "qXfer:spu:write", "write-spu-object", 0);
10658
10659 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
10660 "qXfer:osdata:read", "osdata", 0);
10661
10662 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
10663 "qXfer:threads:read", "threads", 0);
10664
10665 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
10666 "qXfer:siginfo:read", "read-siginfo-object", 0);
10667
10668 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
10669 "qXfer:siginfo:write", "write-siginfo-object", 0);
10670
10671 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
10672 "qGetTLSAddr", "get-thread-local-storage-address",
10673 0);
10674
10675 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
10676 "qGetTIBAddr", "get-thread-information-block-address",
10677 0);
10678
10679 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
10680 "bc", "reverse-continue", 0);
10681
10682 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
10683 "bs", "reverse-step", 0);
10684
10685 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
10686 "qSupported", "supported-packets", 0);
10687
10688 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
10689 "qSearch:memory", "search-memory", 0);
10690
10691 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
10692 "vFile:open", "hostio-open", 0);
10693
10694 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
10695 "vFile:pread", "hostio-pread", 0);
10696
10697 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
10698 "vFile:pwrite", "hostio-pwrite", 0);
10699
10700 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
10701 "vFile:close", "hostio-close", 0);
10702
10703 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
10704 "vFile:unlink", "hostio-unlink", 0);
10705
10706 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
10707 "vAttach", "attach", 0);
10708
10709 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
10710 "vRun", "run", 0);
10711
10712 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
10713 "QStartNoAckMode", "noack", 0);
10714
10715 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
10716 "vKill", "kill", 0);
10717
10718 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
10719 "qAttached", "query-attached", 0);
10720
10721 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
10722 "ConditionalTracepoints", "conditional-tracepoints", 0);
10723 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
10724 "FastTracepoints", "fast-tracepoints", 0);
10725
10726 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
10727 "TracepointSource", "TracepointSource", 0);
10728
10729 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
10730 "QAllow", "allow", 0);
10731
10732 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
10733 "StaticTracepoints", "static-tracepoints", 0);
10734
10735 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
10736 "qXfer:statictrace:read", "read-sdata-object", 0);
10737
10738 /* Keep the old ``set remote Z-packet ...'' working. Each individual
10739 Z sub-packet has its own set and show commands, but users may
10740 have sets to this variable in their .gdbinit files (or in their
10741 documentation). */
10742 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
10743 &remote_Z_packet_detect, _("\
10744 Set use of remote protocol `Z' packets"), _("\
10745 Show use of remote protocol `Z' packets "), _("\
10746 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
10747 packets."),
10748 set_remote_protocol_Z_packet_cmd,
10749 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
10750 &remote_set_cmdlist, &remote_show_cmdlist);
10751
10752 add_prefix_cmd ("remote", class_files, remote_command, _("\
10753 Manipulate files on the remote system\n\
10754 Transfer files to and from the remote target system."),
10755 &remote_cmdlist, "remote ",
10756 0 /* allow-unknown */, &cmdlist);
10757
10758 add_cmd ("put", class_files, remote_put_command,
10759 _("Copy a local file to the remote system."),
10760 &remote_cmdlist);
10761
10762 add_cmd ("get", class_files, remote_get_command,
10763 _("Copy a remote file to the local system."),
10764 &remote_cmdlist);
10765
10766 add_cmd ("delete", class_files, remote_delete_command,
10767 _("Delete a remote file."),
10768 &remote_cmdlist);
10769
10770 remote_exec_file = xstrdup ("");
10771 add_setshow_string_noescape_cmd ("exec-file", class_files,
10772 &remote_exec_file, _("\
10773 Set the remote pathname for \"run\""), _("\
10774 Show the remote pathname for \"run\""), NULL, NULL, NULL,
10775 &remote_set_cmdlist, &remote_show_cmdlist);
10776
10777 /* Eventually initialize fileio. See fileio.c */
10778 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
10779
10780 /* Take advantage of the fact that the LWP field is not used, to tag
10781 special ptids with it set to != 0. */
10782 magic_null_ptid = ptid_build (42000, 1, -1);
10783 not_sent_ptid = ptid_build (42000, 1, -2);
10784 any_thread_ptid = ptid_build (42000, 1, 0);
10785
10786 target_buf_size = 2048;
10787 target_buf = xmalloc (target_buf_size);
10788 }
10789
This page took 0.256079 seconds and 4 git commands to generate.